• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/mem_encrypt.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33 
34 #define DR7_RESET_VALUE        0x400
35 
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38 
39 /*
40  * Needs to be in the .data section because we need it NULL before bss is
41  * cleared
42  */
43 static struct ghcb __initdata *boot_ghcb;
44 
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 	struct ghcb ghcb_page;
48 
49 	/*
50 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
51 	 * It is needed when an NMI happens while the #VC handler uses the real
52 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
53 	 * that case the GHCB content of the first handler needs to be backed up
54 	 * and restored.
55 	 */
56 	struct ghcb backup_ghcb;
57 
58 	/*
59 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
60 	 * There is no need for it to be atomic, because nothing is written to
61 	 * the GHCB between the read and the write of ghcb_active. So it is safe
62 	 * to use it when a nested #VC exception happens before the write.
63 	 *
64 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
65 	 * happens while the first #VC handler uses the GHCB. When the NMI code
66 	 * raises a second #VC handler it might overwrite the contents of the
67 	 * GHCB written by the first handler. To avoid this the content of the
68 	 * GHCB is saved and restored when the GHCB is detected to be in use
69 	 * already.
70 	 */
71 	bool ghcb_active;
72 	bool backup_ghcb_active;
73 
74 	/*
75 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
76 	 * That value will never make it to the real hardware DR7 as debugging
77 	 * is currently unsupported in SEV-ES guests.
78 	 */
79 	unsigned long dr7;
80 };
81 
82 struct ghcb_state {
83 	struct ghcb *ghcb;
84 };
85 
86 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
87 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
88 
89 /* Needed in vc_early_forward_exception */
90 void do_early_exception(struct pt_regs *regs, int trapnr);
91 
on_vc_stack(struct pt_regs * regs)92 static __always_inline bool on_vc_stack(struct pt_regs *regs)
93 {
94 	unsigned long sp = regs->sp;
95 
96 	/* User-mode RSP is not trusted */
97 	if (user_mode(regs))
98 		return false;
99 
100 	/* SYSCALL gap still has user-mode RSP */
101 	if (ip_within_syscall_gap(regs))
102 		return false;
103 
104 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
105 }
106 
107 /*
108  * This function handles the case when an NMI is raised in the #VC
109  * exception handler entry code, before the #VC handler has switched off
110  * its IST stack. In this case, the IST entry for #VC must be adjusted,
111  * so that any nested #VC exception will not overwrite the stack
112  * contents of the interrupted #VC handler.
113  *
114  * The IST entry is adjusted unconditionally so that it can be also be
115  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
116  * nested sev_es_ist_exit() call may adjust back the IST entry too
117  * early.
118  *
119  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
120  * on the NMI IST stack, as they are only called from NMI handling code
121  * right now.
122  */
__sev_es_ist_enter(struct pt_regs * regs)123 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
124 {
125 	unsigned long old_ist, new_ist;
126 
127 	/* Read old IST entry */
128 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
129 
130 	/*
131 	 * If NMI happened while on the #VC IST stack, set the new IST
132 	 * value below regs->sp, so that the interrupted stack frame is
133 	 * not overwritten by subsequent #VC exceptions.
134 	 */
135 	if (on_vc_stack(regs))
136 		new_ist = regs->sp;
137 
138 	/*
139 	 * Reserve additional 8 bytes and store old IST value so this
140 	 * adjustment can be unrolled in __sev_es_ist_exit().
141 	 */
142 	new_ist -= sizeof(old_ist);
143 	*(unsigned long *)new_ist = old_ist;
144 
145 	/* Set new IST entry */
146 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
147 }
148 
__sev_es_ist_exit(void)149 void noinstr __sev_es_ist_exit(void)
150 {
151 	unsigned long ist;
152 
153 	/* Read IST entry */
154 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
155 
156 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
157 		return;
158 
159 	/* Read back old IST entry and write it to the TSS */
160 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
161 }
162 
163 /*
164  * Nothing shall interrupt this code path while holding the per-CPU
165  * GHCB. The backup GHCB is only for NMIs interrupting this path.
166  *
167  * Callers must disable local interrupts around it.
168  */
__sev_get_ghcb(struct ghcb_state * state)169 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
170 {
171 	struct sev_es_runtime_data *data;
172 	struct ghcb *ghcb;
173 
174 	WARN_ON(!irqs_disabled());
175 
176 	data = this_cpu_read(runtime_data);
177 	ghcb = &data->ghcb_page;
178 
179 	if (unlikely(data->ghcb_active)) {
180 		/* GHCB is already in use - save its contents */
181 
182 		if (unlikely(data->backup_ghcb_active)) {
183 			/*
184 			 * Backup-GHCB is also already in use. There is no way
185 			 * to continue here so just kill the machine. To make
186 			 * panic() work, mark GHCBs inactive so that messages
187 			 * can be printed out.
