1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Freescale Management Complex (MC) bus driver
4 *
5 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
6 * Copyright 2019-2020 NXP
7 * Author: German Rivera <German.Rivera@freescale.com>
8 *
9 */
10
11 #define pr_fmt(fmt) "fsl-mc: " fmt
12
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/of_address.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/limits.h>
19 #include <linux/bitops.h>
20 #include <linux/msi.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/acpi.h>
23 #include <linux/iommu.h>
24
25 #include "fsl-mc-private.h"
26
27 /*
28 * Default DMA mask for devices on a fsl-mc bus
29 */
30 #define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
31
32 static struct fsl_mc_version mc_version;
33
34 /**
35 * struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
36 * @root_mc_bus_dev: fsl-mc device representing the root DPRC
37 * @num_translation_ranges: number of entries in addr_translation_ranges
38 * @translation_ranges: array of bus to system address translation ranges
39 * @fsl_mc_regs: base address of register bank
40 */
41 struct fsl_mc {
42 struct fsl_mc_device *root_mc_bus_dev;
43 u8 num_translation_ranges;
44 struct fsl_mc_addr_translation_range *translation_ranges;
45 void __iomem *fsl_mc_regs;
46 };
47
48 /**
49 * struct fsl_mc_addr_translation_range - bus to system address translation
50 * range
51 * @mc_region_type: Type of MC region for the range being translated
52 * @start_mc_offset: Start MC offset of the range being translated
53 * @end_mc_offset: MC offset of the first byte after the range (last MC
54 * offset of the range is end_mc_offset - 1)
55 * @start_phys_addr: system physical address corresponding to start_mc_addr
56 */
57 struct fsl_mc_addr_translation_range {
58 enum dprc_region_type mc_region_type;
59 u64 start_mc_offset;
60 u64 end_mc_offset;
61 phys_addr_t start_phys_addr;
62 };
63
64 #define FSL_MC_GCR1 0x0
65 #define GCR1_P1_STOP BIT(31)
66 #define GCR1_P2_STOP BIT(30)
67
68 #define FSL_MC_FAPR 0x28
69 #define MC_FAPR_PL BIT(18)
70 #define MC_FAPR_BMT BIT(17)
71
72 static phys_addr_t mc_portal_base_phys_addr;
73
74 /**
75 * fsl_mc_bus_match - device to driver matching callback
76 * @dev: the fsl-mc device to match against
77 * @drv: the device driver to search for matching fsl-mc object type
78 * structures
79 *
80 * Returns 1 on success, 0 otherwise.
81 */
fsl_mc_bus_match(struct device * dev,struct device_driver * drv)82 static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
83 {
84 const struct fsl_mc_device_id *id;
85 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
86 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
87 bool found = false;
88
89 /* When driver_override is set, only bind to the matching driver */
90 if (mc_dev->driver_override) {
91 found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
92 goto out;
93 }
94
95 if (!mc_drv->match_id_table)
96 goto out;
97
98 /*
99 * If the object is not 'plugged' don't match.
100 * Only exception is the root DPRC, which is a special case.
101 */
102 if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
103 !fsl_mc_is_root_dprc(&mc_dev->dev))
104 goto out;
105
106 /*
107 * Traverse the match_id table of the given driver, trying to find
108 * a matching for the given device.
109 */
110 for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
111 if (id->vendor == mc_dev->obj_desc.vendor &&
112 strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
113 found = true;
114
115 break;
116 }
117 }
118
119 out:
120 dev_dbg(dev, "%smatched\n", found ? "" : "not ");
121 return found;
122 }
123
124 /*
125 * fsl_mc_bus_uevent - callback invoked when a device is added
126 */
fsl_mc_bus_uevent(struct device * dev,struct kobj_uevent_env * env)127 static int fsl_mc_bus_uevent(struct device *dev, struct kobj_uevent_env *env)
128 {
129 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
130
131 if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
132 mc_dev->obj_desc.vendor,
133 mc_dev->obj_desc.type))
134 return -ENOMEM;
135
136 return 0;
137 }
138
fsl_mc_dma_configure(struct device * dev)139 static int fsl_mc_dma_configure(struct device *dev)
140 {
141 struct device *dma_dev = dev;
142 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
143 u32 input_id = mc_dev->icid;
144
145 while (dev_is_fsl_mc(dma_dev))
146 dma_dev = dma_dev->parent;
147
148 if (dev_of_node(dma_dev))
149 return of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
150
151 return acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
152 }
153
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)154 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
155 char *buf)
156 {
157 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
158
159 return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
160 mc_dev->obj_desc.type);
161 }
162 static DEVICE_ATTR_RO(modalias);
163
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)164 static ssize_t driver_override_store(struct device *dev,
165 struct device_attribute *attr,
166 const char *buf, size_t count)
167 {
168 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
169 char *driver_override, *old = mc_dev->driver_override;
170 char *cp;
171
172 if (WARN_ON(dev->bus != &fsl_mc_bus_type))
173 return -EINVAL;
174
175 if (count >= (PAGE_SIZE - 1))
176 return -EINVAL;
177
178 driver_override = kstrndup(buf, count, GFP_KERNEL);
179 if (!driver_override)
180 return -ENOMEM;
