1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * VAS user space API for its accelerators (Only NX-GZIP is supported now)
4 * Copyright (C) 2019 Haren Myneni, IBM Corp
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/cdev.h>
10 #include <linux/fs.h>
11 #include <linux/slab.h>
12 #include <linux/uaccess.h>
13 #include <linux/kthread.h>
14 #include <linux/sched/signal.h>
15 #include <linux/mmu_context.h>
16 #include <linux/io.h>
17 #include <asm/vas.h>
18 #include <uapi/asm/vas-api.h>
19
20 /*
21 * The driver creates the device node that can be used as follows:
22 * For NX-GZIP
23 *
24 * fd = open("/dev/crypto/nx-gzip", O_RDWR);
25 * rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr);
26 * paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL).
27 * vas_copy(&crb, 0, 1);
28 * vas_paste(paste_addr, 0, 1);
29 * close(fd) or exit process to close window.
30 *
31 * where "vas_copy" and "vas_paste" are defined in copy-paste.h.
32 * copy/paste returns to the user space directly. So refer NX hardware
33 * documententation for exact copy/paste usage and completion / error
34 * conditions.
35 */
36
37 /*
38 * Wrapper object for the nx-gzip device - there is just one instance of
39 * this node for the whole system.
40 */
41 static struct coproc_dev {
42 struct cdev cdev;
43 struct device *device;
44 char *name;
45 dev_t devt;
46 struct class *class;
47 enum vas_cop_type cop_type;
48 const struct vas_user_win_ops *vops;
49 } coproc_device;
50
51 struct coproc_instance {
52 struct coproc_dev *coproc;
53 struct vas_window *txwin;
54 };
55
coproc_devnode(struct device * dev,umode_t * mode)56 static char *coproc_devnode(struct device *dev, umode_t *mode)
57 {
58 return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev));
59 }
60
61 /*
62 * Take reference to pid and mm
63 */
get_vas_user_win_ref(struct vas_user_win_ref * task_ref)64 int get_vas_user_win_ref(struct vas_user_win_ref *task_ref)
65 {
66 /*
67 * Window opened by a child thread may not be closed when
68 * it exits. So take reference to its pid and release it
69 * when the window is free by parent thread.
70 * Acquire a reference to the task's pid to make sure
71 * pid will not be re-used - needed only for multithread
72 * applications.
73 */
74 task_ref->pid = get_task_pid(current, PIDTYPE_PID);
75 /*
76 * Acquire a reference to the task's mm.
77 */
78 task_ref->mm = get_task_mm(current);
79 if (!task_ref->mm) {
80 put_pid(task_ref->pid);
81 pr_err("VAS: pid(%d): mm_struct is not found\n",
82 current->pid);
83 return -EPERM;
84 }
85
86 mmgrab(task_ref->mm);
87 mmput(task_ref->mm);
88 /*
89 * Process closes window during exit. In the case of
90 * multithread application, the child thread can open
91 * window and can exit without closing it. So takes tgid
92 * reference until window closed to make sure tgid is not
93 * reused.
94 */
95 task_ref->tgid = find_get_pid(task_tgid_vnr(current));
96
97 return 0;
98 }
99
100 /*
101 * Successful return must release the task reference with
102 * put_task_struct
103 */
ref_get_pid_and_task(struct vas_user_win_ref * task_ref,struct task_struct ** tskp,struct pid ** pidp)104 static bool ref_get_pid_and_task(struct vas_user_win_ref *task_ref,
105 struct task_struct **tskp, struct pid **pidp)
106 {
107 struct task_struct *tsk;
108 struct pid *pid;
109
110 pid = task_ref->pid;
111 tsk = get_pid_task(pid, PIDTYPE_PID);
112 if (!tsk) {
113 pid = task_ref->tgid;
114 tsk = get_pid_task(pid, PIDTYPE_PID);
115 /*
116 * Parent thread (tgid) will be closing window when it
117 * exits. So should not get here.
