• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	gfs2_update_reply_times(gl);
125 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126 
127 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129 
130 	switch (gl->gl_lksb.sb_status) {
131 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 		if (gl->gl_ops->go_free)
133 			gl->gl_ops->go_free(gl);
134 		gfs2_glock_free(gl);
135 		return;
136 	case -DLM_ECANCEL: /* Cancel while getting lock */
137 		ret |= LM_OUT_CANCELED;
138 		goto out;
139 	case -EAGAIN: /* Try lock fails */
140 	case -EDEADLK: /* Deadlock detected */
141 		goto out;
142 	case -ETIMEDOUT: /* Canceled due to timeout */
143 		ret |= LM_OUT_ERROR;
144 		goto out;
145 	case 0: /* Success */
146 		break;
147 	default: /* Something unexpected */
148 		BUG();
149 	}
150 
151 	ret = gl->gl_req;
152 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 		if (gl->gl_req == LM_ST_SHARED)
154 			ret = LM_ST_DEFERRED;
155 		else if (gl->gl_req == LM_ST_DEFERRED)
156 			ret = LM_ST_SHARED;
157 		else
158 			BUG();
159 	}
160 
161 	set_bit(GLF_INITIAL, &gl->gl_flags);
162 	gfs2_glock_complete(gl, ret);
163 	return;
164 out:
165 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 		gl->gl_lksb.sb_lkid = 0;
167 	gfs2_glock_complete(gl, ret);
168 }
169 
gdlm_bast(void * arg,int mode)170 static void gdlm_bast(void *arg, int mode)
171 {
172 	struct gfs2_glock *gl = arg;
173 
174 	switch (mode) {
175 	case DLM_LOCK_EX:
176 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 		break;
178 	case DLM_LOCK_CW:
179 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 		break;
181 	case DLM_LOCK_PR:
182 		gfs2_glock_cb(gl, LM_ST_SHARED);
183 		break;
184 	default:
185 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 		BUG();
187 	}
188 }
189 
190 /* convert gfs lock-state to dlm lock-mode */
191 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 	switch (lmstate) {
195 	case LM_ST_UNLOCKED:
196 		return DLM_LOCK_NL;
197 	case LM_ST_EXCLUSIVE:
198 		return DLM_LOCK_EX;
199 	case LM_ST_DEFERRED:
200 		return DLM_LOCK_CW;
201 	case LM_ST_SHARED:
202 		return DLM_LOCK_PR;
203 	}
204 	fs_err(sdp, "unknown LM state %d\n", lmstate);
205 	BUG();
206 	return -1;
207 }
208 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 		      const int req)
211 {
212 	u32 lkf = 0;
213 
214 	if (gl->gl_lksb.sb_lvbptr)
215 		lkf |= DLM_LKF_VALBLK;
216 
217 	if (gfs_flags & LM_FLAG_TRY)
218 		lkf |= DLM_LKF_NOQUEUE;
219 
220 	if (gfs_flags & LM_FLAG_TRY_1CB) {
221 		lkf |= DLM_LKF_NOQUEUE;
222 		lkf |= DLM_LKF_NOQUEUEBAST;
223 	}
224 
225 	if (gfs_flags & LM_FLAG_PRIORITY) {
226 		lkf |= DLM_LKF_NOORDER;
227 		lkf |= DLM_LKF_HEADQUE;
228 	}
229 
230 	if (gfs_flags & LM_FLAG_ANY) {
231 		if (req == DLM_LOCK_PR)
232 			lkf |= DLM_LKF_ALTCW;
233 		else if (req == DLM_LOCK_CW)
234 			lkf |= DLM_LKF_ALTPR;
235 		else
236 			BUG();
237 	}
238 
239 	if (gl->gl_lksb.sb_lkid != 0) {
240 		lkf |= DLM_LKF_CONVERT;
241 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
242 			lkf |= DLM_LKF_QUECVT;
243 	}
244 
245 	return lkf;
246 }
247 
gfs2_reverse_hex(char * c,u64 value)248 static void gfs2_reverse_hex(char *c, u64 value)
249 {
250 	*c = '0';
251 	while (value) {
252 		*c-- = hex_asc[value & 0x0f];
253 		value >>= 4;
254 	}
255 }
256 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
258 		     unsigned int flags)
259 {
260 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
261 	int req;
262 	u32 lkf;
263 	char strname[GDLM_STRNAME_BYTES] = "";
264 
265 	req = make_mode(gl->gl_name.ln_sbd, req_state);
266 	lkf = make_flags(gl, flags, req);
267 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
268 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
269 	if (gl->gl_lksb.sb_lkid) {
270 		gfs2_update_request_times(gl);
271 	} else {
272 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
273 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
274 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
275 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
276 		gl->gl_dstamp = ktime_get_real();
277 	}
278 	/*
279 	 * Submit the actual lock request.
