• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device probing and sysfs code.
4  *
5  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kobject.h>
18 #include <linux/list.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/random.h>
23 #include <linux/rwsem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/workqueue.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/byteorder.h>
31 
32 #include "core.h"
33 
fw_csr_iterator_init(struct fw_csr_iterator * ci,const u32 * p)34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35 {
36 	ci->p = p + 1;
37 	ci->end = ci->p + (p[0] >> 16);
38 }
39 EXPORT_SYMBOL(fw_csr_iterator_init);
40 
fw_csr_iterator_next(struct fw_csr_iterator * ci,int * key,int * value)41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42 {
43 	*key = *ci->p >> 24;
44 	*value = *ci->p & 0xffffff;
45 
46 	return ci->p++ < ci->end;
47 }
48 EXPORT_SYMBOL(fw_csr_iterator_next);
49 
search_leaf(const u32 * directory,int search_key)50 static const u32 *search_leaf(const u32 *directory, int search_key)
51 {
52 	struct fw_csr_iterator ci;
53 	int last_key = 0, key, value;
54 
55 	fw_csr_iterator_init(&ci, directory);
56 	while (fw_csr_iterator_next(&ci, &key, &value)) {
57 		if (last_key == search_key &&
58 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
59 			return ci.p - 1 + value;
60 
61 		last_key = key;
62 	}
63 
64 	return NULL;
65 }
66 
textual_leaf_to_string(const u32 * block,char * buf,size_t size)67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68 {
69 	unsigned int quadlets, i;
70 	char c;
71 
72 	if (!size || !buf)
73 		return -EINVAL;
74 
75 	quadlets = min(block[0] >> 16, 256U);
76 	if (quadlets < 2)
77 		return -ENODATA;
78 
79 	if (block[1] != 0 || block[2] != 0)
80 		/* unknown language/character set */
81 		return -ENODATA;
82 
83 	block += 3;
84 	quadlets -= 2;
85 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 		c = block[i / 4] >> (24 - 8 * (i % 4));
87 		if (c == '\0')
88 			break;
89 		buf[i] = c;
90 	}
91 	buf[i] = '\0';
92 
93 	return i;
94 }
95 
96 /**
97  * fw_csr_string() - reads a string from the configuration ROM
98  * @directory:	e.g. root directory or unit directory
99  * @key:	the key of the preceding directory entry
100  * @buf:	where to put the string
101  * @size:	size of @buf, in bytes
102  *
103  * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
104  * @key. The string is zero-terminated. An overlong string is silently truncated such that it
105  * and the zero byte fit into @size.
106  *
107  * Returns strlen(buf) or a negative error code.
108  */
fw_csr_string(const u32 * directory,int key,char * buf,size_t size)109 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
110 {
111 	const u32 *leaf = search_leaf(directory, key);
112 	if (!leaf)
113 		return -ENOENT;
114 
115 	return textual_leaf_to_string(leaf, buf, size);
116 }
117 EXPORT_SYMBOL(fw_csr_string);
118 
get_ids(const u32 * directory,int * id)119 static void get_ids(const u32 *directory, int *id)
120 {
121 	struct fw_csr_iterator ci;
122 	int key, value;
123 
124 	fw_csr_iterator_init(&ci, directory);
125 	while (fw_csr_iterator_next(&ci, &key, &value)) {
126 		switch (key) {
127 		case CSR_VENDOR:	id[0] = value; break;
128 		case CSR_MODEL:		id[1] = value; break;
129 		case CSR_SPECIFIER_ID:	id[2] = value; break;
130 		case CSR_VERSION:	id[3] = value; break;
131 		}
132 	}
133 }
134 
get_modalias_ids(struct fw_unit * unit,int * id)135 static void get_modalias_ids(struct fw_unit *unit, int *id)
136 {
137 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
138 	get_ids(unit->directory, id);
139 }
140 
match_ids(const struct ieee1394_device_id * id_table,int * id)141 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
142 {
143 	int match = 0;
144 
145 	if (id[0] == id_table->vendor_id)
146 		match |= IEEE1394_MATCH_VENDOR_ID;
147 	if (id[1] == id_table->model_id)
148 		match |= IEEE1394_MATCH_MODEL_ID;
149 	if (id[2] == id_table->specifier_id)
150 		match |= IEEE1394_MATCH_SPECIFIER_ID;
151 	if (id[3] == id_table->version)
152 		match |= IEEE1394_MATCH_VERSION;
153 
154 	return (match & id_table->match_flags) == id_table->match_flags;
155 }
156 
unit_match(struct device * dev,struct device_driver * drv)157 static const struct ieee1394_device_id *unit_match(struct device *dev,
158 						   struct device_driver *drv)
159 {
160 	const struct ieee1394_device_id *id_table =
161 			container_of(drv, struct fw_driver, driver)->id_table;
162 	int id[] = {0, 0, 0, 0};
163 
164 	get_modalias_ids(fw_unit(dev), id);
165 
166 	for (; id_table->match_flags != 0; id_table++)
167 		if (match_ids(id_table, id))
168 			return id_table;
169 
170 	return NULL;
171 }
172 
173 static bool is_fw_unit(struct device *dev);
174 
fw_unit_match(struct device * dev,struct device_driver * drv)175 static int fw_unit_match(struct device *dev, struct device_driver *drv)
176 {
177 	/* We only allow binding to fw_units. */
178 	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
179 }
180 
