• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 struct gfs2_rbm {
40 	struct gfs2_rgrpd *rgd;
41 	u32 offset;		/* The offset is bitmap relative */
42 	int bii;		/* Bitmap index */
43 };
44 
rbm_bi(const struct gfs2_rbm * rbm)45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 	return rbm->rgd->rd_bits + rbm->bii;
48 }
49 
gfs2_rbm_to_block(const struct gfs2_rbm * rbm)50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 		rbm->offset;
55 }
56 
57 /*
58  * These routines are used by the resource group routines (rgrp.c)
59  * to keep track of block allocation.  Each block is represented by two
60  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61  *
62  * 0 = Free
63  * 1 = Used (not metadata)
64  * 2 = Unlinked (still in use) inode
65  * 3 = Used (metadata)
66  */
67 
68 struct gfs2_extent {
69 	struct gfs2_rbm rbm;
70 	u32 len;
71 };
72 
73 static const char valid_change[16] = {
74 	        /* current */
75 	/* n */ 0, 1, 1, 1,
76 	/* e */ 1, 0, 0, 0,
77 	/* w */ 0, 0, 0, 1,
78 	        1, 0, 0, 0
79 };
80 
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 			 struct gfs2_blkreserv *rs, bool nowrap);
83 
84 
85 /**
86  * gfs2_setbit - Set a bit in the bitmaps
87  * @rbm: The position of the bit to set
88  * @do_clone: Also set the clone bitmap, if it exists
89  * @new_state: the new state of the block
90  *
91  */
92 
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 			       unsigned char new_state)
95 {
96 	unsigned char *byte1, *byte2, *end, cur_state;
97 	struct gfs2_bitmap *bi = rbm_bi(rbm);
98 	unsigned int buflen = bi->bi_bytes;
99 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100 
101 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103 
104 	BUG_ON(byte1 >= end);
105 
106 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107 
108 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110 
111 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 			rbm->offset, cur_state, new_state);
113 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 			(unsigned long long)bi->bi_bh->b_blocknr);
116 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 			bi->bi_offset, bi->bi_bytes,
118 			(unsigned long long)gfs2_rbm_to_block(rbm));
119 		dump_stack();
120 		gfs2_consist_rgrpd(rbm->rgd);
121 		return;
122 	}
123 	*byte1 ^= (cur_state ^ new_state) << bit;
124 
125 	if (do_clone && bi->bi_clone) {
126 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 		*byte2 ^= (cur_state ^ new_state) << bit;
129 	}
130 }
131 
132 /**
133  * gfs2_testbit - test a bit in the bitmaps
134  * @rbm: The bit to test
135  * @use_clone: If true, test the clone bitmap, not the official bitmap.
136  *
137  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138  * not the "real" bitmaps, to avoid allocating recently freed blocks.
139  *
140  * Returns: The two bit block state of the requested bit
141  */
142 
gfs2_testbit(const struct gfs2_rbm * rbm,bool use_clone)143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 	struct gfs2_bitmap *bi = rbm_bi(rbm);
146 	const u8 *buffer;
147 	const u8 *byte;
148 	unsigned int bit;
149 
150 	if (use_clone && bi->bi_clone)
151 		buffer = bi->bi_clone;
152 	else
153 		buffer = bi->bi_bh->b_data;
154 	buffer += bi->bi_offset;
155 	byte = buffer + (rbm->offset / GFS2_NBBY);
156 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157 
158 	return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160 
161 /**
162  * gfs2_bit_search
163  * @ptr: Pointer to bitmap data
164  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165  * @state: The state we are searching for
166  *
167  * We xor the bitmap data with a patter which is the bitwise opposite
168  * of what we are looking for, this gives rise to a pattern of ones
169  * wherever there is a match. Since we have two bits per entry, we
170  * take this pattern, shift it down by one place and then and it with
171  * the original. All the even bit positions (0,2,4, etc) then represent
172  * successful matches, so we mask with 0x55555..... to remove the unwanted
173  * odd bit positions.
174  *
175  * This allows searching of a whole u64 at once (32 blocks) with a
176  * single test (on 64 bit arches).
177  */
178 
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 	u64 tmp;
182 	static const u64 search[] = {
183 		[0] = 0xffffffffffffffffULL,
184 		[1] = 0xaaaaaaaaaaaaaaaaULL,
185 		[2] = 0x5555555555555555ULL,
186 		[3] = 0x0000000000000000ULL,
187 	};
188 	tmp = le64_to_cpu(*ptr) ^ search[state];
189 	tmp &= (tmp >> 1);
190 	tmp &= mask;
191 	return tmp;
192 }
193 
194 /**
195  * rs_cmp - multi-block reservation range compare
196  * @start: start of the new reservation
197  * @len: number of blocks in the new reservation
198  * @rs: existing reservation to compare against
199  *
200  * returns: 1 if the block range is beyond the reach of the reservation
201  *         -1 if the block range is before the start of the reservation
202  *          0 if the block range overlaps with the reservation
203  */
rs_cmp(u64 start,u32 len,struct gfs2_blkreserv * rs)204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 	if (start >= rs->rs_start + rs->rs_requested)
207 		return 1;
208 	if (rs->rs_start >= start + len)
209 		return -1;
210 	return 0;
211 }
212 
213 /**
214  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215  *       a block in a given allocation state.
216  * @buf: the buffer that holds the bitmaps
217  * @len: the length (in bytes) of the buffer
218  * @goal: start search at this block's bit-pair (within @buffer)
219  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220  *
221  * Scope of @goal and returned block number is only within this bitmap buffer,
222  * not entire rgrp or filesystem.  @buffer will be offset from the actual
223  * beginning of a bitmap block buffer, skipping any header structures, but
224  * headers are always a multiple of 64 bits long so that the buffer is
225  * always aligned to a 64 bit boundary.
226  *
227  * The size of the buffer is in bytes, but is it assumed that it is
228  * always ok to read a complete multiple of 64 bits at the end
229  * of the block in case the end is no aligned to a natural boundary.
230  *
231  * Return: the block number (bitmap buffer scope) that was found
232  */
233 
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 		       u32 goal, u8 state)
236 {
237 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 	u64 tmp;
241 	u64 mask = 0x5555555555555555ULL;
242 	u32 bit;
243 
244 	/* Mask off bits we don't care about at the start of the search */
245 	mask <<= spoint;
246 	tmp = gfs2_bit_search(ptr, mask, state);
247 	ptr++;
248 	while(tmp == 0 && ptr < end) {
249 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 		ptr++;
251 	}
252 	/* Mask off any bits which are more than len bytes from the start */
253 	if (ptr == end && (len & (sizeof(u64) - 1)))
254 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 	/* Didn't find anything, so return */
256 	if (tmp == 0)
257 		return BFITNOENT;
258 	ptr--;
259 	bit = __ffs64(tmp);
260 	bit /= 2;	/* two bits per entry in the bitmap */
261 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263 
264 /**
265  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266  * @rbm: The rbm with rgd already set correctly
267  * @block: The block number (filesystem relative)
268  *
269  * This sets the bi and offset members of an rbm based on a
270  * resource group and a filesystem relative block number. The
271  * resource group must be set in the rbm on entry, the bi and
272  * offset members will be set by this function.
273  *
274  * Returns: 0 on success, or an error code
275  */
276 
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 	if (!rgrp_contains_block(rbm->rgd, block))
280 		return -E2BIG;
281 	rbm->bii = 0;
282 	rbm->offset = block - rbm->rgd->rd_data0;
283 	/* Check if the block is within the first block */
284 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 		return 0;
286 
287 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 	rbm->offset += (sizeof(struct gfs2_rgrp) -
289 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 	return 0;
293 }
294 
295 /**
296  * gfs2_rbm_add - add a number of blocks to an rbm
297  * @rbm: The rbm with rgd already set correctly
298  * @blocks: The number of blocks to add to rpm
299  *
300  * This function takes an existing rbm structure and adds a number of blocks to
301  * it.
302  *
303  * Returns: True if the new rbm would point past the end of the rgrp.
304  */
305 
gfs2_rbm_add(struct gfs2_rbm * rbm,u32 blocks)306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 	struct gfs2_rgrpd *rgd = rbm->rgd;
309 	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310 
311 	if (rbm->offset + blocks < bi->bi_blocks) {
312 		rbm->offset += blocks;
313 		return false;
314 	}
315 	blocks -= bi->bi_blocks - rbm->offset;
316 
317 	for(;;) {
318 		bi++;
319 		if (bi == rgd->rd_bits + rgd->rd_length)
320 			return true;
321 		if (blocks < bi->bi_blocks) {
322 			rbm->offset = blocks;
323 			rbm->bii = bi - rgd->rd_bits;
324 			return false;
325 		}
326 		blocks -= bi->bi_blocks;
327 	}
328 }
329 
330 /**
331  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332  * @rbm: Position to search (value/result)
333  * @n_unaligned: Number of unaligned blocks to check
334  * @len: Decremented for each block found (terminate on zero)
335  *
336  * Returns: true if a non-free block is encountered or the end of the resource
337  *	    group is reached.
