1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
30 */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 s64 sample)
33 {
34 /*
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
42 *
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
45 * entry
46 *
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
50 */
51
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
54 index++;
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57
58 /**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
61 *
62 * This assumes that gl->gl_dstamp has been set earlier.
63 *
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
67 *
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
74 */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 s64 rtt;
82
83 preempt_disable();
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
88 preempt_enable();
89
90 trace_gfs2_glock_lock_time(gl, rtt);
91 }
92
93 /**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
96 *
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
100 */
101
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
106 ktime_t dstamp;
107 s64 irt;
108
109 preempt_disable();
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
116 preempt_enable();
117 }
118
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 struct gfs2_glock *gl = arg;
122 unsigned ret = gl->gl_state;
123
124 gfs2_update_reply_times(gl);
125 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126
127 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129
130 switch (gl->gl_lksb.sb_status) {
131 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 if (gl->gl_ops->go_free)
133 gl->gl_ops->go_free(gl);
134 gfs2_glock_free(gl);
135 return;
136 case -DLM_ECANCEL: /* Cancel while getting lock */
137 ret |= LM_OUT_CANCELED;
138 goto out;
139 case -EAGAIN: /* Try lock fails */
140 case -EDEADLK: /* Deadlock detected */
141 goto out;
142 case -ETIMEDOUT: /* Canceled due to timeout */
143 ret |= LM_OUT_ERROR;
144 goto out;
145 case 0: /* Success */
146 break;
147 default: /* Something unexpected */
148 BUG();
149 }
150
151 ret = gl->gl_req;
152 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 if (gl->gl_req == LM_ST_SHARED)
154 ret = LM_ST_DEFERRED;
155 else if (gl->gl_req == LM_ST_DEFERRED)
156 ret = LM_ST_SHARED;
157 else
158 BUG();
159 }
160
161 set_bit(GLF_INITIAL, &gl->gl_flags);
162 gfs2_glock_complete(gl, ret);
163 return;
164 out:
165 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 gl->gl_lksb.sb_lkid = 0;
167 gfs2_glock_complete(gl, ret);
168 }
169
gdlm_bast(void * arg,int mode)170 static void gdlm_bast(void *arg, int mode)
171 {
172 struct gfs2_glock *gl = arg;
173
174 switch (mode) {
175 case DLM_LOCK_EX:
176 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 break;
178 case DLM_LOCK_CW:
179 gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 break;
181 case DLM_LOCK_PR:
182 gfs2_glock_cb(gl, LM_ST_SHARED);
183 break;
184 default:
185 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 BUG();
187 }
188 }
189
190 /* convert gfs lock-state to dlm lock-mode */
191
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 switch (lmstate) {
195 case LM_ST_UNLOCKED:
196 return DLM_LOCK_NL;
197 case LM_ST_EXCLUSIVE:
198 return DLM_LOCK_EX;
199 case LM_ST_DEFERRED:
200 return DLM_LOCK_CW;
201 case LM_ST_SHARED:
202 return DLM_LOCK_PR;
203 }
204 fs_err(sdp, "unknown LM state %d\n", lmstate);
205 BUG();
206 return -1;
207 }
208
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 const int req)
211 {
212 u32 lkf = 0;
213
214 if (gl->gl_lksb.sb_lvbptr)
215 lkf |= DLM_LKF_VALBLK;
216
217 if (gfs_flags & LM_FLAG_TRY)
218 lkf |= DLM_LKF_NOQUEUE;
219
220 if (gfs_flags & LM_FLAG_TRY_1CB) {
221 lkf |= DLM_LKF_NOQUEUE;
222 lkf |= DLM_LKF_NOQUEUEBAST;
223 }
224
225 if (gfs_flags & LM_FLAG_PRIORITY) {
226 lkf |= DLM_LKF_NOORDER;
227 lkf |= DLM_LKF_HEADQUE;
228 }
229
230 if (gfs_flags & LM_FLAG_ANY) {
231 if (req == DLM_LOCK_PR)
232 lkf |= DLM_LKF_ALTCW;
233 else if (req == DLM_LOCK_CW)
234 lkf |= DLM_LKF_ALTPR;
235 else
236 BUG();
237 }
238
239 if (gl->gl_lksb.sb_lkid != 0) {
240 lkf |= DLM_LKF_CONVERT;
241 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
242 lkf |= DLM_LKF_QUECVT;
243 }
244
245 return lkf;
246 }
247
gfs2_reverse_hex(char * c,u64 value)248 static void gfs2_reverse_hex(char *c, u64 value)
249 {
250 *c = '0';
251 while (value) {
252 *c-- = hex_asc[value & 0x0f];
253 value >>= 4;
254 }
255 }
256
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)257 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
258 unsigned int flags)
259 {
260 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
261 int req;
262 u32 lkf;
263 char strname[GDLM_STRNAME_BYTES] = "";
264
265 req = make_mode(gl->gl_name.ln_sbd, req_state);
266 lkf = make_flags(gl, flags, req);
267 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
268 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
269 if (gl->gl_lksb.sb_lkid) {
270 gfs2_update_request_times(gl);
271 } else {
272 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
273 strname[GDLM_STRNAME_BYTES - 1] = '\0';
274 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
275 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
276 gl->gl_dstamp = ktime_get_real();
277 }
278 /*
279 * Submit the actual lock request.