188 			 */
189 			data->ghcb_active        = false;
190 			data->backup_ghcb_active = false;
191 
192 			instrumentation_begin();
193 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
194 			instrumentation_end();
195 		}
196 
197 		/* Mark backup_ghcb active before writing to it */
198 		data->backup_ghcb_active = true;
199 
200 		state->ghcb = &data->backup_ghcb;
201 
202 		/* Backup GHCB content */
203 		*state->ghcb = *ghcb;
204 	} else {
205 		state->ghcb = NULL;
206 		data->ghcb_active = true;
207 	}
208 
209 	return ghcb;
210 }
211 
212 /* Needed in vc_early_forward_exception */
213 void do_early_exception(struct pt_regs *regs, int trapnr);
214 
sev_es_rd_ghcb_msr(void)215 static inline u64 sev_es_rd_ghcb_msr(void)
216 {
217 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
218 }
219 
sev_es_wr_ghcb_msr(u64 val)220 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
221 {
222 	u32 low, high;
223 
224 	low  = (u32)(val);
225 	high = (u32)(val >> 32);
226 
227 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
228 }
229 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)230 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
231 				unsigned char *buffer)
232 {
233 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
234 }
235 
__vc_decode_user_insn(struct es_em_ctxt * ctxt)236 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
237 {
238 	char buffer[MAX_INSN_SIZE];
239 	int insn_bytes;
240 
241 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
242 	if (insn_bytes == 0) {
243 		/* Nothing could be copied */
244 		ctxt->fi.vector     = X86_TRAP_PF;
245 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
246 		ctxt->fi.cr2        = ctxt->regs->ip;
247 		return ES_EXCEPTION;
248 	} else if (insn_bytes == -EINVAL) {
249 		/* Effective RIP could not be calculated */
250 		ctxt->fi.vector     = X86_TRAP_GP;
251 		ctxt->fi.error_code = 0;
252 		ctxt->fi.cr2        = 0;
253 		return ES_EXCEPTION;
254 	}
255 
256 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
257 		return ES_DECODE_FAILED;
258 
259 	if (ctxt->insn.immediate.got)
260 		return ES_OK;
261 	else
262 		return ES_DECODE_FAILED;
263 }
264 
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)265 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
266 {
267 	char buffer[MAX_INSN_SIZE];
268 	int res, ret;
269 
270 	res = vc_fetch_insn_kernel(ctxt, buffer);
271 	if (res) {
272 		ctxt->fi.vector     = X86_TRAP_PF;
273 		ctxt->fi.error_code = X86_PF_INSTR;
274 		ctxt->fi.cr2        = ctxt->regs->ip;
275 		return ES_EXCEPTION;
276 	}
277 
278 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
279 	if (ret < 0)
280 		return ES_DECODE_FAILED;
281 	else
282 		return ES_OK;
283 }
284 
vc_decode_insn(struct es_em_ctxt * ctxt)285 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
286 {
287 	if (user_mode(ctxt->regs))
288 		return __vc_decode_user_insn(ctxt);
289 	else
290 		return __vc_decode_kern_insn(ctxt);
291 }
292 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)293 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
294 				   char *dst, char *buf, size_t size)
295 {
296 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
297 
298 	/*
299 	 * This function uses __put_user() independent of whether kernel or user
300 	 * memory is accessed. This works fine because __put_user() does no
301 	 * sanity checks of the pointer being accessed. All that it does is
302 	 * to report when the access failed.
303 	 *
304 	 * Also, this function runs in atomic context, so __put_user() is not
305 	 * allowed to sleep. The page-fault handler detects that it is running
306 	 * in atomic context and will not try to take mmap_sem and handle the
307 	 * fault, so additional pagefault_enable()/disable() calls are not
308 	 * needed.
309 	 *
310 	 * The access can't be done via copy_to_user() here because
311 	 * vc_write_mem() must not use string instructions to access unsafe
312 	 * memory. The reason is that MOVS is emulated by the #VC handler by
313 	 * splitting the move up into a read and a write and taking a nested #VC
314 	 * exception on whatever of them is the MMIO access. Using string
315 	 * instructions here would cause infinite nesting.
316 	 */
317 	switch (size) {
318 	case 1: {
319 		u8 d1;
320 		u8 __user *target = (u8 __user *)dst;
321 
322 		memcpy(&d1, buf, 1);
323 		if (__put_user(d1, target))
324 			goto fault;
325 		break;
326 	}
327 	case 2: {
328 		u16 d2;
329 		u16 __user *target = (u16 __user *)dst;
330 
331 		memcpy(&d2, buf, 2);
332 		if (__put_user(d2, target))
333 			goto fault;
334 		break;
335 	}
336 	case 4: {
337 		u32 d4;
338 		u32 __user *target = (u32 __user *)dst;
339 
340 		memcpy(&d4, buf, 4);
341 		if (__put_user(d4, target))
342 			goto fault;
343 		break;
344 	}
345 	case 8: {
346 		u64 d8;
347 		u64 __user *target = (u64 __user *)dst;
348 
349 		memcpy(&d8, buf, 8);
350 		if (__put_user(d8, target))
351 			goto fault;
352 		break;
353 	}
354 	default:
355 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
356 		return ES_UNSUPPORTED;
357 	}
358 
359 	return ES_OK;
360 
361 fault:
362 	if (user_mode(ctxt->regs))
363 		error_code |= X86_PF_USER;
364 
365 	ctxt->fi.vector = X86_TRAP_PF;
366 	ctxt->fi.error_code = error_code;
367 	ctxt->fi.cr2 = (unsigned long)dst;
368 
369 	return ES_EXCEPTION;
370 }
371 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)372 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
373 				  char *src, char *buf, size_t size)
374 {
375 	unsigned long error_code = X86_PF_PROT;
376 
377 	/*
378 	 * This function uses __get_user() independent of whether kernel or user
379 	 * memory is accessed. This works fine because __get_user() does no
380 	 * sanity checks of the pointer being accessed. All that it does is
381 	 * to report when the access failed.
382 	 *
383 	 * Also, this function runs in atomic context, so __get_user() is not
384 	 * allowed to sleep. The page-fault handler detects that it is running
385 	 * in atomic context and will not try to take mmap_sem and handle the
386 	 * fault, so additional pagefault_enable()/disable() calls are not
387 	 * needed.
