• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18 
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21 
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24 
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26 
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
32 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
33 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
34 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
35 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36 
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38 
39 enum {
40 	VMX_VMREAD_BITMAP,
41 	VMX_VMWRITE_BITMAP,
42 	VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45 
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48 
49 struct shadow_vmcs_field {
50 	u16	encoding;
51 	u16	offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58 	ARRAY_SIZE(shadow_read_only_fields);
59 
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65 	ARRAY_SIZE(shadow_read_write_fields);
66 
init_vmcs_shadow_fields(void)67 static void init_vmcs_shadow_fields(void)
68 {
69 	int i, j;
70 
71 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73 
74 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 		u16 field = entry.encoding;
77 
78 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 		    (i + 1 == max_shadow_read_only_fields ||
80 		     shadow_read_only_fields[i + 1].encoding != field + 1))
81 			pr_err("Missing field from shadow_read_only_field %x\n",
82 			       field + 1);
83 
84 		clear_bit(field, vmx_vmread_bitmap);
85 		if (field & 1)
86 #ifdef CONFIG_X86_64
87 			continue;
88 #else
89 			entry.offset += sizeof(u32);
90 #endif
91 		shadow_read_only_fields[j++] = entry;
92 	}
93 	max_shadow_read_only_fields = j;
94 
95 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 		u16 field = entry.encoding;
98 
99 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 		    (i + 1 == max_shadow_read_write_fields ||
101 		     shadow_read_write_fields[i + 1].encoding != field + 1))
102 			pr_err("Missing field from shadow_read_write_field %x\n",
103 			       field + 1);
104 
105 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 			  field <= GUEST_TR_AR_BYTES,
107 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108 
109 		/*
110 		 * PML and the preemption timer can be emulated, but the
111 		 * processor cannot vmwrite to fields that don't exist
112 		 * on bare metal.
113 		 */
114 		switch (field) {
115 		case GUEST_PML_INDEX:
116 			if (!cpu_has_vmx_pml())
117 				continue;
118 			break;
119 		case VMX_PREEMPTION_TIMER_VALUE:
120 			if (!cpu_has_vmx_preemption_timer())
121 				continue;
122 			break;
123 		case GUEST_INTR_STATUS:
124 			if (!cpu_has_vmx_apicv())
125 				continue;
126 			break;
127 		default:
128 			break;
129 		}
130 
131 		clear_bit(field, vmx_vmwrite_bitmap);
132 		clear_bit(field, vmx_vmread_bitmap);
133 		if (field & 1)
134 #ifdef CONFIG_X86_64
135 			continue;
136 #else
137 			entry.offset += sizeof(u32);
138 #endif
139 		shadow_read_write_fields[j++] = entry;
140 	}
141 	max_shadow_read_write_fields = j;
142 }
143 
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 	return kvm_skip_emulated_instruction(vcpu);
156 }
157 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
163 			| X86_EFLAGS_CF);
164 	return kvm_skip_emulated_instruction(vcpu);
165 }
166 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 				u32 vm_instruction_error)
169 {
170 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
173 			| X86_EFLAGS_ZF);
174 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175 	/*
176 	 * We don't need to force sync to shadow VMCS because
177 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178 	 * fields and thus must be synced.
179 	 */
180 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182 
183 	return kvm_skip_emulated_instruction(vcpu);
184 }
185 
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188 	struct vcpu_vmx *vmx = to_vmx(vcpu);
189 
190 	/*
191 	 * failValid writes the error number to the current VMCS, which
192 	 * can't be done if there isn't a current VMCS.
193 	 */
194 	if (vmx->nested.current_vmptr == -1ull &&
195 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196 		return nested_vmx_failInvalid(vcpu);
197 
198 	return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 	/* TODO: not to reset guest simply here. */
204 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207 
vmx_control_verify(u32 control,u32 low,u32 high)208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 	return fixed_bits_valid(control, low, high);
211 }
212 
vmx_control_msr(u32 low,u32 high)213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 	return low | ((u64)high << 32);
216 }
217 
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 	vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224 
nested_release_evmcs(struct kvm_vcpu * vcpu)225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 	struct vcpu_vmx *vmx = to_vmx(vcpu);
228 
229 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231 		vmx->nested.hv_evmcs = NULL;
232 	}
233 
234 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236 
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 				     struct loaded_vmcs *prev)
239 {
240 	struct vmcs_host_state *dest, *src;
241 
242 	if (unlikely(!vmx->guest_state_loaded))
243 		return;
244 
245 	src = &prev->host_state;
246 	dest = &vmx->loaded_vmcs->host_state;
247 
248 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 	dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 	dest->ds_sel = src->ds_sel;
252 	dest->es_sel = src->es_sel;
253 #endif
254 }
255 
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
259 	struct loaded_vmcs *prev;
260 	int cpu;
261 
262 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 		return;
264 
265 	cpu = get_cpu();
266 	prev = vmx->loaded_vmcs;
267 	vmx->loaded_vmcs = vmcs;
268 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 	vmx_sync_vmcs_host_state(vmx, prev);
270 	put_cpu();
271 
272 	vmx_register_cache_reset(vcpu);
273 }
274 
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
free_nested(struct kvm_vcpu * vcpu)279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
282 
283 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285 
286 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 		return;
288 
289 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290 
291 	vmx->nested.vmxon = false;
292 	vmx->nested.smm.vmxon = false;
293 	free_vpid(vmx->nested.vpid02);
294 	vmx->nested.posted_intr_nv = -1;
295 	vmx->nested.current_vmptr = -1ull;
296 	if (enable_shadow_vmcs) {
297 		vmx_disable_shadow_vmcs(vmx);
298 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 		free_vmcs(vmx->vmcs01.shadow_vmcs);
300 		vmx->vmcs01.shadow_vmcs = NULL;
301 	}
302 	kfree(vmx->nested.cached_vmcs12);
303 	vmx->nested.cached_vmcs12 = NULL;
304 	kfree(vmx->nested.cached_shadow_vmcs12);
305 	vmx->nested.cached_shadow_vmcs12 = NULL;
306 	/* Unpin physical memory we referred to in the vmcs02 */
307 	if (vmx->nested.apic_access_page) {
308 		kvm_release_page_clean(vmx->nested.apic_access_page);
309 		vmx->nested.apic_access_page = NULL;
310 	}
311 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 	vmx->nested.pi_desc = NULL;
314 
315 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316 
317 	nested_release_evmcs(vcpu);
318 
319 	free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321 
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 	vcpu_load(vcpu);
329 	vmx_leave_nested(vcpu);
330 	vcpu_put(vcpu);
331 }
332 
333 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
334 
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
336 {
337 	return VALID_PAGE(root_hpa) &&
338 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
339 }
340 
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
342 				       gpa_t addr)
343 {
344 	uint i;
345 	struct kvm_mmu_root_info *cached_root;
346 
347 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
348 
349 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350 		cached_root = &vcpu->arch.mmu->prev_roots[i];
351 
352 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
353 					    eptp))
354 			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
355 	}
356 }
357 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359 		struct x86_exception *fault)
360 {
361 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
363 	u32 vm_exit_reason;
364 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
365 
366 	if (vmx->nested.pml_full) {
367 		vm_exit_reason = EXIT_REASON_PML_FULL;
368 		vmx->nested.pml_full = false;
369 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
370 	} else {
371 		if (fault->error_code & PFERR_RSVD_MASK)
372 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
373 		else
374 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
375 
376 		/*
377 		 * Although the caller (kvm_inject_emulated_page_fault) would
378 		 * have already synced the faulting address in the shadow EPT
379 		 * tables for the current EPTP12, we also need to sync it for
380 		 * any other cached EPTP02s based on the same EP4TA, since the
381 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
382 		 */
383 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
384 					   fault->address);
385 	}
386 
387 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388 	vmcs12->guest_physical_address = fault->address;
389 }
390 
nested_ept_new_eptp(struct kvm_vcpu * vcpu)391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
392 {
393 	kvm_init_shadow_ept_mmu(vcpu,
394 				to_vmx(vcpu)->nested.msrs.ept_caps &
395 				VMX_EPT_EXECUTE_ONLY_BIT,
396 				nested_ept_ad_enabled(vcpu),
397 				nested_ept_get_eptp(vcpu));
398 }
399 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
401 {
402 	WARN_ON(mmu_is_nested(vcpu));
403 
404 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405 	nested_ept_new_eptp(vcpu);
406 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
407 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
409 
410 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
411 }
412 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
414 {
415 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
416 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
417 }
418 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
420 					    u16 error_code)
421 {
422 	bool inequality, bit;
423 
424 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
425 	inequality =
426 		(error_code & vmcs12->page_fault_error_code_mask) !=
427 		 vmcs12->page_fault_error_code_match;
428 	return inequality ^ bit;
429 }
430 
431 
432 /*
433  * KVM wants to inject page-faults which it got to the guest. This function
434  * checks whether in a nested guest, we need to inject them to L1 or L2.
435  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
437 {
438 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439 	unsigned int nr = vcpu->arch.exception.nr;
440 	bool has_payload = vcpu->arch.exception.has_payload;
441 	unsigned long payload = vcpu->arch.exception.payload;
442 
443 	if (nr == PF_VECTOR) {
444 		if (vcpu->arch.exception.nested_apf) {
445 			*exit_qual = vcpu->arch.apf.nested_apf_token;
446 			return 1;
447 		}
448 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
449 						    vcpu->arch.exception.error_code)) {
450 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
451 			return 1;
452 		}
453 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
454 		if (nr == DB_VECTOR) {
455 			if (!has_payload) {
456 				payload = vcpu->arch.dr6;
457 				payload &= ~DR6_BT;
458 				payload ^= DR6_ACTIVE_LOW;
459 			}
460 			*exit_qual = payload;
461 		} else
462 			*exit_qual = 0;
463 		return 1;
464 	}
465 
466 	return 0;
467 }
468 
469 
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471 		struct x86_exception *fault)
472 {
473 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
474 
475 	WARN_ON(!is_guest_mode(vcpu));
476 
477 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478 		!to_vmx(vcpu)->nested.nested_run_pending) {
479 		vmcs12->vm_exit_intr_error_code = fault->error_code;
480 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
483 				  fault->address);
484 	} else {
485 		kvm_inject_page_fault(vcpu, fault);
486 	}
487 }
488 
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490 					       struct vmcs12 *vmcs12)
491 {
492 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
493 		return 0;
494 
495 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
497 		return -EINVAL;
498 
499 	return 0;
500 }
501 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503 						struct vmcs12 *vmcs12)
504 {
505 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
506 		return 0;
507 
508 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
509 		return -EINVAL;
510 
511 	return 0;
512 }
513 
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515 						struct vmcs12 *vmcs12)
516 {
517 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
518 		return 0;
519 
520 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
521 		return -EINVAL;
522 
523 	return 0;
524 }
525 
526 /*
527  * If a msr is allowed by L0, we should check whether it is allowed by L1.
528  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
529  */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)530 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
531 					       unsigned long *msr_bitmap_nested,
532 					       u32 msr, int type)
533 {
534 	int f = sizeof(unsigned long);
535 
536 	/*
537 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
538 	 * have the write-low and read-high bitmap offsets the wrong way round.
539 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
540 	 */
541 	if (msr <= 0x1fff) {
542 		if (type & MSR_TYPE_R &&
543 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
544 			/* read-low */
545 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
546 
547 		if (type & MSR_TYPE_W &&
548 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
549 			/* write-low */
550 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
551 
552 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
553 		msr &= 0x1fff;
554 		if (type & MSR_TYPE_R &&
555 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
556 			/* read-high */
557 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
558 
559 		if (type & MSR_TYPE_W &&
560 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
561 			/* write-high */
562 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
563 
564 	}
565 }
566 
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)567 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
568 {
569 	int msr;
570 
571 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
572 		unsigned word = msr / BITS_PER_LONG;
573 
574 		msr_bitmap[word] = ~0;
575 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
576 	}
577 }
578 
579 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
580 static inline									\
581 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
582 					 unsigned long *msr_bitmap_l1,		\
583 					 unsigned long *msr_bitmap_l0, u32 msr)	\
584 {										\
585 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
586 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
587 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
588 	else									\
589 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
590 }
591 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)592 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
593 
594 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
595 						    unsigned long *msr_bitmap_l1,
596 						    unsigned long *msr_bitmap_l0,
597 						    u32 msr, int types)
598 {
599 	if (types & MSR_TYPE_R)
600 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
601 						  msr_bitmap_l0, msr);
602 	if (types & MSR_TYPE_W)
603 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
604 						   msr_bitmap_l0, msr);
605 }
606 
607 /*
608  * Merge L0's and L1's MSR bitmap, return false to indicate that
609  * we do not use the hardware.
610  */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)611 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
612 						 struct vmcs12 *vmcs12)
613 {
614 	struct vcpu_vmx *vmx = to_vmx(vcpu);
615 	int msr;
616 	unsigned long *msr_bitmap_l1;
617 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
618 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
619 
620 	/* Nothing to do if the MSR bitmap is not in use.  */
621 	if (!cpu_has_vmx_msr_bitmap() ||
622 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
623 		return false;
624 
625 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
626 		return false;
627 
628 	msr_bitmap_l1 = (unsigned long *)map->hva;
629 
630 	/*
631 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
632 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
633 	 * the x2APIC MSR range and selectively disable them below.
634 	 */
635 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
636 
637 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
638 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
639 			/*
640 			 * L0 need not intercept reads for MSRs between 0x800
641 			 * and 0x8ff, it just lets the processor take the value
642 			 * from the virtual-APIC page; take those 256 bits
643 			 * directly from the L1 bitmap.
644 			 */
645 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
646 				unsigned word = msr / BITS_PER_LONG;
647 
648 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
649 			}
650 		}
651 
652 		nested_vmx_disable_intercept_for_msr(
653 			msr_bitmap_l1, msr_bitmap_l0,
654 			X2APIC_MSR(APIC_TASKPRI),
655 			MSR_TYPE_R | MSR_TYPE_W);
656 
657 		if (nested_cpu_has_vid(vmcs12)) {
658 			nested_vmx_disable_intercept_for_msr(
659 				msr_bitmap_l1, msr_bitmap_l0,
660 				X2APIC_MSR(APIC_EOI),
661 				MSR_TYPE_W);
662 			nested_vmx_disable_intercept_for_msr(
663 				msr_bitmap_l1, msr_bitmap_l0,
664 				X2APIC_MSR(APIC_SELF_IPI),
665 				MSR_TYPE_W);
666 		}
667 	}
668 
669 	/*
670 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
671 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
672 	 */
673 #ifdef CONFIG_X86_64
674 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
675 					 MSR_FS_BASE, MSR_TYPE_RW);
676 
677 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
678 					 MSR_GS_BASE, MSR_TYPE_RW);
679 
680 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
681 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
682 #endif
683 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
684 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
685 
686 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
687 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
688 
689 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
690 
691 	return true;
692 }
693 
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)694 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
695 				       struct vmcs12 *vmcs12)
696 {
697 	struct kvm_host_map map;
698 	struct vmcs12 *shadow;
699 
700 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
701 	    vmcs12->vmcs_link_pointer == -1ull)
702 		return;
703 
704 	shadow = get_shadow_vmcs12(vcpu);
705 
706 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
707 		return;
708 
709 	memcpy(shadow, map.hva, VMCS12_SIZE);
710 	kvm_vcpu_unmap(vcpu, &map, false);
711 }
712 
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)713 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
714 					      struct vmcs12 *vmcs12)
715 {
716 	struct vcpu_vmx *vmx = to_vmx(vcpu);
717 
718 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
719 	    vmcs12->vmcs_link_pointer == -1ull)
720 		return;
721 
722 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
723 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
724 }
725 
726 /*
727  * In nested virtualization, check if L1 has set
728  * VM_EXIT_ACK_INTR_ON_EXIT
729  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)730 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
731 {
732 	return get_vmcs12(vcpu)->vm_exit_controls &
733 		VM_EXIT_ACK_INTR_ON_EXIT;
734 }
735 
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)736 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
737 					  struct vmcs12 *vmcs12)
738 {
739 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
740 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
741 		return -EINVAL;
742 	else
743 		return 0;
744 }
745 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)746 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
747 					   struct vmcs12 *vmcs12)
748 {
749 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
750 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
751 	    !nested_cpu_has_vid(vmcs12) &&
752 	    !nested_cpu_has_posted_intr(vmcs12))
753 		return 0;
754 
755 	/*
756 	 * If virtualize x2apic mode is enabled,
757 	 * virtualize apic access must be disabled.
758 	 */
759 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
760 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
761 		return -EINVAL;
762 
763 	/*
764 	 * If virtual interrupt delivery is enabled,
765 	 * we must exit on external interrupts.
766 	 */
767 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
768 		return -EINVAL;
769 
770 	/*
771 	 * bits 15:8 should be zero in posted_intr_nv,
772 	 * the descriptor address has been already checked
773 	 * in nested_get_vmcs12_pages.
774 	 *
775 	 * bits 5:0 of posted_intr_desc_addr should be zero.
776 	 */
777 	if (nested_cpu_has_posted_intr(vmcs12) &&
778 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
779 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
780 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
781 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
782 		return -EINVAL;
783 
784 	/* tpr shadow is needed by all apicv features. */
785 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
786 		return -EINVAL;
787 
788 	return 0;
789 }
790 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)791 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
792 				       u32 count, u64 addr)
793 {
794 	if (count == 0)
795 		return 0;
796 
797 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
798 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
799 		return -EINVAL;
800 
801 	return 0;
802 }
803 
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)804 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
805 						     struct vmcs12 *vmcs12)
806 {
807 	if (CC(nested_vmx_check_msr_switch(vcpu,
808 					   vmcs12->vm_exit_msr_load_count,
809 					   vmcs12->vm_exit_msr_load_addr)) ||
810 	    CC(nested_vmx_check_msr_switch(vcpu,
811 					   vmcs12->vm_exit_msr_store_count,
812 					   vmcs12->vm_exit_msr_store_addr)))
813 		return -EINVAL;
814 
815 	return 0;
816 }
817 
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)818 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
819                                                       struct vmcs12 *vmcs12)
820 {
821 	if (CC(nested_vmx_check_msr_switch(vcpu,
822 					   vmcs12->vm_entry_msr_load_count,
823 					   vmcs12->vm_entry_msr_load_addr)))
824                 return -EINVAL;
825 
826 	return 0;
827 }
828 
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)829 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
830 					 struct vmcs12 *vmcs12)
831 {
832 	if (!nested_cpu_has_pml(vmcs12))
833 		return 0;
834 
835 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
836 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
837 		return -EINVAL;
838 
839 	return 0;
840 }
841 
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)842 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
843 							struct vmcs12 *vmcs12)
844 {
845 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
846 	       !nested_cpu_has_ept(vmcs12)))
847 		return -EINVAL;
848 	return 0;
849 }
850 
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)851 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
852 							 struct vmcs12 *vmcs12)
853 {
854 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
855 	       !nested_cpu_has_ept(vmcs12)))
856 		return -EINVAL;
857 	return 0;
858 }
859 
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)860 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
861 						 struct vmcs12 *vmcs12)
862 {
863 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
864 		return 0;
865 
866 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
867 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
868 		return -EINVAL;
869 
870 	return 0;
871 }
872 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)873 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
874 				       struct vmx_msr_entry *e)
875 {
876 	/* x2APIC MSR accesses are not allowed */
877 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
878 		return -EINVAL;
879 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
880 	    CC(e->index == MSR_IA32_UCODE_REV))
881 		return -EINVAL;
882 	if (CC(e->reserved != 0))
883 		return -EINVAL;
884 	return 0;
885 }
886 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)887 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
888 				     struct vmx_msr_entry *e)
889 {
890 	if (CC(e->index == MSR_FS_BASE) ||
891 	    CC(e->index == MSR_GS_BASE) ||
892 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
893 	    nested_vmx_msr_check_common(vcpu, e))
894 		return -EINVAL;
895 	return 0;
896 }
897 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)898 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
899 				      struct vmx_msr_entry *e)
900 {
901 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
902 	    nested_vmx_msr_check_common(vcpu, e))
903 		return -EINVAL;
904 	return 0;
905 }
906 
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)907 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
908 {
909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
910 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
911 				       vmx->nested.msrs.misc_high);
912 
913 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
914 }
915 
916 /*
917  * Load guest's/host's msr at nested entry/exit.
918  * return 0 for success, entry index for failure.
919  *
920  * One of the failure modes for MSR load/store is when a list exceeds the
921  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
922  * as possible, process all valid entries before failing rather than precheck
923  * for a capacity violation.
924  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)925 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
926 {
927 	u32 i;
928 	struct vmx_msr_entry e;
929 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
930 
931 	for (i = 0; i < count; i++) {
932 		if (unlikely(i >= max_msr_list_size))
933 			goto fail;
934 
935 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
936 					&e, sizeof(e))) {
937 			pr_debug_ratelimited(
938 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
939 				__func__, i, gpa + i * sizeof(e));
940 			goto fail;
941 		}
942 		if (nested_vmx_load_msr_check(vcpu, &e)) {
943 			pr_debug_ratelimited(
944 				"%s check failed (%u, 0x%x, 0x%x)\n",
945 				__func__, i, e.index, e.reserved);
946 			goto fail;
947 		}
948 		if (kvm_set_msr(vcpu, e.index, e.value)) {
949 			pr_debug_ratelimited(
950 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
951 				__func__, i, e.index, e.value);
952 			goto fail;
953 		}
954 	}
955 	return 0;
956 fail:
957 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
958 	return i + 1;
959 }
960 
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)961 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
962 					    u32 msr_index,
963 					    u64 *data)
964 {
965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
966 
967 	/*
968 	 * If the L0 hypervisor stored a more accurate value for the TSC that
969 	 * does not include the time taken for emulation of the L2->L1
970 	 * VM-exit in L0, use the more accurate value.