181
182 cp = strchr(driver_override, '\n');
183 if (cp)
184 *cp = '\0';
185
186 if (strlen(driver_override)) {
187 mc_dev->driver_override = driver_override;
188 } else {
189 kfree(driver_override);
190 mc_dev->driver_override = NULL;
191 }
192
193 kfree(old);
194
195 return count;
196 }
197
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)198 static ssize_t driver_override_show(struct device *dev,
199 struct device_attribute *attr, char *buf)
200 {
201 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
202
203 return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
204 }
205 static DEVICE_ATTR_RW(driver_override);
206
207 static struct attribute *fsl_mc_dev_attrs[] = {
208 &dev_attr_modalias.attr,
209 &dev_attr_driver_override.attr,
210 NULL,
211 };
212
213 ATTRIBUTE_GROUPS(fsl_mc_dev);
214
scan_fsl_mc_bus(struct device * dev,void * data)215 static int scan_fsl_mc_bus(struct device *dev, void *data)
216 {
217 struct fsl_mc_device *root_mc_dev;
218 struct fsl_mc_bus *root_mc_bus;
219
220 if (!fsl_mc_is_root_dprc(dev))
221 goto exit;
222
223 root_mc_dev = to_fsl_mc_device(dev);
224 root_mc_bus = to_fsl_mc_bus(root_mc_dev);
225 mutex_lock(&root_mc_bus->scan_mutex);
226 dprc_scan_objects(root_mc_dev, false);
227 mutex_unlock(&root_mc_bus->scan_mutex);
228
229 exit:
230 return 0;
231 }
232
rescan_store(struct bus_type * bus,const char * buf,size_t count)233 static ssize_t rescan_store(struct bus_type *bus,
234 const char *buf, size_t count)
235 {
236 unsigned long val;
237
238 if (kstrtoul(buf, 0, &val) < 0)
239 return -EINVAL;
240
241 if (val)
242 bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
243
244 return count;
245 }
246 static BUS_ATTR_WO(rescan);
247
fsl_mc_bus_set_autorescan(struct device * dev,void * data)248 static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
249 {
250 struct fsl_mc_device *root_mc_dev;
251 unsigned long val;
252 char *buf = data;
253
254 if (!fsl_mc_is_root_dprc(dev))
255 goto exit;
256
257 root_mc_dev = to_fsl_mc_device(dev);
258
259 if (kstrtoul(buf, 0, &val) < 0)
260 return -EINVAL;
261
262 if (val)
263 enable_dprc_irq(root_mc_dev);
264 else
265 disable_dprc_irq(root_mc_dev);
266
267 exit:
268 return 0;
269 }
270
fsl_mc_bus_get_autorescan(struct device * dev,void * data)271 static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
272 {
273 struct fsl_mc_device *root_mc_dev;
274 char *buf = data;
275
276 if (!fsl_mc_is_root_dprc(dev))
277 goto exit;
278
279 root_mc_dev = to_fsl_mc_device(dev);
280
281 sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
282 exit:
283 return 0;
284 }
285
autorescan_store(struct bus_type * bus,const char * buf,size_t count)286 static ssize_t autorescan_store(struct bus_type *bus,
287 const char *buf, size_t count)
288 {
289 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
290
291 return count;
292 }
293
autorescan_show(struct bus_type * bus,char * buf)294 static ssize_t autorescan_show(struct bus_type *bus, char *buf)
295 {
296 bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
297 return strlen(buf);
298 }
299
300 static BUS_ATTR_RW(autorescan);
301
302 static struct attribute *fsl_mc_bus_attrs[] = {
303 &bus_attr_rescan.attr,
304 &bus_attr_autorescan.attr,
305 NULL,
306 };
307
308 ATTRIBUTE_GROUPS(fsl_mc_bus);
309
310 struct bus_type fsl_mc_bus_type = {
311 .name = "fsl-mc",
312 .match = fsl_mc_bus_match,
313 .uevent = fsl_mc_bus_uevent,
314 .dma_configure = fsl_mc_dma_configure,
315 .dev_groups = fsl_mc_dev_groups,
316 .bus_groups = fsl_mc_bus_groups,
317 };
318 EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
319
320 struct device_type fsl_mc_bus_dprc_type = {
321 .name = "fsl_mc_bus_dprc"
322 };
323 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
324
325 struct device_type fsl_mc_bus_dpni_type = {
326 .name = "fsl_mc_bus_dpni"
327 };
328 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
329
330 struct device_type fsl_mc_bus_dpio_type = {
331 .name = "fsl_mc_bus_dpio"
332 };
333 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
334
335 struct device_type fsl_mc_bus_dpsw_type = {
336 .name = "fsl_mc_bus_dpsw"
337 };
338 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
339
340 struct device_type fsl_mc_bus_dpbp_type = {
341 .name = "fsl_mc_bus_dpbp"
342 };
343 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
344
345 struct device_type fsl_mc_bus_dpcon_type = {
346 .name = "fsl_mc_bus_dpcon"
347 };
348 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
349
350 struct device_type fsl_mc_bus_dpmcp_type = {
351 .name = "fsl_mc_bus_dpmcp"
352 };
353 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
354
355 struct device_type fsl_mc_bus_dpmac_type = {
356 .name = "fsl_mc_bus_dpmac"
357 };
358 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
359
360 struct device_type fsl_mc_bus_dprtc_type = {
361 .name = "fsl_mc_bus_dprtc"
362 };
363 EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
364
365 struct device_type fsl_mc_bus_dpseci_type = {
366 .name = "fsl_mc_bus_dpseci"
367 };
368 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
369
370 struct device_type fsl_mc_bus_dpdmux_type = {
371 .name = "fsl_mc_bus_dpdmux"
372 };
373 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
374
375 struct device_type fsl_mc_bus_dpdcei_type = {
376 .name = "fsl_mc_bus_dpdcei"
377 };
378 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
379
380 struct device_type fsl_mc_bus_dpaiop_type = {
381 .name = "fsl_mc_bus_dpaiop"
