• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
54 /*
55  * One thing we have to be careful of with a per-sb shrinker is that we don't
56  * drop the last active reference to the superblock from within the shrinker.
57  * If that happens we could trigger unregistering the shrinker from within the
58  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59  * take a passive reference to the superblock to avoid this from occurring.
60  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 				      struct shrink_control *sc)
63 {
64 	struct super_block *sb;
65 	long	fs_objects = 0;
66 	long	total_objects;
67 	long	freed = 0;
68 	long	dentries;
69 	long	inodes;
70 
71 	sb = container_of(shrink, struct super_block, s_shrink);
72 
73 	/*
74 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
75 	 * to recurse into the FS that called us in clear_inode() and friends..
76 	 */
77 	if (!(sc->gfp_mask & __GFP_FS))
78 		return SHRINK_STOP;
79 
80 	if (!trylock_super(sb))
81 		return SHRINK_STOP;
82 
83 	if (sb->s_op->nr_cached_objects)
84 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85 
86 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 	total_objects = dentries + inodes + fs_objects + 1;
89 	if (!total_objects)
90 		total_objects = 1;
91 
92 	/* proportion the scan between the caches */
93 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96 
97 	/*
98 	 * prune the dcache first as the icache is pinned by it, then
99 	 * prune the icache, followed by the filesystem specific caches
100 	 *
101 	 * Ensure that we always scan at least one object - memcg kmem
102 	 * accounting uses this to fully empty the caches.
103 	 */
104 	sc->nr_to_scan = dentries + 1;
105 	freed = prune_dcache_sb(sb, sc);
106 	sc->nr_to_scan = inodes + 1;
107 	freed += prune_icache_sb(sb, sc);
108 
109 	if (fs_objects) {
110 		sc->nr_to_scan = fs_objects + 1;
111 		freed += sb->s_op->free_cached_objects(sb, sc);
112 	}
113 
114 	up_read(&sb->s_umount);
115 	return freed;
116 }
117 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 				       struct shrink_control *sc)
120 {
121 	struct super_block *sb;
122 	long	total_objects = 0;
123 
124 	sb = container_of(shrink, struct super_block, s_shrink);
125 
126 	/*
127 	 * We don't call trylock_super() here as it is a scalability bottleneck,
128 	 * so we're exposed to partial setup state. The shrinker rwsem does not
129 	 * protect filesystem operations backing list_lru_shrink_count() or
130 	 * s_op->nr_cached_objects(). Counts can change between
131 	 * super_cache_count and super_cache_scan, so we really don't need locks
132 	 * here.
133 	 *
134 	 * However, if we are currently mounting the superblock, the underlying
135 	 * filesystem might be in a state of partial construction and hence it
136 	 * is dangerous to access it.  trylock_super() uses a SB_BORN check to
137 	 * avoid this situation, so do the same here. The memory barrier is
138 	 * matched with the one in mount_fs() as we don't hold locks here.
139 	 */
140 	if (!(sb->s_flags & SB_BORN))
141 		return 0;
142 	smp_rmb();
143 
144 	if (sb->s_op && sb->s_op->nr_cached_objects)
145 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
146 
147 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149 
150 	if (!total_objects)
151 		return SHRINK_EMPTY;
152 
153 	total_objects = vfs_pressure_ratio(total_objects);
154 	return total_objects;
155 }
156 
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 	struct super_block *s = container_of(work, struct super_block,
160 							destroy_work);
161 	int i;
162 
163 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 	kfree(s);
166 }
167 
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 	struct super_block *s = container_of(head, struct super_block, rcu);
171 	INIT_WORK(&s->destroy_work, destroy_super_work);
172 	schedule_work(&s->destroy_work);
173 }
174 
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 	if (!s)
179 		return;
180 	up_write(&s->s_umount);
181 	list_lru_destroy(&s->s_dentry_lru);
182 	list_lru_destroy(&s->s_inode_lru);
183 	security_sb_free(s);
184 	put_user_ns(s->s_user_ns);
185 	kfree(s->s_subtype);
186 	free_prealloced_shrinker(&s->s_shrink);
187 	/* no delays needed */
188 	destroy_super_work(&s->destroy_work);
189 }
190 
191 /**
192  *	alloc_super	-	create new superblock
193  *	@type:	filesystem type superblock should belong to
194  *	@flags: the mount flags
195  *	@user_ns: User namespace for the super_block
196  *
197  *	Allocates and initializes a new &struct super_block.  alloc_super()
198  *	returns a pointer new superblock or %NULL if allocation had failed.
199  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 				       struct user_namespace *user_ns)
202 {
203 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
204 	static const struct super_operations default_op;
205 	int i;
206 
207 	if (!s)
208 		return NULL;
209 
210 	INIT_LIST_HEAD(&s->s_mounts);
211 	s->s_user_ns = get_user_ns(user_ns);
212 	init_rwsem(&s->s_umount);
213 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 	/*
215 	 * sget() can have s_umount recursion.
216 	 *
217 	 * When it cannot find a suitable sb, it allocates a new
218 	 * one (this one), and tries again to find a suitable old
219 	 * one.
220 	 *
221 	 * In case that succeeds, it will acquire the s_umount
222 	 * lock of the old one. Since these are clearly distrinct
223 	 * locks, and this object isn't exposed yet, there's no
224 	 * risk of deadlocks.
225 	 *
226 	 * Annotate this by putting this lock in a different
227 	 * subclass.
228 	 */
229 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230 
231 	if (security_sb_alloc(s))
232 		goto fail;
233 
234 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 					sb_writers_name[i],
237 					&type->s_writers_key[i]))
238 			goto fail;
239 	}
240 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 	s->s_bdi = &noop_backing_dev_info;
242 	s->s_flags = flags;
243 	if (s->s_user_ns != &init_user_ns)
244 		s->s_iflags |= SB_I_NODEV;
245 	INIT_HLIST_NODE(&s->s_instances);
246 	INIT_HLIST_BL_HEAD(&s->s_roots);
247 	mutex_init(&s->s_sync_lock);
248 	INIT_LIST_HEAD(&s->s_inodes);
249 	spin_lock_init(&s->s_inode_list_lock);
250 	INIT_LIST_HEAD(&s->s_inodes_wb);
251 	spin_lock_init(&s->s_inode_wblist_lock);
252 
253 	s->s_count = 1;
254 	atomic_set(&s->s_active, 1);
255 	mutex_init(&s->s_vfs_rename_mutex);
256 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 	init_rwsem(&s->s_dquot.dqio_sem);
258 	s->s_maxbytes = MAX_NON_LFS;
259 	s->s_op = &default_op;
260 	s->s_time_gran = 1000000000;
261 	s->s_time_min = TIME64_MIN;
262 	s->s_time_max = TIME64_MAX;
263 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
264 
265 	s->s_shrink.seeks = DEFAULT_SEEKS;
266 	s->s_shrink.scan_objects = super_cache_scan;
267 	s->s_shrink.count_objects = super_cache_count;
268 	s->s_shrink.batch = 1024;
269 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 	if (prealloc_shrinker(&s->s_shrink))
271 		goto fail;
272 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 		goto fail;
274 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 		goto fail;
276 	return s;
277 
278 fail:
279 	destroy_unused_super(s);
280 	return NULL;
281 }
282 
283 /* Superblock refcounting  */
284 
285 /*
286  * Drop a superblock's refcount.  The caller must hold sb_lock.
