1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28 #include <linux/fileattr.h>
29
30 #include "gfs2.h"
31 #include "incore.h"
32 #include "bmap.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "glock.h"
36 #include "glops.h"
37 #include "inode.h"
38 #include "log.h"
39 #include "meta_io.h"
40 #include "quota.h"
41 #include "rgrp.h"
42 #include "trans.h"
43 #include "util.h"
44
45 /**
46 * gfs2_llseek - seek to a location in a file
47 * @file: the file
48 * @offset: the offset
49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
50 *
51 * SEEK_END requires the glock for the file because it references the
52 * file's size.
53 *
54 * Returns: The new offset, or errno
55 */
56
gfs2_llseek(struct file * file,loff_t offset,int whence)57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
58 {
59 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
60 struct gfs2_holder i_gh;
61 loff_t error;
62
63 switch (whence) {
64 case SEEK_END:
65 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
66 &i_gh);
67 if (!error) {
68 error = generic_file_llseek(file, offset, whence);
69 gfs2_glock_dq_uninit(&i_gh);
70 }
71 break;
72
73 case SEEK_DATA:
74 error = gfs2_seek_data(file, offset);
75 break;
76
77 case SEEK_HOLE:
78 error = gfs2_seek_hole(file, offset);
79 break;
80
81 case SEEK_CUR:
82 case SEEK_SET:
83 /*
84 * These don't reference inode->i_size and don't depend on the
85 * block mapping, so we don't need the glock.
86 */
87 error = generic_file_llseek(file, offset, whence);
88 break;
89 default:
90 error = -EINVAL;
91 }
92
93 return error;
94 }
95
96 /**
97 * gfs2_readdir - Iterator for a directory
98 * @file: The directory to read from
99 * @ctx: What to feed directory entries to
100 *
101 * Returns: errno
102 */
103
gfs2_readdir(struct file * file,struct dir_context * ctx)104 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
105 {
106 struct inode *dir = file->f_mapping->host;
107 struct gfs2_inode *dip = GFS2_I(dir);
108 struct gfs2_holder d_gh;
109 int error;
110
111 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
112 if (error)
113 return error;
114
115 error = gfs2_dir_read(dir, ctx, &file->f_ra);
116
117 gfs2_glock_dq_uninit(&d_gh);
118
119 return error;
120 }
121
122 /*
123 * struct fsflag_gfs2flag
124 *
125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
126 * and to GFS2_DIF_JDATA for non-directories.
127 */
128 static struct {
129 u32 fsflag;
130 u32 gfsflag;
131 } fsflag_gfs2flag[] = {
132 {FS_SYNC_FL, GFS2_DIF_SYNC},
133 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
134 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
135 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
136 {FS_INDEX_FL, GFS2_DIF_EXHASH},
137 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
138 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
139 };
140
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
142 {
143 int i;
144 u32 fsflags = 0;
145
146 if (S_ISDIR(inode->i_mode))
147 gfsflags &= ~GFS2_DIF_JDATA;
148 else
149 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
150
151 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
152 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
153 fsflags |= fsflag_gfs2flag[i].fsflag;
154 return fsflags;
155 }
156
gfs2_fileattr_get(struct dentry * dentry,struct fileattr * fa)157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
158 {
159 struct inode *inode = d_inode(dentry);
160 struct gfs2_inode *ip = GFS2_I(inode);
161 struct gfs2_holder gh;
162 int error;
163 u32 fsflags;
164
165 if (d_is_special(dentry))
166 return -ENOTTY;
167
168 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
169 error = gfs2_glock_nq(&gh);
170 if (error)
171 goto out_uninit;
172
173 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
174
175 fileattr_fill_flags(fa, fsflags);
176
177 gfs2_glock_dq(&gh);
178 out_uninit:
179 gfs2_holder_uninit(&gh);
180 return error;
181 }
182
gfs2_set_inode_flags(struct inode * inode)183 void gfs2_set_inode_flags(struct inode *inode)
184 {
185 struct gfs2_inode *ip = GFS2_I(inode);
186 unsigned int flags = inode->i_flags;
187
188 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
189 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
190 flags |= S_NOSEC;
191 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
192 flags |= S_IMMUTABLE;
193 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
194 flags |= S_APPEND;
195 if (ip->i_diskflags & GFS2_DIF_NOATIME)
196 flags |= S_NOATIME;
197 if (ip->i_diskflags & GFS2_DIF_SYNC)
198 flags |= S_SYNC;
199 inode->i_flags = flags;
200 }
201
202 /* Flags that can be set by user space */
203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
204 GFS2_DIF_IMMUTABLE| \
205 GFS2_DIF_APPENDONLY| \
206 GFS2_DIF_NOATIME| \
207 GFS2_DIF_SYNC| \
208 GFS2_DIF_TOPDIR| \
209 GFS2_DIF_INHERIT_JDATA)
210
211 /**
212 * do_gfs2_set_flags - set flags on an inode
213 * @inode: The inode
214 * @reqflags: The flags to set
215 * @mask: Indicates which flags are valid
216 * @fsflags: The FS_* inode flags passed in
217 *
218 */
do_gfs2_set_flags(struct inode * inode,u32 reqflags,u32 mask,const u32 fsflags)219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask,
220 const u32 fsflags)
221 {
222 struct gfs2_inode *ip = GFS2_I(inode);
223 struct gfs2_sbd *sdp = GFS2_SB(inode);
224 struct buffer_head *bh;
225 struct gfs2_holder gh;
226 int error;
227 u32 new_flags, flags;
228
229 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
230 if (error)
231 return error;
232
233 error = 0;
234 flags = ip->i_diskflags;
235 new_flags = (flags & ~mask) | (reqflags & mask);
236 if ((new_flags ^ flags) == 0)
237 goto out;
238
239 error = -EPERM;
240 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
241 goto out;
242 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
243 goto out;
244 if (!IS_IMMUTABLE(inode)) {
245 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
246 if (error)
247 goto out;
248 }
249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
250 if (new_flags & GFS2_DIF_JDATA)
251 gfs2_log_flush(sdp, ip->i_gl,
252 GFS2_LOG_HEAD_FLUSH_NORMAL |
253 GFS2_LFC_SET_FLAGS);
254 error = filemap_fdatawrite(inode->i_mapping);
255 if (error)
256 goto out;