118 */
119 if (WARN_ON_ONCE(!tsk))
120 return false;
121 }
122
123 /* Return if the task is exiting. */
124 if (tsk->flags & PF_EXITING) {
125 put_task_struct(tsk);
126 return false;
127 }
128
129 *tskp = tsk;
130 *pidp = pid;
131
132 return true;
133 }
134
135 /*
136 * Update the CSB to indicate a translation error.
137 *
138 * User space will be polling on CSB after the request is issued.
139 * If NX can handle the request without any issues, it updates CSB.
140 * Whereas if NX encounters page fault, the kernel will handle the
141 * fault and update CSB with translation error.
142 *
143 * If we are unable to update the CSB means copy_to_user failed due to
144 * invalid csb_addr, send a signal to the process.
145 */
vas_update_csb(struct coprocessor_request_block * crb,struct vas_user_win_ref * task_ref)146 void vas_update_csb(struct coprocessor_request_block *crb,
147 struct vas_user_win_ref *task_ref)
148 {
149 struct coprocessor_status_block csb;
150 struct kernel_siginfo info;
151 struct task_struct *tsk;
152 void __user *csb_addr;
153 struct pid *pid;
154 int rc;
155
156 /*
157 * NX user space windows can not be opened for task->mm=NULL
158 * and faults will not be generated for kernel requests.
159 */
160 if (WARN_ON_ONCE(!task_ref->mm))
161 return;
162
163 csb_addr = (void __user *)be64_to_cpu(crb->csb_addr);
164
165 memset(&csb, 0, sizeof(csb));
166 csb.cc = CSB_CC_FAULT_ADDRESS;
167 csb.ce = CSB_CE_TERMINATION;
168 csb.cs = 0;
169 csb.count = 0;
170
171 /*
172 * NX operates and returns in BE format as defined CRB struct.
173 * So saves fault_storage_addr in BE as NX pastes in FIFO and
174 * expects user space to convert to CPU format.
175 */
176 csb.address = crb->stamp.nx.fault_storage_addr;
177 csb.flags = 0;
178
179 /*
180 * Process closes send window after all pending NX requests are
181 * completed. In multi-thread applications, a child thread can
182 * open a window and can exit without closing it. May be some
183 * requests are pending or this window can be used by other
184 * threads later. We should handle faults if NX encounters
185 * pages faults on these requests. Update CSB with translation
186 * error and fault address. If csb_addr passed by user space is
187 * invalid, send SEGV signal to pid saved in window. If the
188 * child thread is not running, send the signal to tgid.
189 * Parent thread (tgid) will close this window upon its exit.
190 *
191 * pid and mm references are taken when window is opened by
192 * process (pid). So tgid is used only when child thread opens
193 * a window and exits without closing it.
194 */
195
196 if (!ref_get_pid_and_task(task_ref, &tsk, &pid))
197 return;
198
199 kthread_use_mm(task_ref->mm);
200 rc = copy_to_user(csb_addr, &csb, sizeof(csb));
201 /*
202 * User space polls on csb.flags (first byte). So add barrier
203 * then copy first byte with csb flags update.
204 */
205 if (!rc) {
206 csb.flags = CSB_V;
207 /* Make sure update to csb.flags is visible now */
208 smp_mb();
209 rc = copy_to_user(csb_addr, &csb, sizeof(u8));
210 }
211 kthread_unuse_mm(task_ref->mm);
212 put_task_struct(tsk);
213
214 /* Success */
215 if (!rc)
216 return;
217
218
219 pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n",
220 csb_addr, pid_vnr(pid));
221
222 clear_siginfo(&info);
223 info.si_signo = SIGSEGV;
224 info.si_errno = EFAULT;
225 info.si_code = SEGV_MAPERR;
226 info.si_addr = csb_addr;
227 /*
228 * process will be polling on csb.flags after request is sent to
229 * NX. So generally CSB update should not fail except when an
230 * application passes invalid csb_addr. So an error message will
231 * be displayed and leave it to user space whether to ignore or
232 * handle this signal.