280 	 */
281 
282 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
283 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
284 }
285 
gdlm_put_lock(struct gfs2_glock * gl)286 static void gdlm_put_lock(struct gfs2_glock *gl)
287 {
288 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
289 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
290 	int error;
291 
292 	if (gl->gl_lksb.sb_lkid == 0) {
293 		gfs2_glock_free(gl);
294 		return;
295 	}
296 
297 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
298 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
299 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
300 	gfs2_update_request_times(gl);
301 
302 	/* don't want to call dlm if we've unmounted the lock protocol */
303 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
304 		gfs2_glock_free(gl);
305 		return;
306 	}
307 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
308 
309 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
310 	    !gl->gl_lksb.sb_lvbptr) {
311 		gfs2_glock_free(gl);
312 		return;
313 	}
314 
315 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
316 			   NULL, gl);
317 	if (error) {
318 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
319 		       gl->gl_name.ln_type,
320 		       (unsigned long long)gl->gl_name.ln_number, error);
321 		return;
322 	}
323 }
324 
gdlm_cancel(struct gfs2_glock * gl)325 static void gdlm_cancel(struct gfs2_glock *gl)
326 {
327 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
328 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
329 }
330 
331 /*
332  * dlm/gfs2 recovery coordination using dlm_recover callbacks
333  *
334  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
335  *  1. dlm_controld sees lockspace members change
336  *  2. dlm_controld blocks dlm-kernel locking activity
337  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
338  *  4. dlm_controld starts and finishes its own user level recovery
339  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
340  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
341  *  7. dlm_recoverd does its own lock recovery
342  *  8. dlm_recoverd unblocks dlm-kernel locking activity
343  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
344  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
345  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
346  * 12. gfs2_recover dequeues and recovers journals of failed nodes
347  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
348  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
349  * 15. gfs2_control unblocks normal locking when all journals are recovered
350  *
351  * - failures during recovery
352  *
353  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
354  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
355  * recovering for a prior failure.  gfs2_control needs a way to detect
356  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
357  * the recover_block and recover_start values.
358  *
359  * recover_done() provides a new lockspace generation number each time it
360  * is called (step 9).  This generation number is saved as recover_start.
361  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
362  * recover_block = recover_start.  So, while recover_block is equal to
363  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
364  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
365  *
366  * - more specific gfs2 steps in sequence above
367  *
368  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
369  *  6. recover_slot records any failed jids (maybe none)
370  *  9. recover_done sets recover_start = new generation number
371  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
372  * 12. gfs2_recover does journal recoveries for failed jids identified above
373  * 14. gfs2_control clears control_lock lvb bits for recovered jids
374  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
375  *     again) then do nothing, otherwise if recover_start > recover_block
376  *     then clear BLOCK_LOCKS.
377  *
378  * - parallel recovery steps across all nodes
379  *
380  * All nodes attempt to update the control_lock lvb with the new generation
381  * number and jid bits, but only the first to get the control_lock EX will
382  * do so; others will see that it's already done (lvb already contains new
383  * generation number.)
384  *
385  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
386  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
387  * . One node gets control_lock first and writes the lvb, others see it's done
388  * . All nodes attempt to recover jids for which they see control_lock bits set
389  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
390  * . All nodes will eventually see all lvb bits clear and unblock locks
391  *
392  * - is there a problem with clearing an lvb bit that should be set
393  *   and missing a journal recovery?
394  *
395  * 1. jid fails
396  * 2. lvb bit set for step 1
397  * 3. jid recovered for step 1
398  * 4. jid taken again (new mount)
399  * 5. jid fails (for step 4)
400  * 6. lvb bit set for step 5 (will already be set)
401  * 7. lvb bit cleared for step 3
402  *
403  * This is not a problem because the failure in step 5 does not
404  * require recovery, because the mount in step 4 could not have
405  * progressed far enough to unblock locks and access the fs.  The
406  * control_mount() function waits for all recoveries to be complete
407  * for the latest lockspace generation before ever unblocking locks
408  * and returning.  The mount in step 4 waits until the recovery in
409  * step 1 is done.
410  *
411  * - special case of first mounter: first node to mount the fs
412  *
413  * The first node to mount a gfs2 fs needs to check all the journals
414  * and recover any that need recovery before other nodes are allowed
415  * to mount the fs.  (Others may begin mounting, but they must wait
416  * for the first mounter to be done before taking locks on the fs
417  * or accessing the fs.)  This has two parts:
418  *
419  * 1. The mounted_lock tells a node it's the first to mount the fs.
420  * Each node holds the mounted_lock in PR while it's mounted.
421  * Each node tries to acquire the mounted_lock in EX when it mounts.
422  * If a node is granted the mounted_lock EX it means there are no
423  * other mounted nodes (no PR locks exist), and it is the first mounter.
424  * The mounted_lock is demoted to PR when first recovery is done, so
425  * others will fail to get an EX lock, but will get a PR lock.
426  *
427  * 2. The control_lock blocks others in control_mount() while the first
428  * mounter is doing first mount recovery of all journals.
