1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 struct gfs2_rbm {
40 struct gfs2_rgrpd *rgd;
41 u32 offset; /* The offset is bitmap relative */
42 int bii; /* Bitmap index */
43 };
44
rbm_bi(const struct gfs2_rbm * rbm)45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 return rbm->rgd->rd_bits + rbm->bii;
48 }
49
gfs2_rbm_to_block(const struct gfs2_rbm * rbm)50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 rbm->offset;
55 }
56
57 /*
58 * These routines are used by the resource group routines (rgrp.c)
59 * to keep track of block allocation. Each block is represented by two
60 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61 *
62 * 0 = Free
63 * 1 = Used (not metadata)
64 * 2 = Unlinked (still in use) inode
65 * 3 = Used (metadata)
66 */
67
68 struct gfs2_extent {
69 struct gfs2_rbm rbm;
70 u32 len;
71 };
72
73 static const char valid_change[16] = {
74 /* current */
75 /* n */ 0, 1, 1, 1,
76 /* e */ 1, 0, 0, 0,
77 /* w */ 0, 0, 0, 1,
78 1, 0, 0, 0
79 };
80
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 struct gfs2_blkreserv *rs, bool nowrap);
83
84
85 /**
86 * gfs2_setbit - Set a bit in the bitmaps
87 * @rbm: The position of the bit to set
88 * @do_clone: Also set the clone bitmap, if it exists
89 * @new_state: the new state of the block
90 *
91 */
92
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 unsigned char new_state)
95 {
96 unsigned char *byte1, *byte2, *end, cur_state;
97 struct gfs2_bitmap *bi = rbm_bi(rbm);
98 unsigned int buflen = bi->bi_bytes;
99 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100
101 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103
104 BUG_ON(byte1 >= end);
105
106 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107
108 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110
111 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 rbm->offset, cur_state, new_state);
113 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 (unsigned long long)bi->bi_bh->b_blocknr);
116 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 bi->bi_offset, bi->bi_bytes,
118 (unsigned long long)gfs2_rbm_to_block(rbm));
119 dump_stack();
120 gfs2_consist_rgrpd(rbm->rgd);
121 return;
122 }
123 *byte1 ^= (cur_state ^ new_state) << bit;
124
125 if (do_clone && bi->bi_clone) {
126 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 *byte2 ^= (cur_state ^ new_state) << bit;
129 }
130 }
131
132 /**
133 * gfs2_testbit - test a bit in the bitmaps
134 * @rbm: The bit to test
135 * @use_clone: If true, test the clone bitmap, not the official bitmap.
136 *
137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138 * not the "real" bitmaps, to avoid allocating recently freed blocks.
139 *
140 * Returns: The two bit block state of the requested bit
141 */
142
gfs2_testbit(const struct gfs2_rbm * rbm,bool use_clone)143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 struct gfs2_bitmap *bi = rbm_bi(rbm);
146 const u8 *buffer;
147 const u8 *byte;
148 unsigned int bit;
149
150 if (use_clone && bi->bi_clone)
151 buffer = bi->bi_clone;
152 else
153 buffer = bi->bi_bh->b_data;
154 buffer += bi->bi_offset;
155 byte = buffer + (rbm->offset / GFS2_NBBY);
156 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157
158 return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160
161 /**
162 * gfs2_bit_search
163 * @ptr: Pointer to bitmap data
164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165 * @state: The state we are searching for
166 *
167 * We xor the bitmap data with a patter which is the bitwise opposite
168 * of what we are looking for, this gives rise to a pattern of ones
169 * wherever there is a match. Since we have two bits per entry, we
170 * take this pattern, shift it down by one place and then and it with
171 * the original. All the even bit positions (0,2,4, etc) then represent
172 * successful matches, so we mask with 0x55555..... to remove the unwanted
173 * odd bit positions.
174 *
175 * This allows searching of a whole u64 at once (32 blocks) with a
176 * single test (on 64 bit arches).
177 */
178
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 u64 tmp;
182 static const u64 search[] = {
183 [0] = 0xffffffffffffffffULL,
184 [1] = 0xaaaaaaaaaaaaaaaaULL,
185 [2] = 0x5555555555555555ULL,
186 [3] = 0x0000000000000000ULL,
187 };
188 tmp = le64_to_cpu(*ptr) ^ search[state];
189 tmp &= (tmp >> 1);
190 tmp &= mask;
191 return tmp;
192 }
193
194 /**
195 * rs_cmp - multi-block reservation range compare
196 * @start: start of the new reservation
197 * @len: number of blocks in the new reservation
198 * @rs: existing reservation to compare against
199 *
200 * returns: 1 if the block range is beyond the reach of the reservation
201 * -1 if the block range is before the start of the reservation
202 * 0 if the block range overlaps with the reservation
203 */
rs_cmp(u64 start,u32 len,struct gfs2_blkreserv * rs)204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 if (start >= rs->rs_start + rs->rs_requested)
207 return 1;
208 if (rs->rs_start >= start + len)
209 return -1;
210 return 0;
211 }
212
213 /**
214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215 * a block in a given allocation state.
216 * @buf: the buffer that holds the bitmaps
217 * @len: the length (in bytes) of the buffer
218 * @goal: start search at this block's bit-pair (within @buffer)
219 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220 *
221 * Scope of @goal and returned block number is only within this bitmap buffer,
222 * not entire rgrp or filesystem. @buffer will be offset from the actual
223 * beginning of a bitmap block buffer, skipping any header structures, but
224 * headers are always a multiple of 64 bits long so that the buffer is
225 * always aligned to a 64 bit boundary.
226 *
227 * The size of the buffer is in bytes, but is it assumed that it is
228 * always ok to read a complete multiple of 64 bits at the end
229 * of the block in case the end is no aligned to a natural boundary.
230 *
231 * Return: the block number (bitmap buffer scope) that was found
232 */
233
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 u32 goal, u8 state)
236 {
237 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 u64 tmp;
241 u64 mask = 0x5555555555555555ULL;
242 u32 bit;
243
244 /* Mask off bits we don't care about at the start of the search */
245 mask <<= spoint;
246 tmp = gfs2_bit_search(ptr, mask, state);
247 ptr++;
248 while(tmp == 0 && ptr < end) {
249 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 ptr++;
251 }
252 /* Mask off any bits which are more than len bytes from the start */
253 if (ptr == end && (len & (sizeof(u64) - 1)))
254 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 /* Didn't find anything, so return */
256 if (tmp == 0)
257 return BFITNOENT;
258 ptr--;
259 bit = __ffs64(tmp);
260 bit /= 2; /* two bits per entry in the bitmap */
261 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263
264 /**
265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266 * @rbm: The rbm with rgd already set correctly
267 * @block: The block number (filesystem relative)
268 *
269 * This sets the bi and offset members of an rbm based on a
270 * resource group and a filesystem relative block number. The
271 * resource group must be set in the rbm on entry, the bi and
272 * offset members will be set by this function.
273 *
274 * Returns: 0 on success, or an error code
275 */
276
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 if (!rgrp_contains_block(rbm->rgd, block))
280 return -E2BIG;
281 rbm->bii = 0;
282 rbm->offset = block - rbm->rgd->rd_data0;
283 /* Check if the block is within the first block */
284 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 return 0;
286
287 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 rbm->offset += (sizeof(struct gfs2_rgrp) -
289 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 return 0;
293 }
294
295 /**
296 * gfs2_rbm_add - add a number of blocks to an rbm
297 * @rbm: The rbm with rgd already set correctly
298 * @blocks: The number of blocks to add to rpm
299 *
300 * This function takes an existing rbm structure and adds a number of blocks to
301 * it.
302 *
303 * Returns: True if the new rbm would point past the end of the rgrp.
304 */
305
gfs2_rbm_add(struct gfs2_rbm * rbm,u32 blocks)306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 struct gfs2_rgrpd *rgd = rbm->rgd;
309 struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310
311 if (rbm->offset + blocks < bi->bi_blocks) {
312 rbm->offset += blocks;
313 return false;
314 }
315 blocks -= bi->bi_blocks - rbm->offset;
316
317 for(;;) {
318 bi++;
319 if (bi == rgd->rd_bits + rgd->rd_length)
320 return true;
321 if (blocks < bi->bi_blocks) {
322 rbm->offset = blocks;
323 rbm->bii = bi - rgd->rd_bits;
324 return false;
325 }
326 blocks -= bi->bi_blocks;
327 }
328 }
329
330 /**
331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332 * @rbm: Position to search (value/result)
333 * @n_unaligned: Number of unaligned blocks to check
334 * @len: Decremented for each block found (terminate on zero)
335 *
336 * Returns: true if a non-free block is encountered or the end of the resource
337 * group is reached.