338  */
339 
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 	u32 n;
343 	u8 res;
344 
345 	for (n = 0; n < n_unaligned; n++) {
346 		res = gfs2_testbit(rbm, true);
347 		if (res != GFS2_BLKST_FREE)
348 			return true;
349 		(*len)--;
350 		if (*len == 0)
351 			return true;
352 		if (gfs2_rbm_add(rbm, 1))
353 			return true;
354 	}
355 
356 	return false;
357 }
358 
359 /**
360  * gfs2_free_extlen - Return extent length of free blocks
361  * @rrbm: Starting position
362  * @len: Max length to check
363  *
364  * Starting at the block specified by the rbm, see how many free blocks
365  * there are, not reading more than len blocks ahead. This can be done
366  * using memchr_inv when the blocks are byte aligned, but has to be done
367  * on a block by block basis in case of unaligned blocks. Also this
368  * function can cope with bitmap boundaries (although it must stop on
369  * a resource group boundary)
370  *
371  * Returns: Number of free blocks in the extent
372  */
373 
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 	struct gfs2_rbm rbm = *rrbm;
377 	u32 n_unaligned = rbm.offset & 3;
378 	u32 size = len;
379 	u32 bytes;
380 	u32 chunk_size;
381 	u8 *ptr, *start, *end;
382 	u64 block;
383 	struct gfs2_bitmap *bi;
384 
385 	if (n_unaligned &&
386 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 		goto out;
388 
389 	n_unaligned = len & 3;
390 	/* Start is now byte aligned */
391 	while (len > 3) {
392 		bi = rbm_bi(&rbm);
393 		start = bi->bi_bh->b_data;
394 		if (bi->bi_clone)
395 			start = bi->bi_clone;
396 		start += bi->bi_offset;
397 		end = start + bi->bi_bytes;
398 		BUG_ON(rbm.offset & 3);
399 		start += (rbm.offset / GFS2_NBBY);
400 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 		ptr = memchr_inv(start, 0, bytes);
402 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 		chunk_size *= GFS2_NBBY;
404 		BUG_ON(len < chunk_size);
405 		len -= chunk_size;
406 		block = gfs2_rbm_to_block(&rbm);
407 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 			n_unaligned = 0;
409 			break;
410 		}
411 		if (ptr) {
412 			n_unaligned = 3;
413 			break;
414 		}
415 		n_unaligned = len & 3;
416 	}
417 
418 	/* Deal with any bits left over at the end */
419 	if (n_unaligned)
420 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 	return size - len;
423 }
424 
425 /**
426  * gfs2_bitcount - count the number of bits in a certain state
427  * @rgd: the resource group descriptor
428  * @buffer: the buffer that holds the bitmaps
429  * @buflen: the length (in bytes) of the buffer
430  * @state: the state of the block we're looking for
431  *
432  * Returns: The number of bits
433  */
434 
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 			 unsigned int buflen, u8 state)
437 {
438 	const u8 *byte = buffer;
439 	const u8 *end = buffer + buflen;
440 	const u8 state1 = state << 2;
441 	const u8 state2 = state << 4;
442 	const u8 state3 = state << 6;
443 	u32 count = 0;
444 
445 	for (; byte < end; byte++) {
446 		if (((*byte) & 0x03) == state)
447 			count++;
448 		if (((*byte) & 0x0C) == state1)
449 			count++;
450 		if (((*byte) & 0x30) == state2)
451 			count++;
452 		if (((*byte) & 0xC0) == state3)
453 			count++;
454 	}
455 
456 	return count;
457 }
458 
459 /**
460  * gfs2_rgrp_verify - Verify that a resource group is consistent
461  * @rgd: the rgrp
462  *
463  */
464 
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 	struct gfs2_sbd *sdp = rgd->rd_sbd;
468 	struct gfs2_bitmap *bi = NULL;
469 	u32 length = rgd->rd_length;
470 	u32 count[4], tmp;
471 	int buf, x;
472 
473 	memset(count, 0, 4 * sizeof(u32));
474 
475 	/* Count # blocks in each of 4 possible allocation states */
476 	for (buf = 0; buf < length; buf++) {
477 		bi = rgd->rd_bits + buf;
478 		for (x = 0; x < 4; x++)
479 			count[x] += gfs2_bitcount(rgd,
480 						  bi->bi_bh->b_data +
481 						  bi->bi_offset,
482 						  bi->bi_bytes, x);
483 	}
484 
485 	if (count[0] != rgd->rd_free) {
486 		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
487 			count[0], rgd->rd_free);
488 		gfs2_consist_rgrpd(rgd);
489 		return;
490 	}
491 
492 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 	if (count[1] != tmp) {
494 		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
495 			count[1], tmp);
496 		gfs2_consist_rgrpd(rgd);
497 		return;
498 	}
499 
500 	if (count[2] + count[3] != rgd->rd_dinodes) {
501 		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
502 			count[2] + count[3], rgd->rd_dinodes);
503 		gfs2_consist_rgrpd(rgd);
504 		return;
505 	}
506 }
507 
508 /**
509  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510  * @sdp: The GFS2 superblock
511  * @blk: The data block number
512  * @exact: True if this needs to be an exact match
513  *
514  * The @exact argument should be set to true by most callers. The exception
515  * is when we need to match blocks which are not represented by the rgrp
516  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517  * there for alignment purposes. Another way of looking at it is that @exact
518  * matches only valid data/metadata blocks, but with @exact false, it will
519  * match any block within the extent of the rgrp.
520  *
521  * Returns: The resource group, or NULL if not found
522  */
523 
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 	struct rb_node *n, *next;
527 	struct gfs2_rgrpd *cur;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = sdp->sd_rindex_tree.rb_node;
531 	while (n) {
532 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 		next = NULL;
534 		if (blk < cur->rd_addr)
535 			next = n->rb_left;
536 		else if (blk >= cur->rd_data0 + cur->rd_data)
537 			next = n->rb_right;
538 		if (next == NULL) {
539 			spin_unlock(&sdp->sd_rindex_spin);
540 			if (exact) {
541 				if (blk < cur->rd_addr)
542 					return NULL;
543 				if (blk >= cur->rd_data0 + cur->rd_data)
544 					return NULL;
545 			}
546 			return cur;
547 		}
548 		n = next;
549 	}
550 	spin_unlock(&sdp->sd_rindex_spin);
551 
552 	return NULL;
553 }
554 
555 /**
556  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557  * @sdp: The GFS2 superblock
558  *
559  * Returns: The first rgrp in the filesystem
560  */
561 
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 	const struct rb_node *n;
565 	struct gfs2_rgrpd *rgd;
566 
567 	spin_lock(&sdp->sd_rindex_spin);
568 	n = rb_first(&sdp->sd_rindex_tree);
569 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 	spin_unlock(&sdp->sd_rindex_spin);
571 
572 	return rgd;
573 }
574 
575 /**
576  * gfs2_rgrpd_get_next - get the next RG
577  * @rgd: the resource group descriptor
578  *
579  * Returns: The next rgrp
580  */
581 
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 	struct gfs2_sbd *sdp = rgd->rd_sbd;
585 	const struct rb_node *n;
586 
587 	spin_lock(&sdp->sd_rindex_spin);
588 	n = rb_next(&rgd->rd_node);
589 	if (n == NULL)
590 		n = rb_first(&sdp->sd_rindex_tree);
591 
592 	if (unlikely(&rgd->rd_node == n)) {
593 		spin_unlock(&sdp->sd_rindex_spin);
594 		return NULL;
595 	}
596 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 	spin_unlock(&sdp->sd_rindex_spin);
598 	return rgd;
599 }
600 
check_and_update_goal(struct gfs2_inode * ip)601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 		ip->i_goal = ip->i_no_addr;
606 }
607 
gfs2_free_clones(struct gfs2_rgrpd * rgd)608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 	int x;
611 
612 	for (x = 0; x < rgd->rd_length; x++) {
613 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 		kfree(bi->bi_clone);
615 		bi->bi_clone = NULL;
616 	}
617 }
618 
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs,const char * fs_id_buf)619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 		    const char *fs_id_buf)
621 {
622 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623 
624 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
625 		       fs_id_buf,
626 		       (unsigned long long)ip->i_no_addr,
627 		       (unsigned long long)rs->rs_start,
628 		       rs->rs_requested);
629 }
630 
631 /**
632  * __rs_deltree - remove a multi-block reservation from the rgd tree
633  * @rs: The reservation to remove
634  *
635  */
__rs_deltree(struct gfs2_blkreserv * rs)636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 	struct gfs2_rgrpd *rgd;
639 
640 	if (!gfs2_rs_active(rs))
641 		return;
642 
643 	rgd = rs->rs_rgd;
644 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 	RB_CLEAR_NODE(&rs->rs_node);
647 
648 	if (rs->rs_requested) {
649 		/* return requested blocks to the rgrp */
650 		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 		rs->rs_rgd->rd_requested -= rs->rs_requested;
652 
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_requested;
658 		rs->rs_requested = 0;
659 	}
660 }
661 
662 /**
663  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664  * @rs: The reservation to remove
665  *
666  */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 	struct gfs2_rgrpd *rgd;
670 
671 	rgd = rs->rs_rgd;
672 	if (rgd) {
673 		spin_lock(&rgd->rd_rsspin);
674 		__rs_deltree(rs);
675 		BUG_ON(rs->rs_requested);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  *
684  */
gfs2_rs_delete(struct gfs2_inode * ip)685 void gfs2_rs_delete(struct gfs2_inode *ip)
686 {
687 	struct inode *inode = &ip->i_inode;
688 
689 	down_write(&ip->i_rw_mutex);
690 	if (atomic_read(&inode->i_writecount) <= 1)
691 		gfs2_rs_deltree(&ip->i_res);
692 	up_write(&ip->i_rw_mutex);
693 }
694 
695 /**
696  * return_all_reservations - return all reserved blocks back to the rgrp.
697  * @rgd: the rgrp that needs its space back
698  *
699  * We previously reserved a bunch of blocks for allocation. Now we need to
700  * give them back. This leave the reservation structures in tact, but removes
701  * all of their corresponding "no-fly zones".
