• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5 
6 /*
7  * This file contains all of the code that is specific to the HFI chip
8  */
9 
10 #include <linux/pci.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 
15 #include "hfi.h"
16 #include "trace.h"
17 #include "mad.h"
18 #include "pio.h"
19 #include "sdma.h"
20 #include "eprom.h"
21 #include "efivar.h"
22 #include "platform.h"
23 #include "aspm.h"
24 #include "affinity.h"
25 #include "debugfs.h"
26 #include "fault.h"
27 #include "netdev.h"
28 
29 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
30 module_param(num_vls, uint, S_IRUGO);
31 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
32 
33 /*
34  * Default time to aggregate two 10K packets from the idle state
35  * (timer not running). The timer starts at the end of the first packet,
36  * so only the time for one 10K packet and header plus a bit extra is needed.
37  * 10 * 1024 + 64 header byte = 10304 byte
38  * 10304 byte / 12.5 GB/s = 824.32ns
39  */
40 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
41 module_param(rcv_intr_timeout, uint, S_IRUGO);
42 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
43 
44 uint rcv_intr_count = 16; /* same as qib */
45 module_param(rcv_intr_count, uint, S_IRUGO);
46 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
47 
48 ushort link_crc_mask = SUPPORTED_CRCS;
49 module_param(link_crc_mask, ushort, S_IRUGO);
50 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
51 
52 uint loopback;
53 module_param_named(loopback, loopback, uint, S_IRUGO);
54 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
55 
56 /* Other driver tunables */
57 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
58 static ushort crc_14b_sideband = 1;
59 static uint use_flr = 1;
60 uint quick_linkup; /* skip LNI */
61 
62 struct flag_table {
63 	u64 flag;	/* the flag */
64 	char *str;	/* description string */
65 	u16 extra;	/* extra information */
66 	u16 unused0;
67 	u32 unused1;
68 };
69 
70 /* str must be a string constant */
71 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
72 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
73 
74 /* Send Error Consequences */
75 #define SEC_WRITE_DROPPED	0x1
76 #define SEC_PACKET_DROPPED	0x2
77 #define SEC_SC_HALTED		0x4	/* per-context only */
78 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
79 
80 #define DEFAULT_KRCVQS		  2
81 #define MIN_KERNEL_KCTXTS         2
82 #define FIRST_KERNEL_KCTXT        1
83 
84 /*
85  * RSM instance allocation
86  *   0 - User Fecn Handling
87  *   1 - Vnic
88  *   2 - AIP
89  *   3 - Verbs
90  */
91 #define RSM_INS_FECN              0
92 #define RSM_INS_VNIC              1
93 #define RSM_INS_AIP               2
94 #define RSM_INS_VERBS             3
95 
96 /* Bit offset into the GUID which carries HFI id information */
97 #define GUID_HFI_INDEX_SHIFT     39
98 
99 /* extract the emulation revision */
100 #define emulator_rev(dd) ((dd)->irev >> 8)
101 /* parallel and serial emulation versions are 3 and 4 respectively */
102 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
103 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
104 
105 /* RSM fields for Verbs */
106 /* packet type */
107 #define IB_PACKET_TYPE         2ull
108 #define QW_SHIFT               6ull
109 /* QPN[7..1] */
110 #define QPN_WIDTH              7ull
111 
112 /* LRH.BTH: QW 0, OFFSET 48 - for match */
113 #define LRH_BTH_QW             0ull
114 #define LRH_BTH_BIT_OFFSET     48ull
115 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
116 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
117 #define LRH_BTH_SELECT
118 #define LRH_BTH_MASK           3ull
119 #define LRH_BTH_VALUE          2ull
120 
121 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
122 #define LRH_SC_QW              0ull
123 #define LRH_SC_BIT_OFFSET      56ull
124 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
125 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
126 #define LRH_SC_MASK            128ull
127 #define LRH_SC_VALUE           0ull
128 
129 /* SC[n..0] QW 0, OFFSET 60 - for select */
130 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
131 
132 /* QPN[m+n:1] QW 1, OFFSET 1 */
133 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
134 
135 /* RSM fields for AIP */
136 /* LRH.BTH above is reused for this rule */
137 
138 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
139 #define BTH_DESTQP_QW           1ull
140 #define BTH_DESTQP_BIT_OFFSET   16ull
141 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
142 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
143 #define BTH_DESTQP_MASK         0xFFull
144 #define BTH_DESTQP_VALUE        0x81ull
145 
146 /* DETH.SQPN: QW 1 Offset 56 for select */
147 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
148 #define DETH_AIP_SQPN_QW 3ull
149 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
150 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
151 #define DETH_AIP_SQPN_SELECT_OFFSET \
152 	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
153 
154 /* RSM fields for Vnic */
155 /* L2_TYPE: QW 0, OFFSET 61 - for match */
156 #define L2_TYPE_QW             0ull
157 #define L2_TYPE_BIT_OFFSET     61ull
158 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
159 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
160 #define L2_TYPE_MASK           3ull
161 #define L2_16B_VALUE           2ull
162 
163 /* L4_TYPE QW 1, OFFSET 0 - for match */
164 #define L4_TYPE_QW              1ull
165 #define L4_TYPE_BIT_OFFSET      0ull
166 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
167 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
168 #define L4_16B_TYPE_MASK        0xFFull
169 #define L4_16B_ETH_VALUE        0x78ull
170 
171 /* 16B VESWID - for select */
172 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
173 /* 16B ENTROPY - for select */
174 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
175 
176 /* defines to build power on SC2VL table */
177 #define SC2VL_VAL( \
178 	num, \
179 	sc0, sc0val, \
180 	sc1, sc1val, \
181 	sc2, sc2val, \
182 	sc3, sc3val, \
183 	sc4, sc4val, \
184 	sc5, sc5val, \
185 	sc6, sc6val, \
186 	sc7, sc7val) \
187 ( \
188 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
189 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
190 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
191 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
192 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
193 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
194 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
195 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
196 )
197 
198 #define DC_SC_VL_VAL( \
199 	range, \
200 	e0, e0val, \
201 	e1, e1val, \
202 	e2, e2val, \
203 	e3, e3val, \
204 	e4, e4val, \
205 	e5, e5val, \
206 	e6, e6val, \
207 	e7, e7val, \
208 	e8, e8val, \
209 	e9, e9val, \
210 	e10, e10val, \
211 	e11, e11val, \
212 	e12, e12val, \
213 	e13, e13val, \
214 	e14, e14val, \
215 	e15, e15val) \
216 ( \
217 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
218 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
219 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
220 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
221 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
222 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
223 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
224 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
225 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
226 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
227 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
228 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
229 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
230 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
231 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
232 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
233 )
234 
235 /* all CceStatus sub-block freeze bits */
236 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
237 			| CCE_STATUS_RXE_FROZE_SMASK \
238 			| CCE_STATUS_TXE_FROZE_SMASK \
239 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
240 /* all CceStatus sub-block TXE pause bits */
241 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
242 			| CCE_STATUS_TXE_PAUSED_SMASK \
243 			| CCE_STATUS_SDMA_PAUSED_SMASK)
244 /* all CceStatus sub-block RXE pause bits */
245 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
246 
247 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
248 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
249 
250 /*
251  * CCE Error flags.
252  */
253 static struct flag_table cce_err_status_flags[] = {
254 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
255 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
256 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
257 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
258 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
259 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
260 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
261 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
262 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
263 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
264 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
265 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
266 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
267 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
269 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
270 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
271 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
272 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
273 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
274 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
275 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
276 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
277 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
278 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
279 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
280 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
281 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
282 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
283 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
284 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
285 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
286 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
287 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
288 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
289 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
290 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
291 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
292 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
293 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
294 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
295 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
296 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
297 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
298 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
299 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
300 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
301 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
302 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
303 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
304 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
305 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
306 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
307 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
308 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
309 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
310 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
311 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
312 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
313 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
314 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
315 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
316 /*31*/	FLAG_ENTRY0("LATriggered",
317 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
318 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
319 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
320 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
321 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
322 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
323 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
324 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
325 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
326 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
327 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
328 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
329 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
330 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
331 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
332 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
333 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
334 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
335 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
336 /*41-63 reserved*/
337 };
338 
339 /*
340  * Misc Error flags
341  */
342 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
343 static struct flag_table misc_err_status_flags[] = {
344 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
345 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
346 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
347 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
348 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
349 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
350 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
351 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
352 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
353 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
354 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
355 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
356 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
357 };
358 
359 /*
360  * TXE PIO Error flags and consequences
361  */
362 static struct flag_table pio_err_status_flags[] = {
363 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
364 	SEC_WRITE_DROPPED,
365 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
366 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
367 	SEC_SPC_FREEZE,
368 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
369 /* 2*/	FLAG_ENTRY("PioCsrParity",
370 	SEC_SPC_FREEZE,
371 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
372 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
373 	SEC_SPC_FREEZE,
374 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
375 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
376 	SEC_SPC_FREEZE,
377 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
378 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
379 	SEC_SPC_FREEZE,
380 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
381 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
382 	SEC_SPC_FREEZE,
383 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
384 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
385 	SEC_SPC_FREEZE,
386 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
387 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
388 	SEC_SPC_FREEZE,
389 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
390 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
393 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
396 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
399 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
402 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
403 	0,
404 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
405 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
406 	0,
407 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
408 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
411 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
414 /*17*/	FLAG_ENTRY("PioInitSmIn",
415 	0,
416 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
417 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
420 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
423 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
424 	0,
425 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
426 /*21*/	FLAG_ENTRY("PioWriteDataParity",
427 	SEC_SPC_FREEZE,
428 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
429 /*22*/	FLAG_ENTRY("PioStateMachine",
430 	SEC_SPC_FREEZE,
431 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
432 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
433 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
435 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
436 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
438 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
439 	SEC_SPC_FREEZE,
440 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
441 /*26*/	FLAG_ENTRY("PioVlfSopParity",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
444 /*27*/	FLAG_ENTRY("PioVlFifoParity",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
447 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
448 	SEC_SPC_FREEZE,
449 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
450 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
453 /*30-31 reserved*/
454 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
457 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
458 	SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
460 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
461 	SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
463 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
466 /*36-63 reserved*/
467 };
468 
469 /* TXE PIO errors that cause an SPC freeze */
470 #define ALL_PIO_FREEZE_ERR \
471 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
472 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
500 
501 /*
502  * TXE SDMA Error flags
503  */
504 static struct flag_table sdma_err_status_flags[] = {
505 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
506 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
507 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
508 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
509 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
510 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
511 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
512 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
513 /*04-63 reserved*/
514 };
515 
516 /* TXE SDMA errors that cause an SPC freeze */
517 #define ALL_SDMA_FREEZE_ERR  \
518 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
519 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
520 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
521 
522 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
523 #define PORT_DISCARD_EGRESS_ERRS \
524 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
525 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
526 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
527 
528 /*
529  * TXE Egress Error flags
530  */
531 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
532 static struct flag_table egress_err_status_flags[] = {
533 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
534 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
535 /* 2 reserved */
536 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
537 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
538 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
539 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
540 /* 6 reserved */
541 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
542 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
543 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
544 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
545 /* 9-10 reserved */
546 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
547 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
548 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
549 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
550 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
551 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
552 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
553 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
554 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
555 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
556 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
557 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
558 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
559 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
560 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
561 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
562 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
563 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
564 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
565 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
566 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
567 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
568 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
569 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
570 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
571 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
572 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
573 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
574 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
575 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
576 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
577 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
578 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
579 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
580 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
581 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
582 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
583 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
584 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
585 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
586 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
587 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
588 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
589 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
590 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
591 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
592 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
593 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
594 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
595 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
596 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
597 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
598 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
599 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
600 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
601 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
602 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
603 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
604 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
605 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
606 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
607 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
608 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
609 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
610 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
611 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
612 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
613 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
614 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
615 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
616 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
617 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
618 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
619 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
620 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
621 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
622 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
623 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
624 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
625 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
626 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
627 };
628 
629 /*
630  * TXE Egress Error Info flags
631  */
632 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
633 static struct flag_table egress_err_info_flags[] = {
634 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
635 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
636 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
637 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
638 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
639 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
640 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
641 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
642 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
643 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
644 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
645 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
646 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
647 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
648 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
649 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
650 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
651 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
652 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
653 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
654 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
655 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
656 };
657 
658 /* TXE Egress errors that cause an SPC freeze */
659 #define ALL_TXE_EGRESS_FREEZE_ERR \
660 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
661 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
662 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
663 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
664 	| SEES(TX_LAUNCH_CSR_PARITY) \
665 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
666 	| SEES(TX_CONFIG_PARITY) \
667 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
672 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
673 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
674 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
675 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
676 	| SEES(TX_CREDIT_RETURN_PARITY))
677 
678 /*
679  * TXE Send error flags
680  */
681 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
682 static struct flag_table send_err_status_flags[] = {
683 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
684 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
685 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
686 };
687 
688 /*
689  * TXE Send Context Error flags and consequences
690  */
691 static struct flag_table sc_err_status_flags[] = {
692 /* 0*/	FLAG_ENTRY("InconsistentSop",
693 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
694 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
695 /* 1*/	FLAG_ENTRY("DisallowedPacket",
696 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
697 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
698 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
699 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
700 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
701 /* 3*/	FLAG_ENTRY("WriteOverflow",
702 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
703 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
704 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
705 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
706 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
707 /* 5-63 reserved*/
708 };
709 
710 /*
711  * RXE Receive Error flags
712  */
713 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
714 static struct flag_table rxe_err_status_flags[] = {
715 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
716 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
717 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
718 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
719 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
720 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
721 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
722 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
723 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
724 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
725 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
726 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
727 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
728 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
729 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
730 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
731 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
732 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
733 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
734 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
735 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
736 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
737 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
738 		RXES(RBUF_BLOCK_LIST_READ_COR)),
739 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
740 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
741 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
742 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
743 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
744 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
745 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
746 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
747 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
748 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
749 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
750 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
751 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
752 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
753 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
754 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
755 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
756 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
757 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
758 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
759 		RXES(RBUF_FL_INITDONE_PARITY)),
760 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
761 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
762 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
763 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
764 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
765 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
766 		RXES(LOOKUP_DES_PART1_UNC_COR)),
767 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
768 		RXES(LOOKUP_DES_PART2_PARITY)),
769 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
770 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
771 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
772 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
773 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
774 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
775 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
776 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
777 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
778 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
779 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
780 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
781 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
782 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
783 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
784 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
785 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
786 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
787 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
788 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
789 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
790 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
791 };
792 
793 /* RXE errors that will trigger an SPC freeze */
794 #define ALL_RXE_FREEZE_ERR  \
795 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
796 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
839 
840 #define RXE_FREEZE_ABORT_MASK \
841 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
842 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
843 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
844 
845 /*
846  * DCC Error Flags
847  */
848 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
849 static struct flag_table dcc_err_flags[] = {
850 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
851 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
852 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
853 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
854 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
855 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
856 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
857 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
858 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
859 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
860 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
861 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
862 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
863 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
864 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
865 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
866 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
867 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
868 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
869 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
870 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
871 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
872 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
873 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
874 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
875 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
876 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
877 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
878 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
879 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
880 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
881 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
882 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
883 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
884 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
885 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
886 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
887 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
888 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
889 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
890 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
891 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
892 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
893 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
894 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
895 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
896 };
897 
898 /*
899  * LCB error flags
900  */
901 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
902 static struct flag_table lcb_err_flags[] = {
903 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
904 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
905 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
906 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
907 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
908 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
909 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
910 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
911 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
912 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
913 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
914 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
915 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
916 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
917 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
918 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
919 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
920 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
921 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
922 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
923 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
924 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
925 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
926 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
927 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
928 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
929 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
930 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
931 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
932 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
933 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
934 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
935 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
936 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
937 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
938 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
939 };
940 
941 /*
942  * DC8051 Error Flags
943  */
944 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
945 static struct flag_table dc8051_err_flags[] = {
946 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
947 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
948 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
949 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
950 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
951 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
952 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
953 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
954 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
955 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
956 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
957 };
958 
959 /*
960  * DC8051 Information Error flags
961  *
962  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
963  */
964 static struct flag_table dc8051_info_err_flags[] = {
965 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
966 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
967 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
968 	FLAG_ENTRY0("Serdes internal loopback failure",
969 		    FAILED_SERDES_INTERNAL_LOOPBACK),
970 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
971 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
972 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
973 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
974 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
975 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
976 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
977 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
978 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
979 	FLAG_ENTRY0("External Device Request Timeout",
980 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
981 };
982 
983 /*
984  * DC8051 Information Host Information flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
987  */
988 static struct flag_table dc8051_info_host_msg_flags[] = {
989 	FLAG_ENTRY0("Host request done", 0x0001),
990 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
991 	FLAG_ENTRY0("BC SMA message", 0x0004),
992 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
993 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
994 	FLAG_ENTRY0("External device config request", 0x0020),
995 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
996 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
997 	FLAG_ENTRY0("Link going down", 0x0100),
998 	FLAG_ENTRY0("Link width downgraded", 0x0200),
999 };
1000 
1001 static u32 encoded_size(u32 size);
1002 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1003 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1004 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1005 			       u8 *continuous);
1006 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1007 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1008 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1009 				      u8 *remote_tx_rate, u16 *link_widths);
1010 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1011 				    u8 *flag_bits, u16 *link_widths);
1012 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1013 				  u8 *device_rev);
1014 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1015 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1016 			    u8 *tx_polarity_inversion,
1017 			    u8 *rx_polarity_inversion, u8 *max_rate);
1018 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1019 				unsigned int context, u64 err_status);
1020 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1021 static void handle_dcc_err(struct hfi1_devdata *dd,
1022 			   unsigned int context, u64 err_status);
1023 static void handle_lcb_err(struct hfi1_devdata *dd,
1024 			   unsigned int context, u64 err_status);
1025 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1030 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1031 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1032 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1033 static void set_partition_keys(struct hfi1_pportdata *ppd);
1034 static const char *link_state_name(u32 state);
1035 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1036 					  u32 state);
1037 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1038 			   u64 *out_data);
1039 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1040 static int thermal_init(struct hfi1_devdata *dd);
1041 
1042 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1043 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1044 					    int msecs);
1045 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1046 				  int msecs);
1047 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1048 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1049 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1050 				   int msecs);
1051 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1052 					 int msecs);
1053 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1054 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1055 static void handle_temp_err(struct hfi1_devdata *dd);
1056 static void dc_shutdown(struct hfi1_devdata *dd);
1057 static void dc_start(struct hfi1_devdata *dd);
1058 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
1059 			   unsigned int *np);
1060 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1061 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1062 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1063 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1064 
1065 /*
1066  * Error interrupt table entry.  This is used as input to the interrupt
1067  * "clear down" routine used for all second tier error interrupt register.
1068  * Second tier interrupt registers have a single bit representing them
1069  * in the top-level CceIntStatus.
1070  */
1071 struct err_reg_info {
1072 	u32 status;		/* status CSR offset */
1073 	u32 clear;		/* clear CSR offset */
1074 	u32 mask;		/* mask CSR offset */
1075 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1076 	const char *desc;
1077 };
1078 
1079 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1080 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1081 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1082 
1083 /*
1084  * Helpers for building HFI and DC error interrupt table entries.  Different
1085  * helpers are needed because of inconsistent register names.
1086  */
1087 #define EE(reg, handler, desc) \
1088 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1089 		handler, desc }
1090 #define DC_EE1(reg, handler, desc) \
1091 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1092 #define DC_EE2(reg, handler, desc) \
1093 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1094 
1095 /*
1096  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1097  * another register containing more information.
1098  */
1099 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1100 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1101 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1102 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1103 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1104 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1105 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1106 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1107 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1108 	/* the rest are reserved */
1109 };
1110 
1111 /*
1112  * Index into the Various section of the interrupt sources
1113  * corresponding to the Critical Temperature interrupt.
1114  */
1115 #define TCRIT_INT_SOURCE 4
1116 
1117 /*
1118  * SDMA error interrupt entry - refers to another register containing more
1119  * information.
1120  */
1121 static const struct err_reg_info sdma_eng_err =
1122 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1123 
1124 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1125 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1126 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1127 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1128 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1129 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1130 	/* rest are reserved */
1131 };
1132 
1133 /*
1134  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1135  * register can not be derived from the MTU value because 10K is not
1136  * a power of 2. Therefore, we need a constant. Everything else can
1137  * be calculated.
1138  */
1139 #define DCC_CFG_PORT_MTU_CAP_10240 7
1140 
1141 /*
1142  * Table of the DC grouping of error interrupts.  Each entry refers to
1143  * another register containing more information.
1144  */
1145 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1146 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1147 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1148 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1149 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1150 	/* the rest are reserved */
1151 };
1152 
1153 struct cntr_entry {
1154 	/*
1155 	 * counter name
1156 	 */
1157 	char *name;
1158 
1159 	/*
1160 	 * csr to read for name (if applicable)
1161 	 */
1162 	u64 csr;
1163 
1164 	/*
1165 	 * offset into dd or ppd to store the counter's value
1166 	 */
1167 	int offset;
1168 
1169 	/*
1170 	 * flags
1171 	 */
1172 	u8 flags;
1173 
1174 	/*
1175 	 * accessor for stat element, context either dd or ppd
1176 	 */
1177 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1178 		       int mode, u64 data);
1179 };
1180 
1181 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1182 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1183 
1184 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1185 { \
1186 	name, \
1187 	csr, \
1188 	offset, \
1189 	flags, \
1190 	accessor \
1191 }
1192 
1193 /* 32bit RXE */
1194 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1195 CNTR_ELEM(#name, \
1196 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1197 	  0, flags | CNTR_32BIT, \
1198 	  port_access_u32_csr)
1199 
1200 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1201 CNTR_ELEM(#name, \
1202 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1203 	  0, flags | CNTR_32BIT, \
1204 	  dev_access_u32_csr)
1205 
1206 /* 64bit RXE */
1207 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1208 CNTR_ELEM(#name, \
1209 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1210 	  0, flags, \
1211 	  port_access_u64_csr)
1212 
1213 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1214 CNTR_ELEM(#name, \
1215 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1216 	  0, flags, \
1217 	  dev_access_u64_csr)
1218 
1219 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1220 #define OVR_ELM(ctx) \
1221 CNTR_ELEM("RcvHdrOvr" #ctx, \
1222 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1223 	  0, CNTR_NORMAL, port_access_u64_csr)
1224 
1225 /* 32bit TXE */
1226 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1227 CNTR_ELEM(#name, \
1228 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1229 	  0, flags | CNTR_32BIT, \
1230 	  port_access_u32_csr)
1231 
1232 /* 64bit TXE */
1233 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1234 CNTR_ELEM(#name, \
1235 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1236 	  0, flags, \
1237 	  port_access_u64_csr)
1238 
1239 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1240 CNTR_ELEM(#name,\
1241 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1242 	  0, \
1243 	  flags, \
1244 	  dev_access_u64_csr)
1245 
1246 /* CCE */
1247 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1248 CNTR_ELEM(#name, \
1249 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1250 	  0, flags | CNTR_32BIT, \
1251 	  dev_access_u32_csr)
1252 
1253 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1254 CNTR_ELEM(#name, \
1255 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1256 	  0, flags | CNTR_32BIT, \
1257 	  dev_access_u32_csr)
1258 
1259 /* DC */
1260 #define DC_PERF_CNTR(name, counter, flags) \
1261 CNTR_ELEM(#name, \
1262 	  counter, \
1263 	  0, \
1264 	  flags, \
1265 	  dev_access_u64_csr)
1266 
1267 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1268 CNTR_ELEM(#name, \
1269 	  counter, \
1270 	  0, \
1271 	  flags, \
1272 	  dc_access_lcb_cntr)
1273 
1274 /* ibp counters */
1275 #define SW_IBP_CNTR(name, cntr) \
1276 CNTR_ELEM(#name, \
1277 	  0, \
1278 	  0, \
1279 	  CNTR_SYNTH, \
1280 	  access_ibp_##cntr)
1281 
1282 /**
1283  * hfi1_addr_from_offset - return addr for readq/writeq
1284  * @dd: the dd device
1285  * @offset: the offset of the CSR within bar0
1286  *
1287  * This routine selects the appropriate base address
1288  * based on the indicated offset.
1289  */
hfi1_addr_from_offset(const struct hfi1_devdata * dd,u32 offset)1290 static inline void __iomem *hfi1_addr_from_offset(
1291 	const struct hfi1_devdata *dd,
1292 	u32 offset)
1293 {
1294 	if (offset >= dd->base2_start)
1295 		return dd->kregbase2 + (offset - dd->base2_start);
1296 	return dd->kregbase1 + offset;
1297 }
1298 
1299 /**
1300  * read_csr - read CSR at the indicated offset
1301  * @dd: the dd device
1302  * @offset: the offset of the CSR within bar0
1303  *
1304  * Return: the value read or all FF's if there
1305  * is no mapping
1306  */
read_csr(const struct hfi1_devdata * dd,u32 offset)1307 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1308 {
1309 	if (dd->flags & HFI1_PRESENT)
1310 		return readq(hfi1_addr_from_offset(dd, offset));
1311 	return -1;
1312 }
1313 
1314 /**
1315  * write_csr - write CSR at the indicated offset
1316  * @dd: the dd device
1317  * @offset: the offset of the CSR within bar0
1318  * @value: value to write
1319  */
write_csr(const struct hfi1_devdata * dd,u32 offset,u64 value)1320 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1321 {
1322 	if (dd->flags & HFI1_PRESENT) {
1323 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1324 
1325 		/* avoid write to RcvArray */
1326 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1327 			return;
1328 		writeq(value, base);
1329 	}
1330 }
1331 
1332 /**
1333  * get_csr_addr - return te iomem address for offset
1334  * @dd: the dd device
1335  * @offset: the offset of the CSR within bar0
1336  *
1337  * Return: The iomem address to use in subsequent
1338  * writeq/readq operations.