388 	 *
389 	 * The access can't be done via copy_from_user() here because
390 	 * vc_read_mem() must not use string instructions to access unsafe
391 	 * memory. The reason is that MOVS is emulated by the #VC handler by
392 	 * splitting the move up into a read and a write and taking a nested #VC
393 	 * exception on whatever of them is the MMIO access. Using string
394 	 * instructions here would cause infinite nesting.
395 	 */
396 	switch (size) {
397 	case 1: {
398 		u8 d1;
399 		u8 __user *s = (u8 __user *)src;
400 
401 		if (__get_user(d1, s))
402 			goto fault;
403 		memcpy(buf, &d1, 1);
404 		break;
405 	}
406 	case 2: {
407 		u16 d2;
408 		u16 __user *s = (u16 __user *)src;
409 
410 		if (__get_user(d2, s))
411 			goto fault;
412 		memcpy(buf, &d2, 2);
413 		break;
414 	}
415 	case 4: {
416 		u32 d4;
417 		u32 __user *s = (u32 __user *)src;
418 
419 		if (__get_user(d4, s))
420 			goto fault;
421 		memcpy(buf, &d4, 4);
422 		break;
423 	}
424 	case 8: {
425 		u64 d8;
426 		u64 __user *s = (u64 __user *)src;
427 		if (__get_user(d8, s))
428 			goto fault;
429 		memcpy(buf, &d8, 8);
430 		break;
431 	}
432 	default:
433 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
434 		return ES_UNSUPPORTED;
435 	}
436 
437 	return ES_OK;
438 
439 fault:
440 	if (user_mode(ctxt->regs))
441 		error_code |= X86_PF_USER;
442 
443 	ctxt->fi.vector = X86_TRAP_PF;
444 	ctxt->fi.error_code = error_code;
445 	ctxt->fi.cr2 = (unsigned long)src;
446 
447 	return ES_EXCEPTION;
448 }
449 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)450 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
451 					   unsigned long vaddr, phys_addr_t *paddr)
452 {
453 	unsigned long va = (unsigned long)vaddr;
454 	unsigned int level;
455 	phys_addr_t pa;
456 	pgd_t *pgd;
457 	pte_t *pte;
458 
459 	pgd = __va(read_cr3_pa());
460 	pgd = &pgd[pgd_index(va)];
461 	pte = lookup_address_in_pgd(pgd, va, &level);
462 	if (!pte) {
463 		ctxt->fi.vector     = X86_TRAP_PF;
464 		ctxt->fi.cr2        = vaddr;
465 		ctxt->fi.error_code = 0;
466 
467 		if (user_mode(ctxt->regs))
468 			ctxt->fi.error_code |= X86_PF_USER;
469 
470 		return ES_EXCEPTION;
471 	}
472 
473 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
474 		/* Emulated MMIO to/from encrypted memory not supported */
475 		return ES_UNSUPPORTED;
476 
477 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
478 	pa |= va & ~page_level_mask(level);
479 
480 	*paddr = pa;
481 
482 	return ES_OK;
483 }
484 
vc_ioio_check(struct es_em_ctxt * ctxt,u16 port,size_t size)485 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
486 {
487 	BUG_ON(size > 4);
488 
489 	if (user_mode(ctxt->regs)) {
490 		struct thread_struct *t = &current->thread;
491 		struct io_bitmap *iobm = t->io_bitmap;
492 		size_t idx;
493 
494 		if (!iobm)
495 			goto fault;
496 
497 		for (idx = port; idx < port + size; ++idx) {
498 			if (test_bit(idx, iobm->bitmap))
499 				goto fault;
500 		}
501 	}
502 
503 	return ES_OK;
504 
505 fault:
506 	ctxt->fi.vector = X86_TRAP_GP;
507 	ctxt->fi.error_code = 0;
508 
509 	return ES_EXCEPTION;
510 }
511 
512 /* Include code shared with pre-decompression boot stage */
513 #include "sev-shared.c"
514 
__sev_put_ghcb(struct ghcb_state * state)515 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
516 {
517 	struct sev_es_runtime_data *data;
518 	struct ghcb *ghcb;
519 
520 	WARN_ON(!irqs_disabled());
521 
522 	data = this_cpu_read(runtime_data);
523 	ghcb = &data->ghcb_page;
524 
525 	if (state->ghcb) {
526 		/* Restore GHCB from Backup */
527 		*ghcb = *state->ghcb;
528 		data->backup_ghcb_active = false;
529 		state->ghcb = NULL;
530 	} else {
531 		/*
532 		 * Invalidate the GHCB so a VMGEXIT instruction issued
533 		 * from userspace won't appear to be valid.