338 */
339
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 u32 n;
343 u8 res;
344
345 for (n = 0; n < n_unaligned; n++) {
346 res = gfs2_testbit(rbm, true);
347 if (res != GFS2_BLKST_FREE)
348 return true;
349 (*len)--;
350 if (*len == 0)
351 return true;
352 if (gfs2_rbm_add(rbm, 1))
353 return true;
354 }
355
356 return false;
357 }
358
359 /**
360 * gfs2_free_extlen - Return extent length of free blocks
361 * @rrbm: Starting position
362 * @len: Max length to check
363 *
364 * Starting at the block specified by the rbm, see how many free blocks
365 * there are, not reading more than len blocks ahead. This can be done
366 * using memchr_inv when the blocks are byte aligned, but has to be done
367 * on a block by block basis in case of unaligned blocks. Also this
368 * function can cope with bitmap boundaries (although it must stop on
369 * a resource group boundary)
370 *
371 * Returns: Number of free blocks in the extent
372 */
373
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 struct gfs2_rbm rbm = *rrbm;
377 u32 n_unaligned = rbm.offset & 3;
378 u32 size = len;
379 u32 bytes;
380 u32 chunk_size;
381 u8 *ptr, *start, *end;
382 u64 block;
383 struct gfs2_bitmap *bi;
384
385 if (n_unaligned &&
386 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 goto out;
388
389 n_unaligned = len & 3;
390 /* Start is now byte aligned */
391 while (len > 3) {
392 bi = rbm_bi(&rbm);
393 start = bi->bi_bh->b_data;
394 if (bi->bi_clone)
395 start = bi->bi_clone;
396 start += bi->bi_offset;
397 end = start + bi->bi_bytes;
398 BUG_ON(rbm.offset & 3);
399 start += (rbm.offset / GFS2_NBBY);
400 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 ptr = memchr_inv(start, 0, bytes);
402 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 chunk_size *= GFS2_NBBY;
404 BUG_ON(len < chunk_size);
405 len -= chunk_size;
406 block = gfs2_rbm_to_block(&rbm);
407 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 n_unaligned = 0;
409 break;
410 }
411 if (ptr) {
412 n_unaligned = 3;
413 break;
414 }
415 n_unaligned = len & 3;
416 }
417
418 /* Deal with any bits left over at the end */
419 if (n_unaligned)
420 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 return size - len;
423 }
424
425 /**
426 * gfs2_bitcount - count the number of bits in a certain state
427 * @rgd: the resource group descriptor
428 * @buffer: the buffer that holds the bitmaps
429 * @buflen: the length (in bytes) of the buffer
430 * @state: the state of the block we're looking for
431 *
432 * Returns: The number of bits
433 */
434
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 unsigned int buflen, u8 state)
437 {
438 const u8 *byte = buffer;
439 const u8 *end = buffer + buflen;
440 const u8 state1 = state << 2;
441 const u8 state2 = state << 4;
442 const u8 state3 = state << 6;
443 u32 count = 0;
444
445 for (; byte < end; byte++) {
446 if (((*byte) & 0x03) == state)
447 count++;
448 if (((*byte) & 0x0C) == state1)
449 count++;
450 if (((*byte) & 0x30) == state2)
451 count++;
452 if (((*byte) & 0xC0) == state3)
453 count++;
454 }
455
456 return count;
457 }
458
459 /**
460 * gfs2_rgrp_verify - Verify that a resource group is consistent
461 * @rgd: the rgrp
462 *
463 */
464
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 struct gfs2_sbd *sdp = rgd->rd_sbd;
468 struct gfs2_bitmap *bi = NULL;
469 u32 length = rgd->rd_length;
470 u32 count[4], tmp;
471 int buf, x;
472
473 memset(count, 0, 4 * sizeof(u32));
474
475 /* Count # blocks in each of 4 possible allocation states */
476 for (buf = 0; buf < length; buf++) {
477 bi = rgd->rd_bits + buf;
478 for (x = 0; x < 4; x++)
479 count[x] += gfs2_bitcount(rgd,
480 bi->bi_bh->b_data +
481 bi->bi_offset,
482 bi->bi_bytes, x);
483 }
484
485 if (count[0] != rgd->rd_free) {
486 gfs2_lm(sdp, "free data mismatch: %u != %u\n",
487 count[0], rgd->rd_free);
488 gfs2_consist_rgrpd(rgd);
489 return;
490 }
491
492 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 if (count[1] != tmp) {
494 gfs2_lm(sdp, "used data mismatch: %u != %u\n",
495 count[1], tmp);
496 gfs2_consist_rgrpd(rgd);
497 return;
498 }
499
500 if (count[2] + count[3] != rgd->rd_dinodes) {
501 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n",
502 count[2] + count[3], rgd->rd_dinodes);
503 gfs2_consist_rgrpd(rgd);
504 return;
505 }
506 }
507
508 /**
509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510 * @sdp: The GFS2 superblock
511 * @blk: The data block number
512 * @exact: True if this needs to be an exact match
513 *
514 * The @exact argument should be set to true by most callers. The exception
515 * is when we need to match blocks which are not represented by the rgrp
516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517 * there for alignment purposes. Another way of looking at it is that @exact
518 * matches only valid data/metadata blocks, but with @exact false, it will
519 * match any block within the extent of the rgrp.
520 *
521 * Returns: The resource group, or NULL if not found
522 */
523
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 struct rb_node *n, *next;
527 struct gfs2_rgrpd *cur;
528
529 spin_lock(&sdp->sd_rindex_spin);
530 n = sdp->sd_rindex_tree.rb_node;
531 while (n) {
532 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 next = NULL;
534 if (blk < cur->rd_addr)
535 next = n->rb_left;
536 else if (blk >= cur->rd_data0 + cur->rd_data)
537 next = n->rb_right;
538 if (next == NULL) {
539 spin_unlock(&sdp->sd_rindex_spin);
540 if (exact) {
541 if (blk < cur->rd_addr)
542 return NULL;
543 if (blk >= cur->rd_data0 + cur->rd_data)
544 return NULL;
545 }
546 return cur;
547 }
548 n = next;
549 }
550 spin_unlock(&sdp->sd_rindex_spin);
551
552 return NULL;
553 }
554
555 /**
556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557 * @sdp: The GFS2 superblock
558 *
559 * Returns: The first rgrp in the filesystem
560 */
561
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 const struct rb_node *n;
565 struct gfs2_rgrpd *rgd;
566
567 spin_lock(&sdp->sd_rindex_spin);
568 n = rb_first(&sdp->sd_rindex_tree);
569 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 spin_unlock(&sdp->sd_rindex_spin);
571
572 return rgd;
573 }
574
575 /**
576 * gfs2_rgrpd_get_next - get the next RG
577 * @rgd: the resource group descriptor
578 *
579 * Returns: The next rgrp
580 */
581
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 struct gfs2_sbd *sdp = rgd->rd_sbd;
585 const struct rb_node *n;
586
587 spin_lock(&sdp->sd_rindex_spin);
588 n = rb_next(&rgd->rd_node);
589 if (n == NULL)
590 n = rb_first(&sdp->sd_rindex_tree);
591
592 if (unlikely(&rgd->rd_node == n)) {
593 spin_unlock(&sdp->sd_rindex_spin);
594 return NULL;
595 }
596 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 spin_unlock(&sdp->sd_rindex_spin);
598 return rgd;
599 }
600
check_and_update_goal(struct gfs2_inode * ip)601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 ip->i_goal = ip->i_no_addr;
606 }
607
gfs2_free_clones(struct gfs2_rgrpd * rgd)608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 int x;
611
612 for (x = 0; x < rgd->rd_length; x++) {
613 struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 kfree(bi->bi_clone);
615 bi->bi_clone = NULL;
616 }
617 }
618
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs,const char * fs_id_buf)619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 const char *fs_id_buf)
621 {
622 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623
624 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu f:%u\n",
625 fs_id_buf,
626 (unsigned long long)ip->i_no_addr,
627 (unsigned long long)rs->rs_start,
628 rs->rs_requested);
629 }
630
631 /**
632 * __rs_deltree - remove a multi-block reservation from the rgd tree
633 * @rs: The reservation to remove
634 *
635 */
__rs_deltree(struct gfs2_blkreserv * rs)636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 struct gfs2_rgrpd *rgd;
639
640 if (!gfs2_rs_active(rs))
641 return;
642
643 rgd = rs->rs_rgd;
644 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 RB_CLEAR_NODE(&rs->rs_node);
647
648 if (rs->rs_requested) {
649 /* return requested blocks to the rgrp */
650 BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 rs->rs_rgd->rd_requested -= rs->rs_requested;
652
653 /* The rgrp extent failure point is likely not to increase;
654 it will only do so if the freed blocks are somehow
655 contiguous with a span of free blocks that follows. Still,
656 it will force the number to be recalculated later. */
657 rgd->rd_extfail_pt += rs->rs_requested;
658 rs->rs_requested = 0;
659 }
660 }
661
662 /**
663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664 * @rs: The reservation to remove
665 *
666 */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 struct gfs2_rgrpd *rgd;
670
671 rgd = rs->rs_rgd;
672 if (rgd) {
673 spin_lock(&rgd->rd_rsspin);
674 __rs_deltree(rs);
675 BUG_ON(rs->rs_requested);
676 spin_unlock(&rgd->rd_rsspin);
677 }
678 }
679
680 /**
681 * gfs2_rs_delete - delete a multi-block reservation
682 * @ip: The inode for this reservation
683 *
684 */
gfs2_rs_delete(struct gfs2_inode * ip)685 void gfs2_rs_delete(struct gfs2_inode *ip)
686 {
687 struct inode *inode = &ip->i_inode;
688
689 down_write(&ip->i_rw_mutex);
690 if (atomic_read(&inode->i_writecount) <= 1)
691 gfs2_rs_deltree(&ip->i_res);
692 up_write(&ip->i_rw_mutex);
693 }
694
695 /**
696 * return_all_reservations - return all reserved blocks back to the rgrp.
697 * @rgd: the rgrp that needs its space back
698 *
699 * We previously reserved a bunch of blocks for allocation. Now we need to
700 * give them back. This leave the reservation structures in tact, but removes
701 * all of their corresponding "no-fly zones".