287  */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 	if (!--s->s_count) {
291 		list_del_init(&s->s_list);
292 		WARN_ON(s->s_dentry_lru.node);
293 		WARN_ON(s->s_inode_lru.node);
294 		WARN_ON(!list_empty(&s->s_mounts));
295 		security_sb_free(s);
296 		put_user_ns(s->s_user_ns);
297 		kfree(s->s_subtype);
298 		call_rcu(&s->rcu, destroy_super_rcu);
299 	}
300 }
301 
302 /**
303  *	put_super	-	drop a temporary reference to superblock
304  *	@sb: superblock in question
305  *
306  *	Drops a temporary reference, frees superblock if there's no
307  *	references left.
308  */
put_super(struct super_block * sb)309 void put_super(struct super_block *sb)
310 {
311 	spin_lock(&sb_lock);
312 	__put_super(sb);
313 	spin_unlock(&sb_lock);
314 }
315 
316 
317 /**
318  *	deactivate_locked_super	-	drop an active reference to superblock
319  *	@s: superblock to deactivate
320  *
321  *	Drops an active reference to superblock, converting it into a temporary
322  *	one if there is no other active references left.  In that case we
323  *	tell fs driver to shut it down and drop the temporary reference we
324  *	had just acquired.
325  *
326  *	Caller holds exclusive lock on superblock; that lock is released.
327  */
deactivate_locked_super(struct super_block * s)328 void deactivate_locked_super(struct super_block *s)
329 {
330 	struct file_system_type *fs = s->s_type;
331 	if (atomic_dec_and_test(&s->s_active)) {
332 		cleancache_invalidate_fs(s);
333 		unregister_shrinker(&s->s_shrink);
334 		fs->kill_sb(s);
335 
336 		/*
337 		 * Since list_lru_destroy() may sleep, we cannot call it from
338 		 * put_super(), where we hold the sb_lock. Therefore we destroy
339 		 * the lru lists right now.
340 		 */
341 		list_lru_destroy(&s->s_dentry_lru);
342 		list_lru_destroy(&s->s_inode_lru);
343 
344 		put_filesystem(fs);
345 		put_super(s);
346 	} else {
347 		up_write(&s->s_umount);
348 	}
349 }
350 
351 EXPORT_SYMBOL(deactivate_locked_super);
352 
353 /**
354  *	deactivate_super	-	drop an active reference to superblock
355  *	@s: superblock to deactivate
356  *
357  *	Variant of deactivate_locked_super(), except that superblock is *not*
358  *	locked by caller.  If we are going to drop the final active reference,
359  *	lock will be acquired prior to that.
360  */
deactivate_super(struct super_block * s)361 void deactivate_super(struct super_block *s)
362 {
363 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
364 		down_write(&s->s_umount);
365 		deactivate_locked_super(s);
366 	}
367 }
368 
369 EXPORT_SYMBOL(deactivate_super);
370 
371 /**
372  *	grab_super - acquire an active reference
373  *	@s: reference we are trying to make active
374  *
375  *	Tries to acquire an active reference.  grab_super() is used when we
376  * 	had just found a superblock in super_blocks or fs_type->fs_supers
377  *	and want to turn it into a full-blown active reference.  grab_super()
378  *	is called with sb_lock held and drops it.  Returns 1 in case of
379  *	success, 0 if we had failed (superblock contents was already dead or
380  *	dying when grab_super() had been called).  Note that this is only
381  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
382  *	of their type), so increment of ->s_count is OK here.
383  */
grab_super(struct super_block * s)384 static int grab_super(struct super_block *s) __releases(sb_lock)
385 {
386 	s->s_count++;
387 	spin_unlock(&sb_lock);
388 	down_write(&s->s_umount);
389 	if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
390 		put_super(s);
391 		return 1;
392 	}
393 	up_write(&s->s_umount);
394 	put_super(s);
395 	return 0;
396 }
397 
398 /*
399  *	trylock_super - try to grab ->s_umount shared
400  *	@sb: reference we are trying to grab
401  *
402  *	Try to prevent fs shutdown.  This is used in places where we
403  *	cannot take an active reference but we need to ensure that the
404  *	filesystem is not shut down while we are working on it. It returns
405  *	false if we cannot acquire s_umount or if we lose the race and
406  *	filesystem already got into shutdown, and returns true with the s_umount
407  *	lock held in read mode in case of success. On successful return,
408  *	the caller must drop the s_umount lock when done.
409  *
410  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
411  *	The reason why it's safe is that we are OK with doing trylock instead
412  *	of down_read().  There's a couple of places that are OK with that, but
413  *	it's very much not a general-purpose interface.
414  */
trylock_super(struct super_block * sb)415 bool trylock_super(struct super_block *sb)
416 {
417 	if (down_read_trylock(&sb->s_umount)) {
418 		if (!hlist_unhashed(&sb->s_instances) &&
419 		    sb->s_root && (sb->s_flags & SB_BORN))
420 			return true;
421 		up_read(&sb->s_umount);
422 	}
423 
424 	return false;
425 }
426 
427 /**
428  *	generic_shutdown_super	-	common helper for ->kill_sb()
429  *	@sb: superblock to kill
430  *
431  *	generic_shutdown_super() does all fs-independent work on superblock
432  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
433  *	that need destruction out of superblock, call generic_shutdown_super()
434  *	and release aforementioned objects.  Note: dentries and inodes _are_
435  *	taken care of and do not need specific handling.
436  *
437  *	Upon calling this function, the filesystem may no longer alter or
438  *	rearrange the set of dentries belonging to this super_block, nor may it
439  *	change the attachments of dentries to inodes.
440  */
generic_shutdown_super(struct super_block * sb)441 void generic_shutdown_super(struct super_block *sb)
442 {
443 	const struct super_operations *sop = sb->s_op;
444 
445 	if (sb->s_root) {
446 		shrink_dcache_for_umount(sb);
447 		sync_filesystem(sb);
448 		sb->s_flags &= ~SB_ACTIVE;
449 
450 		cgroup_writeback_umount();
451 
452 		/* Evict all inodes with zero refcount. */
453 		evict_inodes(sb);
454 
455 		/*
456 		 * Clean up and evict any inodes that still have references due
457 		 * to fsnotify or the security policy.
458 		 */
459 		fsnotify_sb_delete(sb);
460 		security_sb_delete(sb);
461 
462 		/*
463 		 * Now that all potentially-encrypted inodes have been evicted,
464 		 * the fscrypt keyring can be destroyed.