429  * A mounting node needs to acquire control_lock in EX mode before
430  * it can proceed.  The first mounter holds control_lock in EX while doing
431  * the first mount recovery, blocking mounts from other nodes, then demotes
432  * control_lock to NL when it's done (others_may_mount/first_done),
433  * allowing other nodes to continue mounting.
434  *
435  * first mounter:
436  * control_lock EX/NOQUEUE success
437  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
438  * set first=1
439  * do first mounter recovery
440  * mounted_lock EX->PR
441  * control_lock EX->NL, write lvb generation
442  *
443  * other mounter:
444  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
445  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
446  * mounted_lock PR/NOQUEUE success
447  * read lvb generation
448  * control_lock EX->NL
449  * set first=0
450  *
451  * - mount during recovery
452  *
453  * If a node mounts while others are doing recovery (not first mounter),
454  * the mounting node will get its initial recover_done() callback without
455  * having seen any previous failures/callbacks.
456  *
457  * It must wait for all recoveries preceding its mount to be finished
458  * before it unblocks locks.  It does this by repeating the "other mounter"
459  * steps above until the lvb generation number is >= its mount generation
460  * number (from initial recover_done) and all lvb bits are clear.
461  *
462  * - control_lock lvb format
463  *
464  * 4 bytes generation number: the latest dlm lockspace generation number
465  * from recover_done callback.  Indicates the jid bitmap has been updated
466  * to reflect all slot failures through that generation.
467  * 4 bytes unused.
468  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
469  * that jid N needs recovery.
470  */
471 
472 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
473 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)474 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
475 			     char *lvb_bits)
476 {
477 	__le32 gen;
478 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
479 	memcpy(&gen, lvb_bits, sizeof(__le32));
480 	*lvb_gen = le32_to_cpu(gen);
481 }
482 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)483 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
484 			      char *lvb_bits)
485 {
486 	__le32 gen;
487 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
488 	gen = cpu_to_le32(lvb_gen);
489 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
490 }
491 
all_jid_bits_clear(char * lvb)492 static int all_jid_bits_clear(char *lvb)
493 {
494 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
495 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
496 }
497 
sync_wait_cb(void * arg)498 static void sync_wait_cb(void *arg)
499 {
500 	struct lm_lockstruct *ls = arg;
501 	complete(&ls->ls_sync_wait);
502 }
503 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)504 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
505 {
506 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
507 	int error;
508 
509 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
510 	if (error) {
511 		fs_err(sdp, "%s lkid %x error %d\n",
512 		       name, lksb->sb_lkid, error);
513 		return error;
514 	}
515 
516 	wait_for_completion(&ls->ls_sync_wait);
517 
518 	if (lksb->sb_status != -DLM_EUNLOCK) {
519 		fs_err(sdp, "%s lkid %x status %d\n",
520 		       name, lksb->sb_lkid, lksb->sb_status);
521 		return -1;
522 	}
523 	return 0;
524 }
525 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)526 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
527 		     unsigned int num, struct dlm_lksb *lksb, char *name)
528 {
529 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
530 	char strname[GDLM_STRNAME_BYTES];
531 	int error, status;
532 
533 	memset(strname, 0, GDLM_STRNAME_BYTES);
534 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
535 
536 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
537 			 strname, GDLM_STRNAME_BYTES - 1,
538 			 0, sync_wait_cb, ls, NULL);
539 	if (error) {
540 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
541 		       name, lksb->sb_lkid, flags, mode, error);
542 		return error;
543 	}
544 
545 	wait_for_completion(&ls->ls_sync_wait);
546 
547 	status = lksb->sb_status;
548 
549 	if (status && status != -EAGAIN) {
550 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
551 		       name, lksb->sb_lkid, flags, mode, status);
552 	}
553 
554 	return status;
555 }
556 
mounted_unlock(struct gfs2_sbd * sdp)557 static int mounted_unlock(struct gfs2_sbd *sdp)
558 {
559 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
560 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
561 }
562 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)563 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
564 {
565 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
566 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
567 			 &ls->ls_mounted_lksb, "mounted_lock");
568 }
569 
control_unlock(struct gfs2_sbd * sdp)570 static int control_unlock(struct gfs2_sbd *sdp)
571 {
572 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
573 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
574 }
575 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)576 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
577 {
578 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
580 			 &ls->ls_control_lksb, "control_lock");
581 }
582 
583 /**
584  * remote_withdraw - react to a node withdrawing from the file system
585  * @sdp: The superblock
586  */
remote_withdraw(struct gfs2_sbd * sdp)587 static void remote_withdraw(struct gfs2_sbd *sdp)
588 {
589 	struct gfs2_jdesc *jd;
590 	int ret = 0, count = 0;
591 
592 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
593 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
594 			continue;
595 		ret = gfs2_recover_journal(jd, true);
596 		if (ret)
597 			break;
598 		count++;
599 	}
600 
601 	/* Now drop the additional reference we acquired */
602 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
603 }
604 
gfs2_control_func(struct work_struct * work)605 static void gfs2_control_func(struct work_struct *work)
606 {
607 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
608 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
609 	uint32_t block_gen, start_gen, lvb_gen, flags;
610 	int recover_set = 0;
611 	int write_lvb = 0;
612 	int recover_size;
613 	int i, error;
614 
615 	/* First check for other nodes that may have done a withdraw. */
616 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
617 		remote_withdraw(sdp);
618 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
619 		return;
620 	}
621 
622 	spin_lock(&ls->ls_recover_spin);
623 	/*
624 	 * No MOUNT_DONE means we're still mounting; control_mount()
625 	 * will set this flag, after which this thread will take over
626 	 * all further clearing of BLOCK_LOCKS.