702 */
return_all_reservations(struct gfs2_rgrpd * rgd)703 static void return_all_reservations(struct gfs2_rgrpd *rgd)
704 {
705 struct rb_node *n;
706 struct gfs2_blkreserv *rs;
707
708 spin_lock(&rgd->rd_rsspin);
709 while ((n = rb_first(&rgd->rd_rstree))) {
710 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
711 __rs_deltree(rs);
712 }
713 spin_unlock(&rgd->rd_rsspin);
714 }
715
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)716 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
717 {
718 struct rb_node *n;
719 struct gfs2_rgrpd *rgd;
720 struct gfs2_glock *gl;
721
722 while ((n = rb_first(&sdp->sd_rindex_tree))) {
723 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
724 gl = rgd->rd_gl;
725
726 rb_erase(n, &sdp->sd_rindex_tree);
727
728 if (gl) {
729 if (gl->gl_state != LM_ST_UNLOCKED) {
730 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
731 flush_delayed_work(&gl->gl_work);
732 }
733 gfs2_rgrp_brelse(rgd);
734 glock_clear_object(gl, rgd);
735 gfs2_glock_put(gl);
736 }
737
738 gfs2_free_clones(rgd);
739 return_all_reservations(rgd);
740 kfree(rgd->rd_bits);
741 rgd->rd_bits = NULL;
742 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 }
744 }
745
746 /**
747 * compute_bitstructs - Compute the bitmap sizes
748 * @rgd: The resource group descriptor
749 *
750 * Calculates bitmap descriptors, one for each block that contains bitmap data
751 *
752 * Returns: errno
753 */
754
compute_bitstructs(struct gfs2_rgrpd * rgd)755 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
756 {
757 struct gfs2_sbd *sdp = rgd->rd_sbd;
758 struct gfs2_bitmap *bi;
759 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
760 u32 bytes_left, bytes;
761 int x;
762
763 if (!length)
764 return -EINVAL;
765
766 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
767 if (!rgd->rd_bits)
768 return -ENOMEM;
769
770 bytes_left = rgd->rd_bitbytes;
771
772 for (x = 0; x < length; x++) {
773 bi = rgd->rd_bits + x;
774
775 bi->bi_flags = 0;
776 /* small rgrp; bitmap stored completely in header block */
777 if (length == 1) {
778 bytes = bytes_left;
779 bi->bi_offset = sizeof(struct gfs2_rgrp);
780 bi->bi_start = 0;
781 bi->bi_bytes = bytes;
782 bi->bi_blocks = bytes * GFS2_NBBY;
783 /* header block */
784 } else if (x == 0) {
785 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
786 bi->bi_offset = sizeof(struct gfs2_rgrp);
787 bi->bi_start = 0;
788 bi->bi_bytes = bytes;
789 bi->bi_blocks = bytes * GFS2_NBBY;
790 /* last block */
791 } else if (x + 1 == length) {
792 bytes = bytes_left;
793 bi->bi_offset = sizeof(struct gfs2_meta_header);
794 bi->bi_start = rgd->rd_bitbytes - bytes_left;
795 bi->bi_bytes = bytes;
796 bi->bi_blocks = bytes * GFS2_NBBY;
797 /* other blocks */
798 } else {
799 bytes = sdp->sd_sb.sb_bsize -
800 sizeof(struct gfs2_meta_header);
801 bi->bi_offset = sizeof(struct gfs2_meta_header);
802 bi->bi_start = rgd->rd_bitbytes - bytes_left;
803 bi->bi_bytes = bytes;
804 bi->bi_blocks = bytes * GFS2_NBBY;
805 }
806
807 bytes_left -= bytes;
808 }
809
810 if (bytes_left) {
811 gfs2_consist_rgrpd(rgd);
812 return -EIO;
813 }
814 bi = rgd->rd_bits + (length - 1);
815 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
816 gfs2_lm(sdp,
817 "ri_addr = %llu\n"
818 "ri_length = %u\n"
819 "ri_data0 = %llu\n"
820 "ri_data = %u\n"
821 "ri_bitbytes = %u\n"
822 "start=%u len=%u offset=%u\n",
823 (unsigned long long)rgd->rd_addr,
824 rgd->rd_length,
825 (unsigned long long)rgd->rd_data0,
826 rgd->rd_data,
827 rgd->rd_bitbytes,
828 bi->bi_start, bi->bi_bytes, bi->bi_offset);
829 gfs2_consist_rgrpd(rgd);
830 return -EIO;
831 }
832
833 return 0;
834 }
835
836 /**
837 * gfs2_ri_total - Total up the file system space, according to the rindex.
838 * @sdp: the filesystem
839 *
840 */
gfs2_ri_total(struct gfs2_sbd * sdp)841 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
842 {
843 u64 total_data = 0;
844 struct inode *inode = sdp->sd_rindex;
845 struct gfs2_inode *ip = GFS2_I(inode);
846 char buf[sizeof(struct gfs2_rindex)];
847 int error, rgrps;
848
849 for (rgrps = 0;; rgrps++) {
850 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
851
852 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
853 break;
854 error = gfs2_internal_read(ip, buf, &pos,
855 sizeof(struct gfs2_rindex));
856 if (error != sizeof(struct gfs2_rindex))
857 break;
858 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
859 }
860 return total_data;
861 }
862
rgd_insert(struct gfs2_rgrpd * rgd)863 static int rgd_insert(struct gfs2_rgrpd *rgd)
864 {
865 struct gfs2_sbd *sdp = rgd->rd_sbd;
866 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
867
868 /* Figure out where to put new node */
869 while (*newn) {
870 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
871 rd_node);
872
873 parent = *newn;
874 if (rgd->rd_addr < cur->rd_addr)
875 newn = &((*newn)->rb_left);
876 else if (rgd->rd_addr > cur->rd_addr)
877 newn = &((*newn)->rb_right);
878 else
879 return -EEXIST;
880 }
881
882 rb_link_node(&rgd->rd_node, parent, newn);
883 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
884 sdp->sd_rgrps++;
885 return 0;
886 }
887
888 /**
889 * read_rindex_entry - Pull in a new resource index entry from the disk
890 * @ip: Pointer to the rindex inode
891 *
892 * Returns: 0 on success, > 0 on EOF, error code otherwise
893 */
894
read_rindex_entry(struct gfs2_inode * ip)895 static int read_rindex_entry(struct gfs2_inode *ip)
896 {
897 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
898 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
899 struct gfs2_rindex buf;
900 int error;
901 struct gfs2_rgrpd *rgd;
902
903 if (pos >= i_size_read(&ip->i_inode))
904 return 1;
905
906 error = gfs2_internal_read(ip, (char *)&buf, &pos,
907 sizeof(struct gfs2_rindex));
908
909 if (error != sizeof(struct gfs2_rindex))
910 return (error == 0) ? 1 : error;
911
912 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
913 error = -ENOMEM;
914 if (!rgd)
915 return error;
916
917 rgd->rd_sbd = sdp;
918 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
919 rgd->rd_length = be32_to_cpu(buf.ri_length);
920 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
921 rgd->rd_data = be32_to_cpu(buf.ri_data);
922 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
923 spin_lock_init(&rgd->rd_rsspin);
924 mutex_init(&rgd->rd_mutex);
925
926 error = gfs2_glock_get(sdp, rgd->rd_addr,
927 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
928 if (error)
929 goto fail;
930
931 error = compute_bitstructs(rgd);
932 if (error)
933 goto fail_glock;
934
935 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
936 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
937 if (rgd->rd_data > sdp->sd_max_rg_data)
938 sdp->sd_max_rg_data = rgd->rd_data;
939 spin_lock(&sdp->sd_rindex_spin);
940 error = rgd_insert(rgd);
941 spin_unlock(&sdp->sd_rindex_spin);
942 if (!error) {
943 glock_set_object(rgd->rd_gl, rgd);
944 return 0;
945 }
946
947 error = 0; /* someone else read in the rgrp; free it and ignore it */
948 fail_glock:
949 gfs2_glock_put(rgd->rd_gl);
950
951 fail:
952 kfree(rgd->rd_bits);
953 rgd->rd_bits = NULL;
954 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
955 return error;
956 }
957
958 /**
959 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
960 * @sdp: the GFS2 superblock
961 *
962 * The purpose of this function is to select a subset of the resource groups
963 * and mark them as PREFERRED. We do it in such a way that each node prefers
964 * to use a unique set of rgrps to minimize glock contention.
965 */
set_rgrp_preferences(struct gfs2_sbd * sdp)966 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
967 {
968 struct gfs2_rgrpd *rgd, *first;
969 int i;
970
971 /* Skip an initial number of rgrps, based on this node's journal ID.
972 That should start each node out on its own set. */
973 rgd = gfs2_rgrpd_get_first(sdp);
974 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
975 rgd = gfs2_rgrpd_get_next(rgd);
976 first = rgd;
977
978 do {
979 rgd->rd_flags |= GFS2_RDF_PREFERRED;
980 for (i = 0; i < sdp->sd_journals; i++) {
981 rgd = gfs2_rgrpd_get_next(rgd);
982 if (!rgd || rgd == first)
983 break;
984 }
985 } while (rgd && rgd != first);
986 }
987
988 /**
989 * gfs2_ri_update - Pull in a new resource index from the disk
990 * @ip: pointer to the rindex inode
991 *
992 * Returns: 0 on successful update, error code otherwise
993 */
994
gfs2_ri_update(struct gfs2_inode * ip)995 static int gfs2_ri_update(struct gfs2_inode *ip)
996 {
997 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
998 int error;
999
1000 do {
1001 error = read_rindex_entry(ip);
1002 } while (error == 0);
1003
1004 if (error < 0)
1005 return error;
1006
1007 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1008 fs_err(sdp, "no resource groups found in the file system.\n");
1009 return -ENOENT;
1010 }
1011 set_rgrp_preferences(sdp);
1012
1013 sdp->sd_rindex_uptodate = 1;
1014 return 0;
1015 }
1016
1017 /**
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
1020 *
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1026 *
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1030 *
1031 * Returns: 0 on succeess, error code otherwise
1032 */
1033
gfs2_rindex_update(struct gfs2_sbd * sdp)1034 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1035 {
1036 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1037 struct gfs2_glock *gl = ip->i_gl;
1038 struct gfs2_holder ri_gh;
1039 int error = 0;
1040 int unlock_required = 0;
1041
1042 /* Read new copy from disk if we don't have the latest */
1043 if (!sdp->sd_rindex_uptodate) {
1044 if (!gfs2_glock_is_locked_by_me(gl)) {
1045 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1046 if (error)
1047 return error;
1048 unlock_required = 1;
1049 }
1050 if (!sdp->sd_rindex_uptodate)
1051 error = gfs2_ri_update(ip);
1052 if (unlock_required)
1053 gfs2_glock_dq_uninit(&ri_gh);
1054 }
1055
1056 return error;
1057 }
1058
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)1059 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1060 {
1061 const struct gfs2_rgrp *str = buf;
1062 u32 rg_flags;
1063
1064 rg_flags = be32_to_cpu(str->rg_flags);
1065 rg_flags &= ~GFS2_RDF_MASK;
1066 rgd->rd_flags &= GFS2_RDF_MASK;
1067 rgd->rd_flags |= rg_flags;
1068 rgd->rd_free = be32_to_cpu(str->rg_free);
1069 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1070 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1071 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1072 }
1073
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1075 {
1076 const struct gfs2_rgrp *str = buf;
1077
1078 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1079 rgl->rl_flags = str->rg_flags;
1080 rgl->rl_free = str->rg_free;
1081 rgl->rl_dinodes = str->rg_dinodes;
1082 rgl->rl_igeneration = str->rg_igeneration;
1083 rgl->__pad = 0UL;
1084 }
1085
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087 {
1088 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1089 struct gfs2_rgrp *str = buf;
1090 u32 crc;
1091
1092 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1093 str->rg_free = cpu_to_be32(rgd->rd_free);
1094 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1095 if (next == NULL)
1096 str->rg_skip = 0;
1097 else if (next->rd_addr > rgd->rd_addr)
1098 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1099 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1100 str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1101 str->rg_data = cpu_to_be32(rgd->rd_data);
1102 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1103 str->rg_crc = 0;
1104 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1105 str->rg_crc = cpu_to_be32(crc);
1106
1107 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1108 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1109 }
1110
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1112 {
1113 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1114 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1115 struct gfs2_sbd *sdp = rgd->rd_sbd;
1116 int valid = 1;
1117
1118 if (rgl->rl_flags != str->rg_flags) {
1119 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120 (unsigned long long)rgd->rd_addr,
1121 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1122 valid = 0;
1123 }
1124 if (rgl->rl_free != str->rg_free) {
1125 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126 (unsigned long long)rgd->rd_addr,
1127 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1128 valid = 0;
1129 }
1130 if (rgl->rl_dinodes != str->rg_dinodes) {
1131 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132 (unsigned long long)rgd->rd_addr,
1133 be32_to_cpu(rgl->rl_dinodes),
1134 be32_to_cpu(str->rg_dinodes));
1135 valid = 0;
1136 }
1137 if (rgl->rl_igeneration != str->rg_igeneration) {
1138 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139 (unsigned long long)rgd->rd_addr,
1140 (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1141 (unsigned long long)be64_to_cpu(str->rg_igeneration));
1142 valid = 0;
1143 }
1144 return valid;
1145 }
1146
count_unlinked(struct gfs2_rgrpd * rgd)1147 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1148 {
1149 struct gfs2_bitmap *bi;
1150 const u32 length = rgd->rd_length;
1151 const u8 *buffer = NULL;
1152 u32 i, goal, count = 0;
1153
1154 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1155 goal = 0;
1156 buffer = bi->bi_bh->b_data + bi->bi_offset;
1157 WARN_ON(!buffer_uptodate(bi->bi_bh));
1158 while (goal < bi->bi_blocks) {
1159 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1160 GFS2_BLKST_UNLINKED);
1161 if (goal == BFITNOENT)
1162 break;
1163 count++;
1164 goal++;
1165 }
1166 }
1167
1168 return count;
1169 }
1170
rgrp_set_bitmap_flags(struct gfs2_rgrpd * rgd)1171 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1172 {
1173 struct gfs2_bitmap *bi;
1174 int x;
1175
1176 if (rgd->rd_free) {
1177 for (x = 0; x < rgd->rd_length; x++) {
1178 bi = rgd->rd_bits + x;
1179 clear_bit(GBF_FULL, &bi->bi_flags);
1180 }
1181 } else {
1182 for (x = 0; x < rgd->rd_length; x++) {
1183 bi = rgd->rd_bits + x;
1184 set_bit(GBF_FULL, &bi->bi_flags);
1185 }
1186 }
1187 }
1188
1189 /**
1190 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1191 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1192 *
1193 * Read in all of a Resource Group's header and bitmap blocks.