465 		 */
466 		fscrypt_destroy_keyring(sb);
467 
468 		if (sb->s_dio_done_wq) {
469 			destroy_workqueue(sb->s_dio_done_wq);
470 			sb->s_dio_done_wq = NULL;
471 		}
472 
473 		if (sop->put_super)
474 			sop->put_super(sb);
475 
476 		if (!list_empty(&sb->s_inodes)) {
477 			printk("VFS: Busy inodes after unmount of %s. "
478 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
479 			   sb->s_id);
480 		}
481 	}
482 	spin_lock(&sb_lock);
483 	/* should be initialized for __put_super_and_need_restart() */
484 	hlist_del_init(&sb->s_instances);
485 	spin_unlock(&sb_lock);
486 	up_write(&sb->s_umount);
487 	if (sb->s_bdi != &noop_backing_dev_info) {
488 		bdi_put(sb->s_bdi);
489 		sb->s_bdi = &noop_backing_dev_info;
490 	}
491 }
492 
493 EXPORT_SYMBOL(generic_shutdown_super);
494 
mount_capable(struct fs_context * fc)495 bool mount_capable(struct fs_context *fc)
496 {
497 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
498 		return capable(CAP_SYS_ADMIN);
499 	else
500 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
501 }
502 
503 /**
504  * sget_fc - Find or create a superblock
505  * @fc:	Filesystem context.
506  * @test: Comparison callback
507  * @set: Setup callback
508  *
509  * Find or create a superblock using the parameters stored in the filesystem
510  * context and the two callback functions.
511  *
512  * If an extant superblock is matched, then that will be returned with an
513  * elevated reference count that the caller must transfer or discard.
514  *
515  * If no match is made, a new superblock will be allocated and basic
516  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
517  * the set() callback will be invoked), the superblock will be published and it
518  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
519  * as yet unset.
520  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))521 struct super_block *sget_fc(struct fs_context *fc,
522 			    int (*test)(struct super_block *, struct fs_context *),
523 			    int (*set)(struct super_block *, struct fs_context *))
524 {
525 	struct super_block *s = NULL;
526 	struct super_block *old;
527 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
528 	int err;
529 
530 retry:
531 	spin_lock(&sb_lock);
532 	if (test) {
533 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
534 			if (test(old, fc))
535 				goto share_extant_sb;
536 		}
537 	}
538 	if (!s) {
539 		spin_unlock(&sb_lock);
540 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
541 		if (!s)
542 			return ERR_PTR(-ENOMEM);
543 		goto retry;
544 	}
545 
546 	s->s_fs_info = fc->s_fs_info;
547 	err = set(s, fc);
548 	if (err) {
549 		s->s_fs_info = NULL;
550 		spin_unlock(&sb_lock);
551 		destroy_unused_super(s);
552 		return ERR_PTR(err);
553 	}
554 	fc->s_fs_info = NULL;
555 	s->s_type = fc->fs_type;
556 	s->s_iflags |= fc->s_iflags;
557 	strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
558 	list_add_tail(&s->s_list, &super_blocks);
559 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
560 	spin_unlock(&sb_lock);
561 	get_filesystem(s->s_type);
562 	register_shrinker_prepared(&s->s_shrink);
563 	return s;
564 
565 share_extant_sb:
566 	if (user_ns != old->s_user_ns) {
567 		spin_unlock(&sb_lock);
568 		destroy_unused_super(s);
569 		return ERR_PTR(-EBUSY);
570 	}
571 	if (!grab_super(old))
572 		goto retry;
573 	destroy_unused_super(s);
574 	return old;
575 }
576 EXPORT_SYMBOL(sget_fc);
577 
578 /**
579  *	sget	-	find or create a superblock
580  *	@type:	  filesystem type superblock should belong to
581  *	@test:	  comparison callback
582  *	@set:	  setup callback
583  *	@flags:	  mount flags
584  *	@data:	  argument to each of them
585  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)586 struct super_block *sget(struct file_system_type *type,
587 			int (*test)(struct super_block *,void *),
588 			int (*set)(struct super_block *,void *),
589 			int flags,
590 			void *data)
591 {
592 	struct user_namespace *user_ns = current_user_ns();
593 	struct super_block *s = NULL;
594 	struct super_block *old;
595 	int err;
596 
597 	/* We don't yet pass the user namespace of the parent
598 	 * mount through to here so always use &init_user_ns
599 	 * until that changes.
600 	 */
601 	if (flags & SB_SUBMOUNT)
602 		user_ns = &init_user_ns;
603 
604 retry:
605 	spin_lock(&sb_lock);
606 	if (test) {
607 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
608 			if (!test(old, data))
609 				continue;
610 			if (user_ns != old->s_user_ns) {
611 				spin_unlock(&sb_lock);
612 				destroy_unused_super(s);
613 				return ERR_PTR(-EBUSY);
614 			}
615 			if (!grab_super(old))
616 				goto retry;
617 			destroy_unused_super(s);
618 			return old;
619 		}
620 	}
621 	if (!s) {
622 		spin_unlock(&sb_lock);
623 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
624 		if (!s)
625 			return ERR_PTR(-ENOMEM);
626 		goto retry;
627 	}
628 
629 	err = set(s, data);
630 	if (err) {
631 		spin_unlock(&sb_lock);
632 		destroy_unused_super(s);
633 		return ERR_PTR(err);
634 	}
635 	s->s_type = type;
636 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
637 	list_add_tail(&s->s_list, &super_blocks);
638 	hlist_add_head(&s->s_instances, &type->fs_supers);
639 	spin_unlock(&sb_lock);
640 	get_filesystem(type);
641 	register_shrinker_prepared(&s->s_shrink);
642 	return s;
643 }
644 EXPORT_SYMBOL(sget);
645 
drop_super(struct super_block * sb)646 void drop_super(struct super_block *sb)
647 {
648 	up_read(&sb->s_umount);
649 	put_super(sb);
650 }
651 
652 EXPORT_SYMBOL(drop_super);
653 
drop_super_exclusive(struct super_block * sb)654 void drop_super_exclusive(struct super_block *sb)
655 {
656 	up_write(&sb->s_umount);
657 	put_super(sb);
658 }
659 EXPORT_SYMBOL(drop_super_exclusive);
660 
__iterate_supers(void (* f)(struct super_block *))661 static void __iterate_supers(void (*f)(struct super_block *))
662 {
663 	struct super_block *sb, *p = NULL;
664 
665 	spin_lock(&sb_lock);
666 	list_for_each_entry(sb, &super_blocks, s_list) {
667 		if (hlist_unhashed(&sb->s_instances))
668 			continue;
669 		sb->s_count++;
670 		spin_unlock(&sb_lock);
671 
672 		f(sb);
673 
674 		spin_lock(&sb_lock);
675 		if (p)
676 			__put_super(p);
677 		p = sb;
678 	}
679 	if (p)
680 		__put_super(p);
681 	spin_unlock(&sb_lock);
682 }
683 /**
684  *	iterate_supers - call function for all active superblocks
685  *	@f: function to call
686  *	@arg: argument to pass to it
687  *
688  *	Scans the superblock list and calls given function, passing it
689  *	locked superblock and given argument.