257 error = filemap_fdatawait(inode->i_mapping);
258 if (error)
259 goto out;
260 if (new_flags & GFS2_DIF_JDATA)
261 gfs2_ordered_del_inode(ip);
262 }
263 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
264 if (error)
265 goto out;
266 error = gfs2_meta_inode_buffer(ip, &bh);
267 if (error)
268 goto out_trans_end;
269 inode->i_ctime = current_time(inode);
270 gfs2_trans_add_meta(ip->i_gl, bh);
271 ip->i_diskflags = new_flags;
272 gfs2_dinode_out(ip, bh->b_data);
273 brelse(bh);
274 gfs2_set_inode_flags(inode);
275 gfs2_set_aops(inode);
276 out_trans_end:
277 gfs2_trans_end(sdp);
278 out:
279 gfs2_glock_dq_uninit(&gh);
280 return error;
281 }
282
gfs2_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)283 int gfs2_fileattr_set(struct user_namespace *mnt_userns,
284 struct dentry *dentry, struct fileattr *fa)
285 {
286 struct inode *inode = d_inode(dentry);
287 u32 fsflags = fa->flags, gfsflags = 0;
288 u32 mask;
289 int i;
290
291 if (d_is_special(dentry))
292 return -ENOTTY;
293
294 if (fileattr_has_fsx(fa))
295 return -EOPNOTSUPP;
296
297 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
298 if (fsflags & fsflag_gfs2flag[i].fsflag) {
299 fsflags &= ~fsflag_gfs2flag[i].fsflag;
300 gfsflags |= fsflag_gfs2flag[i].gfsflag;
301 }
302 }
303 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
304 return -EINVAL;
305
306 mask = GFS2_FLAGS_USER_SET;
307 if (S_ISDIR(inode->i_mode)) {
308 mask &= ~GFS2_DIF_JDATA;
309 } else {
310 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
311 if (gfsflags & GFS2_DIF_TOPDIR)
312 return -EINVAL;
313 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
314 }
315
316 return do_gfs2_set_flags(inode, gfsflags, mask, fsflags);
317 }
318
gfs2_getlabel(struct file * filp,char __user * label)319 static int gfs2_getlabel(struct file *filp, char __user *label)
320 {
321 struct inode *inode = file_inode(filp);
322 struct gfs2_sbd *sdp = GFS2_SB(inode);
323
324 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
325 return -EFAULT;
326
327 return 0;
328 }
329
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)330 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
331 {
332 switch(cmd) {
333 case FITRIM:
334 return gfs2_fitrim(filp, (void __user *)arg);
335 case FS_IOC_GETFSLABEL:
336 return gfs2_getlabel(filp, (char __user *)arg);
337 }
338
339 return -ENOTTY;
340 }
341
342 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)343 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
344 {
345 switch(cmd) {
346 /* Keep this list in sync with gfs2_ioctl */
347 case FITRIM:
348 case FS_IOC_GETFSLABEL:
349 break;
350 default:
351 return -ENOIOCTLCMD;
352 }
353
354 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
355 }
356 #else
357 #define gfs2_compat_ioctl NULL
358 #endif
359
360 /**
361 * gfs2_size_hint - Give a hint to the size of a write request
362 * @filep: The struct file
363 * @offset: The file offset of the write
364 * @size: The length of the write
365 *
366 * When we are about to do a write, this function records the total
367 * write size in order to provide a suitable hint to the lower layers
368 * about how many blocks will be required.
369 *
370 */
371
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)372 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
373 {
374 struct inode *inode = file_inode(filep);
375 struct gfs2_sbd *sdp = GFS2_SB(inode);
376 struct gfs2_inode *ip = GFS2_I(inode);
377 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
378 int hint = min_t(size_t, INT_MAX, blks);
379
380 if (hint > atomic_read(&ip->i_sizehint))
381 atomic_set(&ip->i_sizehint, hint);
382 }
383
384 /**
385 * gfs2_allocate_page_backing - Allocate blocks for a write fault
386 * @page: The (locked) page to allocate backing for
387 * @length: Size of the allocation
388 *
389 * We try to allocate all the blocks required for the page in one go. This
390 * might fail for various reasons, so we keep trying until all the blocks to
391 * back this page are allocated. If some of the blocks are already allocated,
392 * that is ok too.
393 */
gfs2_allocate_page_backing(struct page * page,unsigned int length)394 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
395 {
396 u64 pos = page_offset(page);
397
398 do {
399 struct iomap iomap = { };
400
401 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
402 return -EIO;
403
404 if (length < iomap.length)
405 iomap.length = length;
406 length -= iomap.length;
407 pos += iomap.length;
408 } while (length > 0);
409
410 return 0;
411 }
412
413 /**
414 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
415 * @vmf: The virtual memory fault containing the page to become writable
416 *
417 * When the page becomes writable, we need to ensure that we have
418 * blocks allocated on disk to back that page.
419 */
420
gfs2_page_mkwrite(struct vm_fault * vmf)421 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
422 {
423 struct page *page = vmf->page;
424 struct inode *inode = file_inode(vmf->vma->vm_file);
425 struct gfs2_inode *ip = GFS2_I(inode);
426 struct gfs2_sbd *sdp = GFS2_SB(inode);
427 struct gfs2_alloc_parms ap = { .aflags = 0, };
428 u64 offset = page_offset(page);
429 unsigned int data_blocks, ind_blocks, rblocks;
430 vm_fault_t ret = VM_FAULT_LOCKED;
431 struct gfs2_holder gh;
432 unsigned int length;
433 loff_t size;
434 int err;
435
436 sb_start_pagefault(inode->i_sb);
437
438 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
439 err = gfs2_glock_nq(&gh);
440 if (err) {
441 ret = block_page_mkwrite_return(err);
442 goto out_uninit;
443 }
444
445 /* Check page index against inode size */
446 size = i_size_read(inode);
447 if (offset >= size) {
448 ret = VM_FAULT_SIGBUS;
449 goto out_unlock;
450 }
451
452 /* Update file times before taking page lock */
453 file_update_time(vmf->vma->vm_file);
454
455 /* page is wholly or partially inside EOF */
456 if (size - offset < PAGE_SIZE)
457 length = size - offset;
458 else
459 length = PAGE_SIZE;
460
461 gfs2_size_hint(vmf->vma->vm_file, offset, length);
462
463 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
464 set_bit(GIF_SW_PAGED, &ip->i_flags);
465
466 /*
467 * iomap_writepage / iomap_writepages currently don't support inline
468 * files, so always unstuff here.