702  */
return_all_reservations(struct gfs2_rgrpd * rgd)703 static void return_all_reservations(struct gfs2_rgrpd *rgd)
704 {
705 	struct rb_node *n;
706 	struct gfs2_blkreserv *rs;
707 
708 	spin_lock(&rgd->rd_rsspin);
709 	while ((n = rb_first(&rgd->rd_rstree))) {
710 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
711 		__rs_deltree(rs);
712 	}
713 	spin_unlock(&rgd->rd_rsspin);
714 }
715 
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)716 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
717 {
718 	struct rb_node *n;
719 	struct gfs2_rgrpd *rgd;
720 	struct gfs2_glock *gl;
721 
722 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
723 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
724 		gl = rgd->rd_gl;
725 
726 		rb_erase(n, &sdp->sd_rindex_tree);
727 
728 		if (gl) {
729 			if (gl->gl_state != LM_ST_UNLOCKED) {
730 				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
731 				flush_delayed_work(&gl->gl_work);
732 			}
733 			gfs2_rgrp_brelse(rgd);
734 			glock_clear_object(gl, rgd);
735 			gfs2_glock_put(gl);
736 		}
737 
738 		gfs2_free_clones(rgd);
739 		return_all_reservations(rgd);
740 		kfree(rgd->rd_bits);
741 		rgd->rd_bits = NULL;
742 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 	}
744 }
745 
746 /**
747  * compute_bitstructs - Compute the bitmap sizes
748  * @rgd: The resource group descriptor
749  *
750  * Calculates bitmap descriptors, one for each block that contains bitmap data
751  *
752  * Returns: errno
753  */
754 
compute_bitstructs(struct gfs2_rgrpd * rgd)755 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
756 {
757 	struct gfs2_sbd *sdp = rgd->rd_sbd;
758 	struct gfs2_bitmap *bi;
759 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
760 	u32 bytes_left, bytes;
761 	int x;
762 
763 	if (!length)
764 		return -EINVAL;
765 
766 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
767 	if (!rgd->rd_bits)
768 		return -ENOMEM;
769 
770 	bytes_left = rgd->rd_bitbytes;
771 
772 	for (x = 0; x < length; x++) {
773 		bi = rgd->rd_bits + x;
774 
775 		bi->bi_flags = 0;
776 		/* small rgrp; bitmap stored completely in header block */
777 		if (length == 1) {
778 			bytes = bytes_left;
779 			bi->bi_offset = sizeof(struct gfs2_rgrp);
780 			bi->bi_start = 0;
781 			bi->bi_bytes = bytes;
782 			bi->bi_blocks = bytes * GFS2_NBBY;
783 		/* header block */
784 		} else if (x == 0) {
785 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
786 			bi->bi_offset = sizeof(struct gfs2_rgrp);
787 			bi->bi_start = 0;
788 			bi->bi_bytes = bytes;
789 			bi->bi_blocks = bytes * GFS2_NBBY;
790 		/* last block */
791 		} else if (x + 1 == length) {
792 			bytes = bytes_left;
793 			bi->bi_offset = sizeof(struct gfs2_meta_header);
794 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
795 			bi->bi_bytes = bytes;
796 			bi->bi_blocks = bytes * GFS2_NBBY;
797 		/* other blocks */
798 		} else {
799 			bytes = sdp->sd_sb.sb_bsize -
800 				sizeof(struct gfs2_meta_header);
801 			bi->bi_offset = sizeof(struct gfs2_meta_header);
802 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
803 			bi->bi_bytes = bytes;
804 			bi->bi_blocks = bytes * GFS2_NBBY;
805 		}
806 
807 		bytes_left -= bytes;
808 	}
809 
810 	if (bytes_left) {
811 		gfs2_consist_rgrpd(rgd);
812 		return -EIO;
813 	}
814 	bi = rgd->rd_bits + (length - 1);
815 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
816 		gfs2_lm(sdp,
817 			"ri_addr = %llu\n"
818 			"ri_length = %u\n"
819 			"ri_data0 = %llu\n"
820 			"ri_data = %u\n"
821 			"ri_bitbytes = %u\n"
822 			"start=%u len=%u offset=%u\n",
823 			(unsigned long long)rgd->rd_addr,
824 			rgd->rd_length,
825 			(unsigned long long)rgd->rd_data0,
826 			rgd->rd_data,
827 			rgd->rd_bitbytes,
828 			bi->bi_start, bi->bi_bytes, bi->bi_offset);
829 		gfs2_consist_rgrpd(rgd);
830 		return -EIO;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  * gfs2_ri_total - Total up the file system space, according to the rindex.
838  * @sdp: the filesystem
839  *
840  */
gfs2_ri_total(struct gfs2_sbd * sdp)841 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
842 {
843 	u64 total_data = 0;
844 	struct inode *inode = sdp->sd_rindex;
845 	struct gfs2_inode *ip = GFS2_I(inode);
846 	char buf[sizeof(struct gfs2_rindex)];
847 	int error, rgrps;
848 
849 	for (rgrps = 0;; rgrps++) {
850 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
851 
852 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
853 			break;
854 		error = gfs2_internal_read(ip, buf, &pos,
855 					   sizeof(struct gfs2_rindex));
856 		if (error != sizeof(struct gfs2_rindex))
857 			break;
858 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
859 	}
860 	return total_data;
861 }
862 
rgd_insert(struct gfs2_rgrpd * rgd)863 static int rgd_insert(struct gfs2_rgrpd *rgd)
864 {
865 	struct gfs2_sbd *sdp = rgd->rd_sbd;
866 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
867 
868 	/* Figure out where to put new node */
869 	while (*newn) {
870 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
871 						  rd_node);
872 
873 		parent = *newn;
874 		if (rgd->rd_addr < cur->rd_addr)
875 			newn = &((*newn)->rb_left);
876 		else if (rgd->rd_addr > cur->rd_addr)
877 			newn = &((*newn)->rb_right);
878 		else
879 			return -EEXIST;
880 	}
881 
882 	rb_link_node(&rgd->rd_node, parent, newn);
883 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
884 	sdp->sd_rgrps++;
885 	return 0;
886 }
887 
888 /**
889  * read_rindex_entry - Pull in a new resource index entry from the disk
890  * @ip: Pointer to the rindex inode
891  *
892  * Returns: 0 on success, > 0 on EOF, error code otherwise
893  */
894 
read_rindex_entry(struct gfs2_inode * ip)895 static int read_rindex_entry(struct gfs2_inode *ip)
896 {
897 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
898 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
899 	struct gfs2_rindex buf;
900 	int error;
901 	struct gfs2_rgrpd *rgd;
902 
903 	if (pos >= i_size_read(&ip->i_inode))
904 		return 1;
905 
906 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
907 				   sizeof(struct gfs2_rindex));
908 
909 	if (error != sizeof(struct gfs2_rindex))
910 		return (error == 0) ? 1 : error;
911 
912 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
913 	error = -ENOMEM;
914 	if (!rgd)
915 		return error;
916 
917 	rgd->rd_sbd = sdp;
918 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
919 	rgd->rd_length = be32_to_cpu(buf.ri_length);
920 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
921 	rgd->rd_data = be32_to_cpu(buf.ri_data);
922 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
923 	spin_lock_init(&rgd->rd_rsspin);
924 	mutex_init(&rgd->rd_mutex);
925 
926 	error = gfs2_glock_get(sdp, rgd->rd_addr,
927 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
928 	if (error)
929 		goto fail;
930 
931 	error = compute_bitstructs(rgd);
932 	if (error)
933 		goto fail_glock;
934 
935 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
936 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
937 	if (rgd->rd_data > sdp->sd_max_rg_data)
938 		sdp->sd_max_rg_data = rgd->rd_data;
939 	spin_lock(&sdp->sd_rindex_spin);
940 	error = rgd_insert(rgd);
941 	spin_unlock(&sdp->sd_rindex_spin);
942 	if (!error) {
943 		glock_set_object(rgd->rd_gl, rgd);
944 		return 0;
945 	}
946 
947 	error = 0; /* someone else read in the rgrp; free it and ignore it */
948 fail_glock:
949 	gfs2_glock_put(rgd->rd_gl);
950 
951 fail:
952 	kfree(rgd->rd_bits);
953 	rgd->rd_bits = NULL;
954 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
955 	return error;
956 }
957 
958 /**
959  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
960  * @sdp: the GFS2 superblock
961  *
962  * The purpose of this function is to select a subset of the resource groups
963  * and mark them as PREFERRED. We do it in such a way that each node prefers
964  * to use a unique set of rgrps to minimize glock contention.
965  */
set_rgrp_preferences(struct gfs2_sbd * sdp)966 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
967 {
968 	struct gfs2_rgrpd *rgd, *first;
969 	int i;
970 
971 	/* Skip an initial number of rgrps, based on this node's journal ID.
972 	   That should start each node out on its own set. */
973 	rgd = gfs2_rgrpd_get_first(sdp);
974 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
975 		rgd = gfs2_rgrpd_get_next(rgd);
976 	first = rgd;
977 
978 	do {
979 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
980 		for (i = 0; i < sdp->sd_journals; i++) {
981 			rgd = gfs2_rgrpd_get_next(rgd);
982 			if (!rgd || rgd == first)
983 				break;
984 		}
985 	} while (rgd && rgd != first);
986 }
987 
988 /**
989  * gfs2_ri_update - Pull in a new resource index from the disk
990  * @ip: pointer to the rindex inode
991  *
992  * Returns: 0 on successful update, error code otherwise
993  */
994 
gfs2_ri_update(struct gfs2_inode * ip)995 static int gfs2_ri_update(struct gfs2_inode *ip)
996 {
997 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
998 	int error;
999 
1000 	do {
1001 		error = read_rindex_entry(ip);
1002 	} while (error == 0);
1003 
1004 	if (error < 0)
1005 		return error;
1006 
1007 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1008 		fs_err(sdp, "no resource groups found in the file system.\n");
1009 		return -ENOENT;
1010 	}
1011 	set_rgrp_preferences(sdp);
1012 
1013 	sdp->sd_rindex_uptodate = 1;
1014 	return 0;
1015 }
1016 
1017 /**
1018  * gfs2_rindex_update - Update the rindex if required
1019  * @sdp: The GFS2 superblock
1020  *
1021  * We grab a lock on the rindex inode to make sure that it doesn't
1022  * change whilst we are performing an operation. We keep this lock
1023  * for quite long periods of time compared to other locks. This
1024  * doesn't matter, since it is shared and it is very, very rarely
1025  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026  *
1027  * This makes sure that we're using the latest copy of the resource index
1028  * special file, which might have been updated if someone expanded the
1029  * filesystem (via gfs2_grow utility), which adds new resource groups.