280 */
281
282 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
283 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
284 }
285
gdlm_put_lock(struct gfs2_glock * gl)286 static void gdlm_put_lock(struct gfs2_glock *gl)
287 {
288 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
289 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
290 int error;
291
292 if (gl->gl_lksb.sb_lkid == 0) {
293 gfs2_glock_free(gl);
294 return;
295 }
296
297 clear_bit(GLF_BLOCKING, &gl->gl_flags);
298 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
299 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
300 gfs2_update_request_times(gl);
301
302 /* don't want to call dlm if we've unmounted the lock protocol */
303 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
304 gfs2_glock_free(gl);
305 return;
306 }
307 /* don't want to skip dlm_unlock writing the lvb when lock has one */
308
309 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
310 !gl->gl_lksb.sb_lvbptr) {
311 gfs2_glock_free(gl);
312 return;
313 }
314
315 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
316 NULL, gl);
317 if (error) {
318 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
319 gl->gl_name.ln_type,
320 (unsigned long long)gl->gl_name.ln_number, error);
321 return;
322 }
323 }
324
gdlm_cancel(struct gfs2_glock * gl)325 static void gdlm_cancel(struct gfs2_glock *gl)
326 {
327 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
328 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
329 }
330
331 /*
332 * dlm/gfs2 recovery coordination using dlm_recover callbacks
333 *
334 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
335 * 1. dlm_controld sees lockspace members change
336 * 2. dlm_controld blocks dlm-kernel locking activity
337 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
338 * 4. dlm_controld starts and finishes its own user level recovery
339 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
340 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
341 * 7. dlm_recoverd does its own lock recovery
342 * 8. dlm_recoverd unblocks dlm-kernel locking activity
343 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
344 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
345 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
346 * 12. gfs2_recover dequeues and recovers journals of failed nodes
347 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
348 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
349 * 15. gfs2_control unblocks normal locking when all journals are recovered
350 *
351 * - failures during recovery
352 *
353 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
354 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
355 * recovering for a prior failure. gfs2_control needs a way to detect
356 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
357 * the recover_block and recover_start values.
358 *
359 * recover_done() provides a new lockspace generation number each time it
360 * is called (step 9). This generation number is saved as recover_start.
361 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
362 * recover_block = recover_start. So, while recover_block is equal to
363 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
364 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
365 *
366 * - more specific gfs2 steps in sequence above
367 *
368 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
369 * 6. recover_slot records any failed jids (maybe none)
370 * 9. recover_done sets recover_start = new generation number
371 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
372 * 12. gfs2_recover does journal recoveries for failed jids identified above
373 * 14. gfs2_control clears control_lock lvb bits for recovered jids
374 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
375 * again) then do nothing, otherwise if recover_start > recover_block
376 * then clear BLOCK_LOCKS.
377 *
378 * - parallel recovery steps across all nodes
379 *
380 * All nodes attempt to update the control_lock lvb with the new generation
381 * number and jid bits, but only the first to get the control_lock EX will
382 * do so; others will see that it's already done (lvb already contains new
383 * generation number.)
384 *
385 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
386 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
387 * . One node gets control_lock first and writes the lvb, others see it's done
388 * . All nodes attempt to recover jids for which they see control_lock bits set
389 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
390 * . All nodes will eventually see all lvb bits clear and unblock locks
391 *
392 * - is there a problem with clearing an lvb bit that should be set
393 * and missing a journal recovery?
394 *
395 * 1. jid fails
396 * 2. lvb bit set for step 1
397 * 3. jid recovered for step 1
398 * 4. jid taken again (new mount)
399 * 5. jid fails (for step 4)
400 * 6. lvb bit set for step 5 (will already be set)
401 * 7. lvb bit cleared for step 3
402 *
403 * This is not a problem because the failure in step 5 does not
404 * require recovery, because the mount in step 4 could not have
405 * progressed far enough to unblock locks and access the fs. The
406 * control_mount() function waits for all recoveries to be complete
407 * for the latest lockspace generation before ever unblocking locks
408 * and returning. The mount in step 4 waits until the recovery in
409 * step 1 is done.