1194 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1195 *
1196 * Returns: errno
1197 */
1198
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1199 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1200 {
1201 struct gfs2_sbd *sdp = rgd->rd_sbd;
1202 struct gfs2_glock *gl = rgd->rd_gl;
1203 unsigned int length = rgd->rd_length;
1204 struct gfs2_bitmap *bi;
1205 unsigned int x, y;
1206 int error;
1207
1208 if (rgd->rd_bits[0].bi_bh != NULL)
1209 return 0;
1210
1211 for (x = 0; x < length; x++) {
1212 bi = rgd->rd_bits + x;
1213 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1214 if (error)
1215 goto fail;
1216 }
1217
1218 for (y = length; y--;) {
1219 bi = rgd->rd_bits + y;
1220 error = gfs2_meta_wait(sdp, bi->bi_bh);
1221 if (error)
1222 goto fail;
1223 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1224 GFS2_METATYPE_RG)) {
1225 error = -EIO;
1226 goto fail;
1227 }
1228 }
1229
1230 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1231 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1232 rgrp_set_bitmap_flags(rgd);
1233 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1234 rgd->rd_free_clone = rgd->rd_free;
1235 BUG_ON(rgd->rd_reserved);
1236 /* max out the rgrp allocation failure point */
1237 rgd->rd_extfail_pt = rgd->rd_free;
1238 }
1239 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1240 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1241 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1242 rgd->rd_bits[0].bi_bh->b_data);
1243 }
1244 else if (sdp->sd_args.ar_rgrplvb) {
1245 if (!gfs2_rgrp_lvb_valid(rgd)){
1246 gfs2_consist_rgrpd(rgd);
1247 error = -EIO;
1248 goto fail;
1249 }
1250 if (rgd->rd_rgl->rl_unlinked == 0)
1251 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1252 }
1253 return 0;
1254
1255 fail:
1256 while (x--) {
1257 bi = rgd->rd_bits + x;
1258 brelse(bi->bi_bh);
1259 bi->bi_bh = NULL;
1260 gfs2_assert_warn(sdp, !bi->bi_clone);
1261 }
1262
1263 return error;
1264 }
1265
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1266 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1267 {
1268 u32 rl_flags;
1269
1270 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1271 return 0;
1272
1273 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1274 return gfs2_rgrp_bh_get(rgd);
1275
1276 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1277 rl_flags &= ~GFS2_RDF_MASK;
1278 rgd->rd_flags &= GFS2_RDF_MASK;
1279 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1280 if (rgd->rd_rgl->rl_unlinked == 0)
1281 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1282 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1283 rgrp_set_bitmap_flags(rgd);
1284 rgd->rd_free_clone = rgd->rd_free;
1285 BUG_ON(rgd->rd_reserved);
1286 /* max out the rgrp allocation failure point */
1287 rgd->rd_extfail_pt = rgd->rd_free;
1288 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1289 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1290 return 0;
1291 }
1292
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1293 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1294 {
1295 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1296 struct gfs2_sbd *sdp = rgd->rd_sbd;
1297
1298 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1299 return 0;
1300 return gfs2_rgrp_bh_get(rgd);
1301 }
1302
1303 /**
1304 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1305 * @rgd: The resource group
1306 *
1307 */
1308
gfs2_rgrp_brelse(struct gfs2_rgrpd * rgd)1309 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1310 {
1311 int x, length = rgd->rd_length;
1312
1313 for (x = 0; x < length; x++) {
1314 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1315 if (bi->bi_bh) {
1316 brelse(bi->bi_bh);
1317 bi->bi_bh = NULL;
1318 }
1319 }
1320 }
1321
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1322 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1323 struct buffer_head *bh,
1324 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1325 {
1326 struct super_block *sb = sdp->sd_vfs;
1327 u64 blk;
1328 sector_t start = 0;
1329 sector_t nr_blks = 0;
1330 int rv;
1331 unsigned int x;
1332 u32 trimmed = 0;
1333 u8 diff;
1334
1335 for (x = 0; x < bi->bi_bytes; x++) {
1336 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1337 clone += bi->bi_offset;
1338 clone += x;
1339 if (bh) {
1340 const u8 *orig = bh->b_data + bi->bi_offset + x;
1341 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1342 } else {
1343 diff = ~(*clone | (*clone >> 1));
1344 }
1345 diff &= 0x55;
1346 if (diff == 0)
1347 continue;
1348 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1349 while(diff) {
1350 if (diff & 1) {
1351 if (nr_blks == 0)
1352 goto start_new_extent;
1353 if ((start + nr_blks) != blk) {
1354 if (nr_blks >= minlen) {
1355 rv = sb_issue_discard(sb,
1356 start, nr_blks,
1357 GFP_NOFS, 0);
1358 if (rv)
1359 goto fail;
1360 trimmed += nr_blks;
1361 }
1362 nr_blks = 0;
1363 start_new_extent:
1364 start = blk;
1365 }
1366 nr_blks++;
1367 }
1368 diff >>= 2;
1369 blk++;
1370 }
1371 }
1372 if (nr_blks >= minlen) {
1373 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1374 if (rv)
1375 goto fail;
1376 trimmed += nr_blks;
1377 }
1378 if (ptrimmed)
1379 *ptrimmed = trimmed;
1380 return 0;
1381
1382 fail:
1383 if (sdp->sd_args.ar_discard)
1384 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1385 sdp->sd_args.ar_discard = 0;
1386 return -EIO;
1387 }
1388
1389 /**
1390 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1391 * @filp: Any file on the filesystem
1392 * @argp: Pointer to the arguments (also used to pass result)
1393 *
1394 * Returns: 0 on success, otherwise error code
1395 */
1396
gfs2_fitrim(struct file * filp,void __user * argp)1397 int gfs2_fitrim(struct file *filp, void __user *argp)
1398 {
1399 struct inode *inode = file_inode(filp);
1400 struct gfs2_sbd *sdp = GFS2_SB(inode);
1401 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1402 struct buffer_head *bh;
1403 struct gfs2_rgrpd *rgd;
1404 struct gfs2_rgrpd *rgd_end;
1405 struct gfs2_holder gh;
1406 struct fstrim_range r;
1407 int ret = 0;
1408 u64 amt;
1409 u64 trimmed = 0;
1410 u64 start, end, minlen;
1411 unsigned int x;
1412 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1413
1414 if (!capable(CAP_SYS_ADMIN))
1415 return -EPERM;
1416
1417 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1418 return -EROFS;
1419
1420 if (!blk_queue_discard(q))
1421 return -EOPNOTSUPP;
1422
1423 if (copy_from_user(&r, argp, sizeof(r)))
1424 return -EFAULT;
1425
1426 ret = gfs2_rindex_update(sdp);
1427 if (ret)
1428 return ret;
1429
1430 start = r.start >> bs_shift;
1431 end = start + (r.len >> bs_shift);
1432 minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1433 minlen = max_t(u64, minlen,
1434 q->limits.discard_granularity) >> bs_shift;
1435
1436 if (end <= start || minlen > sdp->sd_max_rg_data)
1437 return -EINVAL;
1438
1439 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1440 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1441
1442 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1443 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1444 return -EINVAL; /* start is beyond the end of the fs */
1445
1446 while (1) {
1447
1448 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1449 LM_FLAG_NODE_SCOPE, &gh);
1450 if (ret)
1451 goto out;
1452
1453 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1454 /* Trim each bitmap in the rgrp */
1455 for (x = 0; x < rgd->rd_length; x++) {
1456 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1457 rgrp_lock_local(rgd);
1458 ret = gfs2_rgrp_send_discards(sdp,
1459 rgd->rd_data0, NULL, bi, minlen,
1460 &amt);
1461 rgrp_unlock_local(rgd);
1462 if (ret) {
1463 gfs2_glock_dq_uninit(&gh);
1464 goto out;
1465 }
1466 trimmed += amt;
1467 }
1468
1469 /* Mark rgrp as having been trimmed */
1470 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1471 if (ret == 0) {
1472 bh = rgd->rd_bits[0].bi_bh;
1473 rgrp_lock_local(rgd);
1474 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1475 gfs2_trans_add_meta(rgd->rd_gl, bh);
1476 gfs2_rgrp_out(rgd, bh->b_data);
1477 rgrp_unlock_local(rgd);
1478 gfs2_trans_end(sdp);
1479 }
1480 }
1481 gfs2_glock_dq_uninit(&gh);
1482
1483 if (rgd == rgd_end)
1484 break;
1485
1486 rgd = gfs2_rgrpd_get_next(rgd);
1487 }
1488
1489 out:
1490 r.len = trimmed << bs_shift;
1491 if (copy_to_user(argp, &r, sizeof(r)))
1492 return -EFAULT;
1493
1494 return ret;
1495 }
1496
1497 /**
1498 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1499 * @ip: the inode structure
1500 *
1501 */
rs_insert(struct gfs2_inode * ip)1502 static void rs_insert(struct gfs2_inode *ip)
1503 {
1504 struct rb_node **newn, *parent = NULL;
1505 int rc;
1506 struct gfs2_blkreserv *rs = &ip->i_res;
1507 struct gfs2_rgrpd *rgd = rs->rs_rgd;
1508
1509 BUG_ON(gfs2_rs_active(rs));
1510
1511 spin_lock(&rgd->rd_rsspin);
1512 newn = &rgd->rd_rstree.rb_node;
1513 while (*newn) {
1514 struct gfs2_blkreserv *cur =
1515 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1516
1517 parent = *newn;
1518 rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1519 if (rc > 0)
1520 newn = &((*newn)->rb_right);
1521 else if (rc < 0)
1522 newn = &((*newn)->rb_left);
1523 else {
1524 spin_unlock(&rgd->rd_rsspin);
1525 WARN_ON(1);
1526 return;
1527 }
1528 }
1529
1530 rb_link_node(&rs->rs_node, parent, newn);
1531 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1532
1533 /* Do our rgrp accounting for the reservation */
1534 rgd->rd_requested += rs->rs_requested; /* blocks requested */
1535 spin_unlock(&rgd->rd_rsspin);
1536 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1537 }
1538
1539 /**
1540 * rgd_free - return the number of free blocks we can allocate
1541 * @rgd: the resource group
1542 * @rs: The reservation to free
1543 *
1544 * This function returns the number of free blocks for an rgrp.