469 */
470
471 if (!gfs2_is_stuffed(ip) &&
472 !gfs2_write_alloc_required(ip, offset, length)) {
473 lock_page(page);
474 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
475 ret = VM_FAULT_NOPAGE;
476 unlock_page(page);
477 }
478 goto out_unlock;
479 }
480
481 err = gfs2_rindex_update(sdp);
482 if (err) {
483 ret = block_page_mkwrite_return(err);
484 goto out_unlock;
485 }
486
487 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
488 ap.target = data_blocks + ind_blocks;
489 err = gfs2_quota_lock_check(ip, &ap);
490 if (err) {
491 ret = block_page_mkwrite_return(err);
492 goto out_unlock;
493 }
494 err = gfs2_inplace_reserve(ip, &ap);
495 if (err) {
496 ret = block_page_mkwrite_return(err);
497 goto out_quota_unlock;
498 }
499
500 rblocks = RES_DINODE + ind_blocks;
501 if (gfs2_is_jdata(ip))
502 rblocks += data_blocks ? data_blocks : 1;
503 if (ind_blocks || data_blocks) {
504 rblocks += RES_STATFS + RES_QUOTA;
505 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
506 }
507 err = gfs2_trans_begin(sdp, rblocks, 0);
508 if (err) {
509 ret = block_page_mkwrite_return(err);
510 goto out_trans_fail;
511 }
512
513 /* Unstuff, if required, and allocate backing blocks for page */
514 if (gfs2_is_stuffed(ip)) {
515 err = gfs2_unstuff_dinode(ip);
516 if (err) {
517 ret = block_page_mkwrite_return(err);
518 goto out_trans_end;
519 }
520 }
521
522 lock_page(page);
523 /* If truncated, we must retry the operation, we may have raced
524 * with the glock demotion code.
525 */
526 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
527 ret = VM_FAULT_NOPAGE;
528 goto out_page_locked;
529 }
530
531 err = gfs2_allocate_page_backing(page, length);
532 if (err)
533 ret = block_page_mkwrite_return(err);
534
535 out_page_locked:
536 if (ret != VM_FAULT_LOCKED)
537 unlock_page(page);
538 out_trans_end:
539 gfs2_trans_end(sdp);
540 out_trans_fail:
541 gfs2_inplace_release(ip);
542 out_quota_unlock:
543 gfs2_quota_unlock(ip);
544 out_unlock:
545 gfs2_glock_dq(&gh);
546 out_uninit:
547 gfs2_holder_uninit(&gh);
548 if (ret == VM_FAULT_LOCKED) {
549 set_page_dirty(page);
550 wait_for_stable_page(page);
551 }
552 sb_end_pagefault(inode->i_sb);
553 return ret;
554 }
555
gfs2_fault(struct vm_fault * vmf)556 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
557 {
558 struct inode *inode = file_inode(vmf->vma->vm_file);
559 struct gfs2_inode *ip = GFS2_I(inode);
560 struct gfs2_holder gh;
561 vm_fault_t ret;
562 int err;
563
564 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
565 err = gfs2_glock_nq(&gh);
566 if (err) {
567 ret = block_page_mkwrite_return(err);
568 goto out_uninit;
569 }
570 ret = filemap_fault(vmf);
571 gfs2_glock_dq(&gh);
572 out_uninit:
573 gfs2_holder_uninit(&gh);
574 return ret;
575 }
576
577 static const struct vm_operations_struct gfs2_vm_ops = {
578 .fault = gfs2_fault,
579 .map_pages = filemap_map_pages,
580 .page_mkwrite = gfs2_page_mkwrite,
581 };
582
583 /**
584 * gfs2_mmap
585 * @file: The file to map
586 * @vma: The VMA which described the mapping
587 *
588 * There is no need to get a lock here unless we should be updating
589 * atime. We ignore any locking errors since the only consequence is
590 * a missed atime update (which will just be deferred until later).
591 *
592 * Returns: 0
593 */
594
gfs2_mmap(struct file * file,struct vm_area_struct * vma)595 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
596 {
597 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
598
599 if (!(file->f_flags & O_NOATIME) &&
600 !IS_NOATIME(&ip->i_inode)) {
601 struct gfs2_holder i_gh;
602 int error;
603
604 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
605 &i_gh);
606 if (error)
607 return error;
608 /* grab lock to update inode */
609 gfs2_glock_dq_uninit(&i_gh);
610 file_accessed(file);
611 }
612 vma->vm_ops = &gfs2_vm_ops;
613
614 return 0;
615 }
616
617 /**
618 * gfs2_open_common - This is common to open and atomic_open
619 * @inode: The inode being opened
620 * @file: The file being opened
621 *
622 * This maybe called under a glock or not depending upon how it has
623 * been called. We must always be called under a glock for regular
624 * files, however. For other file types, it does not matter whether
625 * we hold the glock or not.
626 *
627 * Returns: Error code or 0 for success
628 */
629
gfs2_open_common(struct inode * inode,struct file * file)630 int gfs2_open_common(struct inode *inode, struct file *file)
631 {
632 struct gfs2_file *fp;
633 int ret;
634
635 if (S_ISREG(inode->i_mode)) {
636 ret = generic_file_open(inode, file);
637 if (ret)
638 return ret;
639 }
640
641 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
642 if (!fp)
643 return -ENOMEM;
644
645 mutex_init(&fp->f_fl_mutex);
646
647 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
648 file->private_data = fp;
649 if (file->f_mode & FMODE_WRITE) {
650 ret = gfs2_qa_get(GFS2_I(inode));
651 if (ret)
652 goto fail;
653 }
654 return 0;
655
656 fail:
657 kfree(file->private_data);
658 file->private_data = NULL;
659 return ret;
660 }
661
662 /**
663 * gfs2_open - open a file
664 * @inode: the inode to open
665 * @file: the struct file for this opening
666 *
667 * After atomic_open, this function is only used for opening files
668 * which are already cached. We must still get the glock for regular
669 * files to ensure that we have the file size uptodate for the large
670 * file check which is in the common code. That is only an issue for
671 * regular files though.