410 *
411 * - special case of first mounter: first node to mount the fs
412 *
413 * The first node to mount a gfs2 fs needs to check all the journals
414 * and recover any that need recovery before other nodes are allowed
415 * to mount the fs. (Others may begin mounting, but they must wait
416 * for the first mounter to be done before taking locks on the fs
417 * or accessing the fs.) This has two parts:
418 *
419 * 1. The mounted_lock tells a node it's the first to mount the fs.
420 * Each node holds the mounted_lock in PR while it's mounted.
421 * Each node tries to acquire the mounted_lock in EX when it mounts.
422 * If a node is granted the mounted_lock EX it means there are no
423 * other mounted nodes (no PR locks exist), and it is the first mounter.
424 * The mounted_lock is demoted to PR when first recovery is done, so
425 * others will fail to get an EX lock, but will get a PR lock.
426 *
427 * 2. The control_lock blocks others in control_mount() while the first
428 * mounter is doing first mount recovery of all journals.
429 * A mounting node needs to acquire control_lock in EX mode before
430 * it can proceed. The first mounter holds control_lock in EX while doing
431 * the first mount recovery, blocking mounts from other nodes, then demotes
432 * control_lock to NL when it's done (others_may_mount/first_done),
433 * allowing other nodes to continue mounting.
434 *
435 * first mounter:
436 * control_lock EX/NOQUEUE success
437 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
438 * set first=1
439 * do first mounter recovery
440 * mounted_lock EX->PR
441 * control_lock EX->NL, write lvb generation
442 *
443 * other mounter:
444 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
445 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
446 * mounted_lock PR/NOQUEUE success
447 * read lvb generation
448 * control_lock EX->NL
449 * set first=0
450 *
451 * - mount during recovery
452 *
453 * If a node mounts while others are doing recovery (not first mounter),
454 * the mounting node will get its initial recover_done() callback without
455 * having seen any previous failures/callbacks.
456 *
457 * It must wait for all recoveries preceding its mount to be finished
458 * before it unblocks locks. It does this by repeating the "other mounter"
459 * steps above until the lvb generation number is >= its mount generation
460 * number (from initial recover_done) and all lvb bits are clear.
461 *
462 * - control_lock lvb format
463 *
464 * 4 bytes generation number: the latest dlm lockspace generation number
465 * from recover_done callback. Indicates the jid bitmap has been updated
466 * to reflect all slot failures through that generation.
467 * 4 bytes unused.
468 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
469 * that jid N needs recovery.
470 */
471
472 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
473
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)474 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
475 char *lvb_bits)
476 {
477 __le32 gen;
478 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
479 memcpy(&gen, lvb_bits, sizeof(__le32));
480 *lvb_gen = le32_to_cpu(gen);
481 }
482
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)483 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
484 char *lvb_bits)
485 {
486 __le32 gen;
487 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
488 gen = cpu_to_le32(lvb_gen);
489 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
490 }
491
all_jid_bits_clear(char * lvb)492 static int all_jid_bits_clear(char *lvb)
493 {
494 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
495 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
496 }
497
sync_wait_cb(void * arg)498 static void sync_wait_cb(void *arg)
499 {
500 struct lm_lockstruct *ls = arg;
501 complete(&ls->ls_sync_wait);
502 }
503
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)504 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
505 {
506 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
507 int error;
508
509 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
510 if (error) {
511 fs_err(sdp, "%s lkid %x error %d\n",
512 name, lksb->sb_lkid, error);
513 return error;
514 }
515
516 wait_for_completion(&ls->ls_sync_wait);
517
518 if (lksb->sb_status != -DLM_EUNLOCK) {
519 fs_err(sdp, "%s lkid %x status %d\n",
520 name, lksb->sb_lkid, lksb->sb_status);
521 return -1;
522 }
523 return 0;
524 }
525
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)526 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
527 unsigned int num, struct dlm_lksb *lksb, char *name)
528 {
529 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
530 char strname[GDLM_STRNAME_BYTES];
531 int error, status;
532
533 memset(strname, 0, GDLM_STRNAME_BYTES);
534 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
535
536 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
537 strname, GDLM_STRNAME_BYTES - 1,
538 0, sync_wait_cb, ls, NULL);
539 if (error) {
540 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
541 name, lksb->sb_lkid, flags, mode, error);
542 return error;
543 }
544
545 wait_for_completion(&ls->ls_sync_wait);
546
547 status = lksb->sb_status;
548
549 if (status && status != -EAGAIN) {
550 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
551 name, lksb->sb_lkid, flags, mode, status);
552 }
553
554 return status;
555 }
556
mounted_unlock(struct gfs2_sbd * sdp)557 static int mounted_unlock(struct gfs2_sbd *sdp)
558 {
559 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
560 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
561 }
562
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)563 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
564 {
565 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
566 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
567 &ls->ls_mounted_lksb, "mounted_lock");
568 }
569
control_unlock(struct gfs2_sbd * sdp)570 static int control_unlock(struct gfs2_sbd *sdp)
571 {
572 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
573 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
574 }
575
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)576 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
577 {
578 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
580 &ls->ls_control_lksb, "control_lock");
581 }
582
583 /**
584 * remote_withdraw - react to a node withdrawing from the file system
585 * @sdp: The superblock
586 */
remote_withdraw(struct gfs2_sbd * sdp)587 static void remote_withdraw(struct gfs2_sbd *sdp)
588 {
589 struct gfs2_jdesc *jd;
590 int ret = 0, count = 0;
591
592 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
593 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
594 continue;
595 ret = gfs2_recover_journal(jd, true);
596 if (ret)
597 break;
598 count++;
599 }
600
601 /* Now drop the additional reference we acquired */
602 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
603 }
604
gfs2_control_func(struct work_struct * work)605 static void gfs2_control_func(struct work_struct *work)
606 {
607 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
608 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
609 uint32_t block_gen, start_gen, lvb_gen, flags;
610 int recover_set = 0;
611 int write_lvb = 0;
612 int recover_size;
613 int i, error;
614
615 /* First check for other nodes that may have done a withdraw. */
616 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
617 remote_withdraw(sdp);
618 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
619 return;
620 }
621
622 spin_lock(&ls->ls_recover_spin);
623 /*
624 * No MOUNT_DONE means we're still mounting; control_mount()
625 * will set this flag, after which this thread will take over
626 * all further clearing of BLOCK_LOCKS.