382 };
383 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
384
385 struct device_type fsl_mc_bus_dpci_type = {
386 .name = "fsl_mc_bus_dpci"
387 };
388 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
389
390 struct device_type fsl_mc_bus_dpdmai_type = {
391 .name = "fsl_mc_bus_dpdmai"
392 };
393 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
394
395 struct device_type fsl_mc_bus_dpdbg_type = {
396 .name = "fsl_mc_bus_dpdbg"
397 };
398 EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
399
fsl_mc_get_device_type(const char * type)400 static struct device_type *fsl_mc_get_device_type(const char *type)
401 {
402 static const struct {
403 struct device_type *dev_type;
404 const char *type;
405 } dev_types[] = {
406 { &fsl_mc_bus_dprc_type, "dprc" },
407 { &fsl_mc_bus_dpni_type, "dpni" },
408 { &fsl_mc_bus_dpio_type, "dpio" },
409 { &fsl_mc_bus_dpsw_type, "dpsw" },
410 { &fsl_mc_bus_dpbp_type, "dpbp" },
411 { &fsl_mc_bus_dpcon_type, "dpcon" },
412 { &fsl_mc_bus_dpmcp_type, "dpmcp" },
413 { &fsl_mc_bus_dpmac_type, "dpmac" },
414 { &fsl_mc_bus_dprtc_type, "dprtc" },
415 { &fsl_mc_bus_dpseci_type, "dpseci" },
416 { &fsl_mc_bus_dpdmux_type, "dpdmux" },
417 { &fsl_mc_bus_dpdcei_type, "dpdcei" },
418 { &fsl_mc_bus_dpaiop_type, "dpaiop" },
419 { &fsl_mc_bus_dpci_type, "dpci" },
420 { &fsl_mc_bus_dpdmai_type, "dpdmai" },
421 { &fsl_mc_bus_dpdbg_type, "dpdbg" },
422 { NULL, NULL }
423 };
424 int i;
425
426 for (i = 0; dev_types[i].dev_type; i++)
427 if (!strcmp(dev_types[i].type, type))
428 return dev_types[i].dev_type;
429
430 return NULL;
431 }
432
fsl_mc_driver_probe(struct device * dev)433 static int fsl_mc_driver_probe(struct device *dev)
434 {
435 struct fsl_mc_driver *mc_drv;
436 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
437 int error;
438
439 mc_drv = to_fsl_mc_driver(dev->driver);
440
441 error = mc_drv->probe(mc_dev);
442 if (error < 0) {
443 if (error != -EPROBE_DEFER)
444 dev_err(dev, "%s failed: %d\n", __func__, error);
445 return error;
446 }
447
448 return 0;
449 }
450
fsl_mc_driver_remove(struct device * dev)451 static int fsl_mc_driver_remove(struct device *dev)
452 {
453 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
454 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
455 int error;
456
457 error = mc_drv->remove(mc_dev);
458 if (error < 0) {
459 dev_err(dev, "%s failed: %d\n", __func__, error);
460 return error;
461 }
462
463 return 0;
464 }
465
fsl_mc_driver_shutdown(struct device * dev)466 static void fsl_mc_driver_shutdown(struct device *dev)
467 {
468 struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
469 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
470
471 mc_drv->shutdown(mc_dev);
472 }
473
474 /*
475 * __fsl_mc_driver_register - registers a child device driver with the
476 * MC bus
477 *
478 * This function is implicitly invoked from the registration function of
479 * fsl_mc device drivers, which is generated by the
480 * module_fsl_mc_driver() macro.
481 */
__fsl_mc_driver_register(struct fsl_mc_driver * mc_driver,struct module * owner)482 int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
483 struct module *owner)
484 {
485 int error;
486
487 mc_driver->driver.owner = owner;
488 mc_driver->driver.bus = &fsl_mc_bus_type;
489
490 if (mc_driver->probe)
491 mc_driver->driver.probe = fsl_mc_driver_probe;
492
493 if (mc_driver->remove)
494 mc_driver->driver.remove = fsl_mc_driver_remove;
495
496 if (mc_driver->shutdown)
497 mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
498
499 error = driver_register(&mc_driver->driver);
500 if (error < 0) {
501 pr_err("driver_register() failed for %s: %d\n",
502 mc_driver->driver.name, error);
503 return error;
504 }
505
506 return 0;
507 }
508 EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
509
510 /*
511 * fsl_mc_driver_unregister - unregisters a device driver from the
512 * MC bus
513 */
fsl_mc_driver_unregister(struct fsl_mc_driver * mc_driver)514 void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
515 {
516 driver_unregister(&mc_driver->driver);
517 }
518 EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
519
520 /**
521 * mc_get_version() - Retrieves the Management Complex firmware
522 * version information
523 * @mc_io: Pointer to opaque I/O object
524 * @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
525 * @mc_ver_info: Returned version information structure
526 *
527 * Return: '0' on Success; Error code otherwise.
528 */
mc_get_version(struct fsl_mc_io * mc_io,u32 cmd_flags,struct fsl_mc_version * mc_ver_info)529 static int mc_get_version(struct fsl_mc_io *mc_io,
530 u32 cmd_flags,
531 struct fsl_mc_version *mc_ver_info)
532 {
533 struct fsl_mc_command cmd = { 0 };
534 struct dpmng_rsp_get_version *rsp_params;
535 int err;
536
537 /* prepare command */
538 cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
539 cmd_flags,
540 0);
541
542 /* send command to mc*/
543 err = mc_send_command(mc_io, &cmd);
544 if (err)
545 return err;
546
547 /* retrieve response parameters */
548 rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
549 mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
550 mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
551 mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
552
553 return 0;
554 }
555
556 /**
557 * fsl_mc_get_version - function to retrieve the MC f/w version information
558 *
559 * Return: mc version when called after fsl-mc-bus probe; NULL otherwise.