627 	 *
628 	 * FIRST_MOUNT means this node is doing first mounter recovery,
629 	 * for which recovery control is handled by
630 	 * control_mount()/control_first_done(), not this thread.
631 	 */
632 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
633 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
634 		spin_unlock(&ls->ls_recover_spin);
635 		return;
636 	}
637 	block_gen = ls->ls_recover_block;
638 	start_gen = ls->ls_recover_start;
639 	spin_unlock(&ls->ls_recover_spin);
640 
641 	/*
642 	 * Equal block_gen and start_gen implies we are between
643 	 * recover_prep and recover_done callbacks, which means
644 	 * dlm recovery is in progress and dlm locking is blocked.
645 	 * There's no point trying to do any work until recover_done.
646 	 */
647 
648 	if (block_gen == start_gen)
649 		return;
650 
651 	/*
652 	 * Propagate recover_submit[] and recover_result[] to lvb:
653 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
654 	 * gfs2_recover adds to recover_result[] journal recovery results
655 	 *
656 	 * set lvb bit for jids in recover_submit[] if the lvb has not
657 	 * yet been updated for the generation of the failure
658 	 *
659 	 * clear lvb bit for jids in recover_result[] if the result of
660 	 * the journal recovery is SUCCESS
661 	 */
662 
663 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
664 	if (error) {
665 		fs_err(sdp, "control lock EX error %d\n", error);
666 		return;
667 	}
668 
669 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
670 
671 	spin_lock(&ls->ls_recover_spin);
672 	if (block_gen != ls->ls_recover_block ||
673 	    start_gen != ls->ls_recover_start) {
674 		fs_info(sdp, "recover generation %u block1 %u %u\n",
675 			start_gen, block_gen, ls->ls_recover_block);
676 		spin_unlock(&ls->ls_recover_spin);
677 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
678 		return;
679 	}
680 
681 	recover_size = ls->ls_recover_size;
682 
683 	if (lvb_gen <= start_gen) {
684 		/*
685 		 * Clear lvb bits for jids we've successfully recovered.
686 		 * Because all nodes attempt to recover failed journals,
687 		 * a journal can be recovered multiple times successfully
688 		 * in succession.  Only the first will really do recovery,
689 		 * the others find it clean, but still report a successful
690 		 * recovery.  So, another node may have already recovered
691 		 * the jid and cleared the lvb bit for it.
692 		 */
693 		for (i = 0; i < recover_size; i++) {
694 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
695 				continue;
696 
697 			ls->ls_recover_result[i] = 0;
698 
699 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
700 				continue;
701 
702 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
703 			write_lvb = 1;
704 		}
705 	}
706 
707 	if (lvb_gen == start_gen) {
708 		/*
709 		 * Failed slots before start_gen are already set in lvb.
710 		 */
711 		for (i = 0; i < recover_size; i++) {
712 			if (!ls->ls_recover_submit[i])
713 				continue;
714 			if (ls->ls_recover_submit[i] < lvb_gen)
715 				ls->ls_recover_submit[i] = 0;
716 		}
717 	} else if (lvb_gen < start_gen) {
718 		/*
719 		 * Failed slots before start_gen are not yet set in lvb.
720 		 */
721 		for (i = 0; i < recover_size; i++) {
722 			if (!ls->ls_recover_submit[i])
723 				continue;
724 			if (ls->ls_recover_submit[i] < start_gen) {
725 				ls->ls_recover_submit[i] = 0;
726 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
727 			}
728 		}
729 		/* even if there are no bits to set, we need to write the
730 		   latest generation to the lvb */
731 		write_lvb = 1;
732 	} else {
733 		/*
734 		 * we should be getting a recover_done() for lvb_gen soon
735 		 */
736 	}
737 	spin_unlock(&ls->ls_recover_spin);
738 
739 	if (write_lvb) {
740 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
741 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
742 	} else {
743 		flags = DLM_LKF_CONVERT;
744 	}
745 
746 	error = control_lock(sdp, DLM_LOCK_NL, flags);
747 	if (error) {
748 		fs_err(sdp, "control lock NL error %d\n", error);
749 		return;
750 	}
751 
752 	/*
753 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
754 	 * and clear a jid bit in the lvb if the recovery is a success.