1339  */
get_csr_addr(const struct hfi1_devdata * dd,u32 offset)1340 void __iomem *get_csr_addr(
1341 	const struct hfi1_devdata *dd,
1342 	u32 offset)
1343 {
1344 	if (dd->flags & HFI1_PRESENT)
1345 		return hfi1_addr_from_offset(dd, offset);
1346 	return NULL;
1347 }
1348 
read_write_csr(const struct hfi1_devdata * dd,u32 csr,int mode,u64 value)1349 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1350 				 int mode, u64 value)
1351 {
1352 	u64 ret;
1353 
1354 	if (mode == CNTR_MODE_R) {
1355 		ret = read_csr(dd, csr);
1356 	} else if (mode == CNTR_MODE_W) {
1357 		write_csr(dd, csr, value);
1358 		ret = value;
1359 	} else {
1360 		dd_dev_err(dd, "Invalid cntr register access mode");
1361 		return 0;
1362 	}
1363 
1364 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1365 	return ret;
1366 }
1367 
1368 /* Dev Access */
dev_access_u32_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1369 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1370 			      void *context, int vl, int mode, u64 data)
1371 {
1372 	struct hfi1_devdata *dd = context;
1373 	u64 csr = entry->csr;
1374 
1375 	if (entry->flags & CNTR_SDMA) {
1376 		if (vl == CNTR_INVALID_VL)
1377 			return 0;
1378 		csr += 0x100 * vl;
1379 	} else {
1380 		if (vl != CNTR_INVALID_VL)
1381 			return 0;
1382 	}
1383 	return read_write_csr(dd, csr, mode, data);
1384 }
1385 
access_sde_err_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1386 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1387 			      void *context, int idx, int mode, u64 data)
1388 {
1389 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390 
1391 	if (dd->per_sdma && idx < dd->num_sdma)
1392 		return dd->per_sdma[idx].err_cnt;
1393 	return 0;
1394 }
1395 
access_sde_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1396 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1397 			      void *context, int idx, int mode, u64 data)
1398 {
1399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1400 
1401 	if (dd->per_sdma && idx < dd->num_sdma)
1402 		return dd->per_sdma[idx].sdma_int_cnt;
1403 	return 0;
1404 }
1405 
access_sde_idle_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1406 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1407 				   void *context, int idx, int mode, u64 data)
1408 {
1409 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1410 
1411 	if (dd->per_sdma && idx < dd->num_sdma)
1412 		return dd->per_sdma[idx].idle_int_cnt;
1413 	return 0;
1414 }
1415 
access_sde_progress_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1416 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1417 				       void *context, int idx, int mode,
1418 				       u64 data)
1419 {
1420 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1421 
1422 	if (dd->per_sdma && idx < dd->num_sdma)
1423 		return dd->per_sdma[idx].progress_int_cnt;
1424 	return 0;
1425 }
1426 
dev_access_u64_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1427 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1428 			      int vl, int mode, u64 data)
1429 {
1430 	struct hfi1_devdata *dd = context;
1431 
1432 	u64 val = 0;
1433 	u64 csr = entry->csr;
1434 
1435 	if (entry->flags & CNTR_VL) {
1436 		if (vl == CNTR_INVALID_VL)
1437 			return 0;
1438 		csr += 8 * vl;
1439 	} else {
1440 		if (vl != CNTR_INVALID_VL)
1441 			return 0;
1442 	}
1443 
1444 	val = read_write_csr(dd, csr, mode, data);
1445 	return val;
1446 }
1447 
dc_access_lcb_cntr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1448 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1449 			      int vl, int mode, u64 data)
1450 {
1451 	struct hfi1_devdata *dd = context;
1452 	u32 csr = entry->csr;
1453 	int ret = 0;
1454 
1455 	if (vl != CNTR_INVALID_VL)
1456 		return 0;
1457 	if (mode == CNTR_MODE_R)
1458 		ret = read_lcb_csr(dd, csr, &data);
1459 	else if (mode == CNTR_MODE_W)
1460 		ret = write_lcb_csr(dd, csr, data);
1461 
1462 	if (ret) {
1463 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1464 		return 0;
1465 	}
1466 
1467 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1468 	return data;
1469 }
1470 
1471 /* Port Access */
port_access_u32_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1472 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1473 			       int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_pportdata *ppd = context;
1476 
1477 	if (vl != CNTR_INVALID_VL)
1478 		return 0;
1479 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1480 }
1481 
port_access_u64_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1482 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1483 			       void *context, int vl, int mode, u64 data)
1484 {
1485 	struct hfi1_pportdata *ppd = context;
1486 	u64 val;
1487 	u64 csr = entry->csr;
1488 
1489 	if (entry->flags & CNTR_VL) {
1490 		if (vl == CNTR_INVALID_VL)
1491 			return 0;
1492 		csr += 8 * vl;
1493 	} else {
1494 		if (vl != CNTR_INVALID_VL)
1495 			return 0;
1496 	}
1497 	val = read_write_csr(ppd->dd, csr, mode, data);
1498 	return val;
1499 }
1500 
1501 /* Software defined */
read_write_sw(struct hfi1_devdata * dd,u64 * cntr,int mode,u64 data)1502 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1503 				u64 data)
1504 {
1505 	u64 ret;
1506 
1507 	if (mode == CNTR_MODE_R) {
1508 		ret = *cntr;
1509 	} else if (mode == CNTR_MODE_W) {
1510 		*cntr = data;
1511 		ret = data;
1512 	} else {
1513 		dd_dev_err(dd, "Invalid cntr sw access mode");
1514 		return 0;
1515 	}
1516 
1517 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1518 
1519 	return ret;
1520 }
1521 
access_sw_link_dn_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1522 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1523 				 int vl, int mode, u64 data)
1524 {
1525 	struct hfi1_pportdata *ppd = context;
1526 
1527 	if (vl != CNTR_INVALID_VL)
1528 		return 0;
1529 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1530 }
1531 
access_sw_link_up_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1532 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1533 				 int vl, int mode, u64 data)
1534 {
1535 	struct hfi1_pportdata *ppd = context;
1536 
1537 	if (vl != CNTR_INVALID_VL)
1538 		return 0;
1539 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1540 }
1541 
access_sw_unknown_frame_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1542 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1543 				       void *context, int vl, int mode,
1544 				       u64 data)
1545 {
1546 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1547 
1548 	if (vl != CNTR_INVALID_VL)
1549 		return 0;
1550 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1551 }
1552 
access_sw_xmit_discards(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1553 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1554 				   void *context, int vl, int mode, u64 data)
1555 {
1556 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1557 	u64 zero = 0;
1558 	u64 *counter;
1559 
1560 	if (vl == CNTR_INVALID_VL)
1561 		counter = &ppd->port_xmit_discards;
1562 	else if (vl >= 0 && vl < C_VL_COUNT)
1563 		counter = &ppd->port_xmit_discards_vl[vl];
1564 	else
1565 		counter = &zero;
1566 
1567 	return read_write_sw(ppd->dd, counter, mode, data);
1568 }
1569 
access_xmit_constraint_errs(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1570 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1571 				       void *context, int vl, int mode,
1572 				       u64 data)
1573 {
1574 	struct hfi1_pportdata *ppd = context;
1575 
1576 	if (vl != CNTR_INVALID_VL)
1577 		return 0;
1578 
1579 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1580 			     mode, data);
1581 }
1582 
access_rcv_constraint_errs(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1583 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1584 				      void *context, int vl, int mode, u64 data)
1585 {
1586 	struct hfi1_pportdata *ppd = context;
1587 
1588 	if (vl != CNTR_INVALID_VL)
1589 		return 0;
1590 
1591 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1592 			     mode, data);
1593 }
1594 
get_all_cpu_total(u64 __percpu * cntr)1595 u64 get_all_cpu_total(u64 __percpu *cntr)
1596 {
1597 	int cpu;
1598 	u64 counter = 0;
1599 
1600 	for_each_possible_cpu(cpu)
1601 		counter += *per_cpu_ptr(cntr, cpu);
1602 	return counter;
1603 }
1604 
read_write_cpu(struct hfi1_devdata * dd,u64 * z_val,u64 __percpu * cntr,int vl,int mode,u64 data)1605 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1606 			  u64 __percpu *cntr,
1607 			  int vl, int mode, u64 data)
1608 {
1609 	u64 ret = 0;
1610 
1611 	if (vl != CNTR_INVALID_VL)
1612 		return 0;
1613 
1614 	if (mode == CNTR_MODE_R) {
1615 		ret = get_all_cpu_total(cntr) - *z_val;
1616 	} else if (mode == CNTR_MODE_W) {
1617 		/* A write can only zero the counter */
1618 		if (data == 0)
1619 			*z_val = get_all_cpu_total(cntr);
1620 		else
1621 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1622 	} else {
1623 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1624 		return 0;
1625 	}
1626 
1627 	return ret;
1628 }
1629 
access_sw_cpu_intr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1630 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1631 			      void *context, int vl, int mode, u64 data)
1632 {
1633 	struct hfi1_devdata *dd = context;
1634 
1635 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1636 			      mode, data);
1637 }
1638 
access_sw_cpu_rcv_limit(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1639 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1640 				   void *context, int vl, int mode, u64 data)
1641 {
1642 	struct hfi1_devdata *dd = context;
1643 
1644 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1645 			      mode, data);
1646 }
1647 
access_sw_pio_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1648 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1649 			      void *context, int vl, int mode, u64 data)
1650 {
1651 	struct hfi1_devdata *dd = context;
1652 
1653 	return dd->verbs_dev.n_piowait;
1654 }
1655 
access_sw_pio_drain(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1656 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1657 			       void *context, int vl, int mode, u64 data)
1658 {
1659 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1660 
1661 	return dd->verbs_dev.n_piodrain;
1662 }
1663 
access_sw_ctx0_seq_drop(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1664 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1665 				   void *context, int vl, int mode, u64 data)
1666 {
1667 	struct hfi1_devdata *dd = context;
1668 
1669 	return dd->ctx0_seq_drop;
1670 }
1671 
access_sw_vtx_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1672 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_txwait;
1678 }
1679 
access_sw_kmem_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1680 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = context;
1684 
1685 	return dd->verbs_dev.n_kmem_wait;
1686 }
1687 
access_sw_send_schedule(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1688 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1689 				   void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1692 
1693 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1694 			      mode, data);
1695 }
1696 
1697 /* Software counters for the error status bits within MISC_ERR_STATUS */
access_misc_pll_lock_fail_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1698 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1699 					     void *context, int vl, int mode,
1700 					     u64 data)
1701 {
1702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703 
1704 	return dd->misc_err_status_cnt[12];
1705 }
1706 
access_misc_mbist_fail_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1707 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1708 					  void *context, int vl, int mode,
1709 					  u64 data)
1710 {
1711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712 
1713 	return dd->misc_err_status_cnt[11];
1714 }
1715 
access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1716 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1717 					       void *context, int vl, int mode,
1718 					       u64 data)
1719 {
1720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721 
1722 	return dd->misc_err_status_cnt[10];
1723 }
1724 
access_misc_efuse_done_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1725 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1726 						 void *context, int vl,
1727 						 int mode, u64 data)
1728 {
1729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730 
1731 	return dd->misc_err_status_cnt[9];
1732 }
1733 
access_misc_efuse_write_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1734 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1735 					   void *context, int vl, int mode,
1736 					   u64 data)
1737 {
1738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1739 
1740 	return dd->misc_err_status_cnt[8];
1741 }
1742 
access_misc_efuse_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1743 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1744 				const struct cntr_entry *entry,
1745 				void *context, int vl, int mode, u64 data)
1746 {
1747 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1748 
1749 	return dd->misc_err_status_cnt[7];
1750 }
1751 
access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1752 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1753 						void *context, int vl,
1754 						int mode, u64 data)
1755 {
1756 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1757 
1758 	return dd->misc_err_status_cnt[6];
1759 }
1760 
access_misc_fw_auth_failed_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1761 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1762 					      void *context, int vl, int mode,
1763 					      u64 data)
1764 {
1765 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1766 
1767 	return dd->misc_err_status_cnt[5];
1768 }
1769 
access_misc_key_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1770 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1771 					    void *context, int vl, int mode,
1772 					    u64 data)
1773 {
1774 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1775 
1776 	return dd->misc_err_status_cnt[4];
1777 }
1778 
access_misc_sbus_write_failed_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1779 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1780 						 void *context, int vl,
1781 						 int mode, u64 data)
1782 {
1783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1784 
1785 	return dd->misc_err_status_cnt[3];
1786 }
1787 
access_misc_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1788 static u64 access_misc_csr_write_bad_addr_err_cnt(
1789 				const struct cntr_entry *entry,
1790 				void *context, int vl, int mode, u64 data)
1791 {
1792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1793 
1794 	return dd->misc_err_status_cnt[2];
1795 }
1796 
access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1797 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1798 						 void *context, int vl,
1799 						 int mode, u64 data)
1800 {
1801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1802 
1803 	return dd->misc_err_status_cnt[1];
1804 }
1805 
access_misc_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1806 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1807 					  void *context, int vl, int mode,
1808 					  u64 data)
1809 {
1810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1811 
1812 	return dd->misc_err_status_cnt[0];
1813 }
1814 
1815 /*
1816  * Software counter for the aggregate of
1817  * individual CceErrStatus counters
1818  */
access_sw_cce_err_status_aggregated_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1819 static u64 access_sw_cce_err_status_aggregated_cnt(
1820 				const struct cntr_entry *entry,
1821 				void *context, int vl, int mode, u64 data)
1822 {
1823 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1824 
1825 	return dd->sw_cce_err_status_aggregate;
1826 }
1827 
1828 /*
1829  * Software counters corresponding to each of the
1830  * error status bits within CceErrStatus
1831  */
access_cce_msix_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1832 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1833 					      void *context, int vl, int mode,
1834 					      u64 data)
1835 {
1836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837 
1838 	return dd->cce_err_status_cnt[40];
1839 }
1840 
access_cce_int_map_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1841 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1842 					  void *context, int vl, int mode,
1843 					  u64 data)
1844 {
1845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1846 
1847 	return dd->cce_err_status_cnt[39];
1848 }
1849 
access_cce_int_map_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1850 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1851 					  void *context, int vl, int mode,
1852 					  u64 data)
1853 {
1854 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1855 
1856 	return dd->cce_err_status_cnt[38];
1857 }
1858 
access_cce_msix_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1859 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1860 					     void *context, int vl, int mode,
1861 					     u64 data)
1862 {
1863 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1864 
1865 	return dd->cce_err_status_cnt[37];
1866 }
1867 
access_cce_msix_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1868 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1869 					     void *context, int vl, int mode,
1870 					     u64 data)
1871 {
1872 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1873 
1874 	return dd->cce_err_status_cnt[36];
1875 }
1876 
access_cce_rxdma_conv_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1877 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1878 				const struct cntr_entry *entry,
1879 				void *context, int vl, int mode, u64 data)
1880 {
1881 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1882 
1883 	return dd->cce_err_status_cnt[35];
1884 }
1885 
access_cce_rcpl_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1886 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1887 				const struct cntr_entry *entry,
1888 				void *context, int vl, int mode, u64 data)
1889 {
1890 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1891 
1892 	return dd->cce_err_status_cnt[34];
1893 }
1894 
access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1895 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1896 						 void *context, int vl,
1897 						 int mode, u64 data)
1898 {
1899 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1900 
1901 	return dd->cce_err_status_cnt[33];
1902 }
1903 
access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1904 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1905 						void *context, int vl, int mode,
1906 						u64 data)
1907 {
1908 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1909 
1910 	return dd->cce_err_status_cnt[32];
1911 }
1912 
access_la_triggered_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1913 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1914 				   void *context, int vl, int mode, u64 data)
1915 {
1916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917 
1918 	return dd->cce_err_status_cnt[31];
1919 }
1920 
access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1921 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1922 					       void *context, int vl, int mode,
1923 					       u64 data)
1924 {
1925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926 
1927 	return dd->cce_err_status_cnt[30];
1928 }
1929 
access_pcic_receive_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1930 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1931 					      void *context, int vl, int mode,
1932 					      u64 data)
1933 {
1934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935 
1936 	return dd->cce_err_status_cnt[29];
1937 }
1938 
access_pcic_transmit_back_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1939 static u64 access_pcic_transmit_back_parity_err_cnt(
1940 				const struct cntr_entry *entry,
1941 				void *context, int vl, int mode, u64 data)
1942 {
1943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944 
1945 	return dd->cce_err_status_cnt[28];
1946 }
1947 
access_pcic_transmit_front_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1948 static u64 access_pcic_transmit_front_parity_err_cnt(
1949 				const struct cntr_entry *entry,
1950 				void *context, int vl, int mode, u64 data)
1951 {
1952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953 
1954 	return dd->cce_err_status_cnt[27];
1955 }
1956 
access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1957 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1958 					     void *context, int vl, int mode,
1959 					     u64 data)
1960 {
1961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962 
1963 	return dd->cce_err_status_cnt[26];
1964 }
1965 
access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1966 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1967 					    void *context, int vl, int mode,
1968 					    u64 data)
1969 {
1970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971 
1972 	return dd->cce_err_status_cnt[25];
1973 }
1974 
access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1975 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1976 					      void *context, int vl, int mode,
1977 					      u64 data)
1978 {
1979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980 
1981 	return dd->cce_err_status_cnt[24];
1982 }
1983 
access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1984 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1985 					     void *context, int vl, int mode,
1986 					     u64 data)
1987 {
1988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989 
1990 	return dd->cce_err_status_cnt[23];
1991 }
1992 
access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1993 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1994 						 void *context, int vl,
1995 						 int mode, u64 data)
1996 {
1997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998 
1999 	return dd->cce_err_status_cnt[22];
2000 }
2001 
access_pcic_retry_mem_unc_err(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2002 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2003 					 void *context, int vl, int mode,
2004 					 u64 data)
2005 {
2006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007 
2008 	return dd->cce_err_status_cnt[21];
2009 }
2010 
access_pcic_n_post_dat_q_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2011 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2012 				const struct cntr_entry *entry,
2013 				void *context, int vl, int mode, u64 data)
2014 {
2015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016 
2017 	return dd->cce_err_status_cnt[20];
2018 }
2019 
access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2020 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2021 						 void *context, int vl,
2022 						 int mode, u64 data)
2023 {
2024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025 
2026 	return dd->cce_err_status_cnt[19];
2027 }
2028 
access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2029 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2030 					     void *context, int vl, int mode,
2031 					     u64 data)
2032 {
2033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034 
2035 	return dd->cce_err_status_cnt[18];
2036 }
2037 
access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2038 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2039 					    void *context, int vl, int mode,
2040 					    u64 data)
2041 {
2042 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043 
2044 	return dd->cce_err_status_cnt[17];
2045 }
2046 
access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2047 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2048 					      void *context, int vl, int mode,
2049 					      u64 data)
2050 {
2051 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052 
2053 	return dd->cce_err_status_cnt[16];
2054 }
2055 
access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2056 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2057 					     void *context, int vl, int mode,
2058 					     u64 data)
2059 {
2060 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061 
2062 	return dd->cce_err_status_cnt[15];
2063 }
2064 
access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2065 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2066 						 void *context, int vl,
2067 						 int mode, u64 data)
2068 {
2069 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070 
2071 	return dd->cce_err_status_cnt[14];
2072 }
2073 
access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2074 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2075 					     void *context, int vl, int mode,
2076 					     u64 data)
2077 {
2078 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079 
2080 	return dd->cce_err_status_cnt[13];
2081 }
2082 
access_cce_cli1_async_fifo_dbg_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2083 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2084 				const struct cntr_entry *entry,
2085 				void *context, int vl, int mode, u64 data)
2086 {
2087 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088 
2089 	return dd->cce_err_status_cnt[12];
2090 }
2091 
access_cce_cli1_async_fifo_rxdma_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2092 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2093 				const struct cntr_entry *entry,
2094 				void *context, int vl, int mode, u64 data)
2095 {
2096 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097 
2098 	return dd->cce_err_status_cnt[11];
2099 }
2100 
access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2101 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2102 				const struct cntr_entry *entry,
2103 				void *context, int vl, int mode, u64 data)
2104 {
2105 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106 
2107 	return dd->cce_err_status_cnt[10];
2108 }
2109 
access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2110 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2111 				const struct cntr_entry *entry,
2112 				void *context, int vl, int mode, u64 data)
2113 {
2114 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115 
2116 	return dd->cce_err_status_cnt[9];
2117 }
2118 
access_cce_cli2_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2119 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2120 				const struct cntr_entry *entry,
2121 				void *context, int vl, int mode, u64 data)
2122 {
2123 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2124 
2125 	return dd->cce_err_status_cnt[8];
2126 }
2127 
access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2128 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2129 						 void *context, int vl,
2130 						 int mode, u64 data)
2131 {
2132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2133 
2134 	return dd->cce_err_status_cnt[7];
2135 }
2136 
access_cce_cli0_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2137 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2138 				const struct cntr_entry *entry,
2139 				void *context, int vl, int mode, u64 data)
2140 {
2141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2142 
2143 	return dd->cce_err_status_cnt[6];
2144 }
2145 
access_cce_rspd_data_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2146 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2147 					       void *context, int vl, int mode,
2148 					       u64 data)
2149 {
2150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2151 
2152 	return dd->cce_err_status_cnt[5];
2153 }
2154 
access_cce_trgt_access_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2155 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2156 					  void *context, int vl, int mode,
2157 					  u64 data)
2158 {
2159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2160 
2161 	return dd->cce_err_status_cnt[4];
2162 }
2163 
access_cce_trgt_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2164 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2165 				const struct cntr_entry *entry,
2166 				void *context, int vl, int mode, u64 data)
2167 {
2168 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2169 
2170 	return dd->cce_err_status_cnt[3];
2171 }
2172 
access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2173 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2174 						 void *context, int vl,
2175 						 int mode, u64 data)
2176 {
2177 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2178 
2179 	return dd->cce_err_status_cnt[2];
2180 }
2181 
access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2182 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2183 						void *context, int vl,
2184 						int mode, u64 data)
2185 {
2186 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2187 
2188 	return dd->cce_err_status_cnt[1];
2189 }
2190 
access_ccs_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2191 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2192 					 void *context, int vl, int mode,
2193 					 u64 data)
2194 {
2195 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2196 
2197 	return dd->cce_err_status_cnt[0];
2198 }
2199 
2200 /*
2201  * Software counters corresponding to each of the
2202  * error status bits within RcvErrStatus
2203  */
access_rx_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2204 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2205 					void *context, int vl, int mode,
2206 					u64 data)
2207 {
2208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209 
2210 	return dd->rcv_err_status_cnt[63];
2211 }
2212 
access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2213 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2214 						void *context, int vl,
2215 						int mode, u64 data)
2216 {
2217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218 
2219 	return dd->rcv_err_status_cnt[62];
2220 }
2221 
access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2222 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2223 					       void *context, int vl, int mode,
2224 					       u64 data)
2225 {
2226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227 
2228 	return dd->rcv_err_status_cnt[61];
2229 }
2230 
access_rx_dma_csr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2231 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2232 					 void *context, int vl, int mode,
2233 					 u64 data)
2234 {
2235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236 
2237 	return dd->rcv_err_status_cnt[60];
2238 }
2239 
access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2240 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2241 						 void *context, int vl,
2242 						 int mode, u64 data)
2243 {
2244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245 
2246 	return dd->rcv_err_status_cnt[59];
2247 }
2248 
access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2249 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2250 						 void *context, int vl,
2251 						 int mode, u64 data)
2252 {
2253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254 
2255 	return dd->rcv_err_status_cnt[58];
2256 }
2257 
access_rx_dma_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2258 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2259 					    void *context, int vl, int mode,
2260 					    u64 data)
2261 {
2262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263 
2264 	return dd->rcv_err_status_cnt[57];
2265 }
2266 
access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2267 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2268 					   void *context, int vl, int mode,
2269 					   u64 data)
2270 {
2271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272 
2273 	return dd->rcv_err_status_cnt[56];
2274 }
2275 
access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2276 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2277 					   void *context, int vl, int mode,
2278 					   u64 data)
2279 {
2280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281 
2282 	return dd->rcv_err_status_cnt[55];
2283 }
2284 
access_rx_dma_data_fifo_rd_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2285 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2286 				const struct cntr_entry *entry,
2287 				void *context, int vl, int mode, u64 data)
2288 {
2289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290 
2291 	return dd->rcv_err_status_cnt[54];
2292 }
2293 
access_rx_dma_data_fifo_rd_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2294 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2295 				const struct cntr_entry *entry,
2296 				void *context, int vl, int mode, u64 data)
2297 {
2298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299 
2300 	return dd->rcv_err_status_cnt[53];
2301 }
2302 
access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2303 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2304 						 void *context, int vl,
2305 						 int mode, u64 data)
2306 {
2307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308 
2309 	return dd->rcv_err_status_cnt[52];
2310 }
2311 
access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2312 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2313 						 void *context, int vl,
2314 						 int mode, u64 data)
2315 {
2316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317 
2318 	return dd->rcv_err_status_cnt[51];
2319 }
2320 
access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2321 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2322 						 void *context, int vl,
2323 						 int mode, u64 data)
2324 {
2325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326 
2327 	return dd->rcv_err_status_cnt[50];
2328 }
2329 
access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2330 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2331 						 void *context, int vl,
2332 						 int mode, u64 data)
2333 {
2334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335 
2336 	return dd->rcv_err_status_cnt[49];
2337 }
2338 
access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2339 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2340 						 void *context, int vl,
2341 						 int mode, u64 data)
2342 {
2343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344 
2345 	return dd->rcv_err_status_cnt[48];
2346 }
2347 
access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2348 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2349 						 void *context, int vl,
2350 						 int mode, u64 data)
2351 {
2352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353 
2354 	return dd->rcv_err_status_cnt[47];
2355 }
2356 
access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2357 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2358 					 void *context, int vl, int mode,
2359 					 u64 data)
2360 {
2361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362 
2363 	return dd->rcv_err_status_cnt[46];
2364 }
2365 
access_rx_hq_intr_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2366 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2367 				const struct cntr_entry *entry,
2368 				void *context, int vl, int mode, u64 data)
2369 {
2370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371 
2372 	return dd->rcv_err_status_cnt[45];
2373 }
2374 
access_rx_lookup_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2375 static u64 access_rx_lookup_csr_parity_err_cnt(
2376 				const struct cntr_entry *entry,
2377 				void *context, int vl, int mode, u64 data)
2378 {
2379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380 
2381 	return dd->rcv_err_status_cnt[44];
2382 }
2383 
access_rx_lookup_rcv_array_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2384 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2385 				const struct cntr_entry *entry,
2386 				void *context, int vl, int mode, u64 data)
2387 {
2388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389 
2390 	return dd->rcv_err_status_cnt[43];
2391 }
2392 
access_rx_lookup_rcv_array_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2393 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2394 				const struct cntr_entry *entry,
2395 				void *context, int vl, int mode, u64 data)
2396 {
2397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398 
2399 	return dd->rcv_err_status_cnt[42];
2400 }
2401 
access_rx_lookup_des_part2_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2402 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2403 				const struct cntr_entry *entry,
2404 				void *context, int vl, int mode, u64 data)
2405 {
2406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407 
2408 	return dd->rcv_err_status_cnt[41];
2409 }
2410 
access_rx_lookup_des_part1_unc_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2411 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2412 				const struct cntr_entry *entry,
2413 				void *context, int vl, int mode, u64 data)
2414 {
2415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416 
2417 	return dd->rcv_err_status_cnt[40];
2418 }
2419 
access_rx_lookup_des_part1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2420 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2421 				const struct cntr_entry *entry,