672 *
673 * Returns: errno
674 */
675
gfs2_open(struct inode * inode,struct file * file)676 static int gfs2_open(struct inode *inode, struct file *file)
677 {
678 struct gfs2_inode *ip = GFS2_I(inode);
679 struct gfs2_holder i_gh;
680 int error;
681 bool need_unlock = false;
682
683 if (S_ISREG(ip->i_inode.i_mode)) {
684 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
685 &i_gh);
686 if (error)
687 return error;
688 need_unlock = true;
689 }
690
691 error = gfs2_open_common(inode, file);
692
693 if (need_unlock)
694 gfs2_glock_dq_uninit(&i_gh);
695
696 return error;
697 }
698
699 /**
700 * gfs2_release - called to close a struct file
701 * @inode: the inode the struct file belongs to
702 * @file: the struct file being closed
703 *
704 * Returns: errno
705 */
706
gfs2_release(struct inode * inode,struct file * file)707 static int gfs2_release(struct inode *inode, struct file *file)
708 {
709 struct gfs2_inode *ip = GFS2_I(inode);
710
711 kfree(file->private_data);
712 file->private_data = NULL;
713
714 if (file->f_mode & FMODE_WRITE) {
715 if (gfs2_rs_active(&ip->i_res))
716 gfs2_rs_delete(ip);
717 gfs2_qa_put(ip);
718 }
719 return 0;
720 }
721
722 /**
723 * gfs2_fsync - sync the dirty data for a file (across the cluster)
724 * @file: the file that points to the dentry
725 * @start: the start position in the file to sync
726 * @end: the end position in the file to sync
727 * @datasync: set if we can ignore timestamp changes
728 *
729 * We split the data flushing here so that we don't wait for the data
730 * until after we've also sent the metadata to disk. Note that for
731 * data=ordered, we will write & wait for the data at the log flush
732 * stage anyway, so this is unlikely to make much of a difference
733 * except in the data=writeback case.
734 *
735 * If the fdatawrite fails due to any reason except -EIO, we will
736 * continue the remainder of the fsync, although we'll still report
737 * the error at the end. This is to match filemap_write_and_wait_range()
738 * behaviour.
739 *
740 * Returns: errno
741 */
742
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)743 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
744 int datasync)
745 {
746 struct address_space *mapping = file->f_mapping;
747 struct inode *inode = mapping->host;
748 int sync_state = inode->i_state & I_DIRTY;
749 struct gfs2_inode *ip = GFS2_I(inode);
750 int ret = 0, ret1 = 0;
751
752 if (mapping->nrpages) {
753 ret1 = filemap_fdatawrite_range(mapping, start, end);
754 if (ret1 == -EIO)
755 return ret1;
756 }
757
758 if (!gfs2_is_jdata(ip))
759 sync_state &= ~I_DIRTY_PAGES;
760 if (datasync)
761 sync_state &= ~I_DIRTY_SYNC;
762
763 if (sync_state) {
764 ret = sync_inode_metadata(inode, 1);
765 if (ret)
766 return ret;
767 if (gfs2_is_jdata(ip))
768 ret = file_write_and_wait(file);
769 if (ret)
770 return ret;
771 gfs2_ail_flush(ip->i_gl, 1);
772 }
773
774 if (mapping->nrpages)
775 ret = file_fdatawait_range(file, start, end);
776
777 return ret ? ret : ret1;
778 }
779
should_fault_in_pages(ssize_t ret,struct iov_iter * i,size_t * prev_count,size_t * window_size)780 static inline bool should_fault_in_pages(ssize_t ret, struct iov_iter *i,
781 size_t *prev_count,
782 size_t *window_size)
783 {
784 char __user *p = i->iov[0].iov_base + i->iov_offset;
785 size_t count = iov_iter_count(i);
786 int pages = 1;
787
788 if (likely(!count))
789 return false;
790 if (ret <= 0 && ret != -EFAULT)
791 return false;
792 if (!iter_is_iovec(i))
793 return false;
794
795 if (*prev_count != count || !*window_size) {
796 int pages, nr_dirtied;
797
798 pages = min_t(int, BIO_MAX_VECS,
799 DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE));
800 nr_dirtied = max(current->nr_dirtied_pause -
801 current->nr_dirtied, 1);
802 pages = min(pages, nr_dirtied);
803 }
804
805 *prev_count = count;
806 *window_size = (size_t)PAGE_SIZE * pages - offset_in_page(p);
807 return true;
808 }
809
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to,struct gfs2_holder * gh)810 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
811 struct gfs2_holder *gh)
812 {
813 struct file *file = iocb->ki_filp;
814 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
815 size_t prev_count = 0, window_size = 0;
816 size_t written = 0;
817 ssize_t ret;
818
819 /*
820 * In this function, we disable page faults when we're holding the
821 * inode glock while doing I/O. If a page fault occurs, we indicate
822 * that the inode glock may be dropped, fault in the pages manually,
823 * and retry.
824 *
825 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
826 * physical as well as manual page faults, and we need to disable both
827 * kinds.
828 *
829 * For direct I/O, gfs2 takes the inode glock in deferred mode. This
830 * locking mode is compatible with other deferred holders, so multiple
831 * processes and nodes can do direct I/O to a file at the same time.
832 * There's no guarantee that reads or writes will be atomic. Any
833 * coordination among readers and writers needs to happen externally.