1030  *
1031  * Returns: 0 on succeess, error code otherwise
1032  */
1033 
gfs2_rindex_update(struct gfs2_sbd * sdp)1034 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035 {
1036 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037 	struct gfs2_glock *gl = ip->i_gl;
1038 	struct gfs2_holder ri_gh;
1039 	int error = 0;
1040 	int unlock_required = 0;
1041 
1042 	/* Read new copy from disk if we don't have the latest */
1043 	if (!sdp->sd_rindex_uptodate) {
1044 		if (!gfs2_glock_is_locked_by_me(gl)) {
1045 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046 			if (error)
1047 				return error;
1048 			unlock_required = 1;
1049 		}
1050 		if (!sdp->sd_rindex_uptodate)
1051 			error = gfs2_ri_update(ip);
1052 		if (unlock_required)
1053 			gfs2_glock_dq_uninit(&ri_gh);
1054 	}
1055 
1056 	return error;
1057 }
1058 
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060 {
1061 	const struct gfs2_rgrp *str = buf;
1062 	u32 rg_flags;
1063 
1064 	rg_flags = be32_to_cpu(str->rg_flags);
1065 	rg_flags &= ~GFS2_RDF_MASK;
1066 	rgd->rd_flags &= GFS2_RDF_MASK;
1067 	rgd->rd_flags |= rg_flags;
1068 	rgd->rd_free = be32_to_cpu(str->rg_free);
1069 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072 }
1073 
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075 {
1076 	const struct gfs2_rgrp *str = buf;
1077 
1078 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079 	rgl->rl_flags = str->rg_flags;
1080 	rgl->rl_free = str->rg_free;
1081 	rgl->rl_dinodes = str->rg_dinodes;
1082 	rgl->rl_igeneration = str->rg_igeneration;
1083 	rgl->__pad = 0UL;
1084 }
1085 
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087 {
1088 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089 	struct gfs2_rgrp *str = buf;
1090 	u32 crc;
1091 
1092 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093 	str->rg_free = cpu_to_be32(rgd->rd_free);
1094 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095 	if (next == NULL)
1096 		str->rg_skip = 0;
1097 	else if (next->rd_addr > rgd->rd_addr)
1098 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101 	str->rg_data = cpu_to_be32(rgd->rd_data);
1102 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103 	str->rg_crc = 0;
1104 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105 	str->rg_crc = cpu_to_be32(crc);
1106 
1107 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109 }
1110 
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112 {
1113 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1116 	int valid = 1;
1117 
1118 	if (rgl->rl_flags != str->rg_flags) {
1119 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120 			(unsigned long long)rgd->rd_addr,
1121 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122 		valid = 0;
1123 	}
1124 	if (rgl->rl_free != str->rg_free) {
1125 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126 			(unsigned long long)rgd->rd_addr,
1127 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128 		valid = 0;
1129 	}
1130 	if (rgl->rl_dinodes != str->rg_dinodes) {
1131 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132 			(unsigned long long)rgd->rd_addr,
1133 			be32_to_cpu(rgl->rl_dinodes),
1134 			be32_to_cpu(str->rg_dinodes));
1135 		valid = 0;
1136 	}
1137 	if (rgl->rl_igeneration != str->rg_igeneration) {
1138 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139 			(unsigned long long)rgd->rd_addr,
1140 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1142 		valid = 0;
1143 	}
1144 	return valid;
1145 }
1146 
count_unlinked(struct gfs2_rgrpd * rgd)1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148 {
1149 	struct gfs2_bitmap *bi;
1150 	const u32 length = rgd->rd_length;
1151 	const u8 *buffer = NULL;
1152 	u32 i, goal, count = 0;
1153 
1154 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155 		goal = 0;
1156 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1157 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1158 		while (goal < bi->bi_blocks) {
1159 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160 					   GFS2_BLKST_UNLINKED);
1161 			if (goal == BFITNOENT)
1162 				break;
1163 			count++;
1164 			goal++;
1165 		}
1166 	}
1167 
1168 	return count;
1169 }
1170 
rgrp_set_bitmap_flags(struct gfs2_rgrpd * rgd)1171 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1172 {
1173 	struct gfs2_bitmap *bi;
1174 	int x;
1175 
1176 	if (rgd->rd_free) {
1177 		for (x = 0; x < rgd->rd_length; x++) {
1178 			bi = rgd->rd_bits + x;
1179 			clear_bit(GBF_FULL, &bi->bi_flags);
1180 		}
1181 	} else {
1182 		for (x = 0; x < rgd->rd_length; x++) {
1183 			bi = rgd->rd_bits + x;
1184 			set_bit(GBF_FULL, &bi->bi_flags);
1185 		}
1186 	}
1187 }
1188 
1189 /**
1190  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1191  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1192  *
1193  * Read in all of a Resource Group's header and bitmap blocks.
1194  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1195  *
1196  * Returns: errno
1197  */
1198 
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1199 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1200 {
1201 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1202 	struct gfs2_glock *gl = rgd->rd_gl;
1203 	unsigned int length = rgd->rd_length;
1204 	struct gfs2_bitmap *bi;
1205 	unsigned int x, y;
1206 	int error;
1207 
1208 	if (rgd->rd_bits[0].bi_bh != NULL)
1209 		return 0;
1210 
1211 	for (x = 0; x < length; x++) {
1212 		bi = rgd->rd_bits + x;
1213 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1214 		if (error)
1215 			goto fail;
1216 	}
1217 
1218 	for (y = length; y--;) {
1219 		bi = rgd->rd_bits + y;
1220 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1221 		if (error)
1222 			goto fail;
1223 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1224 					      GFS2_METATYPE_RG)) {
1225 			error = -EIO;
1226 			goto fail;
1227 		}
1228 	}
1229 
1230 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1231 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1232 		rgrp_set_bitmap_flags(rgd);
1233 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1234 		rgd->rd_free_clone = rgd->rd_free;
1235 		BUG_ON(rgd->rd_reserved);
1236 		/* max out the rgrp allocation failure point */
1237 		rgd->rd_extfail_pt = rgd->rd_free;
1238 	}
1239 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1240 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1241 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1242 				     rgd->rd_bits[0].bi_bh->b_data);
1243 	}
1244 	else if (sdp->sd_args.ar_rgrplvb) {
1245 		if (!gfs2_rgrp_lvb_valid(rgd)){
1246 			gfs2_consist_rgrpd(rgd);
1247 			error = -EIO;
1248 			goto fail;
1249 		}
1250 		if (rgd->rd_rgl->rl_unlinked == 0)
1251 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1252 	}
1253 	return 0;
1254 
1255 fail:
1256 	while (x--) {
1257 		bi = rgd->rd_bits + x;
1258 		brelse(bi->bi_bh);
1259 		bi->bi_bh = NULL;
1260 		gfs2_assert_warn(sdp, !bi->bi_clone);
1261 	}
1262 
1263 	return error;
1264 }
1265 
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1266 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1267 {
1268 	u32 rl_flags;
1269 
1270 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1271 		return 0;
1272 
1273 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1274 		return gfs2_rgrp_bh_get(rgd);
1275 
1276 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1277 	rl_flags &= ~GFS2_RDF_MASK;
1278 	rgd->rd_flags &= GFS2_RDF_MASK;
1279 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1280 	if (rgd->rd_rgl->rl_unlinked == 0)
1281 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1282 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1283 	rgrp_set_bitmap_flags(rgd);
1284 	rgd->rd_free_clone = rgd->rd_free;
1285 	BUG_ON(rgd->rd_reserved);
1286 	/* max out the rgrp allocation failure point */
1287 	rgd->rd_extfail_pt = rgd->rd_free;
1288 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1289 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1290 	return 0;
1291 }
1292 
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1293 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1294 {
1295 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1296 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1297 
1298 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1299 		return 0;
1300 	return gfs2_rgrp_bh_get(rgd);
1301 }
1302 
1303 /**
1304  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1305  * @rgd: The resource group
1306  *
1307  */
1308 
gfs2_rgrp_brelse(struct gfs2_rgrpd * rgd)1309 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1310 {
1311 	int x, length = rgd->rd_length;
1312 
1313 	for (x = 0; x < length; x++) {
1314 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1315 		if (bi->bi_bh) {
1316 			brelse(bi->bi_bh);
1317 			bi->bi_bh = NULL;
1318 		}
1319 	}
1320 }
1321 
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1322 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1323 			     struct buffer_head *bh,
1324 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1325 {
1326 	struct super_block *sb = sdp->sd_vfs;
1327 	u64 blk;
1328 	sector_t start = 0;
1329 	sector_t nr_blks = 0;
1330 	int rv;
1331 	unsigned int x;
1332 	u32 trimmed = 0;
1333 	u8 diff;
1334 
1335 	for (x = 0; x < bi->bi_bytes; x++) {
1336 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1337 		clone += bi->bi_offset;
1338 		clone += x;
1339 		if (bh) {
1340 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1341 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1342 		} else {
1343 			diff = ~(*clone | (*clone >> 1));
1344 		}
1345 		diff &= 0x55;
1346 		if (diff == 0)
1347 			continue;
1348 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1349 		while(diff) {
1350 			if (diff & 1) {
1351 				if (nr_blks == 0)
1352 					goto start_new_extent;
1353 				if ((start + nr_blks) != blk) {
1354 					if (nr_blks >= minlen) {
1355 						rv = sb_issue_discard(sb,
1356 							start, nr_blks,
1357 							GFP_NOFS, 0);
1358 						if (rv)
1359 							goto fail;
1360 						trimmed += nr_blks;
1361 					}
1362 					nr_blks = 0;
1363 start_new_extent:
1364 					start = blk;
1365 				}
1366 				nr_blks++;
1367 			}
1368 			diff >>= 2;
1369 			blk++;
1370 		}
1371 	}
1372 	if (nr_blks >= minlen) {
1373 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1374 		if (rv)
1375 			goto fail;
1376 		trimmed += nr_blks;
1377 	}
1378 	if (ptrimmed)
1379 		*ptrimmed = trimmed;
1380 	return 0;
1381 
1382 fail:
1383 	if (sdp->sd_args.ar_discard)
1384 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1385 	sdp->sd_args.ar_discard = 0;
1386 	return -EIO;
1387 }
1388 
1389 /**
1390  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1391  * @filp: Any file on the filesystem
1392  * @argp: Pointer to the arguments (also used to pass result)
1393  *
1394  * Returns: 0 on success, otherwise error code
1395  */
1396 
gfs2_fitrim(struct file * filp,void __user * argp)1397 int gfs2_fitrim(struct file *filp, void __user *argp)
1398 {
1399 	struct inode *inode = file_inode(filp);
1400 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1401 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1402 	struct buffer_head *bh;
1403 	struct gfs2_rgrpd *rgd;
1404 	struct gfs2_rgrpd *rgd_end;
1405 	struct gfs2_holder gh;
1406 	struct fstrim_range r;
1407 	int ret = 0;
1408 	u64 amt;
1409 	u64 trimmed = 0;
1410 	u64 start, end, minlen;
1411 	unsigned int x;
1412 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1413 
1414 	if (!capable(CAP_SYS_ADMIN))
1415 		return -EPERM;
1416 
1417 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1418 		return -EROFS;
1419 
1420 	if (!blk_queue_discard(q))
1421 		return -EOPNOTSUPP;
1422 
1423 	if (copy_from_user(&r, argp, sizeof(r)))
1424 		return -EFAULT;
1425 
1426 	ret = gfs2_rindex_update(sdp);
1427 	if (ret)
1428 		return ret;
1429 
1430 	start = r.start >> bs_shift;
1431 	end = start + (r.len >> bs_shift);
1432 	minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1433 	minlen = max_t(u64, minlen,
1434 		       q->limits.discard_granularity) >> bs_shift;
1435 
1436 	if (end <= start || minlen > sdp->sd_max_rg_data)
1437 		return -EINVAL;
1438 
1439 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1440 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1441 
1442 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1443 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1444 		return -EINVAL; /* start is beyond the end of the fs */
1445 
1446 	while (1) {
1447 
1448 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1449 					 LM_FLAG_NODE_SCOPE, &gh);
1450 		if (ret)
1451 			goto out;
1452 
1453 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1454 			/* Trim each bitmap in the rgrp */
1455 			for (x = 0; x < rgd->rd_length; x++) {
1456 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1457 				rgrp_lock_local(rgd);
1458 				ret = gfs2_rgrp_send_discards(sdp,
1459 						rgd->rd_data0, NULL, bi, minlen,
1460 						&amt);
1461 				rgrp_unlock_local(rgd);
1462 				if (ret) {
1463 					gfs2_glock_dq_uninit(&gh);
1464 					goto out;
1465 				}
1466 				trimmed += amt;
1467 			}
1468 
1469 			/* Mark rgrp as having been trimmed */
1470 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1471 			if (ret == 0) {
1472 				bh = rgd->rd_bits[0].bi_bh;
1473 				rgrp_lock_local(rgd);
1474 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1475 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1476 				gfs2_rgrp_out(rgd, bh->b_data);
1477 				rgrp_unlock_local(rgd);
1478 				gfs2_trans_end(sdp);
1479 			}
1480 		}
1481 		gfs2_glock_dq_uninit(&gh);
1482 
1483 		if (rgd == rgd_end)
1484 			break;
1485 
1486 		rgd = gfs2_rgrpd_get_next(rgd);
1487 	}
1488 
1489 out:
1490 	r.len = trimmed << bs_shift;
1491 	if (copy_to_user(argp, &r, sizeof(r)))
1492 		return -EFAULT;
1493 
1494 	return ret;
1495 }
1496 
1497 /**
1498  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1499  * @ip: the inode structure
1500  *
1501  */
rs_insert(struct gfs2_inode * ip)1502 static void rs_insert(struct gfs2_inode *ip)
1503 {
1504 	struct rb_node **newn, *parent = NULL;
1505 	int rc;
1506 	struct gfs2_blkreserv *rs = &ip->i_res;
1507 	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1508 
1509 	BUG_ON(gfs2_rs_active(rs));
1510 
1511 	spin_lock(&rgd->rd_rsspin);
1512 	newn = &rgd->rd_rstree.rb_node;
1513 	while (*newn) {
1514 		struct gfs2_blkreserv *cur =
1515 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1516 
1517 		parent = *newn;
1518 		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1519 		if (rc > 0)
1520 			newn = &((*newn)->rb_right);
1521 		else if (rc < 0)
1522 			newn = &((*newn)->rb_left);
1523 		else {
1524 			spin_unlock(&rgd->rd_rsspin);
1525 			WARN_ON(1);
1526 			return;
1527 		}
1528 	}
1529 
1530 	rb_link_node(&rs->rs_node, parent, newn);
1531 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1532 
1533 	/* Do our rgrp accounting for the reservation */
1534 	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1535 	spin_unlock(&rgd->rd_rsspin);
1536 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1537 }
1538 
1539 /**
1540  * rgd_free - return the number of free blocks we can allocate
1541  * @rgd: the resource group
1542  * @rs: The reservation to free
1543  *
1544  * This function returns the number of free blocks for an rgrp.