1545 * That's the clone-free blocks (blocks that are free, not including those
1546 * still being used for unlinked files that haven't been deleted.)
1547 *
1548 * It also subtracts any blocks reserved by someone else, but does not
1549 * include free blocks that are still part of our current reservation,
1550 * because obviously we can (and will) allocate them.
1551 */
rgd_free(struct gfs2_rgrpd * rgd,struct gfs2_blkreserv * rs)1552 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1553 {
1554 u32 tot_reserved, tot_free;
1555
1556 if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1557 return 0;
1558 tot_reserved = rgd->rd_requested - rs->rs_requested;
1559
1560 if (rgd->rd_free_clone < tot_reserved)
1561 tot_reserved = 0;
1562
1563 tot_free = rgd->rd_free_clone - tot_reserved;
1564
1565 return tot_free;
1566 }
1567
1568 /**
1569 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1570 * @rgd: the resource group descriptor
1571 * @ip: pointer to the inode for which we're reserving blocks
1572 * @ap: the allocation parameters
1573 *
1574 */
1575
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,const struct gfs2_alloc_parms * ap)1576 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1577 const struct gfs2_alloc_parms *ap)
1578 {
1579 struct gfs2_rbm rbm = { .rgd = rgd, };
1580 u64 goal;
1581 struct gfs2_blkreserv *rs = &ip->i_res;
1582 u32 extlen;
1583 u32 free_blocks, blocks_available;
1584 int ret;
1585 struct inode *inode = &ip->i_inode;
1586
1587 spin_lock(&rgd->rd_rsspin);
1588 free_blocks = rgd_free(rgd, rs);
1589 if (rgd->rd_free_clone < rgd->rd_requested)
1590 free_blocks = 0;
1591 blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1592 if (rgd == rs->rs_rgd)
1593 blocks_available += rs->rs_reserved;
1594 spin_unlock(&rgd->rd_rsspin);
1595
1596 if (S_ISDIR(inode->i_mode))
1597 extlen = 1;
1598 else {
1599 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1600 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1601 }
1602 if (free_blocks < extlen || blocks_available < extlen)
1603 return;
1604
1605 /* Find bitmap block that contains bits for goal block */
1606 if (rgrp_contains_block(rgd, ip->i_goal))
1607 goal = ip->i_goal;
1608 else
1609 goal = rgd->rd_last_alloc + rgd->rd_data0;
1610
1611 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1612 return;
1613
1614 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1615 if (ret == 0) {
1616 rs->rs_start = gfs2_rbm_to_block(&rbm);
1617 rs->rs_requested = extlen;
1618 rs_insert(ip);
1619 } else {
1620 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1621 rgd->rd_last_alloc = 0;
1622 }
1623 }
1624
1625 /**
1626 * gfs2_next_unreserved_block - Return next block that is not reserved
1627 * @rgd: The resource group
1628 * @block: The starting block
1629 * @length: The required length
1630 * @ignore_rs: Reservation to ignore
1631 *
1632 * If the block does not appear in any reservation, then return the
1633 * block number unchanged. If it does appear in the reservation, then
1634 * keep looking through the tree of reservations in order to find the
1635 * first block number which is not reserved.
1636 */
1637
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,struct gfs2_blkreserv * ignore_rs)1638 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1639 u32 length,
1640 struct gfs2_blkreserv *ignore_rs)
1641 {
1642 struct gfs2_blkreserv *rs;
1643 struct rb_node *n;
1644 int rc;
1645
1646 spin_lock(&rgd->rd_rsspin);
1647 n = rgd->rd_rstree.rb_node;
1648 while (n) {
1649 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1650 rc = rs_cmp(block, length, rs);
1651 if (rc < 0)
1652 n = n->rb_left;
1653 else if (rc > 0)
1654 n = n->rb_right;
1655 else
1656 break;
1657 }
1658
1659 if (n) {
1660 while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1661 block = rs->rs_start + rs->rs_requested;
1662 n = n->rb_right;
1663 if (n == NULL)
1664 break;
1665 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1666 }
1667 }
1668
1669 spin_unlock(&rgd->rd_rsspin);
1670 return block;
1671 }
1672
1673 /**
1674 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1675 * @rbm: The current position in the resource group
1676 * @rs: Our own reservation
1677 * @minext: The minimum extent length
1678 * @maxext: A pointer to the maximum extent structure
1679 *
1680 * This checks the current position in the rgrp to see whether there is
1681 * a reservation covering this block. If not then this function is a
1682 * no-op. If there is, then the position is moved to the end of the
1683 * contiguous reservation(s) so that we are pointing at the first
1684 * non-reserved block.
1685 *
1686 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1687 */
1688
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,struct gfs2_blkreserv * rs,u32 minext,struct gfs2_extent * maxext)1689 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1690 struct gfs2_blkreserv *rs,
1691 u32 minext,
1692 struct gfs2_extent *maxext)
1693 {
1694 u64 block = gfs2_rbm_to_block(rbm);
1695 u32 extlen = 1;
1696 u64 nblock;
1697
1698 /*
1699 * If we have a minimum extent length, then skip over any extent
1700 * which is less than the min extent length in size.
1701 */
1702 if (minext > 1) {
1703 extlen = gfs2_free_extlen(rbm, minext);
1704 if (extlen <= maxext->len)
1705 goto fail;
1706 }
1707
1708 /*
1709 * Check the extent which has been found against the reservations
1710 * and skip if parts of it are already reserved
1711 */
1712 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1713 if (nblock == block) {
1714 if (!minext || extlen >= minext)
1715 return 0;
1716
1717 if (extlen > maxext->len) {
1718 maxext->len = extlen;
1719 maxext->rbm = *rbm;
1720 }
1721 } else {
1722 u64 len = nblock - block;
1723 if (len >= (u64)1 << 32)
1724 return -E2BIG;
1725 extlen = len;
1726 }
1727 fail:
1728 if (gfs2_rbm_add(rbm, extlen))
1729 return -E2BIG;
1730 return 1;
1731 }
1732
1733 /**
1734 * gfs2_rbm_find - Look for blocks of a particular state
1735 * @rbm: Value/result starting position and final position
1736 * @state: The state which we want to find
1737 * @minext: Pointer to the requested extent length
1738 * This is updated to be the actual reservation size.
1739 * @rs: Our own reservation (NULL to skip checking for reservations)
1740 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1741 * around until we've reached the starting point.
1742 *
1743 * Side effects:
1744 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1745 * has no free blocks in it.
1746 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1747 * has come up short on a free block search.
1748 *
1749 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1750 */
1751
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 * minext,struct gfs2_blkreserv * rs,bool nowrap)1752 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1753 struct gfs2_blkreserv *rs, bool nowrap)
1754 {
1755 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1756 struct buffer_head *bh;
1757 int last_bii;
1758 u32 offset;
1759 u8 *buffer;
1760 bool wrapped = false;
1761 int ret;
1762 struct gfs2_bitmap *bi;
1763 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1764
1765 /*
1766 * Determine the last bitmap to search. If we're not starting at the
1767 * beginning of a bitmap, we need to search that bitmap twice to scan
1768 * the entire resource group.