834 */
835
836 if (!iov_iter_count(to))
837 return 0; /* skip atime */
838
839 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
840 retry:
841 ret = gfs2_glock_nq(gh);
842 if (ret)
843 goto out_uninit;
844 retry_under_glock:
845 pagefault_disable();
846 to->nofault = true;
847 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
848 IOMAP_DIO_PARTIAL, written);
849 to->nofault = false;
850 pagefault_enable();
851 if (ret > 0)
852 written = ret;
853
854 if (should_fault_in_pages(ret, to, &prev_count, &window_size)) {
855 size_t leftover;
856
857 gfs2_holder_allow_demote(gh);
858 leftover = fault_in_iov_iter_writeable(to, window_size);
859 gfs2_holder_disallow_demote(gh);
860 if (leftover != window_size) {
861 if (gfs2_holder_queued(gh))
862 goto retry_under_glock;
863 goto retry;
864 }
865 }
866 if (gfs2_holder_queued(gh))
867 gfs2_glock_dq(gh);
868 out_uninit:
869 gfs2_holder_uninit(gh);
870 if (ret < 0)
871 return ret;
872 return written;
873 }
874
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)875 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
876 struct gfs2_holder *gh)
877 {
878 struct file *file = iocb->ki_filp;
879 struct inode *inode = file->f_mapping->host;
880 struct gfs2_inode *ip = GFS2_I(inode);
881 size_t prev_count = 0, window_size = 0;
882 size_t read = 0;
883 ssize_t ret;
884
885 /*
886 * In this function, we disable page faults when we're holding the
887 * inode glock while doing I/O. If a page fault occurs, we indicate
888 * that the inode glock may be dropped, fault in the pages manually,
889 * and retry.
890 *
891 * For writes, iomap_dio_rw only triggers manual page faults, so we
892 * don't need to disable physical ones.
893 */
894
895 /*
896 * Deferred lock, even if its a write, since we do no allocation on
897 * this path. All we need to change is the atime, and this lock mode
898 * ensures that other nodes have flushed their buffered read caches
899 * (i.e. their page cache entries for this inode). We do not,
900 * unfortunately, have the option of only flushing a range like the
901 * VFS does.
902 */
903 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
904 retry:
905 ret = gfs2_glock_nq(gh);
906 if (ret)
907 goto out_uninit;
908 retry_under_glock:
909 /* Silently fall back to buffered I/O when writing beyond EOF */
910 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
911 goto out;
912
913 from->nofault = true;
914 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
915 IOMAP_DIO_PARTIAL, read);
916 from->nofault = false;
917
918 if (ret == -ENOTBLK)
919 ret = 0;
920 if (ret > 0)
921 read = ret;
922
923 if (should_fault_in_pages(ret, from, &prev_count, &window_size)) {
924 size_t leftover;
925
926 gfs2_holder_allow_demote(gh);
927 leftover = fault_in_iov_iter_readable(from, window_size);
928 gfs2_holder_disallow_demote(gh);
929 if (leftover != window_size) {
930 if (gfs2_holder_queued(gh))
931 goto retry_under_glock;
932 goto retry;
933 }
934 }
935 out:
936 if (gfs2_holder_queued(gh))
937 gfs2_glock_dq(gh);
938 out_uninit:
939 gfs2_holder_uninit(gh);
940 if (ret < 0)
941 return ret;
942 return read;
943 }
944
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)945 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
946 {
947 struct gfs2_inode *ip;
948 struct gfs2_holder gh;
949 size_t prev_count = 0, window_size = 0;
950 size_t written = 0;
951 ssize_t ret;
952
953 /*
954 * In this function, we disable page faults when we're holding the
955 * inode glock while doing I/O. If a page fault occurs, we indicate
956 * that the inode glock may be dropped, fault in the pages manually,
957 * and retry.
958 */
959
960 if (iocb->ki_flags & IOCB_DIRECT) {
961 ret = gfs2_file_direct_read(iocb, to, &gh);
962 if (likely(ret != -ENOTBLK))
963 return ret;
964 iocb->ki_flags &= ~IOCB_DIRECT;
965 }
966 pagefault_disable();
967 iocb->ki_flags |= IOCB_NOIO;
968 ret = generic_file_read_iter(iocb, to);
969 iocb->ki_flags &= ~IOCB_NOIO;
970 pagefault_enable();
971 if (ret >= 0) {
972 if (!iov_iter_count(to))
973 return ret;
974 written = ret;
975 } else if (ret != -EFAULT) {
976 if (ret != -EAGAIN)
977 return ret;
978 if (iocb->ki_flags & IOCB_NOWAIT)
979 return ret;
980 }
981 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
982 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
983 retry:
984 ret = gfs2_glock_nq(&gh);
985 if (ret)
986 goto out_uninit;
987 retry_under_glock:
988 pagefault_disable();
989 ret = generic_file_read_iter(iocb, to);
990 pagefault_enable();
991 if (ret > 0)
992 written += ret;
993
994 if (should_fault_in_pages(ret, to, &prev_count, &window_size)) {
995 size_t leftover;
996
997 gfs2_holder_allow_demote(&gh);
998 leftover = fault_in_iov_iter_writeable(to, window_size);
999 gfs2_holder_disallow_demote(&gh);
1000 if (leftover != window_size) {
1001 if (gfs2_holder_queued(&gh))
1002 goto retry_under_glock;
1003 goto retry;
1004 }
1005 }
1006 if (gfs2_holder_queued(&gh))
1007 gfs2_glock_dq(&gh);
1008 out_uninit:
1009 gfs2_holder_uninit(&gh);
1010 return written ? written : ret;
1011 }
1012
gfs2_file_buffered_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)1013 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1014 struct iov_iter *from,
1015 struct gfs2_holder *gh)
1016 {
1017 struct file *file = iocb->ki_filp;
1018 struct inode *inode = file_inode(file);
1019 struct gfs2_inode *ip = GFS2_I(inode);
1020 struct gfs2_sbd *sdp = GFS2_SB(inode);
1021 struct gfs2_holder *statfs_gh = NULL;
1022 size_t prev_count = 0, window_size = 0;
1023 size_t orig_count = iov_iter_count(from);
1024 size_t read = 0;
1025 ssize_t ret;
1026
1027 /*
1028 * In this function, we disable page faults when we're holding the
1029 * inode glock while doing I/O. If a page fault occurs, we indicate
1030 * that the inode glock may be dropped, fault in the pages manually,
1031 * and retry.