534 		 */
535 		vc_ghcb_invalidate(ghcb);
536 		data->ghcb_active = false;
537 	}
538 }
539 
__sev_es_nmi_complete(void)540 void noinstr __sev_es_nmi_complete(void)
541 {
542 	struct ghcb_state state;
543 	struct ghcb *ghcb;
544 
545 	ghcb = __sev_get_ghcb(&state);
546 
547 	vc_ghcb_invalidate(ghcb);
548 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
549 	ghcb_set_sw_exit_info_1(ghcb, 0);
550 	ghcb_set_sw_exit_info_2(ghcb, 0);
551 
552 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
553 	VMGEXIT();
554 
555 	__sev_put_ghcb(&state);
556 }
557 
get_jump_table_addr(void)558 static u64 get_jump_table_addr(void)
559 {
560 	struct ghcb_state state;
561 	unsigned long flags;
562 	struct ghcb *ghcb;
563 	u64 ret = 0;
564 
565 	local_irq_save(flags);
566 
567 	ghcb = __sev_get_ghcb(&state);
568 
569 	vc_ghcb_invalidate(ghcb);
570 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
571 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
572 	ghcb_set_sw_exit_info_2(ghcb, 0);
573 
574 	sev_es_wr_ghcb_msr(__pa(ghcb));
575 	VMGEXIT();
576 
577 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
578 	    ghcb_sw_exit_info_2_is_valid(ghcb))
579 		ret = ghcb->save.sw_exit_info_2;
580 
581 	__sev_put_ghcb(&state);
582 
583 	local_irq_restore(flags);
584 
585 	return ret;
586 }
587 
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)588 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
589 {
590 	u16 startup_cs, startup_ip;
591 	phys_addr_t jump_table_pa;
592 	u64 jump_table_addr;
593 	u16 __iomem *jump_table;
594 
595 	jump_table_addr = get_jump_table_addr();
596 
597 	/* On UP guests there is no jump table so this is not a failure */
598 	if (!jump_table_addr)
599 		return 0;
600 
601 	/* Check if AP Jump Table is page-aligned */
602 	if (jump_table_addr & ~PAGE_MASK)
603 		return -EINVAL;
604 
605 	jump_table_pa = jump_table_addr & PAGE_MASK;
606 
607 	startup_cs = (u16)(rmh->trampoline_start >> 4);
608 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
609 			   rmh->trampoline_start);
610 
611 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
612 	if (!jump_table)
613 		return -EIO;
614 
615 	writew(startup_ip, &jump_table[0]);
616 	writew(startup_cs, &jump_table[1]);
617 
618 	iounmap(jump_table);
619 
620 	return 0;
621 }
622 
623 /*
624  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
625  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
626  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
627  */
sev_es_efi_map_ghcbs(pgd_t * pgd)628 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
629 {
630 	struct sev_es_runtime_data *data;
631 	unsigned long address, pflags;
632 	int cpu;
633 	u64 pfn;
634 
635 	if (!sev_es_active())
636 		return 0;
637 
638 	pflags = _PAGE_NX | _PAGE_RW;
639 
640 	for_each_possible_cpu(cpu) {
641 		data = per_cpu(runtime_data, cpu);
642 
643 		address = __pa(&data->ghcb_page);
644 		pfn = address >> PAGE_SHIFT;
645 
646 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
647 			return 1;
648 	}
649 
650 	return 0;
651 }
652 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)653 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
654 {
655 	struct pt_regs *regs = ctxt->regs;
656 	enum es_result ret;
657 	u64 exit_info_1;
658 
659 	/* Is it a WRMSR? */
660 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
661 
662 	ghcb_set_rcx(ghcb, regs->cx);
663 	if (exit_info_1) {
664 		ghcb_set_rax(ghcb, regs->ax);
665 		ghcb_set_rdx(ghcb, regs->dx);
666 	}
667 
668 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
669 
670 	if ((ret == ES_OK) && (!exit_info_1)) {
671 		regs->ax = ghcb->save.rax;
672 		regs->dx = ghcb->save.rdx;
673 	}
674 
675 	return ret;
676 }
677 
678 /*
679  * This function runs on the first #VC exception after the kernel
680  * switched to virtual addresses.
681  */
sev_es_setup_ghcb(void)682 static bool __init sev_es_setup_ghcb(void)
683 {
684 	/* First make sure the hypervisor talks a supported protocol. */
685 	if (!sev_es_negotiate_protocol())
686 		return false;
687 
688 	/*
689 	 * Clear the boot_ghcb. The first exception comes in before the bss
690 	 * section is cleared.
691 	 */
692 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
693 
694 	/* Alright - Make the boot-ghcb public */
695 	boot_ghcb = &boot_ghcb_page;
696 
697 	return true;
698 }
699 
700 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)701 static void sev_es_ap_hlt_loop(void)
702 {
703 	struct ghcb_state state;
704 	struct ghcb *ghcb;
705 
706 	ghcb = __sev_get_ghcb(&state);
707 
708 	while (true) {
709 		vc_ghcb_invalidate(ghcb);
710 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
711 		ghcb_set_sw_exit_info_1(ghcb, 0);
712 		ghcb_set_sw_exit_info_2(ghcb, 0);
713 
714 		sev_es_wr_ghcb_msr(__pa(ghcb));
715 		VMGEXIT();
716 
717 		/* Wakeup signal? */
718 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
719 		    ghcb->save.sw_exit_info_2)
720 			break;
721 	}
722 
723 	__sev_put_ghcb(&state);
724 }
725 
726 /*
727  * Play_dead handler when running under SEV-ES. This is needed because
728  * the hypervisor can't deliver an SIPI request to restart the AP.
729  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
730  * hypervisor wakes it up again.
731  */
sev_es_play_dead(void)732 static void sev_es_play_dead(void)
733 {
734 	play_dead_common();
735 
736 	/* IRQs now disabled */
737 
738 	sev_es_ap_hlt_loop();
739 
740 	/*
741 	 * If we get here, the VCPU was woken up again. Jump to CPU
742 	 * startup code to get it back online.