971 	 */
972 	if (msr_index == MSR_IA32_TSC) {
973 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
974 						    MSR_IA32_TSC);
975 
976 		if (i >= 0) {
977 			u64 val = vmx->msr_autostore.guest.val[i].value;
978 
979 			*data = kvm_read_l1_tsc(vcpu, val);
980 			return true;
981 		}
982 	}
983 
984 	if (kvm_get_msr(vcpu, msr_index, data)) {
985 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
986 			msr_index);
987 		return false;
988 	}
989 	return true;
990 }
991 
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)992 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
993 				     struct vmx_msr_entry *e)
994 {
995 	if (kvm_vcpu_read_guest(vcpu,
996 				gpa + i * sizeof(*e),
997 				e, 2 * sizeof(u32))) {
998 		pr_debug_ratelimited(
999 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1000 			__func__, i, gpa + i * sizeof(*e));
1001 		return false;
1002 	}
1003 	if (nested_vmx_store_msr_check(vcpu, e)) {
1004 		pr_debug_ratelimited(
1005 			"%s check failed (%u, 0x%x, 0x%x)\n",
1006 			__func__, i, e->index, e->reserved);
1007 		return false;
1008 	}
1009 	return true;
1010 }
1011 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1012 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1013 {
1014 	u64 data;
1015 	u32 i;
1016 	struct vmx_msr_entry e;
1017 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1018 
1019 	for (i = 0; i < count; i++) {
1020 		if (unlikely(i >= max_msr_list_size))
1021 			return -EINVAL;
1022 
1023 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1024 			return -EINVAL;
1025 
1026 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1027 			return -EINVAL;
1028 
1029 		if (kvm_vcpu_write_guest(vcpu,
1030 					 gpa + i * sizeof(e) +
1031 					     offsetof(struct vmx_msr_entry, value),
1032 					 &data, sizeof(data))) {
1033 			pr_debug_ratelimited(
1034 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1035 				__func__, i, e.index, data);
1036 			return -EINVAL;
1037 		}
1038 	}
1039 	return 0;
1040 }
1041 
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1042 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1043 {
1044 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1045 	u32 count = vmcs12->vm_exit_msr_store_count;
1046 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1047 	struct vmx_msr_entry e;
1048 	u32 i;
1049 
1050 	for (i = 0; i < count; i++) {
1051 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1052 			return false;
1053 
1054 		if (e.index == msr_index)
1055 			return true;
1056 	}
1057 	return false;
1058 }
1059 
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1060 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1061 					   u32 msr_index)
1062 {
1063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1064 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1065 	bool in_vmcs12_store_list;
1066 	int msr_autostore_slot;
1067 	bool in_autostore_list;
1068 	int last;
1069 
1070 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1071 	in_autostore_list = msr_autostore_slot >= 0;
1072 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1073 
1074 	if (in_vmcs12_store_list && !in_autostore_list) {
1075 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1076 			/*
1077 			 * Emulated VMEntry does not fail here.  Instead a less
1078 			 * accurate value will be returned by
1079 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1080 			 * instead of reading the value from the vmcs02 VMExit
1081 			 * MSR-store area.
1082 			 */
1083 			pr_warn_ratelimited(
1084 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1085 				msr_index);
1086 			return;
1087 		}
1088 		last = autostore->nr++;
1089 		autostore->val[last].index = msr_index;
1090 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1091 		last = --autostore->nr;
1092 		autostore->val[msr_autostore_slot] = autostore->val[last];
1093 	}
1094 }
1095 
1096 /*
1097  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1098  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1099  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1100  * @entry_failure_code.
1101  */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1102 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1103 			       bool nested_ept, bool reload_pdptrs,
1104 			       enum vm_entry_failure_code *entry_failure_code)
1105 {
1106 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1107 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1108 		return -EINVAL;
1109 	}
1110 
1111 	/*
1112 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1113 	 * must not be dereferenced.
1114 	 */
1115 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1116 	    CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1117 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1118 		return -EINVAL;
1119 	}
1120 
1121 	if (!nested_ept)
1122 		kvm_mmu_new_pgd(vcpu, cr3);
1123 
1124 	vcpu->arch.cr3 = cr3;
1125 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1126 
1127 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1128 	kvm_init_mmu(vcpu);
1129 
1130 	return 0;
1131 }
1132 
1133 /*
1134  * Returns if KVM is able to config CPU to tag TLB entries
1135  * populated by L2 differently than TLB entries populated
1136  * by L1.
1137  *
1138  * If L0 uses EPT, L1 and L2 run with different EPTP because
1139  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1140  * are tagged with different EPTP.
1141  *
1142  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1143  * with different VPID (L1 entries are tagged with vmx->vpid
1144  * while L2 entries are tagged with vmx->nested.vpid02).
1145  */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1146 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1147 {
1148 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1149 
1150 	return enable_ept ||
1151 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1152 }
1153 
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1154 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1155 					    struct vmcs12 *vmcs12,
1156 					    bool is_vmenter)
1157 {
1158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1159 
1160 	/*
1161 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1162 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1163 	 * full TLB flush from the guest's perspective.  This is required even
1164 	 * if VPID is disabled in the host as KVM may need to synchronize the
1165 	 * MMU in response to the guest TLB flush.
1166 	 *
1167 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1168 	 * EPT is a special snowflake, as guest-physical mappings aren't
1169 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1170 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1171 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1172 	 * those mappings.
1173 	 */
1174 	if (!nested_cpu_has_vpid(vmcs12)) {
1175 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1176 		return;
1177 	}
1178 
1179 	/* L2 should never have a VPID if VPID is disabled. */
1180 	WARN_ON(!enable_vpid);
1181 
1182 	/*
1183 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1184 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1185 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1186 	 * that the new vpid12 has never been used and thus represents a new
1187 	 * guest ASID that cannot have entries in the TLB.
1188 	 */
1189 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1190 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1191 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1197 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1198 	 * KVM was unable to allocate a VPID for L2, flush the current context
1199 	 * as the effective ASID is common to both L1 and L2.
1200 	 */
1201 	if (!nested_has_guest_tlb_tag(vcpu))
1202 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1203 }
1204 
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1205 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1206 {
1207 	superset &= mask;
1208 	subset &= mask;
1209 
1210 	return (superset | subset) == superset;
1211 }
1212 
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1213 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1214 {
1215 	const u64 feature_and_reserved =
1216 		/* feature (except bit 48; see below) */
1217 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1218 		/* reserved */
1219 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1220 	u64 vmx_basic = vmcs_config.nested.basic;
1221 
1222 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1223 		return -EINVAL;
1224 
1225 	/*
1226 	 * KVM does not emulate a version of VMX that constrains physical
1227 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1228 	 */
1229 	if (data & BIT_ULL(48))
1230 		return -EINVAL;
1231 
1232 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1233 	    vmx_basic_vmcs_revision_id(data))
1234 		return -EINVAL;
1235 
1236 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1237 		return -EINVAL;
1238 
1239 	vmx->nested.msrs.basic = data;
1240 	return 0;
1241 }
1242 
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1243 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1244 				u32 **low, u32 **high)
1245 {
1246 	switch (msr_index) {
1247 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1248 		*low = &msrs->pinbased_ctls_low;
1249 		*high = &msrs->pinbased_ctls_high;
1250 		break;
1251 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1252 		*low = &msrs->procbased_ctls_low;
1253 		*high = &msrs->procbased_ctls_high;
1254 		break;
1255 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1256 		*low = &msrs->exit_ctls_low;
1257 		*high = &msrs->exit_ctls_high;
1258 		break;
1259 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1260 		*low = &msrs->entry_ctls_low;
1261 		*high = &msrs->entry_ctls_high;
1262 		break;
1263 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1264 		*low = &msrs->secondary_ctls_low;
1265 		*high = &msrs->secondary_ctls_high;
1266 		break;
1267 	default:
1268 		BUG();
1269 	}
1270 }
1271 
1272 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1273 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1274 {
1275 	u32 *lowp, *highp;
1276 	u64 supported;
1277 
1278 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1279 
1280 	supported = vmx_control_msr(*lowp, *highp);
1281 
1282 	/* Check must-be-1 bits are still 1. */
1283 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1284 		return -EINVAL;
1285 
1286 	/* Check must-be-0 bits are still 0. */
1287 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1288 		return -EINVAL;
1289 
1290 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1291 	*lowp = data;
1292 	*highp = data >> 32;
1293 	return 0;
1294 }
1295 
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1296 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1297 {
1298 	const u64 feature_and_reserved_bits =
1299 		/* feature */
1300 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1301 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1302 		/* reserved */
1303 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1304 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1305 				       vmcs_config.nested.misc_high);
1306 
1307 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1308 		return -EINVAL;
1309 
1310 	if ((vmx->nested.msrs.pinbased_ctls_high &
1311 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1312 	    vmx_misc_preemption_timer_rate(data) !=
1313 	    vmx_misc_preemption_timer_rate(vmx_misc))
1314 		return -EINVAL;
1315 
1316 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1317 		return -EINVAL;
1318 
1319 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1320 		return -EINVAL;
1321 
1322 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1323 		return -EINVAL;
1324 
1325 	vmx->nested.msrs.misc_low = data;
1326 	vmx->nested.msrs.misc_high = data >> 32;
1327 
1328 	return 0;
1329 }
1330 
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1331 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1332 {
1333 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1334 					       vmcs_config.nested.vpid_caps);
1335 
1336 	/* Every bit is either reserved or a feature bit. */
1337 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1338 		return -EINVAL;
1339 
1340 	vmx->nested.msrs.ept_caps = data;
1341 	vmx->nested.msrs.vpid_caps = data >> 32;
1342 	return 0;
1343 }
1344 
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1345 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1346 {
1347 	switch (msr_index) {
1348 	case MSR_IA32_VMX_CR0_FIXED0:
1349 		return &msrs->cr0_fixed0;
1350 	case MSR_IA32_VMX_CR4_FIXED0:
1351 		return &msrs->cr4_fixed0;
1352 	default:
1353 		BUG();
1354 	}
1355 }
1356 
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1357 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1358 {
1359 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1360 
1361 	/*
1362 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1363 	 * must be 1 in the restored value.
1364 	 */
1365 	if (!is_bitwise_subset(data, *msr, -1ULL))
1366 		return -EINVAL;
1367 
1368 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1369 	return 0;
1370 }
1371 
1372 /*
1373  * Called when userspace is restoring VMX MSRs.
1374  *
1375  * Returns 0 on success, non-0 otherwise.
1376  */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1377 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1378 {
1379 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1380 
1381 	/*
1382 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1383 	 * is in VMX operation.
1384 	 */
1385 	if (vmx->nested.vmxon)
1386 		return -EBUSY;
1387 
1388 	switch (msr_index) {
1389 	case MSR_IA32_VMX_BASIC:
1390 		return vmx_restore_vmx_basic(vmx, data);
1391 	case MSR_IA32_VMX_PINBASED_CTLS:
1392 	case MSR_IA32_VMX_PROCBASED_CTLS:
1393 	case MSR_IA32_VMX_EXIT_CTLS:
1394 	case MSR_IA32_VMX_ENTRY_CTLS:
1395 		/*
1396 		 * The "non-true" VMX capability MSRs are generated from the
1397 		 * "true" MSRs, so we do not support restoring them directly.
1398 		 *
1399 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1400 		 * should restore the "true" MSRs with the must-be-1 bits
1401 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1402 		 * DEFAULT SETTINGS".
1403 		 */
1404 		return -EINVAL;
1405 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1406 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1407 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1408 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1409 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1410 		return vmx_restore_control_msr(vmx, msr_index, data);
1411 	case MSR_IA32_VMX_MISC:
1412 		return vmx_restore_vmx_misc(vmx, data);
1413 	case MSR_IA32_VMX_CR0_FIXED0:
1414 	case MSR_IA32_VMX_CR4_FIXED0:
1415 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1416 	case MSR_IA32_VMX_CR0_FIXED1:
1417 	case MSR_IA32_VMX_CR4_FIXED1:
1418 		/*
1419 		 * These MSRs are generated based on the vCPU's CPUID, so we
1420 		 * do not support restoring them directly.
1421 		 */
1422 		return -EINVAL;
1423 	case MSR_IA32_VMX_EPT_VPID_CAP:
1424 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1425 	case MSR_IA32_VMX_VMCS_ENUM:
1426 		vmx->nested.msrs.vmcs_enum = data;
1427 		return 0;
1428 	case MSR_IA32_VMX_VMFUNC:
1429 		if (data & ~vmcs_config.nested.vmfunc_controls)
1430 			return -EINVAL;
1431 		vmx->nested.msrs.vmfunc_controls = data;
1432 		return 0;
1433 	default:
1434 		/*
1435 		 * The rest of the VMX capability MSRs do not support restore.
1436 		 */
1437 		return -EINVAL;
1438 	}
1439 }
1440 
1441 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1442 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1443 {
1444 	switch (msr_index) {
1445 	case MSR_IA32_VMX_BASIC:
1446 		*pdata = msrs->basic;
1447 		break;
1448 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1449 	case MSR_IA32_VMX_PINBASED_CTLS:
1450 		*pdata = vmx_control_msr(
1451 			msrs->pinbased_ctls_low,
1452 			msrs->pinbased_ctls_high);
1453 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1454 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1455 		break;
1456 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1457 	case MSR_IA32_VMX_PROCBASED_CTLS:
1458 		*pdata = vmx_control_msr(
1459 			msrs->procbased_ctls_low,
1460 			msrs->procbased_ctls_high);
1461 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1462 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1463 		break;
1464 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1465 	case MSR_IA32_VMX_EXIT_CTLS:
1466 		*pdata = vmx_control_msr(
1467 			msrs->exit_ctls_low,
1468 			msrs->exit_ctls_high);
1469 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1470 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1471 		break;
1472 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1473 	case MSR_IA32_VMX_ENTRY_CTLS:
1474 		*pdata = vmx_control_msr(
1475 			msrs->entry_ctls_low,
1476 			msrs->entry_ctls_high);
1477 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1478 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1479 		break;
1480 	case MSR_IA32_VMX_MISC:
1481 		*pdata = vmx_control_msr(
1482 			msrs->misc_low,
1483 			msrs->misc_high);
1484 		break;
1485 	case MSR_IA32_VMX_CR0_FIXED0:
1486 		*pdata = msrs->cr0_fixed0;
1487 		break;
1488 	case MSR_IA32_VMX_CR0_FIXED1:
1489 		*pdata = msrs->cr0_fixed1;
1490 		break;
1491 	case MSR_IA32_VMX_CR4_FIXED0:
1492 		*pdata = msrs->cr4_fixed0;
1493 		break;
1494 	case MSR_IA32_VMX_CR4_FIXED1:
1495 		*pdata = msrs->cr4_fixed1;
1496 		break;
1497 	case MSR_IA32_VMX_VMCS_ENUM:
1498 		*pdata = msrs->vmcs_enum;
1499 		break;
1500 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1501 		*pdata = vmx_control_msr(
1502 			msrs->secondary_ctls_low,
1503 			msrs->secondary_ctls_high);
1504 		break;
1505 	case MSR_IA32_VMX_EPT_VPID_CAP:
1506 		*pdata = msrs->ept_caps |
1507 			((u64)msrs->vpid_caps << 32);
1508 		break;
1509 	case MSR_IA32_VMX_VMFUNC:
1510 		*pdata = msrs->vmfunc_controls;
1511 		break;
1512 	default:
1513 		return 1;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1521  * been modified by the L1 guest.  Note, "writable" in this context means
1522  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1523  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1524  * VM-exit information fields (which are actually writable if the vCPU is
1525  * configured to support "VMWRITE to any supported field in the VMCS").
1526  */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1527 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1528 {
1529 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1530 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1531 	struct shadow_vmcs_field field;
1532 	unsigned long val;
1533 	int i;
1534 
1535 	if (WARN_ON(!shadow_vmcs))
1536 		return;
1537 
1538 	preempt_disable();
1539 
1540 	vmcs_load(shadow_vmcs);
1541 
1542 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1543 		field = shadow_read_write_fields[i];
1544 		val = __vmcs_readl(field.encoding);
1545 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1546 	}
1547 
1548 	vmcs_clear(shadow_vmcs);
1549 	vmcs_load(vmx->loaded_vmcs->vmcs);
1550 
1551 	preempt_enable();
1552 }
1553 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1554 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1555 {
1556 	const struct shadow_vmcs_field *fields[] = {
1557 		shadow_read_write_fields,
1558 		shadow_read_only_fields
1559 	};
1560 	const int max_fields[] = {
1561 		max_shadow_read_write_fields,
1562 		max_shadow_read_only_fields
1563 	};
1564 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1565 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1566 	struct shadow_vmcs_field field;
1567 	unsigned long val;
1568 	int i, q;
1569 
1570 	if (WARN_ON(!shadow_vmcs))
1571 		return;
1572 
1573 	vmcs_load(shadow_vmcs);
1574 
1575 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1576 		for (i = 0; i < max_fields[q]; i++) {
1577 			field = fields[q][i];
1578 			val = vmcs12_read_any(vmcs12, field.encoding,
1579 					      field.offset);
1580 			__vmcs_writel(field.encoding, val);
1581 		}
1582 	}
1583 
1584 	vmcs_clear(shadow_vmcs);
1585 	vmcs_load(vmx->loaded_vmcs->vmcs);
1586 }
1587 
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1588 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1589 {
1590 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1591 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1592 
1593 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1594 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1595 	vmcs12->guest_rip = evmcs->guest_rip;
1596 
1597 	if (unlikely(!(hv_clean_fields &
1598 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1599 		vmcs12->guest_rsp = evmcs->guest_rsp;
1600 		vmcs12->guest_rflags = evmcs->guest_rflags;
1601 		vmcs12->guest_interruptibility_info =
1602 			evmcs->guest_interruptibility_info;
1603 	}
1604 
1605 	if (unlikely(!(hv_clean_fields &
1606 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1607 		vmcs12->cpu_based_vm_exec_control =
1608 			evmcs->cpu_based_vm_exec_control;
1609 	}
1610 
1611 	if (unlikely(!(hv_clean_fields &
1612 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1613 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1614 	}
1615 
1616 	if (unlikely(!(hv_clean_fields &
1617 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1618 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1619 	}
1620 
1621 	if (unlikely(!(hv_clean_fields &
1622 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1623 		vmcs12->vm_entry_intr_info_field =
1624 			evmcs->vm_entry_intr_info_field;
1625 		vmcs12->vm_entry_exception_error_code =
1626 			evmcs->vm_entry_exception_error_code;
1627 		vmcs12->vm_entry_instruction_len =
1628 			evmcs->vm_entry_instruction_len;
1629 	}
1630 
1631 	if (unlikely(!(hv_clean_fields &
1632 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1633 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1634 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1635 		vmcs12->host_cr0 = evmcs->host_cr0;
1636 		vmcs12->host_cr3 = evmcs->host_cr3;
1637 		vmcs12->host_cr4 = evmcs->host_cr4;
1638 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1639 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1640 		vmcs12->host_rip = evmcs->host_rip;
1641 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1642 		vmcs12->host_es_selector = evmcs->host_es_selector;
1643 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1644 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1645 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1646 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1647 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1648 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1649 	}
1650 
1651 	if (unlikely(!(hv_clean_fields &
1652 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1653 		vmcs12->pin_based_vm_exec_control =
1654 			evmcs->pin_based_vm_exec_control;
1655 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1656 		vmcs12->secondary_vm_exec_control =
1657 			evmcs->secondary_vm_exec_control;
1658 	}
1659 
1660 	if (unlikely(!(hv_clean_fields &
1661 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1662 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1663 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1664 	}
1665 
1666 	if (unlikely(!(hv_clean_fields &
1667 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1668 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1669 	}
1670 
1671 	if (unlikely(!(hv_clean_fields &
1672 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1673 		vmcs12->guest_es_base = evmcs->guest_es_base;
1674 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1675 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1676 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1677 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1678 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1679 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1680 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1681 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1682 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1683 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1684 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1685 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1686 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1687 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1688 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1689 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1690 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1691 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1692 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1693 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1694 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1695 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1696 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1697 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1698 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1699 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1700 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1701 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1702 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1703 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1704 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1705 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1706 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1707 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1708 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1709 	}
1710 
1711 	if (unlikely(!(hv_clean_fields &
1712 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1713 		vmcs12->tsc_offset = evmcs->tsc_offset;
1714 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1715 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1716 	}
1717 
1718 	if (unlikely(!(hv_clean_fields &
1719 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1720 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1721 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1722 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1723 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1724 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1725 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1726 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1727 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1728 	}
1729 
1730 	if (unlikely(!(hv_clean_fields &
1731 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1732 		vmcs12->host_fs_base = evmcs->host_fs_base;
1733 		vmcs12->host_gs_base = evmcs->host_gs_base;
1734 		vmcs12->host_tr_base = evmcs->host_tr_base;
1735 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1736 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1737 		vmcs12->host_rsp = evmcs->host_rsp;
1738 	}
1739 
1740 	if (unlikely(!(hv_clean_fields &
1741 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1742 		vmcs12->ept_pointer = evmcs->ept_pointer;
1743 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1744 	}
1745 
1746 	if (unlikely(!(hv_clean_fields &
1747 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1748 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1749 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1750 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1751 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1752 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1753 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1754 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1755 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1756 		vmcs12->guest_pending_dbg_exceptions =
1757 			evmcs->guest_pending_dbg_exceptions;
1758 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1759 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1760 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1761 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1762 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1763 	}
1764 
1765 	/*
1766 	 * Not used?