560 */
fsl_mc_get_version(void)561 struct fsl_mc_version *fsl_mc_get_version(void)
562 {
563 if (mc_version.major)
564 return &mc_version;
565
566 return NULL;
567 }
568 EXPORT_SYMBOL_GPL(fsl_mc_get_version);
569
570 /*
571 * fsl_mc_get_root_dprc - function to traverse to the root dprc
572 */
fsl_mc_get_root_dprc(struct device * dev,struct device ** root_dprc_dev)573 void fsl_mc_get_root_dprc(struct device *dev,
574 struct device **root_dprc_dev)
575 {
576 if (!dev) {
577 *root_dprc_dev = NULL;
578 } else if (!dev_is_fsl_mc(dev)) {
579 *root_dprc_dev = NULL;
580 } else {
581 *root_dprc_dev = dev;
582 while (dev_is_fsl_mc((*root_dprc_dev)->parent))
583 *root_dprc_dev = (*root_dprc_dev)->parent;
584 }
585 }
586
get_dprc_attr(struct fsl_mc_io * mc_io,int container_id,struct dprc_attributes * attr)587 static int get_dprc_attr(struct fsl_mc_io *mc_io,
588 int container_id, struct dprc_attributes *attr)
589 {
590 u16 dprc_handle;
591 int error;
592
593 error = dprc_open(mc_io, 0, container_id, &dprc_handle);
594 if (error < 0) {
595 dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
596 return error;
597 }
598
599 memset(attr, 0, sizeof(struct dprc_attributes));
600 error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
601 if (error < 0) {
602 dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
603 error);
604 goto common_cleanup;
605 }
606
607 error = 0;
608
609 common_cleanup:
610 (void)dprc_close(mc_io, 0, dprc_handle);
611 return error;
612 }
613
get_dprc_icid(struct fsl_mc_io * mc_io,int container_id,u32 * icid)614 static int get_dprc_icid(struct fsl_mc_io *mc_io,
615 int container_id, u32 *icid)
616 {
617 struct dprc_attributes attr;
618 int error;
619
620 error = get_dprc_attr(mc_io, container_id, &attr);
621 if (error == 0)
622 *icid = attr.icid;
623
624 return error;
625 }
626
translate_mc_addr(struct fsl_mc_device * mc_dev,enum dprc_region_type mc_region_type,u64 mc_offset,phys_addr_t * phys_addr)627 static int translate_mc_addr(struct fsl_mc_device *mc_dev,
628 enum dprc_region_type mc_region_type,
629 u64 mc_offset, phys_addr_t *phys_addr)
630 {
631 int i;
632 struct device *root_dprc_dev;
633 struct fsl_mc *mc;
634
635 fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
636 mc = dev_get_drvdata(root_dprc_dev->parent);
637
638 if (mc->num_translation_ranges == 0) {
639 /*
640 * Do identity mapping:
641 */
642 *phys_addr = mc_offset;
643 return 0;
644 }
645
646 for (i = 0; i < mc->num_translation_ranges; i++) {
647 struct fsl_mc_addr_translation_range *range =
648 &mc->translation_ranges[i];
649
650 if (mc_region_type == range->mc_region_type &&
651 mc_offset >= range->start_mc_offset &&
652 mc_offset < range->end_mc_offset) {
653 *phys_addr = range->start_phys_addr +
654 (mc_offset - range->start_mc_offset);
655 return 0;
656 }
657 }
658
659 return -EFAULT;
660 }
661
fsl_mc_device_get_mmio_regions(struct fsl_mc_device * mc_dev,struct fsl_mc_device * mc_bus_dev)662 static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
663 struct fsl_mc_device *mc_bus_dev)
664 {
665 int i;
666 int error;
667 struct resource *regions;
668 struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
669 struct device *parent_dev = mc_dev->dev.parent;
670 enum dprc_region_type mc_region_type;
671
672 if (is_fsl_mc_bus_dprc(mc_dev) ||
673 is_fsl_mc_bus_dpmcp(mc_dev)) {
674 mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
675 } else if (is_fsl_mc_bus_dpio(mc_dev)) {
676 mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
677 } else {
678 /*
679 * This function should not have been called for this MC object
680 * type, as this object type is not supposed to have MMIO
681 * regions
682 */
683 return -EINVAL;
684 }
685
686 regions = kmalloc_array(obj_desc->region_count,
687 sizeof(regions[0]), GFP_KERNEL);
688 if (!regions)
689 return -ENOMEM;
690
691 for (i = 0; i < obj_desc->region_count; i++) {
692 struct dprc_region_desc region_desc;
693
694 error = dprc_get_obj_region(mc_bus_dev->mc_io,
695 0,
696 mc_bus_dev->mc_handle,
697 obj_desc->type,
698 obj_desc->id, i, ®ion_desc);
699 if (error < 0) {
700 dev_err(parent_dev,
701 "dprc_get_obj_region() failed: %d\n", error);
702 goto error_cleanup_regions;
703 }
704 /*
705 * Older MC only returned region offset and no base address
706 * If base address is in the region_desc use it otherwise
707 * revert to old mechanism
708 */
709 if (region_desc.base_address) {
710 regions[i].start = region_desc.base_address +
711 region_desc.base_offset;
712 } else {
713 error = translate_mc_addr(mc_dev, mc_region_type,
714 region_desc.base_offset,
715 ®ions[i].start);
716
717 /*
718 * Some versions of the MC firmware wrongly report
719 * 0 for register base address of the DPMCP associated
720 * with child DPRC objects thus rendering them unusable.