2422 				void *context, int vl, int mode, u64 data)
2423 {
2424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425 
2426 	return dd->rcv_err_status_cnt[39];
2427 }
2428 
access_rx_rbuf_next_free_buf_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2429 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2430 				const struct cntr_entry *entry,
2431 				void *context, int vl, int mode, u64 data)
2432 {
2433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434 
2435 	return dd->rcv_err_status_cnt[38];
2436 }
2437 
access_rx_rbuf_next_free_buf_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2438 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2439 				const struct cntr_entry *entry,
2440 				void *context, int vl, int mode, u64 data)
2441 {
2442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443 
2444 	return dd->rcv_err_status_cnt[37];
2445 }
2446 
access_rbuf_fl_init_wr_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2447 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2448 				const struct cntr_entry *entry,
2449 				void *context, int vl, int mode, u64 data)
2450 {
2451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452 
2453 	return dd->rcv_err_status_cnt[36];
2454 }
2455 
access_rx_rbuf_fl_initdone_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2456 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2457 				const struct cntr_entry *entry,
2458 				void *context, int vl, int mode, u64 data)
2459 {
2460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461 
2462 	return dd->rcv_err_status_cnt[35];
2463 }
2464 
access_rx_rbuf_fl_write_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2465 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2466 				const struct cntr_entry *entry,
2467 				void *context, int vl, int mode, u64 data)
2468 {
2469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470 
2471 	return dd->rcv_err_status_cnt[34];
2472 }
2473 
access_rx_rbuf_fl_rd_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2474 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2475 				const struct cntr_entry *entry,
2476 				void *context, int vl, int mode, u64 data)
2477 {
2478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479 
2480 	return dd->rcv_err_status_cnt[33];
2481 }
2482 
access_rx_rbuf_empty_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2483 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2484 					void *context, int vl, int mode,
2485 					u64 data)
2486 {
2487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488 
2489 	return dd->rcv_err_status_cnt[32];
2490 }
2491 
access_rx_rbuf_full_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2492 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2493 				       void *context, int vl, int mode,
2494 				       u64 data)
2495 {
2496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497 
2498 	return dd->rcv_err_status_cnt[31];
2499 }
2500 
access_rbuf_bad_lookup_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2501 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2502 					  void *context, int vl, int mode,
2503 					  u64 data)
2504 {
2505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506 
2507 	return dd->rcv_err_status_cnt[30];
2508 }
2509 
access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2510 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2511 					     void *context, int vl, int mode,
2512 					     u64 data)
2513 {
2514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515 
2516 	return dd->rcv_err_status_cnt[29];
2517 }
2518 
access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2519 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2520 						 void *context, int vl,
2521 						 int mode, u64 data)
2522 {
2523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524 
2525 	return dd->rcv_err_status_cnt[28];
2526 }
2527 
access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2528 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2529 				const struct cntr_entry *entry,
2530 				void *context, int vl, int mode, u64 data)
2531 {
2532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533 
2534 	return dd->rcv_err_status_cnt[27];
2535 }
2536 
access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2537 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2538 				const struct cntr_entry *entry,
2539 				void *context, int vl, int mode, u64 data)
2540 {
2541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542 
2543 	return dd->rcv_err_status_cnt[26];
2544 }
2545 
access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2546 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2547 				const struct cntr_entry *entry,
2548 				void *context, int vl, int mode, u64 data)
2549 {
2550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551 
2552 	return dd->rcv_err_status_cnt[25];
2553 }
2554 
access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2555 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2556 				const struct cntr_entry *entry,
2557 				void *context, int vl, int mode, u64 data)
2558 {
2559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560 
2561 	return dd->rcv_err_status_cnt[24];
2562 }
2563 
access_rx_rbuf_csr_q_next_buf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2564 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2565 				const struct cntr_entry *entry,
2566 				void *context, int vl, int mode, u64 data)
2567 {
2568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569 
2570 	return dd->rcv_err_status_cnt[23];
2571 }
2572 
access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2573 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2574 				const struct cntr_entry *entry,
2575 				void *context, int vl, int mode, u64 data)
2576 {
2577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578 
2579 	return dd->rcv_err_status_cnt[22];
2580 }
2581 
access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2582 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2583 				const struct cntr_entry *entry,
2584 				void *context, int vl, int mode, u64 data)
2585 {
2586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587 
2588 	return dd->rcv_err_status_cnt[21];
2589 }
2590 
access_rx_rbuf_block_list_read_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2591 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2592 				const struct cntr_entry *entry,
2593 				void *context, int vl, int mode, u64 data)
2594 {
2595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596 
2597 	return dd->rcv_err_status_cnt[20];
2598 }
2599 
access_rx_rbuf_block_list_read_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2600 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2601 				const struct cntr_entry *entry,
2602 				void *context, int vl, int mode, u64 data)
2603 {
2604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605 
2606 	return dd->rcv_err_status_cnt[19];
2607 }
2608 
access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2609 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2610 						 void *context, int vl,
2611 						 int mode, u64 data)
2612 {
2613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614 
2615 	return dd->rcv_err_status_cnt[18];
2616 }
2617 
access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2618 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2619 						 void *context, int vl,
2620 						 int mode, u64 data)
2621 {
2622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623 
2624 	return dd->rcv_err_status_cnt[17];
2625 }
2626 
access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2627 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2628 				const struct cntr_entry *entry,
2629 				void *context, int vl, int mode, u64 data)
2630 {
2631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632 
2633 	return dd->rcv_err_status_cnt[16];
2634 }
2635 
access_rx_rbuf_lookup_des_reg_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2636 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2637 				const struct cntr_entry *entry,
2638 				void *context, int vl, int mode, u64 data)
2639 {
2640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641 
2642 	return dd->rcv_err_status_cnt[15];
2643 }
2644 
access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2645 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2646 						void *context, int vl,
2647 						int mode, u64 data)
2648 {
2649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650 
2651 	return dd->rcv_err_status_cnt[14];
2652 }
2653 
access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2654 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2655 						void *context, int vl,
2656 						int mode, u64 data)
2657 {
2658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659 
2660 	return dd->rcv_err_status_cnt[13];
2661 }
2662 
access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2663 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2664 					      void *context, int vl, int mode,
2665 					      u64 data)
2666 {
2667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668 
2669 	return dd->rcv_err_status_cnt[12];
2670 }
2671 
access_rx_dma_flag_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2672 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2673 					  void *context, int vl, int mode,
2674 					  u64 data)
2675 {
2676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677 
2678 	return dd->rcv_err_status_cnt[11];
2679 }
2680 
access_rx_dma_flag_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2681 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2682 					  void *context, int vl, int mode,
2683 					  u64 data)
2684 {
2685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686 
2687 	return dd->rcv_err_status_cnt[10];
2688 }
2689 
access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2690 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2691 					       void *context, int vl, int mode,
2692 					       u64 data)
2693 {
2694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695 
2696 	return dd->rcv_err_status_cnt[9];
2697 }
2698 
access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2699 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2700 					    void *context, int vl, int mode,
2701 					    u64 data)
2702 {
2703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2704 
2705 	return dd->rcv_err_status_cnt[8];
2706 }
2707 
access_rx_rcv_qp_map_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2708 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2709 				const struct cntr_entry *entry,
2710 				void *context, int vl, int mode, u64 data)
2711 {
2712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2713 
2714 	return dd->rcv_err_status_cnt[7];
2715 }
2716 
access_rx_rcv_qp_map_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2717 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2718 				const struct cntr_entry *entry,
2719 				void *context, int vl, int mode, u64 data)
2720 {
2721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2722 
2723 	return dd->rcv_err_status_cnt[6];
2724 }
2725 
access_rx_rcv_data_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2726 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2727 					  void *context, int vl, int mode,
2728 					  u64 data)
2729 {
2730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2731 
2732 	return dd->rcv_err_status_cnt[5];
2733 }
2734 
access_rx_rcv_data_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2735 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2736 					  void *context, int vl, int mode,
2737 					  u64 data)
2738 {
2739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2740 
2741 	return dd->rcv_err_status_cnt[4];
2742 }
2743 
access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2744 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2745 					 void *context, int vl, int mode,
2746 					 u64 data)
2747 {
2748 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2749 
2750 	return dd->rcv_err_status_cnt[3];
2751 }
2752 
access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2753 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2754 					 void *context, int vl, int mode,
2755 					 u64 data)
2756 {
2757 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2758 
2759 	return dd->rcv_err_status_cnt[2];
2760 }
2761 
access_rx_dc_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2762 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2763 					    void *context, int vl, int mode,
2764 					    u64 data)
2765 {
2766 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2767 
2768 	return dd->rcv_err_status_cnt[1];
2769 }
2770 
access_rx_dma_csr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2771 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2772 					 void *context, int vl, int mode,
2773 					 u64 data)
2774 {
2775 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2776 
2777 	return dd->rcv_err_status_cnt[0];
2778 }
2779 
2780 /*
2781  * Software counters corresponding to each of the
2782  * error status bits within SendPioErrStatus
2783  */
access_pio_pec_sop_head_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2784 static u64 access_pio_pec_sop_head_parity_err_cnt(
2785 				const struct cntr_entry *entry,
2786 				void *context, int vl, int mode, u64 data)
2787 {
2788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789 
2790 	return dd->send_pio_err_status_cnt[35];
2791 }
2792 
access_pio_pcc_sop_head_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2793 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2794 				const struct cntr_entry *entry,
2795 				void *context, int vl, int mode, u64 data)
2796 {
2797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798 
2799 	return dd->send_pio_err_status_cnt[34];
2800 }
2801 
access_pio_last_returned_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2802 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2803 				const struct cntr_entry *entry,
2804 				void *context, int vl, int mode, u64 data)
2805 {
2806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807 
2808 	return dd->send_pio_err_status_cnt[33];
2809 }
2810 
access_pio_current_free_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2811 static u64 access_pio_current_free_cnt_parity_err_cnt(
2812 				const struct cntr_entry *entry,
2813 				void *context, int vl, int mode, u64 data)
2814 {
2815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816 
2817 	return dd->send_pio_err_status_cnt[32];
2818 }
2819 
access_pio_reserved_31_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2820 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2821 					  void *context, int vl, int mode,
2822 					  u64 data)
2823 {
2824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825 
2826 	return dd->send_pio_err_status_cnt[31];
2827 }
2828 
access_pio_reserved_30_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2829 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2830 					  void *context, int vl, int mode,
2831 					  u64 data)
2832 {
2833 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834 
2835 	return dd->send_pio_err_status_cnt[30];
2836 }
2837 
access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2838 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2839 					   void *context, int vl, int mode,
2840 					   u64 data)
2841 {
2842 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843 
2844 	return dd->send_pio_err_status_cnt[29];
2845 }
2846 
access_pio_ppmc_bqc_mem_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2847 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2848 				const struct cntr_entry *entry,
2849 				void *context, int vl, int mode, u64 data)
2850 {
2851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852 
2853 	return dd->send_pio_err_status_cnt[28];
2854 }
2855 
access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2856 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2857 					     void *context, int vl, int mode,
2858 					     u64 data)
2859 {
2860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861 
2862 	return dd->send_pio_err_status_cnt[27];
2863 }
2864 
access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2865 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2866 					     void *context, int vl, int mode,
2867 					     u64 data)
2868 {
2869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870 
2871 	return dd->send_pio_err_status_cnt[26];
2872 }
2873 
access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2874 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2875 						void *context, int vl,
2876 						int mode, u64 data)
2877 {
2878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879 
2880 	return dd->send_pio_err_status_cnt[25];
2881 }
2882 
access_pio_block_qw_count_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2883 static u64 access_pio_block_qw_count_parity_err_cnt(
2884 				const struct cntr_entry *entry,
2885 				void *context, int vl, int mode, u64 data)
2886 {
2887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888 
2889 	return dd->send_pio_err_status_cnt[24];
2890 }
2891 
access_pio_write_qw_valid_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2892 static u64 access_pio_write_qw_valid_parity_err_cnt(
2893 				const struct cntr_entry *entry,
2894 				void *context, int vl, int mode, u64 data)
2895 {
2896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897 
2898 	return dd->send_pio_err_status_cnt[23];
2899 }
2900 
access_pio_state_machine_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2901 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2902 					    void *context, int vl, int mode,
2903 					    u64 data)
2904 {
2905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906 
2907 	return dd->send_pio_err_status_cnt[22];
2908 }
2909 
access_pio_write_data_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2910 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2911 						void *context, int vl,
2912 						int mode, u64 data)
2913 {
2914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915 
2916 	return dd->send_pio_err_status_cnt[21];
2917 }
2918 
access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2919 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2920 						void *context, int vl,
2921 						int mode, u64 data)
2922 {
2923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924 
2925 	return dd->send_pio_err_status_cnt[20];
2926 }
2927 
access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2928 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2929 						void *context, int vl,
2930 						int mode, u64 data)
2931 {
2932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933 
2934 	return dd->send_pio_err_status_cnt[19];
2935 }
2936 
access_pio_pkt_evict_sm_or_arb_sm_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2937 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2938 				const struct cntr_entry *entry,
2939 				void *context, int vl, int mode, u64 data)
2940 {
2941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942 
2943 	return dd->send_pio_err_status_cnt[18];
2944 }
2945 
access_pio_init_sm_in_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2946 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2947 					 void *context, int vl, int mode,
2948 					 u64 data)
2949 {
2950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951 
2952 	return dd->send_pio_err_status_cnt[17];
2953 }
2954 
access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2955 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2956 					    void *context, int vl, int mode,
2957 					    u64 data)
2958 {
2959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960 
2961 	return dd->send_pio_err_status_cnt[16];
2962 }
2963 
access_pio_credit_ret_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2964 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2965 				const struct cntr_entry *entry,
2966 				void *context, int vl, int mode, u64 data)
2967 {
2968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969 
2970 	return dd->send_pio_err_status_cnt[15];
2971 }
2972 
access_pio_v1_len_mem_bank1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2973 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2974 				const struct cntr_entry *entry,
2975 				void *context, int vl, int mode, u64 data)
2976 {
2977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978 
2979 	return dd->send_pio_err_status_cnt[14];
2980 }
2981 
access_pio_v1_len_mem_bank0_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2982 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2983 				const struct cntr_entry *entry,
2984 				void *context, int vl, int mode, u64 data)
2985 {
2986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987 
2988 	return dd->send_pio_err_status_cnt[13];
2989 }
2990 
access_pio_v1_len_mem_bank1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2991 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2992 				const struct cntr_entry *entry,
2993 				void *context, int vl, int mode, u64 data)
2994 {
2995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996 
2997 	return dd->send_pio_err_status_cnt[12];
2998 }
2999 
access_pio_v1_len_mem_bank0_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3000 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3001 				const struct cntr_entry *entry,
3002 				void *context, int vl, int mode, u64 data)
3003 {
3004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005 
3006 	return dd->send_pio_err_status_cnt[11];
3007 }
3008 
access_pio_sm_pkt_reset_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3009 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3010 				const struct cntr_entry *entry,
3011 				void *context, int vl, int mode, u64 data)
3012 {
3013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014 
3015 	return dd->send_pio_err_status_cnt[10];
3016 }
3017 
access_pio_pkt_evict_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3018 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3019 				const struct cntr_entry *entry,
3020 				void *context, int vl, int mode, u64 data)
3021 {
3022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023 
3024 	return dd->send_pio_err_status_cnt[9];
3025 }
3026 
access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3027 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3028 				const struct cntr_entry *entry,
3029 				void *context, int vl, int mode, u64 data)
3030 {
3031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3032 
3033 	return dd->send_pio_err_status_cnt[8];
3034 }
3035 
access_pio_sbrdctl_crrel_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3036 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3037 				const struct cntr_entry *entry,
3038 				void *context, int vl, int mode, u64 data)
3039 {
3040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3041 
3042 	return dd->send_pio_err_status_cnt[7];
3043 }
3044 
access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3045 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3046 					      void *context, int vl, int mode,
3047 					      u64 data)
3048 {
3049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3050 
3051 	return dd->send_pio_err_status_cnt[6];
3052 }
3053 
access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3054 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3055 					      void *context, int vl, int mode,
3056 					      u64 data)
3057 {
3058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3059 
3060 	return dd->send_pio_err_status_cnt[5];
3061 }
3062 
access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3063 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3064 					   void *context, int vl, int mode,
3065 					   u64 data)
3066 {
3067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3068 
3069 	return dd->send_pio_err_status_cnt[4];
3070 }
3071 
access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3072 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3073 					   void *context, int vl, int mode,
3074 					   u64 data)
3075 {
3076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3077 
3078 	return dd->send_pio_err_status_cnt[3];
3079 }
3080 
access_pio_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3081 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3082 					 void *context, int vl, int mode,
3083 					 u64 data)
3084 {
3085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3086 
3087 	return dd->send_pio_err_status_cnt[2];
3088 }
3089 
access_pio_write_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3090 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3091 						void *context, int vl,
3092 						int mode, u64 data)
3093 {
3094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3095 
3096 	return dd->send_pio_err_status_cnt[1];
3097 }
3098 
access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3099 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3100 					     void *context, int vl, int mode,
3101 					     u64 data)
3102 {
3103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3104 
3105 	return dd->send_pio_err_status_cnt[0];
3106 }
3107 
3108 /*
3109  * Software counters corresponding to each of the
3110  * error status bits within SendDmaErrStatus
3111  */
access_sdma_pcie_req_tracking_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3112 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3113 				const struct cntr_entry *entry,
3114 				void *context, int vl, int mode, u64 data)
3115 {
3116 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3117 
3118 	return dd->send_dma_err_status_cnt[3];
3119 }
3120 
access_sdma_pcie_req_tracking_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3121 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3122 				const struct cntr_entry *entry,
3123 				void *context, int vl, int mode, u64 data)
3124 {
3125 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3126 
3127 	return dd->send_dma_err_status_cnt[2];
3128 }
3129 
access_sdma_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3130 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3131 					  void *context, int vl, int mode,
3132 					  u64 data)
3133 {
3134 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3135 
3136 	return dd->send_dma_err_status_cnt[1];
3137 }
3138 
access_sdma_rpy_tag_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3139 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3140 				       void *context, int vl, int mode,
3141 				       u64 data)
3142 {
3143 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3144 
3145 	return dd->send_dma_err_status_cnt[0];
3146 }
3147 
3148 /*
3149  * Software counters corresponding to each of the
3150  * error status bits within SendEgressErrStatus
3151  */
access_tx_read_pio_memory_csr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3152 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3153 				const struct cntr_entry *entry,
3154 				void *context, int vl, int mode, u64 data)
3155 {
3156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157 
3158 	return dd->send_egress_err_status_cnt[63];
3159 }
3160 
access_tx_read_sdma_memory_csr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3161 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3162 				const struct cntr_entry *entry,
3163 				void *context, int vl, int mode, u64 data)
3164 {
3165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166 
3167 	return dd->send_egress_err_status_cnt[62];
3168 }
3169 
access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3170 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3171 					     void *context, int vl, int mode,
3172 					     u64 data)
3173 {
3174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175 
3176 	return dd->send_egress_err_status_cnt[61];
3177 }
3178 
access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3179 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3180 						 void *context, int vl,
3181 						 int mode, u64 data)
3182 {
3183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184 
3185 	return dd->send_egress_err_status_cnt[60];
3186 }
3187 
access_tx_read_sdma_memory_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3188 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3189 				const struct cntr_entry *entry,
3190 				void *context, int vl, int mode, u64 data)
3191 {
3192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193 
3194 	return dd->send_egress_err_status_cnt[59];
3195 }
3196 
access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3197 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3198 					void *context, int vl, int mode,
3199 					u64 data)
3200 {
3201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202 
3203 	return dd->send_egress_err_status_cnt[58];
3204 }
3205 
access_tx_credit_overrun_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3206 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3207 					    void *context, int vl, int mode,
3208 					    u64 data)
3209 {
3210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211 
3212 	return dd->send_egress_err_status_cnt[57];
3213 }
3214 
access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3215 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3216 					      void *context, int vl, int mode,
3217 					      u64 data)
3218 {
3219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220 
3221 	return dd->send_egress_err_status_cnt[56];
3222 }
3223 
access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3224 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3225 					      void *context, int vl, int mode,
3226 					      u64 data)
3227 {
3228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229 
3230 	return dd->send_egress_err_status_cnt[55];
3231 }
3232 
access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3233 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3234 					      void *context, int vl, int mode,
3235 					      u64 data)
3236 {
3237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238 
3239 	return dd->send_egress_err_status_cnt[54];
3240 }
3241 
access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3242 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3243 					      void *context, int vl, int mode,
3244 					      u64 data)
3245 {
3246 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247 
3248 	return dd->send_egress_err_status_cnt[53];
3249 }
3250 
access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3251 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3252 					      void *context, int vl, int mode,
3253 					      u64 data)
3254 {
3255 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256 
3257 	return dd->send_egress_err_status_cnt[52];
3258 }
3259 
access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3260 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3261 					      void *context, int vl, int mode,
3262 					      u64 data)
3263 {
3264 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265 
3266 	return dd->send_egress_err_status_cnt[51];
3267 }
3268 
access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3269 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3270 					      void *context, int vl, int mode,
3271 					      u64 data)
3272 {
3273 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274 
3275 	return dd->send_egress_err_status_cnt[50];
3276 }
3277 
access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3278 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3279 					      void *context, int vl, int mode,
3280 					      u64 data)
3281 {
3282 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283 
3284 	return dd->send_egress_err_status_cnt[49];
3285 }
3286 
access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3287 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3288 					      void *context, int vl, int mode,
3289 					      u64 data)
3290 {
3291 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292 
3293 	return dd->send_egress_err_status_cnt[48];
3294 }
3295 
access_tx_credit_return_vl_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3296 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3297 					      void *context, int vl, int mode,
3298 					      u64 data)
3299 {
3300 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301 
3302 	return dd->send_egress_err_status_cnt[47];
3303 }
3304 
access_tx_hcrc_insertion_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3305 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3306 					    void *context, int vl, int mode,
3307 					    u64 data)
3308 {
3309 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310 
3311 	return dd->send_egress_err_status_cnt[46];
3312 }
3313 
access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3314 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3315 					     void *context, int vl, int mode,
3316 					     u64 data)
3317 {
3318 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319 
3320 	return dd->send_egress_err_status_cnt[45];
3321 }
3322 
access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3323 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3324 						 void *context, int vl,
3325 						 int mode, u64 data)
3326 {
3327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328 
3329 	return dd->send_egress_err_status_cnt[44];
3330 }
3331 
access_tx_read_sdma_memory_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3332 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3333 				const struct cntr_entry *entry,
3334 				void *context, int vl, int mode, u64 data)
3335 {
3336 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337 
3338 	return dd->send_egress_err_status_cnt[43];
3339 }
3340 
access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3341 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3342 					void *context, int vl, int mode,
3343 					u64 data)
3344 {
3345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346 
3347 	return dd->send_egress_err_status_cnt[42];
3348 }
3349 
access_tx_credit_return_partiy_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3350 static u64 access_tx_credit_return_partiy_err_cnt(
3351 				const struct cntr_entry *entry,
3352 				void *context, int vl, int mode, u64 data)
3353 {
3354 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355 
3356 	return dd->send_egress_err_status_cnt[41];
3357 }
3358 
access_tx_launch_fifo8_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3359 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3360 				const struct cntr_entry *entry,
3361 				void *context, int vl, int mode, u64 data)
3362 {
3363 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364 
3365 	return dd->send_egress_err_status_cnt[40];
3366 }
3367 
access_tx_launch_fifo7_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3368 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3369 				const struct cntr_entry *entry,
3370 				void *context, int vl, int mode, u64 data)
3371 {
3372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373 
3374 	return dd->send_egress_err_status_cnt[39];
3375 }
3376 
access_tx_launch_fifo6_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3377 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3378 				const struct cntr_entry *entry,
3379 				void *context, int vl, int mode, u64 data)
3380 {
3381 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382 
3383 	return dd->send_egress_err_status_cnt[38];
3384 }
3385 
access_tx_launch_fifo5_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3386 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3387 				const struct cntr_entry *entry,
3388 				void *context, int vl, int mode, u64 data)
3389 {
3390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391 
3392 	return dd->send_egress_err_status_cnt[37];
3393 }
3394 
access_tx_launch_fifo4_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3395 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3396 				const struct cntr_entry *entry,
3397 				void *context, int vl, int mode, u64 data)
3398 {
3399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400 
3401 	return dd->send_egress_err_status_cnt[36];
3402 }
3403 
access_tx_launch_fifo3_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3404 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3405 				const struct cntr_entry *entry,
3406 				void *context, int vl, int mode, u64 data)
3407 {
3408 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409 
3410 	return dd->send_egress_err_status_cnt[35];
3411 }
3412 
access_tx_launch_fifo2_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3413 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3414 				const struct cntr_entry *entry,
3415 				void *context, int vl, int mode, u64 data)
3416 {
3417 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418 
3419 	return dd->send_egress_err_status_cnt[34];
3420 }
3421 
access_tx_launch_fifo1_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3422 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3423 				const struct cntr_entry *entry,
3424 				void *context, int vl, int mode, u64 data)
3425 {
3426 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427 
3428 	return dd->send_egress_err_status_cnt[33];
3429 }
3430 