690  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)691 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
692 {
693 	struct super_block *sb, *p = NULL;
694 
695 	spin_lock(&sb_lock);
696 	list_for_each_entry(sb, &super_blocks, s_list) {
697 		if (hlist_unhashed(&sb->s_instances))
698 			continue;
699 		sb->s_count++;
700 		spin_unlock(&sb_lock);
701 
702 		down_read(&sb->s_umount);
703 		if (sb->s_root && (sb->s_flags & SB_BORN))
704 			f(sb, arg);
705 		up_read(&sb->s_umount);
706 
707 		spin_lock(&sb_lock);
708 		if (p)
709 			__put_super(p);
710 		p = sb;
711 	}
712 	if (p)
713 		__put_super(p);
714 	spin_unlock(&sb_lock);
715 }
716 
717 /**
718  *	iterate_supers_type - call function for superblocks of given type
719  *	@type: fs type
720  *	@f: function to call
721  *	@arg: argument to pass to it
722  *
723  *	Scans the superblock list and calls given function, passing it
724  *	locked superblock and given argument.
725  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)726 void iterate_supers_type(struct file_system_type *type,
727 	void (*f)(struct super_block *, void *), void *arg)
728 {
729 	struct super_block *sb, *p = NULL;
730 
731 	spin_lock(&sb_lock);
732 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
733 		sb->s_count++;
734 		spin_unlock(&sb_lock);
735 
736 		down_read(&sb->s_umount);
737 		if (sb->s_root && (sb->s_flags & SB_BORN))
738 			f(sb, arg);
739 		up_read(&sb->s_umount);
740 
741 		spin_lock(&sb_lock);
742 		if (p)
743 			__put_super(p);
744 		p = sb;
745 	}
746 	if (p)
747 		__put_super(p);
748 	spin_unlock(&sb_lock);
749 }
750 
751 EXPORT_SYMBOL(iterate_supers_type);
752 
753 /**
754  * get_super - get the superblock of a device
755  * @bdev: device to get the superblock for
756  *
757  * Scans the superblock list and finds the superblock of the file system
758  * mounted on the device given. %NULL is returned if no match is found.
759  */
get_super(struct block_device * bdev)760 struct super_block *get_super(struct block_device *bdev)
761 {
762 	struct super_block *sb;
763 
764 	if (!bdev)
765 		return NULL;
766 
767 	spin_lock(&sb_lock);
768 rescan:
769 	list_for_each_entry(sb, &super_blocks, s_list) {
770 		if (hlist_unhashed(&sb->s_instances))
771 			continue;
772 		if (sb->s_bdev == bdev) {
773 			sb->s_count++;
774 			spin_unlock(&sb_lock);
775 			down_read(&sb->s_umount);
776 			/* still alive? */
777 			if (sb->s_root && (sb->s_flags & SB_BORN))
778 				return sb;
779 			up_read(&sb->s_umount);
780 			/* nope, got unmounted */
781 			spin_lock(&sb_lock);
782 			__put_super(sb);
783 			goto rescan;
784 		}
785 	}
786 	spin_unlock(&sb_lock);
787 	return NULL;
788 }
789 
790 /**
791  * get_active_super - get an active reference to the superblock of a device
792  * @bdev: device to get the superblock for
793  *
794  * Scans the superblock list and finds the superblock of the file system
795  * mounted on the device given.  Returns the superblock with an active
796  * reference or %NULL if none was found.
797  */
get_active_super(struct block_device * bdev)798 struct super_block *get_active_super(struct block_device *bdev)
799 {
800 	struct super_block *sb;
801 
802 	if (!bdev)
803 		return NULL;
804 
805 restart:
806 	spin_lock(&sb_lock);
807 	list_for_each_entry(sb, &super_blocks, s_list) {
808 		if (hlist_unhashed(&sb->s_instances))
809 			continue;
810 		if (sb->s_bdev == bdev) {
811 			if (!grab_super(sb))
812 				goto restart;
813 			up_write(&sb->s_umount);
814 			return sb;
815 		}
816 	}
817 	spin_unlock(&sb_lock);
818 	return NULL;
819 }
820 
user_get_super(dev_t dev,bool excl)821 struct super_block *user_get_super(dev_t dev, bool excl)
822 {
823 	struct super_block *sb;
824 
825 	spin_lock(&sb_lock);
826 rescan:
827 	list_for_each_entry(sb, &super_blocks, s_list) {
828 		if (hlist_unhashed(&sb->s_instances))
829 			continue;
830 		if (sb->s_dev ==  dev) {
831 			sb->s_count++;
832 			spin_unlock(&sb_lock);
833 			if (excl)
834 				down_write(&sb->s_umount);
835 			else
836 				down_read(&sb->s_umount);
837 			/* still alive? */
838 			if (sb->s_root && (sb->s_flags & SB_BORN))
839 				return sb;
840 			if (excl)
841 				up_write(&sb->s_umount);
842 			else
843 				up_read(&sb->s_umount);
844 			/* nope, got unmounted */
845 			spin_lock(&sb_lock);
846 			__put_super(sb);
847 			goto rescan;
848 		}
849 	}
850 	spin_unlock(&sb_lock);
851 	return NULL;
852 }
853 
854 /**
855  * reconfigure_super - asks filesystem to change superblock parameters
856  * @fc: The superblock and configuration
857  *
858  * Alters the configuration parameters of a live superblock.
859  */
reconfigure_super(struct fs_context * fc)860 int reconfigure_super(struct fs_context *fc)
861 {
862 	struct super_block *sb = fc->root->d_sb;
863 	int retval;
864 	bool remount_ro = false;
865 	bool remount_rw = false;
866 	bool force = fc->sb_flags & SB_FORCE;
867 
868 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
869 		return -EINVAL;
870 	if (sb->s_writers.frozen != SB_UNFROZEN)
871 		return -EBUSY;
872 
873 	retval = security_sb_remount(sb, fc->security);
874 	if (retval)
875 		return retval;
876 
877 	if (fc->sb_flags_mask & SB_RDONLY) {
878 #ifdef CONFIG_BLOCK
879 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
880 		    bdev_read_only(sb->s_bdev))
881 			return -EACCES;
882 #endif
883 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
884 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
885 	}
886 
887 	if (remount_ro) {
888 		if (!hlist_empty(&sb->s_pins)) {
889 			up_write(&sb->s_umount);
890 			group_pin_kill(&sb->s_pins);
891 			down_write(&sb->s_umount);
892 			if (!sb->s_root)
893 				return 0;
894 			if (sb->s_writers.frozen != SB_UNFROZEN)
895 				return -EBUSY;
896 			remount_ro = !sb_rdonly(sb);
897 		}
898 	}
899 	shrink_dcache_sb(sb);
900 
901 	/* If we are reconfiguring to RDONLY and current sb is read/write,
902 	 * make sure there are no files open for writing.
903 	 */
904 	if (remount_ro) {
905 		if (force) {
906 			sb->s_readonly_remount = 1;
907 			smp_wmb();
908 		} else {
909 			retval = sb_prepare_remount_readonly(sb);
910 			if (retval)
911 				return retval;
912 		}
913 	} else if (remount_rw) {
914 		/*
915 		 * We set s_readonly_remount here to protect filesystem's
916 		 * reconfigure code from writes from userspace until
917 		 * reconfigure finishes.