721 * This is particularly troublesome in ACPI boot
722 * scenarios where the legacy way of extracting this
723 * base address from the device tree does not apply.
724 * Given that DPMCPs share the same base address,
725 * workaround this by using the base address extracted
726 * from the root DPRC container.
727 */
728 if (is_fsl_mc_bus_dprc(mc_dev) &&
729 regions[i].start == region_desc.base_offset)
730 regions[i].start += mc_portal_base_phys_addr;
731 }
732
733 if (error < 0) {
734 dev_err(parent_dev,
735 "Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
736 region_desc.base_offset,
737 obj_desc->type, obj_desc->id, i);
738 goto error_cleanup_regions;
739 }
740
741 regions[i].end = regions[i].start + region_desc.size - 1;
742 regions[i].name = "fsl-mc object MMIO region";
743 regions[i].flags = region_desc.flags & IORESOURCE_BITS;
744 regions[i].flags |= IORESOURCE_MEM;
745 }
746
747 mc_dev->regions = regions;
748 return 0;
749
750 error_cleanup_regions:
751 kfree(regions);
752 return error;
753 }
754
755 /*
756 * fsl_mc_is_root_dprc - function to check if a given device is a root dprc
757 */
fsl_mc_is_root_dprc(struct device * dev)758 bool fsl_mc_is_root_dprc(struct device *dev)
759 {
760 struct device *root_dprc_dev;
761
762 fsl_mc_get_root_dprc(dev, &root_dprc_dev);
763 if (!root_dprc_dev)
764 return false;
765 return dev == root_dprc_dev;
766 }
767
fsl_mc_device_release(struct device * dev)768 static void fsl_mc_device_release(struct device *dev)
769 {
770 struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
771
772 kfree(mc_dev->regions);
773
774 if (is_fsl_mc_bus_dprc(mc_dev))
775 kfree(to_fsl_mc_bus(mc_dev));
776 else
777 kfree(mc_dev);
778 }
779
780 /*
781 * Add a newly discovered fsl-mc device to be visible in Linux
782 */
fsl_mc_device_add(struct fsl_mc_obj_desc * obj_desc,struct fsl_mc_io * mc_io,struct device * parent_dev,struct fsl_mc_device ** new_mc_dev)783 int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
784 struct fsl_mc_io *mc_io,
785 struct device *parent_dev,
786 struct fsl_mc_device **new_mc_dev)
787 {
788 int error;
789 struct fsl_mc_device *mc_dev = NULL;
790 struct fsl_mc_bus *mc_bus = NULL;
791 struct fsl_mc_device *parent_mc_dev;
792
793 if (dev_is_fsl_mc(parent_dev))
794 parent_mc_dev = to_fsl_mc_device(parent_dev);
795 else
796 parent_mc_dev = NULL;
797
798 if (strcmp(obj_desc->type, "dprc") == 0) {
799 /*
800 * Allocate an MC bus device object:
801 */
802 mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
803 if (!mc_bus)
804 return -ENOMEM;
805
806 mutex_init(&mc_bus->scan_mutex);
807 mc_dev = &mc_bus->mc_dev;
808 } else {
809 /*
810 * Allocate a regular fsl_mc_device object:
811 */
812 mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
813 if (!mc_dev)
814 return -ENOMEM;
815 }
816
817 mc_dev->obj_desc = *obj_desc;
818 mc_dev->mc_io = mc_io;
819 device_initialize(&mc_dev->dev);
820 mc_dev->dev.parent = parent_dev;
821 mc_dev->dev.bus = &fsl_mc_bus_type;
822 mc_dev->dev.release = fsl_mc_device_release;
823 mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
824 if (!mc_dev->dev.type) {
825 error = -ENODEV;
826 dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
827 goto error_cleanup_dev;
828 }
829 dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
830
831 if (strcmp(obj_desc->type, "dprc") == 0) {
832 struct fsl_mc_io *mc_io2;
833
834 mc_dev->flags |= FSL_MC_IS_DPRC;
835
836 /*
837 * To get the DPRC's ICID, we need to open the DPRC
838 * in get_dprc_icid(). For child DPRCs, we do so using the
839 * parent DPRC's MC portal instead of the child DPRC's MC
840 * portal, in case the child DPRC is already opened with
841 * its own portal (e.g., the DPRC used by AIOP).
842 *
843 * NOTE: There cannot be more than one active open for a
844 * given MC object, using the same MC portal.
845 */
846 if (parent_mc_dev) {
847 /*
848 * device being added is a child DPRC device
849 */
850 mc_io2 = parent_mc_dev->mc_io;
851 } else {
852 /*
853 * device being added is the root DPRC device
854 */
855 if (!mc_io) {
856 error = -EINVAL;
857 goto error_cleanup_dev;
858 }
859
860 mc_io2 = mc_io;
861 }
862
863 error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
864 if (error < 0)
865 goto error_cleanup_dev;
866 } else {
867 /*
868 * A non-DPRC object has to be a child of a DPRC, use the
869 * parent's ICID and interrupt domain.