627 *
628 * FIRST_MOUNT means this node is doing first mounter recovery,
629 * for which recovery control is handled by
630 * control_mount()/control_first_done(), not this thread.
631 */
632 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
633 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
634 spin_unlock(&ls->ls_recover_spin);
635 return;
636 }
637 block_gen = ls->ls_recover_block;
638 start_gen = ls->ls_recover_start;
639 spin_unlock(&ls->ls_recover_spin);
640
641 /*
642 * Equal block_gen and start_gen implies we are between
643 * recover_prep and recover_done callbacks, which means
644 * dlm recovery is in progress and dlm locking is blocked.
645 * There's no point trying to do any work until recover_done.
646 */
647
648 if (block_gen == start_gen)
649 return;
650
651 /*
652 * Propagate recover_submit[] and recover_result[] to lvb:
653 * dlm_recoverd adds to recover_submit[] jids needing recovery
654 * gfs2_recover adds to recover_result[] journal recovery results
655 *
656 * set lvb bit for jids in recover_submit[] if the lvb has not
657 * yet been updated for the generation of the failure
658 *
659 * clear lvb bit for jids in recover_result[] if the result of
660 * the journal recovery is SUCCESS
661 */
662
663 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
664 if (error) {
665 fs_err(sdp, "control lock EX error %d\n", error);
666 return;
667 }
668
669 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
670
671 spin_lock(&ls->ls_recover_spin);
672 if (block_gen != ls->ls_recover_block ||
673 start_gen != ls->ls_recover_start) {
674 fs_info(sdp, "recover generation %u block1 %u %u\n",
675 start_gen, block_gen, ls->ls_recover_block);
676 spin_unlock(&ls->ls_recover_spin);
677 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
678 return;
679 }
680
681 recover_size = ls->ls_recover_size;
682
683 if (lvb_gen <= start_gen) {
684 /*
685 * Clear lvb bits for jids we've successfully recovered.
686 * Because all nodes attempt to recover failed journals,
687 * a journal can be recovered multiple times successfully
688 * in succession. Only the first will really do recovery,
689 * the others find it clean, but still report a successful
690 * recovery. So, another node may have already recovered
691 * the jid and cleared the lvb bit for it.
692 */
693 for (i = 0; i < recover_size; i++) {
694 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
695 continue;
696
697 ls->ls_recover_result[i] = 0;
698
699 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
700 continue;
701
702 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
703 write_lvb = 1;
704 }
705 }
706
707 if (lvb_gen == start_gen) {
708 /*
709 * Failed slots before start_gen are already set in lvb.
710 */
711 for (i = 0; i < recover_size; i++) {
712 if (!ls->ls_recover_submit[i])
713 continue;
714 if (ls->ls_recover_submit[i] < lvb_gen)
715 ls->ls_recover_submit[i] = 0;
716 }
717 } else if (lvb_gen < start_gen) {
718 /*
719 * Failed slots before start_gen are not yet set in lvb.
720 */
721 for (i = 0; i < recover_size; i++) {
722 if (!ls->ls_recover_submit[i])
723 continue;
724 if (ls->ls_recover_submit[i] < start_gen) {
725 ls->ls_recover_submit[i] = 0;
726 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
727 }
728 }
729 /* even if there are no bits to set, we need to write the
730 latest generation to the lvb */
731 write_lvb = 1;
732 } else {
733 /*
734 * we should be getting a recover_done() for lvb_gen soon
735 */
736 }
737 spin_unlock(&ls->ls_recover_spin);
738
739 if (write_lvb) {
740 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
741 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
742 } else {
743 flags = DLM_LKF_CONVERT;
744 }
745
746 error = control_lock(sdp, DLM_LOCK_NL, flags);
747 if (error) {
748 fs_err(sdp, "control lock NL error %d\n", error);
749 return;
750 }
751
752 /*
753 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
754 * and clear a jid bit in the lvb if the recovery is a success.