1545  * That's the clone-free blocks (blocks that are free, not including those
1546  * still being used for unlinked files that haven't been deleted.)
1547  *
1548  * It also subtracts any blocks reserved by someone else, but does not
1549  * include free blocks that are still part of our current reservation,
1550  * because obviously we can (and will) allocate them.
1551  */
rgd_free(struct gfs2_rgrpd * rgd,struct gfs2_blkreserv * rs)1552 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1553 {
1554 	u32 tot_reserved, tot_free;
1555 
1556 	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1557 		return 0;
1558 	tot_reserved = rgd->rd_requested - rs->rs_requested;
1559 
1560 	if (rgd->rd_free_clone < tot_reserved)
1561 		tot_reserved = 0;
1562 
1563 	tot_free = rgd->rd_free_clone - tot_reserved;
1564 
1565 	return tot_free;
1566 }
1567 
1568 /**
1569  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1570  * @rgd: the resource group descriptor
1571  * @ip: pointer to the inode for which we're reserving blocks
1572  * @ap: the allocation parameters
1573  *
1574  */
1575 
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,const struct gfs2_alloc_parms * ap)1576 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1577 			   const struct gfs2_alloc_parms *ap)
1578 {
1579 	struct gfs2_rbm rbm = { .rgd = rgd, };
1580 	u64 goal;
1581 	struct gfs2_blkreserv *rs = &ip->i_res;
1582 	u32 extlen;
1583 	u32 free_blocks, blocks_available;
1584 	int ret;
1585 	struct inode *inode = &ip->i_inode;
1586 
1587 	spin_lock(&rgd->rd_rsspin);
1588 	free_blocks = rgd_free(rgd, rs);
1589 	if (rgd->rd_free_clone < rgd->rd_requested)
1590 		free_blocks = 0;
1591 	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1592 	if (rgd == rs->rs_rgd)
1593 		blocks_available += rs->rs_reserved;
1594 	spin_unlock(&rgd->rd_rsspin);
1595 
1596 	if (S_ISDIR(inode->i_mode))
1597 		extlen = 1;
1598 	else {
1599 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1600 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1601 	}
1602 	if (free_blocks < extlen || blocks_available < extlen)
1603 		return;
1604 
1605 	/* Find bitmap block that contains bits for goal block */
1606 	if (rgrp_contains_block(rgd, ip->i_goal))
1607 		goal = ip->i_goal;
1608 	else
1609 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1610 
1611 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1612 		return;
1613 
1614 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1615 	if (ret == 0) {
1616 		rs->rs_start = gfs2_rbm_to_block(&rbm);
1617 		rs->rs_requested = extlen;
1618 		rs_insert(ip);
1619 	} else {
1620 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1621 			rgd->rd_last_alloc = 0;
1622 	}
1623 }
1624 
1625 /**
1626  * gfs2_next_unreserved_block - Return next block that is not reserved
1627  * @rgd: The resource group
1628  * @block: The starting block
1629  * @length: The required length
1630  * @ignore_rs: Reservation to ignore
1631  *
1632  * If the block does not appear in any reservation, then return the
1633  * block number unchanged. If it does appear in the reservation, then
1634  * keep looking through the tree of reservations in order to find the
1635  * first block number which is not reserved.
1636  */
1637 
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,struct gfs2_blkreserv * ignore_rs)1638 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1639 				      u32 length,
1640 				      struct gfs2_blkreserv *ignore_rs)
1641 {
1642 	struct gfs2_blkreserv *rs;
1643 	struct rb_node *n;
1644 	int rc;
1645 
1646 	spin_lock(&rgd->rd_rsspin);
1647 	n = rgd->rd_rstree.rb_node;
1648 	while (n) {
1649 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1650 		rc = rs_cmp(block, length, rs);
1651 		if (rc < 0)
1652 			n = n->rb_left;
1653 		else if (rc > 0)
1654 			n = n->rb_right;
1655 		else
1656 			break;
1657 	}
1658 
1659 	if (n) {
1660 		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1661 			block = rs->rs_start + rs->rs_requested;
1662 			n = n->rb_right;
1663 			if (n == NULL)
1664 				break;
1665 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1666 		}
1667 	}
1668 
1669 	spin_unlock(&rgd->rd_rsspin);
1670 	return block;
1671 }
1672 
1673 /**
1674  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1675  * @rbm: The current position in the resource group
1676  * @rs: Our own reservation
1677  * @minext: The minimum extent length
1678  * @maxext: A pointer to the maximum extent structure
1679  *
1680  * This checks the current position in the rgrp to see whether there is
1681  * a reservation covering this block. If not then this function is a
1682  * no-op. If there is, then the position is moved to the end of the
1683  * contiguous reservation(s) so that we are pointing at the first
1684  * non-reserved block.
1685  *
1686  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1687  */
1688 
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,struct gfs2_blkreserv * rs,u32 minext,struct gfs2_extent * maxext)1689 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1690 					     struct gfs2_blkreserv *rs,
1691 					     u32 minext,
1692 					     struct gfs2_extent *maxext)
1693 {
1694 	u64 block = gfs2_rbm_to_block(rbm);
1695 	u32 extlen = 1;
1696 	u64 nblock;
1697 
1698 	/*
1699 	 * If we have a minimum extent length, then skip over any extent
1700 	 * which is less than the min extent length in size.
1701 	 */
1702 	if (minext > 1) {
1703 		extlen = gfs2_free_extlen(rbm, minext);
1704 		if (extlen <= maxext->len)
1705 			goto fail;
1706 	}
1707 
1708 	/*
1709 	 * Check the extent which has been found against the reservations
1710 	 * and skip if parts of it are already reserved
1711 	 */
1712 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1713 	if (nblock == block) {
1714 		if (!minext || extlen >= minext)
1715 			return 0;
1716 
1717 		if (extlen > maxext->len) {
1718 			maxext->len = extlen;
1719 			maxext->rbm = *rbm;
1720 		}
1721 	} else {
1722 		u64 len = nblock - block;
1723 		if (len >= (u64)1 << 32)
1724 			return -E2BIG;
1725 		extlen = len;
1726 	}
1727 fail:
1728 	if (gfs2_rbm_add(rbm, extlen))
1729 		return -E2BIG;
1730 	return 1;
1731 }
1732 
1733 /**
1734  * gfs2_rbm_find - Look for blocks of a particular state
1735  * @rbm: Value/result starting position and final position
1736  * @state: The state which we want to find
1737  * @minext: Pointer to the requested extent length
1738  *          This is updated to be the actual reservation size.
1739  * @rs: Our own reservation (NULL to skip checking for reservations)
1740  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1741  *          around until we've reached the starting point.
1742  *
1743  * Side effects:
1744  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1745  *   has no free blocks in it.
1746  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1747  *   has come up short on a free block search.
1748  *
1749  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1750  */
1751 
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 * minext,struct gfs2_blkreserv * rs,bool nowrap)1752 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1753 			 struct gfs2_blkreserv *rs, bool nowrap)
1754 {
1755 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1756 	struct buffer_head *bh;
1757 	int last_bii;
1758 	u32 offset;
1759 	u8 *buffer;
1760 	bool wrapped = false;
1761 	int ret;
1762 	struct gfs2_bitmap *bi;
1763 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1764 
1765 	/*
1766 	 * Determine the last bitmap to search.  If we're not starting at the
1767 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1768 	 * the entire resource group.