1767 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1768 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1769 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1770 	 * vmcs12->page_fault_error_code_mask =
1771 	 *		evmcs->page_fault_error_code_mask;
1772 	 * vmcs12->page_fault_error_code_match =
1773 	 *		evmcs->page_fault_error_code_match;
1774 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1775 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1776 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1777 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1778 	 */
1779 
1780 	/*
1781 	 * Read only fields:
1782 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1783 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1784 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1785 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1786 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1787 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1788 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1789 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1790 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1791 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1792 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1793 	 *
1794 	 * Not present in struct vmcs12:
1795 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1796 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1797 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1798 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1799 	 */
1800 
1801 	return;
1802 }
1803 
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1804 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1805 {
1806 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1807 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1808 
1809 	/*
1810 	 * Should not be changed by KVM:
1811 	 *
1812 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1813 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1814 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1815 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1816 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1817 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1818 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1819 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1820 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1821 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1822 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1823 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1824 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1825 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1826 	 * evmcs->host_rip = vmcs12->host_rip;
1827 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1828 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1829 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1830 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1831 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1832 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1833 	 * evmcs->host_rsp = vmcs12->host_rsp;
1834 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1835 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1836 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1837 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1838 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1839 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1840 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1841 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1842 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1843 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1844 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1845 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1846 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1847 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1848 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1849 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1850 	 * evmcs->page_fault_error_code_mask =
1851 	 *		vmcs12->page_fault_error_code_mask;
1852 	 * evmcs->page_fault_error_code_match =
1853 	 *		vmcs12->page_fault_error_code_match;
1854 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1855 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1856 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1857 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1858 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1859 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1860 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1861 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1862 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1863 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1864 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1865 	 *
1866 	 * Not present in struct vmcs12:
1867 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1868 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1869 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1870 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1871 	 */
1872 
1873 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1874 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1875 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1876 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1877 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1878 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1879 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1880 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1881 
1882 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1883 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1884 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1885 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1886 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1887 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1888 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1889 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1890 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1891 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1892 
1893 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1894 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1895 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1896 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1897 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1898 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1899 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1900 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1901 
1902 	evmcs->guest_es_base = vmcs12->guest_es_base;
1903 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1904 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1905 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1906 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1907 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1908 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1909 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1910 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1911 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1912 
1913 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1914 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1915 
1916 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1917 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1918 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1919 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1920 
1921 	evmcs->guest_pending_dbg_exceptions =
1922 		vmcs12->guest_pending_dbg_exceptions;
1923 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1924 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1925 
1926 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1927 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1928 
1929 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1930 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1931 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1932 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1933 
1934 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1935 
1936 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1937 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1938 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1939 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1940 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1941 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1942 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1943 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1944 
1945 	evmcs->exit_qualification = vmcs12->exit_qualification;
1946 
1947 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1948 	evmcs->guest_rsp = vmcs12->guest_rsp;
1949 	evmcs->guest_rflags = vmcs12->guest_rflags;
1950 
1951 	evmcs->guest_interruptibility_info =
1952 		vmcs12->guest_interruptibility_info;
1953 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1954 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1955 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1956 	evmcs->vm_entry_exception_error_code =
1957 		vmcs12->vm_entry_exception_error_code;
1958 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1959 
1960 	evmcs->guest_rip = vmcs12->guest_rip;
1961 
1962 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1963 
1964 	return;
1965 }
1966 
1967 /*
1968  * This is an equivalent of the nested hypervisor executing the vmptrld
1969  * instruction.
1970  */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1971 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1972 	struct kvm_vcpu *vcpu, bool from_launch)
1973 {
1974 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1975 	bool evmcs_gpa_changed = false;
1976 	u64 evmcs_gpa;
1977 
1978 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1979 		return EVMPTRLD_DISABLED;
1980 
1981 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1982 		nested_release_evmcs(vcpu);
1983 		return EVMPTRLD_DISABLED;
1984 	}
1985 
1986 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1987 		vmx->nested.current_vmptr = -1ull;
1988 
1989 		nested_release_evmcs(vcpu);
1990 
1991 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1992 				 &vmx->nested.hv_evmcs_map))
1993 			return EVMPTRLD_ERROR;
1994 
1995 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1996 
1997 		/*
1998 		 * Currently, KVM only supports eVMCS version 1
1999 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2000 		 * value to first u32 field of eVMCS which should specify eVMCS
2001 		 * VersionNumber.
2002 		 *
2003 		 * Guest should be aware of supported eVMCS versions by host by
2004 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2005 		 * expected to set this CPUID leaf according to the value
2006 		 * returned in vmcs_version from nested_enable_evmcs().
2007 		 *
2008 		 * However, it turns out that Microsoft Hyper-V fails to comply
2009 		 * to their own invented interface: When Hyper-V use eVMCS, it
2010 		 * just sets first u32 field of eVMCS to revision_id specified
2011 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2012 		 * which is one of the supported versions specified in
2013 		 * CPUID.0x4000000A.EAX[0:15].
2014 		 *
2015 		 * To overcome Hyper-V bug, we accept here either a supported
2016 		 * eVMCS version or VMCS12 revision_id as valid values for first
2017 		 * u32 field of eVMCS.
2018 		 */
2019 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2020 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2021 			nested_release_evmcs(vcpu);
2022 			return EVMPTRLD_VMFAIL;
2023 		}
2024 
2025 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2026 
2027 		evmcs_gpa_changed = true;
2028 		/*
2029 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2030 		 * reloaded from guest's memory (read only fields, fields not
2031 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2032 		 * are no leftovers.
2033 		 */
2034 		if (from_launch) {
2035 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2036 			memset(vmcs12, 0, sizeof(*vmcs12));
2037 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2038 		}
2039 
2040 	}
2041 
2042 	/*
2043 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2044 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2045 	 */
2046 	if (from_launch || evmcs_gpa_changed)
2047 		vmx->nested.hv_evmcs->hv_clean_fields &=
2048 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2049 
2050 	return EVMPTRLD_SUCCEEDED;
2051 }
2052 
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2053 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2054 {
2055 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2056 
2057 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2058 		copy_vmcs12_to_enlightened(vmx);
2059 	else
2060 		copy_vmcs12_to_shadow(vmx);
2061 
2062 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2063 }
2064 
vmx_preemption_timer_fn(struct hrtimer * timer)2065 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2066 {
2067 	struct vcpu_vmx *vmx =
2068 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2069 
2070 	vmx->nested.preemption_timer_expired = true;
2071 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2072 	kvm_vcpu_kick(&vmx->vcpu);
2073 
2074 	return HRTIMER_NORESTART;
2075 }
2076 
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2077 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2078 {
2079 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2080 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2081 
2082 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2083 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2084 
2085 	if (!vmx->nested.has_preemption_timer_deadline) {
2086 		vmx->nested.preemption_timer_deadline =
2087 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2088 		vmx->nested.has_preemption_timer_deadline = true;
2089 	}
2090 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2091 }
2092 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2093 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2094 					u64 preemption_timeout)
2095 {
2096 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2097 
2098 	/*
2099 	 * A timer value of zero is architecturally guaranteed to cause
2100 	 * a VMExit prior to executing any instructions in the guest.
2101 	 */
2102 	if (preemption_timeout == 0) {
2103 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2104 		return;
2105 	}
2106 
2107 	if (vcpu->arch.virtual_tsc_khz == 0)
2108 		return;
2109 
2110 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2111 	preemption_timeout *= 1000000;
2112 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2113 	hrtimer_start(&vmx->nested.preemption_timer,
2114 		      ktime_add_ns(ktime_get(), preemption_timeout),
2115 		      HRTIMER_MODE_ABS_PINNED);
2116 }
2117 
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2118 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2119 {
2120 	if (vmx->nested.nested_run_pending &&
2121 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2122 		return vmcs12->guest_ia32_efer;
2123 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2124 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2125 	else
2126 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2127 }
2128 
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2129 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2130 {
2131 	/*
2132 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2133 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2134 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2135 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2136 	 */
2137 	if (vmx->nested.vmcs02_initialized)
2138 		return;
2139 	vmx->nested.vmcs02_initialized = true;
2140 
2141 	/*
2142 	 * We don't care what the EPTP value is we just need to guarantee
2143 	 * it's valid so we don't get a false positive when doing early
2144 	 * consistency checks.
2145 	 */
2146 	if (enable_ept && nested_early_check)
2147 		vmcs_write64(EPT_POINTER,
2148 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2149 
2150 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2151 	if (cpu_has_vmx_vmfunc())
2152 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2153 
2154 	if (cpu_has_vmx_posted_intr())
2155 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2156 
2157 	if (cpu_has_vmx_msr_bitmap())
2158 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2159 
2160 	/*
2161 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2162 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2163 	 * deal with filtering out L2 GPAs from the buffer.
2164 	 */
2165 	if (enable_pml) {
2166 		vmcs_write64(PML_ADDRESS, 0);
2167 		vmcs_write16(GUEST_PML_INDEX, -1);
2168 	}
2169 
2170 	if (cpu_has_vmx_encls_vmexit())
2171 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2172 
2173 	/*
2174 	 * Set the MSR load/store lists to match L0's settings.  Only the
2175 	 * addresses are constant (for vmcs02), the counts can change based
2176 	 * on L2's behavior, e.g. switching to/from long mode.
2177 	 */
2178 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2179 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2180 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2181 
2182 	vmx_set_constant_host_state(vmx);
2183 }
2184 
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2185 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2186 				      struct vmcs12 *vmcs12)
2187 {
2188 	prepare_vmcs02_constant_state(vmx);
2189 
2190 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2191 
2192 	if (enable_vpid) {
2193 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2194 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2195 		else
2196 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2197 	}
2198 }
2199 
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2200 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2201 				 struct vmcs12 *vmcs12)
2202 {
2203 	u32 exec_control;
2204 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2205 
2206 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2207 		prepare_vmcs02_early_rare(vmx, vmcs12);
2208 
2209 	/*
2210 	 * PIN CONTROLS
2211 	 */
2212 	exec_control = __pin_controls_get(vmcs01);
2213 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2214 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2215 
2216 	/* Posted interrupts setting is only taken from vmcs12.  */
2217 	vmx->nested.pi_pending = false;
2218 	if (nested_cpu_has_posted_intr(vmcs12))
2219 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2220 	else
2221 		exec_control &= ~PIN_BASED_POSTED_INTR;
2222 	pin_controls_set(vmx, exec_control);
2223 
2224 	/*
2225 	 * EXEC CONTROLS
2226 	 */
2227 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2228 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2229 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2230 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2231 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2232 
2233 	vmx->nested.l1_tpr_threshold = -1;
2234 	if (exec_control & CPU_BASED_TPR_SHADOW)
2235 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2236 #ifdef CONFIG_X86_64
2237 	else
2238 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2239 				CPU_BASED_CR8_STORE_EXITING;
2240 #endif
2241 
2242 	/*
2243 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2244 	 * for I/O port accesses.
2245 	 */
2246 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2247 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2248 
2249 	/*
2250 	 * This bit will be computed in nested_get_vmcs12_pages, because
2251 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2252 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2253 	 * only set/clear this bit.
2254 	 */
2255 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2256 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2257 
2258 	exec_controls_set(vmx, exec_control);
2259 
2260 	/*
2261 	 * SECONDARY EXEC CONTROLS
2262 	 */
2263 	if (cpu_has_secondary_exec_ctrls()) {
2264 		exec_control = __secondary_exec_controls_get(vmcs01);
2265 
2266 		/* Take the following fields only from vmcs12 */
2267 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2268 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2269 				  SECONDARY_EXEC_ENABLE_INVPCID |
2270 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2271 				  SECONDARY_EXEC_XSAVES |
2272 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2273 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2274 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2275 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2276 				  SECONDARY_EXEC_DESC);
2277 
2278 		if (nested_cpu_has(vmcs12,
2279 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2280 			exec_control |= vmcs12->secondary_vm_exec_control;
2281 
2282 		/* PML is emulated and never enabled in hardware for L2. */
2283 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2284 
2285 		/* VMCS shadowing for L2 is emulated for now */
2286 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2287 
2288 		/*
2289 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2290 		 * will not have to rewrite the controls just for this bit.
2291 		 */
2292 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2293 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2294 			exec_control |= SECONDARY_EXEC_DESC;
2295 
2296 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2297 			vmcs_write16(GUEST_INTR_STATUS,
2298 				vmcs12->guest_intr_status);
2299 
2300 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2301 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2302 
2303 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2304 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2305 
2306 		secondary_exec_controls_set(vmx, exec_control);
2307 	}
2308 
2309 	/*
2310 	 * ENTRY CONTROLS
2311 	 *
2312 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2313 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2314 	 * on the related bits (if supported by the CPU) in the hope that
2315 	 * we can avoid VMWrites during vmx_set_efer().
2316 	 *
2317 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2318 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2319 	 * do the same for L2.
2320 	 */
2321 	exec_control = __vm_entry_controls_get(vmcs01);
2322 	exec_control |= (vmcs12->vm_entry_controls &
2323 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2324 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2325 	if (cpu_has_load_ia32_efer()) {
2326 		if (guest_efer & EFER_LMA)
2327 			exec_control |= VM_ENTRY_IA32E_MODE;
2328 		if (guest_efer != host_efer)
2329 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2330 	}
2331 	vm_entry_controls_set(vmx, exec_control);
2332 
2333 	/*
2334 	 * EXIT CONTROLS
2335 	 *
2336 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2337 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2338 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2339 	 */
2340 	exec_control = __vm_exit_controls_get(vmcs01);
2341 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2342 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2343 	else
2344 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2345 	vm_exit_controls_set(vmx, exec_control);
2346 
2347 	/*
2348 	 * Interrupt/Exception Fields
2349 	 */
2350 	if (vmx->nested.nested_run_pending) {
2351 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2352 			     vmcs12->vm_entry_intr_info_field);
2353 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2354 			     vmcs12->vm_entry_exception_error_code);
2355 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2356 			     vmcs12->vm_entry_instruction_len);
2357 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2358 			     vmcs12->guest_interruptibility_info);
2359 		vmx->loaded_vmcs->nmi_known_unmasked =
2360 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2361 	} else {
2362 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2363 	}
2364 }
2365 
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2366 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2367 {
2368 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2369 
2370 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2371 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2372 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2373 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2374 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2375 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2376 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2377 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2378 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2379 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2380 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2381 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2382 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2383 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2384 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2385 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2386 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2387 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2388 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2389 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2390 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2391 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2392 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2393 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2394 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2395 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2396 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2397 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2398 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2399 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2400 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2401 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2402 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2403 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2404 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2405 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2406 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2407 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2408 
2409 		vmx->segment_cache.bitmask = 0;
2410 	}
2411 
2412 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2413 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2414 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2415 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2416 			    vmcs12->guest_pending_dbg_exceptions);
2417 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2418 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2419 
2420 		/*
2421 		 * L1 may access the L2's PDPTR, so save them to construct
2422 		 * vmcs12
2423 		 */
2424 		if (enable_ept) {
2425 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2426 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2427 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2428 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2429 		}
2430 
2431 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2432 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2433 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2434 	}
2435 
2436 	if (nested_cpu_has_xsaves(vmcs12))
2437 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2438 
2439 	/*
2440 	 * Whether page-faults are trapped is determined by a combination of
2441 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2442 	 * doesn't care about page faults then we should set all of these to
2443 	 * L1's desires. However, if L0 does care about (some) page faults, it
2444 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2445 	 * simply ask to exit on each and every L2 page fault. This is done by
2446 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2447 	 * Note that below we don't need special code to set EB.PF beyond the
2448 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2449 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2450 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2451 	 */
2452 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2453 		/*
2454 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2455 		 * go ahead and use it?
2456 		 */
2457 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2458 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2459 	} else {
2460 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2461 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2462 	}
2463 
2464 	if (cpu_has_vmx_apicv()) {
2465 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2466 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2467 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2468 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2469 	}
2470 
2471 	/*
2472 	 * Make sure the msr_autostore list is up to date before we set the
2473 	 * count in the vmcs02.
2474 	 */
2475 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2476 
2477 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2478 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2479 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2480 
2481 	set_cr4_guest_host_mask(vmx);
2482 }
2483 
2484 /*
2485  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2486  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2487  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2488  * guest in a way that will both be appropriate to L1's requests, and our
2489  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2490  * function also has additional necessary side-effects, like setting various
2491  * vcpu->arch fields.
2492  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2493  * is assigned to entry_failure_code on failure.
2494  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2495 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2496 			  bool from_vmentry,
2497 			  enum vm_entry_failure_code *entry_failure_code)
2498 {
2499 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2500 	bool load_guest_pdptrs_vmcs12 = false;
2501 
2502 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2503 		prepare_vmcs02_rare(vmx, vmcs12);
2504 		vmx->nested.dirty_vmcs12 = false;
2505 
2506 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2507 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2508 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2509 	}
2510 
2511 	if (vmx->nested.nested_run_pending &&
2512 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2513 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2514 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2515 	} else {
2516 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2517 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2518 	}
2519 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2520 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2521 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2522 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2523 
2524 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2525 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2526 	 * trap. Note that CR0.TS also needs updating - we do this later.
2527 	 */
2528 	vmx_update_exception_bitmap(vcpu);
2529 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2530 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2531 
2532 	if (vmx->nested.nested_run_pending &&
2533 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2534 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2535 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2536 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2537 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2538 	}
2539 
2540 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541 			vcpu->arch.l1_tsc_offset,
2542 			vmx_get_l2_tsc_offset(vcpu),
2543 			vmx_get_l2_tsc_multiplier(vcpu));
2544 
2545 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2546 			vcpu->arch.l1_tsc_scaling_ratio,
2547 			vmx_get_l2_tsc_multiplier(vcpu));
2548 
2549 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2550 	if (kvm_has_tsc_control)
2551 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2552 
2553 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2554 
2555 	if (nested_cpu_has_ept(vmcs12))
2556 		nested_ept_init_mmu_context(vcpu);
2557 
2558 	/*
2559 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2560 	 * bits which we consider mandatory enabled.
2561 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2562 	 * the specifications by L1; It's not enough to take
2563 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2564 	 * have more bits than L1 expected.
2565 	 */
2566 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2567 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2568 
2569 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2570 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2571 
2572 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2573 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2574 	vmx_set_efer(vcpu, vcpu->arch.efer);
2575 
2576 	/*
2577 	 * Guest state is invalid and unrestricted guest is disabled,
2578 	 * which means L1 attempted VMEntry to L2 with invalid state.
2579 	 * Fail the VMEntry.
2580 	 *
2581 	 * However when force loading the guest state (SMM exit or
2582 	 * loading nested state after migration, it is possible to
2583 	 * have invalid guest state now, which will be later fixed by
2584 	 * restoring L2 register state
2585 	 */
2586 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2587 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2588 		return -EINVAL;
2589 	}
2590 
2591 	/* Shadow page tables on either EPT or shadow page tables. */
2592 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2593 				from_vmentry, entry_failure_code))
2594 		return -EINVAL;
2595 
2596 	/*
2597 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2598 	 * on nested VM-Exit, which can occur without actually running L2 and
2599 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2600 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2601 	 * transition to HLT instead of running L2.
2602 	 */
2603 	if (enable_ept)
2604 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2605 
2606 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2607 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2608 	    is_pae_paging(vcpu)) {
2609 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2610 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2611 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2612 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2613 	}
2614 
2615 	if (!enable_ept)
2616 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2617 
2618 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2619 	    intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2620 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2621 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2622 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2623 		return -EINVAL;
2624 	}
2625 
2626 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2627 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2628 
2629 	/*
2630 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2631 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2632 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2633 	 * here.
2634 	 */
2635 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2636 		vmx->nested.hv_evmcs->hv_clean_fields |=
2637 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2638 
2639 	return 0;
2640 }
2641 
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2642 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2643 {
2644 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2645 	       nested_cpu_has_virtual_nmis(vmcs12)))
2646 		return -EINVAL;
2647 
2648 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2649 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2650 		return -EINVAL;
2651 
2652 	return 0;
2653 }
2654 
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2655 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2656 {
2657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2658 
2659 	/* Check for memory type validity */
2660 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2661 	case VMX_EPTP_MT_UC:
2662 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2663 			return false;
2664 		break;
2665 	case VMX_EPTP_MT_WB:
2666 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2667 			return false;
2668 		break;
2669 	default:
2670 		return false;
2671 	}
2672 
2673 	/* Page-walk levels validity. */
2674 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2675 	case VMX_EPTP_PWL_5:
2676 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2677 			return false;
2678 		break;
2679 	case VMX_EPTP_PWL_4:
2680 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2681 			return false;
2682 		break;
2683 	default:
2684 		return false;
2685 	}
2686 
2687 	/* Reserved bits should not be set */
2688 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2689 		return false;
2690 
2691 	/* AD, if set, should be supported */
2692 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2693 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2694 			return false;
2695 	}
2696 
2697 	return true;
2698 }
2699 
2700 /*
2701  * Checks related to VM-Execution Control Fields
2702  */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2703 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2704                                               struct vmcs12 *vmcs12)
2705 {
2706 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2707 
2708 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2709 				   vmx->nested.msrs.pinbased_ctls_low,
2710 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2711 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2712 				   vmx->nested.msrs.procbased_ctls_low,
2713 				   vmx->nested.msrs.procbased_ctls_high)))
2714 		return -EINVAL;
2715 
2716 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2717 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2718 				   vmx->nested.msrs.secondary_ctls_low,
2719 				   vmx->nested.msrs.secondary_ctls_high)))
2720 		return -EINVAL;
2721 
2722 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2723 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2724 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2725 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2726 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2727 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2728 	    nested_vmx_check_nmi_controls(vmcs12) ||
2729 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2730 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2731 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2732 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2733 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2734 		return -EINVAL;
2735 
2736 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2737 	    nested_cpu_has_save_preemption_timer(vmcs12))
2738 		return -EINVAL;
2739 
2740 	if (nested_cpu_has_ept(vmcs12) &&
2741 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2742 		return -EINVAL;
2743 
2744 	if (nested_cpu_has_vmfunc(vmcs12)) {
2745 		if (CC(vmcs12->vm_function_control &
2746 		       ~vmx->nested.msrs.vmfunc_controls))
2747 			return -EINVAL;
2748 
2749 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2750 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2751 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2752 				return -EINVAL;
2753 		}
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 /*
2760  * Checks related to VM-Exit Control Fields
2761  */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2762 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2763                                          struct vmcs12 *vmcs12)
2764 {
2765 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2766 
2767 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2768 				    vmx->nested.msrs.exit_ctls_low,
2769 				    vmx->nested.msrs.exit_ctls_high)) ||
2770 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2771 		return -EINVAL;
2772 
2773 	return 0;
2774 }
2775 
2776 /*
2777  * Checks related to VM-Entry Control Fields
2778  */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2779 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2780 					  struct vmcs12 *vmcs12)
2781 {
2782 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2783 
2784 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2785 				    vmx->nested.msrs.entry_ctls_low,
2786 				    vmx->nested.msrs.entry_ctls_high)))
2787 		return -EINVAL;
2788 
2789 	/*
2790 	 * From the Intel SDM, volume 3:
2791 	 * Fields relevant to VM-entry event injection must be set properly.
2792 	 * These fields are the VM-entry interruption-information field, the
2793 	 * VM-entry exception error code, and the VM-entry instruction length.