fw_unit_probe(struct device * dev)181 static int fw_unit_probe(struct device *dev)
182 {
183 	struct fw_driver *driver =
184 			container_of(dev->driver, struct fw_driver, driver);
185 
186 	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
187 }
188 
fw_unit_remove(struct device * dev)189 static void fw_unit_remove(struct device *dev)
190 {
191 	struct fw_driver *driver =
192 			container_of(dev->driver, struct fw_driver, driver);
193 
194 	driver->remove(fw_unit(dev));
195 }
196 
get_modalias(struct fw_unit * unit,char * buffer,size_t buffer_size)197 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
198 {
199 	int id[] = {0, 0, 0, 0};
200 
201 	get_modalias_ids(unit, id);
202 
203 	return snprintf(buffer, buffer_size,
204 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
205 			id[0], id[1], id[2], id[3]);
206 }
207 
fw_unit_uevent(struct device * dev,struct kobj_uevent_env * env)208 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
209 {
210 	struct fw_unit *unit = fw_unit(dev);
211 	char modalias[64];
212 
213 	get_modalias(unit, modalias, sizeof(modalias));
214 
215 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
216 		return -ENOMEM;
217 
218 	return 0;
219 }
220 
221 struct bus_type fw_bus_type = {
222 	.name = "firewire",
223 	.match = fw_unit_match,
224 	.probe = fw_unit_probe,
225 	.remove = fw_unit_remove,
226 };
227 EXPORT_SYMBOL(fw_bus_type);
228 
fw_device_enable_phys_dma(struct fw_device * device)229 int fw_device_enable_phys_dma(struct fw_device *device)
230 {
231 	int generation = device->generation;
232 
233 	/* device->node_id, accessed below, must not be older than generation */
234 	smp_rmb();
235 
236 	return device->card->driver->enable_phys_dma(device->card,
237 						     device->node_id,
238 						     generation);
239 }
240 EXPORT_SYMBOL(fw_device_enable_phys_dma);
241 
242 struct config_rom_attribute {
243 	struct device_attribute attr;
244 	u32 key;
245 };
246 
show_immediate(struct device * dev,struct device_attribute * dattr,char * buf)247 static ssize_t show_immediate(struct device *dev,
248 			      struct device_attribute *dattr, char *buf)
249 {
250 	struct config_rom_attribute *attr =
251 		container_of(dattr, struct config_rom_attribute, attr);
252 	struct fw_csr_iterator ci;
253 	const u32 *dir;
254 	int key, value, ret = -ENOENT;
255 
256 	down_read(&fw_device_rwsem);
257 
258 	if (is_fw_unit(dev))
259 		dir = fw_unit(dev)->directory;
260 	else
261 		dir = fw_device(dev)->config_rom + 5;
262 
263 	fw_csr_iterator_init(&ci, dir);
264 	while (fw_csr_iterator_next(&ci, &key, &value))
265 		if (attr->key == key) {
266 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
267 				       "0x%06x\n", value);
268 			break;
269 		}
270 
271 	up_read(&fw_device_rwsem);
272 
273 	return ret;
274 }
275 
276 #define IMMEDIATE_ATTR(name, key)				\
277 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
278 
show_text_leaf(struct device * dev,struct device_attribute * dattr,char * buf)279 static ssize_t show_text_leaf(struct device *dev,
280 			      struct device_attribute *dattr, char *buf)
281 {
282 	struct config_rom_attribute *attr =
283 		container_of(dattr, struct config_rom_attribute, attr);
284 	const u32 *dir;
285 	size_t bufsize;
286 	char dummy_buf[2];
287 	int ret;
288 
289 	down_read(&fw_device_rwsem);
290 
291 	if (is_fw_unit(dev))
292 		dir = fw_unit(dev)->directory;
293 	else
294 		dir = fw_device(dev)->config_rom + 5;
295 
296 	if (buf) {
297 		bufsize = PAGE_SIZE - 1;
298 	} else {
299 		buf = dummy_buf;
300 		bufsize = 1;
301 	}
302 
303 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
304 
305 	if (ret >= 0) {
306 		/* Strip trailing whitespace and add newline. */
307 		while (ret > 0 && isspace(buf[ret - 1]))
308 			ret--;
309 		strcpy(buf + ret, "\n");
310 		ret++;
311 	}
312 
313 	up_read(&fw_device_rwsem);
314 
315 	return ret;
316 }
317 
318 #define TEXT_LEAF_ATTR(name, key)				\
319 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
320 
321 static struct config_rom_attribute config_rom_attributes[] = {
322 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
323 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
324 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
325 	IMMEDIATE_ATTR(version, CSR_VERSION),
326 	IMMEDIATE_ATTR(model, CSR_MODEL),
327 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
328 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
329 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
330 };
331 
init_fw_attribute_group(struct device * dev,struct device_attribute * attrs,struct fw_attribute_group * group)332 static void init_fw_attribute_group(struct device *dev,
333 				    struct device_attribute *attrs,
334 				    struct fw_attribute_group *group)
335 {
336 	struct device_attribute *attr;
337 	int i, j;
338 
339 	for (j = 0; attrs[j].attr.name != NULL; j++)
340 		group->attrs[j] = &attrs[j].attr;
341 
342 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
343 		attr = &config_rom_attributes[i].attr;
344 		if (attr->show(dev, attr, NULL) < 0)