755 * Eventually all journals will be recovered, all jid bits will
756 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
757 */
758
759 for (i = 0; i < recover_size; i++) {
760 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
761 fs_info(sdp, "recover generation %u jid %d\n",
762 start_gen, i);
763 gfs2_recover_set(sdp, i);
764 recover_set++;
765 }
766 }
767 if (recover_set)
768 return;
769
770 /*
771 * No more jid bits set in lvb, all recovery is done, unblock locks
772 * (unless a new recover_prep callback has occured blocking locks
773 * again while working above)
774 */
775
776 spin_lock(&ls->ls_recover_spin);
777 if (ls->ls_recover_block == block_gen &&
778 ls->ls_recover_start == start_gen) {
779 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
780 spin_unlock(&ls->ls_recover_spin);
781 fs_info(sdp, "recover generation %u done\n", start_gen);
782 gfs2_glock_thaw(sdp);
783 } else {
784 fs_info(sdp, "recover generation %u block2 %u %u\n",
785 start_gen, block_gen, ls->ls_recover_block);
786 spin_unlock(&ls->ls_recover_spin);
787 }
788 }
789
control_mount(struct gfs2_sbd * sdp)790 static int control_mount(struct gfs2_sbd *sdp)
791 {
792 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
793 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
794 int mounted_mode;
795 int retries = 0;
796 int error;
797
798 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
799 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
800 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
801 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
802 init_completion(&ls->ls_sync_wait);
803
804 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
805
806 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
807 if (error) {
808 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
809 return error;
810 }
811
812 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
813 if (error) {
814 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
815 control_unlock(sdp);
816 return error;
817 }
818 mounted_mode = DLM_LOCK_NL;
819
820 restart:
821 if (retries++ && signal_pending(current)) {
822 error = -EINTR;
823 goto fail;
824 }
825
826 /*
827 * We always start with both locks in NL. control_lock is
828 * demoted to NL below so we don't need to do it here.
829 */
830
831 if (mounted_mode != DLM_LOCK_NL) {
832 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
833 if (error)
834 goto fail;
835 mounted_mode = DLM_LOCK_NL;
836 }
837
838 /*
839 * Other nodes need to do some work in dlm recovery and gfs2_control
840 * before the recover_done and control_lock will be ready for us below.
841 * A delay here is not required but often avoids having to retry.
842 */
843
844 msleep_interruptible(500);
845
846 /*
847 * Acquire control_lock in EX and mounted_lock in either EX or PR.
848 * control_lock lvb keeps track of any pending journal recoveries.
849 * mounted_lock indicates if any other nodes have the fs mounted.
850 */
851
852 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
853 if (error == -EAGAIN) {
854 goto restart;
855 } else if (error) {
856 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
857 goto fail;
858 }
859
860 /**
861 * If we're a spectator, we don't want to take the lock in EX because
862 * we cannot do the first-mount responsibility it implies: recovery.
863 */
864 if (sdp->sd_args.ar_spectator)
865 goto locks_done;
866
867 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
868 if (!error) {
869 mounted_mode = DLM_LOCK_EX;
870 goto locks_done;
871 } else if (error != -EAGAIN) {
872 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
873 goto fail;
874 }
875
876 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
877 if (!error) {
878 mounted_mode = DLM_LOCK_PR;
879 goto locks_done;
880 } else {
881 /* not even -EAGAIN should happen here */
882 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
883 goto fail;
884 }
885
886 locks_done:
887 /*
888 * If we got both locks above in EX, then we're the first mounter.
889 * If not, then we need to wait for the control_lock lvb to be
890 * updated by other mounted nodes to reflect our mount generation.
891 *
892 * In simple first mounter cases, first mounter will see zero lvb_gen,
893 * but in cases where all existing nodes leave/fail before mounting
894 * nodes finish control_mount, then all nodes will be mounting and
895 * lvb_gen will be non-zero.
896 */
897
898 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
899
900 if (lvb_gen == 0xFFFFFFFF) {
901 /* special value to force mount attempts to fail */
902 fs_err(sdp, "control_mount control_lock disabled\n");
903 error = -EINVAL;
904 goto fail;
905 }
906
907 if (mounted_mode == DLM_LOCK_EX) {
908 /* first mounter, keep both EX while doing first recovery */
909 spin_lock(&ls->ls_recover_spin);
910 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
911 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
912 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
913 spin_unlock(&ls->ls_recover_spin);
914 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
915 return 0;
916 }
917
918 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
919 if (error)
920 goto fail;
921
922 /*
923 * We are not first mounter, now we need to wait for the control_lock
924 * lvb generation to be >= the generation from our first recover_done
925 * and all lvb bits to be clear (no pending journal recoveries.)