870 */
871 mc_dev->icid = parent_mc_dev->icid;
872 mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
873 mc_dev->dev.dma_mask = &mc_dev->dma_mask;
874 mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
875 dev_set_msi_domain(&mc_dev->dev,
876 dev_get_msi_domain(&parent_mc_dev->dev));
877 }
878
879 /*
880 * Get MMIO regions for the device from the MC:
881 *
882 * NOTE: the root DPRC is a special case as its MMIO region is
883 * obtained from the device tree
884 */
885 if (parent_mc_dev && obj_desc->region_count != 0) {
886 error = fsl_mc_device_get_mmio_regions(mc_dev,
887 parent_mc_dev);
888 if (error < 0)
889 goto error_cleanup_dev;
890 }
891
892 /*
893 * The device-specific probe callback will get invoked by device_add()
894 */
895 error = device_add(&mc_dev->dev);
896 if (error < 0) {
897 dev_err(parent_dev,
898 "device_add() failed for device %s: %d\n",
899 dev_name(&mc_dev->dev), error);
900 goto error_cleanup_dev;
901 }
902
903 dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
904
905 *new_mc_dev = mc_dev;
906 return 0;
907
908 error_cleanup_dev:
909 kfree(mc_dev->regions);
910 kfree(mc_bus);
911 kfree(mc_dev);
912
913 return error;
914 }
915 EXPORT_SYMBOL_GPL(fsl_mc_device_add);
916
917 static struct notifier_block fsl_mc_nb;
918
919 /**
920 * fsl_mc_device_remove - Remove an fsl-mc device from being visible to
921 * Linux
922 *
923 * @mc_dev: Pointer to an fsl-mc device
924 */
fsl_mc_device_remove(struct fsl_mc_device * mc_dev)925 void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
926 {
927 kfree(mc_dev->driver_override);
928 mc_dev->driver_override = NULL;
929
930 /*
931 * The device-specific remove callback will get invoked by device_del()
932 */
933 device_del(&mc_dev->dev);
934 put_device(&mc_dev->dev);
935 }
936 EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
937
fsl_mc_get_endpoint(struct fsl_mc_device * mc_dev,u16 if_id)938 struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev,
939 u16 if_id)
940 {
941 struct fsl_mc_device *mc_bus_dev, *endpoint;
942 struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
943 struct dprc_endpoint endpoint1 = {{ 0 }};
944 struct dprc_endpoint endpoint2 = {{ 0 }};
945 int state, err;
946
947 mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
948 strcpy(endpoint1.type, mc_dev->obj_desc.type);
949 endpoint1.id = mc_dev->obj_desc.id;
950 endpoint1.if_id = if_id;
951
952 err = dprc_get_connection(mc_bus_dev->mc_io, 0,
953 mc_bus_dev->mc_handle,
954 &endpoint1, &endpoint2,
955 &state);
956
957 if (err == -ENOTCONN || state == -1)
958 return ERR_PTR(-ENOTCONN);
959
960 if (err < 0) {
961 dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
962 return ERR_PTR(err);
963 }
964
965 strcpy(endpoint_desc.type, endpoint2.type);
966 endpoint_desc.id = endpoint2.id;
967 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
968
969 /*
970 * We know that the device has an endpoint because we verified by
971 * interrogating the firmware. This is the case when the device was not
972 * yet discovered by the fsl-mc bus, thus the lookup returned NULL.
973 * Force a rescan of the devices in this container and retry the lookup.
974 */
975 if (!endpoint) {
976 struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
977
978 if (mutex_trylock(&mc_bus->scan_mutex)) {
979 err = dprc_scan_objects(mc_bus_dev, true);
980 mutex_unlock(&mc_bus->scan_mutex);
981 }
982
983 if (err < 0)
984 return ERR_PTR(err);
985 }
986
987 endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
988 /*
989 * This means that the endpoint might reside in a different isolation
990 * context (DPRC/container). Not much to do, so return a permssion
991 * error.
992 */
993 if (!endpoint)
994 return ERR_PTR(-EPERM);
995
996 return endpoint;
997 }
998 EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
999
parse_mc_ranges(struct device * dev,int * paddr_cells,int * mc_addr_cells,int * mc_size_cells,const __be32 ** ranges_start)1000 static int parse_mc_ranges(struct device *dev,
1001 int *paddr_cells,
1002 int *mc_addr_cells,
1003 int *mc_size_cells,
1004 const __be32 **ranges_start)
1005 {
1006 const __be32 *prop;
1007 int range_tuple_cell_count;
1008 int ranges_len;
1009 int tuple_len;
1010 struct device_node *mc_node = dev->of_node;
1011
1012 *ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
1013 if (!(*ranges_start) || !ranges_len) {
1014 dev_warn(dev,
1015 "missing or empty ranges property for device tree node '%pOFn'\n",
1016 mc_node);
1017 return 0;
1018 }
1019
1020 *paddr_cells = of_n_addr_cells(mc_node);
1021
1022 prop = of_get_property(mc_node, "#address-cells", NULL);
1023 if (prop)
1024 *mc_addr_cells = be32_to_cpup(prop);
1025 else
1026 *mc_addr_cells = *paddr_cells;
1027
1028 prop = of_get_property(mc_node, "#size-cells", NULL);
1029 if (prop)
1030 *mc_size_cells = be32_to_cpup(prop);
1031 else
1032 *mc_size_cells = of_n_size_cells(mc_node);
1033
1034 range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
1035 *mc_size_cells;
1036
1037 tuple_len = range_tuple_cell_count * sizeof(__be32);
1038 if (ranges_len % tuple_len != 0) {
1039 dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node);
1040 return -EINVAL;
1041 }
1042
1043 return ranges_len / tuple_len;
1044 }
1045
get_mc_addr_translation_ranges(struct device * dev,struct fsl_mc_addr_translation_range ** ranges,u8 * num_ranges)1046 static int get_mc_addr_translation_ranges(struct device *dev,
1047 struct fsl_mc_addr_translation_range
1048 **ranges,
1049 u8 *num_ranges)
1050 {
1051 int ret;
1052 int paddr_cells;
1053 int mc_addr_cells;
1054 int mc_size_cells;
1055 int i;
1056 const __be32 *ranges_start;
1057 const __be32 *cell;
1058
1059 ret = parse_mc_ranges(dev,
1060 &paddr_cells,
1061 &mc_addr_cells,
1062 &mc_size_cells,
1063 &ranges_start);
1064 if (ret < 0)
1065 return ret;
1066
1067 *num_ranges = ret;
1068 if (!ret) {
1069 /*
1070 * Missing or empty ranges property ("ranges;") for the
1071 * 'fsl,qoriq-mc' node. In this case, identity mapping
1072 * will be used.