1769 */
1770 last_bii = rbm->bii - (rbm->offset == 0);
1771
1772 while(1) {
1773 bi = rbm_bi(rbm);
1774 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1775 (state == GFS2_BLKST_FREE))
1776 goto next_bitmap;
1777
1778 bh = bi->bi_bh;
1779 buffer = bh->b_data + bi->bi_offset;
1780 WARN_ON(!buffer_uptodate(bh));
1781 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1782 buffer = bi->bi_clone + bi->bi_offset;
1783 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1784 if (offset == BFITNOENT) {
1785 if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1786 set_bit(GBF_FULL, &bi->bi_flags);
1787 goto next_bitmap;
1788 }
1789 rbm->offset = offset;
1790 if (!rs || !minext)
1791 return 0;
1792
1793 ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1794 &maxext);
1795 if (ret == 0)
1796 return 0;
1797 if (ret > 0)
1798 goto next_iter;
1799 if (ret == -E2BIG) {
1800 rbm->bii = 0;
1801 rbm->offset = 0;
1802 goto res_covered_end_of_rgrp;
1803 }
1804 return ret;
1805
1806 next_bitmap: /* Find next bitmap in the rgrp */
1807 rbm->offset = 0;
1808 rbm->bii++;
1809 if (rbm->bii == rbm->rgd->rd_length)
1810 rbm->bii = 0;
1811 res_covered_end_of_rgrp:
1812 if (rbm->bii == 0) {
1813 if (wrapped)
1814 break;
1815 wrapped = true;
1816 if (nowrap)
1817 break;
1818 }
1819 next_iter:
1820 /* Have we scanned the entire resource group? */
1821 if (wrapped && rbm->bii > last_bii)
1822 break;
1823 }
1824
1825 if (state != GFS2_BLKST_FREE)
1826 return -ENOSPC;
1827
1828 /* If the extent was too small, and it's smaller than the smallest
1829 to have failed before, remember for future reference that it's
1830 useless to search this rgrp again for this amount or more. */
1831 if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1832 *minext < rbm->rgd->rd_extfail_pt)
1833 rbm->rgd->rd_extfail_pt = *minext - 1;
1834
1835 /* If the maximum extent we found is big enough to fulfill the
1836 minimum requirements, use it anyway. */
1837 if (maxext.len) {
1838 *rbm = maxext.rbm;
1839 *minext = maxext.len;
1840 return 0;
1841 }
1842
1843 return -ENOSPC;
1844 }
1845
1846 /**
1847 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1848 * @rgd: The rgrp
1849 * @last_unlinked: block address of the last dinode we unlinked
1850 * @skip: block address we should explicitly not unlink
1851 *
1852 * Returns: 0 if no error
1853 * The inode, if one has been found, in inode.
1854 */
1855
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1856 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1857 {
1858 u64 block;
1859 struct gfs2_sbd *sdp = rgd->rd_sbd;
1860 struct gfs2_glock *gl;
1861 struct gfs2_inode *ip;
1862 int error;
1863 int found = 0;
1864 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1865
1866 while (1) {
1867 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1868 true);
1869 if (error == -ENOSPC)
1870 break;
1871 if (WARN_ON_ONCE(error))
1872 break;
1873
1874 block = gfs2_rbm_to_block(&rbm);
1875 if (gfs2_rbm_from_block(&rbm, block + 1))
1876 break;
1877 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1878 continue;
1879 if (block == skip)
1880 continue;
1881 *last_unlinked = block;
1882
1883 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1884 if (error)
1885 continue;
1886
1887 /* If the inode is already in cache, we can ignore it here
1888 * because the existing inode disposal code will deal with
1889 * it when all refs have gone away. Accessing gl_object like
1890 * this is not safe in general. Here it is ok because we do
1891 * not dereference the pointer, and we only need an approx
1892 * answer to whether it is NULL or not.
1893 */
1894 ip = gl->gl_object;
1895
1896 if (ip || !gfs2_queue_delete_work(gl, 0))
1897 gfs2_glock_put(gl);
1898 else
1899 found++;
1900
1901 /* Limit reclaim to sensible number of tasks */
1902 if (found > NR_CPUS)
1903 return;
1904 }
1905
1906 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1907 return;
1908 }
1909
1910 /**
1911 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1912 * @rgd: The rgrp in question
1913 * @loops: An indication of how picky we can be (0=very, 1=less so)
1914 *
1915 * This function uses the recently added glock statistics in order to
1916 * figure out whether a parciular resource group is suffering from
1917 * contention from multiple nodes. This is done purely on the basis
1918 * of timings, since this is the only data we have to work with and
1919 * our aim here is to reject a resource group which is highly contended
1920 * but (very important) not to do this too often in order to ensure that
1921 * we do not land up introducing fragmentation by changing resource
1922 * groups when not actually required.
1923 *
1924 * The calculation is fairly simple, we want to know whether the SRTTB
1925 * (i.e. smoothed round trip time for blocking operations) to acquire
1926 * the lock for this rgrp's glock is significantly greater than the
1927 * time taken for resource groups on average. We introduce a margin in
1928 * the form of the variable @var which is computed as the sum of the two
1929 * respective variences, and multiplied by a factor depending on @loops
1930 * and whether we have a lot of data to base the decision on. This is
1931 * then tested against the square difference of the means in order to
1932 * decide whether the result is statistically significant or not.
1933 *
1934 * Returns: A boolean verdict on the congestion status
1935 */
1936
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1937 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1938 {
1939 const struct gfs2_glock *gl = rgd->rd_gl;
1940 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1941 struct gfs2_lkstats *st;
1942 u64 r_dcount, l_dcount;
1943 u64 l_srttb, a_srttb = 0;
1944 s64 srttb_diff;
1945 u64 sqr_diff;
1946 u64 var;
1947 int cpu, nonzero = 0;
1948
1949 preempt_disable();
1950 for_each_present_cpu(cpu) {
1951 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1952 if (st->stats[GFS2_LKS_SRTTB]) {
1953 a_srttb += st->stats[GFS2_LKS_SRTTB];
1954 nonzero++;
1955 }
1956 }
1957 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1958 if (nonzero)
1959 do_div(a_srttb, nonzero);
1960 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1961 var = st->stats[GFS2_LKS_SRTTVARB] +
1962 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1963 preempt_enable();
1964
1965 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1966 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1967
1968 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1969 return false;
1970
1971 srttb_diff = a_srttb - l_srttb;
1972 sqr_diff = srttb_diff * srttb_diff;
1973
1974 var *= 2;
1975 if (l_dcount < 8 || r_dcount < 8)
1976 var *= 2;
1977 if (loops == 1)
1978 var *= 2;
1979
1980 return ((srttb_diff < 0) && (sqr_diff > var));
1981 }
1982
1983 /**
1984 * gfs2_rgrp_used_recently
1985 * @rs: The block reservation with the rgrp to test
1986 * @msecs: The time limit in milliseconds
1987 *
1988 * Returns: True if the rgrp glock has been used within the time limit
1989 */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1990 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1991 u64 msecs)
1992 {
1993 u64 tdiff;
1994
1995 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1996 rs->rs_rgd->rd_gl->gl_dstamp));
1997
1998 return tdiff > (msecs * 1000 * 1000);
1999 }
2000
gfs2_orlov_skip(const struct gfs2_inode * ip)2001 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
2002 {
2003 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2004 u32 skip;
2005
2006 get_random_bytes(&skip, sizeof(skip));
2007 return skip % sdp->sd_rgrps;
2008 }
2009
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)2010 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
2011 {
2012 struct gfs2_rgrpd *rgd = *pos;
2013 struct gfs2_sbd *sdp = rgd->rd_sbd;
2014
2015 rgd = gfs2_rgrpd_get_next(rgd);
2016 if (rgd == NULL)
2017 rgd = gfs2_rgrpd_get_first(sdp);
2018 *pos = rgd;
2019 if (rgd != begin) /* If we didn't wrap */
2020 return true;
2021 return false;
2022 }
2023
2024 /**
2025 * fast_to_acquire - determine if a resource group will be fast to acquire
2026 * @rgd: The rgrp
2027 *
2028 * If this is one of our preferred rgrps, it should be quicker to acquire,
2029 * because we tried to set ourselves up as dlm lock master.
2030 */
fast_to_acquire(struct gfs2_rgrpd * rgd)2031 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2032 {
2033 struct gfs2_glock *gl = rgd->rd_gl;
2034
2035 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2036 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2037 !test_bit(GLF_DEMOTE, &gl->gl_flags))
2038 return 1;
2039 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2040 return 1;
2041 return 0;
2042 }
2043
2044 /**
2045 * gfs2_inplace_reserve - Reserve space in the filesystem
2046 * @ip: the inode to reserve space for
2047 * @ap: the allocation parameters
2048 *
2049 * We try our best to find an rgrp that has at least ap->target blocks
2050 * available. After a couple of passes (loops == 2), the prospects of finding
2051 * such an rgrp diminish. At this stage, we return the first rgrp that has
2052 * at least ap->min_target blocks available.