755 	 * Eventually all journals will be recovered, all jid bits will
756 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
757 	 */
758 
759 	for (i = 0; i < recover_size; i++) {
760 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
761 			fs_info(sdp, "recover generation %u jid %d\n",
762 				start_gen, i);
763 			gfs2_recover_set(sdp, i);
764 			recover_set++;
765 		}
766 	}
767 	if (recover_set)
768 		return;
769 
770 	/*
771 	 * No more jid bits set in lvb, all recovery is done, unblock locks
772 	 * (unless a new recover_prep callback has occured blocking locks
773 	 * again while working above)
774 	 */
775 
776 	spin_lock(&ls->ls_recover_spin);
777 	if (ls->ls_recover_block == block_gen &&
778 	    ls->ls_recover_start == start_gen) {
779 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
780 		spin_unlock(&ls->ls_recover_spin);
781 		fs_info(sdp, "recover generation %u done\n", start_gen);
782 		gfs2_glock_thaw(sdp);
783 	} else {
784 		fs_info(sdp, "recover generation %u block2 %u %u\n",
785 			start_gen, block_gen, ls->ls_recover_block);
786 		spin_unlock(&ls->ls_recover_spin);
787 	}
788 }
789 
control_mount(struct gfs2_sbd * sdp)790 static int control_mount(struct gfs2_sbd *sdp)
791 {
792 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
793 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
794 	int mounted_mode;
795 	int retries = 0;
796 	int error;
797 
798 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
799 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
800 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
801 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
802 	init_completion(&ls->ls_sync_wait);
803 
804 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
805 
806 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
807 	if (error) {
808 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
809 		return error;
810 	}
811 
812 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
813 	if (error) {
814 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
815 		control_unlock(sdp);
816 		return error;
817 	}
818 	mounted_mode = DLM_LOCK_NL;
819 
820 restart:
821 	if (retries++ && signal_pending(current)) {
822 		error = -EINTR;
823 		goto fail;
824 	}
825 
826 	/*
827 	 * We always start with both locks in NL. control_lock is
828 	 * demoted to NL below so we don't need to do it here.
829 	 */
830 
831 	if (mounted_mode != DLM_LOCK_NL) {
832 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
833 		if (error)
834 			goto fail;
835 		mounted_mode = DLM_LOCK_NL;
836 	}
837 
838 	/*
839 	 * Other nodes need to do some work in dlm recovery and gfs2_control
840 	 * before the recover_done and control_lock will be ready for us below.
841 	 * A delay here is not required but often avoids having to retry.
842 	 */
843 
844 	msleep_interruptible(500);
845 
846 	/*
847 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
848 	 * control_lock lvb keeps track of any pending journal recoveries.
849 	 * mounted_lock indicates if any other nodes have the fs mounted.
850 	 */
851 
852 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
853 	if (error == -EAGAIN) {
854 		goto restart;
855 	} else if (error) {
856 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
857 		goto fail;
858 	}
859 
860 	/**
861 	 * If we're a spectator, we don't want to take the lock in EX because
862 	 * we cannot do the first-mount responsibility it implies: recovery.
863 	 */
864 	if (sdp->sd_args.ar_spectator)
865 		goto locks_done;
866 
867 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
868 	if (!error) {
869 		mounted_mode = DLM_LOCK_EX;
870 		goto locks_done;
871 	} else if (error != -EAGAIN) {
872 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
873 		goto fail;
874 	}
875 
876 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
877 	if (!error) {
878 		mounted_mode = DLM_LOCK_PR;
879 		goto locks_done;
880 	} else {
881 		/* not even -EAGAIN should happen here */
882 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
883 		goto fail;
884 	}
885 
886 locks_done:
887 	/*
888 	 * If we got both locks above in EX, then we're the first mounter.
889 	 * If not, then we need to wait for the control_lock lvb to be
890 	 * updated by other mounted nodes to reflect our mount generation.
891 	 *
892 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
893 	 * but in cases where all existing nodes leave/fail before mounting
894 	 * nodes finish control_mount, then all nodes will be mounting and
895 	 * lvb_gen will be non-zero.
896 	 */
897 
898 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
899 
900 	if (lvb_gen == 0xFFFFFFFF) {
901 		/* special value to force mount attempts to fail */
902 		fs_err(sdp, "control_mount control_lock disabled\n");
903 		error = -EINVAL;
904 		goto fail;
905 	}
906 
907 	if (mounted_mode == DLM_LOCK_EX) {
908 		/* first mounter, keep both EX while doing first recovery */
909 		spin_lock(&ls->ls_recover_spin);
910 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
911 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
912 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
913 		spin_unlock(&ls->ls_recover_spin);
914 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
915 		return 0;
916 	}
917 
918 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
919 	if (error)
920 		goto fail;
921 
922 	/*
923 	 * We are not first mounter, now we need to wait for the control_lock
924 	 * lvb generation to be >= the generation from our first recover_done
925 	 * and all lvb bits to be clear (no pending journal recoveries.)