access_tx_launch_fifo0_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3431 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3432 				const struct cntr_entry *entry,
3433 				void *context, int vl, int mode, u64 data)
3434 {
3435 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436 
3437 	return dd->send_egress_err_status_cnt[32];
3438 }
3439 
access_tx_sdma15_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3440 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3441 				const struct cntr_entry *entry,
3442 				void *context, int vl, int mode, u64 data)
3443 {
3444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445 
3446 	return dd->send_egress_err_status_cnt[31];
3447 }
3448 
access_tx_sdma14_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3449 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3450 				const struct cntr_entry *entry,
3451 				void *context, int vl, int mode, u64 data)
3452 {
3453 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454 
3455 	return dd->send_egress_err_status_cnt[30];
3456 }
3457 
access_tx_sdma13_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3458 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3459 				const struct cntr_entry *entry,
3460 				void *context, int vl, int mode, u64 data)
3461 {
3462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463 
3464 	return dd->send_egress_err_status_cnt[29];
3465 }
3466 
access_tx_sdma12_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3467 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3468 				const struct cntr_entry *entry,
3469 				void *context, int vl, int mode, u64 data)
3470 {
3471 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472 
3473 	return dd->send_egress_err_status_cnt[28];
3474 }
3475 
access_tx_sdma11_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3476 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3477 				const struct cntr_entry *entry,
3478 				void *context, int vl, int mode, u64 data)
3479 {
3480 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481 
3482 	return dd->send_egress_err_status_cnt[27];
3483 }
3484 
access_tx_sdma10_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3485 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3486 				const struct cntr_entry *entry,
3487 				void *context, int vl, int mode, u64 data)
3488 {
3489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490 
3491 	return dd->send_egress_err_status_cnt[26];
3492 }
3493 
access_tx_sdma9_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3494 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3495 				const struct cntr_entry *entry,
3496 				void *context, int vl, int mode, u64 data)
3497 {
3498 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499 
3500 	return dd->send_egress_err_status_cnt[25];
3501 }
3502 
access_tx_sdma8_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3503 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3504 				const struct cntr_entry *entry,
3505 				void *context, int vl, int mode, u64 data)
3506 {
3507 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508 
3509 	return dd->send_egress_err_status_cnt[24];
3510 }
3511 
access_tx_sdma7_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3512 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3513 				const struct cntr_entry *entry,
3514 				void *context, int vl, int mode, u64 data)
3515 {
3516 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517 
3518 	return dd->send_egress_err_status_cnt[23];
3519 }
3520 
access_tx_sdma6_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3521 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3522 				const struct cntr_entry *entry,
3523 				void *context, int vl, int mode, u64 data)
3524 {
3525 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526 
3527 	return dd->send_egress_err_status_cnt[22];
3528 }
3529 
access_tx_sdma5_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3530 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3531 				const struct cntr_entry *entry,
3532 				void *context, int vl, int mode, u64 data)
3533 {
3534 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535 
3536 	return dd->send_egress_err_status_cnt[21];
3537 }
3538 
access_tx_sdma4_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3539 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3540 				const struct cntr_entry *entry,
3541 				void *context, int vl, int mode, u64 data)
3542 {
3543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544 
3545 	return dd->send_egress_err_status_cnt[20];
3546 }
3547 
access_tx_sdma3_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3548 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3549 				const struct cntr_entry *entry,
3550 				void *context, int vl, int mode, u64 data)
3551 {
3552 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553 
3554 	return dd->send_egress_err_status_cnt[19];
3555 }
3556 
access_tx_sdma2_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3557 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3558 				const struct cntr_entry *entry,
3559 				void *context, int vl, int mode, u64 data)
3560 {
3561 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562 
3563 	return dd->send_egress_err_status_cnt[18];
3564 }
3565 
access_tx_sdma1_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3566 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3567 				const struct cntr_entry *entry,
3568 				void *context, int vl, int mode, u64 data)
3569 {
3570 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571 
3572 	return dd->send_egress_err_status_cnt[17];
3573 }
3574 
access_tx_sdma0_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3575 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3576 				const struct cntr_entry *entry,
3577 				void *context, int vl, int mode, u64 data)
3578 {
3579 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580 
3581 	return dd->send_egress_err_status_cnt[16];
3582 }
3583 
access_tx_config_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3584 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3585 					   void *context, int vl, int mode,
3586 					   u64 data)
3587 {
3588 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589 
3590 	return dd->send_egress_err_status_cnt[15];
3591 }
3592 
access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3593 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3594 						 void *context, int vl,
3595 						 int mode, u64 data)
3596 {
3597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598 
3599 	return dd->send_egress_err_status_cnt[14];
3600 }
3601 
access_tx_launch_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3602 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3603 					       void *context, int vl, int mode,
3604 					       u64 data)
3605 {
3606 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607 
3608 	return dd->send_egress_err_status_cnt[13];
3609 }
3610 
access_tx_illegal_vl_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3611 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3612 					void *context, int vl, int mode,
3613 					u64 data)
3614 {
3615 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616 
3617 	return dd->send_egress_err_status_cnt[12];
3618 }
3619 
access_tx_sbrd_ctl_state_machine_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3620 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3621 				const struct cntr_entry *entry,
3622 				void *context, int vl, int mode, u64 data)
3623 {
3624 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625 
3626 	return dd->send_egress_err_status_cnt[11];
3627 }
3628 
access_egress_reserved_10_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3629 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3630 					     void *context, int vl, int mode,
3631 					     u64 data)
3632 {
3633 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634 
3635 	return dd->send_egress_err_status_cnt[10];
3636 }
3637 
access_egress_reserved_9_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3638 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3639 					    void *context, int vl, int mode,
3640 					    u64 data)
3641 {
3642 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643 
3644 	return dd->send_egress_err_status_cnt[9];
3645 }
3646 
access_tx_sdma_launch_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3647 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3648 				const struct cntr_entry *entry,
3649 				void *context, int vl, int mode, u64 data)
3650 {
3651 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3652 
3653 	return dd->send_egress_err_status_cnt[8];
3654 }
3655 
access_tx_pio_launch_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3656 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3657 				const struct cntr_entry *entry,
3658 				void *context, int vl, int mode, u64 data)
3659 {
3660 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3661 
3662 	return dd->send_egress_err_status_cnt[7];
3663 }
3664 
access_egress_reserved_6_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3665 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3666 					    void *context, int vl, int mode,
3667 					    u64 data)
3668 {
3669 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3670 
3671 	return dd->send_egress_err_status_cnt[6];
3672 }
3673 
access_tx_incorrect_link_state_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3674 static u64 access_tx_incorrect_link_state_err_cnt(
3675 				const struct cntr_entry *entry,
3676 				void *context, int vl, int mode, u64 data)
3677 {
3678 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3679 
3680 	return dd->send_egress_err_status_cnt[5];
3681 }
3682 
access_tx_linkdown_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3683 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3684 				      void *context, int vl, int mode,
3685 				      u64 data)
3686 {
3687 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3688 
3689 	return dd->send_egress_err_status_cnt[4];
3690 }
3691 
access_tx_egress_fifi_underrun_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3692 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3693 				const struct cntr_entry *entry,
3694 				void *context, int vl, int mode, u64 data)
3695 {
3696 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3697 
3698 	return dd->send_egress_err_status_cnt[3];
3699 }
3700 
access_egress_reserved_2_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3701 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3702 					    void *context, int vl, int mode,
3703 					    u64 data)
3704 {
3705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3706 
3707 	return dd->send_egress_err_status_cnt[2];
3708 }
3709 
access_tx_pkt_integrity_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3710 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3711 				const struct cntr_entry *entry,
3712 				void *context, int vl, int mode, u64 data)
3713 {
3714 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3715 
3716 	return dd->send_egress_err_status_cnt[1];
3717 }
3718 
access_tx_pkt_integrity_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3719 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3720 				const struct cntr_entry *entry,
3721 				void *context, int vl, int mode, u64 data)
3722 {
3723 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3724 
3725 	return dd->send_egress_err_status_cnt[0];
3726 }
3727 
3728 /*
3729  * Software counters corresponding to each of the
3730  * error status bits within SendErrStatus
3731  */
access_send_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3732 static u64 access_send_csr_write_bad_addr_err_cnt(
3733 				const struct cntr_entry *entry,
3734 				void *context, int vl, int mode, u64 data)
3735 {
3736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3737 
3738 	return dd->send_err_status_cnt[2];
3739 }
3740 
access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3741 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3742 						 void *context, int vl,
3743 						 int mode, u64 data)
3744 {
3745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3746 
3747 	return dd->send_err_status_cnt[1];
3748 }
3749 
access_send_csr_parity_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3750 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3751 				      void *context, int vl, int mode,
3752 				      u64 data)
3753 {
3754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3755 
3756 	return dd->send_err_status_cnt[0];
3757 }
3758 
3759 /*
3760  * Software counters corresponding to each of the
3761  * error status bits within SendCtxtErrStatus
3762  */
access_pio_write_out_of_bounds_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3763 static u64 access_pio_write_out_of_bounds_err_cnt(
3764 				const struct cntr_entry *entry,
3765 				void *context, int vl, int mode, u64 data)
3766 {
3767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3768 
3769 	return dd->sw_ctxt_err_status_cnt[4];
3770 }
3771 
access_pio_write_overflow_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3772 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3773 					     void *context, int vl, int mode,
3774 					     u64 data)
3775 {
3776 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3777 
3778 	return dd->sw_ctxt_err_status_cnt[3];
3779 }
3780 
access_pio_write_crosses_boundary_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3781 static u64 access_pio_write_crosses_boundary_err_cnt(
3782 				const struct cntr_entry *entry,
3783 				void *context, int vl, int mode, u64 data)
3784 {
3785 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3786 
3787 	return dd->sw_ctxt_err_status_cnt[2];
3788 }
3789 
access_pio_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3790 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3791 						void *context, int vl,
3792 						int mode, u64 data)
3793 {
3794 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3795 
3796 	return dd->sw_ctxt_err_status_cnt[1];
3797 }
3798 
access_pio_inconsistent_sop_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3799 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3800 					       void *context, int vl, int mode,
3801 					       u64 data)
3802 {
3803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3804 
3805 	return dd->sw_ctxt_err_status_cnt[0];
3806 }
3807 
3808 /*
3809  * Software counters corresponding to each of the
3810  * error status bits within SendDmaEngErrStatus
3811  */
access_sdma_header_request_fifo_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3812 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3813 				const struct cntr_entry *entry,
3814 				void *context, int vl, int mode, u64 data)
3815 {
3816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817 
3818 	return dd->sw_send_dma_eng_err_status_cnt[23];
3819 }
3820 
access_sdma_header_storage_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3821 static u64 access_sdma_header_storage_cor_err_cnt(
3822 				const struct cntr_entry *entry,
3823 				void *context, int vl, int mode, u64 data)
3824 {
3825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826 
3827 	return dd->sw_send_dma_eng_err_status_cnt[22];
3828 }
3829 
access_sdma_packet_tracking_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3830 static u64 access_sdma_packet_tracking_cor_err_cnt(
3831 				const struct cntr_entry *entry,
3832 				void *context, int vl, int mode, u64 data)
3833 {
3834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835 
3836 	return dd->sw_send_dma_eng_err_status_cnt[21];
3837 }
3838 
access_sdma_assembly_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3839 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3840 					    void *context, int vl, int mode,
3841 					    u64 data)
3842 {
3843 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844 
3845 	return dd->sw_send_dma_eng_err_status_cnt[20];
3846 }
3847 
access_sdma_desc_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3848 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3849 					      void *context, int vl, int mode,
3850 					      u64 data)
3851 {
3852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853 
3854 	return dd->sw_send_dma_eng_err_status_cnt[19];
3855 }
3856 
access_sdma_header_request_fifo_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3857 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3858 				const struct cntr_entry *entry,
3859 				void *context, int vl, int mode, u64 data)
3860 {
3861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862 
3863 	return dd->sw_send_dma_eng_err_status_cnt[18];
3864 }
3865 
access_sdma_header_storage_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3866 static u64 access_sdma_header_storage_unc_err_cnt(
3867 				const struct cntr_entry *entry,
3868 				void *context, int vl, int mode, u64 data)
3869 {
3870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871 
3872 	return dd->sw_send_dma_eng_err_status_cnt[17];
3873 }
3874 
access_sdma_packet_tracking_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3875 static u64 access_sdma_packet_tracking_unc_err_cnt(
3876 				const struct cntr_entry *entry,
3877 				void *context, int vl, int mode, u64 data)
3878 {
3879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880 
3881 	return dd->sw_send_dma_eng_err_status_cnt[16];
3882 }
3883 
access_sdma_assembly_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3884 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3885 					    void *context, int vl, int mode,
3886 					    u64 data)
3887 {
3888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3889 
3890 	return dd->sw_send_dma_eng_err_status_cnt[15];
3891 }
3892 
access_sdma_desc_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3893 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3894 					      void *context, int vl, int mode,
3895 					      u64 data)
3896 {
3897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3898 
3899 	return dd->sw_send_dma_eng_err_status_cnt[14];
3900 }
3901 
access_sdma_timeout_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3902 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3903 				       void *context, int vl, int mode,
3904 				       u64 data)
3905 {
3906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3907 
3908 	return dd->sw_send_dma_eng_err_status_cnt[13];
3909 }
3910 
access_sdma_header_length_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3911 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3912 					     void *context, int vl, int mode,
3913 					     u64 data)
3914 {
3915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3916 
3917 	return dd->sw_send_dma_eng_err_status_cnt[12];
3918 }
3919 
access_sdma_header_address_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3920 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3921 					      void *context, int vl, int mode,
3922 					      u64 data)
3923 {
3924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3925 
3926 	return dd->sw_send_dma_eng_err_status_cnt[11];
3927 }
3928 
access_sdma_header_select_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3929 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3930 					     void *context, int vl, int mode,
3931 					     u64 data)
3932 {
3933 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3934 
3935 	return dd->sw_send_dma_eng_err_status_cnt[10];
3936 }
3937 
access_sdma_reserved_9_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3938 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3939 					  void *context, int vl, int mode,
3940 					  u64 data)
3941 {
3942 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3943 
3944 	return dd->sw_send_dma_eng_err_status_cnt[9];
3945 }
3946 
access_sdma_packet_desc_overflow_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3947 static u64 access_sdma_packet_desc_overflow_err_cnt(
3948 				const struct cntr_entry *entry,
3949 				void *context, int vl, int mode, u64 data)
3950 {
3951 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3952 
3953 	return dd->sw_send_dma_eng_err_status_cnt[8];
3954 }
3955 
access_sdma_length_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3956 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3957 					       void *context, int vl,
3958 					       int mode, u64 data)
3959 {
3960 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3961 
3962 	return dd->sw_send_dma_eng_err_status_cnt[7];
3963 }
3964 
access_sdma_halt_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3965 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3966 				    void *context, int vl, int mode, u64 data)
3967 {
3968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3969 
3970 	return dd->sw_send_dma_eng_err_status_cnt[6];
3971 }
3972 
access_sdma_mem_read_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3973 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3974 					void *context, int vl, int mode,
3975 					u64 data)
3976 {
3977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3978 
3979 	return dd->sw_send_dma_eng_err_status_cnt[5];
3980 }
3981 
access_sdma_first_desc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3982 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3983 					  void *context, int vl, int mode,
3984 					  u64 data)
3985 {
3986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3987 
3988 	return dd->sw_send_dma_eng_err_status_cnt[4];
3989 }
3990 
access_sdma_tail_out_of_bounds_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3991 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3992 				const struct cntr_entry *entry,
3993 				void *context, int vl, int mode, u64 data)
3994 {
3995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3996 
3997 	return dd->sw_send_dma_eng_err_status_cnt[3];
3998 }
3999 
access_sdma_too_long_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4000 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4001 					void *context, int vl, int mode,
4002 					u64 data)
4003 {
4004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4005 
4006 	return dd->sw_send_dma_eng_err_status_cnt[2];
4007 }
4008 
access_sdma_gen_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4009 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4010 					    void *context, int vl, int mode,
4011 					    u64 data)
4012 {
4013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4014 
4015 	return dd->sw_send_dma_eng_err_status_cnt[1];
4016 }
4017 
access_sdma_wrong_dw_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4018 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4019 					void *context, int vl, int mode,
4020 					u64 data)
4021 {
4022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4023 
4024 	return dd->sw_send_dma_eng_err_status_cnt[0];
4025 }
4026 
access_dc_rcv_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4027 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4028 				 void *context, int vl, int mode,
4029 				 u64 data)
4030 {
4031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4032 
4033 	u64 val = 0;
4034 	u64 csr = entry->csr;
4035 
4036 	val = read_write_csr(dd, csr, mode, data);
4037 	if (mode == CNTR_MODE_R) {
4038 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4039 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4040 	} else if (mode == CNTR_MODE_W) {
4041 		dd->sw_rcv_bypass_packet_errors = 0;
4042 	} else {
4043 		dd_dev_err(dd, "Invalid cntr register access mode");
4044 		return 0;
4045 	}
4046 	return val;
4047 }
4048 
4049 #define def_access_sw_cpu(cntr) \
4050 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4051 			      void *context, int vl, int mode, u64 data)      \
4052 {									      \
4053 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4054 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4055 			      ppd->ibport_data.rvp.cntr, vl,		      \
4056 			      mode, data);				      \
4057 }
4058 
4059 def_access_sw_cpu(rc_acks);
4060 def_access_sw_cpu(rc_qacks);
4061 def_access_sw_cpu(rc_delayed_comp);
4062 
4063 #define def_access_ibp_counter(cntr) \
4064 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4065 				void *context, int vl, int mode, u64 data)    \
4066 {									      \
4067 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4068 									      \
4069 	if (vl != CNTR_INVALID_VL)					      \
4070 		return 0;						      \
4071 									      \
4072 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4073 			     mode, data);				      \
4074 }
4075 
4076 def_access_ibp_counter(loop_pkts);
4077 def_access_ibp_counter(rc_resends);
4078 def_access_ibp_counter(rnr_naks);
4079 def_access_ibp_counter(other_naks);
4080 def_access_ibp_counter(rc_timeouts);
4081 def_access_ibp_counter(pkt_drops);
4082 def_access_ibp_counter(dmawait);
4083 def_access_ibp_counter(rc_seqnak);
4084 def_access_ibp_counter(rc_dupreq);
4085 def_access_ibp_counter(rdma_seq);
4086 def_access_ibp_counter(unaligned);
4087 def_access_ibp_counter(seq_naks);
4088 def_access_ibp_counter(rc_crwaits);
4089 
4090 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4091 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4092 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4093 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4094 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4095 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4096 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4097 			CNTR_NORMAL),
4098 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4099 			CNTR_NORMAL),
4100 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4101 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4102 			CNTR_NORMAL),
4103 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4104 			CNTR_NORMAL),
4105 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4106 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4107 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4108 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4109 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4110 			CNTR_NORMAL),
4111 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4112 			CNTR_NORMAL),
4113 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4114 			CNTR_NORMAL),
4115 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4116 			CNTR_NORMAL),
4117 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4118 			CNTR_NORMAL),
4119 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4122 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4123 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4124 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4125 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4126 			      CNTR_SYNTH),
4127 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4128 			    access_dc_rcv_err_cnt),
4129 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4130 				 CNTR_SYNTH),
4131 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4132 				  CNTR_SYNTH),
4133 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4134 				  CNTR_SYNTH),
4135 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4136 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4137 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4138 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4139 				  CNTR_SYNTH),
4140 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4141 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4142 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4143 			       CNTR_SYNTH),
4144 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4145 			      CNTR_SYNTH),
4146 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4147 			       CNTR_SYNTH),
4148 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4149 				 CNTR_SYNTH),
4150 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4151 				CNTR_SYNTH),
4152 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4153 				CNTR_SYNTH),
4154 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4155 			       CNTR_SYNTH),
4156 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4157 				 CNTR_SYNTH | CNTR_VL),
4158 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4159 				CNTR_SYNTH | CNTR_VL),
4160 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4161 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4162 				 CNTR_SYNTH | CNTR_VL),
4163 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4164 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4165 				 CNTR_SYNTH | CNTR_VL),
4166 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4167 			      CNTR_SYNTH),
4168 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4169 				 CNTR_SYNTH | CNTR_VL),
4170 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4171 				CNTR_SYNTH),
4172 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4173 				   CNTR_SYNTH | CNTR_VL),
4174 [C_DC_TOTAL_CRC] =
4175 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4176 			 CNTR_SYNTH),
4177 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4178 				  CNTR_SYNTH),
4179 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4180 				  CNTR_SYNTH),
4181 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4182 				  CNTR_SYNTH),
4183 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4184 				  CNTR_SYNTH),
4185 [C_DC_CRC_MULT_LN] =
4186 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4187 			 CNTR_SYNTH),
4188 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4189 				    CNTR_SYNTH),
4190 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4191 				    CNTR_SYNTH),
4192 [C_DC_SEQ_CRC_CNT] =
4193 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4194 			 CNTR_SYNTH),
4195 [C_DC_ESC0_ONLY_CNT] =
4196 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4197 			 CNTR_SYNTH),
4198 [C_DC_ESC0_PLUS1_CNT] =
4199 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4200 			 CNTR_SYNTH),
4201 [C_DC_ESC0_PLUS2_CNT] =
4202 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4203 			 CNTR_SYNTH),
4204 [C_DC_REINIT_FROM_PEER_CNT] =
4205 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4206 			 CNTR_SYNTH),
4207 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4208 				  CNTR_SYNTH),
4209 [C_DC_MISC_FLG_CNT] =
4210 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_PRF_GOOD_LTP_CNT] =
4213 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4214 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4215 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4216 			 CNTR_SYNTH),
4217 [C_DC_PRF_RX_FLIT_CNT] =
4218 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4219 [C_DC_PRF_TX_FLIT_CNT] =
4220 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4221 [C_DC_PRF_CLK_CNTR] =
4222 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4223 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4224 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4225 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4226 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PG_STS_TX_SBE_CNT] =
4229 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4230 [C_DC_PG_STS_TX_MBE_CNT] =
4231 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4232 			 CNTR_SYNTH),
4233 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4234 			    access_sw_cpu_intr),
4235 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4236 			    access_sw_cpu_rcv_limit),
4237 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4238 			    access_sw_ctx0_seq_drop),
4239 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4240 			    access_sw_vtx_wait),
4241 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4242 			    access_sw_pio_wait),
4243 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4244 			    access_sw_pio_drain),
4245 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4246 			    access_sw_kmem_wait),
4247 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4248 			    hfi1_access_sw_tid_wait),
4249 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4250 			    access_sw_send_schedule),
4251 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4252 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4253 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4254 				      dev_access_u32_csr),
4255 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4256 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4257 			     access_sde_int_cnt),
4258 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4259 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260 			     access_sde_err_cnt),
4261 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4262 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 				  access_sde_idle_int_cnt),
4264 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4265 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 				      access_sde_progress_int_cnt),
4267 /* MISC_ERR_STATUS */
4268 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4269 				CNTR_NORMAL,
4270 				access_misc_pll_lock_fail_err_cnt),
4271 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4272 				CNTR_NORMAL,
4273 				access_misc_mbist_fail_err_cnt),
4274 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_misc_invalid_eep_cmd_err_cnt),
4277 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_misc_efuse_done_parity_err_cnt),
4280 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_efuse_write_err_cnt),
4283 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4284 				0, CNTR_NORMAL,
4285 				access_misc_efuse_read_bad_addr_err_cnt),
4286 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_efuse_csr_parity_err_cnt),
4289 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4290 				CNTR_NORMAL,
4291 				access_misc_fw_auth_failed_err_cnt),
4292 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_key_mismatch_err_cnt),
4295 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_sbus_write_failed_err_cnt),
4298 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_csr_write_bad_addr_err_cnt),
4301 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_csr_read_bad_addr_err_cnt),
4304 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_csr_parity_err_cnt),
4307 /* CceErrStatus */
4308 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_sw_cce_err_status_aggregated_cnt),
4311 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_cce_msix_csr_parity_err_cnt),
4314 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_cce_int_map_unc_err_cnt),
4317 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_int_map_cor_err_cnt),
4320 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_cce_msix_table_unc_err_cnt),
4323 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_msix_table_cor_err_cnt),
4326 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4327 				0, CNTR_NORMAL,
4328 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4329 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4330 				0, CNTR_NORMAL,
4331 				access_cce_rcpl_async_fifo_parity_err_cnt),
4332 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_cce_seg_write_bad_addr_err_cnt),
4335 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4336 				CNTR_NORMAL,
4337 				access_cce_seg_read_bad_addr_err_cnt),
4338 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_la_triggered_cnt),
4341 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_trgt_cpl_timeout_err_cnt),
4344 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_pcic_receive_parity_err_cnt),
4347 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_pcic_transmit_back_parity_err_cnt),
4350 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4351 				0, CNTR_NORMAL,
4352 				access_pcic_transmit_front_parity_err_cnt),
4353 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_pcic_cpl_dat_q_unc_err_cnt),
4356 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_pcic_cpl_hd_q_unc_err_cnt),
4359 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_pcic_post_dat_q_unc_err_cnt),
4362 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_pcic_post_hd_q_unc_err_cnt),
4365 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_retry_sot_mem_unc_err_cnt),
4368 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_retry_mem_unc_err),
4371 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_n_post_dat_q_parity_err_cnt),
4374 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_n_post_h_q_parity_err_cnt),
4377 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_cpl_dat_q_cor_err_cnt),
4380 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_cpl_hd_q_cor_err_cnt),
4383 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_post_dat_q_cor_err_cnt),
4386 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_post_hd_q_cor_err_cnt),
4389 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_retry_sot_mem_cor_err_cnt),
4392 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_retry_mem_cor_err_cnt),
4395 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4396 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4399 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4400 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4401 				CNTR_NORMAL,
4402 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4403 				),
4404 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4405 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4406 			CNTR_NORMAL,
4407 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4408 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4409 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4410 			CNTR_NORMAL,