1769 	 */
1770 	last_bii = rbm->bii - (rbm->offset == 0);
1771 
1772 	while(1) {
1773 		bi = rbm_bi(rbm);
1774 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1775 		    (state == GFS2_BLKST_FREE))
1776 			goto next_bitmap;
1777 
1778 		bh = bi->bi_bh;
1779 		buffer = bh->b_data + bi->bi_offset;
1780 		WARN_ON(!buffer_uptodate(bh));
1781 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1782 			buffer = bi->bi_clone + bi->bi_offset;
1783 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1784 		if (offset == BFITNOENT) {
1785 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1786 				set_bit(GBF_FULL, &bi->bi_flags);
1787 			goto next_bitmap;
1788 		}
1789 		rbm->offset = offset;
1790 		if (!rs || !minext)
1791 			return 0;
1792 
1793 		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1794 							&maxext);
1795 		if (ret == 0)
1796 			return 0;
1797 		if (ret > 0)
1798 			goto next_iter;
1799 		if (ret == -E2BIG) {
1800 			rbm->bii = 0;
1801 			rbm->offset = 0;
1802 			goto res_covered_end_of_rgrp;
1803 		}
1804 		return ret;
1805 
1806 next_bitmap:	/* Find next bitmap in the rgrp */
1807 		rbm->offset = 0;
1808 		rbm->bii++;
1809 		if (rbm->bii == rbm->rgd->rd_length)
1810 			rbm->bii = 0;
1811 res_covered_end_of_rgrp:
1812 		if (rbm->bii == 0) {
1813 			if (wrapped)
1814 				break;
1815 			wrapped = true;
1816 			if (nowrap)
1817 				break;
1818 		}
1819 next_iter:
1820 		/* Have we scanned the entire resource group? */
1821 		if (wrapped && rbm->bii > last_bii)
1822 			break;
1823 	}
1824 
1825 	if (state != GFS2_BLKST_FREE)
1826 		return -ENOSPC;
1827 
1828 	/* If the extent was too small, and it's smaller than the smallest
1829 	   to have failed before, remember for future reference that it's
1830 	   useless to search this rgrp again for this amount or more. */
1831 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1832 	    *minext < rbm->rgd->rd_extfail_pt)
1833 		rbm->rgd->rd_extfail_pt = *minext - 1;
1834 
1835 	/* If the maximum extent we found is big enough to fulfill the
1836 	   minimum requirements, use it anyway. */
1837 	if (maxext.len) {
1838 		*rbm = maxext.rbm;
1839 		*minext = maxext.len;
1840 		return 0;
1841 	}
1842 
1843 	return -ENOSPC;
1844 }
1845 
1846 /**
1847  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1848  * @rgd: The rgrp
1849  * @last_unlinked: block address of the last dinode we unlinked
1850  * @skip: block address we should explicitly not unlink
1851  *
1852  * Returns: 0 if no error
1853  *          The inode, if one has been found, in inode.
1854  */
1855 
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1856 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1857 {
1858 	u64 block;
1859 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1860 	struct gfs2_glock *gl;
1861 	struct gfs2_inode *ip;
1862 	int error;
1863 	int found = 0;
1864 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1865 
1866 	while (1) {
1867 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1868 				      true);
1869 		if (error == -ENOSPC)
1870 			break;
1871 		if (WARN_ON_ONCE(error))
1872 			break;
1873 
1874 		block = gfs2_rbm_to_block(&rbm);
1875 		if (gfs2_rbm_from_block(&rbm, block + 1))
1876 			break;
1877 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1878 			continue;
1879 		if (block == skip)
1880 			continue;
1881 		*last_unlinked = block;
1882 
1883 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1884 		if (error)
1885 			continue;
1886 
1887 		/* If the inode is already in cache, we can ignore it here
1888 		 * because the existing inode disposal code will deal with
1889 		 * it when all refs have gone away. Accessing gl_object like
1890 		 * this is not safe in general. Here it is ok because we do
1891 		 * not dereference the pointer, and we only need an approx
1892 		 * answer to whether it is NULL or not.
1893 		 */
1894 		ip = gl->gl_object;
1895 
1896 		if (ip || !gfs2_queue_delete_work(gl, 0))
1897 			gfs2_glock_put(gl);
1898 		else
1899 			found++;
1900 
1901 		/* Limit reclaim to sensible number of tasks */
1902 		if (found > NR_CPUS)
1903 			return;
1904 	}
1905 
1906 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1907 	return;
1908 }
1909 
1910 /**
1911  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1912  * @rgd: The rgrp in question
1913  * @loops: An indication of how picky we can be (0=very, 1=less so)
1914  *
1915  * This function uses the recently added glock statistics in order to
1916  * figure out whether a parciular resource group is suffering from
1917  * contention from multiple nodes. This is done purely on the basis
1918  * of timings, since this is the only data we have to work with and
1919  * our aim here is to reject a resource group which is highly contended
1920  * but (very important) not to do this too often in order to ensure that
1921  * we do not land up introducing fragmentation by changing resource
1922  * groups when not actually required.
1923  *
1924  * The calculation is fairly simple, we want to know whether the SRTTB
1925  * (i.e. smoothed round trip time for blocking operations) to acquire
1926  * the lock for this rgrp's glock is significantly greater than the
1927  * time taken for resource groups on average. We introduce a margin in
1928  * the form of the variable @var which is computed as the sum of the two
1929  * respective variences, and multiplied by a factor depending on @loops
1930  * and whether we have a lot of data to base the decision on. This is
1931  * then tested against the square difference of the means in order to
1932  * decide whether the result is statistically significant or not.
1933  *
1934  * Returns: A boolean verdict on the congestion status
1935  */
1936 
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1937 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1938 {
1939 	const struct gfs2_glock *gl = rgd->rd_gl;
1940 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1941 	struct gfs2_lkstats *st;
1942 	u64 r_dcount, l_dcount;
1943 	u64 l_srttb, a_srttb = 0;
1944 	s64 srttb_diff;
1945 	u64 sqr_diff;
1946 	u64 var;
1947 	int cpu, nonzero = 0;
1948 
1949 	preempt_disable();
1950 	for_each_present_cpu(cpu) {
1951 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1952 		if (st->stats[GFS2_LKS_SRTTB]) {
1953 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1954 			nonzero++;
1955 		}
1956 	}
1957 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1958 	if (nonzero)
1959 		do_div(a_srttb, nonzero);
1960 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1961 	var = st->stats[GFS2_LKS_SRTTVARB] +
1962 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1963 	preempt_enable();
1964 
1965 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1966 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1967 
1968 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1969 		return false;
1970 
1971 	srttb_diff = a_srttb - l_srttb;
1972 	sqr_diff = srttb_diff * srttb_diff;
1973 
1974 	var *= 2;
1975 	if (l_dcount < 8 || r_dcount < 8)
1976 		var *= 2;
1977 	if (loops == 1)
1978 		var *= 2;
1979 
1980 	return ((srttb_diff < 0) && (sqr_diff > var));
1981 }
1982 
1983 /**
1984  * gfs2_rgrp_used_recently
1985  * @rs: The block reservation with the rgrp to test
1986  * @msecs: The time limit in milliseconds
1987  *
1988  * Returns: True if the rgrp glock has been used within the time limit
1989  */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1990 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1991 				    u64 msecs)
1992 {
1993 	u64 tdiff;
1994 
1995 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1996                             rs->rs_rgd->rd_gl->gl_dstamp));
1997 
1998 	return tdiff > (msecs * 1000 * 1000);
1999 }
2000 
gfs2_orlov_skip(const struct gfs2_inode * ip)2001 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
2002 {
2003 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2004 	u32 skip;
2005 
2006 	get_random_bytes(&skip, sizeof(skip));
2007 	return skip % sdp->sd_rgrps;
2008 }
2009 
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)2010 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
2011 {
2012 	struct gfs2_rgrpd *rgd = *pos;
2013 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2014 
2015 	rgd = gfs2_rgrpd_get_next(rgd);
2016 	if (rgd == NULL)
2017 		rgd = gfs2_rgrpd_get_first(sdp);
2018 	*pos = rgd;
2019 	if (rgd != begin) /* If we didn't wrap */
2020 		return true;
2021 	return false;
2022 }
2023 
2024 /**
2025  * fast_to_acquire - determine if a resource group will be fast to acquire
2026  * @rgd: The rgrp
2027  *
2028  * If this is one of our preferred rgrps, it should be quicker to acquire,
2029  * because we tried to set ourselves up as dlm lock master.
2030  */
fast_to_acquire(struct gfs2_rgrpd * rgd)2031 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2032 {
2033 	struct gfs2_glock *gl = rgd->rd_gl;
2034 
2035 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2036 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2037 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2038 		return 1;
2039 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2040 		return 1;
2041 	return 0;
2042 }
2043 
2044 /**
2045  * gfs2_inplace_reserve - Reserve space in the filesystem
2046  * @ip: the inode to reserve space for
2047  * @ap: the allocation parameters
2048  *
2049  * We try our best to find an rgrp that has at least ap->target blocks
2050  * available. After a couple of passes (loops == 2), the prospects of finding
2051  * such an rgrp diminish. At this stage, we return the first rgrp that has
2052  * at least ap->min_target blocks available.