926 	 */
927 
928 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
929 		/* journals need recovery, wait until all are clear */
930 		fs_info(sdp, "control_mount wait for journal recovery\n");
931 		goto restart;
932 	}
933 
934 	spin_lock(&ls->ls_recover_spin);
935 	block_gen = ls->ls_recover_block;
936 	start_gen = ls->ls_recover_start;
937 	mount_gen = ls->ls_recover_mount;
938 
939 	if (lvb_gen < mount_gen) {
940 		/* wait for mounted nodes to update control_lock lvb to our
941 		   generation, which might include new recovery bits set */
942 		if (sdp->sd_args.ar_spectator) {
943 			fs_info(sdp, "Recovery is required. Waiting for a "
944 				"non-spectator to mount.\n");
945 			msleep_interruptible(1000);
946 		} else {
947 			fs_info(sdp, "control_mount wait1 block %u start %u "
948 				"mount %u lvb %u flags %lx\n", block_gen,
949 				start_gen, mount_gen, lvb_gen,
950 				ls->ls_recover_flags);
951 		}
952 		spin_unlock(&ls->ls_recover_spin);
953 		goto restart;
954 	}
955 
956 	if (lvb_gen != start_gen) {
957 		/* wait for mounted nodes to update control_lock lvb to the
958 		   latest recovery generation */
959 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
960 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
961 			lvb_gen, ls->ls_recover_flags);
962 		spin_unlock(&ls->ls_recover_spin);
963 		goto restart;
964 	}
965 
966 	if (block_gen == start_gen) {
967 		/* dlm recovery in progress, wait for it to finish */
968 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
969 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
970 			lvb_gen, ls->ls_recover_flags);
971 		spin_unlock(&ls->ls_recover_spin);
972 		goto restart;
973 	}
974 
975 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
976 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
977 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
978 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
979 	spin_unlock(&ls->ls_recover_spin);
980 	return 0;
981 
982 fail:
983 	mounted_unlock(sdp);
984 	control_unlock(sdp);
985 	return error;
986 }
987 
control_first_done(struct gfs2_sbd * sdp)988 static int control_first_done(struct gfs2_sbd *sdp)
989 {
990 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
991 	uint32_t start_gen, block_gen;
992 	int error;
993 
994 restart:
995 	spin_lock(&ls->ls_recover_spin);
996 	start_gen = ls->ls_recover_start;
997 	block_gen = ls->ls_recover_block;
998 
999 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1000 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1001 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1002 		/* sanity check, should not happen */
1003 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1004 		       start_gen, block_gen, ls->ls_recover_flags);
1005 		spin_unlock(&ls->ls_recover_spin);
1006 		control_unlock(sdp);
1007 		return -1;
1008 	}
1009 
1010 	if (start_gen == block_gen) {
1011 		/*
1012 		 * Wait for the end of a dlm recovery cycle to switch from
1013 		 * first mounter recovery.  We can ignore any recover_slot
1014 		 * callbacks between the recover_prep and next recover_done
1015 		 * because we are still the first mounter and any failed nodes
1016 		 * have not fully mounted, so they don't need recovery.
1017 		 */
1018 		spin_unlock(&ls->ls_recover_spin);
1019 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1020 
1021 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1022 			    TASK_UNINTERRUPTIBLE);
1023 		goto restart;
1024 	}
1025 
1026 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1027 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1028 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1029 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1030 	spin_unlock(&ls->ls_recover_spin);
1031 
1032 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1033 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1034 
1035 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1036 	if (error)
1037 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1038 
1039 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1040 	if (error)
1041 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1042 
1043 	return error;
1044 }
1045 
1046 /*
1047  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1048  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1049  * gfs2 jids start at 0, so jid = slot - 1)
1050  */
1051 
1052 #define RECOVER_SIZE_INC 16
1053 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1054 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1055 			    int num_slots)
1056 {
1057 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1058 	uint32_t *submit = NULL;
1059 	uint32_t *result = NULL;
1060 	uint32_t old_size, new_size;
1061 	int i, max_jid;
1062 
1063 	if (!ls->ls_lvb_bits) {
1064 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1065 		if (!ls->ls_lvb_bits)
1066 			return -ENOMEM;
1067 	}
1068 
1069 	max_jid = 0;
1070 	for (i = 0; i < num_slots; i++) {
1071 		if (max_jid < slots[i].slot - 1)
1072 			max_jid = slots[i].slot - 1;
1073 	}
1074 
1075 	old_size = ls->ls_recover_size;
1076 	new_size = old_size;