4411 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4412 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4413 			0, CNTR_NORMAL,
4414 			access_cce_cli2_async_fifo_parity_err_cnt),
4415 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4416 			CNTR_NORMAL,
4417 			access_cce_csr_cfg_bus_parity_err_cnt),
4418 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4419 			0, CNTR_NORMAL,
4420 			access_cce_cli0_async_fifo_parity_err_cnt),
4421 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4422 			CNTR_NORMAL,
4423 			access_cce_rspd_data_parity_err_cnt),
4424 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4425 			CNTR_NORMAL,
4426 			access_cce_trgt_access_err_cnt),
4427 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4428 			0, CNTR_NORMAL,
4429 			access_cce_trgt_async_fifo_parity_err_cnt),
4430 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4431 			CNTR_NORMAL,
4432 			access_cce_csr_write_bad_addr_err_cnt),
4433 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4434 			CNTR_NORMAL,
4435 			access_cce_csr_read_bad_addr_err_cnt),
4436 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4437 			CNTR_NORMAL,
4438 			access_ccs_csr_parity_err_cnt),
4439 
4440 /* RcvErrStatus */
4441 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_rx_csr_parity_err_cnt),
4444 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4445 			CNTR_NORMAL,
4446 			access_rx_csr_write_bad_addr_err_cnt),
4447 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_csr_read_bad_addr_err_cnt),
4450 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_dma_csr_unc_err_cnt),
4453 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_dma_dq_fsm_encoding_err_cnt),
4456 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_dma_eq_fsm_encoding_err_cnt),
4459 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_dma_csr_parity_err_cnt),
4462 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_rbuf_data_cor_err_cnt),
4465 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_rbuf_data_unc_err_cnt),
4468 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4471 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4474 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4477 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4480 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_rbuf_desc_part2_cor_err_cnt),
4483 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_rbuf_desc_part2_unc_err_cnt),
4486 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_rbuf_desc_part1_cor_err_cnt),
4489 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_desc_part1_unc_err_cnt),
4492 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_hq_intr_fsm_err_cnt),
4495 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_hq_intr_csr_parity_err_cnt),
4498 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_lookup_csr_parity_err_cnt),
4501 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_lookup_rcv_array_cor_err_cnt),
4504 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_lookup_rcv_array_unc_err_cnt),
4507 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4508 			0, CNTR_NORMAL,
4509 			access_rx_lookup_des_part2_parity_err_cnt),
4510 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4511 			0, CNTR_NORMAL,
4512 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4513 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_lookup_des_part1_unc_err_cnt),
4516 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4517 			CNTR_NORMAL,
4518 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4519 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4522 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4523 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4526 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4527 			0, CNTR_NORMAL,
4528 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4529 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4530 			0, CNTR_NORMAL,
4531 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4532 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4535 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rx_rbuf_empty_err_cnt),
4538 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rbuf_full_err_cnt),
4541 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rbuf_bad_lookup_err_cnt),
4544 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rbuf_ctx_id_parity_err_cnt),
4547 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rbuf_csr_qeopdw_parity_err_cnt),
4550 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4551 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4554 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4555 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4556 			CNTR_NORMAL,
4557 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4558 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4559 			0, CNTR_NORMAL,
4560 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4561 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4562 			0, CNTR_NORMAL,
4563 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4564 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4565 			0, 0, CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4571 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4572 			CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4574 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_block_list_read_cor_err_cnt),
4577 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4578 			0, CNTR_NORMAL,
4579 			access_rx_rbuf_block_list_read_unc_err_cnt),
4580 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4581 			CNTR_NORMAL,
4582 			access_rx_rbuf_lookup_des_cor_err_cnt),
4583 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4584 			CNTR_NORMAL,
4585 			access_rx_rbuf_lookup_des_unc_err_cnt),
4586 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4587 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4593 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_free_list_cor_err_cnt),
4596 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_free_list_unc_err_cnt),
4599 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rcv_fsm_encoding_err_cnt),
4602 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_dma_flag_cor_err_cnt),
4605 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_dma_flag_unc_err_cnt),
4608 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_dc_sop_eop_parity_err_cnt),
4611 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_rcv_csr_parity_err_cnt),
4614 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_rcv_qp_map_table_cor_err_cnt),
4617 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_rcv_qp_map_table_unc_err_cnt),
4620 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rcv_data_cor_err_cnt),
4623 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_data_unc_err_cnt),
4626 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_hdr_cor_err_cnt),
4629 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_hdr_unc_err_cnt),
4632 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_dc_intf_parity_err_cnt),
4635 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_dma_csr_cor_err_cnt),
4638 /* SendPioErrStatus */
4639 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_pio_pec_sop_head_parity_err_cnt),
4642 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_pio_pcc_sop_head_parity_err_cnt),
4645 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4646 			0, 0, CNTR_NORMAL,
4647 			access_pio_last_returned_cnt_parity_err_cnt),
4648 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4649 			0, CNTR_NORMAL,
4650 			access_pio_current_free_cnt_parity_err_cnt),
4651 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4652 			CNTR_NORMAL,
4653 			access_pio_reserved_31_err_cnt),
4654 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_reserved_30_err_cnt),
4657 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_ppmc_sop_len_err_cnt),
4660 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4663 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_vl_fifo_parity_err_cnt),
4666 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_vlf_sop_parity_err_cnt),
4669 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_vlf_v1_len_parity_err_cnt),
4672 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_block_qw_count_parity_err_cnt),
4675 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_write_qw_valid_parity_err_cnt),
4678 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_state_machine_err_cnt),
4681 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_write_data_parity_err_cnt),
4684 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_host_addr_mem_cor_err_cnt),
4687 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_host_addr_mem_unc_err_cnt),
4690 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4693 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_init_sm_in_err_cnt),
4696 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_ppmc_pbl_fifo_err_cnt),
4699 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4700 			0, CNTR_NORMAL,
4701 			access_pio_credit_ret_fifo_parity_err_cnt),
4702 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4705 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4708 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4714 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_sm_pkt_reset_parity_err_cnt),
4717 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_pkt_evict_fifo_parity_err_cnt),
4720 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4721 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4724 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_sbrdctl_crrel_parity_err_cnt),
4727 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4728 			CNTR_NORMAL,
4729 			access_pio_pec_fifo_parity_err_cnt),
4730 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_pcc_fifo_parity_err_cnt),
4733 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_sb_mem_fifo1_err_cnt),
4736 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_sb_mem_fifo0_err_cnt),
4739 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_csr_parity_err_cnt),
4742 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_write_addr_parity_err_cnt),
4745 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_write_bad_ctxt_err_cnt),
4748 /* SendDmaErrStatus */
4749 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4750 			0, CNTR_NORMAL,
4751 			access_sdma_pcie_req_tracking_cor_err_cnt),
4752 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4753 			0, CNTR_NORMAL,
4754 			access_sdma_pcie_req_tracking_unc_err_cnt),
4755 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4756 			CNTR_NORMAL,
4757 			access_sdma_csr_parity_err_cnt),
4758 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4759 			CNTR_NORMAL,
4760 			access_sdma_rpy_tag_err_cnt),
4761 /* SendEgressErrStatus */
4762 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_tx_read_pio_memory_csr_unc_err_cnt),
4765 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4766 			0, CNTR_NORMAL,
4767 			access_tx_read_sdma_memory_csr_err_cnt),
4768 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_egress_fifo_cor_err_cnt),
4771 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4772 			CNTR_NORMAL,
4773 			access_tx_read_pio_memory_cor_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_read_sdma_memory_cor_err_cnt),
4777 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_sb_hdr_cor_err_cnt),
4780 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_credit_overrun_err_cnt),
4783 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_launch_fifo8_cor_err_cnt),
4786 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_launch_fifo7_cor_err_cnt),
4789 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_launch_fifo6_cor_err_cnt),
4792 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_launch_fifo5_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo4_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo3_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo2_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo1_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo0_cor_err_cnt),
4810 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_credit_return_vl_err_cnt),
4813 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_hcrc_insertion_err_cnt),
4816 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_egress_fifo_unc_err_cnt),
4819 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_read_pio_memory_unc_err_cnt),
4822 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_read_sdma_memory_unc_err_cnt),
4825 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_sb_hdr_unc_err_cnt),
4828 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_credit_return_partiy_err_cnt),
4831 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4832 			0, 0, CNTR_NORMAL,
4833 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4834 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4835 			0, 0, CNTR_NORMAL,
4836 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4837 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4840 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4858 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_sdma15_disallowed_packet_err_cnt),
4861 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_sdma14_disallowed_packet_err_cnt),
4864 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_sdma13_disallowed_packet_err_cnt),
4867 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_sdma12_disallowed_packet_err_cnt),
4870 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma11_disallowed_packet_err_cnt),
4873 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma10_disallowed_packet_err_cnt),
4876 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma9_disallowed_packet_err_cnt),
4879 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma8_disallowed_packet_err_cnt),
4882 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma7_disallowed_packet_err_cnt),
4885 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma6_disallowed_packet_err_cnt),
4888 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma5_disallowed_packet_err_cnt),
4891 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma4_disallowed_packet_err_cnt),
4894 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma3_disallowed_packet_err_cnt),
4897 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma2_disallowed_packet_err_cnt),
4900 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma1_disallowed_packet_err_cnt),
4903 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma0_disallowed_packet_err_cnt),
4906 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4907 			CNTR_NORMAL,
4908 			access_tx_config_parity_err_cnt),
4909 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4910 			CNTR_NORMAL,
4911 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4912 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_tx_launch_csr_parity_err_cnt),
4915 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_tx_illegal_vl_err_cnt),
4918 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4919 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4922 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_egress_reserved_10_err_cnt),
4925 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_egress_reserved_9_err_cnt),
4928 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4929 			0, 0, CNTR_NORMAL,
4930 			access_tx_sdma_launch_intf_parity_err_cnt),
4931 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_tx_pio_launch_intf_parity_err_cnt),
4934 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4935 			CNTR_NORMAL,
4936 			access_egress_reserved_6_err_cnt),
4937 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_tx_incorrect_link_state_err_cnt),
4940 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_tx_linkdown_err_cnt),
4943 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4944 			"EgressFifoUnderrunOrParityErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4947 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_egress_reserved_2_err_cnt),
4950 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_tx_pkt_integrity_mem_unc_err_cnt),
4953 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_tx_pkt_integrity_mem_cor_err_cnt),
4956 /* SendErrStatus */
4957 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_send_csr_write_bad_addr_err_cnt),
4960 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_send_csr_read_bad_addr_err_cnt),
4963 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4964 			CNTR_NORMAL,
4965 			access_send_csr_parity_cnt),
4966 /* SendCtxtErrStatus */
4967 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_pio_write_out_of_bounds_err_cnt),
4970 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_pio_write_overflow_err_cnt),
4973 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4974 			0, 0, CNTR_NORMAL,
4975 			access_pio_write_crosses_boundary_err_cnt),
4976 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_pio_disallowed_packet_err_cnt),
4979 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4980 			CNTR_NORMAL,
4981 			access_pio_inconsistent_sop_err_cnt),
4982 /* SendDmaEngErrStatus */
4983 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4984 			0, 0, CNTR_NORMAL,
4985 			access_sdma_header_request_fifo_cor_err_cnt),
4986 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_sdma_header_storage_cor_err_cnt),
4989 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_sdma_packet_tracking_cor_err_cnt),
4992 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_assembly_cor_err_cnt),
4995 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_desc_table_cor_err_cnt),
4998 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4999 			0, 0, CNTR_NORMAL,
5000 			access_sdma_header_request_fifo_unc_err_cnt),
5001 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_header_storage_unc_err_cnt),
5004 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5005 			CNTR_NORMAL,
5006 			access_sdma_packet_tracking_unc_err_cnt),
5007 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5008 			CNTR_NORMAL,
5009 			access_sdma_assembly_unc_err_cnt),
5010 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_desc_table_unc_err_cnt),
5013 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_timeout_err_cnt),
5016 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_header_length_err_cnt),
5019 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_header_address_err_cnt),
5022 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_header_select_err_cnt),
5025 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_reserved_9_err_cnt),
5028 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_packet_desc_overflow_err_cnt),
5031 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_length_mismatch_err_cnt),
5034 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_halt_err_cnt),
5037 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_mem_read_err_cnt),
5040 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_first_desc_err_cnt),
5043 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_tail_out_of_bounds_err_cnt),
5046 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_too_long_err_cnt),
5049 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_gen_mismatch_err_cnt),
5052 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_wrong_dw_err_cnt),
5055 };
5056 
5057 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5058 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5059 			CNTR_NORMAL),
5060 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5061 			CNTR_NORMAL),
5062 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5063 			CNTR_NORMAL),
5064 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5073 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5074 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5075 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5076 				      CNTR_SYNTH | CNTR_VL),
5077 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5078 				     CNTR_SYNTH | CNTR_VL),
5079 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5080 				      CNTR_SYNTH | CNTR_VL),
5081 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5082 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5083 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5084 			     access_sw_link_dn_cnt),
5085 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5086 			   access_sw_link_up_cnt),
5087 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5088 				 access_sw_unknown_frame_cnt),
5089 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090 			     access_sw_xmit_discards),
5091 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5092 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5093 				access_sw_xmit_discards),
5094 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5095 				 access_xmit_constraint_errs),
5096 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5097 				access_rcv_constraint_errs),
5098 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5099 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5100 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5101 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5102 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5103 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5104 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5105 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5106 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5107 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5108 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5109 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5110 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5111 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5112 			       access_sw_cpu_rc_acks),
5113 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5114 				access_sw_cpu_rc_qacks),
5115 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5116 				       access_sw_cpu_rc_delayed_comp),
5117 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5118 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5119 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5120 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5121 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5122 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5123 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5124 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5125 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5126 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5127 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5128 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5129 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5130 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5131 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5132 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5133 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5134 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5135 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5136 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5137 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5138 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5139 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5140 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5141 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5142 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5143 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5144 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5145 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5146 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5147 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5148 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5149 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5150 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5151 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5152 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5153 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5154 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5155 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5156 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5157 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5158 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5159 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5160 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5161 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5162 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5163 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5164 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5165 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5166 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5167 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5168 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5169 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5170 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5171 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5172 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5173 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5174 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5175 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5176 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5177 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5178 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5179 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5180 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5181 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5182 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5183 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5184 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5185 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5186 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5187 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5188 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5189 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5190 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5191 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5192 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5193 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5194 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5195 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5196 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5197 };
5198 
5199 /* ======================================================================== */
5200 
5201 /* return true if this is chip revision revision a */
is_ax(struct hfi1_devdata * dd)5202 int is_ax(struct hfi1_devdata *dd)
5203 {
5204 	u8 chip_rev_minor =
5205 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5206 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5207 	return (chip_rev_minor & 0xf0) == 0;
5208 }
5209 
5210 /* return true if this is chip revision revision b */
is_bx(struct hfi1_devdata * dd)5211 int is_bx(struct hfi1_devdata *dd)
5212 {
5213 	u8 chip_rev_minor =
5214 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5215 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5216 	return (chip_rev_minor & 0xF0) == 0x10;
5217 }
5218 
5219 /* return true is kernel urg disabled for rcd */
is_urg_masked(struct hfi1_ctxtdata * rcd)5220 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5221 {
5222 	u64 mask;
5223 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5224 	u8 bit = is % 64;
5225 
5226 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5227 	return !(mask & BIT_ULL(bit));
5228 }
5229 
5230 /*
5231  * Append string s to buffer buf.  Arguments curp and len are the current
5232  * position and remaining length, respectively.
5233  *
5234  * return 0 on success, 1 on out of room
5235  */
append_str(char * buf,char ** curp,int * lenp,const char * s)5236 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5237 {
5238 	char *p = *curp;
5239 	int len = *lenp;
5240 	int result = 0; /* success */
5241 	char c;
5242 
5243 	/* add a comma, if first in the buffer */
5244 	if (p != buf) {
5245 		if (len == 0) {
5246 			result = 1; /* out of room */
5247 			goto done;
5248 		}
5249 		*p++ = ',';
5250 		len--;
5251 	}
5252 
5253 	/* copy the string */
5254 	while ((c = *s++) != 0) {
5255 		if (len == 0) {
5256 			result = 1; /* out of room */
5257 			goto done;
5258 		}
5259 		*p++ = c;
5260 		len--;
5261 	}
5262 
5263 done:
5264 	/* write return values */
5265 	*curp = p;
5266 	*lenp = len;
5267 
5268 	return result;
5269 }
5270 
5271 /*
5272  * Using the given flag table, print a comma separated string into
5273  * the buffer.  End in '*' if the buffer is too short.
5274  */
flag_string(char * buf,int buf_len,u64 flags,struct flag_table * table,int table_size)5275 static char *flag_string(char *buf, int buf_len, u64 flags,
5276 			 struct flag_table *table, int table_size)
5277 {
5278 	char extra[32];
5279 	char *p = buf;
5280 	int len = buf_len;
5281 	int no_room = 0;
5282 	int i;
5283 
5284 	/* make sure there is at least 2 so we can form "*" */
5285 	if (len < 2)
5286 		return "";
5287 
5288 	len--;	/* leave room for a nul */
5289 	for (i = 0; i < table_size; i++) {
5290 		if (flags & table[i].flag) {
5291 			no_room = append_str(buf, &p, &len, table[i].str);
5292 			if (no_room)
5293 				break;
5294 			flags &= ~table[i].flag;
5295 		}
5296 	}
5297 
5298 	/* any undocumented bits left? */
5299 	if (!no_room && flags) {
5300 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5301 		no_room = append_str(buf, &p, &len, extra);
5302 	}
5303 
5304 	/* add * if ran out of room */
5305 	if (no_room) {
5306 		/* may need to back up to add space for a '*' */
5307 		if (len == 0)
5308 			--p;
5309 		*p++ = '*';
5310 	}
5311 
5312 	/* add final nul - space already allocated above */
5313 	*p = 0;
5314 	return buf;
5315 }
5316 
5317 /* first 8 CCE error interrupt source names */
5318 static const char * const cce_misc_names[] = {
5319 	"CceErrInt",		/* 0 */
5320 	"RxeErrInt",		/* 1 */
5321 	"MiscErrInt",		/* 2 */
5322 	"Reserved3",		/* 3 */
5323 	"PioErrInt",		/* 4 */
5324 	"SDmaErrInt",		/* 5 */
5325 	"EgressErrInt",		/* 6 */
5326 	"TxeErrInt"		/* 7 */
5327 };
5328 
5329 /*
5330  * Return the miscellaneous error interrupt name.
5331  */
is_misc_err_name(char * buf,size_t bsize,unsigned int source)5332 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5333 {
5334 	if (source < ARRAY_SIZE(cce_misc_names))
5335 		strncpy(buf, cce_misc_names[source], bsize);
5336 	else
5337 		snprintf(buf, bsize, "Reserved%u",
5338 			 source + IS_GENERAL_ERR_START);
5339 
5340 	return buf;
5341 }
5342 
5343 /*
5344  * Return the SDMA engine error interrupt name.
5345  */
is_sdma_eng_err_name(char * buf,size_t bsize,unsigned int source)5346 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5347 {
5348 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5349 	return buf;
5350 }
5351 
5352 /*
5353  * Return the send context error interrupt name.
5354  */
is_sendctxt_err_name(char * buf,size_t bsize,unsigned int source)5355 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5356 {
5357 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5358 	return buf;
5359 }
5360 
5361 static const char * const various_names[] = {
5362 	"PbcInt",
5363 	"GpioAssertInt",
5364 	"Qsfp1Int",
5365 	"Qsfp2Int",
5366 	"TCritInt"
5367 };
5368 
5369 /*
5370  * Return the various interrupt name.
5371  */
is_various_name(char * buf,size_t bsize,unsigned int source)5372 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5373 {
5374 	if (source < ARRAY_SIZE(various_names))
5375 		strncpy(buf, various_names[source], bsize);
5376 	else
5377 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5378 	return buf;
5379 }
5380 
5381 /*
5382  * Return the DC interrupt name.
5383  */
is_dc_name(char * buf,size_t bsize,unsigned int source)5384 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5385 {
5386 	static const char * const dc_int_names[] = {
5387 		"common",
5388 		"lcb",
5389 		"8051",
5390 		"lbm"	/* local block merge */
5391 	};
5392 
5393 	if (source < ARRAY_SIZE(dc_int_names))
5394 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5395 	else
5396 		snprintf(buf, bsize, "DCInt%u", source);
5397 	return buf;
5398 }
5399 
5400 static const char * const sdma_int_names[] = {
5401 	"SDmaInt",
5402 	"SdmaIdleInt",
5403 	"SdmaProgressInt",
5404 };
5405 
5406 /*
5407  * Return the SDMA engine interrupt name.
5408  */
is_sdma_eng_name(char * buf,size_t bsize,unsigned int source)5409 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5410 {
5411 	/* what interrupt */
5412 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5413 	/* which engine */
5414 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5415 
5416 	if (likely(what < 3))
5417 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5418 	else
5419 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5420 	return buf;
5421 }
5422 
5423 /*
5424  * Return the receive available interrupt name.
5425  */
is_rcv_avail_name(char * buf,size_t bsize,unsigned int source)5426 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5427 {
5428 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5429 	return buf;
5430 }
5431 
5432 /*
5433  * Return the receive urgent interrupt name.
5434  */
is_rcv_urgent_name(char * buf,size_t bsize,unsigned int source)5435 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5436 {
5437 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5438 	return buf;
5439 }
5440 
5441 /*
5442  * Return the send credit interrupt name.
5443  */
is_send_credit_name(char * buf,size_t bsize,unsigned int source)5444 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5445 {
5446 	snprintf(buf, bsize, "SendCreditInt%u", source);
5447 	return buf;
5448 }
5449 
5450 /*
5451  * Return the reserved interrupt name.
5452  */
is_reserved_name(char * buf,size_t bsize,unsigned int source)5453 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5454 {
5455 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5456 	return buf;
5457 }
5458 
cce_err_status_string(char * buf,int buf_len,u64 flags)5459 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5460 {
5461 	return flag_string(buf, buf_len, flags,
5462 			   cce_err_status_flags,
5463 			   ARRAY_SIZE(cce_err_status_flags));
5464 }
5465 
rxe_err_status_string(char * buf,int buf_len,u64 flags)5466 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5467 {
5468 	return flag_string(buf, buf_len, flags,
5469 			   rxe_err_status_flags,
5470 			   ARRAY_SIZE(rxe_err_status_flags));
5471 }
5472 
misc_err_status_string(char * buf,int buf_len,u64 flags)5473 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5474 {
5475 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5476 			   ARRAY_SIZE(misc_err_status_flags));
5477 }
5478 
pio_err_status_string(char * buf,int buf_len,u64 flags)5479 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 	return flag_string(buf, buf_len, flags,
5482 			   pio_err_status_flags,
5483 			   ARRAY_SIZE(pio_err_status_flags));
5484 }
5485 
sdma_err_status_string(char * buf,int buf_len,u64 flags)5486 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5487 {
5488 	return flag_string(buf, buf_len, flags,
5489 			   sdma_err_status_flags,
5490 			   ARRAY_SIZE(sdma_err_status_flags));
5491 }
5492 
egress_err_status_string(char * buf,int buf_len,u64 flags)5493 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5494 {
5495 	return flag_string(buf, buf_len, flags,
5496 			   egress_err_status_flags,
5497 			   ARRAY_SIZE(egress_err_status_flags));
5498 }
5499 
egress_err_info_string(char * buf,int buf_len,u64 flags)5500 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5501 {
5502 	return flag_string(buf, buf_len, flags,
5503 			   egress_err_info_flags,
5504 			   ARRAY_SIZE(egress_err_info_flags));
5505 }
5506 
send_err_status_string(char * buf,int buf_len,u64 flags)5507 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5508 {
5509 	return flag_string(buf, buf_len, flags,
5510 			   send_err_status_flags,
5511 			   ARRAY_SIZE(send_err_status_flags));
5512 }
5513 
handle_cce_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5514 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5515 {
5516 	char buf[96];
5517 	int i = 0;
5518 
5519 	/*
5520 	 * For most these errors, there is nothing that can be done except
5521 	 * report or record it.
5522 	 */
5523 	dd_dev_info(dd, "CCE Error: %s\n",
5524 		    cce_err_status_string(buf, sizeof(buf), reg));
5525 
5526 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5527 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5528 		/* this error requires a manual drop into SPC freeze mode */
5529 		/* then a fix up */
5530 		start_freeze_handling(dd->pport, FREEZE_SELF);
5531 	}
5532 
5533 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5534 		if (reg & (1ull << i)) {
5535 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5536 			/* maintain a counter over all cce_err_status errors */
5537 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5538 		}
5539 	}
5540 }
5541 
5542 /*
5543  * Check counters for receive errors that do not have an interrupt
5544  * associated with them.