743 	 */
744 	start_cpu0();
745 }
746 #else  /* CONFIG_HOTPLUG_CPU */
747 #define sev_es_play_dead	native_play_dead
748 #endif /* CONFIG_HOTPLUG_CPU */
749 
750 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)751 static void __init sev_es_setup_play_dead(void)
752 {
753 	smp_ops.play_dead = sev_es_play_dead;
754 }
755 #else
sev_es_setup_play_dead(void)756 static inline void sev_es_setup_play_dead(void) { }
757 #endif
758 
alloc_runtime_data(int cpu)759 static void __init alloc_runtime_data(int cpu)
760 {
761 	struct sev_es_runtime_data *data;
762 
763 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
764 	if (!data)
765 		panic("Can't allocate SEV-ES runtime data");
766 
767 	per_cpu(runtime_data, cpu) = data;
768 }
769 
init_ghcb(int cpu)770 static void __init init_ghcb(int cpu)
771 {
772 	struct sev_es_runtime_data *data;
773 	int err;
774 
775 	data = per_cpu(runtime_data, cpu);
776 
777 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
778 					 sizeof(data->ghcb_page));
779 	if (err)
780 		panic("Can't map GHCBs unencrypted");
781 
782 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
783 
784 	data->ghcb_active = false;
785 	data->backup_ghcb_active = false;
786 }
787 
sev_es_init_vc_handling(void)788 void __init sev_es_init_vc_handling(void)
789 {
790 	int cpu;
791 
792 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
793 
794 	if (!sev_es_active())
795 		return;
796 
797 	if (!sev_es_check_cpu_features())
798 		panic("SEV-ES CPU Features missing");
799 
800 	/* Enable SEV-ES special handling */
801 	static_branch_enable(&sev_es_enable_key);
802 
803 	/* Initialize per-cpu GHCB pages */
804 	for_each_possible_cpu(cpu) {
805 		alloc_runtime_data(cpu);
806 		init_ghcb(cpu);
807 	}
808 
809 	sev_es_setup_play_dead();
810 
811 	/* Secondary CPUs use the runtime #VC handler */
812 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
813 }
814 
vc_early_forward_exception(struct es_em_ctxt * ctxt)815 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
816 {
817 	int trapnr = ctxt->fi.vector;
818 
819 	if (trapnr == X86_TRAP_PF)
820 		native_write_cr2(ctxt->fi.cr2);
821 
822 	ctxt->regs->orig_ax = ctxt->fi.error_code;
823 	do_early_exception(ctxt->regs, trapnr);
824 }
825 
vc_insn_get_reg(struct es_em_ctxt * ctxt)826 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
827 {
828 	long *reg_array;
829 	int offset;
830 
831 	reg_array = (long *)ctxt->regs;
832 	offset    = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
833 
834 	if (offset < 0)
835 		return NULL;
836 
837 	offset /= sizeof(long);
838 
839 	return reg_array + offset;
840 }
841 
vc_insn_get_rm(struct es_em_ctxt * ctxt)842 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
843 {
844 	long *reg_array;
845 	int offset;
846 
847 	reg_array = (long *)ctxt->regs;
848 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
849 
850 	if (offset < 0)
851 		return NULL;
852 
853 	offset /= sizeof(long);
854 
855 	return reg_array + offset;
856 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)857 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
858 				 unsigned int bytes, bool read)
859 {
860 	u64 exit_code, exit_info_1, exit_info_2;
861 	unsigned long ghcb_pa = __pa(ghcb);
862 	enum es_result res;
863 	phys_addr_t paddr;
864 	void __user *ref;
865 
866 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
867 	if (ref == (void __user *)-1L)
868 		return ES_UNSUPPORTED;
869 
870 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
871 
872 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
873 	if (res != ES_OK) {
874 		if (res == ES_EXCEPTION && !read)
875 			ctxt->fi.error_code |= X86_PF_WRITE;
876 
877 		return res;
878 	}
879 
880 	exit_info_1 = paddr;
881 	/* Can never be greater than 8 */
882 	exit_info_2 = bytes;
883 
884 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
885 
886 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
887 }
888 
vc_handle_mmio_twobyte_ops(struct ghcb * ghcb,struct es_em_ctxt * ctxt)889 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
890 						 struct es_em_ctxt *ctxt)
891 {
892 	struct insn *insn = &ctxt->insn;
893 	unsigned int bytes = 0;
894 	enum es_result ret;
895 	int sign_byte;
896 	long *reg_data;
897 
898 	switch (insn->opcode.bytes[1]) {
899 		/* MMIO Read w/ zero-extension */
900 	case 0xb6:
901 		bytes = 1;
902 		fallthrough;
903 	case 0xb7:
904 		if (!bytes)
905 			bytes = 2;
906 
907 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
908 		if (ret)
909 			break;
910 
911 		/* Zero extend based on operand size */
912 		reg_data = vc_insn_get_reg(ctxt);
913 		if (!reg_data)
914 			return ES_DECODE_FAILED;
915 
916 		memset(reg_data, 0, insn->opnd_bytes);
917 
918 		memcpy(reg_data, ghcb->shared_buffer, bytes);
919 		break;
920 
921 		/* MMIO Read w/ sign-extension */
922 	case 0xbe:
923 		bytes = 1;
924 		fallthrough;
925 	case 0xbf:
926 		if (!bytes)
927 			bytes = 2;
928 
929 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
930 		if (ret)
931 			break;
932 
933 		/* Sign extend based on operand size */
934 		reg_data = vc_insn_get_reg(ctxt);
935 		if (!reg_data)
936 			return ES_DECODE_FAILED;
937 
938 		if (bytes == 1) {
939 			u8 *val = (u8 *)ghcb->shared_buffer;
940 
941 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
942 		} else {
943 			u16 *val = (u16 *)ghcb->shared_buffer;
944 
945 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
946 		}
947 		memset(reg_data, sign_byte, insn->opnd_bytes);
948 
949 		memcpy(reg_data, ghcb->shared_buffer, bytes);
950 		break;
951 
952 	default:
953 		ret = ES_UNSUPPORTED;
954 	}
955 
956 	return ret;
957 }
958 
959 /*
960  * The MOVS instruction has two memory operands, which raises the
961  * problem that it is not known whether the access to the source or the
962  * destination caused the #VC exception (and hence whether an MMIO read
963  * or write operation needs to be emulated).