1077 	while (new_size < max_jid + 1)
1078 		new_size += RECOVER_SIZE_INC;
1079 	if (new_size == old_size)
1080 		return 0;
1081 
1082 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1083 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1084 	if (!submit || !result) {
1085 		kfree(submit);
1086 		kfree(result);
1087 		return -ENOMEM;
1088 	}
1089 
1090 	spin_lock(&ls->ls_recover_spin);
1091 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1092 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1093 	kfree(ls->ls_recover_submit);
1094 	kfree(ls->ls_recover_result);
1095 	ls->ls_recover_submit = submit;
1096 	ls->ls_recover_result = result;
1097 	ls->ls_recover_size = new_size;
1098 	spin_unlock(&ls->ls_recover_spin);
1099 	return 0;
1100 }
1101 
free_recover_size(struct lm_lockstruct * ls)1102 static void free_recover_size(struct lm_lockstruct *ls)
1103 {
1104 	kfree(ls->ls_lvb_bits);
1105 	kfree(ls->ls_recover_submit);
1106 	kfree(ls->ls_recover_result);
1107 	ls->ls_recover_submit = NULL;
1108 	ls->ls_recover_result = NULL;
1109 	ls->ls_recover_size = 0;
1110 	ls->ls_lvb_bits = NULL;
1111 }
1112 
1113 /* dlm calls before it does lock recovery */
1114 
gdlm_recover_prep(void * arg)1115 static void gdlm_recover_prep(void *arg)
1116 {
1117 	struct gfs2_sbd *sdp = arg;
1118 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1119 
1120 	if (gfs2_withdrawn(sdp)) {
1121 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1122 		return;
1123 	}
1124 	spin_lock(&ls->ls_recover_spin);
1125 	ls->ls_recover_block = ls->ls_recover_start;
1126 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1127 
1128 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1129 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1130 		spin_unlock(&ls->ls_recover_spin);
1131 		return;
1132 	}
1133 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1134 	spin_unlock(&ls->ls_recover_spin);
1135 }
1136 
1137 /* dlm calls after recover_prep has been completed on all lockspace members;
1138    identifies slot/jid of failed member */
1139 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1140 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1141 {
1142 	struct gfs2_sbd *sdp = arg;
1143 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1144 	int jid = slot->slot - 1;
1145 
1146 	if (gfs2_withdrawn(sdp)) {
1147 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1148 		       jid);
1149 		return;
1150 	}
1151 	spin_lock(&ls->ls_recover_spin);
1152 	if (ls->ls_recover_size < jid + 1) {
1153 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1154 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1155 		spin_unlock(&ls->ls_recover_spin);
1156 		return;
1157 	}
1158 
1159 	if (ls->ls_recover_submit[jid]) {
1160 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1161 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1162 	}
1163 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1164 	spin_unlock(&ls->ls_recover_spin);
1165 }
1166 
1167 /* dlm calls after recover_slot and after it completes lock recovery */
1168 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1169 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1170 			      int our_slot, uint32_t generation)
1171 {
1172 	struct gfs2_sbd *sdp = arg;
1173 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1174 
1175 	if (gfs2_withdrawn(sdp)) {
1176 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1177 		return;
1178 	}
1179 	/* ensure the ls jid arrays are large enough */
1180 	set_recover_size(sdp, slots, num_slots);
1181 
1182 	spin_lock(&ls->ls_recover_spin);
1183 	ls->ls_recover_start = generation;
1184 
1185 	if (!ls->ls_recover_mount) {
1186 		ls->ls_recover_mount = generation;
1187 		ls->ls_jid = our_slot - 1;
1188 	}
1189 
1190 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1191 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1192 
1193 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1194 	smp_mb__after_atomic();
1195 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1196 	spin_unlock(&ls->ls_recover_spin);
1197 }
1198 
1199 /* gfs2_recover thread has a journal recovery result */
1200 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1201 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1202 				 unsigned int result)
1203 {
1204 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1205 
1206 	if (gfs2_withdrawn(sdp)) {
1207 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1208 		       jid);
1209 		return;
1210 	}
1211 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1212 		return;
1213 
1214 	/* don't care about the recovery of own journal during mount */
1215 	if (jid == ls->ls_jid)
1216 		return;
1217 
1218 	spin_lock(&ls->ls_recover_spin);
1219 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1220 		spin_unlock(&ls->ls_recover_spin);
1221 		return;
1222 	}
1223 	if (ls->ls_recover_size < jid + 1) {
1224 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1225 		       jid, ls->ls_recover_size);
1226 		spin_unlock(&ls->ls_recover_spin);
1227 		return;
1228 	}
1229 
1230 	fs_info(sdp, "recover jid %d result %s\n", jid,