233 */
234 rcu_read_lock();
235 rc = kill_pid_info(SIGSEGV, &info, pid);
236 rcu_read_unlock();
237
238 pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__,
239 pid_vnr(pid), rc);
240 }
241
vas_dump_crb(struct coprocessor_request_block * crb)242 void vas_dump_crb(struct coprocessor_request_block *crb)
243 {
244 struct data_descriptor_entry *dde;
245 struct nx_fault_stamp *nx;
246
247 dde = &crb->source;
248 pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
249 be64_to_cpu(dde->address), be32_to_cpu(dde->length),
250 dde->count, dde->index, dde->flags);
251
252 dde = &crb->target;
253 pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
254 be64_to_cpu(dde->address), be32_to_cpu(dde->length),
255 dde->count, dde->index, dde->flags);
256
257 nx = &crb->stamp.nx;
258 pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n",
259 be32_to_cpu(nx->pswid),
260 be64_to_cpu(crb->stamp.nx.fault_storage_addr),
261 nx->flags, nx->fault_status);
262 }
263
coproc_open(struct inode * inode,struct file * fp)264 static int coproc_open(struct inode *inode, struct file *fp)
265 {
266 struct coproc_instance *cp_inst;
267
268 cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL);
269 if (!cp_inst)
270 return -ENOMEM;
271
272 cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev,
273 cdev);
274 fp->private_data = cp_inst;
275
276 return 0;
277 }
278
coproc_ioc_tx_win_open(struct file * fp,unsigned long arg)279 static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg)
280 {
281 void __user *uptr = (void __user *)arg;
282 struct vas_tx_win_open_attr uattr;
283 struct coproc_instance *cp_inst;
284 struct vas_window *txwin;
285 int rc;
286
287 cp_inst = fp->private_data;
288
289 /*
290 * One window for file descriptor
291 */
292 if (cp_inst->txwin)
293 return -EEXIST;
294
295 rc = copy_from_user(&uattr, uptr, sizeof(uattr));
296 if (rc) {
297 pr_err("%s(): copy_from_user() returns %d\n", __func__, rc);
298 return -EFAULT;
299 }
300
301 if (uattr.version != 1) {
302 pr_err("Invalid window open API version\n");
303 return -EINVAL;
304 }
305
306 if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->open_win) {
307 pr_err("VAS API is not registered\n");
308 return -EACCES;
309 }
310
311 txwin = cp_inst->coproc->vops->open_win(uattr.vas_id, uattr.flags,
312 cp_inst->coproc->cop_type);
313 if (IS_ERR(txwin)) {
314 pr_err("%s() VAS window open failed, %ld\n", __func__,
315 PTR_ERR(txwin));
316 return PTR_ERR(txwin);
317 }
318
319 cp_inst->txwin = txwin;
320
321 return 0;
322 }
323
coproc_release(struct inode * inode,struct file * fp)324 static int coproc_release(struct inode *inode, struct file *fp)
325 {
326 struct coproc_instance *cp_inst = fp->private_data;
327 int rc;
328
329 if (cp_inst->txwin) {
330 if (cp_inst->coproc->vops &&
331 cp_inst->coproc->vops->close_win) {
332 rc = cp_inst->coproc->vops->close_win(cp_inst->txwin);
333 if (rc)
334 return rc;
335 }
336 cp_inst->txwin = NULL;
337 }
338
339 kfree(cp_inst);
340 fp->private_data = NULL;
341
342 /*
343 * We don't know here if user has other receive windows
344 * open, so we can't really call clear_thread_tidr().
345 * So, once the process calls set_thread_tidr(), the
346 * TIDR value sticks around until process exits, resulting
347 * in an extra copy in restore_sprs().