2794 	 */
2795 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2796 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2797 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2798 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2799 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2800 		bool should_have_error_code;
2801 		bool urg = nested_cpu_has2(vmcs12,
2802 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2803 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2804 
2805 		/* VM-entry interruption-info field: interruption type */
2806 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2807 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2808 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2809 			return -EINVAL;
2810 
2811 		/* VM-entry interruption-info field: vector */
2812 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2813 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2814 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2815 			return -EINVAL;
2816 
2817 		/* VM-entry interruption-info field: deliver error code */
2818 		should_have_error_code =
2819 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2820 			x86_exception_has_error_code(vector);
2821 		if (CC(has_error_code != should_have_error_code))
2822 			return -EINVAL;
2823 
2824 		/* VM-entry exception error code */
2825 		if (CC(has_error_code &&
2826 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2827 			return -EINVAL;
2828 
2829 		/* VM-entry interruption-info field: reserved bits */
2830 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2831 			return -EINVAL;
2832 
2833 		/* VM-entry instruction length */
2834 		switch (intr_type) {
2835 		case INTR_TYPE_SOFT_EXCEPTION:
2836 		case INTR_TYPE_SOFT_INTR:
2837 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2838 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2839 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2840 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2841 				return -EINVAL;
2842 		}
2843 	}
2844 
2845 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2846 		return -EINVAL;
2847 
2848 	return 0;
2849 }
2850 
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2851 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2852 				     struct vmcs12 *vmcs12)
2853 {
2854 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2855 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2856 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2857 		return -EINVAL;
2858 
2859 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2860 		return nested_evmcs_check_controls(vmcs12);
2861 
2862 	return 0;
2863 }
2864 
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2865 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2866 				       struct vmcs12 *vmcs12)
2867 {
2868 #ifdef CONFIG_X86_64
2869 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2870 		!!(vcpu->arch.efer & EFER_LMA)))
2871 		return -EINVAL;
2872 #endif
2873 	return 0;
2874 }
2875 
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2876 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2877 				       struct vmcs12 *vmcs12)
2878 {
2879 	bool ia32e;
2880 
2881 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2882 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2883 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2884 		return -EINVAL;
2885 
2886 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2887 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2888 		return -EINVAL;
2889 
2890 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2891 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2892 		return -EINVAL;
2893 
2894 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2895 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2896 					   vmcs12->host_ia32_perf_global_ctrl)))
2897 		return -EINVAL;
2898 
2899 #ifdef CONFIG_X86_64
2900 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2901 #else
2902 	ia32e = false;
2903 #endif
2904 
2905 	if (ia32e) {
2906 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2907 			return -EINVAL;
2908 	} else {
2909 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2910 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2911 		    CC((vmcs12->host_rip) >> 32))
2912 			return -EINVAL;
2913 	}
2914 
2915 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2916 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2917 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2919 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2920 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2921 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2922 	    CC(vmcs12->host_cs_selector == 0) ||
2923 	    CC(vmcs12->host_tr_selector == 0) ||
2924 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2925 		return -EINVAL;
2926 
2927 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2928 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2929 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2930 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2931 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2932 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2933 		return -EINVAL;
2934 
2935 	/*
2936 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2937 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2938 	 * the values of the LMA and LME bits in the field must each be that of
2939 	 * the host address-space size VM-exit control.
2940 	 */
2941 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2942 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2943 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2944 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2945 			return -EINVAL;
2946 	}
2947 
2948 	return 0;
2949 }
2950 
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2951 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2952 					  struct vmcs12 *vmcs12)
2953 {
2954 	int r = 0;
2955 	struct vmcs12 *shadow;
2956 	struct kvm_host_map map;
2957 
2958 	if (vmcs12->vmcs_link_pointer == -1ull)
2959 		return 0;
2960 
2961 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2962 		return -EINVAL;
2963 
2964 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2965 		return -EINVAL;
2966 
2967 	shadow = map.hva;
2968 
2969 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2970 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2971 		r = -EINVAL;
2972 
2973 	kvm_vcpu_unmap(vcpu, &map, false);
2974 	return r;
2975 }
2976 
2977 /*
2978  * Checks related to Guest Non-register State
2979  */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2980 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2981 {
2982 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2983 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2984 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2985 		return -EINVAL;
2986 
2987 	return 0;
2988 }
2989 
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2990 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2991 					struct vmcs12 *vmcs12,
2992 					enum vm_entry_failure_code *entry_failure_code)
2993 {
2994 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
2995 
2996 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2997 
2998 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2999 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3000 		return -EINVAL;
3001 
3002 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3003 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3004 		return -EINVAL;
3005 
3006 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3007 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3008 		return -EINVAL;
3009 
3010 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3011 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3012 		return -EINVAL;
3013 	}
3014 
3015 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3016 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3017 					   vmcs12->guest_ia32_perf_global_ctrl)))
3018 		return -EINVAL;
3019 
3020 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3021 		return -EINVAL;
3022 
3023 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3024 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3025 		return -EINVAL;
3026 
3027 	/*
3028 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3029 	 * are performed on the field for the IA32_EFER MSR:
3030 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3031 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3032 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3033 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3034 	 *   CR0.PG) is 1.
3035 	 */
3036 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3037 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3038 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3039 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3040 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3041 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3042 			return -EINVAL;
3043 	}
3044 
3045 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3046 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3047 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3048 		return -EINVAL;
3049 
3050 	if (nested_check_guest_non_reg_state(vmcs12))
3051 		return -EINVAL;
3052 
3053 	return 0;
3054 }
3055 
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3056 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3057 {
3058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3059 	unsigned long cr3, cr4;
3060 	bool vm_fail;
3061 
3062 	if (!nested_early_check)
3063 		return 0;
3064 
3065 	if (vmx->msr_autoload.host.nr)
3066 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3067 	if (vmx->msr_autoload.guest.nr)
3068 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3069 
3070 	preempt_disable();
3071 
3072 	vmx_prepare_switch_to_guest(vcpu);
3073 
3074 	/*
3075 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3076 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3077 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3078 	 * there is no need to preserve other bits or save/restore the field.
3079 	 */
3080 	vmcs_writel(GUEST_RFLAGS, 0);
3081 
3082 	cr3 = __get_current_cr3_fast();
3083 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3084 		vmcs_writel(HOST_CR3, cr3);
3085 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3086 	}
3087 
3088 	cr4 = cr4_read_shadow();
3089 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3090 		vmcs_writel(HOST_CR4, cr4);
3091 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3092 	}
3093 
3094 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3095 				 __vmx_vcpu_run_flags(vmx));
3096 
3097 	if (vmx->msr_autoload.host.nr)
3098 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3099 	if (vmx->msr_autoload.guest.nr)
3100 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3101 
3102 	if (vm_fail) {
3103 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3104 
3105 		preempt_enable();
3106 
3107 		trace_kvm_nested_vmenter_failed(
3108 			"early hardware check VM-instruction error: ", error);
3109 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3110 		return 1;
3111 	}
3112 
3113 	/*
3114 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3115 	 */
3116 	if (hw_breakpoint_active())
3117 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3118 	local_irq_enable();
3119 	preempt_enable();
3120 
3121 	/*
3122 	 * A non-failing VMEntry means we somehow entered guest mode with
3123 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3124 	 * is no telling what memory has been modified or what state has
3125 	 * been exposed to unknown code.  Hitting this all but guarantees
3126 	 * a (very critical) hardware issue.
3127 	 */
3128 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3129 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3130 
3131 	return 0;
3132 }
3133 
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3134 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3135 {
3136 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3137 
3138 	/*
3139 	 * hv_evmcs may end up being not mapped after migration (when
3140 	 * L2 was running), map it here to make sure vmcs12 changes are
3141 	 * properly reflected.
3142 	 */
3143 	if (vmx->nested.enlightened_vmcs_enabled &&
3144 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3145 		enum nested_evmptrld_status evmptrld_status =
3146 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3147 
3148 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3149 		    evmptrld_status == EVMPTRLD_ERROR)
3150 			return false;
3151 
3152 		/*
3153 		 * Post migration VMCS12 always provides the most actual
3154 		 * information, copy it to eVMCS upon entry.
3155 		 */
3156 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3157 	}
3158 
3159 	return true;
3160 }
3161 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3162 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3163 {
3164 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3165 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3166 	struct kvm_host_map *map;
3167 	struct page *page;
3168 	u64 hpa;
3169 
3170 	if (!vcpu->arch.pdptrs_from_userspace &&
3171 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3172 		/*
3173 		 * Reload the guest's PDPTRs since after a migration
3174 		 * the guest CR3 might be restored prior to setting the nested
3175 		 * state which can lead to a load of wrong PDPTRs.
3176 		 */
3177 		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3178 			return false;
3179 	}
3180 
3181 
3182 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3183 		/*
3184 		 * Translate L1 physical address to host physical
3185 		 * address for vmcs02. Keep the page pinned, so this
3186 		 * physical address remains valid. We keep a reference
3187 		 * to it so we can release it later.
3188 		 */
3189 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3190 			kvm_release_page_clean(vmx->nested.apic_access_page);
3191 			vmx->nested.apic_access_page = NULL;
3192 		}
3193 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3194 		if (!is_error_page(page)) {
3195 			vmx->nested.apic_access_page = page;
3196 			hpa = page_to_phys(vmx->nested.apic_access_page);
3197 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3198 		} else {
3199 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3200 					     __func__);
3201 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3202 			vcpu->run->internal.suberror =
3203 				KVM_INTERNAL_ERROR_EMULATION;
3204 			vcpu->run->internal.ndata = 0;
3205 			return false;
3206 		}
3207 	}
3208 
3209 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3210 		map = &vmx->nested.virtual_apic_map;
3211 
3212 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3213 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3214 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3215 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3216 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3217 			/*
3218 			 * The processor will never use the TPR shadow, simply
3219 			 * clear the bit from the execution control.  Such a
3220 			 * configuration is useless, but it happens in tests.
3221 			 * For any other configuration, failing the vm entry is
3222 			 * _not_ what the processor does but it's basically the
3223 			 * only possibility we have.
3224 			 */
3225 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3226 		} else {
3227 			/*
3228 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3229 			 * force VM-Entry to fail.
3230 			 */
3231 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3232 		}
3233 	}
3234 
3235 	if (nested_cpu_has_posted_intr(vmcs12)) {
3236 		map = &vmx->nested.pi_desc_map;
3237 
3238 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3239 			vmx->nested.pi_desc =
3240 				(struct pi_desc *)(((void *)map->hva) +
3241 				offset_in_page(vmcs12->posted_intr_desc_addr));
3242 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3243 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3244 		} else {
3245 			/*
3246 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3247 			 * access the contents of the VMCS12 posted interrupt
3248 			 * descriptor. (Note that KVM may do this when it
3249 			 * should not, per the architectural specification.)
3250 			 */
3251 			vmx->nested.pi_desc = NULL;
3252 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3253 		}
3254 	}
3255 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3256 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3257 	else
3258 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3259 
3260 	return true;
3261 }
3262 
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3263 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3264 {
3265 	if (!nested_get_evmcs_page(vcpu)) {
3266 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3267 				     __func__);
3268 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3269 		vcpu->run->internal.suberror =
3270 			KVM_INTERNAL_ERROR_EMULATION;
3271 		vcpu->run->internal.ndata = 0;
3272 
3273 		return false;
3274 	}
3275 
3276 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3277 		return false;
3278 
3279 	return true;
3280 }
3281 
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3282 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3283 {
3284 	struct vmcs12 *vmcs12;
3285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3286 	gpa_t dst;
3287 
3288 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3289 		return 0;
3290 
3291 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3292 		return 1;
3293 
3294 	/*
3295 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3296 	 * set is already checked as part of A/D emulation.
3297 	 */
3298 	vmcs12 = get_vmcs12(vcpu);
3299 	if (!nested_cpu_has_pml(vmcs12))
3300 		return 0;
3301 
3302 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3303 		vmx->nested.pml_full = true;
3304 		return 1;
3305 	}
3306 
3307 	gpa &= ~0xFFFull;
3308 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3309 
3310 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3311 				 offset_in_page(dst), sizeof(gpa)))
3312 		return 0;
3313 
3314 	vmcs12->guest_pml_index--;
3315 
3316 	return 0;
3317 }
3318 
3319 /*
3320  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3321  * for running VMX instructions (except VMXON, whose prerequisites are
3322  * slightly different). It also specifies what exception to inject otherwise.
3323  * Note that many of these exceptions have priority over VM exits, so they
3324  * don't have to be checked again here.
3325  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3326 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3327 {
3328 	if (!to_vmx(vcpu)->nested.vmxon) {
3329 		kvm_queue_exception(vcpu, UD_VECTOR);
3330 		return 0;
3331 	}
3332 
3333 	if (vmx_get_cpl(vcpu)) {
3334 		kvm_inject_gp(vcpu, 0);
3335 		return 0;
3336 	}
3337 
3338 	return 1;
3339 }
3340 
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3341 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3342 {
3343 	u8 rvi = vmx_get_rvi();
3344 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3345 
3346 	return ((rvi & 0xf0) > (vppr & 0xf0));
3347 }
3348 
3349 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3350 				   struct vmcs12 *vmcs12);
3351 
3352 /*
3353  * If from_vmentry is false, this is being called from state restore (either RSM
3354  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3355  *
3356  * Returns:
3357  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3358  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3359  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3360  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3361  */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3362 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3363 							bool from_vmentry)
3364 {
3365 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3366 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3367 	enum vm_entry_failure_code entry_failure_code;
3368 	bool evaluate_pending_interrupts;
3369 	union vmx_exit_reason exit_reason = {
3370 		.basic = EXIT_REASON_INVALID_STATE,
3371 		.failed_vmentry = 1,
3372 	};
3373 	u32 failed_index;
3374 
3375 	kvm_service_local_tlb_flush_requests(vcpu);
3376 
3377 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3378 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3379 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3380 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3381 
3382 	if (!vmx->nested.nested_run_pending ||
3383 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3384 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3385 	if (kvm_mpx_supported() &&
3386 	    (!vmx->nested.nested_run_pending ||
3387 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3388 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3389 
3390 	/*
3391 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3392 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3393 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3394 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3395 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3396 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3397 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3398 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3399 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3400 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3401 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3402 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3403 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3404 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3405 	 */
3406 	if (!enable_ept && !nested_early_check)
3407 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3408 
3409 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3410 
3411 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3412 
3413 	if (from_vmentry) {
3414 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3415 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3416 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3417 		}
3418 
3419 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3420 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3421 			return NVMX_VMENTRY_VMFAIL;
3422 		}
3423 
3424 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3425 						 &entry_failure_code)) {
3426 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3427 			vmcs12->exit_qualification = entry_failure_code;
3428 			goto vmentry_fail_vmexit;
3429 		}
3430 	}
3431 
3432 	enter_guest_mode(vcpu);
3433 
3434 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3435 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3436 		vmcs12->exit_qualification = entry_failure_code;
3437 		goto vmentry_fail_vmexit_guest_mode;
3438 	}
3439 
3440 	if (from_vmentry) {
3441 		failed_index = nested_vmx_load_msr(vcpu,
3442 						   vmcs12->vm_entry_msr_load_addr,
3443 						   vmcs12->vm_entry_msr_load_count);
3444 		if (failed_index) {
3445 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3446 			vmcs12->exit_qualification = failed_index;
3447 			goto vmentry_fail_vmexit_guest_mode;
3448 		}
3449 	} else {
3450 		/*
3451 		 * The MMU is not initialized to point at the right entities yet and
3452 		 * "get pages" would need to read data from the guest (i.e. we will
3453 		 * need to perform gpa to hpa translation). Request a call
3454 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3455 		 * have already been set at vmentry time and should not be reset.
3456 		 */
3457 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3458 	}
3459 
3460 	/*
3461 	 * If L1 had a pending IRQ/NMI until it executed
3462 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3463 	 * disallowed (e.g. interrupts disabled), L0 needs to
3464 	 * evaluate if this pending event should cause an exit from L2
3465 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3466 	 * intercept EXTERNAL_INTERRUPT).
3467 	 *
3468 	 * Usually this would be handled by the processor noticing an
3469 	 * IRQ/NMI window request, or checking RVI during evaluation of
3470 	 * pending virtual interrupts.  However, this setting was done
3471 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3472 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3473 	 */
3474 	if (unlikely(evaluate_pending_interrupts))
3475 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3476 
3477 	/*
3478 	 * Do not start the preemption timer hrtimer until after we know
3479 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3480 	 * the timer.
3481 	 */
3482 	vmx->nested.preemption_timer_expired = false;
3483 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3484 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3485 		vmx_start_preemption_timer(vcpu, timer_value);
3486 	}
3487 
3488 	/*
3489 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3490 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3491 	 * returned as far as L1 is concerned. It will only return (and set
3492 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3493 	 */
3494 	return NVMX_VMENTRY_SUCCESS;
3495 
3496 	/*
3497 	 * A failed consistency check that leads to a VMExit during L1's
3498 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3499 	 * 26.7 "VM-entry failures during or after loading guest state".
3500 	 */
3501 vmentry_fail_vmexit_guest_mode:
3502 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3503 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3504 	leave_guest_mode(vcpu);
3505 
3506 vmentry_fail_vmexit:
3507 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3508 
3509 	if (!from_vmentry)
3510 		return NVMX_VMENTRY_VMEXIT;
3511 
3512 	load_vmcs12_host_state(vcpu, vmcs12);
3513 	vmcs12->vm_exit_reason = exit_reason.full;
3514 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3515 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3516 	return NVMX_VMENTRY_VMEXIT;
3517 }
3518 
3519 /*
3520  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3521  * for running an L2 nested guest.
3522  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3523 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3524 {
3525 	struct vmcs12 *vmcs12;
3526 	enum nvmx_vmentry_status status;
3527 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3528 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3529 	enum nested_evmptrld_status evmptrld_status;
3530 
3531 	if (!nested_vmx_check_permission(vcpu))
3532 		return 1;
3533 
3534 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3535 	if (evmptrld_status == EVMPTRLD_ERROR) {
3536 		kvm_queue_exception(vcpu, UD_VECTOR);
3537 		return 1;
3538 	} else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3539 		return nested_vmx_failInvalid(vcpu);
3540 	}
3541 
3542 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3543 	       vmx->nested.current_vmptr == -1ull))
3544 		return nested_vmx_failInvalid(vcpu);
3545 
3546 	vmcs12 = get_vmcs12(vcpu);
3547 
3548 	/*
3549 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3550 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3551 	 * rather than RFLAGS.ZF, and no error number is stored to the
3552 	 * VM-instruction error field.
3553 	 */
3554 	if (CC(vmcs12->hdr.shadow_vmcs))
3555 		return nested_vmx_failInvalid(vcpu);
3556 
3557 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3558 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3559 		/* Enlightened VMCS doesn't have launch state */
3560 		vmcs12->launch_state = !launch;
3561 	} else if (enable_shadow_vmcs) {
3562 		copy_shadow_to_vmcs12(vmx);
3563 	}
3564 
3565 	/*
3566 	 * The nested entry process starts with enforcing various prerequisites
3567 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3568 	 * they fail: As the SDM explains, some conditions should cause the
3569 	 * instruction to fail, while others will cause the instruction to seem
3570 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3571 	 * To speed up the normal (success) code path, we should avoid checking
3572 	 * for misconfigurations which will anyway be caught by the processor
3573 	 * when using the merged vmcs02.
3574 	 */
3575 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3576 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3577 
3578 	if (CC(vmcs12->launch_state == launch))
3579 		return nested_vmx_fail(vcpu,
3580 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3581 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3582 
3583 	if (nested_vmx_check_controls(vcpu, vmcs12))
3584 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3585 
3586 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3587 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3588 
3589 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3590 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3591 
3592 	/*
3593 	 * We're finally done with prerequisite checking, and can start with
3594 	 * the nested entry.
3595 	 */
3596 	vmx->nested.nested_run_pending = 1;
3597 	vmx->nested.has_preemption_timer_deadline = false;
3598 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3599 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3600 		goto vmentry_failed;
3601 
3602 	/* Emulate processing of posted interrupts on VM-Enter. */
3603 	if (nested_cpu_has_posted_intr(vmcs12) &&
3604 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3605 		vmx->nested.pi_pending = true;
3606 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3607 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3608 	}
3609 
3610 	/* Hide L1D cache contents from the nested guest.  */
3611 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3612 
3613 	/*
3614 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3615 	 * also be used as part of restoring nVMX state for
3616 	 * snapshot restore (migration).
3617 	 *
3618 	 * In this flow, it is assumed that vmcs12 cache was
3619 	 * transferred as part of captured nVMX state and should
3620 	 * therefore not be read from guest memory (which may not
3621 	 * exist on destination host yet).
3622 	 */
3623 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3624 
3625 	switch (vmcs12->guest_activity_state) {
3626 	case GUEST_ACTIVITY_HLT:
3627 		/*
3628 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3629 		 * awakened by event injection or by an NMI-window VM-exit or
3630 		 * by an interrupt-window VM-exit, halt the vcpu.
3631 		 */
3632 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3633 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3634 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3635 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3636 			vmx->nested.nested_run_pending = 0;
3637 			return kvm_vcpu_halt(vcpu);
3638 		}
3639 		break;
3640 	case GUEST_ACTIVITY_WAIT_SIPI:
3641 		vmx->nested.nested_run_pending = 0;
3642 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3643 		break;
3644 	default:
3645 		break;
3646 	}
3647 
3648 	return 1;
3649 
3650 vmentry_failed:
3651 	vmx->nested.nested_run_pending = 0;
3652 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3653 		return 0;
3654 	if (status == NVMX_VMENTRY_VMEXIT)
3655 		return 1;
3656 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3657 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3658 }
3659 
3660 /*
3661  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3662  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3663  * This function returns the new value we should put in vmcs12.guest_cr0.
3664  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3665  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3666  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3667  *     didn't trap the bit, because if L1 did, so would L0).
3668  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3669  *     been modified by L2, and L1 knows it. So just leave the old value of
3670  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3671  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3672  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3673  *     changed these bits, and therefore they need to be updated, but L0
3674  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3675  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3676  */
3677 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3678 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3679 {
3680 	return
3681 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3682 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3683 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3684 			vcpu->arch.cr0_guest_owned_bits));
3685 }
3686 
3687 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3688 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3689 {
3690 	return
3691 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3692 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3693 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3694 			vcpu->arch.cr4_guest_owned_bits));
3695 }
3696 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3697 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3698 				      struct vmcs12 *vmcs12,
3699 				      u32 vm_exit_reason, u32 exit_intr_info)
3700 {
3701 	u32 idt_vectoring;
3702 	unsigned int nr;
3703 
3704 	/*
3705 	 * Per the SDM, VM-Exits due to double and triple faults are never
3706 	 * considered to occur during event delivery, even if the double/triple
3707 	 * fault is the result of an escalating vectoring issue.