964  *
965  * Instead of playing games with walking page-tables and trying to guess
966  * whether the source or destination is an MMIO range, split the move
967  * into two operations, a read and a write with only one memory operand.
968  * This will cause a nested #VC exception on the MMIO address which can
969  * then be handled.
970  *
971  * This implementation has the benefit that it also supports MOVS where
972  * source _and_ destination are MMIO regions.
973  *
974  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
975  * rare operation. If it turns out to be a performance problem the split
976  * operations can be moved to memcpy_fromio() and memcpy_toio().
977  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)978 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
979 					  unsigned int bytes)
980 {
981 	unsigned long ds_base, es_base;
982 	unsigned char *src, *dst;
983 	unsigned char buffer[8];
984 	enum es_result ret;
985 	bool rep;
986 	int off;
987 
988 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
989 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
990 
991 	if (ds_base == -1L || es_base == -1L) {
992 		ctxt->fi.vector = X86_TRAP_GP;
993 		ctxt->fi.error_code = 0;
994 		return ES_EXCEPTION;
995 	}
996 
997 	src = ds_base + (unsigned char *)ctxt->regs->si;
998 	dst = es_base + (unsigned char *)ctxt->regs->di;
999 
1000 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1001 	if (ret != ES_OK)
1002 		return ret;
1003 
1004 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1005 	if (ret != ES_OK)
1006 		return ret;
1007 
1008 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1009 		off = -bytes;
1010 	else
1011 		off =  bytes;
1012 
1013 	ctxt->regs->si += off;
1014 	ctxt->regs->di += off;
1015 
1016 	rep = insn_has_rep_prefix(&ctxt->insn);
1017 	if (rep)
1018 		ctxt->regs->cx -= 1;
1019 
1020 	if (!rep || ctxt->regs->cx == 0)
1021 		return ES_OK;
1022 	else
1023 		return ES_RETRY;
1024 }
1025 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1026 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
1027 				     struct es_em_ctxt *ctxt)
1028 {
1029 	struct insn *insn = &ctxt->insn;
1030 	unsigned int bytes = 0;
1031 	enum es_result ret;
1032 	long *reg_data;
1033 
1034 	if (user_mode(ctxt->regs))
1035 		return ES_UNSUPPORTED;
1036 
1037 	switch (insn->opcode.bytes[0]) {
1038 	/* MMIO Write */
1039 	case 0x88:
1040 		bytes = 1;
1041 		fallthrough;
1042 	case 0x89:
1043 		if (!bytes)
1044 			bytes = insn->opnd_bytes;
1045 
1046 		reg_data = vc_insn_get_reg(ctxt);
1047 		if (!reg_data)
1048 			return ES_DECODE_FAILED;
1049 
1050 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1051 
1052 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1053 		break;
1054 
1055 	case 0xc6:
1056 		bytes = 1;
1057 		fallthrough;
1058 	case 0xc7:
1059 		if (!bytes)
1060 			bytes = insn->opnd_bytes;
1061 
1062 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1063 
1064 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1065 		break;
1066 
1067 		/* MMIO Read */
1068 	case 0x8a:
1069 		bytes = 1;
1070 		fallthrough;
1071 	case 0x8b:
1072 		if (!bytes)
1073 			bytes = insn->opnd_bytes;
1074 
1075 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1076 		if (ret)
1077 			break;
1078 
1079 		reg_data = vc_insn_get_reg(ctxt);
1080 		if (!reg_data)
1081 			return ES_DECODE_FAILED;
1082 
1083 		/* Zero-extend for 32-bit operation */
1084 		if (bytes == 4)
1085 			*reg_data = 0;
1086 
1087 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1088 		break;
1089 
1090 		/* MOVS instruction */
1091 	case 0xa4:
1092 		bytes = 1;
1093 		fallthrough;
1094 	case 0xa5:
1095 		if (!bytes)
1096 			bytes = insn->opnd_bytes;
1097 
1098 		ret = vc_handle_mmio_movs(ctxt, bytes);
1099 		break;
1100 		/* Two-Byte Opcodes */
1101 	case 0x0f:
1102 		ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1103 		break;
1104 	default:
1105 		ret = ES_UNSUPPORTED;
1106 	}
1107 
1108 	return ret;
1109 }
1110 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1111 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1112 					  struct es_em_ctxt *ctxt)
1113 {
1114 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1115 	long val, *reg = vc_insn_get_rm(ctxt);
1116 	enum es_result ret;
1117 
1118 	if (!reg)
1119 		return ES_DECODE_FAILED;
1120 
1121 	val = *reg;
1122 
1123 	/* Upper 32 bits must be written as zeroes */
1124 	if (val >> 32) {
1125 		ctxt->fi.vector = X86_TRAP_GP;
1126 		ctxt->fi.error_code = 0;
1127 		return ES_EXCEPTION;
1128 	}
1129 
1130 	/* Clear out other reserved bits and set bit 10 */
1131 	val = (val & 0xffff23ffL) | BIT(10);
1132 
1133 	/* Early non-zero writes to DR7 are not supported */
1134 	if (!data && (val & ~DR7_RESET_VALUE))
1135 		return ES_UNSUPPORTED;
1136 
1137 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1138 	ghcb_set_rax(ghcb, val);
1139 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1140 	if (ret != ES_OK)
1141 		return ret;
1142 
1143 	if (data)
1144 		data->dr7 = val;
1145 
1146 	return ES_OK;
1147 }
1148 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1149 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1150 					 struct es_em_ctxt *ctxt)
1151 {
1152 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1153 	long *reg = vc_insn_get_rm(ctxt);
1154 
1155 	if (!reg)
1156 		return ES_DECODE_FAILED;
1157 
1158 	if (data)
1159 		*reg = data->dr7;
1160 	else
1161 		*reg = DR7_RESET_VALUE;
1162 
1163 	return ES_OK;
1164 }
1165 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1166 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1167 				       struct es_em_ctxt *ctxt)
1168 {
1169 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1170 }
1171 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1172 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1173 {
1174 	enum es_result ret;
1175 
1176 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1177 
1178 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1179 	if (ret != ES_OK)
1180 		return ret;
1181 
1182 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1183 		return ES_VMM_ERROR;
1184 
1185 	ctxt->regs->ax = ghcb->save.rax;
1186 	ctxt->regs->dx = ghcb->save.rdx;
1187 
1188 	return ES_OK;
1189 }
1190 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1191 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1192 					struct es_em_ctxt *ctxt)
1193 {
1194 	/*
1195 	 * Treat it as a NOP and do not leak a physical address to the
1196 	 * hypervisor.