926 */
927
928 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
929 /* journals need recovery, wait until all are clear */
930 fs_info(sdp, "control_mount wait for journal recovery\n");
931 goto restart;
932 }
933
934 spin_lock(&ls->ls_recover_spin);
935 block_gen = ls->ls_recover_block;
936 start_gen = ls->ls_recover_start;
937 mount_gen = ls->ls_recover_mount;
938
939 if (lvb_gen < mount_gen) {
940 /* wait for mounted nodes to update control_lock lvb to our
941 generation, which might include new recovery bits set */
942 if (sdp->sd_args.ar_spectator) {
943 fs_info(sdp, "Recovery is required. Waiting for a "
944 "non-spectator to mount.\n");
945 msleep_interruptible(1000);
946 } else {
947 fs_info(sdp, "control_mount wait1 block %u start %u "
948 "mount %u lvb %u flags %lx\n", block_gen,
949 start_gen, mount_gen, lvb_gen,
950 ls->ls_recover_flags);
951 }
952 spin_unlock(&ls->ls_recover_spin);
953 goto restart;
954 }
955
956 if (lvb_gen != start_gen) {
957 /* wait for mounted nodes to update control_lock lvb to the
958 latest recovery generation */
959 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
960 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
961 lvb_gen, ls->ls_recover_flags);
962 spin_unlock(&ls->ls_recover_spin);
963 goto restart;
964 }
965
966 if (block_gen == start_gen) {
967 /* dlm recovery in progress, wait for it to finish */
968 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
969 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
970 lvb_gen, ls->ls_recover_flags);
971 spin_unlock(&ls->ls_recover_spin);
972 goto restart;
973 }
974
975 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
976 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
977 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
978 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
979 spin_unlock(&ls->ls_recover_spin);
980 return 0;
981
982 fail:
983 mounted_unlock(sdp);
984 control_unlock(sdp);
985 return error;
986 }
987
control_first_done(struct gfs2_sbd * sdp)988 static int control_first_done(struct gfs2_sbd *sdp)
989 {
990 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
991 uint32_t start_gen, block_gen;
992 int error;
993
994 restart:
995 spin_lock(&ls->ls_recover_spin);
996 start_gen = ls->ls_recover_start;
997 block_gen = ls->ls_recover_block;
998
999 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1000 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1001 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1002 /* sanity check, should not happen */
1003 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1004 start_gen, block_gen, ls->ls_recover_flags);
1005 spin_unlock(&ls->ls_recover_spin);
1006 control_unlock(sdp);
1007 return -1;
1008 }
1009
1010 if (start_gen == block_gen) {
1011 /*
1012 * Wait for the end of a dlm recovery cycle to switch from
1013 * first mounter recovery. We can ignore any recover_slot
1014 * callbacks between the recover_prep and next recover_done
1015 * because we are still the first mounter and any failed nodes
1016 * have not fully mounted, so they don't need recovery.
1017 */
1018 spin_unlock(&ls->ls_recover_spin);
1019 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1020
1021 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1022 TASK_UNINTERRUPTIBLE);
1023 goto restart;
1024 }
1025
1026 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1027 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1028 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1029 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1030 spin_unlock(&ls->ls_recover_spin);
1031
1032 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1033 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1034
1035 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1036 if (error)
1037 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1038
1039 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1040 if (error)
1041 fs_err(sdp, "control_first_done control NL error %d\n", error);
1042
1043 return error;
1044 }
1045
1046 /*
1047 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1048 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1049 * gfs2 jids start at 0, so jid = slot - 1)
1050 */
1051
1052 #define RECOVER_SIZE_INC 16
1053
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1054 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1055 int num_slots)
1056 {
1057 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1058 uint32_t *submit = NULL;
1059 uint32_t *result = NULL;
1060 uint32_t old_size, new_size;
1061 int i, max_jid;
1062
1063 if (!ls->ls_lvb_bits) {
1064 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1065 if (!ls->ls_lvb_bits)
1066 return -ENOMEM;
1067 }
1068
1069 max_jid = 0;
1070 for (i = 0; i < num_slots; i++) {
1071 if (max_jid < slots[i].slot - 1)
1072 max_jid = slots[i].slot - 1;
1073 }
1074
1075 old_size = ls->ls_recover_size;
1076 new_size = old_size;
1077 while (new_size < max_jid + 1)