345 			continue;
346 		group->attrs[j++] = &attr->attr;
347 	}
348 
349 	group->attrs[j] = NULL;
350 	group->groups[0] = &group->group;
351 	group->groups[1] = NULL;
352 	group->group.attrs = group->attrs;
353 	dev->groups = (const struct attribute_group **) group->groups;
354 }
355 
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)356 static ssize_t modalias_show(struct device *dev,
357 			     struct device_attribute *attr, char *buf)
358 {
359 	struct fw_unit *unit = fw_unit(dev);
360 	int length;
361 
362 	length = get_modalias(unit, buf, PAGE_SIZE);
363 	strcpy(buf + length, "\n");
364 
365 	return length + 1;
366 }
367 
rom_index_show(struct device * dev,struct device_attribute * attr,char * buf)368 static ssize_t rom_index_show(struct device *dev,
369 			      struct device_attribute *attr, char *buf)
370 {
371 	struct fw_device *device = fw_device(dev->parent);
372 	struct fw_unit *unit = fw_unit(dev);
373 
374 	return snprintf(buf, PAGE_SIZE, "%d\n",
375 			(int)(unit->directory - device->config_rom));
376 }
377 
378 static struct device_attribute fw_unit_attributes[] = {
379 	__ATTR_RO(modalias),
380 	__ATTR_RO(rom_index),
381 	__ATTR_NULL,
382 };
383 
config_rom_show(struct device * dev,struct device_attribute * attr,char * buf)384 static ssize_t config_rom_show(struct device *dev,
385 			       struct device_attribute *attr, char *buf)
386 {
387 	struct fw_device *device = fw_device(dev);
388 	size_t length;
389 
390 	down_read(&fw_device_rwsem);
391 	length = device->config_rom_length * 4;
392 	memcpy(buf, device->config_rom, length);
393 	up_read(&fw_device_rwsem);
394 
395 	return length;
396 }
397 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)398 static ssize_t guid_show(struct device *dev,
399 			 struct device_attribute *attr, char *buf)
400 {
401 	struct fw_device *device = fw_device(dev);
402 	int ret;
403 
404 	down_read(&fw_device_rwsem);
405 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
406 		       device->config_rom[3], device->config_rom[4]);
407 	up_read(&fw_device_rwsem);
408 
409 	return ret;
410 }
411 
is_local_show(struct device * dev,struct device_attribute * attr,char * buf)412 static ssize_t is_local_show(struct device *dev,
413 			     struct device_attribute *attr, char *buf)
414 {
415 	struct fw_device *device = fw_device(dev);
416 
417 	return sprintf(buf, "%u\n", device->is_local);
418 }
419 
units_sprintf(char * buf,const u32 * directory)420 static int units_sprintf(char *buf, const u32 *directory)
421 {
422 	struct fw_csr_iterator ci;
423 	int key, value;
424 	int specifier_id = 0;
425 	int version = 0;
426 
427 	fw_csr_iterator_init(&ci, directory);
428 	while (fw_csr_iterator_next(&ci, &key, &value)) {
429 		switch (key) {
430 		case CSR_SPECIFIER_ID:
431 			specifier_id = value;
432 			break;
433 		case CSR_VERSION:
434 			version = value;
435 			break;
436 		}
437 	}
438 
439 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
440 }
441 
units_show(struct device * dev,struct device_attribute * attr,char * buf)442 static ssize_t units_show(struct device *dev,
443 			  struct device_attribute *attr, char *buf)
444 {
445 	struct fw_device *device = fw_device(dev);
446 	struct fw_csr_iterator ci;
447 	int key, value, i = 0;
448 
449 	down_read(&fw_device_rwsem);
450 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
451 	while (fw_csr_iterator_next(&ci, &key, &value)) {
452 		if (key != (CSR_UNIT | CSR_DIRECTORY))
453 			continue;
454 		i += units_sprintf(&buf[i], ci.p + value - 1);
455 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
456 			break;
457 	}
458 	up_read(&fw_device_rwsem);
459 
460 	if (i)
461 		buf[i - 1] = '\n';
462 
463 	return i;
464 }
465 
466 static struct device_attribute fw_device_attributes[] = {
467 	__ATTR_RO(config_rom),
468 	__ATTR_RO(guid),
469 	__ATTR_RO(is_local),
470 	__ATTR_RO(units),
471 	__ATTR_NULL,
472 };
473 
read_rom(struct fw_device * device,int generation,int index,u32 * data)474 static int read_rom(struct fw_device *device,
475 		    int generation, int index, u32 *data)
476 {
477 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
478 	int i, rcode;
479 
480 	/* device->node_id, accessed below, must not be older than generation */
481 	smp_rmb();
482 
483 	for (i = 10; i < 100; i += 10) {
484 		rcode = fw_run_transaction(device->card,
485 				TCODE_READ_QUADLET_REQUEST, device->node_id,
486 				generation, device->max_speed, offset, data, 4);
487 		if (rcode != RCODE_BUSY)
488 			break;
489 		msleep(i);
490 	}
491 	be32_to_cpus(data);
492 
493 	return rcode;
494 }
495 
496 #define MAX_CONFIG_ROM_SIZE 256
497 
498 /*
499  * Read the bus info block, perform a speed probe, and read all of the rest of
500  * the config ROM.  We do all this with a cached bus generation.  If the bus
501  * generation changes under us, read_config_rom will fail and get retried.
502  * It's better to start all over in this case because the node from which we
503  * are reading the ROM may have changed the ROM during the reset.