918 		 */
919 		sb->s_readonly_remount = 1;
920 		smp_wmb();
921 	}
922 
923 	if (fc->ops->reconfigure) {
924 		retval = fc->ops->reconfigure(fc);
925 		if (retval) {
926 			if (!force)
927 				goto cancel_readonly;
928 			/* If forced remount, go ahead despite any errors */
929 			WARN(1, "forced remount of a %s fs returned %i\n",
930 			     sb->s_type->name, retval);
931 		}
932 	}
933 
934 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
935 				 (fc->sb_flags & fc->sb_flags_mask)));
936 	/* Needs to be ordered wrt mnt_is_readonly() */
937 	smp_wmb();
938 	sb->s_readonly_remount = 0;
939 
940 	/*
941 	 * Some filesystems modify their metadata via some other path than the
942 	 * bdev buffer cache (eg. use a private mapping, or directories in
943 	 * pagecache, etc). Also file data modifications go via their own
944 	 * mappings. So If we try to mount readonly then copy the filesystem
945 	 * from bdev, we could get stale data, so invalidate it to give a best
946 	 * effort at coherency.
947 	 */
948 	if (remount_ro && sb->s_bdev)
949 		invalidate_bdev(sb->s_bdev);
950 	return 0;
951 
952 cancel_readonly:
953 	sb->s_readonly_remount = 0;
954 	return retval;
955 }
956 
do_emergency_remount_callback(struct super_block * sb)957 static void do_emergency_remount_callback(struct super_block *sb)
958 {
959 	down_write(&sb->s_umount);
960 	if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
961 	    !sb_rdonly(sb)) {
962 		struct fs_context *fc;
963 
964 		fc = fs_context_for_reconfigure(sb->s_root,
965 					SB_RDONLY | SB_FORCE, SB_RDONLY);
966 		if (!IS_ERR(fc)) {
967 			if (parse_monolithic_mount_data(fc, NULL) == 0)
968 				(void)reconfigure_super(fc);
969 			put_fs_context(fc);
970 		}
971 	}
972 	up_write(&sb->s_umount);
973 }
974 
do_emergency_remount(struct work_struct * work)975 static void do_emergency_remount(struct work_struct *work)
976 {
977 	__iterate_supers(do_emergency_remount_callback);
978 	kfree(work);
979 	printk("Emergency Remount complete\n");
980 }
981 
emergency_remount(void)982 void emergency_remount(void)
983 {
984 	struct work_struct *work;
985 
986 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
987 	if (work) {
988 		INIT_WORK(work, do_emergency_remount);
989 		schedule_work(work);
990 	}
991 }
992 
do_thaw_all_callback(struct super_block * sb)993 static void do_thaw_all_callback(struct super_block *sb)
994 {
995 	down_write(&sb->s_umount);
996 	if (sb->s_root && sb->s_flags & SB_BORN) {
997 		emergency_thaw_bdev(sb);
998 		thaw_super_locked(sb);
999 	} else {
1000 		up_write(&sb->s_umount);
1001 	}
1002 }
1003 
do_thaw_all(struct work_struct * work)1004 static void do_thaw_all(struct work_struct *work)
1005 {
1006 	__iterate_supers(do_thaw_all_callback);
1007 	kfree(work);
1008 	printk(KERN_WARNING "Emergency Thaw complete\n");
1009 }
1010 
1011 /**
1012  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1013  *
1014  * Used for emergency unfreeze of all filesystems via SysRq
1015  */
emergency_thaw_all(void)1016 void emergency_thaw_all(void)
1017 {
1018 	struct work_struct *work;
1019 
1020 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1021 	if (work) {
1022 		INIT_WORK(work, do_thaw_all);
1023 		schedule_work(work);
1024 	}
1025 }
1026 
1027 static DEFINE_IDA(unnamed_dev_ida);
1028 
1029 /**
1030  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1031  * @p: Pointer to a dev_t.
1032  *
1033  * Filesystems which don't use real block devices can call this function
1034  * to allocate a virtual block device.
1035  *
1036  * Context: Any context.  Frequently called while holding sb_lock.
1037  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1038  * or -ENOMEM if memory allocation failed.
1039  */
get_anon_bdev(dev_t * p)1040 int get_anon_bdev(dev_t *p)
1041 {
1042 	int dev;
1043 
1044 	/*
1045 	 * Many userspace utilities consider an FSID of 0 invalid.
1046 	 * Always return at least 1 from get_anon_bdev.
1047 	 */
1048 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1049 			GFP_ATOMIC);
1050 	if (dev == -ENOSPC)
1051 		dev = -EMFILE;
1052 	if (dev < 0)
1053 		return dev;
1054 
1055 	*p = MKDEV(0, dev);
1056 	return 0;
1057 }
1058 EXPORT_SYMBOL(get_anon_bdev);
1059 
free_anon_bdev(dev_t dev)1060 void free_anon_bdev(dev_t dev)
1061 {
1062 	ida_free(&unnamed_dev_ida, MINOR(dev));
1063 }
1064 EXPORT_SYMBOL(free_anon_bdev);
1065 
set_anon_super(struct super_block * s,void * data)1066 int set_anon_super(struct super_block *s, void *data)
1067 {
1068 	return get_anon_bdev(&s->s_dev);
1069 }
1070 EXPORT_SYMBOL(set_anon_super);
1071 
kill_anon_super(struct super_block * sb)1072 void kill_anon_super(struct super_block *sb)
1073 {
1074 	dev_t dev = sb->s_dev;
1075 	generic_shutdown_super(sb);
1076 	free_anon_bdev(dev);
1077 }
1078 EXPORT_SYMBOL(kill_anon_super);
1079 
kill_litter_super(struct super_block * sb)1080 void kill_litter_super(struct super_block *sb)
1081 {
1082 	if (sb->s_root)
1083 		d_genocide(sb->s_root);
1084 	kill_anon_super(sb);
1085 }
1086 EXPORT_SYMBOL(kill_litter_super);
1087 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1088 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1089 {
1090 	return set_anon_super(sb, NULL);
1091 }
1092 EXPORT_SYMBOL(set_anon_super_fc);
1093 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1094 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1095 {
1096 	return sb->s_fs_info == fc->s_fs_info;
1097 }
1098 
test_single_super(struct super_block * s,struct fs_context * fc)1099 static int test_single_super(struct super_block *s, struct fs_context *fc)
1100 {
1101 	return 1;
1102 }
1103 
1104 /**
1105  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1106  * @fc: The filesystem context holding the parameters
1107  * @keying: How to distinguish superblocks
1108  * @fill_super: Helper to initialise a new superblock
1109  *
1110  * Search for a superblock and create a new one if not found.  The search
1111  * criterion is controlled by @keying.  If the search fails, a new superblock
1112  * is created and @fill_super() is called to initialise it.
1113  *
1114  * @keying can take one of a number of values:
1115  *
1116  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1117  *     system.  This is typically used for special system filesystems.
1118  *
1119  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1120  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1121  *     key again will turn up the superblock for that key.
1122  *
1123  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1124  *     unkeyed.  Each call will get a new superblock.
1125  *
1126  * A permissions check is made by sget_fc() unless we're getting a superblock
1127  * for a kernel-internal mount or a submount.
