• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the hash table type.
4  *
5  * Author : Stephen Smalley, <sds@tycho.nsa.gov>
6  */
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include <linux/errno.h>
10 #include "hashtab.h"
11 
12 static struct kmem_cache *hashtab_node_cachep __ro_after_init;
13 
14 /*
15  * Here we simply round the number of elements up to the nearest power of two.
16  * I tried also other options like rounding down or rounding to the closest
17  * power of two (up or down based on which is closer), but I was unable to
18  * find any significant difference in lookup/insert performance that would
19  * justify switching to a different (less intuitive) formula. It could be that
20  * a different formula is actually more optimal, but any future changes here
21  * should be supported with performance/memory usage data.
22  *
23  * The total memory used by the htable arrays (only) with Fedora policy loaded
24  * is approximately 163 KB at the time of writing.
25  */
hashtab_compute_size(u32 nel)26 static u32 hashtab_compute_size(u32 nel)
27 {
28 	return nel == 0 ? 0 : roundup_pow_of_two(nel);
29 }
30 
hashtab_init(struct hashtab * h,u32 nel_hint)31 int hashtab_init(struct hashtab *h, u32 nel_hint)
32 {
33 	u32 size = hashtab_compute_size(nel_hint);
34 
35 	/* should already be zeroed, but better be safe */
36 	h->nel = 0;
37 	h->size = 0;
38 	h->htable = NULL;
39 
40 	if (size) {
41 		h->htable = kcalloc(size, sizeof(*h->htable), GFP_KERNEL);
42 		if (!h->htable)
43 			return -ENOMEM;
44 		h->size = size;
45 	}
46 	return 0;
47 }
48 
__hashtab_insert(struct hashtab * h,struct hashtab_node ** dst,void * key,void * datum)49 int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst,
50 		     void *key, void *datum)
51 {
52 	struct hashtab_node *newnode;
53 
54 	newnode = kmem_cache_zalloc(hashtab_node_cachep, GFP_KERNEL);
55 	if (!newnode)
56 		return -ENOMEM;
57 	newnode->key = key;
58 	newnode->datum = datum;
59 	newnode->next = *dst;
60 	*dst = newnode;
61 
62 	h->nel++;
63 	return 0;
64 }
65 
hashtab_destroy(struct hashtab * h)66 void hashtab_destroy(struct hashtab *h)
67 {
68 	u32 i;
69 	struct hashtab_node *cur, *temp;
70 
71 	for (i = 0; i < h->size; i++) {
72 		cur = h->htable[i];
73 		while (cur) {
74 			temp = cur;
75 			cur = cur->next;
76 			kmem_cache_free(hashtab_node_cachep, temp);
77 		}
78 		h->htable[i] = NULL;
79 	}
80 
81 	kfree(h->htable);
82 	h->htable = NULL;
83 }
84 
hashtab_map(struct hashtab * h,int (* apply)(void * k,void * d,void * args),void * args)85 int hashtab_map(struct hashtab *h,
86 		int (*apply)(void *k, void *d, void *args),
87 		void *args)
88 {
89 	u32 i;
90 	int ret;
91 	struct hashtab_node *cur;
92 
93 	for (i = 0; i < h->size; i++) {
94 		cur = h->htable[i];
95 		while (cur) {
96 			ret = apply(cur->key, cur->datum, args);
97 			if (ret)
98 				return ret;
99 			cur = cur->next;
100 		}
101 	}
102 	return 0;
103 }
104 
105 
hashtab_stat(struct hashtab * h,struct hashtab_info * info)106 void hashtab_stat(struct hashtab *h, struct hashtab_info *info)
107 {
108 	u32 i, chain_len, slots_used, max_chain_len;
109 	struct hashtab_node *cur;
110 
111 	slots_used = 0;
112 	max_chain_len = 0;
113 	for (i = 0; i < h->size; i++) {
114 		cur = h->htable[i];
115 		if (cur) {
116 			slots_used++;
117 			chain_len = 0;
118 			while (cur) {
119 				chain_len++;
120 				cur = cur->next;
121 			}
122 
123 			if (chain_len > max_chain_len)
124 				max_chain_len = chain_len;
125 		}
126 	}
127 
128 	info->slots_used = slots_used;
129 	info->max_chain_len = max_chain_len;
130 }
131 
hashtab_duplicate(struct hashtab * new,struct hashtab * orig,int (* copy)(struct hashtab_node * new,struct hashtab_node * orig,void * args),int (* destroy)(void * k,void * d,void * args),void * args)132 int hashtab_duplicate(struct hashtab *new, struct hashtab *orig,
133 		int (*copy)(struct hashtab_node *new,
134 			struct hashtab_node *orig, void *args),
135 		int (*destroy)(void *k, void *d, void *args),
136 		void *args)
137 {
138 	struct hashtab_node *cur, *tmp, *tail;
139 	int i, rc;
140 
141 	memset(new, 0, sizeof(*new));
142 
143 	new->htable = kcalloc(orig->size, sizeof(*new->htable), GFP_KERNEL);
144 	if (!new->htable)
145 		return -ENOMEM;
146 
147 	new->size = orig->size;
148 
149 	for (i = 0; i < orig->size; i++) {
150 		tail = NULL;
151 		for (cur = orig->htable[i]; cur; cur = cur->next) {
152 			tmp = kmem_cache_zalloc(hashtab_node_cachep,
153 						GFP_KERNEL);
154 			if (!tmp)
155 				goto error;
156 			rc = copy(tmp, cur, args);
157 			if (rc) {
158 				kmem_cache_free(hashtab_node_cachep, tmp);
159 				goto error;
160 			}
161 			tmp->next = NULL;
162 			if (!tail)
163 				new->htable[i] = tmp;
164 			else
165 				tail->next = tmp;
166 			tail = tmp;
167 			new->nel++;
168 		}
169 	}
170 
171 	return 0;
172 
173  error:
174 	for (i = 0; i < new->size; i++) {
175 		for (cur = new->htable[i]; cur; cur = tmp) {
176 			tmp = cur->next;
177 			destroy(cur->key, cur->datum, args);
178 			kmem_cache_free(hashtab_node_cachep, cur);
179 		}
180 	}
181 	kfree(new->htable);
182 	memset(new, 0, sizeof(*new));
183 	return -ENOMEM;
184 }
185 
hashtab_cache_init(void)186 void __init hashtab_cache_init(void)
187 {
188 		hashtab_node_cachep = kmem_cache_create("hashtab_node",
189 			sizeof(struct hashtab_node),
190 			0, SLAB_PANIC, NULL);
191 }
192