3708 	 *
3709 	 * Note, the SDM qualifies the double fault behavior with "The original
3710 	 * event results in a double-fault exception".  It's unclear why the
3711 	 * qualification exists since exits due to double fault can occur only
3712 	 * while vectoring a different exception (injected events are never
3713 	 * subject to interception), i.e. there's _always_ an original event.
3714 	 *
3715 	 * The SDM also uses NMI as a confusing example for the "original event
3716 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3717 	 * the same rule applies to all events that cause an exit directly.
3718 	 * NMI is an odd choice for the example because NMIs can only occur on
3719 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3720 	 */
3721 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3722 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3723 	     is_double_fault(exit_intr_info))) {
3724 		vmcs12->idt_vectoring_info_field = 0;
3725 	} else if (vcpu->arch.exception.injected) {
3726 		nr = vcpu->arch.exception.nr;
3727 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3728 
3729 		if (kvm_exception_is_soft(nr)) {
3730 			vmcs12->vm_exit_instruction_len =
3731 				vcpu->arch.event_exit_inst_len;
3732 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3733 		} else
3734 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3735 
3736 		if (vcpu->arch.exception.has_error_code) {
3737 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3738 			vmcs12->idt_vectoring_error_code =
3739 				vcpu->arch.exception.error_code;
3740 		}
3741 
3742 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3743 	} else if (vcpu->arch.nmi_injected) {
3744 		vmcs12->idt_vectoring_info_field =
3745 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3746 	} else if (vcpu->arch.interrupt.injected) {
3747 		nr = vcpu->arch.interrupt.nr;
3748 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3749 
3750 		if (vcpu->arch.interrupt.soft) {
3751 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3752 			vmcs12->vm_entry_instruction_len =
3753 				vcpu->arch.event_exit_inst_len;
3754 		} else
3755 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3756 
3757 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3758 	} else {
3759 		vmcs12->idt_vectoring_info_field = 0;
3760 	}
3761 }
3762 
3763 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3764 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3765 {
3766 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3767 	gfn_t gfn;
3768 
3769 	/*
3770 	 * Don't need to mark the APIC access page dirty; it is never
3771 	 * written to by the CPU during APIC virtualization.
3772 	 */
3773 
3774 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3775 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3776 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3777 	}
3778 
3779 	if (nested_cpu_has_posted_intr(vmcs12)) {
3780 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3781 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3782 	}
3783 }
3784 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3785 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3786 {
3787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3788 	int max_irr;
3789 	void *vapic_page;
3790 	u16 status;
3791 
3792 	if (!vmx->nested.pi_pending)
3793 		return 0;
3794 
3795 	if (!vmx->nested.pi_desc)
3796 		goto mmio_needed;
3797 
3798 	vmx->nested.pi_pending = false;
3799 
3800 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3801 		return 0;
3802 
3803 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3804 	if (max_irr != 256) {
3805 		vapic_page = vmx->nested.virtual_apic_map.hva;
3806 		if (!vapic_page)
3807 			goto mmio_needed;
3808 
3809 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3810 			vapic_page, &max_irr);
3811 		status = vmcs_read16(GUEST_INTR_STATUS);
3812 		if ((u8)max_irr > ((u8)status & 0xff)) {
3813 			status &= ~0xff;
3814 			status |= (u8)max_irr;
3815 			vmcs_write16(GUEST_INTR_STATUS, status);
3816 		}
3817 	}
3818 
3819 	nested_mark_vmcs12_pages_dirty(vcpu);
3820 	return 0;
3821 
3822 mmio_needed:
3823 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3824 	return -ENXIO;
3825 }
3826 
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3827 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3828 					       unsigned long exit_qual)
3829 {
3830 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3831 	unsigned int nr = vcpu->arch.exception.nr;
3832 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3833 
3834 	if (vcpu->arch.exception.has_error_code) {
3835 		/*
3836 		 * Intel CPUs do not generate error codes with bits 31:16 set,
3837 		 * and more importantly VMX disallows setting bits 31:16 in the
3838 		 * injected error code for VM-Entry.  Drop the bits to mimic
3839 		 * hardware and avoid inducing failure on nested VM-Entry if L1
3840 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3841 		 * generate "full" 32-bit error codes, so KVM allows userspace
3842 		 * to inject exception error codes with bits 31:16 set.
3843 		 */
3844 		vmcs12->vm_exit_intr_error_code = (u16)vcpu->arch.exception.error_code;
3845 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3846 	}
3847 
3848 	if (kvm_exception_is_soft(nr))
3849 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3850 	else
3851 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3852 
3853 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3854 	    vmx_get_nmi_mask(vcpu))
3855 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3856 
3857 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3858 }
3859 
3860 /*
3861  * Returns true if a debug trap is pending delivery.
3862  *
3863  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3864  * exception may be inferred from the presence of an exception payload.
3865  */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3866 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3867 {
3868 	return vcpu->arch.exception.pending &&
3869 			vcpu->arch.exception.nr == DB_VECTOR &&
3870 			vcpu->arch.exception.payload;
3871 }
3872 
3873 /*
3874  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3875  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3876  * represents these debug traps with a payload that is said to be compatible
3877  * with the 'pending debug exceptions' field, write the payload to the VMCS
3878  * field if a VM-exit is delivered before the debug trap.
3879  */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3880 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3881 {
3882 	if (vmx_pending_dbg_trap(vcpu))
3883 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3884 			    vcpu->arch.exception.payload);
3885 }
3886 
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3887 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3888 {
3889 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3890 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3891 }
3892 
vmx_check_nested_events(struct kvm_vcpu * vcpu)3893 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3894 {
3895 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3896 	unsigned long exit_qual;
3897 	bool block_nested_events =
3898 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3899 	bool mtf_pending = vmx->nested.mtf_pending;
3900 	struct kvm_lapic *apic = vcpu->arch.apic;
3901 
3902 	/*
3903 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3904 	 * this state is discarded.
3905 	 */
3906 	if (!block_nested_events)
3907 		vmx->nested.mtf_pending = false;
3908 
3909 	if (lapic_in_kernel(vcpu) &&
3910 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3911 		if (block_nested_events)
3912 			return -EBUSY;
3913 		nested_vmx_update_pending_dbg(vcpu);
3914 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3915 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3916 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3917 		return 0;
3918 	}
3919 
3920 	if (lapic_in_kernel(vcpu) &&
3921 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3922 		if (block_nested_events)
3923 			return -EBUSY;
3924 
3925 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3926 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3927 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3928 						apic->sipi_vector & 0xFFUL);
3929 		return 0;
3930 	}
3931 
3932 	/*
3933 	 * Process any exceptions that are not debug traps before MTF.
3934 	 *
3935 	 * Note that only a pending nested run can block a pending exception.
3936 	 * Otherwise an injected NMI/interrupt should either be
3937 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3938 	 * while delivering the pending exception.
3939 	 */
3940 
3941 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3942 		if (vmx->nested.nested_run_pending)
3943 			return -EBUSY;
3944 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3945 			goto no_vmexit;
3946 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3947 		return 0;
3948 	}
3949 
3950 	if (mtf_pending) {
3951 		if (block_nested_events)
3952 			return -EBUSY;
3953 		nested_vmx_update_pending_dbg(vcpu);
3954 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3955 		return 0;
3956 	}
3957 
3958 	if (vcpu->arch.exception.pending) {
3959 		if (vmx->nested.nested_run_pending)
3960 			return -EBUSY;
3961 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3962 			goto no_vmexit;
3963 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3964 		return 0;
3965 	}
3966 
3967 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3968 		if (block_nested_events)
3969 			return -EBUSY;
3970 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3971 		return 0;
3972 	}
3973 
3974 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3975 		if (block_nested_events)
3976 			return -EBUSY;
3977 		goto no_vmexit;
3978 	}
3979 
3980 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3981 		if (block_nested_events)
3982 			return -EBUSY;
3983 		if (!nested_exit_on_nmi(vcpu))
3984 			goto no_vmexit;
3985 
3986 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3987 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3988 				  INTR_INFO_VALID_MASK, 0);
3989 		/*
3990 		 * The NMI-triggered VM exit counts as injection:
3991 		 * clear this one and block further NMIs.
3992 		 */
3993 		vcpu->arch.nmi_pending = 0;
3994 		vmx_set_nmi_mask(vcpu, true);
3995 		return 0;
3996 	}
3997 
3998 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3999 		if (block_nested_events)
4000 			return -EBUSY;
4001 		if (!nested_exit_on_intr(vcpu))
4002 			goto no_vmexit;
4003 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4004 		return 0;
4005 	}
4006 
4007 no_vmexit:
4008 	return vmx_complete_nested_posted_interrupt(vcpu);
4009 }
4010 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4011 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4012 {
4013 	ktime_t remaining =
4014 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4015 	u64 value;
4016 
4017 	if (ktime_to_ns(remaining) <= 0)
4018 		return 0;
4019 
4020 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4021 	do_div(value, 1000000);
4022 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4023 }
4024 
is_vmcs12_ext_field(unsigned long field)4025 static bool is_vmcs12_ext_field(unsigned long field)
4026 {
4027 	switch (field) {
4028 	case GUEST_ES_SELECTOR:
4029 	case GUEST_CS_SELECTOR:
4030 	case GUEST_SS_SELECTOR:
4031 	case GUEST_DS_SELECTOR:
4032 	case GUEST_FS_SELECTOR:
4033 	case GUEST_GS_SELECTOR:
4034 	case GUEST_LDTR_SELECTOR:
4035 	case GUEST_TR_SELECTOR:
4036 	case GUEST_ES_LIMIT:
4037 	case GUEST_CS_LIMIT:
4038 	case GUEST_SS_LIMIT:
4039 	case GUEST_DS_LIMIT:
4040 	case GUEST_FS_LIMIT:
4041 	case GUEST_GS_LIMIT:
4042 	case GUEST_LDTR_LIMIT:
4043 	case GUEST_TR_LIMIT:
4044 	case GUEST_GDTR_LIMIT:
4045 	case GUEST_IDTR_LIMIT:
4046 	case GUEST_ES_AR_BYTES:
4047 	case GUEST_DS_AR_BYTES:
4048 	case GUEST_FS_AR_BYTES:
4049 	case GUEST_GS_AR_BYTES:
4050 	case GUEST_LDTR_AR_BYTES:
4051 	case GUEST_TR_AR_BYTES:
4052 	case GUEST_ES_BASE:
4053 	case GUEST_CS_BASE:
4054 	case GUEST_SS_BASE:
4055 	case GUEST_DS_BASE:
4056 	case GUEST_FS_BASE:
4057 	case GUEST_GS_BASE:
4058 	case GUEST_LDTR_BASE:
4059 	case GUEST_TR_BASE:
4060 	case GUEST_GDTR_BASE:
4061 	case GUEST_IDTR_BASE:
4062 	case GUEST_PENDING_DBG_EXCEPTIONS:
4063 	case GUEST_BNDCFGS:
4064 		return true;
4065 	default:
4066 		break;
4067 	}
4068 
4069 	return false;
4070 }
4071 
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4072 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4073 				       struct vmcs12 *vmcs12)
4074 {
4075 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4076 
4077 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4078 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4079 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4080 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4081 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4082 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4083 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4084 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4085 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4086 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4087 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4088 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4089 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4090 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4091 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4092 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4093 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4094 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4095 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4096 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4097 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4098 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4099 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4100 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4101 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4102 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4103 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4104 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4105 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4106 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4107 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4108 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4109 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4110 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4111 	vmcs12->guest_pending_dbg_exceptions =
4112 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4113 	if (kvm_mpx_supported())
4114 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4115 
4116 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4117 }
4118 
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4119 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4120 				       struct vmcs12 *vmcs12)
4121 {
4122 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4123 	int cpu;
4124 
4125 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4126 		return;
4127 
4128 
4129 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4130 
4131 	cpu = get_cpu();
4132 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4133 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4134 
4135 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4136 
4137 	vmx->loaded_vmcs = &vmx->vmcs01;
4138 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4139 	put_cpu();
4140 }
4141 
4142 /*
4143  * Update the guest state fields of vmcs12 to reflect changes that
4144  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4145  * VM-entry controls is also updated, since this is really a guest
4146  * state bit.)
4147  */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4148 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4149 {
4150 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4151 
4152 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4153 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4154 
4155 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4156 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4157 
4158 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4159 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4160 
4161 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4162 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4163 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4164 
4165 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4166 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4167 
4168 	vmcs12->guest_interruptibility_info =
4169 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4170 
4171 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4172 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4173 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4174 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4175 	else
4176 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4177 
4178 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4179 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4180 	    !vmx->nested.nested_run_pending)
4181 		vmcs12->vmx_preemption_timer_value =
4182 			vmx_get_preemption_timer_value(vcpu);
4183 
4184 	/*
4185 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4186 	 * own CR3 without exiting. If it has changed it, we must keep it.
4187 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4188 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4189 	 *
4190 	 * Additionally, restore L2's PDPTR to vmcs12.
4191 	 */
4192 	if (enable_ept) {
4193 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4194 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4195 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4196 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4197 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4198 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4199 		}
4200 	}
4201 
4202 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4203 
4204 	if (nested_cpu_has_vid(vmcs12))
4205 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4206 
4207 	vmcs12->vm_entry_controls =
4208 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4209 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4210 
4211 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4212 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4213 
4214 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4215 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4216 }
4217 
4218 /*
4219  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4220  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4221  * and this function updates it to reflect the changes to the guest state while
4222  * L2 was running (and perhaps made some exits which were handled directly by L0
4223  * without going back to L1), and to reflect the exit reason.
4224  * Note that we do not have to copy here all VMCS fields, just those that
4225  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4226  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4227  * which already writes to vmcs12 directly.
4228  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4229 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4230 			   u32 vm_exit_reason, u32 exit_intr_info,
4231 			   unsigned long exit_qualification)
4232 {
4233 	/* update exit information fields: */
4234 	vmcs12->vm_exit_reason = vm_exit_reason;
4235 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4236 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4237 	vmcs12->exit_qualification = exit_qualification;
4238 
4239 	/*
4240 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4241 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4242 	 * exit info fields are unmodified.
4243 	 */
4244 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4245 		vmcs12->launch_state = 1;
4246 
4247 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4248 		 * instead of reading the real value. */
4249 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4250 
4251 		/*
4252 		 * Transfer the event that L0 or L1 may wanted to inject into
4253 		 * L2 to IDT_VECTORING_INFO_FIELD.
4254 		 */
4255 		vmcs12_save_pending_event(vcpu, vmcs12,
4256 					  vm_exit_reason, exit_intr_info);
4257 
4258 		vmcs12->vm_exit_intr_info = exit_intr_info;
4259 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4260 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4261 
4262 		/*
4263 		 * According to spec, there's no need to store the guest's
4264 		 * MSRs if the exit is due to a VM-entry failure that occurs
4265 		 * during or after loading the guest state. Since this exit
4266 		 * does not fall in that category, we need to save the MSRs.
4267 		 */
4268 		if (nested_vmx_store_msr(vcpu,
4269 					 vmcs12->vm_exit_msr_store_addr,
4270 					 vmcs12->vm_exit_msr_store_count))
4271 			nested_vmx_abort(vcpu,
4272 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4273 	}
4274 }
4275 
4276 /*
4277  * A part of what we need to when the nested L2 guest exits and we want to
4278  * run its L1 parent, is to reset L1's guest state to the host state specified
4279  * in vmcs12.
4280  * This function is to be called not only on normal nested exit, but also on
4281  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4282  * Failures During or After Loading Guest State").
4283  * This function should be called when the active VMCS is L1's (vmcs01).
4284  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4285 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4286 				   struct vmcs12 *vmcs12)
4287 {
4288 	enum vm_entry_failure_code ignored;
4289 	struct kvm_segment seg;
4290 
4291 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4292 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4293 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4294 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4295 	else
4296 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4297 	vmx_set_efer(vcpu, vcpu->arch.efer);
4298 
4299 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4300 	kvm_rip_write(vcpu, vmcs12->host_rip);
4301 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4302 	vmx_set_interrupt_shadow(vcpu, 0);
4303 
4304 	/*
4305 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4306 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4307 	 *
4308 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4309 	 * (KVM doesn't change it);
4310 	 */
4311 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4312 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4313 
4314 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4315 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4316 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4317 
4318 	nested_ept_uninit_mmu_context(vcpu);
4319 
4320 	/*
4321 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4322 	 * couldn't have changed.
4323 	 */
4324 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4325 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4326 
4327 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4328 
4329 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4330 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4331 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4332 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4333 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4334 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4335 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4336 
4337 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4338 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4339 		vmcs_write64(GUEST_BNDCFGS, 0);
4340 
4341 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4342 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4343 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4344 	}
4345 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4346 	    intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4347 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4348 					 vmcs12->host_ia32_perf_global_ctrl));
4349 
4350 	/* Set L1 segment info according to Intel SDM
4351 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4352 	seg = (struct kvm_segment) {
4353 		.base = 0,
4354 		.limit = 0xFFFFFFFF,
4355 		.selector = vmcs12->host_cs_selector,
4356 		.type = 11,
4357 		.present = 1,
4358 		.s = 1,
4359 		.g = 1
4360 	};
4361 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4362 		seg.l = 1;
4363 	else
4364 		seg.db = 1;
4365 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4366 	seg = (struct kvm_segment) {
4367 		.base = 0,
4368 		.limit = 0xFFFFFFFF,
4369 		.type = 3,
4370 		.present = 1,
4371 		.s = 1,
4372 		.db = 1,
4373 		.g = 1
4374 	};
4375 	seg.selector = vmcs12->host_ds_selector;
4376 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4377 	seg.selector = vmcs12->host_es_selector;
4378 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4379 	seg.selector = vmcs12->host_ss_selector;
4380 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4381 	seg.selector = vmcs12->host_fs_selector;
4382 	seg.base = vmcs12->host_fs_base;
4383 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4384 	seg.selector = vmcs12->host_gs_selector;
4385 	seg.base = vmcs12->host_gs_base;
4386 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4387 	seg = (struct kvm_segment) {
4388 		.base = vmcs12->host_tr_base,
4389 		.limit = 0x67,
4390 		.selector = vmcs12->host_tr_selector,
4391 		.type = 11,
4392 		.present = 1
4393 	};
4394 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4395 
4396 	memset(&seg, 0, sizeof(seg));
4397 	seg.unusable = 1;
4398 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4399 
4400 	kvm_set_dr(vcpu, 7, 0x400);
4401 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4402 
4403 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4404 				vmcs12->vm_exit_msr_load_count))
4405 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4406 
4407 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4408 }
4409 
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4410 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4411 {
4412 	struct vmx_uret_msr *efer_msr;
4413 	unsigned int i;
4414 
4415 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4416 		return vmcs_read64(GUEST_IA32_EFER);
4417 
4418 	if (cpu_has_load_ia32_efer())
4419 		return host_efer;
4420 
4421 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4422 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4423 			return vmx->msr_autoload.guest.val[i].value;
4424 	}
4425 
4426 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4427 	if (efer_msr)
4428 		return efer_msr->data;
4429 
4430 	return host_efer;
4431 }
4432 
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4433 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4434 {
4435 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4436 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4437 	struct vmx_msr_entry g, h;
4438 	gpa_t gpa;
4439 	u32 i, j;
4440 
4441 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4442 
4443 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4444 		/*
4445 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4446 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4447 		 * and vcpu->arch.dr7 is not squirreled away before the
4448 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4449 		 */
4450 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4451 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4452 		else
4453 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4454 	}
4455 
4456 	/*
4457 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4458 	 * handle a variety of side effects to KVM's software model.
4459 	 */
4460 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4461 
4462 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4463 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4464 
4465 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4466 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4467 
4468 	nested_ept_uninit_mmu_context(vcpu);
4469 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4470 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4471 
4472 	/*
4473 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4474 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4475 	 * VMFail, like everything else we just need to ensure our
4476 	 * software model is up-to-date.
4477 	 */
4478 	if (enable_ept && is_pae_paging(vcpu))
4479 		ept_save_pdptrs(vcpu);
4480 
4481 	kvm_mmu_reset_context(vcpu);
4482 
4483 	/*
4484 	 * This nasty bit of open coding is a compromise between blindly
4485 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4486 	 * of VMFail), leaving the nested VM's MSRs in the software model
4487 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4488 	 * expensive since the lists are unbound by hardware).  For each
4489 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4490 	 * list, reload it from the exit load list if it exists and differs
4491 	 * from the guest value.  The intent is to stuff host state as
4492 	 * silently as possible, not to fully process the exit load list.
4493 	 */
4494 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4495 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4496 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4497 			pr_debug_ratelimited(
4498 				"%s read MSR index failed (%u, 0x%08llx)\n",
4499 				__func__, i, gpa);
4500 			goto vmabort;
4501 		}
4502 
4503 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4504 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4505 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4506 				pr_debug_ratelimited(
4507 					"%s read MSR failed (%u, 0x%08llx)\n",
4508 					__func__, j, gpa);
4509 				goto vmabort;
4510 			}
4511 			if (h.index != g.index)
4512 				continue;
4513 			if (h.value == g.value)
4514 				break;
4515 
4516 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4517 				pr_debug_ratelimited(
4518 					"%s check failed (%u, 0x%x, 0x%x)\n",
4519 					__func__, j, h.index, h.reserved);
4520 				goto vmabort;
4521 			}
4522 
4523 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4524 				pr_debug_ratelimited(
4525 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4526 					__func__, j, h.index, h.value);
4527 				goto vmabort;
4528 			}
4529 		}
4530 	}
4531 
4532 	return;
4533 
4534 vmabort:
4535 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4536 }
4537 
4538 /*
4539  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4540  * and modify vmcs12 to make it see what it would expect to see there if
4541  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4542  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4543 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4544 		       u32 exit_intr_info, unsigned long exit_qualification)
4545 {
4546 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4547 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4548 
4549 	/* trying to cancel vmlaunch/vmresume is a bug */
4550 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4551 
4552 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4553 		/*
4554 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4555 		 * Enlightened VMCS after migration and we still need to
4556 		 * do that when something is forcing L2->L1 exit prior to
4557 		 * the first L2 run.