5545  */
5546 #define RCVERR_CHECK_TIME 10
update_rcverr_timer(struct timer_list * t)5547 static void update_rcverr_timer(struct timer_list *t)
5548 {
5549 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5550 	struct hfi1_pportdata *ppd = dd->pport;
5551 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5552 
5553 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5554 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5555 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5556 		set_link_down_reason(
5557 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5558 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5559 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5560 	}
5561 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5562 
5563 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5564 }
5565 
init_rcverr(struct hfi1_devdata * dd)5566 static int init_rcverr(struct hfi1_devdata *dd)
5567 {
5568 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5569 	/* Assume the hardware counter has been reset */
5570 	dd->rcv_ovfl_cnt = 0;
5571 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5572 }
5573 
free_rcverr(struct hfi1_devdata * dd)5574 static void free_rcverr(struct hfi1_devdata *dd)
5575 {
5576 	if (dd->rcverr_timer.function)
5577 		del_timer_sync(&dd->rcverr_timer);
5578 }
5579 
handle_rxe_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5580 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5581 {
5582 	char buf[96];
5583 	int i = 0;
5584 
5585 	dd_dev_info(dd, "Receive Error: %s\n",
5586 		    rxe_err_status_string(buf, sizeof(buf), reg));
5587 
5588 	if (reg & ALL_RXE_FREEZE_ERR) {
5589 		int flags = 0;
5590 
5591 		/*
5592 		 * Freeze mode recovery is disabled for the errors
5593 		 * in RXE_FREEZE_ABORT_MASK
5594 		 */
5595 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5596 			flags = FREEZE_ABORT;
5597 
5598 		start_freeze_handling(dd->pport, flags);
5599 	}
5600 
5601 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5602 		if (reg & (1ull << i))
5603 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5604 	}
5605 }
5606 
handle_misc_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5607 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5608 {
5609 	char buf[96];
5610 	int i = 0;
5611 
5612 	dd_dev_info(dd, "Misc Error: %s",
5613 		    misc_err_status_string(buf, sizeof(buf), reg));
5614 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5615 		if (reg & (1ull << i))
5616 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5617 	}
5618 }
5619 
handle_pio_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5620 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5621 {
5622 	char buf[96];
5623 	int i = 0;
5624 
5625 	dd_dev_info(dd, "PIO Error: %s\n",
5626 		    pio_err_status_string(buf, sizeof(buf), reg));
5627 
5628 	if (reg & ALL_PIO_FREEZE_ERR)
5629 		start_freeze_handling(dd->pport, 0);
5630 
5631 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5632 		if (reg & (1ull << i))
5633 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5634 	}
5635 }
5636 
handle_sdma_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5637 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5638 {
5639 	char buf[96];
5640 	int i = 0;
5641 
5642 	dd_dev_info(dd, "SDMA Error: %s\n",
5643 		    sdma_err_status_string(buf, sizeof(buf), reg));
5644 
5645 	if (reg & ALL_SDMA_FREEZE_ERR)
5646 		start_freeze_handling(dd->pport, 0);
5647 
5648 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5649 		if (reg & (1ull << i))
5650 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5651 	}
5652 }
5653 
__count_port_discards(struct hfi1_pportdata * ppd)5654 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5655 {
5656 	incr_cntr64(&ppd->port_xmit_discards);
5657 }
5658 
count_port_inactive(struct hfi1_devdata * dd)5659 static void count_port_inactive(struct hfi1_devdata *dd)
5660 {
5661 	__count_port_discards(dd->pport);
5662 }
5663 
5664 /*
5665  * We have had a "disallowed packet" error during egress. Determine the
5666  * integrity check which failed, and update relevant error counter, etc.
5667  *
5668  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5669  * bit of state per integrity check, and so we can miss the reason for an
5670  * egress error if more than one packet fails the same integrity check
5671  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5672  */
handle_send_egress_err_info(struct hfi1_devdata * dd,int vl)5673 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5674 					int vl)
5675 {
5676 	struct hfi1_pportdata *ppd = dd->pport;
5677 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5678 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5679 	char buf[96];
5680 
5681 	/* clear down all observed info as quickly as possible after read */
5682 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5683 
5684 	dd_dev_info(dd,
5685 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5686 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5687 
5688 	/* Eventually add other counters for each bit */
5689 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5690 		int weight, i;
5691 
5692 		/*
5693 		 * Count all applicable bits as individual errors and
5694 		 * attribute them to the packet that triggered this handler.
5695 		 * This may not be completely accurate due to limitations
5696 		 * on the available hardware error information.  There is
5697 		 * a single information register and any number of error
5698 		 * packets may have occurred and contributed to it before
5699 		 * this routine is called.  This means that:
5700 		 * a) If multiple packets with the same error occur before
5701 		 *    this routine is called, earlier packets are missed.
5702 		 *    There is only a single bit for each error type.
5703 		 * b) Errors may not be attributed to the correct VL.
5704 		 *    The driver is attributing all bits in the info register
5705 		 *    to the packet that triggered this call, but bits
5706 		 *    could be an accumulation of different packets with
5707 		 *    different VLs.
5708 		 * c) A single error packet may have multiple counts attached
5709 		 *    to it.  There is no way for the driver to know if
5710 		 *    multiple bits set in the info register are due to a
5711 		 *    single packet or multiple packets.  The driver assumes
5712 		 *    multiple packets.
5713 		 */
5714 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5715 		for (i = 0; i < weight; i++) {
5716 			__count_port_discards(ppd);
5717 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5718 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5719 			else if (vl == 15)
5720 				incr_cntr64(&ppd->port_xmit_discards_vl
5721 					    [C_VL_15]);
5722 		}
5723 	}
5724 }
5725 
5726 /*
5727  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5728  * register. Does it represent a 'port inactive' error?
5729  */
port_inactive_err(u64 posn)5730 static inline int port_inactive_err(u64 posn)
5731 {
5732 	return (posn >= SEES(TX_LINKDOWN) &&
5733 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5734 }
5735 
5736 /*
5737  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5738  * register. Does it represent a 'disallowed packet' error?
5739  */
disallowed_pkt_err(int posn)5740 static inline int disallowed_pkt_err(int posn)
5741 {
5742 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5743 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5744 }
5745 
5746 /*
5747  * Input value is a bit position of one of the SDMA engine disallowed
5748  * packet errors.  Return which engine.  Use of this must be guarded by
5749  * disallowed_pkt_err().
5750  */
disallowed_pkt_engine(int posn)5751 static inline int disallowed_pkt_engine(int posn)
5752 {
5753 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5754 }
5755 
5756 /*
5757  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5758  * be done.
5759  */
engine_to_vl(struct hfi1_devdata * dd,int engine)5760 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5761 {
5762 	struct sdma_vl_map *m;
5763 	int vl;
5764 
5765 	/* range check */
5766 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5767 		return -1;
5768 
5769 	rcu_read_lock();
5770 	m = rcu_dereference(dd->sdma_map);
5771 	vl = m->engine_to_vl[engine];
5772 	rcu_read_unlock();
5773 
5774 	return vl;
5775 }
5776 
5777 /*
5778  * Translate the send context (sofware index) into a VL.  Return -1 if the
5779  * translation cannot be done.
5780  */
sc_to_vl(struct hfi1_devdata * dd,int sw_index)5781 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5782 {
5783 	struct send_context_info *sci;
5784 	struct send_context *sc;
5785 	int i;
5786 
5787 	sci = &dd->send_contexts[sw_index];
5788 
5789 	/* there is no information for user (PSM) and ack contexts */
5790 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5791 		return -1;
5792 
5793 	sc = sci->sc;
5794 	if (!sc)
5795 		return -1;
5796 	if (dd->vld[15].sc == sc)
5797 		return 15;
5798 	for (i = 0; i < num_vls; i++)
5799 		if (dd->vld[i].sc == sc)
5800 			return i;
5801 
5802 	return -1;
5803 }
5804 
handle_egress_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5805 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5806 {
5807 	u64 reg_copy = reg, handled = 0;
5808 	char buf[96];
5809 	int i = 0;
5810 
5811 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5812 		start_freeze_handling(dd->pport, 0);
5813 	else if (is_ax(dd) &&
5814 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5815 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5816 		start_freeze_handling(dd->pport, 0);
5817 
5818 	while (reg_copy) {
5819 		int posn = fls64(reg_copy);
5820 		/* fls64() returns a 1-based offset, we want it zero based */
5821 		int shift = posn - 1;
5822 		u64 mask = 1ULL << shift;
5823 
5824 		if (port_inactive_err(shift)) {
5825 			count_port_inactive(dd);
5826 			handled |= mask;
5827 		} else if (disallowed_pkt_err(shift)) {
5828 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5829 
5830 			handle_send_egress_err_info(dd, vl);
5831 			handled |= mask;
5832 		}
5833 		reg_copy &= ~mask;
5834 	}
5835 
5836 	reg &= ~handled;
5837 
5838 	if (reg)
5839 		dd_dev_info(dd, "Egress Error: %s\n",
5840 			    egress_err_status_string(buf, sizeof(buf), reg));
5841 
5842 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5843 		if (reg & (1ull << i))
5844 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5845 	}
5846 }
5847 
handle_txe_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5848 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5849 {
5850 	char buf[96];
5851 	int i = 0;
5852 
5853 	dd_dev_info(dd, "Send Error: %s\n",
5854 		    send_err_status_string(buf, sizeof(buf), reg));
5855 
5856 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5857 		if (reg & (1ull << i))
5858 			incr_cntr64(&dd->send_err_status_cnt[i]);
5859 	}
5860 }
5861 
5862 /*
5863  * The maximum number of times the error clear down will loop before
5864  * blocking a repeating error.  This value is arbitrary.
5865  */
5866 #define MAX_CLEAR_COUNT 20
5867 
5868 /*
5869  * Clear and handle an error register.  All error interrupts are funneled
5870  * through here to have a central location to correctly handle single-
5871  * or multi-shot errors.
5872  *
5873  * For non per-context registers, call this routine with a context value
5874  * of 0 so the per-context offset is zero.
5875  *
5876  * If the handler loops too many times, assume that something is wrong
5877  * and can't be fixed, so mask the error bits.
5878  */
interrupt_clear_down(struct hfi1_devdata * dd,u32 context,const struct err_reg_info * eri)5879 static void interrupt_clear_down(struct hfi1_devdata *dd,
5880 				 u32 context,
5881 				 const struct err_reg_info *eri)
5882 {
5883 	u64 reg;
5884 	u32 count;
5885 
5886 	/* read in a loop until no more errors are seen */
5887 	count = 0;
5888 	while (1) {
5889 		reg = read_kctxt_csr(dd, context, eri->status);
5890 		if (reg == 0)
5891 			break;
5892 		write_kctxt_csr(dd, context, eri->clear, reg);
5893 		if (likely(eri->handler))
5894 			eri->handler(dd, context, reg);
5895 		count++;
5896 		if (count > MAX_CLEAR_COUNT) {
5897 			u64 mask;
5898 
5899 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5900 				   eri->desc, reg);
5901 			/*
5902 			 * Read-modify-write so any other masked bits
5903 			 * remain masked.
5904 			 */
5905 			mask = read_kctxt_csr(dd, context, eri->mask);
5906 			mask &= ~reg;
5907 			write_kctxt_csr(dd, context, eri->mask, mask);
5908 			break;
5909 		}
5910 	}
5911 }
5912 
5913 /*
5914  * CCE block "misc" interrupt.  Source is < 16.
5915  */
is_misc_err_int(struct hfi1_devdata * dd,unsigned int source)5916 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5917 {
5918 	const struct err_reg_info *eri = &misc_errs[source];
5919 
5920 	if (eri->handler) {
5921 		interrupt_clear_down(dd, 0, eri);
5922 	} else {
5923 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5924 			   source);
5925 	}
5926 }
5927 
send_context_err_status_string(char * buf,int buf_len,u64 flags)5928 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5929 {
5930 	return flag_string(buf, buf_len, flags,
5931 			   sc_err_status_flags,
5932 			   ARRAY_SIZE(sc_err_status_flags));
5933 }
5934 
5935 /*
5936  * Send context error interrupt.  Source (hw_context) is < 160.
5937  *
5938  * All send context errors cause the send context to halt.  The normal
5939  * clear-down mechanism cannot be used because we cannot clear the
5940  * error bits until several other long-running items are done first.
5941  * This is OK because with the context halted, nothing else is going
5942  * to happen on it anyway.
5943  */
is_sendctxt_err_int(struct hfi1_devdata * dd,unsigned int hw_context)5944 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5945 				unsigned int hw_context)
5946 {
5947 	struct send_context_info *sci;
5948 	struct send_context *sc;
5949 	char flags[96];
5950 	u64 status;
5951 	u32 sw_index;
5952 	int i = 0;
5953 	unsigned long irq_flags;
5954 
5955 	sw_index = dd->hw_to_sw[hw_context];
5956 	if (sw_index >= dd->num_send_contexts) {
5957 		dd_dev_err(dd,
5958 			   "out of range sw index %u for send context %u\n",
5959 			   sw_index, hw_context);
5960 		return;
5961 	}
5962 	sci = &dd->send_contexts[sw_index];
5963 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5964 	sc = sci->sc;
5965 	if (!sc) {
5966 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5967 			   sw_index, hw_context);
5968 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5969 		return;
5970 	}
5971 
5972 	/* tell the software that a halt has begun */
5973 	sc_stop(sc, SCF_HALTED);
5974 
5975 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5976 
5977 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5978 		    send_context_err_status_string(flags, sizeof(flags),
5979 						   status));
5980 
5981 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5982 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5983 
5984 	/*
5985 	 * Automatically restart halted kernel contexts out of interrupt
5986 	 * context.  User contexts must ask the driver to restart the context.
5987 	 */
5988 	if (sc->type != SC_USER)
5989 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5990 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5991 
5992 	/*
5993 	 * Update the counters for the corresponding status bits.
5994 	 * Note that these particular counters are aggregated over all
5995 	 * 160 contexts.
5996 	 */
5997 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5998 		if (status & (1ull << i))
5999 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6000 	}
6001 }
6002 
handle_sdma_eng_err(struct hfi1_devdata * dd,unsigned int source,u64 status)6003 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6004 				unsigned int source, u64 status)
6005 {
6006 	struct sdma_engine *sde;
6007 	int i = 0;
6008 
6009 	sde = &dd->per_sdma[source];
6010 #ifdef CONFIG_SDMA_VERBOSITY
6011 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6012 		   slashstrip(__FILE__), __LINE__, __func__);
6013 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6014 		   sde->this_idx, source, (unsigned long long)status);
6015 #endif
6016 	sde->err_cnt++;
6017 	sdma_engine_error(sde, status);
6018 
6019 	/*
6020 	* Update the counters for the corresponding status bits.
6021 	* Note that these particular counters are aggregated over
6022 	* all 16 DMA engines.
6023 	*/
6024 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6025 		if (status & (1ull << i))
6026 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6027 	}
6028 }
6029 
6030 /*
6031  * CCE block SDMA error interrupt.  Source is < 16.
6032  */
is_sdma_eng_err_int(struct hfi1_devdata * dd,unsigned int source)6033 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6034 {
6035 #ifdef CONFIG_SDMA_VERBOSITY
6036 	struct sdma_engine *sde = &dd->per_sdma[source];
6037 
6038 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6039 		   slashstrip(__FILE__), __LINE__, __func__);
6040 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6041 		   source);
6042 	sdma_dumpstate(sde);
6043 #endif
6044 	interrupt_clear_down(dd, source, &sdma_eng_err);
6045 }
6046 
6047 /*
6048  * CCE block "various" interrupt.  Source is < 8.
6049  */
is_various_int(struct hfi1_devdata * dd,unsigned int source)6050 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6051 {
6052 	const struct err_reg_info *eri = &various_err[source];
6053 
6054 	/*
6055 	 * TCritInt cannot go through interrupt_clear_down()
6056 	 * because it is not a second tier interrupt. The handler
6057 	 * should be called directly.
6058 	 */
6059 	if (source == TCRIT_INT_SOURCE)
6060 		handle_temp_err(dd);
6061 	else if (eri->handler)
6062 		interrupt_clear_down(dd, 0, eri);
6063 	else
6064 		dd_dev_info(dd,
6065 			    "%s: Unimplemented/reserved interrupt %d\n",
6066 			    __func__, source);
6067 }
6068 
handle_qsfp_int(struct hfi1_devdata * dd,u32 src_ctx,u64 reg)6069 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6070 {
6071 	/* src_ctx is always zero */
6072 	struct hfi1_pportdata *ppd = dd->pport;
6073 	unsigned long flags;
6074 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6075 
6076 	if (reg & QSFP_HFI0_MODPRST_N) {
6077 		if (!qsfp_mod_present(ppd)) {
6078 			dd_dev_info(dd, "%s: QSFP module removed\n",
6079 				    __func__);
6080 
6081 			ppd->driver_link_ready = 0;
6082 			/*
6083 			 * Cable removed, reset all our information about the
6084 			 * cache and cable capabilities
6085 			 */
6086 
6087 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6088 			/*
6089 			 * We don't set cache_refresh_required here as we expect
6090 			 * an interrupt when a cable is inserted
6091 			 */
6092 			ppd->qsfp_info.cache_valid = 0;
6093 			ppd->qsfp_info.reset_needed = 0;
6094 			ppd->qsfp_info.limiting_active = 0;
6095 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6096 					       flags);
6097 			/* Invert the ModPresent pin now to detect plug-in */
6098 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6099 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6100 
6101 			if ((ppd->offline_disabled_reason >
6102 			  HFI1_ODR_MASK(
6103 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6104 			  (ppd->offline_disabled_reason ==
6105 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6106 				ppd->offline_disabled_reason =
6107 				HFI1_ODR_MASK(
6108 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6109 
6110 			if (ppd->host_link_state == HLS_DN_POLL) {
6111 				/*
6112 				 * The link is still in POLL. This means
6113 				 * that the normal link down processing
6114 				 * will not happen. We have to do it here
6115 				 * before turning the DC off.
6116 				 */
6117 				queue_work(ppd->link_wq, &ppd->link_down_work);
6118 			}
6119 		} else {
6120 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6121 				    __func__);
6122 
6123 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6124 			ppd->qsfp_info.cache_valid = 0;
6125 			ppd->qsfp_info.cache_refresh_required = 1;
6126 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6127 					       flags);
6128 
6129 			/*
6130 			 * Stop inversion of ModPresent pin to detect
6131 			 * removal of the cable
6132 			 */
6133 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6134 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6135 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6136 
6137 			ppd->offline_disabled_reason =
6138 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6139 		}
6140 	}
6141 
6142 	if (reg & QSFP_HFI0_INT_N) {
6143 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6144 			    __func__);
6145 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6146 		ppd->qsfp_info.check_interrupt_flags = 1;
6147 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6148 	}
6149 
6150 	/* Schedule the QSFP work only if there is a cable attached. */
6151 	if (qsfp_mod_present(ppd))
6152 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6153 }
6154 
request_host_lcb_access(struct hfi1_devdata * dd)6155 static int request_host_lcb_access(struct hfi1_devdata *dd)
6156 {
6157 	int ret;
6158 
6159 	ret = do_8051_command(dd, HCMD_MISC,
6160 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6161 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6162 	if (ret != HCMD_SUCCESS) {
6163 		dd_dev_err(dd, "%s: command failed with error %d\n",
6164 			   __func__, ret);
6165 	}
6166 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6167 }
6168 
request_8051_lcb_access(struct hfi1_devdata * dd)6169 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6170 {
6171 	int ret;
6172 
6173 	ret = do_8051_command(dd, HCMD_MISC,
6174 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6175 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6176 	if (ret != HCMD_SUCCESS) {
6177 		dd_dev_err(dd, "%s: command failed with error %d\n",
6178 			   __func__, ret);
6179 	}
6180 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6181 }
6182 
6183 /*
6184  * Set the LCB selector - allow host access.  The DCC selector always
6185  * points to the host.
6186  */
set_host_lcb_access(struct hfi1_devdata * dd)6187 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6188 {
6189 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6190 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6191 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6192 }
6193 
6194 /*
6195  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6196  * points to the host.
6197  */
set_8051_lcb_access(struct hfi1_devdata * dd)6198 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6199 {
6200 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6201 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6202 }
6203 
6204 /*
6205  * Acquire LCB access from the 8051.  If the host already has access,
6206  * just increment a counter.  Otherwise, inform the 8051 that the
6207  * host is taking access.
6208  *
6209  * Returns:
6210  *	0 on success
6211  *	-EBUSY if the 8051 has control and cannot be disturbed
6212  *	-errno if unable to acquire access from the 8051
6213  */
acquire_lcb_access(struct hfi1_devdata * dd,int sleep_ok)6214 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6215 {
6216 	struct hfi1_pportdata *ppd = dd->pport;
6217 	int ret = 0;
6218 
6219 	/*
6220 	 * Use the host link state lock so the operation of this routine
6221 	 * { link state check, selector change, count increment } can occur
6222 	 * as a unit against a link state change.  Otherwise there is a
6223 	 * race between the state change and the count increment.
6224 	 */
6225 	if (sleep_ok) {
6226 		mutex_lock(&ppd->hls_lock);
6227 	} else {
6228 		while (!mutex_trylock(&ppd->hls_lock))
6229 			udelay(1);
6230 	}
6231 
6232 	/* this access is valid only when the link is up */
6233 	if (ppd->host_link_state & HLS_DOWN) {
6234 		dd_dev_info(dd, "%s: link state %s not up\n",
6235 			    __func__, link_state_name(ppd->host_link_state));
6236 		ret = -EBUSY;
6237 		goto done;
6238 	}
6239 
6240 	if (dd->lcb_access_count == 0) {
6241 		ret = request_host_lcb_access(dd);
6242 		if (ret) {
6243 			dd_dev_err(dd,
6244 				   "%s: unable to acquire LCB access, err %d\n",
6245 				   __func__, ret);
6246 			goto done;
6247 		}
6248 		set_host_lcb_access(dd);
6249 	}
6250 	dd->lcb_access_count++;
6251 done:
6252 	mutex_unlock(&ppd->hls_lock);
6253 	return ret;
6254 }
6255 
6256 /*
6257  * Release LCB access by decrementing the use count.  If the count is moving
6258  * from 1 to 0, inform 8051 that it has control back.
6259  *
6260  * Returns:
6261  *	0 on success
6262  *	-errno if unable to release access to the 8051
6263  */
release_lcb_access(struct hfi1_devdata * dd,int sleep_ok)6264 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6265 {
6266 	int ret = 0;
6267 
6268 	/*
6269 	 * Use the host link state lock because the acquire needed it.
6270 	 * Here, we only need to keep { selector change, count decrement }
6271 	 * as a unit.
6272 	 */
6273 	if (sleep_ok) {
6274 		mutex_lock(&dd->pport->hls_lock);
6275 	} else {
6276 		while (!mutex_trylock(&dd->pport->hls_lock))
6277 			udelay(1);
6278 	}
6279 
6280 	if (dd->lcb_access_count == 0) {
6281 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6282 			   __func__);
6283 		goto done;
6284 	}
6285 
6286 	if (dd->lcb_access_count == 1) {
6287 		set_8051_lcb_access(dd);
6288 		ret = request_8051_lcb_access(dd);
6289 		if (ret) {
6290 			dd_dev_err(dd,
6291 				   "%s: unable to release LCB access, err %d\n",
6292 				   __func__, ret);
6293 			/* restore host access if the grant didn't work */
6294 			set_host_lcb_access(dd);
6295 			goto done;
6296 		}
6297 	}
6298 	dd->lcb_access_count--;
6299 done:
6300 	mutex_unlock(&dd->pport->hls_lock);
6301 	return ret;
6302 }
6303 
6304 /*
6305  * Initialize LCB access variables and state.  Called during driver load,
6306  * after most of the initialization is finished.
6307  *
6308  * The DC default is LCB access on for the host.  The driver defaults to
6309  * leaving access to the 8051.  Assign access now - this constrains the call
6310  * to this routine to be after all LCB set-up is done.  In particular, after
6311  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6312  */
init_lcb_access(struct hfi1_devdata * dd)6313 static void init_lcb_access(struct hfi1_devdata *dd)
6314 {
6315 	dd->lcb_access_count = 0;
6316 }
6317 
6318 /*
6319  * Write a response back to a 8051 request.
6320  */
hreq_response(struct hfi1_devdata * dd,u8 return_code,u16 rsp_data)6321 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6322 {
6323 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6324 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6325 		  (u64)return_code <<
6326 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6327 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6328 }
6329 
6330 /*
6331  * Handle host requests from the 8051.
6332  */
handle_8051_request(struct hfi1_pportdata * ppd)6333 static void handle_8051_request(struct hfi1_pportdata *ppd)
6334 {
6335 	struct hfi1_devdata *dd = ppd->dd;
6336 	u64 reg;
6337 	u16 data = 0;
6338 	u8 type;
6339 
6340 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6341 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6342 		return;	/* no request */
6343 
6344 	/* zero out COMPLETED so the response is seen */
6345 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6346 
6347 	/* extract request details */
6348 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6349 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6350 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6351 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6352 
6353 	switch (type) {
6354 	case HREQ_LOAD_CONFIG:
6355 	case HREQ_SAVE_CONFIG:
6356 	case HREQ_READ_CONFIG:
6357 	case HREQ_SET_TX_EQ_ABS:
6358 	case HREQ_SET_TX_EQ_REL:
6359 	case HREQ_ENABLE:
6360 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6361 			    type);
6362 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6363 		break;
6364 	case HREQ_LCB_RESET:
6365 		/* Put the LCB, RX FPE and TX FPE into reset */
6366 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6367 		/* Make sure the write completed */
6368 		(void)read_csr(dd, DCC_CFG_RESET);
6369 		/* Hold the reset long enough to take effect */
6370 		udelay(1);
6371 		/* Take the LCB, RX FPE and TX FPE out of reset */
6372 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6373 		hreq_response(dd, HREQ_SUCCESS, 0);
6374 
6375 		break;
6376 	case HREQ_CONFIG_DONE:
6377 		hreq_response(dd, HREQ_SUCCESS, 0);
6378 		break;
6379 
6380 	case HREQ_INTERFACE_TEST:
6381 		hreq_response(dd, HREQ_SUCCESS, data);
6382 		break;
6383 	default:
6384 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6385 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6386 		break;
6387 	}
6388 }
6389 
6390 /*
6391  * Set up allocation unit vaulue.