504  * Returns either a result code or a negative error code.
505  */
read_config_rom(struct fw_device * device,int generation)506 static int read_config_rom(struct fw_device *device, int generation)
507 {
508 	struct fw_card *card = device->card;
509 	const u32 *old_rom, *new_rom;
510 	u32 *rom, *stack;
511 	u32 sp, key;
512 	int i, end, length, ret;
513 
514 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
515 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
516 	if (rom == NULL)
517 		return -ENOMEM;
518 
519 	stack = &rom[MAX_CONFIG_ROM_SIZE];
520 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
521 
522 	device->max_speed = SCODE_100;
523 
524 	/* First read the bus info block. */
525 	for (i = 0; i < 5; i++) {
526 		ret = read_rom(device, generation, i, &rom[i]);
527 		if (ret != RCODE_COMPLETE)
528 			goto out;
529 		/*
530 		 * As per IEEE1212 7.2, during initialization, devices can
531 		 * reply with a 0 for the first quadlet of the config
532 		 * rom to indicate that they are booting (for example,
533 		 * if the firmware is on the disk of a external
534 		 * harddisk).  In that case we just fail, and the
535 		 * retry mechanism will try again later.
536 		 */
537 		if (i == 0 && rom[i] == 0) {
538 			ret = RCODE_BUSY;
539 			goto out;
540 		}
541 	}
542 
543 	device->max_speed = device->node->max_speed;
544 
545 	/*
546 	 * Determine the speed of
547 	 *   - devices with link speed less than PHY speed,
548 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
549 	 *   - all devices if there are 1394b repeaters.
550 	 * Note, we cannot use the bus info block's link_spd as starting point
551 	 * because some buggy firmwares set it lower than necessary and because
552 	 * 1394-1995 nodes do not have the field.
553 	 */
554 	if ((rom[2] & 0x7) < device->max_speed ||
555 	    device->max_speed == SCODE_BETA ||
556 	    card->beta_repeaters_present) {
557 		u32 dummy;
558 
559 		/* for S1600 and S3200 */
560 		if (device->max_speed == SCODE_BETA)
561 			device->max_speed = card->link_speed;
562 
563 		while (device->max_speed > SCODE_100) {
564 			if (read_rom(device, generation, 0, &dummy) ==
565 			    RCODE_COMPLETE)
566 				break;
567 			device->max_speed--;
568 		}
569 	}
570 
571 	/*
572 	 * Now parse the config rom.  The config rom is a recursive
573 	 * directory structure so we parse it using a stack of
574 	 * references to the blocks that make up the structure.  We
575 	 * push a reference to the root directory on the stack to
576 	 * start things off.
577 	 */
578 	length = i;
579 	sp = 0;
580 	stack[sp++] = 0xc0000005;
581 	while (sp > 0) {
582 		/*
583 		 * Pop the next block reference of the stack.  The
584 		 * lower 24 bits is the offset into the config rom,
585 		 * the upper 8 bits are the type of the reference the
586 		 * block.
587 		 */
588 		key = stack[--sp];
589 		i = key & 0xffffff;
590 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
591 			ret = -ENXIO;
592 			goto out;
593 		}
594 
595 		/* Read header quadlet for the block to get the length. */
596 		ret = read_rom(device, generation, i, &rom[i]);
597 		if (ret != RCODE_COMPLETE)
598 			goto out;
599 		end = i + (rom[i] >> 16) + 1;
600 		if (end > MAX_CONFIG_ROM_SIZE) {
601 			/*
602 			 * This block extends outside the config ROM which is
603 			 * a firmware bug.  Ignore this whole block, i.e.
604 			 * simply set a fake block length of 0.
605 			 */
606 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
607 			       rom[i],
608 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
609 			rom[i] = 0;
610 			end = i;
611 		}
612 		i++;
613 
614 		/*
615 		 * Now read in the block.  If this is a directory
616 		 * block, check the entries as we read them to see if
617 		 * it references another block, and push it in that case.
618 		 */
619 		for (; i < end; i++) {
620 			ret = read_rom(device, generation, i, &rom[i]);
621 			if (ret != RCODE_COMPLETE)
622 				goto out;
623 
624 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
625 				continue;
626 			/*
627 			 * Offset points outside the ROM.  May be a firmware
628 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
629 			 * 7.7.18).  Simply overwrite this pointer here by a
630 			 * fake immediate entry so that later iterators over
631 			 * the ROM don't have to check offsets all the time.