1128  */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1129 int vfs_get_super(struct fs_context *fc,
1130 		  enum vfs_get_super_keying keying,
1131 		  int (*fill_super)(struct super_block *sb,
1132 				    struct fs_context *fc))
1133 {
1134 	int (*test)(struct super_block *, struct fs_context *);
1135 	struct super_block *sb;
1136 	int err;
1137 
1138 	switch (keying) {
1139 	case vfs_get_single_super:
1140 	case vfs_get_single_reconf_super:
1141 		test = test_single_super;
1142 		break;
1143 	case vfs_get_keyed_super:
1144 		test = test_keyed_super;
1145 		break;
1146 	case vfs_get_independent_super:
1147 		test = NULL;
1148 		break;
1149 	default:
1150 		BUG();
1151 	}
1152 
1153 	sb = sget_fc(fc, test, set_anon_super_fc);
1154 	if (IS_ERR(sb))
1155 		return PTR_ERR(sb);
1156 
1157 	if (!sb->s_root) {
1158 		err = fill_super(sb, fc);
1159 		if (err)
1160 			goto error;
1161 
1162 		sb->s_flags |= SB_ACTIVE;
1163 		fc->root = dget(sb->s_root);
1164 	} else {
1165 		fc->root = dget(sb->s_root);
1166 		if (keying == vfs_get_single_reconf_super) {
1167 			err = reconfigure_super(fc);
1168 			if (err < 0) {
1169 				dput(fc->root);
1170 				fc->root = NULL;
1171 				goto error;
1172 			}
1173 		}
1174 	}
1175 
1176 	return 0;
1177 
1178 error:
1179 	deactivate_locked_super(sb);
1180 	return err;
1181 }
1182 EXPORT_SYMBOL(vfs_get_super);
1183 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1184 int get_tree_nodev(struct fs_context *fc,
1185 		  int (*fill_super)(struct super_block *sb,
1186 				    struct fs_context *fc))
1187 {
1188 	return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1189 }
1190 EXPORT_SYMBOL(get_tree_nodev);
1191 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1192 int get_tree_single(struct fs_context *fc,
1193 		  int (*fill_super)(struct super_block *sb,
1194 				    struct fs_context *fc))
1195 {
1196 	return vfs_get_super(fc, vfs_get_single_super, fill_super);
1197 }
1198 EXPORT_SYMBOL(get_tree_single);
1199 
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1200 int get_tree_single_reconf(struct fs_context *fc,
1201 		  int (*fill_super)(struct super_block *sb,
1202 				    struct fs_context *fc))
1203 {
1204 	return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1205 }
1206 EXPORT_SYMBOL(get_tree_single_reconf);
1207 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1208 int get_tree_keyed(struct fs_context *fc,
1209 		  int (*fill_super)(struct super_block *sb,
1210 				    struct fs_context *fc),
1211 		void *key)
1212 {
1213 	fc->s_fs_info = key;
1214 	return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1215 }
1216 EXPORT_SYMBOL(get_tree_keyed);
1217 
1218 #ifdef CONFIG_BLOCK
1219 
set_bdev_super(struct super_block * s,void * data)1220 static int set_bdev_super(struct super_block *s, void *data)
1221 {
1222 	s->s_bdev = data;
1223 	s->s_dev = s->s_bdev->bd_dev;
1224 	s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1225 
1226 	if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1227 		s->s_iflags |= SB_I_STABLE_WRITES;
1228 	return 0;
1229 }
1230 
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1231 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1232 {
1233 	return set_bdev_super(s, fc->sget_key);
1234 }
1235 
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1236 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1237 {
1238 	return s->s_bdev == fc->sget_key;
1239 }
1240 
1241 /**
1242  * get_tree_bdev - Get a superblock based on a single block device
1243  * @fc: The filesystem context holding the parameters
1244  * @fill_super: Helper to initialise a new superblock
1245  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1246 int get_tree_bdev(struct fs_context *fc,
1247 		int (*fill_super)(struct super_block *,
1248 				  struct fs_context *))
1249 {
1250 	struct block_device *bdev;
1251 	struct super_block *s;
1252 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1253 	int error = 0;
1254 
1255 	if (!(fc->sb_flags & SB_RDONLY))
1256 		mode |= FMODE_WRITE;
1257 
1258 	if (!fc->source)
1259 		return invalf(fc, "No source specified");
1260 
1261 	bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1262 	if (IS_ERR(bdev)) {
1263 		errorf(fc, "%s: Can't open blockdev", fc->source);
1264 		return PTR_ERR(bdev);
1265 	}
1266 
1267 	/* Once the superblock is inserted into the list by sget_fc(), s_umount
1268 	 * will protect the lockfs code from trying to start a snapshot while
1269 	 * we are mounting
1270 	 */
1271 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1272 	if (bdev->bd_fsfreeze_count > 0) {
1273 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1274 		warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1275 		blkdev_put(bdev, mode);
1276 		return -EBUSY;
1277 	}
1278 
1279 	fc->sb_flags |= SB_NOSEC;
1280 	fc->sget_key = bdev;
1281 	s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1282 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1283 	if (IS_ERR(s)) {
1284 		blkdev_put(bdev, mode);
1285 		return PTR_ERR(s);
1286 	}
1287 
1288 	if (s->s_root) {
1289 		/* Don't summarily change the RO/RW state. */
1290 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1291 			warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1292 			deactivate_locked_super(s);
1293 			blkdev_put(bdev, mode);
1294 			return -EBUSY;
1295 		}
1296 
1297 		/*
1298 		 * s_umount nests inside open_mutex during
1299 		 * __invalidate_device().  blkdev_put() acquires
1300 		 * open_mutex and can't be called under s_umount.  Drop
1301 		 * s_umount temporarily.  This is safe as we're
1302 		 * holding an active reference.
1303 		 */
1304 		up_write(&s->s_umount);
1305 		blkdev_put(bdev, mode);
1306 		down_write(&s->s_umount);
1307 	} else {
1308 		s->s_mode = mode;
1309 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1310 		sb_set_blocksize(s, block_size(bdev));
1311 		error = fill_super(s, fc);
1312 		if (error) {
1313 			deactivate_locked_super(s);
1314 			return error;
1315 		}
1316 
1317 		s->s_flags |= SB_ACTIVE;
1318 		bdev->bd_super = s;
1319 	}
1320 
1321 	BUG_ON(fc->root);
1322 	fc->root = dget(s->s_root);
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL(get_tree_bdev);
1326 
test_bdev_super(struct super_block * s,void * data)1327 static int test_bdev_super(struct super_block *s, void *data)
1328 {
1329 	return (void *)s->s_bdev == data;
1330 }
1331 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1332 struct dentry *mount_bdev(struct file_system_type *fs_type,
1333 	int flags, const char *dev_name, void *data,
1334 	int (*fill_super)(struct super_block *, void *, int))
1335 {
1336 	struct block_device *bdev;
1337 	struct super_block *s;
1338 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1339 	int error = 0;
1340 
1341 	if (!(flags & SB_RDONLY))
1342 		mode |= FMODE_WRITE;
1343 
1344 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1345 	if (IS_ERR(bdev))
1346 		return ERR_CAST(bdev);
1347 
1348 	/*
1349 	 * once the super is inserted into the list by sget, s_umount
1350 	 * will protect the lockfs code from trying to start a snapshot
1351 	 * while we are mounting
1352 	 */
1353 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1354 	if (bdev->bd_fsfreeze_count > 0) {
1355 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1356 		error = -EBUSY;
1357 		goto error_bdev;
1358 	}
1359 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1360 		 bdev);
1361 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1362 	if (IS_ERR(s))
1363 		goto error_s;
1364 
1365 	if (s->s_root) {
1366 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1367 			deactivate_locked_super(s);
1368 			error = -EBUSY;
1369 			goto error_bdev;
1370 		}
1371 
1372 		/*
1373 		 * s_umount nests inside open_mutex during
1374 		 * __invalidate_device().  blkdev_put() acquires
1375 		 * open_mutex and can't be called under s_umount.  Drop
1376 		 * s_umount temporarily.  This is safe as we're
1377 		 * holding an active reference.