2053 *
2054 * Returns: 0 on success,
2055 * -ENOMEM if a suitable rgrp can't be found
2056 * errno otherwise
2057 */
2058
gfs2_inplace_reserve(struct gfs2_inode * ip,struct gfs2_alloc_parms * ap)2059 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2060 {
2061 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2062 struct gfs2_rgrpd *begin = NULL;
2063 struct gfs2_blkreserv *rs = &ip->i_res;
2064 int error = 0, flags = LM_FLAG_NODE_SCOPE;
2065 bool rg_locked;
2066 u64 last_unlinked = NO_BLOCK;
2067 u32 target = ap->target;
2068 int loops = 0;
2069 u32 free_blocks, blocks_available, skip = 0;
2070
2071 BUG_ON(rs->rs_reserved);
2072
2073 if (sdp->sd_args.ar_rgrplvb)
2074 flags |= GL_SKIP;
2075 if (gfs2_assert_warn(sdp, target))
2076 return -EINVAL;
2077 if (gfs2_rs_active(rs)) {
2078 begin = rs->rs_rgd;
2079 } else if (rs->rs_rgd &&
2080 rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2081 begin = rs->rs_rgd;
2082 } else {
2083 check_and_update_goal(ip);
2084 rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2085 }
2086 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2087 skip = gfs2_orlov_skip(ip);
2088 if (rs->rs_rgd == NULL)
2089 return -EBADSLT;
2090
2091 while (loops < 3) {
2092 struct gfs2_rgrpd *rgd;
2093
2094 rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2095 if (rg_locked) {
2096 rgrp_lock_local(rs->rs_rgd);
2097 } else {
2098 if (skip && skip--)
2099 goto next_rgrp;
2100 if (!gfs2_rs_active(rs)) {
2101 if (loops == 0 &&
2102 !fast_to_acquire(rs->rs_rgd))
2103 goto next_rgrp;
2104 if ((loops < 2) &&
2105 gfs2_rgrp_used_recently(rs, 1000) &&
2106 gfs2_rgrp_congested(rs->rs_rgd, loops))
2107 goto next_rgrp;
2108 }
2109 error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2110 LM_ST_EXCLUSIVE, flags,
2111 &ip->i_rgd_gh);
2112 if (unlikely(error))
2113 return error;
2114 rgrp_lock_local(rs->rs_rgd);
2115 if (!gfs2_rs_active(rs) && (loops < 2) &&
2116 gfs2_rgrp_congested(rs->rs_rgd, loops))
2117 goto skip_rgrp;
2118 if (sdp->sd_args.ar_rgrplvb) {
2119 error = update_rgrp_lvb(rs->rs_rgd);
2120 if (unlikely(error)) {
2121 rgrp_unlock_local(rs->rs_rgd);
2122 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2123 return error;
2124 }
2125 }
2126 }
2127
2128 /* Skip unusable resource groups */
2129 if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2130 GFS2_RDF_ERROR)) ||
2131 (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2132 goto skip_rgrp;
2133
2134 if (sdp->sd_args.ar_rgrplvb)
2135 gfs2_rgrp_bh_get(rs->rs_rgd);
2136
2137 /* Get a reservation if we don't already have one */
2138 if (!gfs2_rs_active(rs))
2139 rg_mblk_search(rs->rs_rgd, ip, ap);
2140
2141 /* Skip rgrps when we can't get a reservation on first pass */
2142 if (!gfs2_rs_active(rs) && (loops < 1))
2143 goto check_rgrp;
2144
2145 /* If rgrp has enough free space, use it */
2146 rgd = rs->rs_rgd;
2147 spin_lock(&rgd->rd_rsspin);
2148 free_blocks = rgd_free(rgd, rs);
2149 blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2150 if (free_blocks < target || blocks_available < target) {
2151 spin_unlock(&rgd->rd_rsspin);
2152 goto check_rgrp;
2153 }
2154 rs->rs_reserved = ap->target;
2155 if (rs->rs_reserved > blocks_available)
2156 rs->rs_reserved = blocks_available;
2157 rgd->rd_reserved += rs->rs_reserved;
2158 spin_unlock(&rgd->rd_rsspin);
2159 rgrp_unlock_local(rs->rs_rgd);
2160 return 0;
2161 check_rgrp:
2162 /* Check for unlinked inodes which can be reclaimed */
2163 if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2164 try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2165 ip->i_no_addr);
2166 skip_rgrp:
2167 rgrp_unlock_local(rs->rs_rgd);
2168
2169 /* Drop reservation, if we couldn't use reserved rgrp */
2170 if (gfs2_rs_active(rs))
2171 gfs2_rs_deltree(rs);
2172
2173 /* Unlock rgrp if required */
2174 if (!rg_locked)
2175 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2176 next_rgrp:
2177 /* Find the next rgrp, and continue looking */
2178 if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2179 continue;
2180 if (skip)
2181 continue;
2182
2183 /* If we've scanned all the rgrps, but found no free blocks
2184 * then this checks for some less likely conditions before
2185 * trying again.
2186 */
2187 loops++;
2188 /* Check that fs hasn't grown if writing to rindex */
2189 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2190 error = gfs2_ri_update(ip);
2191 if (error)
2192 return error;
2193 }
2194 /* Flushing the log may release space */
2195 if (loops == 2) {
2196 if (ap->min_target)
2197 target = ap->min_target;
2198 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2199 GFS2_LFC_INPLACE_RESERVE);
2200 }
2201 }
2202
2203 return -ENOSPC;
2204 }
2205
2206 /**
2207 * gfs2_inplace_release - release an inplace reservation
2208 * @ip: the inode the reservation was taken out on
2209 *
2210 * Release a reservation made by gfs2_inplace_reserve().
2211 */
2212
gfs2_inplace_release(struct gfs2_inode * ip)2213 void gfs2_inplace_release(struct gfs2_inode *ip)
2214 {
2215 struct gfs2_blkreserv *rs = &ip->i_res;
2216
2217 if (rs->rs_reserved) {
2218 struct gfs2_rgrpd *rgd = rs->rs_rgd;
2219
2220 spin_lock(&rgd->rd_rsspin);
2221 BUG_ON(rgd->rd_reserved < rs->rs_reserved);
2222 rgd->rd_reserved -= rs->rs_reserved;
2223 spin_unlock(&rgd->rd_rsspin);
2224 rs->rs_reserved = 0;
2225 }
2226 if (gfs2_holder_initialized(&ip->i_rgd_gh))
2227 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2228 }
2229
2230 /**
2231 * gfs2_alloc_extent - allocate an extent from a given bitmap
2232 * @rbm: the resource group information
2233 * @dinode: TRUE if the first block we allocate is for a dinode
2234 * @n: The extent length (value/result)
2235 *
2236 * Add the bitmap buffer to the transaction.
2237 * Set the found bits to @new_state to change block's allocation state.
2238 */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)2239 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2240 unsigned int *n)
2241 {
2242 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2243 const unsigned int elen = *n;
2244 u64 block;
2245 int ret;
2246
2247 *n = 1;
2248 block = gfs2_rbm_to_block(rbm);
2249 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2250 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2251 block++;
2252 while (*n < elen) {
2253 ret = gfs2_rbm_from_block(&pos, block);
2254 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2255 break;
2256 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2257 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2258 (*n)++;
2259 block++;
2260 }
2261 }
2262
2263 /**
2264 * rgblk_free - Change alloc state of given block(s)
2265 * @sdp: the filesystem
2266 * @rgd: the resource group the blocks are in
2267 * @bstart: the start of a run of blocks to free
2268 * @blen: the length of the block run (all must lie within ONE RG!)
2269 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2270 */
2271
rgblk_free(struct gfs2_sbd * sdp,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,unsigned char new_state)2272 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2273 u64 bstart, u32 blen, unsigned char new_state)
2274 {
2275 struct gfs2_rbm rbm;
2276 struct gfs2_bitmap *bi, *bi_prev = NULL;
2277
2278 rbm.rgd = rgd;
2279 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2280 return;
2281 while (blen--) {
2282 bi = rbm_bi(&rbm);
2283 if (bi != bi_prev) {
2284 if (!bi->bi_clone) {
2285 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2286 GFP_NOFS | __GFP_NOFAIL);
2287 memcpy(bi->bi_clone + bi->bi_offset,
2288 bi->bi_bh->b_data + bi->bi_offset,
2289 bi->bi_bytes);
2290 }
2291 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2292 bi_prev = bi;
2293 }
2294 gfs2_setbit(&rbm, false, new_state);
2295 gfs2_rbm_add(&rbm, 1);
2296 }
2297 }
2298
2299 /**
2300 * gfs2_rgrp_dump - print out an rgrp
2301 * @seq: The iterator
2302 * @rgd: The rgrp in question
2303 * @fs_id_buf: pointer to file system id (if requested)
2304 *
2305 */
2306
gfs2_rgrp_dump(struct seq_file * seq,struct gfs2_rgrpd * rgd,const char * fs_id_buf)2307 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2308 const char *fs_id_buf)
2309 {
2310 struct gfs2_blkreserv *trs;
2311 const struct rb_node *n;
2312
2313 spin_lock(&rgd->rd_rsspin);
2314 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2315 fs_id_buf,
2316 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2317 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2318 rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2319 if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) {
2320 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2321
2322 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf,
2323 be32_to_cpu(rgl->rl_flags),
2324 be32_to_cpu(rgl->rl_free),
2325 be32_to_cpu(rgl->rl_dinodes));
2326 }
2327 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2328 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2329 dump_rs(seq, trs, fs_id_buf);
2330 }
2331 spin_unlock(&rgd->rd_rsspin);
2332 }
2333
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2334 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2335 {
2336 struct gfs2_sbd *sdp = rgd->rd_sbd;
2337 char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2338
2339 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2340 (unsigned long long)rgd->rd_addr);
2341 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2342 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2343 gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2344 rgd->rd_flags |= GFS2_RDF_ERROR;
2345 }
2346
2347 /**
2348 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2349 * @ip: The inode we have just allocated blocks for
2350 * @rbm: The start of the allocated blocks
2351 * @len: The extent length
2352 *
2353 * Adjusts a reservation after an allocation has taken place. If the
2354 * reservation does not match the allocation, or if it is now empty
2355 * then it is removed.
2356 */
2357
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2358 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2359 const struct gfs2_rbm *rbm, unsigned len)
2360 {
2361 struct gfs2_blkreserv *rs = &ip->i_res;
2362 struct gfs2_rgrpd *rgd = rbm->rgd;
2363
2364 BUG_ON(rs->rs_reserved < len);
2365 rs->rs_reserved -= len;
2366 if (gfs2_rs_active(rs)) {
2367 u64 start = gfs2_rbm_to_block(rbm);
2368
2369 if (rs->rs_start == start) {
2370 unsigned int rlen;
2371
2372 rs->rs_start += len;
2373 rlen = min(rs->rs_requested, len);
2374 rs->rs_requested -= rlen;
2375 rgd->rd_requested -= rlen;
2376 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2377 if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2378 rs->rs_requested)
2379 return;
2380 /* We used up our block reservation, so we should
2381 reserve more blocks next time. */
2382 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2383 }
2384 __rs_deltree(rs);
2385 }
2386 }
2387
2388 /**
2389 * gfs2_set_alloc_start - Set starting point for block allocation
2390 * @rbm: The rbm which will be set to the required location
2391 * @ip: The gfs2 inode
2392 * @dinode: Flag to say if allocation includes a new inode
2393 *
2394 * This sets the starting point from the reservation if one is active
2395 * otherwise it falls back to guessing a start point based on the
2396 * inode's goal block or the last allocation point in the rgrp.