4558 		 */
4559 		(void)nested_get_evmcs_page(vcpu);
4560 	}
4561 
4562 	/* Service pending TLB flush requests for L2 before switching to L1. */
4563 	kvm_service_local_tlb_flush_requests(vcpu);
4564 
4565 	/*
4566 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4567 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4568 	 * up-to-date before switching to L1.
4569 	 */
4570 	if (enable_ept && is_pae_paging(vcpu))
4571 		vmx_ept_load_pdptrs(vcpu);
4572 
4573 	leave_guest_mode(vcpu);
4574 
4575 	if (nested_cpu_has_preemption_timer(vmcs12))
4576 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4577 
4578 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4579 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4580 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4581 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4582 	}
4583 
4584 	if (likely(!vmx->fail)) {
4585 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4586 
4587 		if (vm_exit_reason != -1)
4588 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4589 				       exit_intr_info, exit_qualification);
4590 
4591 		/*
4592 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4593 		 * also be used to capture vmcs12 cache as part of
4594 		 * capturing nVMX state for snapshot (migration).
4595 		 *
4596 		 * Otherwise, this flush will dirty guest memory at a
4597 		 * point it is already assumed by user-space to be
4598 		 * immutable.
4599 		 */
4600 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4601 	} else {
4602 		/*
4603 		 * The only expected VM-instruction error is "VM entry with
4604 		 * invalid control field(s)." Anything else indicates a
4605 		 * problem with L0.  And we should never get here with a
4606 		 * VMFail of any type if early consistency checks are enabled.
4607 		 */
4608 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4609 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4610 		WARN_ON_ONCE(nested_early_check);
4611 	}
4612 
4613 	/*
4614 	 * Drop events/exceptions that were queued for re-injection to L2
4615 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4616 	 * that were pending for L2.  Note, this must NOT be hoisted above
4617 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4618 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4619 	 */
4620 	vcpu->arch.nmi_injected = false;
4621 	kvm_clear_exception_queue(vcpu);
4622 	kvm_clear_interrupt_queue(vcpu);
4623 
4624 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4625 
4626 	/*
4627 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4628 	 * branch predictors when transitioning from L2 to L1, as L1 expects
4629 	 * hardware (KVM in this case) to provide separate predictor modes.
4630 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4631 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4632 	 * separate modes for L2 vs L1.
4633 	 */
4634 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4635 		indirect_branch_prediction_barrier();
4636 
4637 	/* Update any VMCS fields that might have changed while L2 ran */
4638 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4639 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4640 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4641 	if (kvm_has_tsc_control)
4642 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4643 
4644 	if (vmx->nested.l1_tpr_threshold != -1)
4645 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4646 
4647 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4648 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4649 		vmx_set_virtual_apic_mode(vcpu);
4650 	}
4651 
4652 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4653 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4654 		vmx_update_cpu_dirty_logging(vcpu);
4655 	}
4656 
4657 	/* Unpin physical memory we referred to in vmcs02 */
4658 	if (vmx->nested.apic_access_page) {
4659 		kvm_release_page_clean(vmx->nested.apic_access_page);
4660 		vmx->nested.apic_access_page = NULL;
4661 	}
4662 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4663 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4664 	vmx->nested.pi_desc = NULL;
4665 
4666 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4667 		vmx->nested.reload_vmcs01_apic_access_page = false;
4668 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4669 	}
4670 
4671 	if (vmx->nested.update_vmcs01_apicv_status) {
4672 		vmx->nested.update_vmcs01_apicv_status = false;
4673 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4674 	}
4675 
4676 	if ((vm_exit_reason != -1) &&
4677 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4678 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4679 
4680 	/* in case we halted in L2 */
4681 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4682 
4683 	if (likely(!vmx->fail)) {
4684 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4685 		    nested_exit_intr_ack_set(vcpu)) {
4686 			int irq = kvm_cpu_get_interrupt(vcpu);
4687 			WARN_ON(irq < 0);
4688 			vmcs12->vm_exit_intr_info = irq |
4689 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4690 		}
4691 
4692 		if (vm_exit_reason != -1)
4693 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4694 						       vmcs12->exit_qualification,
4695 						       vmcs12->idt_vectoring_info_field,
4696 						       vmcs12->vm_exit_intr_info,
4697 						       vmcs12->vm_exit_intr_error_code,
4698 						       KVM_ISA_VMX);
4699 
4700 		load_vmcs12_host_state(vcpu, vmcs12);
4701 
4702 		return;
4703 	}
4704 
4705 	/*
4706 	 * After an early L2 VM-entry failure, we're now back
4707 	 * in L1 which thinks it just finished a VMLAUNCH or
4708 	 * VMRESUME instruction, so we need to set the failure
4709 	 * flag and the VM-instruction error field of the VMCS
4710 	 * accordingly, and skip the emulated instruction.
4711 	 */
4712 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4713 
4714 	/*
4715 	 * Restore L1's host state to KVM's software model.  We're here
4716 	 * because a consistency check was caught by hardware, which
4717 	 * means some amount of guest state has been propagated to KVM's
4718 	 * model and needs to be unwound to the host's state.
4719 	 */
4720 	nested_vmx_restore_host_state(vcpu);
4721 
4722 	vmx->fail = 0;
4723 }
4724 
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4725 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4726 {
4727 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4728 }
4729 
4730 /*
4731  * Decode the memory-address operand of a vmx instruction, as recorded on an
4732  * exit caused by such an instruction (run by a guest hypervisor).
4733  * On success, returns 0. When the operand is invalid, returns 1 and throws
4734  * #UD, #GP, or #SS.
4735  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4736 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4737 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4738 {
4739 	gva_t off;
4740 	bool exn;
4741 	struct kvm_segment s;
4742 
4743 	/*
4744 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4745 	 * Execution", on an exit, vmx_instruction_info holds most of the
4746 	 * addressing components of the operand. Only the displacement part
4747 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4748 	 * For how an actual address is calculated from all these components,
4749 	 * refer to Vol. 1, "Operand Addressing".
4750 	 */
4751 	int  scaling = vmx_instruction_info & 3;
4752 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4753 	bool is_reg = vmx_instruction_info & (1u << 10);
4754 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4755 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4756 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4757 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4758 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4759 
4760 	if (is_reg) {
4761 		kvm_queue_exception(vcpu, UD_VECTOR);
4762 		return 1;
4763 	}
4764 
4765 	/* Addr = segment_base + offset */
4766 	/* offset = base + [index * scale] + displacement */
4767 	off = exit_qualification; /* holds the displacement */
4768 	if (addr_size == 1)
4769 		off = (gva_t)sign_extend64(off, 31);
4770 	else if (addr_size == 0)
4771 		off = (gva_t)sign_extend64(off, 15);
4772 	if (base_is_valid)
4773 		off += kvm_register_read(vcpu, base_reg);
4774 	if (index_is_valid)
4775 		off += kvm_register_read(vcpu, index_reg) << scaling;
4776 	vmx_get_segment(vcpu, &s, seg_reg);
4777 
4778 	/*
4779 	 * The effective address, i.e. @off, of a memory operand is truncated
4780 	 * based on the address size of the instruction.  Note that this is
4781 	 * the *effective address*, i.e. the address prior to accounting for
4782 	 * the segment's base.
4783 	 */
4784 	if (addr_size == 1) /* 32 bit */
4785 		off &= 0xffffffff;
4786 	else if (addr_size == 0) /* 16 bit */
4787 		off &= 0xffff;
4788 
4789 	/* Checks for #GP/#SS exceptions. */
4790 	exn = false;
4791 	if (is_long_mode(vcpu)) {
4792 		/*
4793 		 * The virtual/linear address is never truncated in 64-bit
4794 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4795 		 * address when using FS/GS with a non-zero base.
4796 		 */
4797 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4798 			*ret = s.base + off;
4799 		else
4800 			*ret = off;
4801 
4802 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4803 		 * non-canonical form. This is the only check on the memory
4804 		 * destination for long mode!
4805 		 */
4806 		exn = is_noncanonical_address(*ret, vcpu);
4807 	} else {
4808 		/*
4809 		 * When not in long mode, the virtual/linear address is
4810 		 * unconditionally truncated to 32 bits regardless of the
4811 		 * address size.
4812 		 */
4813 		*ret = (s.base + off) & 0xffffffff;
4814 
4815 		/* Protected mode: apply checks for segment validity in the
4816 		 * following order:
4817 		 * - segment type check (#GP(0) may be thrown)
4818 		 * - usability check (#GP(0)/#SS(0))
4819 		 * - limit check (#GP(0)/#SS(0))
4820 		 */
4821 		if (wr)
4822 			/* #GP(0) if the destination operand is located in a
4823 			 * read-only data segment or any code segment.
4824 			 */
4825 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4826 		else
4827 			/* #GP(0) if the source operand is located in an
4828 			 * execute-only code segment
4829 			 */
4830 			exn = ((s.type & 0xa) == 8);
4831 		if (exn) {
4832 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4833 			return 1;
4834 		}
4835 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4836 		 */
4837 		exn = (s.unusable != 0);
4838 
4839 		/*
4840 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4841 		 * outside the segment limit.  All CPUs that support VMX ignore
4842 		 * limit checks for flat segments, i.e. segments with base==0,
4843 		 * limit==0xffffffff and of type expand-up data or code.
4844 		 */
4845 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4846 		     ((s.type & 8) || !(s.type & 4))))
4847 			exn = exn || ((u64)off + len - 1 > s.limit);
4848 	}
4849 	if (exn) {
4850 		kvm_queue_exception_e(vcpu,
4851 				      seg_reg == VCPU_SREG_SS ?
4852 						SS_VECTOR : GP_VECTOR,
4853 				      0);
4854 		return 1;
4855 	}
4856 
4857 	return 0;
4858 }
4859 
nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu * vcpu)4860 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4861 {
4862 	struct vcpu_vmx *vmx;
4863 
4864 	if (!nested_vmx_allowed(vcpu))
4865 		return;
4866 
4867 	vmx = to_vmx(vcpu);
4868 	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4869 		vmx->nested.msrs.entry_ctls_high |=
4870 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4871 		vmx->nested.msrs.exit_ctls_high |=
4872 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4873 	} else {
4874 		vmx->nested.msrs.entry_ctls_high &=
4875 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4876 		vmx->nested.msrs.exit_ctls_high &=
4877 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4878 	}
4879 }
4880 
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4881 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4882 				int *ret)
4883 {
4884 	gva_t gva;
4885 	struct x86_exception e;
4886 	int r;
4887 
4888 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4889 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4890 				sizeof(*vmpointer), &gva)) {
4891 		*ret = 1;
4892 		return -EINVAL;
4893 	}
4894 
4895 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4896 	if (r != X86EMUL_CONTINUE) {
4897 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4898 		return -EINVAL;
4899 	}
4900 
4901 	return 0;
4902 }
4903 
4904 /*
4905  * Allocate a shadow VMCS and associate it with the currently loaded
4906  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4907  * VMCS is also VMCLEARed, so that it is ready for use.
4908  */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4909 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4910 {
4911 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4912 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4913 
4914 	/*
4915 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4916 	 * executes VMXON and free it when L1 executes VMXOFF.
4917 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4918 	 * here when vmcs01 already have an allocated shadow vmcs.
4919 	 */
4920 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4921 
4922 	if (!loaded_vmcs->shadow_vmcs) {
4923 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4924 		if (loaded_vmcs->shadow_vmcs)
4925 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4926 	}
4927 	return loaded_vmcs->shadow_vmcs;
4928 }
4929 
enter_vmx_operation(struct kvm_vcpu * vcpu)4930 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4931 {
4932 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4933 	int r;
4934 
4935 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4936 	if (r < 0)
4937 		goto out_vmcs02;
4938 
4939 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4940 	if (!vmx->nested.cached_vmcs12)
4941 		goto out_cached_vmcs12;
4942 
4943 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4944 	if (!vmx->nested.cached_shadow_vmcs12)
4945 		goto out_cached_shadow_vmcs12;
4946 
4947 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4948 		goto out_shadow_vmcs;
4949 
4950 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4951 		     HRTIMER_MODE_ABS_PINNED);
4952 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4953 
4954 	vmx->nested.vpid02 = allocate_vpid();
4955 
4956 	vmx->nested.vmcs02_initialized = false;
4957 	vmx->nested.vmxon = true;
4958 
4959 	if (vmx_pt_mode_is_host_guest()) {
4960 		vmx->pt_desc.guest.ctl = 0;
4961 		pt_update_intercept_for_msr(vcpu);
4962 	}
4963 
4964 	return 0;
4965 
4966 out_shadow_vmcs:
4967 	kfree(vmx->nested.cached_shadow_vmcs12);
4968 
4969 out_cached_shadow_vmcs12:
4970 	kfree(vmx->nested.cached_vmcs12);
4971 
4972 out_cached_vmcs12:
4973 	free_loaded_vmcs(&vmx->nested.vmcs02);
4974 
4975 out_vmcs02:
4976 	return -ENOMEM;
4977 }
4978 
4979 /* Emulate the VMXON instruction. */
handle_vmon(struct kvm_vcpu * vcpu)4980 static int handle_vmon(struct kvm_vcpu *vcpu)
4981 {
4982 	int ret;
4983 	gpa_t vmptr;
4984 	uint32_t revision;
4985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4986 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4987 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4988 
4989 	/*
4990 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
4991 	 * the guest and so cannot rely on hardware to perform the check,
4992 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
4993 	 * for VMXON).
4994 	 *
4995 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
4996 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
4997 	 * force any of the relevant guest state.  For a restricted guest, KVM
4998 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
4999 	 * Real Mode, and so there's no need to check CR0.PE manually.
5000 	 */
5001 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
5002 		kvm_queue_exception(vcpu, UD_VECTOR);
5003 		return 1;
5004 	}
5005 
5006 	/*
5007 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5008 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5009 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5010 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5011 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5012 	 * VMX non-root.
5013 	 *
5014 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5015 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5016 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5017 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5018 	 * missed by hardware due to shadowing CR0 and/or CR4.
5019 	 */
5020 	if (vmx_get_cpl(vcpu)) {
5021 		kvm_inject_gp(vcpu, 0);
5022 		return 1;
5023 	}
5024 
5025 	if (vmx->nested.vmxon)
5026 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5027 
5028 	/*
5029 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5030 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5031 	 * have lower priority than the VM-Fail above.
5032 	 */
5033 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5034 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5035 		kvm_inject_gp(vcpu, 0);
5036 		return 1;
5037 	}
5038 
5039 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5040 			!= VMXON_NEEDED_FEATURES) {
5041 		kvm_inject_gp(vcpu, 0);
5042 		return 1;
5043 	}
5044 
5045 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5046 		return ret;
5047 
5048 	/*
5049 	 * SDM 3: 24.11.5
5050 	 * The first 4 bytes of VMXON region contain the supported
5051 	 * VMCS revision identifier
5052 	 *
5053 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5054 	 * which replaces physical address width with 32
5055 	 */
5056 	if (!page_address_valid(vcpu, vmptr))
5057 		return nested_vmx_failInvalid(vcpu);
5058 
5059 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5060 	    revision != VMCS12_REVISION)
5061 		return nested_vmx_failInvalid(vcpu);
5062 
5063 	vmx->nested.vmxon_ptr = vmptr;
5064 	ret = enter_vmx_operation(vcpu);
5065 	if (ret)
5066 		return ret;
5067 
5068 	return nested_vmx_succeed(vcpu);
5069 }
5070 
nested_release_vmcs12(struct kvm_vcpu * vcpu)5071 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5072 {
5073 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5074 
5075 	if (vmx->nested.current_vmptr == -1ull)
5076 		return;
5077 
5078 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5079 
5080 	if (enable_shadow_vmcs) {
5081 		/* copy to memory all shadowed fields in case
5082 		   they were modified */
5083 		copy_shadow_to_vmcs12(vmx);
5084 		vmx_disable_shadow_vmcs(vmx);
5085 	}
5086 	vmx->nested.posted_intr_nv = -1;
5087 
5088 	/* Flush VMCS12 to guest memory */
5089 	kvm_vcpu_write_guest_page(vcpu,
5090 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5091 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5092 
5093 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5094 
5095 	vmx->nested.current_vmptr = -1ull;
5096 }
5097 
5098 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)5099 static int handle_vmoff(struct kvm_vcpu *vcpu)
5100 {
5101 	if (!nested_vmx_check_permission(vcpu))
5102 		return 1;
5103 
5104 	free_nested(vcpu);
5105 
5106 	/* Process a latched INIT during time CPU was in VMX operation */
5107 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5108 
5109 	return nested_vmx_succeed(vcpu);
5110 }
5111 
5112 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5113 static int handle_vmclear(struct kvm_vcpu *vcpu)
5114 {
5115 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5116 	u32 zero = 0;
5117 	gpa_t vmptr;
5118 	u64 evmcs_gpa;
5119 	int r;
5120 
5121 	if (!nested_vmx_check_permission(vcpu))
5122 		return 1;
5123 
5124 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5125 		return r;
5126 
5127 	if (!page_address_valid(vcpu, vmptr))
5128 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5129 
5130 	if (vmptr == vmx->nested.vmxon_ptr)
5131 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5132 
5133 	/*
5134 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5135 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5136 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5137 	 * writing to the non-existent 'launch_state' field. The area doesn't
5138 	 * have to be the currently active EVMCS on the calling CPU and there's
5139 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5140 	 * state. It is possible that the area will stay mapped as
5141 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5142 	 */
5143 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5144 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5145 		if (vmptr == vmx->nested.current_vmptr)
5146 			nested_release_vmcs12(vcpu);
5147 
5148 		kvm_vcpu_write_guest(vcpu,
5149 				     vmptr + offsetof(struct vmcs12,
5150 						      launch_state),
5151 				     &zero, sizeof(zero));
5152 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5153 		nested_release_evmcs(vcpu);
5154 	}
5155 
5156 	return nested_vmx_succeed(vcpu);
5157 }
5158 
5159 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5160 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5161 {
5162 	return nested_vmx_run(vcpu, true);
5163 }
5164 
5165 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5166 static int handle_vmresume(struct kvm_vcpu *vcpu)
5167 {
5168 
5169 	return nested_vmx_run(vcpu, false);
5170 }
5171 
handle_vmread(struct kvm_vcpu * vcpu)5172 static int handle_vmread(struct kvm_vcpu *vcpu)
5173 {
5174 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5175 						    : get_vmcs12(vcpu);
5176 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5177 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5178 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5179 	struct x86_exception e;
5180 	unsigned long field;
5181 	u64 value;
5182 	gva_t gva = 0;
5183 	short offset;
5184 	int len, r;
5185 
5186 	if (!nested_vmx_check_permission(vcpu))
5187 		return 1;
5188 
5189 	/*
5190 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5191 	 * any VMREAD sets the ALU flags for VMfailInvalid.
5192 	 */
5193 	if (vmx->nested.current_vmptr == -1ull ||
5194 	    (is_guest_mode(vcpu) &&
5195 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5196 		return nested_vmx_failInvalid(vcpu);
5197 
5198 	/* Decode instruction info and find the field to read */
5199 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5200 
5201 	offset = vmcs_field_to_offset(field);
5202 	if (offset < 0)
5203 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5204 
5205 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5206 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5207 
5208 	/* Read the field, zero-extended to a u64 value */
5209 	value = vmcs12_read_any(vmcs12, field, offset);
5210 
5211 	/*
5212 	 * Now copy part of this value to register or memory, as requested.
5213 	 * Note that the number of bits actually copied is 32 or 64 depending
5214 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5215 	 */
5216 	if (instr_info & BIT(10)) {
5217 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5218 	} else {
5219 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5220 		if (get_vmx_mem_address(vcpu, exit_qualification,
5221 					instr_info, true, len, &gva))
5222 			return 1;
5223 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5224 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5225 		if (r != X86EMUL_CONTINUE)
5226 			return kvm_handle_memory_failure(vcpu, r, &e);
5227 	}
5228 
5229 	return nested_vmx_succeed(vcpu);
5230 }
5231 
is_shadow_field_rw(unsigned long field)5232 static bool is_shadow_field_rw(unsigned long field)
5233 {
5234 	switch (field) {
5235 #define SHADOW_FIELD_RW(x, y) case x:
5236 #include "vmcs_shadow_fields.h"
5237 		return true;
5238 	default:
5239 		break;
5240 	}
5241 	return false;
5242 }
5243 
is_shadow_field_ro(unsigned long field)5244 static bool is_shadow_field_ro(unsigned long field)
5245 {
5246 	switch (field) {
5247 #define SHADOW_FIELD_RO(x, y) case x:
5248 #include "vmcs_shadow_fields.h"
5249 		return true;
5250 	default:
5251 		break;
5252 	}
5253 	return false;
5254 }
5255 
handle_vmwrite(struct kvm_vcpu * vcpu)5256 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5257 {
5258 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5259 						    : get_vmcs12(vcpu);
5260 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5261 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5262 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5263 	struct x86_exception e;
5264 	unsigned long field;
5265 	short offset;
5266 	gva_t gva;
5267 	int len, r;
5268 
5269 	/*
5270 	 * The value to write might be 32 or 64 bits, depending on L1's long
5271 	 * mode, and eventually we need to write that into a field of several
5272 	 * possible lengths. The code below first zero-extends the value to 64
5273 	 * bit (value), and then copies only the appropriate number of
5274 	 * bits into the vmcs12 field.
5275 	 */
5276 	u64 value = 0;
5277 
5278 	if (!nested_vmx_check_permission(vcpu))
5279 		return 1;
5280 
5281 	/*
5282 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5283 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5284 	 */
5285 	if (vmx->nested.current_vmptr == -1ull ||
5286 	    (is_guest_mode(vcpu) &&
5287 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5288 		return nested_vmx_failInvalid(vcpu);
5289 
5290 	if (instr_info & BIT(10))
5291 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5292 	else {
5293 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5294 		if (get_vmx_mem_address(vcpu, exit_qualification,
5295 					instr_info, false, len, &gva))
5296 			return 1;
5297 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5298 		if (r != X86EMUL_CONTINUE)
5299 			return kvm_handle_memory_failure(vcpu, r, &e);
5300 	}
5301 
5302 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5303 
5304 	offset = vmcs_field_to_offset(field);
5305 	if (offset < 0)
5306 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5307 
5308 	/*
5309 	 * If the vCPU supports "VMWRITE to any supported field in the
5310 	 * VMCS," then the "read-only" fields are actually read/write.