1032 */
1033
1034 if (inode == sdp->sd_rindex) {
1035 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1036 if (!statfs_gh)
1037 return -ENOMEM;
1038 }
1039
1040 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1041 retry:
1042 ret = gfs2_glock_nq(gh);
1043 if (ret)
1044 goto out_uninit;
1045 retry_under_glock:
1046 if (inode == sdp->sd_rindex) {
1047 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1048
1049 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1050 GL_NOCACHE, statfs_gh);
1051 if (ret)
1052 goto out_unlock;
1053 }
1054
1055 current->backing_dev_info = inode_to_bdi(inode);
1056 pagefault_disable();
1057 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1058 pagefault_enable();
1059 current->backing_dev_info = NULL;
1060 if (ret > 0) {
1061 iocb->ki_pos += ret;
1062 read += ret;
1063 }
1064
1065 if (inode == sdp->sd_rindex)
1066 gfs2_glock_dq_uninit(statfs_gh);
1067
1068 from->count = orig_count - read;
1069 if (should_fault_in_pages(ret, from, &prev_count, &window_size)) {
1070 size_t leftover;
1071
1072 gfs2_holder_allow_demote(gh);
1073 leftover = fault_in_iov_iter_readable(from, window_size);
1074 gfs2_holder_disallow_demote(gh);
1075 if (leftover != window_size) {
1076 from->count = min(from->count, window_size - leftover);
1077 if (gfs2_holder_queued(gh))
1078 goto retry_under_glock;
1079 goto retry;
1080 }
1081 }
1082 out_unlock:
1083 if (gfs2_holder_queued(gh))
1084 gfs2_glock_dq(gh);
1085 out_uninit:
1086 gfs2_holder_uninit(gh);
1087 if (statfs_gh)
1088 kfree(statfs_gh);
1089 from->count = orig_count - read;
1090 return read ? read : ret;
1091 }
1092
1093 /**
1094 * gfs2_file_write_iter - Perform a write to a file
1095 * @iocb: The io context
1096 * @from: The data to write
1097 *
1098 * We have to do a lock/unlock here to refresh the inode size for
1099 * O_APPEND writes, otherwise we can land up writing at the wrong
1100 * offset. There is still a race, but provided the app is using its
1101 * own file locking, this will make O_APPEND work as expected.
1102 *
1103 */
1104
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1105 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1106 {
1107 struct file *file = iocb->ki_filp;
1108 struct inode *inode = file_inode(file);
1109 struct gfs2_inode *ip = GFS2_I(inode);
1110 struct gfs2_holder gh;
1111 ssize_t ret;
1112
1113 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1114
1115 if (iocb->ki_flags & IOCB_APPEND) {
1116 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1117 if (ret)
1118 return ret;
1119 gfs2_glock_dq_uninit(&gh);
1120 }
1121
1122 inode_lock(inode);
1123 ret = generic_write_checks(iocb, from);
1124 if (ret <= 0)
1125 goto out_unlock;
1126
1127 ret = file_remove_privs(file);
1128 if (ret)
1129 goto out_unlock;
1130
1131 ret = file_update_time(file);
1132 if (ret)
1133 goto out_unlock;
1134
1135 if (iocb->ki_flags & IOCB_DIRECT) {
1136 struct address_space *mapping = file->f_mapping;
1137 ssize_t buffered, ret2;
1138
1139 ret = gfs2_file_direct_write(iocb, from, &gh);
1140 if (ret < 0 || !iov_iter_count(from))
1141 goto out_unlock;
1142
1143 iocb->ki_flags |= IOCB_DSYNC;
1144 buffered = gfs2_file_buffered_write(iocb, from, &gh);
1145 if (unlikely(buffered <= 0)) {
1146 if (!ret)
1147 ret = buffered;
1148 goto out_unlock;
1149 }
1150
1151 /*
1152 * We need to ensure that the page cache pages are written to
1153 * disk and invalidated to preserve the expected O_DIRECT
1154 * semantics. If the writeback or invalidate fails, only report
1155 * the direct I/O range as we don't know if the buffered pages
1156 * made it to disk.
1157 */
1158 ret2 = generic_write_sync(iocb, buffered);
1159 invalidate_mapping_pages(mapping,
1160 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
1161 (iocb->ki_pos - 1) >> PAGE_SHIFT);
1162 if (!ret || ret2 > 0)
1163 ret += ret2;
1164 } else {
1165 ret = gfs2_file_buffered_write(iocb, from, &gh);
1166 if (likely(ret > 0))
1167 ret = generic_write_sync(iocb, ret);
1168 }
1169
1170 out_unlock:
1171 inode_unlock(inode);
1172 return ret;
1173 }
1174
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)1175 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1176 int mode)
1177 {
1178 struct super_block *sb = inode->i_sb;
1179 struct gfs2_inode *ip = GFS2_I(inode);
1180 loff_t end = offset + len;
1181 struct buffer_head *dibh;
1182 int error;
1183
1184 error = gfs2_meta_inode_buffer(ip, &dibh);
1185 if (unlikely(error))
1186 return error;
1187
1188 gfs2_trans_add_meta(ip->i_gl, dibh);
1189
1190 if (gfs2_is_stuffed(ip)) {
1191 error = gfs2_unstuff_dinode(ip);
1192 if (unlikely(error))
1193 goto out;
1194 }
1195
1196 while (offset < end) {
1197 struct iomap iomap = { };
1198
1199 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1200 if (error)
1201 goto out;
1202 offset = iomap.offset + iomap.length;
1203 if (!(iomap.flags & IOMAP_F_NEW))
1204 continue;
1205 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1206 iomap.length >> inode->i_blkbits,
1207 GFP_NOFS);
1208 if (error) {
1209 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1210 goto out;
1211 }
1212 }
1213 out:
1214 brelse(dibh);
1215 return error;
1216 }
1217
1218 /**
1219 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1220 * blocks, determine how many bytes can be written.
1221 * @ip: The inode in question.
1222 * @len: Max cap of bytes. What we return in *len must be <= this.
1223 * @data_blocks: Compute and return the number of data blocks needed
1224 * @ind_blocks: Compute and return the number of indirect blocks needed
1225 * @max_blocks: The total blocks available to work with.