632 			 */
633 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
634 				fw_err(card,
635 				       "skipped unsupported ROM entry %x at %llx\n",
636 				       rom[i],
637 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
638 				rom[i] = 0;
639 				continue;
640 			}
641 			stack[sp++] = i + rom[i];
642 		}
643 		if (length < i)
644 			length = i;
645 	}
646 
647 	old_rom = device->config_rom;
648 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
649 	if (new_rom == NULL) {
650 		ret = -ENOMEM;
651 		goto out;
652 	}
653 
654 	down_write(&fw_device_rwsem);
655 	device->config_rom = new_rom;
656 	device->config_rom_length = length;
657 	up_write(&fw_device_rwsem);
658 
659 	kfree(old_rom);
660 	ret = RCODE_COMPLETE;
661 	device->max_rec	= rom[2] >> 12 & 0xf;
662 	device->cmc	= rom[2] >> 30 & 1;
663 	device->irmc	= rom[2] >> 31 & 1;
664  out:
665 	kfree(rom);
666 
667 	return ret;
668 }
669 
fw_unit_release(struct device * dev)670 static void fw_unit_release(struct device *dev)
671 {
672 	struct fw_unit *unit = fw_unit(dev);
673 
674 	fw_device_put(fw_parent_device(unit));
675 	kfree(unit);
676 }
677 
678 static struct device_type fw_unit_type = {
679 	.uevent		= fw_unit_uevent,
680 	.release	= fw_unit_release,
681 };
682 
is_fw_unit(struct device * dev)683 static bool is_fw_unit(struct device *dev)
684 {
685 	return dev->type == &fw_unit_type;
686 }
687 
create_units(struct fw_device * device)688 static void create_units(struct fw_device *device)
689 {
690 	struct fw_csr_iterator ci;
691 	struct fw_unit *unit;
692 	int key, value, i;
693 
694 	i = 0;
695 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
696 	while (fw_csr_iterator_next(&ci, &key, &value)) {
697 		if (key != (CSR_UNIT | CSR_DIRECTORY))
698 			continue;
699 
700 		/*
701 		 * Get the address of the unit directory and try to
702 		 * match the drivers id_tables against it.
703 		 */
704 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
705 		if (unit == NULL)
706 			continue;
707 
708 		unit->directory = ci.p + value - 1;
709 		unit->device.bus = &fw_bus_type;
710 		unit->device.type = &fw_unit_type;
711 		unit->device.parent = &device->device;
712 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
713 
714 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
715 				ARRAY_SIZE(fw_unit_attributes) +
716 				ARRAY_SIZE(config_rom_attributes));
717 		init_fw_attribute_group(&unit->device,
718 					fw_unit_attributes,
719 					&unit->attribute_group);
720 
721 		fw_device_get(device);
722 		if (device_register(&unit->device) < 0) {
723 			put_device(&unit->device);
724 			continue;
725 		}
726 	}
727 }
728 
shutdown_unit(struct device * device,void * data)729 static int shutdown_unit(struct device *device, void *data)
730 {
731 	device_unregister(device);
732 
733 	return 0;
734 }
735 
736 /*
737  * fw_device_rwsem acts as dual purpose mutex:
738  *   - serializes accesses to fw_device_idr,
739  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
740  *     fw_unit.directory, unless those accesses happen at safe occasions
741  */
742 DECLARE_RWSEM(fw_device_rwsem);
743 
744 DEFINE_IDR(fw_device_idr);
745 int fw_cdev_major;
746 
fw_device_get_by_devt(dev_t devt)747 struct fw_device *fw_device_get_by_devt(dev_t devt)
748 {
749 	struct fw_device *device;
750 
751 	down_read(&fw_device_rwsem);
752 	device = idr_find(&fw_device_idr, MINOR(devt));
753 	if (device)
754 		fw_device_get(device);
755 	up_read(&fw_device_rwsem);
756 
757 	return device;
758 }
759 
760 struct workqueue_struct *fw_workqueue;
761 EXPORT_SYMBOL(fw_workqueue);
762 
fw_schedule_device_work(struct fw_device * device,unsigned long delay)763 static void fw_schedule_device_work(struct fw_device *device,
764 				    unsigned long delay)
765 {
766 	queue_delayed_work(fw_workqueue, &device->work, delay);
767 }
768 
769 /*
770  * These defines control the retry behavior for reading the config
771  * rom.  It shouldn't be necessary to tweak these; if the device
772  * doesn't respond to a config rom read within 10 seconds, it's not
773  * going to respond at all.  As for the initial delay, a lot of
774  * devices will be able to respond within half a second after bus
775  * reset.  On the other hand, it's not really worth being more
776  * aggressive than that, since it scales pretty well; if 10 devices
777  * are plugged in, they're all getting read within one second.
778  */
779 
780 #define MAX_RETRIES	10
781 #define RETRY_DELAY	(3 * HZ)
782 #define INITIAL_DELAY	(HZ / 2)
783 #define SHUTDOWN_DELAY	(2 * HZ)
784 
fw_device_shutdown(struct work_struct * work)785 static void fw_device_shutdown(struct work_struct *work)
786 {
787 	struct fw_device *device =
788 		container_of(work, struct fw_device, work.work);
789 	int minor = MINOR(device->device.devt);
790 
791 	if (time_before64(get_jiffies_64(),
792 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
793 	    && !list_empty(&device->card->link)) {
794 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
795 		return;
796 	}
797 
798 	if (atomic_cmpxchg(&device->state,
799 			   FW_DEVICE_GONE,
800 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
801 		return;
802 
803 	fw_device_cdev_remove(device);
804 	device_for_each_child(&device->device, NULL, shutdown_unit);
805 	device_unregister(&device->device);
806 
807 	down_write(&fw_device_rwsem);
808 	idr_remove(&fw_device_idr, minor);
809 	up_write(&fw_device_rwsem);
810 
811 	fw_device_put(device);
812 }
813 
fw_device_release(struct device * dev)814 static void fw_device_release(struct device *dev)
815 {
816 	struct fw_device *device = fw_device(dev);
817 	struct fw_card *card = device->card;
818 	unsigned long flags;
819 
820 	/*
821 	 * Take the card lock so we don't set this to NULL while a
822 	 * FW_NODE_UPDATED callback is being handled or while the
823 	 * bus manager work looks at this node.