6392  */
set_up_vau(struct hfi1_devdata * dd,u8 vau)6393 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6394 {
6395 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6396 
6397 	/* do not modify other values in the register */
6398 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6399 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6400 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6401 }
6402 
6403 /*
6404  * Set up initial VL15 credits of the remote.  Assumes the rest of
6405  * the CM credit registers are zero from a previous global or credit reset.
6406  * Shared limit for VL15 will always be 0.
6407  */
set_up_vl15(struct hfi1_devdata * dd,u16 vl15buf)6408 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6409 {
6410 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6411 
6412 	/* set initial values for total and shared credit limit */
6413 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6414 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6415 
6416 	/*
6417 	 * Set total limit to be equal to VL15 credits.
6418 	 * Leave shared limit at 0.
6419 	 */
6420 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6421 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6422 
6423 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6424 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6425 }
6426 
6427 /*
6428  * Zero all credit details from the previous connection and
6429  * reset the CM manager's internal counters.
6430  */
reset_link_credits(struct hfi1_devdata * dd)6431 void reset_link_credits(struct hfi1_devdata *dd)
6432 {
6433 	int i;
6434 
6435 	/* remove all previous VL credit limits */
6436 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6437 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6438 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6439 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6440 	/* reset the CM block */
6441 	pio_send_control(dd, PSC_CM_RESET);
6442 	/* reset cached value */
6443 	dd->vl15buf_cached = 0;
6444 }
6445 
6446 /* convert a vCU to a CU */
vcu_to_cu(u8 vcu)6447 static u32 vcu_to_cu(u8 vcu)
6448 {
6449 	return 1 << vcu;
6450 }
6451 
6452 /* convert a CU to a vCU */
cu_to_vcu(u32 cu)6453 static u8 cu_to_vcu(u32 cu)
6454 {
6455 	return ilog2(cu);
6456 }
6457 
6458 /* convert a vAU to an AU */
vau_to_au(u8 vau)6459 static u32 vau_to_au(u8 vau)
6460 {
6461 	return 8 * (1 << vau);
6462 }
6463 
set_linkup_defaults(struct hfi1_pportdata * ppd)6464 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6465 {
6466 	ppd->sm_trap_qp = 0x0;
6467 	ppd->sa_qp = 0x1;
6468 }
6469 
6470 /*
6471  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6472  */
lcb_shutdown(struct hfi1_devdata * dd,int abort)6473 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6474 {
6475 	u64 reg;
6476 
6477 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6478 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6479 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6480 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6481 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6482 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6483 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6484 	reg = read_csr(dd, DCC_CFG_RESET);
6485 	write_csr(dd, DCC_CFG_RESET, reg |
6486 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6487 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6488 	if (!abort) {
6489 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6490 		write_csr(dd, DCC_CFG_RESET, reg);
6491 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6492 	}
6493 }
6494 
6495 /*
6496  * This routine should be called after the link has been transitioned to
6497  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6498  * reset).
6499  *
6500  * The expectation is that the caller of this routine would have taken
6501  * care of properly transitioning the link into the correct state.
6502  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6503  *       before calling this function.
6504  */
_dc_shutdown(struct hfi1_devdata * dd)6505 static void _dc_shutdown(struct hfi1_devdata *dd)
6506 {
6507 	lockdep_assert_held(&dd->dc8051_lock);
6508 
6509 	if (dd->dc_shutdown)
6510 		return;
6511 
6512 	dd->dc_shutdown = 1;
6513 	/* Shutdown the LCB */
6514 	lcb_shutdown(dd, 1);
6515 	/*
6516 	 * Going to OFFLINE would have causes the 8051 to put the
6517 	 * SerDes into reset already. Just need to shut down the 8051,
6518 	 * itself.
6519 	 */
6520 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6521 }
6522 
dc_shutdown(struct hfi1_devdata * dd)6523 static void dc_shutdown(struct hfi1_devdata *dd)
6524 {
6525 	mutex_lock(&dd->dc8051_lock);
6526 	_dc_shutdown(dd);
6527 	mutex_unlock(&dd->dc8051_lock);
6528 }
6529 
6530 /*
6531  * Calling this after the DC has been brought out of reset should not
6532  * do any damage.
6533  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6534  *       before calling this function.
6535  */
_dc_start(struct hfi1_devdata * dd)6536 static void _dc_start(struct hfi1_devdata *dd)
6537 {
6538 	lockdep_assert_held(&dd->dc8051_lock);
6539 
6540 	if (!dd->dc_shutdown)
6541 		return;
6542 
6543 	/* Take the 8051 out of reset */
6544 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6545 	/* Wait until 8051 is ready */
6546 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6547 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6548 			   __func__);
6549 
6550 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6551 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6552 	/* lcb_shutdown() with abort=1 does not restore these */
6553 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6554 	dd->dc_shutdown = 0;
6555 }
6556 
dc_start(struct hfi1_devdata * dd)6557 static void dc_start(struct hfi1_devdata *dd)
6558 {
6559 	mutex_lock(&dd->dc8051_lock);
6560 	_dc_start(dd);
6561 	mutex_unlock(&dd->dc8051_lock);
6562 }
6563 
6564 /*
6565  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6566  */
adjust_lcb_for_fpga_serdes(struct hfi1_devdata * dd)6567 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6568 {
6569 	u64 rx_radr, tx_radr;
6570 	u32 version;
6571 
6572 	if (dd->icode != ICODE_FPGA_EMULATION)
6573 		return;
6574 
6575 	/*
6576 	 * These LCB defaults on emulator _s are good, nothing to do here:
6577 	 *	LCB_CFG_TX_FIFOS_RADR
6578 	 *	LCB_CFG_RX_FIFOS_RADR
6579 	 *	LCB_CFG_LN_DCLK
6580 	 *	LCB_CFG_IGNORE_LOST_RCLK
6581 	 */
6582 	if (is_emulator_s(dd))
6583 		return;
6584 	/* else this is _p */
6585 
6586 	version = emulator_rev(dd);
6587 	if (!is_ax(dd))
6588 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6589 
6590 	if (version <= 0x12) {
6591 		/* release 0x12 and below */
6592 
6593 		/*
6594 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6595 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6596 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6597 		 */
6598 		rx_radr =
6599 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6600 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6601 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6602 		/*
6603 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6604 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6605 		 */
6606 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6607 	} else if (version <= 0x18) {
6608 		/* release 0x13 up to 0x18 */
6609 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6610 		rx_radr =
6611 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6612 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6613 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6614 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6615 	} else if (version == 0x19) {
6616 		/* release 0x19 */
6617 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6618 		rx_radr =
6619 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6620 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6621 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6622 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6623 	} else if (version == 0x1a) {
6624 		/* release 0x1a */
6625 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6626 		rx_radr =
6627 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6628 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6629 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6630 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6631 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6632 	} else {
6633 		/* release 0x1b and higher */
6634 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6635 		rx_radr =
6636 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6637 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6638 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6639 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6640 	}
6641 
6642 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6643 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6644 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6645 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6646 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6647 }
6648 
6649 /*
6650  * Handle a SMA idle message
6651  *
6652  * This is a work-queue function outside of the interrupt.
6653  */
handle_sma_message(struct work_struct * work)6654 void handle_sma_message(struct work_struct *work)
6655 {
6656 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6657 							sma_message_work);
6658 	struct hfi1_devdata *dd = ppd->dd;
6659 	u64 msg;
6660 	int ret;
6661 
6662 	/*
6663 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6664 	 * is stripped off
6665 	 */
6666 	ret = read_idle_sma(dd, &msg);
6667 	if (ret)
6668 		return;
6669 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6670 	/*
6671 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6672 	 */
6673 	switch (msg & 0xff) {
6674 	case SMA_IDLE_ARM:
6675 		/*
6676 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6677 		 * State Transitions
6678 		 *
6679 		 * Only expected in INIT or ARMED, discard otherwise.
6680 		 */
6681 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6682 			ppd->neighbor_normal = 1;
6683 		break;
6684 	case SMA_IDLE_ACTIVE:
6685 		/*
6686 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6687 		 * State Transitions
6688 		 *
6689 		 * Can activate the node.  Discard otherwise.
6690 		 */
6691 		if (ppd->host_link_state == HLS_UP_ARMED &&
6692 		    ppd->is_active_optimize_enabled) {
6693 			ppd->neighbor_normal = 1;
6694 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6695 			if (ret)
6696 				dd_dev_err(
6697 					dd,
6698 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6699 					__func__);
6700 		}
6701 		break;
6702 	default:
6703 		dd_dev_err(dd,
6704 			   "%s: received unexpected SMA idle message 0x%llx\n",
6705 			   __func__, msg);
6706 		break;
6707 	}
6708 }
6709 
adjust_rcvctrl(struct hfi1_devdata * dd,u64 add,u64 clear)6710 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6711 {
6712 	u64 rcvctrl;
6713 	unsigned long flags;
6714 
6715 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6716 	rcvctrl = read_csr(dd, RCV_CTRL);
6717 	rcvctrl |= add;
6718 	rcvctrl &= ~clear;
6719 	write_csr(dd, RCV_CTRL, rcvctrl);
6720 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6721 }
6722 
add_rcvctrl(struct hfi1_devdata * dd,u64 add)6723 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6724 {
6725 	adjust_rcvctrl(dd, add, 0);
6726 }
6727 
clear_rcvctrl(struct hfi1_devdata * dd,u64 clear)6728 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6729 {
6730 	adjust_rcvctrl(dd, 0, clear);
6731 }
6732 
6733 /*
6734  * Called from all interrupt handlers to start handling an SPC freeze.
6735  */
start_freeze_handling(struct hfi1_pportdata * ppd,int flags)6736 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6737 {
6738 	struct hfi1_devdata *dd = ppd->dd;
6739 	struct send_context *sc;
6740 	int i;
6741 	int sc_flags;
6742 
6743 	if (flags & FREEZE_SELF)
6744 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6745 
6746 	/* enter frozen mode */
6747 	dd->flags |= HFI1_FROZEN;
6748 
6749 	/* notify all SDMA engines that they are going into a freeze */
6750 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6751 
6752 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6753 					      SCF_LINK_DOWN : 0);
6754 	/* do halt pre-handling on all enabled send contexts */
6755 	for (i = 0; i < dd->num_send_contexts; i++) {
6756 		sc = dd->send_contexts[i].sc;
6757 		if (sc && (sc->flags & SCF_ENABLED))
6758 			sc_stop(sc, sc_flags);
6759 	}
6760 
6761 	/* Send context are frozen. Notify user space */
6762 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6763 
6764 	if (flags & FREEZE_ABORT) {
6765 		dd_dev_err(dd,
6766 			   "Aborted freeze recovery. Please REBOOT system\n");
6767 		return;
6768 	}
6769 	/* queue non-interrupt handler */
6770 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6771 }
6772 
6773 /*
6774  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6775  * depending on the "freeze" parameter.
6776  *
6777  * No need to return an error if it times out, our only option
6778  * is to proceed anyway.
6779  */
wait_for_freeze_status(struct hfi1_devdata * dd,int freeze)6780 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6781 {
6782 	unsigned long timeout;
6783 	u64 reg;
6784 
6785 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6786 	while (1) {
6787 		reg = read_csr(dd, CCE_STATUS);
6788 		if (freeze) {
6789 			/* waiting until all indicators are set */
6790 			if ((reg & ALL_FROZE) == ALL_FROZE)
6791 				return;	/* all done */
6792 		} else {
6793 			/* waiting until all indicators are clear */
6794 			if ((reg & ALL_FROZE) == 0)
6795 				return; /* all done */
6796 		}
6797 
6798 		if (time_after(jiffies, timeout)) {
6799 			dd_dev_err(dd,
6800 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6801 				   freeze ? "" : "un", reg & ALL_FROZE,
6802 				   freeze ? ALL_FROZE : 0ull);
6803 			return;
6804 		}
6805 		usleep_range(80, 120);
6806 	}
6807 }
6808 
6809 /*
6810  * Do all freeze handling for the RXE block.
6811  */
rxe_freeze(struct hfi1_devdata * dd)6812 static void rxe_freeze(struct hfi1_devdata *dd)
6813 {
6814 	int i;
6815 	struct hfi1_ctxtdata *rcd;
6816 
6817 	/* disable port */
6818 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6819 
6820 	/* disable all receive contexts */
6821 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6822 		rcd = hfi1_rcd_get_by_index(dd, i);
6823 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6824 		hfi1_rcd_put(rcd);
6825 	}
6826 }
6827 
6828 /*
6829  * Unfreeze handling for the RXE block - kernel contexts only.
6830  * This will also enable the port.  User contexts will do unfreeze
6831  * handling on a per-context basis as they call into the driver.
6832  *
6833  */
rxe_kernel_unfreeze(struct hfi1_devdata * dd)6834 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6835 {
6836 	u32 rcvmask;
6837 	u16 i;
6838 	struct hfi1_ctxtdata *rcd;
6839 
6840 	/* enable all kernel contexts */
6841 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6842 		rcd = hfi1_rcd_get_by_index(dd, i);
6843 
6844 		/* Ensure all non-user contexts(including vnic) are enabled */
6845 		if (!rcd ||
6846 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6847 			hfi1_rcd_put(rcd);
6848 			continue;
6849 		}
6850 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6851 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6852 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6853 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6854 		hfi1_rcvctrl(dd, rcvmask, rcd);
6855 		hfi1_rcd_put(rcd);
6856 	}
6857 
6858 	/* enable port */
6859 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6860 }
6861 
6862 /*
6863  * Non-interrupt SPC freeze handling.
6864  *
6865  * This is a work-queue function outside of the triggering interrupt.
6866  */
handle_freeze(struct work_struct * work)6867 void handle_freeze(struct work_struct *work)
6868 {
6869 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6870 								freeze_work);
6871 	struct hfi1_devdata *dd = ppd->dd;
6872 
6873 	/* wait for freeze indicators on all affected blocks */
6874 	wait_for_freeze_status(dd, 1);
6875 
6876 	/* SPC is now frozen */
6877 
6878 	/* do send PIO freeze steps */
6879 	pio_freeze(dd);
6880 
6881 	/* do send DMA freeze steps */
6882 	sdma_freeze(dd);
6883 
6884 	/* do send egress freeze steps - nothing to do */
6885 
6886 	/* do receive freeze steps */
6887 	rxe_freeze(dd);
6888 
6889 	/*
6890 	 * Unfreeze the hardware - clear the freeze, wait for each
6891 	 * block's frozen bit to clear, then clear the frozen flag.
6892 	 */
6893 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6894 	wait_for_freeze_status(dd, 0);
6895 
6896 	if (is_ax(dd)) {
6897 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6898 		wait_for_freeze_status(dd, 1);
6899 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6900 		wait_for_freeze_status(dd, 0);
6901 	}
6902 
6903 	/* do send PIO unfreeze steps for kernel contexts */
6904 	pio_kernel_unfreeze(dd);
6905 
6906 	/* do send DMA unfreeze steps */
6907 	sdma_unfreeze(dd);
6908 
6909 	/* do send egress unfreeze steps - nothing to do */
6910 
6911 	/* do receive unfreeze steps for kernel contexts */
6912 	rxe_kernel_unfreeze(dd);
6913 
6914 	/*
6915 	 * The unfreeze procedure touches global device registers when
6916 	 * it disables and re-enables RXE. Mark the device unfrozen
6917 	 * after all that is done so other parts of the driver waiting
6918 	 * for the device to unfreeze don't do things out of order.
6919 	 *
6920 	 * The above implies that the meaning of HFI1_FROZEN flag is
6921 	 * "Device has gone into freeze mode and freeze mode handling
6922 	 * is still in progress."
6923 	 *
6924 	 * The flag will be removed when freeze mode processing has
6925 	 * completed.
6926 	 */
6927 	dd->flags &= ~HFI1_FROZEN;
6928 	wake_up(&dd->event_queue);
6929 
6930 	/* no longer frozen */
6931 }
6932 
6933 /**
6934  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6935  * counters.
6936  * @ppd: info of physical Hfi port
6937  * @link_width: new link width after link up or downgrade
6938  *
6939  * Update the PortXmitWait and PortVlXmitWait counters after
6940  * a link up or downgrade event to reflect a link width change.
6941  */
update_xmit_counters(struct hfi1_pportdata * ppd,u16 link_width)6942 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6943 {
6944 	int i;
6945 	u16 tx_width;
6946 	u16 link_speed;
6947 
6948 	tx_width = tx_link_width(link_width);
6949 	link_speed = get_link_speed(ppd->link_speed_active);
6950 
6951 	/*
6952 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6953 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6954 	 */
6955 	for (i = 0; i < C_VL_COUNT + 1; i++)
6956 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6957 }
6958 
6959 /*
6960  * Handle a link up interrupt from the 8051.
6961  *
6962  * This is a work-queue function outside of the interrupt.
6963  */
handle_link_up(struct work_struct * work)6964 void handle_link_up(struct work_struct *work)
6965 {
6966 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6967 						  link_up_work);
6968 	struct hfi1_devdata *dd = ppd->dd;
6969 
6970 	set_link_state(ppd, HLS_UP_INIT);
6971 
6972 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6973 	read_ltp_rtt(dd);
6974 	/*
6975 	 * OPA specifies that certain counters are cleared on a transition
6976 	 * to link up, so do that.
6977 	 */
6978 	clear_linkup_counters(dd);
6979 	/*
6980 	 * And (re)set link up default values.
6981 	 */
6982 	set_linkup_defaults(ppd);
6983 
6984 	/*
6985 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6986 	 * In case of quick linkup or simulator, vl15 value will be set by
6987 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6988 	 * called in those scenarios.
6989 	 */
6990 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6991 		set_up_vl15(dd, dd->vl15buf_cached);
6992 
6993 	/* enforce link speed enabled */
6994 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6995 		/* oops - current speed is not enabled, bounce */
6996 		dd_dev_err(dd,
6997 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6998 			   ppd->link_speed_active, ppd->link_speed_enabled);
6999 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7000 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7001 		set_link_state(ppd, HLS_DN_OFFLINE);
7002 		start_link(ppd);
7003 	}
7004 }
7005 
7006 /*
7007  * Several pieces of LNI information were cached for SMA in ppd.
7008  * Reset these on link down
7009  */
reset_neighbor_info(struct hfi1_pportdata * ppd)7010 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7011 {
7012 	ppd->neighbor_guid = 0;
7013 	ppd->neighbor_port_number = 0;
7014 	ppd->neighbor_type = 0;
7015 	ppd->neighbor_fm_security = 0;
7016 }
7017 
7018 static const char * const link_down_reason_strs[] = {
7019 	[OPA_LINKDOWN_REASON_NONE] = "None",
7020 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7021 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7022 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7023 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7024 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7025 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7026 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7027 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7028 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7029 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7030 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7031 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7032 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7033 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7034 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7035 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7036 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7037 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7038 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7039 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7040 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7041 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7042 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7043 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7044 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7045 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7046 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7047 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7048 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7049 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7050 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7051 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7052 					"Excessive buffer overrun",
7053 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7054 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7055 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7056 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7057 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7058 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7059 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7060 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7061 					"Local media not installed",
7062 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7063 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7064 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7065 					"End to end not installed",
7066 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7067 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7068 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7069 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7070 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7071 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7072 };
7073 
7074 /* return the neighbor link down reason string */
link_down_reason_str(u8 reason)7075 static const char *link_down_reason_str(u8 reason)
7076 {
7077 	const char *str = NULL;
7078 
7079 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7080 		str = link_down_reason_strs[reason];
7081 	if (!str)
7082 		str = "(invalid)";
7083 
7084 	return str;
7085 }
7086 
7087 /*
7088  * Handle a link down interrupt from the 8051.
7089  *
7090  * This is a work-queue function outside of the interrupt.
7091  */
handle_link_down(struct work_struct * work)7092 void handle_link_down(struct work_struct *work)
7093 {
7094 	u8 lcl_reason, neigh_reason = 0;
7095 	u8 link_down_reason;
7096 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7097 						  link_down_work);
7098 	int was_up;
7099 	static const char ldr_str[] = "Link down reason: ";
7100 
7101 	if ((ppd->host_link_state &
7102 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7103 	     ppd->port_type == PORT_TYPE_FIXED)
7104 		ppd->offline_disabled_reason =
7105 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7106 
7107 	/* Go offline first, then deal with reading/writing through 8051 */
7108 	was_up = !!(ppd->host_link_state & HLS_UP);
7109 	set_link_state(ppd, HLS_DN_OFFLINE);
7110 	xchg(&ppd->is_link_down_queued, 0);
7111 
7112 	if (was_up) {
7113 		lcl_reason = 0;
7114 		/* link down reason is only valid if the link was up */
7115 		read_link_down_reason(ppd->dd, &link_down_reason);
7116 		switch (link_down_reason) {
7117 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7118 			/* the link went down, no idle message reason */
7119 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7120 				    ldr_str);
7121 			break;
7122 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7123 			/*
7124 			 * The neighbor reason is only valid if an idle message
7125 			 * was received for it.
7126 			 */
7127 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7128 			dd_dev_info(ppd->dd,
7129 				    "%sNeighbor link down message %d, %s\n",
7130 				    ldr_str, neigh_reason,
7131 				    link_down_reason_str(neigh_reason));
7132 			break;
7133 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7134 			dd_dev_info(ppd->dd,
7135 				    "%sHost requested link to go offline\n",
7136 				    ldr_str);
7137 			break;
7138 		default:
7139 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7140 				    ldr_str, link_down_reason);
7141 			break;
7142 		}
7143 
7144 		/*
7145 		 * If no reason, assume peer-initiated but missed
7146 		 * LinkGoingDown idle flits.
7147 		 */
7148 		if (neigh_reason == 0)
7149 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7150 	} else {
7151 		/* went down while polling or going up */
7152 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7153 	}
7154 
7155 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7156 
7157 	/* inform the SMA when the link transitions from up to down */
7158 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7159 	    ppd->neigh_link_down_reason.sma == 0) {
7160 		ppd->local_link_down_reason.sma =
7161 					ppd->local_link_down_reason.latest;
7162 		ppd->neigh_link_down_reason.sma =
7163 					ppd->neigh_link_down_reason.latest;
7164 	}
7165 
7166 	reset_neighbor_info(ppd);
7167 
7168 	/* disable the port */
7169 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7170 
7171 	/*
7172 	 * If there is no cable attached, turn the DC off. Otherwise,
7173 	 * start the link bring up.
7174 	 */
7175 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7176 		dc_shutdown(ppd->dd);
7177 	else
7178 		start_link(ppd);
7179 }
7180 
handle_link_bounce(struct work_struct * work)7181 void handle_link_bounce(struct work_struct *work)
7182 {
7183 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7184 							link_bounce_work);
7185 
7186 	/*
7187 	 * Only do something if the link is currently up.
7188 	 */
7189 	if (ppd->host_link_state & HLS_UP) {
7190 		set_link_state(ppd, HLS_DN_OFFLINE);
7191 		start_link(ppd);
7192 	} else {
7193 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7194 			    __func__, link_state_name(ppd->host_link_state));
7195 	}
7196 }
7197 
7198 /*
7199  * Mask conversion: Capability exchange to Port LTP.  The capability
7200  * exchange has an implicit 16b CRC that is mandatory.
7201  */
cap_to_port_ltp(int cap)7202 static int cap_to_port_ltp(int cap)
7203 {
7204 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7205 
7206 	if (cap & CAP_CRC_14B)
7207 		port_ltp |= PORT_LTP_CRC_MODE_14;
7208 	if (cap & CAP_CRC_48B)
7209 		port_ltp |= PORT_LTP_CRC_MODE_48;
7210 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7211 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7212 
7213 	return port_ltp;
7214 }
7215 
7216 /*
7217  * Convert an OPA Port LTP mask to capability mask
7218  */
port_ltp_to_cap(int port_ltp)7219 int port_ltp_to_cap(int port_ltp)
7220 {
7221 	int cap_mask = 0;
7222 
7223 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7224 		cap_mask |= CAP_CRC_14B;
7225 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7226 		cap_mask |= CAP_CRC_48B;
7227 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7228 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7229 
7230 	return cap_mask;
7231 }
7232 
7233 /*
7234  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7235  */
lcb_to_port_ltp(int lcb_crc)7236 static int lcb_to_port_ltp(int lcb_crc)
7237 {
7238 	int port_ltp = 0;
7239 
7240 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7241 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7242 	else if (lcb_crc == LCB_CRC_48B)
7243 		port_ltp = PORT_LTP_CRC_MODE_48;
7244 	else if (lcb_crc == LCB_CRC_14B)
7245 		port_ltp = PORT_LTP_CRC_MODE_14;
7246 	else
7247 		port_ltp = PORT_LTP_CRC_MODE_16;
7248 
7249 	return port_ltp;
7250 }
7251 
clear_full_mgmt_pkey(struct hfi1_pportdata * ppd)7252 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7253 {
7254 	if (ppd->pkeys[2] != 0) {
7255 		ppd->pkeys[2] = 0;
7256 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7257 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7258 	}
7259 }
7260 
7261 /*
7262  * Convert the given link width to the OPA link width bitmask.
7263  */
link_width_to_bits(struct hfi1_devdata * dd,u16 width)7264 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7265 {
7266 	switch (width) {
7267 	case 0:
7268 		/*
7269 		 * Simulator and quick linkup do not set the width.
7270 		 * Just set it to 4x without complaint.
7271 		 */
7272 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7273 			return OPA_LINK_WIDTH_4X;
7274 		return 0; /* no lanes up */
7275 	case 1: return OPA_LINK_WIDTH_1X;
7276 	case 2: return OPA_LINK_WIDTH_2X;
7277 	case 3: return OPA_LINK_WIDTH_3X;
7278 	case 4: return OPA_LINK_WIDTH_4X;
7279 	default:
7280 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7281 			    __func__, width);
7282 		return OPA_LINK_WIDTH_4X;
7283 	}
7284 }
7285 
7286 /*
7287  * Do a population count on the bottom nibble.