1197 	 */
1198 	return ES_OK;
1199 }
1200 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1201 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1202 				      struct es_em_ctxt *ctxt)
1203 {
1204 	/* Treat the same as MONITOR/MONITORX */
1205 	return ES_OK;
1206 }
1207 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1208 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1209 					struct es_em_ctxt *ctxt)
1210 {
1211 	enum es_result ret;
1212 
1213 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1214 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1215 
1216 	if (x86_platform.hyper.sev_es_hcall_prepare)
1217 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1218 
1219 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1220 	if (ret != ES_OK)
1221 		return ret;
1222 
1223 	if (!ghcb_rax_is_valid(ghcb))
1224 		return ES_VMM_ERROR;
1225 
1226 	ctxt->regs->ax = ghcb->save.rax;
1227 
1228 	/*
1229 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1230 	 * This allows the hypervisor handler to overwrite it again if
1231 	 * necessary.
1232 	 */
1233 	if (x86_platform.hyper.sev_es_hcall_finish &&
1234 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1235 		return ES_VMM_ERROR;
1236 
1237 	return ES_OK;
1238 }
1239 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1240 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1241 					struct es_em_ctxt *ctxt)
1242 {
1243 	/*
1244 	 * Calling ecx_alignment_check() directly does not work, because it
1245 	 * enables IRQs and the GHCB is active. Forward the exception and call
1246 	 * it later from vc_forward_exception().
1247 	 */
1248 	ctxt->fi.vector = X86_TRAP_AC;
1249 	ctxt->fi.error_code = 0;
1250 	return ES_EXCEPTION;
1251 }
1252 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1253 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1254 					 struct ghcb *ghcb,
1255 					 unsigned long exit_code)
1256 {
1257 	enum es_result result;
1258 
1259 	switch (exit_code) {
1260 	case SVM_EXIT_READ_DR7:
1261 		result = vc_handle_dr7_read(ghcb, ctxt);
1262 		break;
1263 	case SVM_EXIT_WRITE_DR7:
1264 		result = vc_handle_dr7_write(ghcb, ctxt);
1265 		break;
1266 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1267 		result = vc_handle_trap_ac(ghcb, ctxt);
1268 		break;
1269 	case SVM_EXIT_RDTSC:
1270 	case SVM_EXIT_RDTSCP:
1271 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1272 		break;
1273 	case SVM_EXIT_RDPMC:
1274 		result = vc_handle_rdpmc(ghcb, ctxt);
1275 		break;
1276 	case SVM_EXIT_INVD:
1277 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1278 		result = ES_UNSUPPORTED;
1279 		break;
1280 	case SVM_EXIT_CPUID:
1281 		result = vc_handle_cpuid(ghcb, ctxt);
1282 		break;
1283 	case SVM_EXIT_IOIO:
1284 		result = vc_handle_ioio(ghcb, ctxt);
1285 		break;
1286 	case SVM_EXIT_MSR:
1287 		result = vc_handle_msr(ghcb, ctxt);
1288 		break;
1289 	case SVM_EXIT_VMMCALL:
1290 		result = vc_handle_vmmcall(ghcb, ctxt);
1291 		break;
1292 	case SVM_EXIT_WBINVD:
1293 		result = vc_handle_wbinvd(ghcb, ctxt);
1294 		break;
1295 	case SVM_EXIT_MONITOR:
1296 		result = vc_handle_monitor(ghcb, ctxt);
1297 		break;
1298 	case SVM_EXIT_MWAIT:
1299 		result = vc_handle_mwait(ghcb, ctxt);
1300 		break;
1301 	case SVM_EXIT_NPF:
1302 		result = vc_handle_mmio(ghcb, ctxt);
1303 		break;
1304 	default:
1305 		/*
1306 		 * Unexpected #VC exception
1307 		 */
1308 		result = ES_UNSUPPORTED;
1309 	}
1310 
1311 	return result;
1312 }
1313 
vc_forward_exception(struct es_em_ctxt * ctxt)1314 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1315 {
1316 	long error_code = ctxt->fi.error_code;
1317 	int trapnr = ctxt->fi.vector;
1318 
1319 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1320 
1321 	switch (trapnr) {
1322 	case X86_TRAP_GP:
1323 		exc_general_protection(ctxt->regs, error_code);
1324 		break;
1325 	case X86_TRAP_UD:
1326 		exc_invalid_op(ctxt->regs);
1327 		break;
1328 	case X86_TRAP_PF:
1329 		write_cr2(ctxt->fi.cr2);
1330 		exc_page_fault(ctxt->regs, error_code);
1331 		break;
1332 	case X86_TRAP_AC:
1333 		exc_alignment_check(ctxt->regs, error_code);
1334 		break;
1335 	default:
1336 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1337 		BUG();
1338 	}
1339 }
1340 
on_vc_fallback_stack(struct pt_regs * regs)1341 static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
1342 {
1343 	unsigned long sp = (unsigned long)regs;
1344 
1345 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1346 }
1347 
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1348 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1349 {
1350 	struct ghcb_state state;
1351 	struct es_em_ctxt ctxt;
1352 	enum es_result result;
1353 	struct ghcb *ghcb;
1354 	bool ret = true;
1355 
1356 	ghcb = __sev_get_ghcb(&state);
1357 
1358 	vc_ghcb_invalidate(ghcb);
1359 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1360 
1361 	if (result == ES_OK)
1362 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1363 
1364 	__sev_put_ghcb(&state);
1365 
1366 	/* Done - now check the result */
1367 	switch (result) {
1368 	case ES_OK:
1369 		vc_finish_insn(&ctxt);