1078 new_size += RECOVER_SIZE_INC;
1079 if (new_size == old_size)
1080 return 0;
1081
1082 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1083 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1084 if (!submit || !result) {
1085 kfree(submit);
1086 kfree(result);
1087 return -ENOMEM;
1088 }
1089
1090 spin_lock(&ls->ls_recover_spin);
1091 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1092 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1093 kfree(ls->ls_recover_submit);
1094 kfree(ls->ls_recover_result);
1095 ls->ls_recover_submit = submit;
1096 ls->ls_recover_result = result;
1097 ls->ls_recover_size = new_size;
1098 spin_unlock(&ls->ls_recover_spin);
1099 return 0;
1100 }
1101
free_recover_size(struct lm_lockstruct * ls)1102 static void free_recover_size(struct lm_lockstruct *ls)
1103 {
1104 kfree(ls->ls_lvb_bits);
1105 kfree(ls->ls_recover_submit);
1106 kfree(ls->ls_recover_result);
1107 ls->ls_recover_submit = NULL;
1108 ls->ls_recover_result = NULL;
1109 ls->ls_recover_size = 0;
1110 ls->ls_lvb_bits = NULL;
1111 }
1112
1113 /* dlm calls before it does lock recovery */
1114
gdlm_recover_prep(void * arg)1115 static void gdlm_recover_prep(void *arg)
1116 {
1117 struct gfs2_sbd *sdp = arg;
1118 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1119
1120 if (gfs2_withdrawn(sdp)) {
1121 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1122 return;
1123 }
1124 spin_lock(&ls->ls_recover_spin);
1125 ls->ls_recover_block = ls->ls_recover_start;
1126 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1127
1128 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1129 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1130 spin_unlock(&ls->ls_recover_spin);
1131 return;
1132 }
1133 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1134 spin_unlock(&ls->ls_recover_spin);
1135 }
1136
1137 /* dlm calls after recover_prep has been completed on all lockspace members;
1138 identifies slot/jid of failed member */
1139
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1140 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1141 {
1142 struct gfs2_sbd *sdp = arg;
1143 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1144 int jid = slot->slot - 1;
1145
1146 if (gfs2_withdrawn(sdp)) {
1147 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1148 jid);
1149 return;
1150 }
1151 spin_lock(&ls->ls_recover_spin);
1152 if (ls->ls_recover_size < jid + 1) {
1153 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1154 jid, ls->ls_recover_block, ls->ls_recover_size);
1155 spin_unlock(&ls->ls_recover_spin);
1156 return;
1157 }
1158
1159 if (ls->ls_recover_submit[jid]) {
1160 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1161 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1162 }
1163 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1164 spin_unlock(&ls->ls_recover_spin);
1165 }
1166
1167 /* dlm calls after recover_slot and after it completes lock recovery */
1168
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1169 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1170 int our_slot, uint32_t generation)
1171 {
1172 struct gfs2_sbd *sdp = arg;
1173 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1174
1175 if (gfs2_withdrawn(sdp)) {
1176 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1177 return;
1178 }
1179 /* ensure the ls jid arrays are large enough */
1180 set_recover_size(sdp, slots, num_slots);
1181
1182 spin_lock(&ls->ls_recover_spin);
1183 ls->ls_recover_start = generation;
1184
1185 if (!ls->ls_recover_mount) {
1186 ls->ls_recover_mount = generation;
1187 ls->ls_jid = our_slot - 1;
1188 }
1189
1190 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1191 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1192
1193 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1194 smp_mb__after_atomic();
1195 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1196 spin_unlock(&ls->ls_recover_spin);
1197 }
1198
1199 /* gfs2_recover thread has a journal recovery result */
1200
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1201 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1202 unsigned int result)
1203 {
1204 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1205
1206 if (gfs2_withdrawn(sdp)) {
1207 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1208 jid);
1209 return;
1210 }
1211 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1212 return;
1213
1214 /* don't care about the recovery of own journal during mount */
1215 if (jid == ls->ls_jid)
1216 return;
1217
1218 spin_lock(&ls->ls_recover_spin);
1219 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1220 spin_unlock(&ls->ls_recover_spin);
1221 return;
1222 }
1223 if (ls->ls_recover_size < jid + 1) {
1224 fs_err(sdp, "recovery_result jid %d short size %d\n",
1225 jid, ls->ls_recover_size);
1226 spin_unlock(&ls->ls_recover_spin);
1227 return;
1228 }
1229
1230 fs_info(sdp, "recover jid %d result %s\n", jid,