1073 */
1074 *ranges = NULL;
1075 return 0;
1076 }
1077
1078 *ranges = devm_kcalloc(dev, *num_ranges,
1079 sizeof(struct fsl_mc_addr_translation_range),
1080 GFP_KERNEL);
1081 if (!(*ranges))
1082 return -ENOMEM;
1083
1084 cell = ranges_start;
1085 for (i = 0; i < *num_ranges; ++i) {
1086 struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
1087
1088 range->mc_region_type = of_read_number(cell, 1);
1089 range->start_mc_offset = of_read_number(cell + 1,
1090 mc_addr_cells - 1);
1091 cell += mc_addr_cells;
1092 range->start_phys_addr = of_read_number(cell, paddr_cells);
1093 cell += paddr_cells;
1094 range->end_mc_offset = range->start_mc_offset +
1095 of_read_number(cell, mc_size_cells);
1096
1097 cell += mc_size_cells;
1098 }
1099
1100 return 0;
1101 }
1102
1103 /*
1104 * fsl_mc_bus_probe - callback invoked when the root MC bus is being
1105 * added
1106 */
fsl_mc_bus_probe(struct platform_device * pdev)1107 static int fsl_mc_bus_probe(struct platform_device *pdev)
1108 {
1109 struct fsl_mc_obj_desc obj_desc;
1110 int error;
1111 struct fsl_mc *mc;
1112 struct fsl_mc_device *mc_bus_dev = NULL;
1113 struct fsl_mc_io *mc_io = NULL;
1114 int container_id;
1115 phys_addr_t mc_portal_phys_addr;
1116 u32 mc_portal_size, mc_stream_id;
1117 struct resource *plat_res;
1118
1119 mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
1120 if (!mc)
1121 return -ENOMEM;
1122
1123 platform_set_drvdata(pdev, mc);
1124
1125 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1126 if (plat_res) {
1127 mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
1128 if (IS_ERR(mc->fsl_mc_regs))
1129 return PTR_ERR(mc->fsl_mc_regs);
1130 }
1131
1132 if (mc->fsl_mc_regs) {
1133 if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
1134 mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
1135 /*
1136 * HW ORs the PL and BMT bit, places the result in bit
1137 * 14 of the StreamID and ORs in the ICID. Calculate it
1138 * accordingly.
1139 */
1140 mc_stream_id = (mc_stream_id & 0xffff) |
1141 ((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
1142 BIT(14) : 0);
1143 error = acpi_dma_configure_id(&pdev->dev,
1144 DEV_DMA_COHERENT,
1145 &mc_stream_id);
1146 if (error == -EPROBE_DEFER)
1147 return error;
1148 if (error)
1149 dev_warn(&pdev->dev,
1150 "failed to configure dma: %d.\n",
1151 error);
1152 }
1153
1154 /*
1155 * Some bootloaders pause the MC firmware before booting the
1156 * kernel so that MC will not cause faults as soon as the
1157 * SMMU probes due to the fact that there's no configuration
1158 * in place for MC.
1159 * At this point MC should have all its SMMU setup done so make
1160 * sure it is resumed.