5311 	 */
5312 	if (vmcs_field_readonly(field) &&
5313 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5314 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5315 
5316 	/*
5317 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5318 	 * vmcs12, else we may crush a field or consume a stale value.
5319 	 */
5320 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5321 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5322 
5323 	/*
5324 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5325 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5326 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5327 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5328 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5329 	 * the stripped down value, L2 sees the full value as stored by KVM).
5330 	 */
5331 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5332 		value &= 0x1f0ff;
5333 
5334 	vmcs12_write_any(vmcs12, field, offset, value);
5335 
5336 	/*
5337 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5338 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5339 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5340 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5341 	 */
5342 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5343 		/*
5344 		 * L1 can read these fields without exiting, ensure the
5345 		 * shadow VMCS is up-to-date.
5346 		 */
5347 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5348 			preempt_disable();
5349 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5350 
5351 			__vmcs_writel(field, value);
5352 
5353 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5354 			vmcs_load(vmx->loaded_vmcs->vmcs);
5355 			preempt_enable();
5356 		}
5357 		vmx->nested.dirty_vmcs12 = true;
5358 	}
5359 
5360 	return nested_vmx_succeed(vcpu);
5361 }
5362 
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5363 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5364 {
5365 	vmx->nested.current_vmptr = vmptr;
5366 	if (enable_shadow_vmcs) {
5367 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5368 		vmcs_write64(VMCS_LINK_POINTER,
5369 			     __pa(vmx->vmcs01.shadow_vmcs));
5370 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5371 	}
5372 	vmx->nested.dirty_vmcs12 = true;
5373 }
5374 
5375 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5376 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5377 {
5378 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5379 	gpa_t vmptr;
5380 	int r;
5381 
5382 	if (!nested_vmx_check_permission(vcpu))
5383 		return 1;
5384 
5385 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5386 		return r;
5387 
5388 	if (!page_address_valid(vcpu, vmptr))
5389 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5390 
5391 	if (vmptr == vmx->nested.vmxon_ptr)
5392 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5393 
5394 	/* Forbid normal VMPTRLD if Enlightened version was used */
5395 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5396 		return 1;
5397 
5398 	if (vmx->nested.current_vmptr != vmptr) {
5399 		struct kvm_host_map map;
5400 		struct vmcs12 *new_vmcs12;
5401 
5402 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5403 			/*
5404 			 * Reads from an unbacked page return all 1s,
5405 			 * which means that the 32 bits located at the
5406 			 * given physical address won't match the required
5407 			 * VMCS12_REVISION identifier.
5408 			 */
5409 			return nested_vmx_fail(vcpu,
5410 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5411 		}
5412 
5413 		new_vmcs12 = map.hva;
5414 
5415 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5416 		    (new_vmcs12->hdr.shadow_vmcs &&
5417 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5418 			kvm_vcpu_unmap(vcpu, &map, false);
5419 			return nested_vmx_fail(vcpu,
5420 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5421 		}
5422 
5423 		nested_release_vmcs12(vcpu);
5424 
5425 		/*
5426 		 * Load VMCS12 from guest memory since it is not already
5427 		 * cached.
5428 		 */
5429 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5430 		kvm_vcpu_unmap(vcpu, &map, false);
5431 
5432 		set_current_vmptr(vmx, vmptr);
5433 	}
5434 
5435 	return nested_vmx_succeed(vcpu);
5436 }
5437 
5438 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5439 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5440 {
5441 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5442 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5443 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5444 	struct x86_exception e;
5445 	gva_t gva;
5446 	int r;
5447 
5448 	if (!nested_vmx_check_permission(vcpu))
5449 		return 1;
5450 
5451 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5452 		return 1;
5453 
5454 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5455 				true, sizeof(gpa_t), &gva))
5456 		return 1;
5457 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5458 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5459 					sizeof(gpa_t), &e);
5460 	if (r != X86EMUL_CONTINUE)
5461 		return kvm_handle_memory_failure(vcpu, r, &e);
5462 
5463 	return nested_vmx_succeed(vcpu);
5464 }
5465 
5466 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5467 static int handle_invept(struct kvm_vcpu *vcpu)
5468 {
5469 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5470 	u32 vmx_instruction_info, types;
5471 	unsigned long type, roots_to_free;
5472 	struct kvm_mmu *mmu;
5473 	gva_t gva;
5474 	struct x86_exception e;
5475 	struct {
5476 		u64 eptp, gpa;
5477 	} operand;
5478 	int i, r;
5479 
5480 	if (!(vmx->nested.msrs.secondary_ctls_high &
5481 	      SECONDARY_EXEC_ENABLE_EPT) ||
5482 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5483 		kvm_queue_exception(vcpu, UD_VECTOR);
5484 		return 1;
5485 	}
5486 
5487 	if (!nested_vmx_check_permission(vcpu))
5488 		return 1;
5489 
5490 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5491 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5492 
5493 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5494 
5495 	if (type >= 32 || !(types & (1 << type)))
5496 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5497 
5498 	/* According to the Intel VMX instruction reference, the memory
5499 	 * operand is read even if it isn't needed (e.g., for type==global)
5500 	 */
5501 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5502 			vmx_instruction_info, false, sizeof(operand), &gva))
5503 		return 1;
5504 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5505 	if (r != X86EMUL_CONTINUE)
5506 		return kvm_handle_memory_failure(vcpu, r, &e);
5507 
5508 	/*
5509 	 * Nested EPT roots are always held through guest_mmu,
5510 	 * not root_mmu.
5511 	 */
5512 	mmu = &vcpu->arch.guest_mmu;
5513 
5514 	switch (type) {
5515 	case VMX_EPT_EXTENT_CONTEXT:
5516 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5517 			return nested_vmx_fail(vcpu,
5518 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5519 
5520 		roots_to_free = 0;
5521 		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5522 					    operand.eptp))
5523 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5524 
5525 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5526 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5527 						    mmu->prev_roots[i].pgd,
5528 						    operand.eptp))
5529 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5530 		}
5531 		break;
5532 	case VMX_EPT_EXTENT_GLOBAL:
5533 		roots_to_free = KVM_MMU_ROOTS_ALL;
5534 		break;
5535 	default:
5536 		BUG();
5537 		break;
5538 	}
5539 
5540 	if (roots_to_free)
5541 		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5542 
5543 	return nested_vmx_succeed(vcpu);
5544 }
5545 
handle_invvpid(struct kvm_vcpu * vcpu)5546 static int handle_invvpid(struct kvm_vcpu *vcpu)
5547 {
5548 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5549 	u32 vmx_instruction_info;
5550 	unsigned long type, types;
5551 	gva_t gva;
5552 	struct x86_exception e;
5553 	struct {
5554 		u64 vpid;
5555 		u64 gla;
5556 	} operand;
5557 	u16 vpid02;
5558 	int r;
5559 
5560 	if (!(vmx->nested.msrs.secondary_ctls_high &
5561 	      SECONDARY_EXEC_ENABLE_VPID) ||
5562 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5563 		kvm_queue_exception(vcpu, UD_VECTOR);
5564 		return 1;
5565 	}
5566 
5567 	if (!nested_vmx_check_permission(vcpu))
5568 		return 1;
5569 
5570 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5571 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5572 
5573 	types = (vmx->nested.msrs.vpid_caps &
5574 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5575 
5576 	if (type >= 32 || !(types & (1 << type)))
5577 		return nested_vmx_fail(vcpu,
5578 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5579 
5580 	/* according to the intel vmx instruction reference, the memory
5581 	 * operand is read even if it isn't needed (e.g., for type==global)
5582 	 */
5583 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5584 			vmx_instruction_info, false, sizeof(operand), &gva))
5585 		return 1;
5586 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5587 	if (r != X86EMUL_CONTINUE)
5588 		return kvm_handle_memory_failure(vcpu, r, &e);
5589 
5590 	if (operand.vpid >> 16)
5591 		return nested_vmx_fail(vcpu,
5592 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5593 
5594 	vpid02 = nested_get_vpid02(vcpu);
5595 	switch (type) {
5596 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5597 		if (!operand.vpid ||
5598 		    is_noncanonical_address(operand.gla, vcpu))
5599 			return nested_vmx_fail(vcpu,
5600 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5601 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5602 		break;
5603 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5604 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5605 		if (!operand.vpid)
5606 			return nested_vmx_fail(vcpu,
5607 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5608 		vpid_sync_context(vpid02);
5609 		break;
5610 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5611 		vpid_sync_context(vpid02);
5612 		break;
5613 	default:
5614 		WARN_ON_ONCE(1);
5615 		return kvm_skip_emulated_instruction(vcpu);
5616 	}
5617 
5618 	/*
5619 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5620 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5621 	 * roots as VPIDs are not tracked in the MMU role.
5622 	 *
5623 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5624 	 * an MMU when EPT is disabled.
5625 	 *
5626 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5627 	 */
5628 	if (!enable_ept)
5629 		kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5630 
5631 	return nested_vmx_succeed(vcpu);
5632 }
5633 
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5634 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5635 				     struct vmcs12 *vmcs12)
5636 {
5637 	u32 index = kvm_rcx_read(vcpu);
5638 	u64 new_eptp;
5639 
5640 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5641 		return 1;
5642 	if (index >= VMFUNC_EPTP_ENTRIES)
5643 		return 1;
5644 
5645 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5646 				     &new_eptp, index * 8, 8))
5647 		return 1;
5648 
5649 	/*
5650 	 * If the (L2) guest does a vmfunc to the currently
5651 	 * active ept pointer, we don't have to do anything else
5652 	 */
5653 	if (vmcs12->ept_pointer != new_eptp) {
5654 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5655 			return 1;
5656 
5657 		vmcs12->ept_pointer = new_eptp;
5658 		nested_ept_new_eptp(vcpu);
5659 
5660 		if (!nested_cpu_has_vpid(vmcs12))
5661 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5662 	}
5663 
5664 	return 0;
5665 }
5666 
handle_vmfunc(struct kvm_vcpu * vcpu)5667 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5668 {
5669 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5670 	struct vmcs12 *vmcs12;
5671 	u32 function = kvm_rax_read(vcpu);
5672 
5673 	/*
5674 	 * VMFUNC is only supported for nested guests, but we always enable the
5675 	 * secondary control for simplicity; for non-nested mode, fake that we
5676 	 * didn't by injecting #UD.
5677 	 */
5678 	if (!is_guest_mode(vcpu)) {
5679 		kvm_queue_exception(vcpu, UD_VECTOR);
5680 		return 1;
5681 	}
5682 
5683 	vmcs12 = get_vmcs12(vcpu);
5684 
5685 	/*
5686 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5687 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5688 	 */
5689 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5690 		kvm_queue_exception(vcpu, UD_VECTOR);
5691 		return 1;
5692 	}
5693 
5694 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5695 		goto fail;
5696 
5697 	switch (function) {
5698 	case 0:
5699 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5700 			goto fail;
5701 		break;
5702 	default:
5703 		goto fail;
5704 	}
5705 	return kvm_skip_emulated_instruction(vcpu);
5706 
5707 fail:
5708 	/*
5709 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5710 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5711 	 * EXIT_REASON_VMFUNC as the exit reason.
5712 	 */
5713 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5714 			  vmx_get_intr_info(vcpu),
5715 			  vmx_get_exit_qual(vcpu));
5716 	return 1;
5717 }
5718 
5719 /*
5720  * Return true if an IO instruction with the specified port and size should cause
5721  * a VM-exit into L1.
5722  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5723 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5724 				 int size)
5725 {
5726 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5727 	gpa_t bitmap, last_bitmap;
5728 	u8 b;
5729 
5730 	last_bitmap = (gpa_t)-1;
5731 	b = -1;
5732 
5733 	while (size > 0) {
5734 		if (port < 0x8000)
5735 			bitmap = vmcs12->io_bitmap_a;
5736 		else if (port < 0x10000)
5737 			bitmap = vmcs12->io_bitmap_b;
5738 		else
5739 			return true;
5740 		bitmap += (port & 0x7fff) / 8;
5741 
5742 		if (last_bitmap != bitmap)
5743 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5744 				return true;
5745 		if (b & (1 << (port & 7)))
5746 			return true;
5747 
5748 		port++;
5749 		size--;
5750 		last_bitmap = bitmap;
5751 	}
5752 
5753 	return false;
5754 }
5755 
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5756 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5757 				       struct vmcs12 *vmcs12)
5758 {
5759 	unsigned long exit_qualification;
5760 	unsigned short port;
5761 	int size;
5762 
5763 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5764 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5765 
5766 	exit_qualification = vmx_get_exit_qual(vcpu);
5767 
5768 	port = exit_qualification >> 16;
5769 	size = (exit_qualification & 7) + 1;
5770 
5771 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5772 }
5773 
5774 /*
5775  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5776  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5777  * disinterest in the current event (read or write a specific MSR) by using an
5778  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5779  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5780 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5781 					struct vmcs12 *vmcs12,
5782 					union vmx_exit_reason exit_reason)
5783 {
5784 	u32 msr_index = kvm_rcx_read(vcpu);
5785 	gpa_t bitmap;
5786 
5787 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5788 		return true;
5789 
5790 	/*
5791 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5792 	 * for the four combinations of read/write and low/high MSR numbers.
5793 	 * First we need to figure out which of the four to use:
5794 	 */
5795 	bitmap = vmcs12->msr_bitmap;
5796 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5797 		bitmap += 2048;
5798 	if (msr_index >= 0xc0000000) {
5799 		msr_index -= 0xc0000000;
5800 		bitmap += 1024;
5801 	}
5802 
5803 	/* Then read the msr_index'th bit from this bitmap: */
5804 	if (msr_index < 1024*8) {
5805 		unsigned char b;
5806 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5807 			return true;
5808 		return 1 & (b >> (msr_index & 7));
5809 	} else
5810 		return true; /* let L1 handle the wrong parameter */
5811 }
5812 
5813 /*
5814  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5815  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5816  * intercept (via guest_host_mask etc.) the current event.
5817  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5818 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5819 	struct vmcs12 *vmcs12)
5820 {
5821 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5822 	int cr = exit_qualification & 15;
5823 	int reg;
5824 	unsigned long val;
5825 
5826 	switch ((exit_qualification >> 4) & 3) {
5827 	case 0: /* mov to cr */
5828 		reg = (exit_qualification >> 8) & 15;
5829 		val = kvm_register_read(vcpu, reg);
5830 		switch (cr) {
5831 		case 0:
5832 			if (vmcs12->cr0_guest_host_mask &
5833 			    (val ^ vmcs12->cr0_read_shadow))
5834 				return true;
5835 			break;
5836 		case 3:
5837 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5838 				return true;
5839 			break;
5840 		case 4:
5841 			if (vmcs12->cr4_guest_host_mask &
5842 			    (vmcs12->cr4_read_shadow ^ val))
5843 				return true;
5844 			break;
5845 		case 8:
5846 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5847 				return true;
5848 			break;
5849 		}
5850 		break;
5851 	case 2: /* clts */
5852 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5853 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5854 			return true;
5855 		break;
5856 	case 1: /* mov from cr */
5857 		switch (cr) {
5858 		case 3:
5859 			if (vmcs12->cpu_based_vm_exec_control &
5860 			    CPU_BASED_CR3_STORE_EXITING)
5861 				return true;
5862 			break;
5863 		case 8:
5864 			if (vmcs12->cpu_based_vm_exec_control &
5865 			    CPU_BASED_CR8_STORE_EXITING)
5866 				return true;
5867 			break;
5868 		}
5869 		break;
5870 	case 3: /* lmsw */
5871 		/*
5872 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5873 		 * cr0. Other attempted changes are ignored, with no exit.
5874 		 */
5875 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5876 		if (vmcs12->cr0_guest_host_mask & 0xe &
5877 		    (val ^ vmcs12->cr0_read_shadow))
5878 			return true;
5879 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5880 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5881 		    (val & 0x1))
5882 			return true;
5883 		break;
5884 	}
5885 	return false;
5886 }
5887 
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5888 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5889 					  struct vmcs12 *vmcs12)
5890 {
5891 	u32 encls_leaf;
5892 
5893 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5894 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5895 		return false;
5896 
5897 	encls_leaf = kvm_rax_read(vcpu);
5898 	if (encls_leaf > 62)
5899 		encls_leaf = 63;
5900 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5901 }
5902 
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5903 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5904 	struct vmcs12 *vmcs12, gpa_t bitmap)
5905 {
5906 	u32 vmx_instruction_info;
5907 	unsigned long field;
5908 	u8 b;
5909 
5910 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5911 		return true;
5912 
5913 	/* Decode instruction info and find the field to access */
5914 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5915 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5916 
5917 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5918 	if (field >> 15)
5919 		return true;
5920 
5921 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5922 		return true;
5923 
5924 	return 1 & (b >> (field & 7));
5925 }
5926 
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5927 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5928 {
5929 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5930 
5931 	if (nested_cpu_has_mtf(vmcs12))
5932 		return true;
5933 
5934 	/*
5935 	 * An MTF VM-exit may be injected into the guest by setting the
5936 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5937 	 * is the case regardless of the 'monitor trap flag' VM-execution
5938 	 * control.
5939 	 */
5940 	return entry_intr_info == (INTR_INFO_VALID_MASK
5941 				   | INTR_TYPE_OTHER_EVENT);
5942 }
5943 
5944 /*
5945  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5946  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5947  */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5948 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5949 				     union vmx_exit_reason exit_reason)
5950 {
5951 	u32 intr_info;
5952 
5953 	switch ((u16)exit_reason.basic) {
5954 	case EXIT_REASON_EXCEPTION_NMI:
5955 		intr_info = vmx_get_intr_info(vcpu);
5956 		if (is_nmi(intr_info))
5957 			return true;
5958 		else if (is_page_fault(intr_info))
5959 			return vcpu->arch.apf.host_apf_flags ||
5960 			       vmx_need_pf_intercept(vcpu);
5961 		else if (is_debug(intr_info) &&
5962 			 vcpu->guest_debug &
5963 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5964 			return true;
5965 		else if (is_breakpoint(intr_info) &&
5966 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5967 			return true;
5968 		else if (is_alignment_check(intr_info) &&
5969 			 !vmx_guest_inject_ac(vcpu))
5970 			return true;
5971 		return false;
5972 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5973 		return true;
5974 	case EXIT_REASON_MCE_DURING_VMENTRY:
5975 		return true;
5976 	case EXIT_REASON_EPT_VIOLATION:
5977 		/*
5978 		 * L0 always deals with the EPT violation. If nested EPT is
5979 		 * used, and the nested mmu code discovers that the address is
5980 		 * missing in the guest EPT table (EPT12), the EPT violation
5981 		 * will be injected with nested_ept_inject_page_fault()
5982 		 */
5983 		return true;
5984 	case EXIT_REASON_EPT_MISCONFIG:
5985 		/*
5986 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5987 		 * table (shadow on EPT) or a merged EPT table that L0 built
5988 		 * (EPT on EPT). So any problems with the structure of the
5989 		 * table is L0's fault.
5990 		 */
5991 		return true;
5992 	case EXIT_REASON_PREEMPTION_TIMER:
5993 		return true;
5994 	case EXIT_REASON_PML_FULL:
5995 		/*
5996 		 * PML is emulated for an L1 VMM and should never be enabled in
5997 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5998 		 */
5999 		return true;
6000 	case EXIT_REASON_VMFUNC:
6001 		/* VM functions are emulated through L2->L0 vmexits. */
6002 		return true;
6003 	case EXIT_REASON_BUS_LOCK:
6004 		/*
6005 		 * At present, bus lock VM exit is never exposed to L1.
6006 		 * Handle L2's bus locks in L0 directly.
6007 		 */
6008 		return true;
6009 	default:
6010 		break;
6011 	}
6012 	return false;
6013 }
6014 
6015 /*
6016  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6017  * is_guest_mode (L2).
6018  */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6019 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6020 				     union vmx_exit_reason exit_reason)
6021 {
6022 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6023 	u32 intr_info;
6024 
6025 	switch ((u16)exit_reason.basic) {
6026 	case EXIT_REASON_EXCEPTION_NMI:
6027 		intr_info = vmx_get_intr_info(vcpu);
6028 		if (is_nmi(intr_info))
6029 			return true;
6030 		else if (is_page_fault(intr_info))
6031 			return true;
6032 		return vmcs12->exception_bitmap &
6033 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6034 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6035 		return nested_exit_on_intr(vcpu);
6036 	case EXIT_REASON_TRIPLE_FAULT:
6037 		return true;
6038 	case EXIT_REASON_INTERRUPT_WINDOW:
6039 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6040 	case EXIT_REASON_NMI_WINDOW:
6041 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6042 	case EXIT_REASON_TASK_SWITCH:
6043 		return true;
6044 	case EXIT_REASON_CPUID:
6045 		return true;
6046 	case EXIT_REASON_HLT:
6047 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6048 	case EXIT_REASON_INVD:
6049 		return true;
6050 	case EXIT_REASON_INVLPG:
6051 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6052 	case EXIT_REASON_RDPMC:
6053 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6054 	case EXIT_REASON_RDRAND:
6055 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6056 	case EXIT_REASON_RDSEED:
6057 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6058 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6059 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6060 	case EXIT_REASON_VMREAD:
6061 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6062 			vmcs12->vmread_bitmap);
6063 	case EXIT_REASON_VMWRITE:
6064 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6065 			vmcs12->vmwrite_bitmap);
6066 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6067 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6068 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6069 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6070 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6071 		/*
6072 		 * VMX instructions trap unconditionally. This allows L1 to
6073 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6074 		 */
6075 		return true;
6076 	case EXIT_REASON_CR_ACCESS:
6077 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6078 	case EXIT_REASON_DR_ACCESS:
6079 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6080 	case EXIT_REASON_IO_INSTRUCTION:
6081 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6082 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6083 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6084 	case EXIT_REASON_MSR_READ:
6085 	case EXIT_REASON_MSR_WRITE:
6086 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6087 	case EXIT_REASON_INVALID_STATE:
6088 		return true;
6089 	case EXIT_REASON_MWAIT_INSTRUCTION:
6090 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6091 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6092 		return nested_vmx_exit_handled_mtf(vmcs12);
6093 	case EXIT_REASON_MONITOR_INSTRUCTION:
6094 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6095 	case EXIT_REASON_PAUSE_INSTRUCTION:
6096 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6097 			nested_cpu_has2(vmcs12,
6098 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6099 	case EXIT_REASON_MCE_DURING_VMENTRY:
6100 		return true;
6101 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6102 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6103 	case EXIT_REASON_APIC_ACCESS:
6104 	case EXIT_REASON_APIC_WRITE:
6105 	case EXIT_REASON_EOI_INDUCED:
6106 		/*
6107 		 * The controls for "virtualize APIC accesses," "APIC-
6108 		 * register virtualization," and "virtual-interrupt
6109 		 * delivery" only come from vmcs12.