2053  *
2054  * Returns: 0 on success,
2055  *          -ENOMEM if a suitable rgrp can't be found
2056  *          errno otherwise
2057  */
2058 
gfs2_inplace_reserve(struct gfs2_inode * ip,struct gfs2_alloc_parms * ap)2059 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2060 {
2061 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2062 	struct gfs2_rgrpd *begin = NULL;
2063 	struct gfs2_blkreserv *rs = &ip->i_res;
2064 	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2065 	bool rg_locked;
2066 	u64 last_unlinked = NO_BLOCK;
2067 	u32 target = ap->target;
2068 	int loops = 0;
2069 	u32 free_blocks, blocks_available, skip = 0;
2070 
2071 	BUG_ON(rs->rs_reserved);
2072 
2073 	if (sdp->sd_args.ar_rgrplvb)
2074 		flags |= GL_SKIP;
2075 	if (gfs2_assert_warn(sdp, target))
2076 		return -EINVAL;
2077 	if (gfs2_rs_active(rs)) {
2078 		begin = rs->rs_rgd;
2079 	} else if (rs->rs_rgd &&
2080 		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2081 		begin = rs->rs_rgd;
2082 	} else {
2083 		check_and_update_goal(ip);
2084 		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2085 	}
2086 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2087 		skip = gfs2_orlov_skip(ip);
2088 	if (rs->rs_rgd == NULL)
2089 		return -EBADSLT;
2090 
2091 	while (loops < 3) {
2092 		struct gfs2_rgrpd *rgd;
2093 
2094 		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2095 		if (rg_locked) {
2096 			rgrp_lock_local(rs->rs_rgd);
2097 		} else {
2098 			if (skip && skip--)
2099 				goto next_rgrp;
2100 			if (!gfs2_rs_active(rs)) {
2101 				if (loops == 0 &&
2102 				    !fast_to_acquire(rs->rs_rgd))
2103 					goto next_rgrp;
2104 				if ((loops < 2) &&
2105 				    gfs2_rgrp_used_recently(rs, 1000) &&
2106 				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2107 					goto next_rgrp;
2108 			}
2109 			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2110 						   LM_ST_EXCLUSIVE, flags,
2111 						   &ip->i_rgd_gh);
2112 			if (unlikely(error))
2113 				return error;
2114 			rgrp_lock_local(rs->rs_rgd);
2115 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2116 			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2117 				goto skip_rgrp;
2118 			if (sdp->sd_args.ar_rgrplvb) {
2119 				error = update_rgrp_lvb(rs->rs_rgd);
2120 				if (unlikely(error)) {
2121 					rgrp_unlock_local(rs->rs_rgd);
2122 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2123 					return error;
2124 				}
2125 			}
2126 		}
2127 
2128 		/* Skip unusable resource groups */
2129 		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2130 						 GFS2_RDF_ERROR)) ||
2131 		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2132 			goto skip_rgrp;
2133 
2134 		if (sdp->sd_args.ar_rgrplvb)
2135 			gfs2_rgrp_bh_get(rs->rs_rgd);
2136 
2137 		/* Get a reservation if we don't already have one */
2138 		if (!gfs2_rs_active(rs))
2139 			rg_mblk_search(rs->rs_rgd, ip, ap);
2140 
2141 		/* Skip rgrps when we can't get a reservation on first pass */
2142 		if (!gfs2_rs_active(rs) && (loops < 1))
2143 			goto check_rgrp;
2144 
2145 		/* If rgrp has enough free space, use it */
2146 		rgd = rs->rs_rgd;
2147 		spin_lock(&rgd->rd_rsspin);
2148 		free_blocks = rgd_free(rgd, rs);
2149 		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2150 		if (free_blocks < target || blocks_available < target) {
2151 			spin_unlock(&rgd->rd_rsspin);
2152 			goto check_rgrp;
2153 		}
2154 		rs->rs_reserved = ap->target;
2155 		if (rs->rs_reserved > blocks_available)
2156 			rs->rs_reserved = blocks_available;
2157 		rgd->rd_reserved += rs->rs_reserved;
2158 		spin_unlock(&rgd->rd_rsspin);
2159 		rgrp_unlock_local(rs->rs_rgd);
2160 		return 0;
2161 check_rgrp:
2162 		/* Check for unlinked inodes which can be reclaimed */
2163 		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2164 			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2165 					ip->i_no_addr);
2166 skip_rgrp:
2167 		rgrp_unlock_local(rs->rs_rgd);
2168 
2169 		/* Drop reservation, if we couldn't use reserved rgrp */
2170 		if (gfs2_rs_active(rs))
2171 			gfs2_rs_deltree(rs);
2172 
2173 		/* Unlock rgrp if required */
2174 		if (!rg_locked)
2175 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2176 next_rgrp:
2177 		/* Find the next rgrp, and continue looking */
2178 		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2179 			continue;
2180 		if (skip)
2181 			continue;
2182 
2183 		/* If we've scanned all the rgrps, but found no free blocks
2184 		 * then this checks for some less likely conditions before
2185 		 * trying again.
2186 		 */
2187 		loops++;
2188 		/* Check that fs hasn't grown if writing to rindex */
2189 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2190 			error = gfs2_ri_update(ip);
2191 			if (error)
2192 				return error;
2193 		}
2194 		/* Flushing the log may release space */
2195 		if (loops == 2) {
2196 			if (ap->min_target)
2197 				target = ap->min_target;
2198 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2199 				       GFS2_LFC_INPLACE_RESERVE);
2200 		}
2201 	}
2202 
2203 	return -ENOSPC;
2204 }
2205 
2206 /**
2207  * gfs2_inplace_release - release an inplace reservation
2208  * @ip: the inode the reservation was taken out on
2209  *
2210  * Release a reservation made by gfs2_inplace_reserve().
2211  */
2212 
gfs2_inplace_release(struct gfs2_inode * ip)2213 void gfs2_inplace_release(struct gfs2_inode *ip)
2214 {
2215 	struct gfs2_blkreserv *rs = &ip->i_res;
2216 
2217 	if (rs->rs_reserved) {
2218 		struct gfs2_rgrpd *rgd = rs->rs_rgd;
2219 
2220 		spin_lock(&rgd->rd_rsspin);
2221 		BUG_ON(rgd->rd_reserved < rs->rs_reserved);
2222 		rgd->rd_reserved -= rs->rs_reserved;
2223 		spin_unlock(&rgd->rd_rsspin);
2224 		rs->rs_reserved = 0;
2225 	}
2226 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2227 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2228 }
2229 
2230 /**
2231  * gfs2_alloc_extent - allocate an extent from a given bitmap
2232  * @rbm: the resource group information
2233  * @dinode: TRUE if the first block we allocate is for a dinode
2234  * @n: The extent length (value/result)
2235  *
2236  * Add the bitmap buffer to the transaction.
2237  * Set the found bits to @new_state to change block's allocation state.
2238  */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)2239 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2240 			     unsigned int *n)
2241 {
2242 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2243 	const unsigned int elen = *n;
2244 	u64 block;
2245 	int ret;
2246 
2247 	*n = 1;
2248 	block = gfs2_rbm_to_block(rbm);
2249 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2250 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2251 	block++;
2252 	while (*n < elen) {
2253 		ret = gfs2_rbm_from_block(&pos, block);
2254 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2255 			break;
2256 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2257 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2258 		(*n)++;
2259 		block++;
2260 	}
2261 }
2262 
2263 /**
2264  * rgblk_free - Change alloc state of given block(s)
2265  * @sdp: the filesystem
2266  * @rgd: the resource group the blocks are in
2267  * @bstart: the start of a run of blocks to free
2268  * @blen: the length of the block run (all must lie within ONE RG!)
2269  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2270  */
2271 
rgblk_free(struct gfs2_sbd * sdp,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,unsigned char new_state)2272 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2273 		       u64 bstart, u32 blen, unsigned char new_state)
2274 {
2275 	struct gfs2_rbm rbm;
2276 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2277 
2278 	rbm.rgd = rgd;
2279 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2280 		return;
2281 	while (blen--) {
2282 		bi = rbm_bi(&rbm);
2283 		if (bi != bi_prev) {
2284 			if (!bi->bi_clone) {
2285 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2286 						      GFP_NOFS | __GFP_NOFAIL);
2287 				memcpy(bi->bi_clone + bi->bi_offset,
2288 				       bi->bi_bh->b_data + bi->bi_offset,
2289 				       bi->bi_bytes);
2290 			}
2291 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2292 			bi_prev = bi;
2293 		}
2294 		gfs2_setbit(&rbm, false, new_state);
2295 		gfs2_rbm_add(&rbm, 1);
2296 	}
2297 }
2298 
2299 /**
2300  * gfs2_rgrp_dump - print out an rgrp
2301  * @seq: The iterator
2302  * @rgd: The rgrp in question
2303  * @fs_id_buf: pointer to file system id (if requested)
2304  *
2305  */
2306 
gfs2_rgrp_dump(struct seq_file * seq,struct gfs2_rgrpd * rgd,const char * fs_id_buf)2307 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2308 		    const char *fs_id_buf)
2309 {
2310 	struct gfs2_blkreserv *trs;
2311 	const struct rb_node *n;
2312 
2313 	spin_lock(&rgd->rd_rsspin);
2314 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2315 		       fs_id_buf,
2316 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2317 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2318 		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2319 	if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) {
2320 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2321 
2322 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2323 			       be32_to_cpu(rgl->rl_flags),
2324 			       be32_to_cpu(rgl->rl_free),
2325 			       be32_to_cpu(rgl->rl_dinodes));
2326 	}
2327 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2328 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2329 		dump_rs(seq, trs, fs_id_buf);
2330 	}
2331 	spin_unlock(&rgd->rd_rsspin);
2332 }
2333 
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2334 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2335 {
2336 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2337 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2338 
2339 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2340 		(unsigned long long)rgd->rd_addr);
2341 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2342 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2343 	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2344 	rgd->rd_flags |= GFS2_RDF_ERROR;
2345 }
2346 
2347 /**
2348  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2349  * @ip: The inode we have just allocated blocks for
2350  * @rbm: The start of the allocated blocks
2351  * @len: The extent length
2352  *
2353  * Adjusts a reservation after an allocation has taken place. If the
2354  * reservation does not match the allocation, or if it is now empty
2355  * then it is removed.
2356  */
2357 
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2358 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2359 				    const struct gfs2_rbm *rbm, unsigned len)
2360 {
2361 	struct gfs2_blkreserv *rs = &ip->i_res;
2362 	struct gfs2_rgrpd *rgd = rbm->rgd;
2363 
2364 	BUG_ON(rs->rs_reserved < len);
2365 	rs->rs_reserved -= len;
2366 	if (gfs2_rs_active(rs)) {
2367 		u64 start = gfs2_rbm_to_block(rbm);
2368 
2369 		if (rs->rs_start == start) {
2370 			unsigned int rlen;
2371 
2372 			rs->rs_start += len;
2373 			rlen = min(rs->rs_requested, len);
2374 			rs->rs_requested -= rlen;
2375 			rgd->rd_requested -= rlen;
2376 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2377 			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2378 			    rs->rs_requested)
2379 				return;
2380 			/* We used up our block reservation, so we should
2381 			   reserve more blocks next time. */
2382 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2383 		}
2384 		__rs_deltree(rs);
2385 	}
2386 }
2387 
2388 /**
2389  * gfs2_set_alloc_start - Set starting point for block allocation
2390  * @rbm: The rbm which will be set to the required location
2391  * @ip: The gfs2 inode
2392  * @dinode: Flag to say if allocation includes a new inode
2393  *
2394  * This sets the starting point from the reservation if one is active
2395  * otherwise it falls back to guessing a start point based on the
2396  * inode's goal block or the last allocation point in the rgrp.