2397 */
2398
gfs2_set_alloc_start(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,bool dinode)2399 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2400 const struct gfs2_inode *ip, bool dinode)
2401 {
2402 u64 goal;
2403
2404 if (gfs2_rs_active(&ip->i_res)) {
2405 goal = ip->i_res.rs_start;
2406 } else {
2407 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2408 goal = ip->i_goal;
2409 else
2410 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2411 }
2412 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2413 rbm->bii = 0;
2414 rbm->offset = 0;
2415 }
2416 }
2417
2418 /**
2419 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2420 * @ip: the inode to allocate the block for
2421 * @bn: Used to return the starting block number
2422 * @nblocks: requested number of blocks/extent length (value/result)
2423 * @dinode: 1 if we're allocating a dinode block, else 0
2424 * @generation: the generation number of the inode
2425 *
2426 * Returns: 0 or error
2427 */
2428
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2429 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2430 bool dinode, u64 *generation)
2431 {
2432 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2433 struct buffer_head *dibh;
2434 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2435 u64 block; /* block, within the file system scope */
2436 u32 minext = 1;
2437 int error = -ENOSPC;
2438
2439 BUG_ON(ip->i_res.rs_reserved < *nblocks);
2440
2441 rgrp_lock_local(rbm.rgd);
2442 if (gfs2_rs_active(&ip->i_res)) {
2443 gfs2_set_alloc_start(&rbm, ip, dinode);
2444 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2445 }
2446 if (error == -ENOSPC) {
2447 gfs2_set_alloc_start(&rbm, ip, dinode);
2448 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2449 }
2450
2451 /* Since all blocks are reserved in advance, this shouldn't happen */
2452 if (error) {
2453 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2454 (unsigned long long)ip->i_no_addr, error, *nblocks,
2455 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2456 rbm.rgd->rd_extfail_pt);
2457 goto rgrp_error;
2458 }
2459
2460 gfs2_alloc_extent(&rbm, dinode, nblocks);
2461 block = gfs2_rbm_to_block(&rbm);
2462 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2463 if (!dinode) {
2464 ip->i_goal = block + *nblocks - 1;
2465 error = gfs2_meta_inode_buffer(ip, &dibh);
2466 if (error == 0) {
2467 struct gfs2_dinode *di =
2468 (struct gfs2_dinode *)dibh->b_data;
2469 gfs2_trans_add_meta(ip->i_gl, dibh);
2470 di->di_goal_meta = di->di_goal_data =
2471 cpu_to_be64(ip->i_goal);
2472 brelse(dibh);
2473 }
2474 }
2475 spin_lock(&rbm.rgd->rd_rsspin);
2476 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2477 if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2478 fs_warn(sdp, "nblocks=%u\n", *nblocks);
2479 spin_unlock(&rbm.rgd->rd_rsspin);
2480 goto rgrp_error;
2481 }
2482 BUG_ON(rbm.rgd->rd_reserved < *nblocks);
2483 BUG_ON(rbm.rgd->rd_free_clone < *nblocks);
2484 BUG_ON(rbm.rgd->rd_free < *nblocks);
2485 rbm.rgd->rd_reserved -= *nblocks;
2486 rbm.rgd->rd_free_clone -= *nblocks;
2487 rbm.rgd->rd_free -= *nblocks;
2488 spin_unlock(&rbm.rgd->rd_rsspin);
2489 if (dinode) {
2490 rbm.rgd->rd_dinodes++;
2491 *generation = rbm.rgd->rd_igeneration++;
2492 if (*generation == 0)
2493 *generation = rbm.rgd->rd_igeneration++;
2494 }
2495
2496 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2497 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2498 rgrp_unlock_local(rbm.rgd);
2499
2500 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2501 if (dinode)
2502 gfs2_trans_remove_revoke(sdp, block, *nblocks);
2503
2504 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2505
2506 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2507 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2508 *bn = block;
2509 return 0;
2510
2511 rgrp_error:
2512 rgrp_unlock_local(rbm.rgd);
2513 gfs2_rgrp_error(rbm.rgd);
2514 return -EIO;
2515 }
2516
2517 /**
2518 * __gfs2_free_blocks - free a contiguous run of block(s)
2519 * @ip: the inode these blocks are being freed from
2520 * @rgd: the resource group the blocks are in
2521 * @bstart: first block of a run of contiguous blocks
2522 * @blen: the length of the block run
2523 * @meta: 1 if the blocks represent metadata
2524 *
2525 */
2526
__gfs2_free_blocks(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,int meta)2527 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2528 u64 bstart, u32 blen, int meta)
2529 {
2530 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2531
2532 rgrp_lock_local(rgd);
2533 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2534 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2535 rgd->rd_free += blen;
2536 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2537 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2538 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2539 rgrp_unlock_local(rgd);
2540
2541 /* Directories keep their data in the metadata address space */
2542 if (meta || ip->i_depth || gfs2_is_jdata(ip))
2543 gfs2_journal_wipe(ip, bstart, blen);
2544 }
2545
2546 /**
2547 * gfs2_free_meta - free a contiguous run of data block(s)
2548 * @ip: the inode these blocks are being freed from
2549 * @rgd: the resource group the blocks are in
2550 * @bstart: first block of a run of contiguous blocks
2551 * @blen: the length of the block run
2552 *
2553 */
2554
gfs2_free_meta(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen)2555 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2556 u64 bstart, u32 blen)
2557 {
2558 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2559
2560 __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2561 gfs2_statfs_change(sdp, 0, +blen, 0);
2562 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2563 }
2564
gfs2_unlink_di(struct inode * inode)2565 void gfs2_unlink_di(struct inode *inode)
2566 {
2567 struct gfs2_inode *ip = GFS2_I(inode);
2568 struct gfs2_sbd *sdp = GFS2_SB(inode);
2569 struct gfs2_rgrpd *rgd;
2570 u64 blkno = ip->i_no_addr;
2571
2572 rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2573 if (!rgd)
2574 return;
2575 rgrp_lock_local(rgd);
2576 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2577 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2578 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2579 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2580 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2581 rgrp_unlock_local(rgd);
2582 }
2583
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2584 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2585 {
2586 struct gfs2_sbd *sdp = rgd->rd_sbd;
2587
2588 rgrp_lock_local(rgd);
2589 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2590 if (!rgd->rd_dinodes)
2591 gfs2_consist_rgrpd(rgd);
2592 rgd->rd_dinodes--;
2593 rgd->rd_free++;
2594
2595 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2596 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2597 rgrp_unlock_local(rgd);
2598 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2599
2600 gfs2_statfs_change(sdp, 0, +1, -1);
2601 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2602 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2603 gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2604 }
2605
2606 /**
2607 * gfs2_check_blk_type - Check the type of a block
2608 * @sdp: The superblock
2609 * @no_addr: The block number to check
2610 * @type: The block type we are looking for
2611 *
2612 * The inode glock of @no_addr must be held. The @type to check for is either
2613 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2614 * or GFS2_BLKST_USED would make no sense.
2615 *
2616 * Returns: 0 if the block type matches the expected type
2617 * -ESTALE if it doesn't match
2618 * or -ve errno if something went wrong while checking
2619 */
2620
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2621 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2622 {
2623 struct gfs2_rgrpd *rgd;
2624 struct gfs2_holder rgd_gh;
2625 struct gfs2_rbm rbm;
2626 int error = -EINVAL;
2627
2628 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2629 if (!rgd)
2630 goto fail;
2631
2632 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2633 if (error)
2634 goto fail;
2635
2636 rbm.rgd = rgd;
2637 error = gfs2_rbm_from_block(&rbm, no_addr);
2638 if (!WARN_ON_ONCE(error)) {
2639 /*
2640 * No need to take the local resource group lock here; the
2641 * inode glock of @no_addr provides the necessary
2642 * synchronization in case the block is an inode. (In case
2643 * the block is not an inode, the block type will not match
2644 * the @type we are looking for.)
2645 */
2646 if (gfs2_testbit(&rbm, false) != type)
2647 error = -ESTALE;
2648 }
2649
2650 gfs2_glock_dq_uninit(&rgd_gh);
2651
2652 fail:
2653 return error;
2654 }
2655
2656 /**
2657 * gfs2_rlist_add - add a RG to a list of RGs
2658 * @ip: the inode
2659 * @rlist: the list of resource groups
2660 * @block: the block
2661 *
2662 * Figure out what RG a block belongs to and add that RG to the list
2663 *
2664 * FIXME: Don't use NOFAIL
2665 *
2666 */
2667
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2668 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2669 u64 block)
2670 {
2671 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2672 struct gfs2_rgrpd *rgd;
2673 struct gfs2_rgrpd **tmp;
2674 unsigned int new_space;
2675 unsigned int x;
2676
2677 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2678 return;
2679
2680 /*
2681 * The resource group last accessed is kept in the last position.
2682 */
2683
2684 if (rlist->rl_rgrps) {
2685 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2686 if (rgrp_contains_block(rgd, block))
2687 return;
2688 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2689 } else {
2690 rgd = ip->i_res.rs_rgd;
2691 if (!rgd || !rgrp_contains_block(rgd, block))
2692 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2693 }
2694
2695 if (!rgd) {
2696 fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2697 (unsigned long long)block);
2698 return;
2699 }
2700
2701 for (x = 0; x < rlist->rl_rgrps; x++) {
2702 if (rlist->rl_rgd[x] == rgd) {
2703 swap(rlist->rl_rgd[x],
2704 rlist->rl_rgd[rlist->rl_rgrps - 1]);
2705 return;
2706 }
2707 }
2708
2709 if (rlist->rl_rgrps == rlist->rl_space) {
2710 new_space = rlist->rl_space + 10;
2711
2712 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2713 GFP_NOFS | __GFP_NOFAIL);
2714
2715 if (rlist->rl_rgd) {
2716 memcpy(tmp, rlist->rl_rgd,
2717 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2718 kfree(rlist->rl_rgd);
2719 }
2720
2721 rlist->rl_space = new_space;
2722 rlist->rl_rgd = tmp;
2723 }
2724
2725 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2726 }
2727
2728 /**
2729 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2730 * and initialize an array of glock holders for them
2731 * @rlist: the list of resource groups
2732 *
2733 * FIXME: Don't use NOFAIL
2734 *
2735 */
2736
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist)2737 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2738 {
2739 unsigned int x;
2740
2741 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2742 sizeof(struct gfs2_holder),
2743 GFP_NOFS | __GFP_NOFAIL);
2744 for (x = 0; x < rlist->rl_rgrps; x++)
2745 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE,
2746 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]);
2747 }
2748
2749 /**
2750 * gfs2_rlist_free - free a resource group list
2751 * @rlist: the list of resource groups
2752 *
2753 */
2754
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2755 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2756 {
2757 unsigned int x;
2758
2759 kfree(rlist->rl_rgd);
2760
2761 if (rlist->rl_ghs) {
2762 for (x = 0; x < rlist->rl_rgrps; x++)
2763 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2764 kfree(rlist->rl_ghs);
2765 rlist->rl_ghs = NULL;
2766 }
2767 }
2768
rgrp_lock_local(struct gfs2_rgrpd * rgd)2769 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2770 {
2771 BUG_ON(!gfs2_glock_is_held_excl(rgd->rd_gl) &&
2772 !test_bit(SDF_NORECOVERY, &rgd->rd_sbd->sd_flags));
2773 mutex_lock(&rgd->rd_mutex);
2774 }
2775
rgrp_unlock_local(struct gfs2_rgrpd * rgd)2776 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2777 {
2778 mutex_unlock(&rgd->rd_mutex);
2779 }
2780