1231 		result == LM_RD_GAVEUP ? "busy" : "success");
1232 
1233 	ls->ls_recover_result[jid] = result;
1234 
1235 	/* GAVEUP means another node is recovering the journal; delay our
1236 	   next attempt to recover it, to give the other node a chance to
1237 	   finish before trying again */
1238 
1239 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1240 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1241 				   result == LM_RD_GAVEUP ? HZ : 0);
1242 	spin_unlock(&ls->ls_recover_spin);
1243 }
1244 
1245 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1246 	.recover_prep = gdlm_recover_prep,
1247 	.recover_slot = gdlm_recover_slot,
1248 	.recover_done = gdlm_recover_done,
1249 };
1250 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1251 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1252 {
1253 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1254 	char cluster[GFS2_LOCKNAME_LEN];
1255 	const char *fsname;
1256 	uint32_t flags;
1257 	int error, ops_result;
1258 
1259 	/*
1260 	 * initialize everything
1261 	 */
1262 
1263 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1264 	spin_lock_init(&ls->ls_recover_spin);
1265 	ls->ls_recover_flags = 0;
1266 	ls->ls_recover_mount = 0;
1267 	ls->ls_recover_start = 0;
1268 	ls->ls_recover_block = 0;
1269 	ls->ls_recover_size = 0;
1270 	ls->ls_recover_submit = NULL;
1271 	ls->ls_recover_result = NULL;
1272 	ls->ls_lvb_bits = NULL;
1273 
1274 	error = set_recover_size(sdp, NULL, 0);
1275 	if (error)
1276 		goto fail;
1277 
1278 	/*
1279 	 * prepare dlm_new_lockspace args
1280 	 */
1281 
1282 	fsname = strchr(table, ':');
1283 	if (!fsname) {
1284 		fs_info(sdp, "no fsname found\n");
1285 		error = -EINVAL;
1286 		goto fail_free;
1287 	}
1288 	memset(cluster, 0, sizeof(cluster));
1289 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1290 	fsname++;
1291 
1292 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1293 
1294 	/*
1295 	 * create/join lockspace
1296 	 */
1297 
1298 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1299 				  &gdlm_lockspace_ops, sdp, &ops_result,
1300 				  &ls->ls_dlm);
1301 	if (error) {
1302 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1303 		goto fail_free;
1304 	}
1305 
1306 	if (ops_result < 0) {
1307 		/*
1308 		 * dlm does not support ops callbacks,
1309 		 * old dlm_controld/gfs_controld are used, try without ops.
1310 		 */
1311 		fs_info(sdp, "dlm lockspace ops not used\n");
1312 		free_recover_size(ls);
1313 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1314 		return 0;
1315 	}
1316 
1317 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1318 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1319 		error = -EINVAL;
1320 		goto fail_release;
1321 	}
1322 
1323 	/*
1324 	 * control_mount() uses control_lock to determine first mounter,
1325 	 * and for later mounts, waits for any recoveries to be cleared.
1326 	 */
1327 
1328 	error = control_mount(sdp);
1329 	if (error) {
1330 		fs_err(sdp, "mount control error %d\n", error);
1331 		goto fail_release;
1332 	}
1333 
1334 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1335 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1336 	smp_mb__after_atomic();
1337 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1338 	return 0;
1339 
1340 fail_release:
1341 	dlm_release_lockspace(ls->ls_dlm, 2);
1342 fail_free:
1343 	free_recover_size(ls);
1344 fail:
1345 	return error;
1346 }
1347 
gdlm_first_done(struct gfs2_sbd * sdp)1348 static void gdlm_first_done(struct gfs2_sbd *sdp)
1349 {
1350 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1351 	int error;
1352 
1353 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1354 		return;
1355 
1356 	error = control_first_done(sdp);
1357 	if (error)
1358 		fs_err(sdp, "mount first_done error %d\n", error);
1359 }
1360 
gdlm_unmount(struct gfs2_sbd * sdp)1361 static void gdlm_unmount(struct gfs2_sbd *sdp)
1362 {
1363 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1364 
1365 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1366 		goto release;
1367 
1368 	/* wait for gfs2_control_wq to be done with this mount */
1369 
1370 	spin_lock(&ls->ls_recover_spin);
1371 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1372 	spin_unlock(&ls->ls_recover_spin);
1373 	flush_delayed_work(&sdp->sd_control_work);
1374 
1375 	/* mounted_lock and control_lock will be purged in dlm recovery */
1376 release:
1377 	if (ls->ls_dlm) {
1378 		dlm_release_lockspace(ls->ls_dlm, 2);
1379 		ls->ls_dlm = NULL;
1380 	}
1381 
1382 	free_recover_size(ls);
1383 }
1384 
1385 static const match_table_t dlm_tokens = {
1386 	{ Opt_jid, "jid=%d"},
1387 	{ Opt_id, "id=%d"},
1388 	{ Opt_first, "first=%d"},
1389 	{ Opt_nodir, "nodir=%d"},
1390 	{ Opt_err, NULL },
1391 };
1392 
1393 const struct lm_lockops gfs2_dlm_ops = {
1394 	.lm_proto_name = "lock_dlm",
1395 	.lm_mount = gdlm_mount,
1396 	.lm_first_done = gdlm_first_done,
1397 	.lm_recovery_result = gdlm_recovery_result,
1398 	.lm_unmount = gdlm_unmount,
1399 	.lm_put_lock = gdlm_put_lock,
1400 	.lm_lock = gdlm_lock,
1401 	.lm_cancel = gdlm_cancel,
1402 	.lm_tokens = &dlm_tokens,
1403 };
1404 
1405