1226 *
1227 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1228 */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)1229 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1230 unsigned int *data_blocks, unsigned int *ind_blocks,
1231 unsigned int max_blocks)
1232 {
1233 loff_t max = *len;
1234 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1235 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1236
1237 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1238 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1239 max_data -= tmp;
1240 }
1241
1242 *data_blocks = max_data;
1243 *ind_blocks = max_blocks - max_data;
1244 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1245 if (*len > max) {
1246 *len = max;
1247 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1248 }
1249 }
1250
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1251 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1252 {
1253 struct inode *inode = file_inode(file);
1254 struct gfs2_sbd *sdp = GFS2_SB(inode);
1255 struct gfs2_inode *ip = GFS2_I(inode);
1256 struct gfs2_alloc_parms ap = { .aflags = 0, };
1257 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1258 loff_t bytes, max_bytes, max_blks;
1259 int error;
1260 const loff_t pos = offset;
1261 const loff_t count = len;
1262 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1263 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1264 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1265
1266 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1267
1268 offset &= bsize_mask;
1269
1270 len = next - offset;
1271 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1272 if (!bytes)
1273 bytes = UINT_MAX;
1274 bytes &= bsize_mask;
1275 if (bytes == 0)
1276 bytes = sdp->sd_sb.sb_bsize;
1277
1278 gfs2_size_hint(file, offset, len);
1279
1280 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1281 ap.min_target = data_blocks + ind_blocks;
1282
1283 while (len > 0) {
1284 if (len < bytes)
1285 bytes = len;
1286 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1287 len -= bytes;
1288 offset += bytes;
1289 continue;
1290 }
1291
1292 /* We need to determine how many bytes we can actually
1293 * fallocate without exceeding quota or going over the
1294 * end of the fs. We start off optimistically by assuming
1295 * we can write max_bytes */
1296 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1297
1298 /* Since max_bytes is most likely a theoretical max, we
1299 * calculate a more realistic 'bytes' to serve as a good
1300 * starting point for the number of bytes we may be able
1301 * to write */
1302 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1303 ap.target = data_blocks + ind_blocks;
1304
1305 error = gfs2_quota_lock_check(ip, &ap);
1306 if (error)
1307 return error;
1308 /* ap.allowed tells us how many blocks quota will allow
1309 * us to write. Check if this reduces max_blks */
1310 max_blks = UINT_MAX;
1311 if (ap.allowed)
1312 max_blks = ap.allowed;
1313
1314 error = gfs2_inplace_reserve(ip, &ap);
1315 if (error)
1316 goto out_qunlock;
1317
1318 /* check if the selected rgrp limits our max_blks further */
1319 if (ip->i_res.rs_reserved < max_blks)
1320 max_blks = ip->i_res.rs_reserved;
1321
1322 /* Almost done. Calculate bytes that can be written using
1323 * max_blks. We also recompute max_bytes, data_blocks and
1324 * ind_blocks */
1325 calc_max_reserv(ip, &max_bytes, &data_blocks,
1326 &ind_blocks, max_blks);
1327
1328 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1329 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1330 if (gfs2_is_jdata(ip))
1331 rblocks += data_blocks ? data_blocks : 1;
1332
1333 error = gfs2_trans_begin(sdp, rblocks,
1334 PAGE_SIZE >> inode->i_blkbits);
1335 if (error)
1336 goto out_trans_fail;
1337
1338 error = fallocate_chunk(inode, offset, max_bytes, mode);
1339 gfs2_trans_end(sdp);
1340
1341 if (error)
1342 goto out_trans_fail;
1343
1344 len -= max_bytes;
1345 offset += max_bytes;
1346 gfs2_inplace_release(ip);
1347 gfs2_quota_unlock(ip);
1348 }
1349
1350 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1351 i_size_write(inode, pos + count);
1352 file_update_time(file);
1353 mark_inode_dirty(inode);
1354
1355 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1356 return vfs_fsync_range(file, pos, pos + count - 1,
1357 (file->f_flags & __O_SYNC) ? 0 : 1);
1358 return 0;
1359
1360 out_trans_fail:
1361 gfs2_inplace_release(ip);
1362 out_qunlock:
1363 gfs2_quota_unlock(ip);
1364 return error;
1365 }
1366
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1367 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1368 {
1369 struct inode *inode = file_inode(file);
1370 struct gfs2_sbd *sdp = GFS2_SB(inode);
1371 struct gfs2_inode *ip = GFS2_I(inode);
1372 struct gfs2_holder gh;
1373 int ret;
1374
1375 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1376 return -EOPNOTSUPP;
1377 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1378 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1379 return -EOPNOTSUPP;
1380
1381 inode_lock(inode);
1382
1383 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1384 ret = gfs2_glock_nq(&gh);
1385 if (ret)
1386 goto out_uninit;
1387
1388 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1389 (offset + len) > inode->i_size) {
1390 ret = inode_newsize_ok(inode, offset + len);
1391 if (ret)
1392 goto out_unlock;
1393 }
1394
1395 ret = get_write_access(inode);
1396 if (ret)
1397 goto out_unlock;
1398
1399 if (mode & FALLOC_FL_PUNCH_HOLE) {
1400 ret = __gfs2_punch_hole(file, offset, len);
1401 } else {
1402 ret = __gfs2_fallocate(file, mode, offset, len);
1403 if (ret)
1404 gfs2_rs_deltree(&ip->i_res);
1405 }
1406
1407 put_write_access(inode);
1408 out_unlock:
1409 gfs2_glock_dq(&gh);
1410 out_uninit:
1411 gfs2_holder_uninit(&gh);
1412 inode_unlock(inode);
1413 return ret;
1414 }
1415
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1416 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1417 struct file *out, loff_t *ppos,