1378 		 */
1379 		up_write(&s->s_umount);
1380 		blkdev_put(bdev, mode);
1381 		down_write(&s->s_umount);
1382 	} else {
1383 		s->s_mode = mode;
1384 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1385 		sb_set_blocksize(s, block_size(bdev));
1386 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1387 		if (error) {
1388 			deactivate_locked_super(s);
1389 			goto error;
1390 		}
1391 
1392 		s->s_flags |= SB_ACTIVE;
1393 		bdev->bd_super = s;
1394 	}
1395 
1396 	return dget(s->s_root);
1397 
1398 error_s:
1399 	error = PTR_ERR(s);
1400 error_bdev:
1401 	blkdev_put(bdev, mode);
1402 error:
1403 	return ERR_PTR(error);
1404 }
1405 EXPORT_SYMBOL_NS(mount_bdev, ANDROID_GKI_VFS_EXPORT_ONLY);
1406 
kill_block_super(struct super_block * sb)1407 void kill_block_super(struct super_block *sb)
1408 {
1409 	struct block_device *bdev = sb->s_bdev;
1410 	fmode_t mode = sb->s_mode;
1411 
1412 	bdev->bd_super = NULL;
1413 	generic_shutdown_super(sb);
1414 	sync_blockdev(bdev);
1415 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1416 	blkdev_put(bdev, mode | FMODE_EXCL);
1417 }
1418 
1419 EXPORT_SYMBOL_NS(kill_block_super, ANDROID_GKI_VFS_EXPORT_ONLY);
1420 #endif
1421 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1422 struct dentry *mount_nodev(struct file_system_type *fs_type,
1423 	int flags, void *data,
1424 	int (*fill_super)(struct super_block *, void *, int))
1425 {
1426 	int error;
1427 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1428 
1429 	if (IS_ERR(s))
1430 		return ERR_CAST(s);
1431 
1432 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1433 	if (error) {
1434 		deactivate_locked_super(s);
1435 		return ERR_PTR(error);
1436 	}
1437 	s->s_flags |= SB_ACTIVE;
1438 	return dget(s->s_root);
1439 }
1440 EXPORT_SYMBOL(mount_nodev);
1441 
reconfigure_single(struct super_block * s,int flags,void * data)1442 int reconfigure_single(struct super_block *s,
1443 		       int flags, void *data)
1444 {
1445 	struct fs_context *fc;
1446 	int ret;
1447 
1448 	/* The caller really need to be passing fc down into mount_single(),
1449 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1450 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1451 	 * mount should be rejected if the parameters are not compatible.
1452 	 */
1453 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1454 	if (IS_ERR(fc))
1455 		return PTR_ERR(fc);
1456 
1457 	ret = parse_monolithic_mount_data(fc, data);
1458 	if (ret < 0)
1459 		goto out;
1460 
1461 	ret = reconfigure_super(fc);
1462 out:
1463 	put_fs_context(fc);
1464 	return ret;
1465 }
1466 
compare_single(struct super_block * s,void * p)1467 static int compare_single(struct super_block *s, void *p)
1468 {
1469 	return 1;
1470 }
1471 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1472 struct dentry *mount_single(struct file_system_type *fs_type,
1473 	int flags, void *data,
1474 	int (*fill_super)(struct super_block *, void *, int))
1475 {
1476 	struct super_block *s;
1477 	int error;
1478 
1479 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1480 	if (IS_ERR(s))
1481 		return ERR_CAST(s);
1482 	if (!s->s_root) {
1483 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1484 		if (!error)
1485 			s->s_flags |= SB_ACTIVE;
1486 	} else {
1487 		error = reconfigure_single(s, flags, data);
1488 	}
1489 	if (unlikely(error)) {
1490 		deactivate_locked_super(s);
1491 		return ERR_PTR(error);
1492 	}
1493 	return dget(s->s_root);
1494 }
1495 EXPORT_SYMBOL(mount_single);
1496 
1497 /**
1498  * vfs_get_tree - Get the mountable root
1499  * @fc: The superblock configuration context.
1500  *
1501  * The filesystem is invoked to get or create a superblock which can then later
1502  * be used for mounting.  The filesystem places a pointer to the root to be
1503  * used for mounting in @fc->root.
1504  */
vfs_get_tree(struct fs_context * fc)1505 int vfs_get_tree(struct fs_context *fc)
1506 {
1507 	struct super_block *sb;
1508 	int error;
1509 
1510 	if (fc->root)
1511 		return -EBUSY;
1512 
1513 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1514 	 * on the superblock.
1515 	 */
1516 	error = fc->ops->get_tree(fc);
1517 	if (error < 0)
1518 		return error;
1519 
1520 	if (!fc->root) {
1521 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1522 		       fc->fs_type->name);
1523 		/* We don't know what the locking state of the superblock is -
1524 		 * if there is a superblock.
1525 		 */
1526 		BUG();
1527 	}
1528 
1529 	sb = fc->root->d_sb;
1530 	WARN_ON(!sb->s_bdi);
1531 
1532 	/*
1533 	 * Write barrier is for super_cache_count(). We place it before setting
1534 	 * SB_BORN as the data dependency between the two functions is the
1535 	 * superblock structure contents that we just set up, not the SB_BORN
1536 	 * flag.
1537 	 */
1538 	smp_wmb();
1539 	sb->s_flags |= SB_BORN;
1540 
1541 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1542 	if (unlikely(error)) {
1543 		fc_drop_locked(fc);
1544 		return error;
1545 	}
1546 
1547 	/*
1548 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1549 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1550 	 * this warning for a little while to try and catch filesystems that
1551 	 * violate this rule.
1552 	 */
1553 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1554 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1555 
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(vfs_get_tree);
1559 
1560 /*
1561  * Setup private BDI for given superblock. It gets automatically cleaned up
1562  * in generic_shutdown_super().
1563  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1564 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1565 {
1566 	struct backing_dev_info *bdi;
1567 	int err;
1568 	va_list args;
1569 
1570 	bdi = bdi_alloc(NUMA_NO_NODE);
1571 	if (!bdi)
1572 		return -ENOMEM;
1573 
1574 	va_start(args, fmt);
1575 	err = bdi_register_va(bdi, fmt, args);
1576 	va_end(args);
1577 	if (err) {
1578 		bdi_put(bdi);
1579 		return err;
1580 	}
1581 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1582 	sb->s_bdi = bdi;
1583 
1584 	return 0;
1585 }
1586 EXPORT_SYMBOL(super_setup_bdi_name);
1587 
1588 /*
1589  * Setup private BDI for given superblock. I gets automatically cleaned up
1590  * in generic_shutdown_super().