1161 */
1162 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) &
1163 (~(GCR1_P1_STOP | GCR1_P2_STOP)),
1164 mc->fsl_mc_regs + FSL_MC_GCR1);
1165 }
1166
1167 /*
1168 * Get physical address of MC portal for the root DPRC:
1169 */
1170 plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1171 mc_portal_phys_addr = plat_res->start;
1172 mc_portal_size = resource_size(plat_res);
1173 mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff;
1174
1175 error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
1176 mc_portal_size, NULL,
1177 FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
1178 if (error < 0)
1179 return error;
1180
1181 error = mc_get_version(mc_io, 0, &mc_version);
1182 if (error != 0) {
1183 dev_err(&pdev->dev,
1184 "mc_get_version() failed with error %d\n", error);
1185 goto error_cleanup_mc_io;
1186 }
1187
1188 dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
1189 mc_version.major, mc_version.minor, mc_version.revision);
1190
1191 if (dev_of_node(&pdev->dev)) {
1192 error = get_mc_addr_translation_ranges(&pdev->dev,
1193 &mc->translation_ranges,
1194 &mc->num_translation_ranges);
1195 if (error < 0)
1196 goto error_cleanup_mc_io;
1197 }
1198
1199 error = dprc_get_container_id(mc_io, 0, &container_id);
1200 if (error < 0) {
1201 dev_err(&pdev->dev,
1202 "dprc_get_container_id() failed: %d\n", error);
1203 goto error_cleanup_mc_io;
1204 }
1205
1206 memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
1207 error = dprc_get_api_version(mc_io, 0,
1208 &obj_desc.ver_major,
1209 &obj_desc.ver_minor);
1210 if (error < 0)
1211 goto error_cleanup_mc_io;
1212
1213 obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
1214 strcpy(obj_desc.type, "dprc");
1215 obj_desc.id = container_id;
1216 obj_desc.irq_count = 1;
1217 obj_desc.region_count = 0;
1218
1219 error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
1220 if (error < 0)
1221 goto error_cleanup_mc_io;
1222
1223 mc->root_mc_bus_dev = mc_bus_dev;
1224 mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
1225 return 0;
1226
1227 error_cleanup_mc_io:
1228 fsl_destroy_mc_io(mc_io);
1229 return error;
1230 }
1231
1232 /*
1233 * fsl_mc_bus_remove - callback invoked when the root MC bus is being
1234 * removed
1235 */
fsl_mc_bus_remove(struct platform_device * pdev)1236 static int fsl_mc_bus_remove(struct platform_device *pdev)
1237 {
1238 struct fsl_mc *mc = platform_get_drvdata(pdev);
1239 struct fsl_mc_io *mc_io;
1240
1241 if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
1242 return -EINVAL;
1243
1244 mc_io = mc->root_mc_bus_dev->mc_io;
1245 fsl_mc_device_remove(mc->root_mc_bus_dev);
1246 fsl_destroy_mc_io(mc_io);
1247
1248 bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb);
1249
1250 if (mc->fsl_mc_regs) {
1251 /*
1252 * Pause the MC firmware so that it doesn't crash in certain
1253 * scenarios, such as kexec.
1254 */
1255 writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) |
1256 (GCR1_P1_STOP | GCR1_P2_STOP),
1257 mc->fsl_mc_regs + FSL_MC_GCR1);
1258 }
1259
1260 return 0;
1261 }
1262
fsl_mc_bus_shutdown(struct platform_device * pdev)1263 static void fsl_mc_bus_shutdown(struct platform_device *pdev)
1264 {
1265 fsl_mc_bus_remove(pdev);
1266 }
1267
1268 static const struct of_device_id fsl_mc_bus_match_table[] = {
1269 {.compatible = "fsl,qoriq-mc",},
1270 {},
1271 };
1272
1273 MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
1274
1275 static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
1276 {"NXP0008", 0 },
1277 { }
1278 };
1279 MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
1280
1281 static struct platform_driver fsl_mc_bus_driver = {
1282 .driver = {
1283 .name = "fsl_mc_bus",
1284 .pm = NULL,
1285 .of_match_table = fsl_mc_bus_match_table,
1286 .acpi_match_table = fsl_mc_bus_acpi_match_table,
1287 },
1288 .probe = fsl_mc_bus_probe,
1289 .remove = fsl_mc_bus_remove,
1290 .shutdown = fsl_mc_bus_shutdown,
1291 };
1292
fsl_mc_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)1293 static int fsl_mc_bus_notifier(struct notifier_block *nb,
1294 unsigned long action, void *data)
1295 {
1296 struct device *dev = data;
1297 struct resource *res;
1298 void __iomem *fsl_mc_regs;
1299
1300 if (action != BUS_NOTIFY_ADD_DEVICE)
1301 return 0;
1302
1303 if (!of_match_device(fsl_mc_bus_match_table, dev) &&
1304 !acpi_match_device(fsl_mc_bus_acpi_match_table, dev))
1305 return 0;
1306
1307 res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1);
1308 if (!res)
1309 return 0;
1310
1311 fsl_mc_regs = ioremap(res->start, resource_size(res));
1312 if (!fsl_mc_regs)
1313 return 0;
1314
1315 /*
1316 * Make sure that the MC firmware is paused before the IOMMU setup for
1317 * it is done or otherwise the firmware will crash right after the SMMU
1318 * gets probed and enabled.
1319 */
1320 writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP),
1321 fsl_mc_regs + FSL_MC_GCR1);
1322 iounmap(fsl_mc_regs);
1323
1324 return 0;
1325 }
1326
1327 static struct notifier_block fsl_mc_nb = {
1328 .notifier_call = fsl_mc_bus_notifier,
1329 };
1330
fsl_mc_bus_driver_init(void)1331 static int __init fsl_mc_bus_driver_init(void)
1332 {
1333 int error;
1334
1335 error = bus_register(&fsl_mc_bus_type);
1336 if (error < 0) {
1337 pr_err("bus type registration failed: %d\n", error);
1338 goto error_cleanup_cache;
1339 }
1340
1341 error = platform_driver_register(&fsl_mc_bus_driver);
1342 if (error < 0) {
1343 pr_err("platform_driver_register() failed: %d\n", error);
1344 goto error_cleanup_bus;
1345 }
1346
1347 error = dprc_driver_init();
1348 if (error < 0)
1349 goto error_cleanup_driver;
1350
1351 error = fsl_mc_allocator_driver_init();
1352 if (error < 0)
1353 goto error_cleanup_dprc_driver;
1354
1355 return bus_register_notifier(&platform_bus_type, &fsl_mc_nb);
1356
1357 error_cleanup_dprc_driver:
1358 dprc_driver_exit();
1359
1360 error_cleanup_driver:
1361 platform_driver_unregister(&fsl_mc_bus_driver);
1362
1363 error_cleanup_bus:
1364 bus_unregister(&fsl_mc_bus_type);
1365
1366 error_cleanup_cache:
1367 return error;
1368 }
1369 postcore_initcall(fsl_mc_bus_driver_init);
1370