1418 size_t len, unsigned int flags)
1419 {
1420 ssize_t ret;
1421
1422 gfs2_size_hint(out, *ppos, len);
1423
1424 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1425 return ret;
1426 }
1427
1428 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1429
1430 /**
1431 * gfs2_lock - acquire/release a posix lock on a file
1432 * @file: the file pointer
1433 * @cmd: either modify or retrieve lock state, possibly wait
1434 * @fl: type and range of lock
1435 *
1436 * Returns: errno
1437 */
1438
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1439 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1440 {
1441 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1442 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1443 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1444
1445 if (!(fl->fl_flags & FL_POSIX))
1446 return -ENOLCK;
1447 if (cmd == F_CANCELLK) {
1448 /* Hack: */
1449 cmd = F_SETLK;
1450 fl->fl_type = F_UNLCK;
1451 }
1452 if (unlikely(gfs2_withdrawn(sdp))) {
1453 if (fl->fl_type == F_UNLCK)
1454 locks_lock_file_wait(file, fl);
1455 return -EIO;
1456 }
1457 if (IS_GETLK(cmd))
1458 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1459 else if (fl->fl_type == F_UNLCK)
1460 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1461 else
1462 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1463 }
1464
do_flock(struct file * file,int cmd,struct file_lock * fl)1465 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1466 {
1467 struct gfs2_file *fp = file->private_data;
1468 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1469 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1470 struct gfs2_glock *gl;
1471 unsigned int state;
1472 u16 flags;
1473 int error = 0;
1474 int sleeptime;
1475
1476 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1477 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1478
1479 mutex_lock(&fp->f_fl_mutex);
1480
1481 if (gfs2_holder_initialized(fl_gh)) {
1482 struct file_lock request;
1483 if (fl_gh->gh_state == state)
1484 goto out;
1485 locks_init_lock(&request);
1486 request.fl_type = F_UNLCK;
1487 request.fl_flags = FL_FLOCK;
1488 locks_lock_file_wait(file, &request);
1489 gfs2_glock_dq(fl_gh);
1490 gfs2_holder_reinit(state, flags, fl_gh);
1491 } else {
1492 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1493 &gfs2_flock_glops, CREATE, &gl);
1494 if (error)
1495 goto out;
1496 gfs2_holder_init(gl, state, flags, fl_gh);
1497 gfs2_glock_put(gl);
1498 }
1499 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1500 error = gfs2_glock_nq(fl_gh);
1501 if (error != GLR_TRYFAILED)
1502 break;
1503 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1504 fl_gh->gh_error = 0;
1505 msleep(sleeptime);
1506 }
1507 if (error) {
1508 gfs2_holder_uninit(fl_gh);
1509 if (error == GLR_TRYFAILED)
1510 error = -EAGAIN;
1511 } else {
1512 error = locks_lock_file_wait(file, fl);
1513 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1514 }
1515
1516 out:
1517 mutex_unlock(&fp->f_fl_mutex);
1518 return error;
1519 }
1520
do_unflock(struct file * file,struct file_lock * fl)1521 static void do_unflock(struct file *file, struct file_lock *fl)
1522 {
1523 struct gfs2_file *fp = file->private_data;
1524 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1525
1526 mutex_lock(&fp->f_fl_mutex);
1527 locks_lock_file_wait(file, fl);
1528 if (gfs2_holder_initialized(fl_gh)) {
1529 gfs2_glock_dq(fl_gh);
1530 gfs2_holder_uninit(fl_gh);
1531 }
1532 mutex_unlock(&fp->f_fl_mutex);
1533 }
1534
1535 /**
1536 * gfs2_flock - acquire/release a flock lock on a file
1537 * @file: the file pointer
1538 * @cmd: either modify or retrieve lock state, possibly wait
1539 * @fl: type and range of lock
1540 *
1541 * Returns: errno
1542 */
1543
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1544 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1545 {
1546 if (!(fl->fl_flags & FL_FLOCK))
1547 return -ENOLCK;
1548 if (fl->fl_type & LOCK_MAND)
1549 return -EOPNOTSUPP;
1550
1551 if (fl->fl_type == F_UNLCK) {
1552 do_unflock(file, fl);
1553 return 0;
1554 } else {
1555 return do_flock(file, cmd, fl);
1556 }
1557 }
1558
1559 const struct file_operations gfs2_file_fops = {
1560 .llseek = gfs2_llseek,
1561 .read_iter = gfs2_file_read_iter,
1562 .write_iter = gfs2_file_write_iter,
1563 .iopoll = iomap_dio_iopoll,
1564 .unlocked_ioctl = gfs2_ioctl,
1565 .compat_ioctl = gfs2_compat_ioctl,
1566 .mmap = gfs2_mmap,
1567 .open = gfs2_open,
1568 .release = gfs2_release,
1569 .fsync = gfs2_fsync,
1570 .lock = gfs2_lock,
1571 .flock = gfs2_flock,
1572 .splice_read = generic_file_splice_read,
1573 .splice_write = gfs2_file_splice_write,
1574 .setlease = simple_nosetlease,
1575 .fallocate = gfs2_fallocate,
1576 };
1577
1578 const struct file_operations gfs2_dir_fops = {
1579 .iterate_shared = gfs2_readdir,
1580 .unlocked_ioctl = gfs2_ioctl,
1581 .compat_ioctl = gfs2_compat_ioctl,
1582 .open = gfs2_open,
1583 .release = gfs2_release,
1584 .fsync = gfs2_fsync,
1585 .lock = gfs2_lock,
1586 .flock = gfs2_flock,
1587 .llseek = default_llseek,
1588 };
1589
1590 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1591
1592 const struct file_operations gfs2_file_fops_nolock = {
1593 .llseek = gfs2_llseek,
1594 .read_iter = gfs2_file_read_iter,
1595 .write_iter = gfs2_file_write_iter,
1596 .iopoll = iomap_dio_iopoll,
1597 .unlocked_ioctl = gfs2_ioctl,
1598 .compat_ioctl = gfs2_compat_ioctl,
1599 .mmap = gfs2_mmap,
1600 .open = gfs2_open,
1601 .release = gfs2_release,
1602 .fsync = gfs2_fsync,
1603 .splice_read = generic_file_splice_read,
1604 .splice_write = gfs2_file_splice_write,
1605 .setlease = generic_setlease,
1606 .fallocate = gfs2_fallocate,
1607 };
1608
1609 const struct file_operations gfs2_dir_fops_nolock = {
1610 .iterate_shared = gfs2_readdir,
1611 .unlocked_ioctl = gfs2_ioctl,
1612 .compat_ioctl = gfs2_compat_ioctl,
1613 .open = gfs2_open,
1614 .release = gfs2_release,
1615 .fsync = gfs2_fsync,
1616 .llseek = default_llseek,
1617 };
1618
1619