824 	 */
825 	spin_lock_irqsave(&card->lock, flags);
826 	device->node->data = NULL;
827 	spin_unlock_irqrestore(&card->lock, flags);
828 
829 	fw_node_put(device->node);
830 	kfree(device->config_rom);
831 	kfree(device);
832 	fw_card_put(card);
833 }
834 
835 static struct device_type fw_device_type = {
836 	.release = fw_device_release,
837 };
838 
is_fw_device(struct device * dev)839 static bool is_fw_device(struct device *dev)
840 {
841 	return dev->type == &fw_device_type;
842 }
843 
update_unit(struct device * dev,void * data)844 static int update_unit(struct device *dev, void *data)
845 {
846 	struct fw_unit *unit = fw_unit(dev);
847 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
848 
849 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
850 		device_lock(dev);
851 		driver->update(unit);
852 		device_unlock(dev);
853 	}
854 
855 	return 0;
856 }
857 
fw_device_update(struct work_struct * work)858 static void fw_device_update(struct work_struct *work)
859 {
860 	struct fw_device *device =
861 		container_of(work, struct fw_device, work.work);
862 
863 	fw_device_cdev_update(device);
864 	device_for_each_child(&device->device, NULL, update_unit);
865 }
866 
867 /*
868  * If a device was pending for deletion because its node went away but its
869  * bus info block and root directory header matches that of a newly discovered
870  * device, revive the existing fw_device.
871  * The newly allocated fw_device becomes obsolete instead.
872  */
lookup_existing_device(struct device * dev,void * data)873 static int lookup_existing_device(struct device *dev, void *data)
874 {
875 	struct fw_device *old = fw_device(dev);
876 	struct fw_device *new = data;
877 	struct fw_card *card = new->card;
878 	int match = 0;
879 
880 	if (!is_fw_device(dev))
881 		return 0;
882 
883 	down_read(&fw_device_rwsem); /* serialize config_rom access */
884 	spin_lock_irq(&card->lock);  /* serialize node access */
885 
886 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
887 	    atomic_cmpxchg(&old->state,
888 			   FW_DEVICE_GONE,
889 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
890 		struct fw_node *current_node = new->node;
891 		struct fw_node *obsolete_node = old->node;
892 
893 		new->node = obsolete_node;
894 		new->node->data = new;
895 		old->node = current_node;
896 		old->node->data = old;
897 
898 		old->max_speed = new->max_speed;
899 		old->node_id = current_node->node_id;
900 		smp_wmb();  /* update node_id before generation */
901 		old->generation = card->generation;
902 		old->config_rom_retries = 0;
903 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
904 
905 		old->workfn = fw_device_update;
906 		fw_schedule_device_work(old, 0);
907 
908 		if (current_node == card->root_node)
909 			fw_schedule_bm_work(card, 0);
910 
911 		match = 1;
912 	}
913 
914 	spin_unlock_irq(&card->lock);
915 	up_read(&fw_device_rwsem);
916 
917 	return match;
918 }
919 
920 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
921 
set_broadcast_channel(struct fw_device * device,int generation)922 static void set_broadcast_channel(struct fw_device *device, int generation)
923 {
924 	struct fw_card *card = device->card;
925 	__be32 data;
926 	int rcode;
927 
928 	if (!card->broadcast_channel_allocated)
929 		return;
930 
931 	/*
932 	 * The Broadcast_Channel Valid bit is required by nodes which want to
933 	 * transmit on this channel.  Such transmissions are practically
934 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
935 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
936 	 * to narrow down to which nodes we send Broadcast_Channel updates.
937 	 */
938 	if (!device->irmc || device->max_rec < 8)
939 		return;
940 
941 	/*
942 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
943 	 * Perform a read test first.
944 	 */
945 	if (device->bc_implemented == BC_UNKNOWN) {
946 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
947 				device->node_id, generation, device->max_speed,
948 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
949 				&data, 4);
950 		switch (rcode) {
951 		case RCODE_COMPLETE:
952 			if (data & cpu_to_be32(1 << 31)) {
953 				device->bc_implemented = BC_IMPLEMENTED;
954 				break;
955 			}
956 			fallthrough;	/* to case address error */
957 		case RCODE_ADDRESS_ERROR:
958 			device->bc_implemented = BC_UNIMPLEMENTED;
959 		}
960 	}
961 
962 	if (device->bc_implemented == BC_IMPLEMENTED) {
963 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
964 				   BROADCAST_CHANNEL_VALID);
965 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
966 				device->node_id, generation, device->max_speed,
967 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
968 				&data, 4);
969 	}
970 }
971 
fw_device_set_broadcast_channel(struct device * dev,void * gen)972 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
973 {
974 	if (is_fw_device(dev))
975 		set_broadcast_channel(fw_device(dev), (long)gen);
976 
977 	return 0;
978 }
979 
fw_device_init(struct work_struct * work)980 static void fw_device_init(struct work_struct *work)
981 {
982 	struct fw_device *device =
983 		container_of(work, struct fw_device, work.work);
984 	struct fw_card *card = device->card;
985 	struct device *revived_dev;
986 	int minor, ret;
987 
988 	/*
989 	 * All failure paths here set node->data to NULL, so that we
990 	 * don't try to do device_for_each_child() on a kfree()'d
991 	 * device.