2397  */
2398 
gfs2_set_alloc_start(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,bool dinode)2399 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2400 				 const struct gfs2_inode *ip, bool dinode)
2401 {
2402 	u64 goal;
2403 
2404 	if (gfs2_rs_active(&ip->i_res)) {
2405 		goal = ip->i_res.rs_start;
2406 	} else {
2407 		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2408 			goal = ip->i_goal;
2409 		else
2410 			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2411 	}
2412 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2413 		rbm->bii = 0;
2414 		rbm->offset = 0;
2415 	}
2416 }
2417 
2418 /**
2419  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2420  * @ip: the inode to allocate the block for
2421  * @bn: Used to return the starting block number
2422  * @nblocks: requested number of blocks/extent length (value/result)
2423  * @dinode: 1 if we're allocating a dinode block, else 0
2424  * @generation: the generation number of the inode
2425  *
2426  * Returns: 0 or error
2427  */
2428 
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2429 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2430 		      bool dinode, u64 *generation)
2431 {
2432 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2433 	struct buffer_head *dibh;
2434 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2435 	u64 block; /* block, within the file system scope */
2436 	u32 minext = 1;
2437 	int error = -ENOSPC;
2438 
2439 	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2440 
2441 	rgrp_lock_local(rbm.rgd);
2442 	if (gfs2_rs_active(&ip->i_res)) {
2443 		gfs2_set_alloc_start(&rbm, ip, dinode);
2444 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2445 	}
2446 	if (error == -ENOSPC) {
2447 		gfs2_set_alloc_start(&rbm, ip, dinode);
2448 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2449 	}
2450 
2451 	/* Since all blocks are reserved in advance, this shouldn't happen */
2452 	if (error) {
2453 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2454 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2455 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2456 			rbm.rgd->rd_extfail_pt);
2457 		goto rgrp_error;
2458 	}
2459 
2460 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2461 	block = gfs2_rbm_to_block(&rbm);
2462 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2463 	if (!dinode) {
2464 		ip->i_goal = block + *nblocks - 1;
2465 		error = gfs2_meta_inode_buffer(ip, &dibh);
2466 		if (error == 0) {
2467 			struct gfs2_dinode *di =
2468 				(struct gfs2_dinode *)dibh->b_data;
2469 			gfs2_trans_add_meta(ip->i_gl, dibh);
2470 			di->di_goal_meta = di->di_goal_data =
2471 				cpu_to_be64(ip->i_goal);
2472 			brelse(dibh);
2473 		}
2474 	}
2475 	spin_lock(&rbm.rgd->rd_rsspin);
2476 	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2477 	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2478 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2479 		spin_unlock(&rbm.rgd->rd_rsspin);
2480 		goto rgrp_error;
2481 	}
2482 	BUG_ON(rbm.rgd->rd_reserved < *nblocks);
2483 	BUG_ON(rbm.rgd->rd_free_clone < *nblocks);
2484 	BUG_ON(rbm.rgd->rd_free < *nblocks);
2485 	rbm.rgd->rd_reserved -= *nblocks;
2486 	rbm.rgd->rd_free_clone -= *nblocks;
2487 	rbm.rgd->rd_free -= *nblocks;
2488 	spin_unlock(&rbm.rgd->rd_rsspin);
2489 	if (dinode) {
2490 		rbm.rgd->rd_dinodes++;
2491 		*generation = rbm.rgd->rd_igeneration++;
2492 		if (*generation == 0)
2493 			*generation = rbm.rgd->rd_igeneration++;
2494 	}
2495 
2496 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2497 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2498 	rgrp_unlock_local(rbm.rgd);
2499 
2500 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2501 	if (dinode)
2502 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2503 
2504 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2505 
2506 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2507 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2508 	*bn = block;
2509 	return 0;
2510 
2511 rgrp_error:
2512 	rgrp_unlock_local(rbm.rgd);
2513 	gfs2_rgrp_error(rbm.rgd);
2514 	return -EIO;
2515 }
2516 
2517 /**
2518  * __gfs2_free_blocks - free a contiguous run of block(s)
2519  * @ip: the inode these blocks are being freed from
2520  * @rgd: the resource group the blocks are in
2521  * @bstart: first block of a run of contiguous blocks
2522  * @blen: the length of the block run
2523  * @meta: 1 if the blocks represent metadata
2524  *
2525  */
2526 
__gfs2_free_blocks(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,int meta)2527 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2528 			u64 bstart, u32 blen, int meta)
2529 {
2530 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2531 
2532 	rgrp_lock_local(rgd);
2533 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2534 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2535 	rgd->rd_free += blen;
2536 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2537 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2538 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2539 	rgrp_unlock_local(rgd);
2540 
2541 	/* Directories keep their data in the metadata address space */
2542 	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2543 		gfs2_journal_wipe(ip, bstart, blen);
2544 }
2545 
2546 /**
2547  * gfs2_free_meta - free a contiguous run of data block(s)
2548  * @ip: the inode these blocks are being freed from
2549  * @rgd: the resource group the blocks are in
2550  * @bstart: first block of a run of contiguous blocks
2551  * @blen: the length of the block run
2552  *
2553  */
2554 
gfs2_free_meta(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen)2555 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2556 		    u64 bstart, u32 blen)
2557 {
2558 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2559 
2560 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2561 	gfs2_statfs_change(sdp, 0, +blen, 0);
2562 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2563 }
2564 
gfs2_unlink_di(struct inode * inode)2565 void gfs2_unlink_di(struct inode *inode)
2566 {
2567 	struct gfs2_inode *ip = GFS2_I(inode);
2568 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2569 	struct gfs2_rgrpd *rgd;
2570 	u64 blkno = ip->i_no_addr;
2571 
2572 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2573 	if (!rgd)
2574 		return;
2575 	rgrp_lock_local(rgd);
2576 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2577 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2578 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2579 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2580 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2581 	rgrp_unlock_local(rgd);
2582 }
2583 
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2584 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2585 {
2586 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2587 
2588 	rgrp_lock_local(rgd);
2589 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2590 	if (!rgd->rd_dinodes)
2591 		gfs2_consist_rgrpd(rgd);
2592 	rgd->rd_dinodes--;
2593 	rgd->rd_free++;
2594 
2595 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2596 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2597 	rgrp_unlock_local(rgd);
2598 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2599 
2600 	gfs2_statfs_change(sdp, 0, +1, -1);
2601 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2602 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2603 	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2604 }
2605 
2606 /**
2607  * gfs2_check_blk_type - Check the type of a block
2608  * @sdp: The superblock
2609  * @no_addr: The block number to check
2610  * @type: The block type we are looking for
2611  *
2612  * The inode glock of @no_addr must be held.  The @type to check for is either
2613  * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2614  * or GFS2_BLKST_USED would make no sense.
2615  *
2616  * Returns: 0 if the block type matches the expected type
2617  *          -ESTALE if it doesn't match
2618  *          or -ve errno if something went wrong while checking
2619  */
2620 
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2621 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2622 {
2623 	struct gfs2_rgrpd *rgd;
2624 	struct gfs2_holder rgd_gh;
2625 	struct gfs2_rbm rbm;
2626 	int error = -EINVAL;
2627 
2628 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2629 	if (!rgd)
2630 		goto fail;
2631 
2632 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2633 	if (error)
2634 		goto fail;
2635 
2636 	rbm.rgd = rgd;
2637 	error = gfs2_rbm_from_block(&rbm, no_addr);
2638 	if (!WARN_ON_ONCE(error)) {
2639 		/*
2640 		 * No need to take the local resource group lock here; the
2641 		 * inode glock of @no_addr provides the necessary
2642 		 * synchronization in case the block is an inode.  (In case
2643 		 * the block is not an inode, the block type will not match
2644 		 * the @type we are looking for.)
2645 		 */
2646 		if (gfs2_testbit(&rbm, false) != type)
2647 			error = -ESTALE;
2648 	}
2649 
2650 	gfs2_glock_dq_uninit(&rgd_gh);
2651 
2652 fail:
2653 	return error;
2654 }
2655 
2656 /**
2657  * gfs2_rlist_add - add a RG to a list of RGs
2658  * @ip: the inode
2659  * @rlist: the list of resource groups
2660  * @block: the block
2661  *
2662  * Figure out what RG a block belongs to and add that RG to the list
2663  *
2664  * FIXME: Don't use NOFAIL
2665  *
2666  */
2667 
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2668 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2669 		    u64 block)
2670 {
2671 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2672 	struct gfs2_rgrpd *rgd;
2673 	struct gfs2_rgrpd **tmp;
2674 	unsigned int new_space;
2675 	unsigned int x;
2676 
2677 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2678 		return;
2679 
2680 	/*
2681 	 * The resource group last accessed is kept in the last position.
2682 	 */
2683 
2684 	if (rlist->rl_rgrps) {
2685 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2686 		if (rgrp_contains_block(rgd, block))
2687 			return;
2688 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2689 	} else {
2690 		rgd = ip->i_res.rs_rgd;
2691 		if (!rgd || !rgrp_contains_block(rgd, block))
2692 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2693 	}
2694 
2695 	if (!rgd) {
2696 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2697 		       (unsigned long long)block);
2698 		return;
2699 	}
2700 
2701 	for (x = 0; x < rlist->rl_rgrps; x++) {
2702 		if (rlist->rl_rgd[x] == rgd) {
2703 			swap(rlist->rl_rgd[x],
2704 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2705 			return;
2706 		}
2707 	}
2708 
2709 	if (rlist->rl_rgrps == rlist->rl_space) {
2710 		new_space = rlist->rl_space + 10;
2711 
2712 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2713 			      GFP_NOFS | __GFP_NOFAIL);
2714 
2715 		if (rlist->rl_rgd) {
2716 			memcpy(tmp, rlist->rl_rgd,
2717 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2718 			kfree(rlist->rl_rgd);
2719 		}
2720 
2721 		rlist->rl_space = new_space;
2722 		rlist->rl_rgd = tmp;
2723 	}
2724 
2725 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2726 }
2727 
2728 /**
2729  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2730  *      and initialize an array of glock holders for them
2731  * @rlist: the list of resource groups
2732  *
2733  * FIXME: Don't use NOFAIL
2734  *
2735  */
2736 
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist)2737 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2738 {
2739 	unsigned int x;
2740 
2741 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2742 				      sizeof(struct gfs2_holder),
2743 				      GFP_NOFS | __GFP_NOFAIL);
2744 	for (x = 0; x < rlist->rl_rgrps; x++)
2745 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE,
2746 				 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]);
2747 }
2748 
2749 /**
2750  * gfs2_rlist_free - free a resource group list
2751  * @rlist: the list of resource groups
2752  *
2753  */
2754 
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2755 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2756 {
2757 	unsigned int x;
2758 
2759 	kfree(rlist->rl_rgd);
2760 
2761 	if (rlist->rl_ghs) {
2762 		for (x = 0; x < rlist->rl_rgrps; x++)
2763 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2764 		kfree(rlist->rl_ghs);
2765 		rlist->rl_ghs = NULL;
2766 	}
2767 }
2768 
rgrp_lock_local(struct gfs2_rgrpd * rgd)2769 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2770 {
2771 	BUG_ON(!gfs2_glock_is_held_excl(rgd->rd_gl) &&
2772 	       !test_bit(SDF_NORECOVERY, &rgd->rd_sbd->sd_flags));
2773 	mutex_lock(&rgd->rd_mutex);
2774 }
2775 
rgrp_unlock_local(struct gfs2_rgrpd * rgd)2776 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2777 {
2778 	mutex_unlock(&rgd->rd_mutex);
2779 }
2780