6110 		 */
6111 		return true;
6112 	case EXIT_REASON_INVPCID:
6113 		return
6114 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6115 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6116 	case EXIT_REASON_WBINVD:
6117 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6118 	case EXIT_REASON_XSETBV:
6119 		return true;
6120 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6121 		/*
6122 		 * This should never happen, since it is not possible to
6123 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6124 		 * If if it were, XSS would have to be checked against
6125 		 * the XSS exit bitmap in vmcs12.
6126 		 */
6127 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6128 	case EXIT_REASON_UMWAIT:
6129 	case EXIT_REASON_TPAUSE:
6130 		return nested_cpu_has2(vmcs12,
6131 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6132 	case EXIT_REASON_ENCLS:
6133 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6134 	default:
6135 		return true;
6136 	}
6137 }
6138 
6139 /*
6140  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6141  * reflected into L1.
6142  */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6143 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6144 {
6145 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6146 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6147 	unsigned long exit_qual;
6148 	u32 exit_intr_info;
6149 
6150 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6151 
6152 	/*
6153 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6154 	 * has already loaded L2's state.
6155 	 */
6156 	if (unlikely(vmx->fail)) {
6157 		trace_kvm_nested_vmenter_failed(
6158 			"hardware VM-instruction error: ",
6159 			vmcs_read32(VM_INSTRUCTION_ERROR));
6160 		exit_intr_info = 0;
6161 		exit_qual = 0;
6162 		goto reflect_vmexit;
6163 	}
6164 
6165 	trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6166 
6167 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6168 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6169 		return false;
6170 
6171 	/* If L1 doesn't want the exit, handle it in L0. */
6172 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6173 		return false;
6174 
6175 	/*
6176 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6177 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6178 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6179 	 * interrupts are never reflected to L1 so it's a non-issue.
6180 	 */
6181 	exit_intr_info = vmx_get_intr_info(vcpu);
6182 	if (is_exception_with_error_code(exit_intr_info)) {
6183 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6184 
6185 		vmcs12->vm_exit_intr_error_code =
6186 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6187 	}
6188 	exit_qual = vmx_get_exit_qual(vcpu);
6189 
6190 reflect_vmexit:
6191 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6192 	return true;
6193 }
6194 
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6195 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6196 				struct kvm_nested_state __user *user_kvm_nested_state,
6197 				u32 user_data_size)
6198 {
6199 	struct vcpu_vmx *vmx;
6200 	struct vmcs12 *vmcs12;
6201 	struct kvm_nested_state kvm_state = {
6202 		.flags = 0,
6203 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6204 		.size = sizeof(kvm_state),
6205 		.hdr.vmx.flags = 0,
6206 		.hdr.vmx.vmxon_pa = -1ull,
6207 		.hdr.vmx.vmcs12_pa = -1ull,
6208 		.hdr.vmx.preemption_timer_deadline = 0,
6209 	};
6210 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6211 		&user_kvm_nested_state->data.vmx[0];
6212 
6213 	if (!vcpu)
6214 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6215 
6216 	vmx = to_vmx(vcpu);
6217 	vmcs12 = get_vmcs12(vcpu);
6218 
6219 	if (nested_vmx_allowed(vcpu) &&
6220 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6221 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6222 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6223 
6224 		if (vmx_has_valid_vmcs12(vcpu)) {
6225 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6226 
6227 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6228 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6229 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6230 
6231 			if (is_guest_mode(vcpu) &&
6232 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6233 			    vmcs12->vmcs_link_pointer != -1ull)
6234 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6235 		}
6236 
6237 		if (vmx->nested.smm.vmxon)
6238 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6239 
6240 		if (vmx->nested.smm.guest_mode)
6241 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6242 
6243 		if (is_guest_mode(vcpu)) {
6244 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6245 
6246 			if (vmx->nested.nested_run_pending)
6247 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6248 
6249 			if (vmx->nested.mtf_pending)
6250 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6251 
6252 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6253 			    vmx->nested.has_preemption_timer_deadline) {
6254 				kvm_state.hdr.vmx.flags |=
6255 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6256 				kvm_state.hdr.vmx.preemption_timer_deadline =
6257 					vmx->nested.preemption_timer_deadline;
6258 			}
6259 		}
6260 	}
6261 
6262 	if (user_data_size < kvm_state.size)
6263 		goto out;
6264 
6265 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6266 		return -EFAULT;
6267 
6268 	if (!vmx_has_valid_vmcs12(vcpu))
6269 		goto out;
6270 
6271 	/*
6272 	 * When running L2, the authoritative vmcs12 state is in the
6273 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6274 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6275 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6276 	 * vmcs12 state is in the vmcs12 already.
6277 	 */
6278 	if (is_guest_mode(vcpu)) {
6279 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6280 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6281 	} else  {
6282 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6283 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6284 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6285 				/*
6286 				 * L1 hypervisor is not obliged to keep eVMCS
6287 				 * clean fields data always up-to-date while
6288 				 * not in guest mode, 'hv_clean_fields' is only
6289 				 * supposed to be actual upon vmentry so we need
6290 				 * to ignore it here and do full copy.
6291 				 */
6292 				copy_enlightened_to_vmcs12(vmx, 0);
6293 			else if (enable_shadow_vmcs)
6294 				copy_shadow_to_vmcs12(vmx);
6295 		}
6296 	}
6297 
6298 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6299 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6300 
6301 	/*
6302 	 * Copy over the full allocated size of vmcs12 rather than just the size
6303 	 * of the struct.
6304 	 */
6305 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6306 		return -EFAULT;
6307 
6308 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6309 	    vmcs12->vmcs_link_pointer != -1ull) {
6310 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6311 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6312 			return -EFAULT;
6313 	}
6314 out:
6315 	return kvm_state.size;
6316 }
6317 
vmx_leave_nested(struct kvm_vcpu * vcpu)6318 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6319 {
6320 	if (is_guest_mode(vcpu)) {
6321 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6322 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6323 	}
6324 	free_nested(vcpu);
6325 }
6326 
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6327 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6328 				struct kvm_nested_state __user *user_kvm_nested_state,
6329 				struct kvm_nested_state *kvm_state)
6330 {
6331 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6332 	struct vmcs12 *vmcs12;
6333 	enum vm_entry_failure_code ignored;
6334 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6335 		&user_kvm_nested_state->data.vmx[0];
6336 	int ret;
6337 
6338 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6339 		return -EINVAL;
6340 
6341 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6342 		if (kvm_state->hdr.vmx.smm.flags)
6343 			return -EINVAL;
6344 
6345 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6346 			return -EINVAL;
6347 
6348 		/*
6349 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6350 		 * enable eVMCS capability on vCPU. However, since then
6351 		 * code was changed such that flag signals vmcs12 should
6352 		 * be copied into eVMCS in guest memory.
6353 		 *
6354 		 * To preserve backwards compatability, allow user
6355 		 * to set this flag even when there is no VMXON region.
6356 		 */
6357 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6358 			return -EINVAL;
6359 	} else {
6360 		if (!nested_vmx_allowed(vcpu))
6361 			return -EINVAL;
6362 
6363 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6364 			return -EINVAL;
6365 	}
6366 
6367 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6368 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6369 		return -EINVAL;
6370 
6371 	if (kvm_state->hdr.vmx.smm.flags &
6372 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6373 		return -EINVAL;
6374 
6375 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6376 		return -EINVAL;
6377 
6378 	/*
6379 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6380 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6381 	 * must be zero.
6382 	 */
6383 	if (is_smm(vcpu) ?
6384 		(kvm_state->flags &
6385 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6386 		: kvm_state->hdr.vmx.smm.flags)
6387 		return -EINVAL;
6388 
6389 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6390 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6391 		return -EINVAL;
6392 
6393 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6394 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6395 			return -EINVAL;
6396 
6397 	vmx_leave_nested(vcpu);
6398 
6399 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6400 		return 0;
6401 
6402 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6403 	ret = enter_vmx_operation(vcpu);
6404 	if (ret)
6405 		return ret;
6406 
6407 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6408 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6409 		/* See vmx_has_valid_vmcs12.  */
6410 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6411 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6412 		    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6413 			return -EINVAL;
6414 		else
6415 			return 0;
6416 	}
6417 
6418 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6419 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6420 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6421 			return -EINVAL;
6422 
6423 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6424 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6425 		/*
6426 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6427 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6428 		 * restored yet. EVMCS will be mapped from
6429 		 * nested_get_vmcs12_pages().
6430 		 */
6431 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6432 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6433 	} else {
6434 		return -EINVAL;
6435 	}
6436 
6437 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6438 		vmx->nested.smm.vmxon = true;
6439 		vmx->nested.vmxon = false;
6440 
6441 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6442 			vmx->nested.smm.guest_mode = true;
6443 	}
6444 
6445 	vmcs12 = get_vmcs12(vcpu);
6446 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6447 		return -EFAULT;
6448 
6449 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6450 		return -EINVAL;
6451 
6452 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6453 		return 0;
6454 
6455 	vmx->nested.nested_run_pending =
6456 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6457 
6458 	vmx->nested.mtf_pending =
6459 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6460 
6461 	ret = -EINVAL;
6462 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6463 	    vmcs12->vmcs_link_pointer != -1ull) {
6464 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6465 
6466 		if (kvm_state->size <
6467 		    sizeof(*kvm_state) +
6468 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6469 			goto error_guest_mode;
6470 
6471 		if (copy_from_user(shadow_vmcs12,
6472 				   user_vmx_nested_state->shadow_vmcs12,
6473 				   sizeof(*shadow_vmcs12))) {
6474 			ret = -EFAULT;
6475 			goto error_guest_mode;
6476 		}
6477 
6478 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6479 		    !shadow_vmcs12->hdr.shadow_vmcs)
6480 			goto error_guest_mode;
6481 	}
6482 
6483 	vmx->nested.has_preemption_timer_deadline = false;
6484 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6485 		vmx->nested.has_preemption_timer_deadline = true;
6486 		vmx->nested.preemption_timer_deadline =
6487 			kvm_state->hdr.vmx.preemption_timer_deadline;
6488 	}
6489 
6490 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6491 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6492 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6493 		goto error_guest_mode;
6494 
6495 	vmx->nested.dirty_vmcs12 = true;
6496 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6497 	if (ret)
6498 		goto error_guest_mode;
6499 
6500 	return 0;
6501 
6502 error_guest_mode:
6503 	vmx->nested.nested_run_pending = 0;
6504 	return ret;
6505 }
6506 
nested_vmx_set_vmcs_shadowing_bitmap(void)6507 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6508 {
6509 	if (enable_shadow_vmcs) {
6510 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6511 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6512 	}
6513 }
6514 
6515 /*
6516  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6517  * that madness to get the encoding for comparison.
6518  */
6519 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6520 
nested_vmx_calc_vmcs_enum_msr(void)6521 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6522 {
6523 	/*
6524 	 * Note these are the so called "index" of the VMCS field encoding, not
6525 	 * the index into vmcs12.
6526 	 */
6527 	unsigned int max_idx, idx;
6528 	int i;
6529 
6530 	/*
6531 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6532 	 * vmcs12, regardless of whether or not the associated feature is
6533 	 * exposed to L1.  Simply find the field with the highest index.
6534 	 */
6535 	max_idx = 0;
6536 	for (i = 0; i < nr_vmcs12_fields; i++) {
6537 		/* The vmcs12 table is very, very sparsely populated. */
6538 		if (!vmcs_field_to_offset_table[i])
6539 			continue;
6540 
6541 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6542 		if (idx > max_idx)
6543 			max_idx = idx;
6544 	}
6545 
6546 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6547 }
6548 
6549 /*
6550  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6551  * returned for the various VMX controls MSRs when nested VMX is enabled.
6552  * The same values should also be used to verify that vmcs12 control fields are
6553  * valid during nested entry from L1 to L2.
6554  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6555  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6556  * bit in the high half is on if the corresponding bit in the control field
6557  * may be on. See also vmx_control_verify().
6558  */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6559 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6560 {
6561 	/*
6562 	 * Note that as a general rule, the high half of the MSRs (bits in
6563 	 * the control fields which may be 1) should be initialized by the
6564 	 * intersection of the underlying hardware's MSR (i.e., features which
6565 	 * can be supported) and the list of features we want to expose -
6566 	 * because they are known to be properly supported in our code.
6567 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6568 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6569 	 * reason is that if one of these bits is necessary, it will appear
6570 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6571 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6572 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6573 	 * These rules have exceptions below.
6574 	 */
6575 
6576 	/* pin-based controls */
6577 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6578 		msrs->pinbased_ctls_low,
6579 		msrs->pinbased_ctls_high);
6580 	msrs->pinbased_ctls_low |=
6581 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6582 	msrs->pinbased_ctls_high &=
6583 		PIN_BASED_EXT_INTR_MASK |
6584 		PIN_BASED_NMI_EXITING |
6585 		PIN_BASED_VIRTUAL_NMIS |
6586 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6587 	msrs->pinbased_ctls_high |=
6588 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6589 		PIN_BASED_VMX_PREEMPTION_TIMER;
6590 
6591 	/* exit controls */
6592 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6593 		msrs->exit_ctls_low,
6594 		msrs->exit_ctls_high);
6595 	msrs->exit_ctls_low =
6596 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6597 
6598 	msrs->exit_ctls_high &=
6599 #ifdef CONFIG_X86_64
6600 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6601 #endif
6602 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6603 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6604 	msrs->exit_ctls_high |=
6605 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6606 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6607 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6608 
6609 	/* We support free control of debug control saving. */
6610 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6611 
6612 	/* entry controls */
6613 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6614 		msrs->entry_ctls_low,
6615 		msrs->entry_ctls_high);
6616 	msrs->entry_ctls_low =
6617 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6618 	msrs->entry_ctls_high &=
6619 #ifdef CONFIG_X86_64
6620 		VM_ENTRY_IA32E_MODE |
6621 #endif
6622 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6623 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6624 	msrs->entry_ctls_high |=
6625 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6626 
6627 	/* We support free control of debug control loading. */
6628 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6629 
6630 	/* cpu-based controls */
6631 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6632 		msrs->procbased_ctls_low,
6633 		msrs->procbased_ctls_high);
6634 	msrs->procbased_ctls_low =
6635 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6636 	msrs->procbased_ctls_high &=
6637 		CPU_BASED_INTR_WINDOW_EXITING |
6638 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6639 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6640 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6641 		CPU_BASED_CR3_STORE_EXITING |
6642 #ifdef CONFIG_X86_64
6643 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6644 #endif
6645 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6646 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6647 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6648 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6649 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6650 	/*
6651 	 * We can allow some features even when not supported by the
6652 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6653 	 * can use it to avoid exits to L1 - even when L0 runs L2
6654 	 * without MSR bitmaps.
6655 	 */
6656 	msrs->procbased_ctls_high |=
6657 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6658 		CPU_BASED_USE_MSR_BITMAPS;
6659 
6660 	/* We support free control of CR3 access interception. */
6661 	msrs->procbased_ctls_low &=
6662 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6663 
6664 	/*
6665 	 * secondary cpu-based controls.  Do not include those that
6666 	 * depend on CPUID bits, they are added later by
6667 	 * vmx_vcpu_after_set_cpuid.
6668 	 */
6669 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6670 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6671 		      msrs->secondary_ctls_low,
6672 		      msrs->secondary_ctls_high);
6673 
6674 	msrs->secondary_ctls_low = 0;
6675 	msrs->secondary_ctls_high &=
6676 		SECONDARY_EXEC_DESC |
6677 		SECONDARY_EXEC_ENABLE_RDTSCP |
6678 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6679 		SECONDARY_EXEC_WBINVD_EXITING |
6680 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6681 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6682 		SECONDARY_EXEC_RDRAND_EXITING |
6683 		SECONDARY_EXEC_ENABLE_INVPCID |
6684 		SECONDARY_EXEC_RDSEED_EXITING |
6685 		SECONDARY_EXEC_XSAVES |
6686 		SECONDARY_EXEC_TSC_SCALING |
6687 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6688 
6689 	/*
6690 	 * We can emulate "VMCS shadowing," even if the hardware
6691 	 * doesn't support it.
6692 	 */
6693 	msrs->secondary_ctls_high |=
6694 		SECONDARY_EXEC_SHADOW_VMCS;
6695 
6696 	if (enable_ept) {
6697 		/* nested EPT: emulate EPT also to L1 */
6698 		msrs->secondary_ctls_high |=
6699 			SECONDARY_EXEC_ENABLE_EPT;
6700 		msrs->ept_caps =
6701 			VMX_EPT_PAGE_WALK_4_BIT |
6702 			VMX_EPT_PAGE_WALK_5_BIT |
6703 			VMX_EPTP_WB_BIT |
6704 			VMX_EPT_INVEPT_BIT |
6705 			VMX_EPT_EXECUTE_ONLY_BIT;
6706 
6707 		msrs->ept_caps &= ept_caps;
6708 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6709 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6710 			VMX_EPT_1GB_PAGE_BIT;
6711 		if (enable_ept_ad_bits) {
6712 			msrs->secondary_ctls_high |=
6713 				SECONDARY_EXEC_ENABLE_PML;
6714 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6715 		}
6716 	}
6717 
6718 	if (cpu_has_vmx_vmfunc()) {
6719 		msrs->secondary_ctls_high |=
6720 			SECONDARY_EXEC_ENABLE_VMFUNC;
6721 		/*
6722 		 * Advertise EPTP switching unconditionally
6723 		 * since we emulate it
6724 		 */
6725 		if (enable_ept)
6726 			msrs->vmfunc_controls =
6727 				VMX_VMFUNC_EPTP_SWITCHING;
6728 	}
6729 
6730 	/*
6731 	 * Old versions of KVM use the single-context version without
6732 	 * checking for support, so declare that it is supported even
6733 	 * though it is treated as global context.  The alternative is
6734 	 * not failing the single-context invvpid, and it is worse.
6735 	 */
6736 	if (enable_vpid) {
6737 		msrs->secondary_ctls_high |=
6738 			SECONDARY_EXEC_ENABLE_VPID;
6739 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6740 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6741 	}
6742 
6743 	if (enable_unrestricted_guest)
6744 		msrs->secondary_ctls_high |=
6745 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6746 
6747 	if (flexpriority_enabled)
6748 		msrs->secondary_ctls_high |=
6749 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6750 
6751 	if (enable_sgx)
6752 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6753 
6754 	/* miscellaneous data */
6755 	rdmsr(MSR_IA32_VMX_MISC,
6756 		msrs->misc_low,
6757 		msrs->misc_high);
6758 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6759 	msrs->misc_low |=
6760 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6761 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6762 		VMX_MISC_ACTIVITY_HLT |
6763 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6764 	msrs->misc_high = 0;
6765 
6766 	/*
6767 	 * This MSR reports some information about VMX support. We
6768 	 * should return information about the VMX we emulate for the
6769 	 * guest, and the VMCS structure we give it - not about the
6770 	 * VMX support of the underlying hardware.
6771 	 */
6772 	msrs->basic =
6773 		VMCS12_REVISION |
6774 		VMX_BASIC_TRUE_CTLS |
6775 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6776 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6777 
6778 	if (cpu_has_vmx_basic_inout())
6779 		msrs->basic |= VMX_BASIC_INOUT;
6780 
6781 	/*
6782 	 * These MSRs specify bits which the guest must keep fixed on
6783 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6784 	 * We picked the standard core2 setting.
6785 	 */
6786 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6787 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6788 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6789 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6790 
6791 	/* These MSRs specify bits which the guest must keep fixed off. */
6792 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6793 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6794 
6795 	if (vmx_umip_emulated())
6796 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
6797 
6798 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6799 }
6800 
nested_vmx_hardware_unsetup(void)6801 void nested_vmx_hardware_unsetup(void)
6802 {
6803 	int i;
6804 
6805 	if (enable_shadow_vmcs) {
6806 		for (i = 0; i < VMX_BITMAP_NR; i++)
6807 			free_page((unsigned long)vmx_bitmap[i]);
6808 	}
6809 }
6810 
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6811 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6812 {
6813 	int i;
6814 
6815 	if (!cpu_has_vmx_shadow_vmcs())
6816 		enable_shadow_vmcs = 0;
6817 	if (enable_shadow_vmcs) {
6818 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6819 			/*
6820 			 * The vmx_bitmap is not tied to a VM and so should
6821 			 * not be charged to a memcg.
6822 			 */
6823 			vmx_bitmap[i] = (unsigned long *)
6824 				__get_free_page(GFP_KERNEL);
6825 			if (!vmx_bitmap[i]) {
6826 				nested_vmx_hardware_unsetup();
6827 				return -ENOMEM;
6828 			}
6829 		}
6830 
6831 		init_vmcs_shadow_fields();
6832 	}
6833 
6834 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6835 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6836 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6837 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6838 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6839 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6840 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6841 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6842 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6843 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6844 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6845 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6846 
6847 	return 0;
6848 }
6849 
6850 struct kvm_x86_nested_ops vmx_nested_ops = {
6851 	.leave_nested = vmx_leave_nested,
6852 	.check_events = vmx_check_nested_events,
6853 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6854 	.triple_fault = nested_vmx_triple_fault,
6855 	.get_state = vmx_get_nested_state,
6856 	.set_state = vmx_set_nested_state,
6857 	.get_nested_state_pages = vmx_get_nested_state_pages,
6858 	.write_log_dirty = nested_vmx_write_pml_buffer,
6859 	.enable_evmcs = nested_enable_evmcs,
6860 	.get_evmcs_version = nested_get_evmcs_version,
6861 };
6862