992 	 */
993 
994 	ret = read_config_rom(device, device->generation);
995 	if (ret != RCODE_COMPLETE) {
996 		if (device->config_rom_retries < MAX_RETRIES &&
997 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
998 			device->config_rom_retries++;
999 			fw_schedule_device_work(device, RETRY_DELAY);
1000 		} else {
1001 			if (device->node->link_on)
1002 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1003 					  device->node_id,
1004 					  fw_rcode_string(ret));
1005 			if (device->node == card->root_node)
1006 				fw_schedule_bm_work(card, 0);
1007 			fw_device_release(&device->device);
1008 		}
1009 		return;
1010 	}
1011 
1012 	revived_dev = device_find_child(card->device,
1013 					device, lookup_existing_device);
1014 	if (revived_dev) {
1015 		put_device(revived_dev);
1016 		fw_device_release(&device->device);
1017 
1018 		return;
1019 	}
1020 
1021 	device_initialize(&device->device);
1022 
1023 	fw_device_get(device);
1024 	down_write(&fw_device_rwsem);
1025 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1026 			GFP_KERNEL);
1027 	up_write(&fw_device_rwsem);
1028 
1029 	if (minor < 0)
1030 		goto error;
1031 
1032 	device->device.bus = &fw_bus_type;
1033 	device->device.type = &fw_device_type;
1034 	device->device.parent = card->device;
1035 	device->device.devt = MKDEV(fw_cdev_major, minor);
1036 	dev_set_name(&device->device, "fw%d", minor);
1037 
1038 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1039 			ARRAY_SIZE(fw_device_attributes) +
1040 			ARRAY_SIZE(config_rom_attributes));
1041 	init_fw_attribute_group(&device->device,
1042 				fw_device_attributes,
1043 				&device->attribute_group);
1044 
1045 	if (device_add(&device->device)) {
1046 		fw_err(card, "failed to add device\n");
1047 		goto error_with_cdev;
1048 	}
1049 
1050 	create_units(device);
1051 
1052 	/*
1053 	 * Transition the device to running state.  If it got pulled
1054 	 * out from under us while we did the initialization work, we
1055 	 * have to shut down the device again here.  Normally, though,
1056 	 * fw_node_event will be responsible for shutting it down when
1057 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1058 	 * racing with the FW_NODE_DESTROYED case in
1059 	 * fw_node_event().
1060 	 */
1061 	if (atomic_cmpxchg(&device->state,
1062 			   FW_DEVICE_INITIALIZING,
1063 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1064 		device->workfn = fw_device_shutdown;
1065 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1066 	} else {
1067 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1068 			  dev_name(&device->device),
1069 			  device->config_rom[3], device->config_rom[4],
1070 			  1 << device->max_speed);
1071 		device->config_rom_retries = 0;
1072 
1073 		set_broadcast_channel(device, device->generation);
1074 
1075 		add_device_randomness(&device->config_rom[3], 8);
1076 	}
1077 
1078 	/*
1079 	 * Reschedule the IRM work if we just finished reading the
1080 	 * root node config rom.  If this races with a bus reset we
1081 	 * just end up running the IRM work a couple of extra times -
1082 	 * pretty harmless.
1083 	 */
1084 	if (device->node == card->root_node)
1085 		fw_schedule_bm_work(card, 0);
1086 
1087 	return;
1088 
1089  error_with_cdev:
1090 	down_write(&fw_device_rwsem);
1091 	idr_remove(&fw_device_idr, minor);
1092 	up_write(&fw_device_rwsem);
1093  error:
1094 	fw_device_put(device);		/* fw_device_idr's reference */
1095 
1096 	put_device(&device->device);	/* our reference */
1097 }
1098 
1099 /* Reread and compare bus info block and header of root directory */
reread_config_rom(struct fw_device * device,int generation,bool * changed)1100 static int reread_config_rom(struct fw_device *device, int generation,
1101 			     bool *changed)
1102 {
1103 	u32 q;
1104 	int i, rcode;
1105 
1106 	for (i = 0; i < 6; i++) {
1107 		rcode = read_rom(device, generation, i, &q);
1108 		if (rcode != RCODE_COMPLETE)
1109 			return rcode;
1110 
1111 		if (i == 0 && q == 0)
1112 			/* inaccessible (see read_config_rom); retry later */
1113 			return RCODE_BUSY;
1114 
1115 		if (q != device->config_rom[i]) {
1116 			*changed = true;
1117 			return RCODE_COMPLETE;
1118 		}
1119 	}
1120 
1121 	*changed = false;
1122 	return RCODE_COMPLETE;
1123 }
1124 
fw_device_refresh(struct work_struct * work)1125 static void fw_device_refresh(struct work_struct *work)
1126 {
1127 	struct fw_device *device =
1128 		container_of(work, struct fw_device, work.work);
1129 	struct fw_card *card = device->card;
1130 	int ret, node_id = device->node_id;
1131 	bool changed;
1132 
1133 	ret = reread_config_rom(device, device->generation, &changed);
1134 	if (ret != RCODE_COMPLETE)
1135 		goto failed_config_rom;
1136 
1137 	if (!changed) {
1138 		if (atomic_cmpxchg(&device->state,
1139 				   FW_DEVICE_INITIALIZING,
1140 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1141 			goto gone;
1142 
1143 		fw_device_update(work);
1144 		device->config_rom_retries = 0;
1145 		goto out;
1146 	}
1147 
1148 	/*
1149 	 * Something changed.  We keep things simple and don't investigate
1150 	 * further.  We just destroy all previous units and create new ones.