1591  */
super_setup_bdi(struct super_block * sb)1592 int super_setup_bdi(struct super_block *sb)
1593 {
1594 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1595 
1596 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1597 				    atomic_long_inc_return(&bdi_seq));
1598 }
1599 EXPORT_SYMBOL(super_setup_bdi);
1600 
1601 /**
1602  * sb_wait_write - wait until all writers to given file system finish
1603  * @sb: the super for which we wait
1604  * @level: type of writers we wait for (normal vs page fault)
1605  *
1606  * This function waits until there are no writers of given type to given file
1607  * system.
1608  */
sb_wait_write(struct super_block * sb,int level)1609 static void sb_wait_write(struct super_block *sb, int level)
1610 {
1611 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1612 }
1613 
1614 /*
1615  * We are going to return to userspace and forget about these locks, the
1616  * ownership goes to the caller of thaw_super() which does unlock().
1617  */
lockdep_sb_freeze_release(struct super_block * sb)1618 static void lockdep_sb_freeze_release(struct super_block *sb)
1619 {
1620 	int level;
1621 
1622 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1623 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1624 }
1625 
1626 /*
1627  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1628  */
lockdep_sb_freeze_acquire(struct super_block * sb)1629 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1630 {
1631 	int level;
1632 
1633 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1634 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1635 }
1636 
sb_freeze_unlock(struct super_block * sb,int level)1637 static void sb_freeze_unlock(struct super_block *sb, int level)
1638 {
1639 	for (level--; level >= 0; level--)
1640 		percpu_up_write(sb->s_writers.rw_sem + level);
1641 }
1642 
1643 /**
1644  * freeze_super - lock the filesystem and force it into a consistent state
1645  * @sb: the super to lock
1646  *
1647  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1648  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1649  * -EBUSY.
1650  *
1651  * During this function, sb->s_writers.frozen goes through these values:
1652  *
1653  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1654  *
1655  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1656  * writes should be blocked, though page faults are still allowed. We wait for
1657  * all writes to complete and then proceed to the next stage.
1658  *
1659  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1660  * but internal fs threads can still modify the filesystem (although they
1661  * should not dirty new pages or inodes), writeback can run etc. After waiting
1662  * for all running page faults we sync the filesystem which will clean all
1663  * dirty pages and inodes (no new dirty pages or inodes can be created when
1664  * sync is running).
1665  *
1666  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1667  * modification are blocked (e.g. XFS preallocation truncation on inode
1668  * reclaim). This is usually implemented by blocking new transactions for
1669  * filesystems that have them and need this additional guard. After all
1670  * internal writers are finished we call ->freeze_fs() to finish filesystem
1671  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1672  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1673  *
1674  * sb->s_writers.frozen is protected by sb->s_umount.
1675  */
freeze_super(struct super_block * sb)1676 int freeze_super(struct super_block *sb)
1677 {
1678 	int ret;
1679 
1680 	atomic_inc(&sb->s_active);
1681 	down_write(&sb->s_umount);
1682 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1683 		deactivate_locked_super(sb);
1684 		return -EBUSY;
1685 	}
1686 
1687 	if (!(sb->s_flags & SB_BORN)) {
1688 		up_write(&sb->s_umount);
1689 		return 0;	/* sic - it's "nothing to do" */
1690 	}
1691 
1692 	if (sb_rdonly(sb)) {
1693 		/* Nothing to do really... */
1694 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1695 		up_write(&sb->s_umount);
1696 		return 0;
1697 	}
1698 
1699 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1700 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1701 	up_write(&sb->s_umount);
1702 	sb_wait_write(sb, SB_FREEZE_WRITE);
1703 	down_write(&sb->s_umount);
1704 
1705 	/* Now we go and block page faults... */
1706 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1707 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1708 
1709 	/* All writers are done so after syncing there won't be dirty data */
1710 	ret = sync_filesystem(sb);
1711 	if (ret) {
1712 		sb->s_writers.frozen = SB_UNFROZEN;
1713 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1714 		wake_up(&sb->s_writers.wait_unfrozen);
1715 		deactivate_locked_super(sb);
1716 		return ret;
1717 	}
1718 
1719 	/* Now wait for internal filesystem counter */
1720 	sb->s_writers.frozen = SB_FREEZE_FS;
1721 	sb_wait_write(sb, SB_FREEZE_FS);
1722 
1723 	if (sb->s_op->freeze_fs) {
1724 		ret = sb->s_op->freeze_fs(sb);
1725 		if (ret) {
1726 			printk(KERN_ERR
1727 				"VFS:Filesystem freeze failed\n");
1728 			sb->s_writers.frozen = SB_UNFROZEN;
1729 			sb_freeze_unlock(sb, SB_FREEZE_FS);
1730 			wake_up(&sb->s_writers.wait_unfrozen);
1731 			deactivate_locked_super(sb);
1732 			return ret;
1733 		}
1734 	}
1735 	/*
1736 	 * For debugging purposes so that fs can warn if it sees write activity
1737 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1738 	 */
1739 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1740 	lockdep_sb_freeze_release(sb);
1741 	up_write(&sb->s_umount);
1742 	return 0;
1743 }
1744 EXPORT_SYMBOL(freeze_super);
1745 
thaw_super_locked(struct super_block * sb)1746 static int thaw_super_locked(struct super_block *sb)
1747 {
1748 	int error;
1749 
1750 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1751 		up_write(&sb->s_umount);
1752 		return -EINVAL;
1753 	}
1754 
1755 	if (sb_rdonly(sb)) {
1756 		sb->s_writers.frozen = SB_UNFROZEN;
1757 		goto out;
1758 	}
1759 
1760 	lockdep_sb_freeze_acquire(sb);
1761 
1762 	if (sb->s_op->unfreeze_fs) {
1763 		error = sb->s_op->unfreeze_fs(sb);
1764 		if (error) {
1765 			printk(KERN_ERR
1766 				"VFS:Filesystem thaw failed\n");
1767 			lockdep_sb_freeze_release(sb);
1768 			up_write(&sb->s_umount);
1769 			return error;
1770 		}
1771 	}
1772 
1773 	sb->s_writers.frozen = SB_UNFROZEN;
1774 	sb_freeze_unlock(sb, SB_FREEZE_FS);
1775 out:
1776 	wake_up(&sb->s_writers.wait_unfrozen);
1777 	deactivate_locked_super(sb);
1778 	return 0;
1779 }
1780 
1781 /**
1782  * thaw_super -- unlock filesystem
1783  * @sb: the super to thaw
1784  *
1785  * Unlocks the filesystem and marks it writeable again after freeze_super().
1786  */
thaw_super(struct super_block * sb)1787 int thaw_super(struct super_block *sb)
1788 {
1789 	down_write(&sb->s_umount);
1790 	return thaw_super_locked(sb);
1791 }
1792 EXPORT_SYMBOL(thaw_super);
1793