348 */
349
350 return 0;
351 }
352
coproc_mmap(struct file * fp,struct vm_area_struct * vma)353 static int coproc_mmap(struct file *fp, struct vm_area_struct *vma)
354 {
355 struct coproc_instance *cp_inst = fp->private_data;
356 struct vas_window *txwin;
357 unsigned long pfn;
358 u64 paste_addr;
359 pgprot_t prot;
360 int rc;
361
362 txwin = cp_inst->txwin;
363
364 if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) {
365 pr_debug("%s(): size 0x%zx, PAGE_SIZE 0x%zx\n", __func__,
366 (vma->vm_end - vma->vm_start), PAGE_SIZE);
367 return -EINVAL;
368 }
369
370 /* Ensure instance has an open send window */
371 if (!txwin) {
372 pr_err("%s(): No send window open?\n", __func__);
373 return -EINVAL;
374 }
375
376 if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->paste_addr) {
377 pr_err("%s(): VAS API is not registered\n", __func__);
378 return -EACCES;
379 }
380
381 paste_addr = cp_inst->coproc->vops->paste_addr(txwin);
382 if (!paste_addr) {
383 pr_err("%s(): Window paste address failed\n", __func__);
384 return -EINVAL;
385 }
386
387 pfn = paste_addr >> PAGE_SHIFT;
388
389 /* flags, page_prot from cxl_mmap(), except we want cachable */
390 vma->vm_flags |= VM_IO | VM_PFNMAP;
391 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
392
393 prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY);
394
395 rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
396 vma->vm_end - vma->vm_start, prot);
397
398 pr_devel("%s(): paste addr %llx at %lx, rc %d\n", __func__,
399 paste_addr, vma->vm_start, rc);
400
401 return rc;
402 }
403
coproc_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)404 static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg)
405 {
406 switch (cmd) {
407 case VAS_TX_WIN_OPEN:
408 return coproc_ioc_tx_win_open(fp, arg);
409 default:
410 return -EINVAL;
411 }
412 }
413
414 static struct file_operations coproc_fops = {
415 .open = coproc_open,
416 .release = coproc_release,
417 .mmap = coproc_mmap,
418 .unlocked_ioctl = coproc_ioctl,
419 };
420
421 /*
422 * Supporting only nx-gzip coprocessor type now, but this API code
423 * extended to other coprocessor types later.
424 */
vas_register_coproc_api(struct module * mod,enum vas_cop_type cop_type,const char * name,const struct vas_user_win_ops * vops)425 int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type,
426 const char *name,
427 const struct vas_user_win_ops *vops)
428 {
429 int rc = -EINVAL;
430 dev_t devno;
431
432 rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name);
433 if (rc) {
434 pr_err("Unable to allocate coproc major number: %i\n", rc);
435 return rc;
436 }
437
438 pr_devel("%s device allocated, dev [%i,%i]\n", name,
439 MAJOR(coproc_device.devt), MINOR(coproc_device.devt));
440
441 coproc_device.class = class_create(mod, name);
442 if (IS_ERR(coproc_device.class)) {
443 rc = PTR_ERR(coproc_device.class);
444 pr_err("Unable to create %s class %d\n", name, rc);
445 goto err_class;
446 }
447 coproc_device.class->devnode = coproc_devnode;
448 coproc_device.cop_type = cop_type;
449 coproc_device.vops = vops;
450
451 coproc_fops.owner = mod;
452 cdev_init(&coproc_device.cdev, &coproc_fops);
453
454 devno = MKDEV(MAJOR(coproc_device.devt), 0);
455 rc = cdev_add(&coproc_device.cdev, devno, 1);
456 if (rc) {
457 pr_err("cdev_add() failed %d\n", rc);
458 goto err_cdev;
459 }
460
461 coproc_device.device = device_create(coproc_device.class, NULL,
462 devno, NULL, name, MINOR(devno));
463 if (IS_ERR(coproc_device.device)) {
464 rc = PTR_ERR(coproc_device.device);
465 pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc);
466 goto err;
467 }
468
469 pr_devel("%s: Added dev [%d,%d]\n", __func__, MAJOR(devno),
470 MINOR(devno));
471
472 return 0;
473
474 err:
475 cdev_del(&coproc_device.cdev);
476 err_cdev:
477 class_destroy(coproc_device.class);
478 err_class:
479 unregister_chrdev_region(coproc_device.devt, 1);
480 return rc;
481 }
482
vas_unregister_coproc_api(void)483 void vas_unregister_coproc_api(void)
484 {
485 dev_t devno;
486
487 cdev_del(&coproc_device.cdev);
488 devno = MKDEV(MAJOR(coproc_device.devt), 0);
489 device_destroy(coproc_device.class, devno);
490
491 class_destroy(coproc_device.class);
492 unregister_chrdev_region(coproc_device.devt, 1);
493 }
494