1231 result == LM_RD_GAVEUP ? "busy" : "success");
1232
1233 ls->ls_recover_result[jid] = result;
1234
1235 /* GAVEUP means another node is recovering the journal; delay our
1236 next attempt to recover it, to give the other node a chance to
1237 finish before trying again */
1238
1239 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1240 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1241 result == LM_RD_GAVEUP ? HZ : 0);
1242 spin_unlock(&ls->ls_recover_spin);
1243 }
1244
1245 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1246 .recover_prep = gdlm_recover_prep,
1247 .recover_slot = gdlm_recover_slot,
1248 .recover_done = gdlm_recover_done,
1249 };
1250
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1251 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1252 {
1253 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1254 char cluster[GFS2_LOCKNAME_LEN];
1255 const char *fsname;
1256 uint32_t flags;
1257 int error, ops_result;
1258
1259 /*
1260 * initialize everything
1261 */
1262
1263 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1264 spin_lock_init(&ls->ls_recover_spin);
1265 ls->ls_recover_flags = 0;
1266 ls->ls_recover_mount = 0;
1267 ls->ls_recover_start = 0;
1268 ls->ls_recover_block = 0;
1269 ls->ls_recover_size = 0;
1270 ls->ls_recover_submit = NULL;
1271 ls->ls_recover_result = NULL;
1272 ls->ls_lvb_bits = NULL;
1273
1274 error = set_recover_size(sdp, NULL, 0);
1275 if (error)
1276 goto fail;
1277
1278 /*
1279 * prepare dlm_new_lockspace args
1280 */
1281
1282 fsname = strchr(table, ':');
1283 if (!fsname) {
1284 fs_info(sdp, "no fsname found\n");
1285 error = -EINVAL;
1286 goto fail_free;
1287 }
1288 memset(cluster, 0, sizeof(cluster));
1289 memcpy(cluster, table, strlen(table) - strlen(fsname));
1290 fsname++;
1291
1292 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1293
1294 /*
1295 * create/join lockspace
1296 */
1297
1298 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1299 &gdlm_lockspace_ops, sdp, &ops_result,
1300 &ls->ls_dlm);
1301 if (error) {
1302 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1303 goto fail_free;
1304 }
1305
1306 if (ops_result < 0) {
1307 /*
1308 * dlm does not support ops callbacks,
1309 * old dlm_controld/gfs_controld are used, try without ops.
1310 */
1311 fs_info(sdp, "dlm lockspace ops not used\n");
1312 free_recover_size(ls);
1313 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1314 return 0;
1315 }
1316
1317 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1318 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1319 error = -EINVAL;
1320 goto fail_release;
1321 }
1322
1323 /*
1324 * control_mount() uses control_lock to determine first mounter,
1325 * and for later mounts, waits for any recoveries to be cleared.
1326 */
1327
1328 error = control_mount(sdp);
1329 if (error) {
1330 fs_err(sdp, "mount control error %d\n", error);
1331 goto fail_release;
1332 }
1333
1334 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1335 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1336 smp_mb__after_atomic();
1337 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1338 return 0;
1339
1340 fail_release:
1341 dlm_release_lockspace(ls->ls_dlm, 2);
1342 fail_free:
1343 free_recover_size(ls);
1344 fail:
1345 return error;
1346 }
1347
gdlm_first_done(struct gfs2_sbd * sdp)1348 static void gdlm_first_done(struct gfs2_sbd *sdp)
1349 {
1350 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1351 int error;
1352
1353 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1354 return;
1355
1356 error = control_first_done(sdp);
1357 if (error)
1358 fs_err(sdp, "mount first_done error %d\n", error);
1359 }
1360
gdlm_unmount(struct gfs2_sbd * sdp)1361 static void gdlm_unmount(struct gfs2_sbd *sdp)
1362 {
1363 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1364
1365 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1366 goto release;
1367
1368 /* wait for gfs2_control_wq to be done with this mount */
1369
1370 spin_lock(&ls->ls_recover_spin);
1371 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1372 spin_unlock(&ls->ls_recover_spin);
1373 flush_delayed_work(&sdp->sd_control_work);
1374
1375 /* mounted_lock and control_lock will be purged in dlm recovery */
1376 release:
1377 if (ls->ls_dlm) {
1378 dlm_release_lockspace(ls->ls_dlm, 2);
1379 ls->ls_dlm = NULL;
1380 }
1381
1382 free_recover_size(ls);
1383 }
1384
1385 static const match_table_t dlm_tokens = {
1386 { Opt_jid, "jid=%d"},
1387 { Opt_id, "id=%d"},
1388 { Opt_first, "first=%d"},
1389 { Opt_nodir, "nodir=%d"},
1390 { Opt_err, NULL },
1391 };
1392
1393 const struct lm_lockops gfs2_dlm_ops = {
1394 .lm_proto_name = "lock_dlm",
1395 .lm_mount = gdlm_mount,
1396 .lm_first_done = gdlm_first_done,
1397 .lm_recovery_result = gdlm_recovery_result,
1398 .lm_unmount = gdlm_unmount,
1399 .lm_put_lock = gdlm_put_lock,
1400 .lm_lock = gdlm_lock,
1401 .lm_cancel = gdlm_cancel,
1402 .lm_tokens = &dlm_tokens,
1403 };
1404
1405