1370 		break;
1371 	case ES_UNSUPPORTED:
1372 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1373 				   error_code, regs->ip);
1374 		ret = false;
1375 		break;
1376 	case ES_VMM_ERROR:
1377 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1378 				   error_code, regs->ip);
1379 		ret = false;
1380 		break;
1381 	case ES_DECODE_FAILED:
1382 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1383 				   error_code, regs->ip);
1384 		ret = false;
1385 		break;
1386 	case ES_EXCEPTION:
1387 		vc_forward_exception(&ctxt);
1388 		break;
1389 	case ES_RETRY:
1390 		/* Nothing to do */
1391 		break;
1392 	default:
1393 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1394 		/*
1395 		 * Emulating the instruction which caused the #VC exception
1396 		 * failed - can't continue so print debug information
1397 		 */
1398 		BUG();
1399 	}
1400 
1401 	return ret;
1402 }
1403 
vc_is_db(unsigned long error_code)1404 static __always_inline bool vc_is_db(unsigned long error_code)
1405 {
1406 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1407 }
1408 
1409 /*
1410  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1411  * and will panic when an error happens.
1412  */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1413 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1414 {
1415 	irqentry_state_t irq_state;
1416 
1417 	/*
1418 	 * With the current implementation it is always possible to switch to a
1419 	 * safe stack because #VC exceptions only happen at known places, like
1420 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1421 	 * also happen with code instrumentation when the hypervisor intercepts
1422 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1423 	 * exceptions currently also only happen in safe places.
1424 	 *
1425 	 * But keep this here in case the noinstr annotations are violated due
1426 	 * to bug elsewhere.
1427 	 */
1428 	if (unlikely(on_vc_fallback_stack(regs))) {
1429 		instrumentation_begin();
1430 		panic("Can't handle #VC exception from unsupported context\n");
1431 		instrumentation_end();
1432 	}
1433 
1434 	/*
1435 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1436 	 */
1437 	if (vc_is_db(error_code)) {
1438 		exc_debug(regs);
1439 		return;
1440 	}
1441 
1442 	irq_state = irqentry_nmi_enter(regs);
1443 
1444 	instrumentation_begin();
1445 
1446 	if (!vc_raw_handle_exception(regs, error_code)) {
1447 		/* Show some debug info */
1448 		show_regs(regs);
1449 
1450 		/* Ask hypervisor to sev_es_terminate */
1451 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1452 
1453 		/* If that fails and we get here - just panic */
1454 		panic("Returned from Terminate-Request to Hypervisor\n");
1455 	}
1456 
1457 	instrumentation_end();
1458 	irqentry_nmi_exit(regs, irq_state);
1459 }
1460 
1461 /*
1462  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1463  * and will kill the current task with SIGBUS when an error happens.
1464  */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1465 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1466 {
1467 	/*
1468 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1469 	 */
1470 	if (vc_is_db(error_code)) {
1471 		noist_exc_debug(regs);
1472 		return;
1473 	}
1474 
1475 	irqentry_enter_from_user_mode(regs);
1476 	instrumentation_begin();
1477 
1478 	if (!vc_raw_handle_exception(regs, error_code)) {
1479 		/*
1480 		 * Do not kill the machine if user-space triggered the
1481 		 * exception. Send SIGBUS instead and let user-space deal with
1482 		 * it.
1483 		 */
1484 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1485 	}
1486 
1487 	instrumentation_end();
1488 	irqentry_exit_to_user_mode(regs);
1489 }
1490 
handle_vc_boot_ghcb(struct pt_regs * regs)1491 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1492 {
1493 	unsigned long exit_code = regs->orig_ax;
1494 	struct es_em_ctxt ctxt;
1495 	enum es_result result;
1496 
1497 	/* Do initial setup or terminate the guest */
1498 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1499 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1500 
1501 	vc_ghcb_invalidate(boot_ghcb);
1502 
1503 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1504 	if (result == ES_OK)
1505 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1506 
1507 	/* Done - now check the result */
1508 	switch (result) {
1509 	case ES_OK:
1510 		vc_finish_insn(&ctxt);
1511 		break;
1512 	case ES_UNSUPPORTED:
1513 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1514 				exit_code, regs->ip);
1515 		goto fail;
1516 	case ES_VMM_ERROR:
1517 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1518 				exit_code, regs->ip);
1519 		goto fail;
1520 	case ES_DECODE_FAILED:
1521 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1522 				exit_code, regs->ip);
1523 		goto fail;
1524 	case ES_EXCEPTION:
1525 		vc_early_forward_exception(&ctxt);
1526 		break;
1527 	case ES_RETRY:
1528 		/* Nothing to do */
1529 		break;
1530 	default:
1531 		BUG();
1532 	}
1533 
1534 	return true;
1535 
1536 fail:
1537 	show_regs(regs);
1538 
1539 	while (true)
1540 		halt();
1541 }
1542