1151 	 */
1152 	device_for_each_child(&device->device, NULL, shutdown_unit);
1153 
1154 	ret = read_config_rom(device, device->generation);
1155 	if (ret != RCODE_COMPLETE)
1156 		goto failed_config_rom;
1157 
1158 	fw_device_cdev_update(device);
1159 	create_units(device);
1160 
1161 	/* Userspace may want to re-read attributes. */
1162 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1163 
1164 	if (atomic_cmpxchg(&device->state,
1165 			   FW_DEVICE_INITIALIZING,
1166 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1167 		goto gone;
1168 
1169 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1170 	device->config_rom_retries = 0;
1171 	goto out;
1172 
1173  failed_config_rom:
1174 	if (device->config_rom_retries < MAX_RETRIES &&
1175 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1176 		device->config_rom_retries++;
1177 		fw_schedule_device_work(device, RETRY_DELAY);
1178 		return;
1179 	}
1180 
1181 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1182 		  dev_name(&device->device), fw_rcode_string(ret));
1183  gone:
1184 	atomic_set(&device->state, FW_DEVICE_GONE);
1185 	device->workfn = fw_device_shutdown;
1186 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1187  out:
1188 	if (node_id == card->root_node->node_id)
1189 		fw_schedule_bm_work(card, 0);
1190 }
1191 
fw_device_workfn(struct work_struct * work)1192 static void fw_device_workfn(struct work_struct *work)
1193 {
1194 	struct fw_device *device = container_of(to_delayed_work(work),
1195 						struct fw_device, work);
1196 	device->workfn(work);
1197 }
1198 
fw_node_event(struct fw_card * card,struct fw_node * node,int event)1199 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1200 {
1201 	struct fw_device *device;
1202 
1203 	switch (event) {
1204 	case FW_NODE_CREATED:
1205 		/*
1206 		 * Attempt to scan the node, regardless whether its self ID has
1207 		 * the L (link active) flag set or not.  Some broken devices
1208 		 * send L=0 but have an up-and-running link; others send L=1
1209 		 * without actually having a link.
1210 		 */
1211  create:
1212 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1213 		if (device == NULL)
1214 			break;
1215 
1216 		/*
1217 		 * Do minimal initialization of the device here, the
1218 		 * rest will happen in fw_device_init().
1219 		 *
1220 		 * Attention:  A lot of things, even fw_device_get(),
1221 		 * cannot be done before fw_device_init() finished!
1222 		 * You can basically just check device->state and
1223 		 * schedule work until then, but only while holding
1224 		 * card->lock.
1225 		 */
1226 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1227 		device->card = fw_card_get(card);
1228 		device->node = fw_node_get(node);
1229 		device->node_id = node->node_id;
1230 		device->generation = card->generation;
1231 		device->is_local = node == card->local_node;
1232 		mutex_init(&device->client_list_mutex);
1233 		INIT_LIST_HEAD(&device->client_list);
1234 
1235 		/*
1236 		 * Set the node data to point back to this device so
1237 		 * FW_NODE_UPDATED callbacks can update the node_id
1238 		 * and generation for the device.
1239 		 */
1240 		node->data = device;
1241 
1242 		/*
1243 		 * Many devices are slow to respond after bus resets,
1244 		 * especially if they are bus powered and go through
1245 		 * power-up after getting plugged in.  We schedule the
1246 		 * first config rom scan half a second after bus reset.
1247 		 */
1248 		device->workfn = fw_device_init;
1249 		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1250 		fw_schedule_device_work(device, INITIAL_DELAY);
1251 		break;
1252 
1253 	case FW_NODE_INITIATED_RESET:
1254 	case FW_NODE_LINK_ON:
1255 		device = node->data;
1256 		if (device == NULL)
1257 			goto create;
1258 
1259 		device->node_id = node->node_id;
1260 		smp_wmb();  /* update node_id before generation */
1261 		device->generation = card->generation;
1262 		if (atomic_cmpxchg(&device->state,
1263 			    FW_DEVICE_RUNNING,
1264 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1265 			device->workfn = fw_device_refresh;
1266 			fw_schedule_device_work(device,
1267 				device->is_local ? 0 : INITIAL_DELAY);
1268 		}
1269 		break;
1270 
1271 	case FW_NODE_UPDATED:
1272 		device = node->data;
1273 		if (device == NULL)
1274 			break;
1275 
1276 		device->node_id = node->node_id;
1277 		smp_wmb();  /* update node_id before generation */
1278 		device->generation = card->generation;
1279 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1280 			device->workfn = fw_device_update;
1281 			fw_schedule_device_work(device, 0);
1282 		}
1283 		break;
1284 
1285 	case FW_NODE_DESTROYED:
1286 	case FW_NODE_LINK_OFF:
1287 		if (!node->data)
1288 			break;
1289 
1290 		/*
1291 		 * Destroy the device associated with the node.  There
1292 		 * are two cases here: either the device is fully
1293 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1294 		 * process of reading its config rom
1295 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1296 		 * initialized we can reuse device->work to schedule a
1297 		 * full fw_device_shutdown().  If not, there's work
1298 		 * scheduled to read it's config rom, and we just put
1299 		 * the device in shutdown state to have that code fail
1300 		 * to create the device.
1301 		 */
1302 		device = node->data;
1303 		if (atomic_xchg(&device->state,
1304 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1305 			device->workfn = fw_device_shutdown;
1306 			fw_schedule_device_work(device,
1307 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1308 		}
1309 		break;
1310 	}
1311 }
1312