7288  */
7289 static const u8 bit_counts[16] = {
7290 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7291 };
7292 
nibble_to_count(u8 nibble)7293 static inline u8 nibble_to_count(u8 nibble)
7294 {
7295 	return bit_counts[nibble & 0xf];
7296 }
7297 
7298 /*
7299  * Read the active lane information from the 8051 registers and return
7300  * their widths.
7301  *
7302  * Active lane information is found in these 8051 registers:
7303  *	enable_lane_tx
7304  *	enable_lane_rx
7305  */
get_link_widths(struct hfi1_devdata * dd,u16 * tx_width,u16 * rx_width)7306 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7307 			    u16 *rx_width)
7308 {
7309 	u16 tx, rx;
7310 	u8 enable_lane_rx;
7311 	u8 enable_lane_tx;
7312 	u8 tx_polarity_inversion;
7313 	u8 rx_polarity_inversion;
7314 	u8 max_rate;
7315 
7316 	/* read the active lanes */
7317 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7318 			 &rx_polarity_inversion, &max_rate);
7319 	read_local_lni(dd, &enable_lane_rx);
7320 
7321 	/* convert to counts */
7322 	tx = nibble_to_count(enable_lane_tx);
7323 	rx = nibble_to_count(enable_lane_rx);
7324 
7325 	/*
7326 	 * Set link_speed_active here, overriding what was set in
7327 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7328 	 * set the max_rate field in handle_verify_cap until v0.19.
7329 	 */
7330 	if ((dd->icode == ICODE_RTL_SILICON) &&
7331 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7332 		/* max_rate: 0 = 12.5G, 1 = 25G */
7333 		switch (max_rate) {
7334 		case 0:
7335 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7336 			break;
7337 		case 1:
7338 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7339 			break;
7340 		default:
7341 			dd_dev_err(dd,
7342 				   "%s: unexpected max rate %d, using 25Gb\n",
7343 				   __func__, (int)max_rate);
7344 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7345 			break;
7346 		}
7347 	}
7348 
7349 	dd_dev_info(dd,
7350 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7351 		    enable_lane_tx, tx, enable_lane_rx, rx);
7352 	*tx_width = link_width_to_bits(dd, tx);
7353 	*rx_width = link_width_to_bits(dd, rx);
7354 }
7355 
7356 /*
7357  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7358  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7359  * after link up.  I.e. look elsewhere for downgrade information.
7360  *
7361  * Bits are:
7362  *	+ bits [7:4] contain the number of active transmitters
7363  *	+ bits [3:0] contain the number of active receivers
7364  * These are numbers 1 through 4 and can be different values if the
7365  * link is asymmetric.
7366  *
7367  * verify_cap_local_fm_link_width[0] retains its original value.
7368  */
get_linkup_widths(struct hfi1_devdata * dd,u16 * tx_width,u16 * rx_width)7369 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7370 			      u16 *rx_width)
7371 {
7372 	u16 widths, tx, rx;
7373 	u8 misc_bits, local_flags;
7374 	u16 active_tx, active_rx;
7375 
7376 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7377 	tx = widths >> 12;
7378 	rx = (widths >> 8) & 0xf;
7379 
7380 	*tx_width = link_width_to_bits(dd, tx);
7381 	*rx_width = link_width_to_bits(dd, rx);
7382 
7383 	/* print the active widths */
7384 	get_link_widths(dd, &active_tx, &active_rx);
7385 }
7386 
7387 /*
7388  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7389  * hardware information when the link first comes up.
7390  *
7391  * The link width is not available until after VerifyCap.AllFramesReceived
7392  * (the trigger for handle_verify_cap), so this is outside that routine
7393  * and should be called when the 8051 signals linkup.
7394  */
get_linkup_link_widths(struct hfi1_pportdata * ppd)7395 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7396 {
7397 	u16 tx_width, rx_width;
7398 
7399 	/* get end-of-LNI link widths */
7400 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7401 
7402 	/* use tx_width as the link is supposed to be symmetric on link up */
7403 	ppd->link_width_active = tx_width;
7404 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7405 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7406 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7407 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7408 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7409 	/* cache the active egress rate (units {10^6 bits/sec]) */
7410 	ppd->current_egress_rate = active_egress_rate(ppd);
7411 }
7412 
7413 /*
7414  * Handle a verify capabilities interrupt from the 8051.
7415  *
7416  * This is a work-queue function outside of the interrupt.
7417  */
handle_verify_cap(struct work_struct * work)7418 void handle_verify_cap(struct work_struct *work)
7419 {
7420 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7421 								link_vc_work);
7422 	struct hfi1_devdata *dd = ppd->dd;
7423 	u64 reg;
7424 	u8 power_management;
7425 	u8 continuous;
7426 	u8 vcu;
7427 	u8 vau;
7428 	u8 z;
7429 	u16 vl15buf;
7430 	u16 link_widths;
7431 	u16 crc_mask;
7432 	u16 crc_val;
7433 	u16 device_id;
7434 	u16 active_tx, active_rx;
7435 	u8 partner_supported_crc;
7436 	u8 remote_tx_rate;
7437 	u8 device_rev;
7438 
7439 	set_link_state(ppd, HLS_VERIFY_CAP);
7440 
7441 	lcb_shutdown(dd, 0);
7442 	adjust_lcb_for_fpga_serdes(dd);
7443 
7444 	read_vc_remote_phy(dd, &power_management, &continuous);
7445 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7446 			      &partner_supported_crc);
7447 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7448 	read_remote_device_id(dd, &device_id, &device_rev);
7449 
7450 	/* print the active widths */
7451 	get_link_widths(dd, &active_tx, &active_rx);
7452 	dd_dev_info(dd,
7453 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7454 		    (int)power_management, (int)continuous);
7455 	dd_dev_info(dd,
7456 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7457 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7458 		    (int)partner_supported_crc);
7459 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7460 		    (u32)remote_tx_rate, (u32)link_widths);
7461 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7462 		    (u32)device_id, (u32)device_rev);
7463 	/*
7464 	 * The peer vAU value just read is the peer receiver value.  HFI does
7465 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7466 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7467 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7468 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7469 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7470 	 * subject to the Z value exception.
7471 	 */
7472 	if (vau == 0)
7473 		vau = 1;
7474 	set_up_vau(dd, vau);
7475 
7476 	/*
7477 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7478 	 * credits value and wait for link-up interrupt ot set it.
7479 	 */
7480 	set_up_vl15(dd, 0);
7481 	dd->vl15buf_cached = vl15buf;
7482 
7483 	/* set up the LCB CRC mode */
7484 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7485 
7486 	/* order is important: use the lowest bit in common */
7487 	if (crc_mask & CAP_CRC_14B)
7488 		crc_val = LCB_CRC_14B;
7489 	else if (crc_mask & CAP_CRC_48B)
7490 		crc_val = LCB_CRC_48B;
7491 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7492 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7493 	else
7494 		crc_val = LCB_CRC_16B;
7495 
7496 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7497 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7498 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7499 
7500 	/* set (14b only) or clear sideband credit */
7501 	reg = read_csr(dd, SEND_CM_CTRL);
7502 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7503 		write_csr(dd, SEND_CM_CTRL,
7504 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7505 	} else {
7506 		write_csr(dd, SEND_CM_CTRL,
7507 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7508 	}
7509 
7510 	ppd->link_speed_active = 0;	/* invalid value */
7511 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7512 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7513 		switch (remote_tx_rate) {
7514 		case 0:
7515 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7516 			break;
7517 		case 1:
7518 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7519 			break;
7520 		}
7521 	} else {
7522 		/* actual rate is highest bit of the ANDed rates */
7523 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7524 
7525 		if (rate & 2)
7526 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7527 		else if (rate & 1)
7528 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7529 	}
7530 	if (ppd->link_speed_active == 0) {
7531 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7532 			   __func__, (int)remote_tx_rate);
7533 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7534 	}
7535 
7536 	/*
7537 	 * Cache the values of the supported, enabled, and active
7538 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7539 	 * flags that are returned in the portinfo query differ from
7540 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7541 	 * variables. Convert these here.
7542 	 */
7543 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7544 		/* supported crc modes */
7545 	ppd->port_ltp_crc_mode |=
7546 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7547 		/* enabled crc modes */
7548 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7549 		/* active crc mode */
7550 
7551 	/* set up the remote credit return table */
7552 	assign_remote_cm_au_table(dd, vcu);
7553 
7554 	/*
7555 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7556 	 * be applied on every link up.
7557 	 *
7558 	 * Adjust LCB error kill enable to kill the link if
7559 	 * these RBUF errors are seen:
7560 	 *	REPLAY_BUF_MBE_SMASK
7561 	 *	FLIT_INPUT_BUF_MBE_SMASK
7562 	 */
7563 	if (is_ax(dd)) {			/* fixed in B0 */
7564 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7565 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7566 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7567 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7568 	}
7569 
7570 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7571 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7572 
7573 	/* give 8051 access to the LCB CSRs */
7574 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7575 	set_8051_lcb_access(dd);
7576 
7577 	/* tell the 8051 to go to LinkUp */
7578 	set_link_state(ppd, HLS_GOING_UP);
7579 }
7580 
7581 /**
7582  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7583  * policy against the current active link widths.
7584  * @ppd: info of physical Hfi port
7585  * @refresh_widths: True indicates link downgrade event
7586  * @return: True indicates a successful link downgrade. False indicates
7587  *	    link downgrade event failed and the link will bounce back to
7588  *	    default link width.
7589  *
7590  * Called when the enabled policy changes or the active link widths
7591  * change.
7592  * Refresh_widths indicates that a link downgrade occurred. The
7593  * link_downgraded variable is set by refresh_widths and
7594  * determines the success/failure of the policy application.
7595  */
apply_link_downgrade_policy(struct hfi1_pportdata * ppd,bool refresh_widths)7596 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7597 				 bool refresh_widths)
7598 {
7599 	int do_bounce = 0;
7600 	int tries;
7601 	u16 lwde;
7602 	u16 tx, rx;
7603 	bool link_downgraded = refresh_widths;
7604 
7605 	/* use the hls lock to avoid a race with actual link up */
7606 	tries = 0;
7607 retry:
7608 	mutex_lock(&ppd->hls_lock);
7609 	/* only apply if the link is up */
7610 	if (ppd->host_link_state & HLS_DOWN) {
7611 		/* still going up..wait and retry */
7612 		if (ppd->host_link_state & HLS_GOING_UP) {
7613 			if (++tries < 1000) {
7614 				mutex_unlock(&ppd->hls_lock);
7615 				usleep_range(100, 120); /* arbitrary */
7616 				goto retry;
7617 			}
7618 			dd_dev_err(ppd->dd,
7619 				   "%s: giving up waiting for link state change\n",
7620 				   __func__);
7621 		}
7622 		goto done;
7623 	}
7624 
7625 	lwde = ppd->link_width_downgrade_enabled;
7626 
7627 	if (refresh_widths) {
7628 		get_link_widths(ppd->dd, &tx, &rx);
7629 		ppd->link_width_downgrade_tx_active = tx;
7630 		ppd->link_width_downgrade_rx_active = rx;
7631 	}
7632 
7633 	if (ppd->link_width_downgrade_tx_active == 0 ||
7634 	    ppd->link_width_downgrade_rx_active == 0) {
7635 		/* the 8051 reported a dead link as a downgrade */
7636 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7637 		link_downgraded = false;
7638 	} else if (lwde == 0) {
7639 		/* downgrade is disabled */
7640 
7641 		/* bounce if not at starting active width */
7642 		if ((ppd->link_width_active !=
7643 		     ppd->link_width_downgrade_tx_active) ||
7644 		    (ppd->link_width_active !=
7645 		     ppd->link_width_downgrade_rx_active)) {
7646 			dd_dev_err(ppd->dd,
7647 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7648 			dd_dev_err(ppd->dd,
7649 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7650 				   ppd->link_width_active,
7651 				   ppd->link_width_downgrade_tx_active,
7652 				   ppd->link_width_downgrade_rx_active);
7653 			do_bounce = 1;
7654 			link_downgraded = false;
7655 		}
7656 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7657 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7658 		/* Tx or Rx is outside the enabled policy */
7659 		dd_dev_err(ppd->dd,
7660 			   "Link is outside of downgrade allowed, downing link\n");
7661 		dd_dev_err(ppd->dd,
7662 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7663 			   lwde, ppd->link_width_downgrade_tx_active,
7664 			   ppd->link_width_downgrade_rx_active);
7665 		do_bounce = 1;
7666 		link_downgraded = false;
7667 	}
7668 
7669 done:
7670 	mutex_unlock(&ppd->hls_lock);
7671 
7672 	if (do_bounce) {
7673 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7674 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7675 		set_link_state(ppd, HLS_DN_OFFLINE);
7676 		start_link(ppd);
7677 	}
7678 
7679 	return link_downgraded;
7680 }
7681 
7682 /*
7683  * Handle a link downgrade interrupt from the 8051.
7684  *
7685  * This is a work-queue function outside of the interrupt.
7686  */
handle_link_downgrade(struct work_struct * work)7687 void handle_link_downgrade(struct work_struct *work)
7688 {
7689 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7690 							link_downgrade_work);
7691 
7692 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7693 	if (apply_link_downgrade_policy(ppd, true))
7694 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7695 }
7696 
dcc_err_string(char * buf,int buf_len,u64 flags)7697 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7698 {
7699 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7700 		ARRAY_SIZE(dcc_err_flags));
7701 }
7702 
lcb_err_string(char * buf,int buf_len,u64 flags)7703 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7704 {
7705 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7706 		ARRAY_SIZE(lcb_err_flags));
7707 }
7708 
dc8051_err_string(char * buf,int buf_len,u64 flags)7709 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7710 {
7711 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7712 		ARRAY_SIZE(dc8051_err_flags));
7713 }
7714 
dc8051_info_err_string(char * buf,int buf_len,u64 flags)7715 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7716 {
7717 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7718 		ARRAY_SIZE(dc8051_info_err_flags));
7719 }
7720 
dc8051_info_host_msg_string(char * buf,int buf_len,u64 flags)7721 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7722 {
7723 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7724 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7725 }
7726 
handle_8051_interrupt(struct hfi1_devdata * dd,u32 unused,u64 reg)7727 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7728 {
7729 	struct hfi1_pportdata *ppd = dd->pport;
7730 	u64 info, err, host_msg;
7731 	int queue_link_down = 0;
7732 	char buf[96];
7733 
7734 	/* look at the flags */
7735 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7736 		/* 8051 information set by firmware */
7737 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7738 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7739 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7740 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7741 		host_msg = (info >>
7742 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7743 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7744 
7745 		/*
7746 		 * Handle error flags.
7747 		 */
7748 		if (err & FAILED_LNI) {
7749 			/*
7750 			 * LNI error indications are cleared by the 8051
7751 			 * only when starting polling.  Only pay attention
7752 			 * to them when in the states that occur during
7753 			 * LNI.
7754 			 */
7755 			if (ppd->host_link_state
7756 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7757 				queue_link_down = 1;
7758 				dd_dev_info(dd, "Link error: %s\n",
7759 					    dc8051_info_err_string(buf,
7760 								   sizeof(buf),
7761 								   err &
7762 								   FAILED_LNI));
7763 			}
7764 			err &= ~(u64)FAILED_LNI;
7765 		}
7766 		/* unknown frames can happen durning LNI, just count */
7767 		if (err & UNKNOWN_FRAME) {
7768 			ppd->unknown_frame_count++;
7769 			err &= ~(u64)UNKNOWN_FRAME;
7770 		}
7771 		if (err) {
7772 			/* report remaining errors, but do not do anything */
7773 			dd_dev_err(dd, "8051 info error: %s\n",
7774 				   dc8051_info_err_string(buf, sizeof(buf),
7775 							  err));
7776 		}
7777 
7778 		/*
7779 		 * Handle host message flags.
7780 		 */
7781 		if (host_msg & HOST_REQ_DONE) {
7782 			/*
7783 			 * Presently, the driver does a busy wait for
7784 			 * host requests to complete.  This is only an
7785 			 * informational message.
7786 			 * NOTE: The 8051 clears the host message
7787 			 * information *on the next 8051 command*.
7788 			 * Therefore, when linkup is achieved,
7789 			 * this flag will still be set.
7790 			 */
7791 			host_msg &= ~(u64)HOST_REQ_DONE;
7792 		}
7793 		if (host_msg & BC_SMA_MSG) {
7794 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7795 			host_msg &= ~(u64)BC_SMA_MSG;
7796 		}
7797 		if (host_msg & LINKUP_ACHIEVED) {
7798 			dd_dev_info(dd, "8051: Link up\n");
7799 			queue_work(ppd->link_wq, &ppd->link_up_work);
7800 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7801 		}
7802 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7803 			handle_8051_request(ppd);
7804 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7805 		}
7806 		if (host_msg & VERIFY_CAP_FRAME) {
7807 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7808 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7809 		}
7810 		if (host_msg & LINK_GOING_DOWN) {
7811 			const char *extra = "";
7812 			/* no downgrade action needed if going down */
7813 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7814 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7815 				extra = " (ignoring downgrade)";
7816 			}
7817 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7818 			queue_link_down = 1;
7819 			host_msg &= ~(u64)LINK_GOING_DOWN;
7820 		}
7821 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7822 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7823 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7824 		}
7825 		if (host_msg) {
7826 			/* report remaining messages, but do not do anything */
7827 			dd_dev_info(dd, "8051 info host message: %s\n",
7828 				    dc8051_info_host_msg_string(buf,
7829 								sizeof(buf),
7830 								host_msg));
7831 		}
7832 
7833 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7834 	}
7835 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7836 		/*
7837 		 * Lost the 8051 heartbeat.  If this happens, we
7838 		 * receive constant interrupts about it.  Disable
7839 		 * the interrupt after the first.
7840 		 */
7841 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7842 		write_csr(dd, DC_DC8051_ERR_EN,
7843 			  read_csr(dd, DC_DC8051_ERR_EN) &
7844 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7845 
7846 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7847 	}
7848 	if (reg) {
7849 		/* report the error, but do not do anything */
7850 		dd_dev_err(dd, "8051 error: %s\n",
7851 			   dc8051_err_string(buf, sizeof(buf), reg));
7852 	}
7853 
7854 	if (queue_link_down) {
7855 		/*
7856 		 * if the link is already going down or disabled, do not
7857 		 * queue another. If there's a link down entry already
7858 		 * queued, don't queue another one.
7859 		 */
7860 		if ((ppd->host_link_state &
7861 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7862 		    ppd->link_enabled == 0) {
7863 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7864 				    __func__, ppd->host_link_state,
7865 				    ppd->link_enabled);
7866 		} else {
7867 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7868 				dd_dev_info(dd,
7869 					    "%s: link down request already queued\n",
7870 					    __func__);
7871 			else
7872 				queue_work(ppd->link_wq, &ppd->link_down_work);
7873 		}
7874 	}
7875 }
7876 
7877 static const char * const fm_config_txt[] = {
7878 [0] =
7879 	"BadHeadDist: Distance violation between two head flits",
7880 [1] =
7881 	"BadTailDist: Distance violation between two tail flits",
7882 [2] =
7883 	"BadCtrlDist: Distance violation between two credit control flits",
7884 [3] =
7885 	"BadCrdAck: Credits return for unsupported VL",
7886 [4] =
7887 	"UnsupportedVLMarker: Received VL Marker",
7888 [5] =
7889 	"BadPreempt: Exceeded the preemption nesting level",
7890 [6] =
7891 	"BadControlFlit: Received unsupported control flit",
7892 /* no 7 */
7893 [8] =
7894 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7895 };
7896 
7897 static const char * const port_rcv_txt[] = {
7898 [1] =
7899 	"BadPktLen: Illegal PktLen",
7900 [2] =
7901 	"PktLenTooLong: Packet longer than PktLen",
7902 [3] =
7903 	"PktLenTooShort: Packet shorter than PktLen",
7904 [4] =
7905 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7906 [5] =
7907 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7908 [6] =
7909 	"BadL2: Illegal L2 opcode",
7910 [7] =
7911 	"BadSC: Unsupported SC",
7912 [9] =
7913 	"BadRC: Illegal RC",
7914 [11] =
7915 	"PreemptError: Preempting with same VL",
7916 [12] =
7917 	"PreemptVL15: Preempting a VL15 packet",
7918 };
7919 
7920 #define OPA_LDR_FMCONFIG_OFFSET 16
7921 #define OPA_LDR_PORTRCV_OFFSET 0
handle_dcc_err(struct hfi1_devdata * dd,u32 unused,u64 reg)7922 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7923 {
7924 	u64 info, hdr0, hdr1;
7925 	const char *extra;
7926 	char buf[96];
7927 	struct hfi1_pportdata *ppd = dd->pport;
7928 	u8 lcl_reason = 0;
7929 	int do_bounce = 0;
7930 
7931 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7932 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7933 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7934 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7935 			/* set status bit */
7936 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7937 		}
7938 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7939 	}
7940 
7941 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7942 		struct hfi1_pportdata *ppd = dd->pport;
7943 		/* this counter saturates at (2^32) - 1 */
7944 		if (ppd->link_downed < (u32)UINT_MAX)
7945 			ppd->link_downed++;
7946 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7947 	}
7948 
7949 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7950 		u8 reason_valid = 1;
7951 
7952 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7953 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7954 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7955 			/* set status bit */
7956 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7957 		}
7958 		switch (info) {
7959 		case 0:
7960 		case 1:
7961 		case 2:
7962 		case 3:
7963 		case 4:
7964 		case 5:
7965 		case 6:
7966 			extra = fm_config_txt[info];
7967 			break;
7968 		case 8:
7969 			extra = fm_config_txt[info];
7970 			if (ppd->port_error_action &
7971 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7972 				do_bounce = 1;
7973 				/*
7974 				 * lcl_reason cannot be derived from info
7975 				 * for this error
7976 				 */
7977 				lcl_reason =
7978 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7979 			}
7980 			break;
7981 		default:
7982 			reason_valid = 0;
7983 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7984 			extra = buf;
7985 			break;
7986 		}
7987 
7988 		if (reason_valid && !do_bounce) {
7989 			do_bounce = ppd->port_error_action &
7990 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7991 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7992 		}
7993 
7994 		/* just report this */
7995 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7996 					extra);
7997 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7998 	}
7999 
8000 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8001 		u8 reason_valid = 1;
8002 
8003 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8004 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8005 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8006 		if (!(dd->err_info_rcvport.status_and_code &
8007 		      OPA_EI_STATUS_SMASK)) {
8008 			dd->err_info_rcvport.status_and_code =
8009 				info & OPA_EI_CODE_SMASK;
8010 			/* set status bit */
8011 			dd->err_info_rcvport.status_and_code |=
8012 				OPA_EI_STATUS_SMASK;
8013 			/*
8014 			 * save first 2 flits in the packet that caused
8015 			 * the error
8016 			 */
8017 			dd->err_info_rcvport.packet_flit1 = hdr0;
8018 			dd->err_info_rcvport.packet_flit2 = hdr1;
8019 		}
8020 		switch (info) {
8021 		case 1:
8022 		case 2:
8023 		case 3:
8024 		case 4:
8025 		case 5:
8026 		case 6:
8027 		case 7:
8028 		case 9:
8029 		case 11:
8030 		case 12:
8031 			extra = port_rcv_txt[info];
8032 			break;
8033 		default:
8034 			reason_valid = 0;
8035 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8036 			extra = buf;
8037 			break;
8038 		}
8039 
8040 		if (reason_valid && !do_bounce) {
8041 			do_bounce = ppd->port_error_action &
8042 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8043 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8044 		}
8045 
8046 		/* just report this */
8047 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8048 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8049 					extra, hdr0, hdr1);
8050 
8051 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8052 	}
8053 
8054 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8055 		/* informative only */
8056 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8057 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8058 	}
8059 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8060 		/* informative only */
8061 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8062 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8063 	}
8064 
8065 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8066 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8067 
8068 	/* report any remaining errors */
8069 	if (reg)
8070 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8071 					dcc_err_string(buf, sizeof(buf), reg));
8072 
8073 	if (lcl_reason == 0)
8074 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8075 
8076 	if (do_bounce) {
8077 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8078 					__func__);
8079 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8080 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8081 	}
8082 }
8083 
handle_lcb_err(struct hfi1_devdata * dd,u32 unused,u64 reg)8084 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8085 {
8086 	char buf[96];
8087 
8088 	dd_dev_info(dd, "LCB Error: %s\n",
8089 		    lcb_err_string(buf, sizeof(buf), reg));
8090 }
8091 
8092 /*
8093  * CCE block DC interrupt.  Source is < 8.
8094  */
is_dc_int(struct hfi1_devdata * dd,unsigned int source)8095 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8096 {
8097 	const struct err_reg_info *eri = &dc_errs[source];
8098 
8099 	if (eri->handler) {
8100 		interrupt_clear_down(dd, 0, eri);
8101 	} else if (source == 3 /* dc_lbm_int */) {
8102 		/*
8103 		 * This indicates that a parity error has occurred on the
8104 		 * address/control lines presented to the LBM.  The error
8105 		 * is a single pulse, there is no associated error flag,
8106 		 * and it is non-maskable.  This is because if a parity
8107 		 * error occurs on the request the request is dropped.
8108 		 * This should never occur, but it is nice to know if it
8109 		 * ever does.
8110 		 */
8111 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8112 	} else {
8113 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8114 	}
8115 }
8116 
8117 /*
8118  * TX block send credit interrupt.  Source is < 160.
8119  */
is_send_credit_int(struct hfi1_devdata * dd,unsigned int source)8120 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8121 {
8122 	sc_group_release_update(dd, source);
8123 }
8124 
8125 /*
8126  * TX block SDMA interrupt.  Source is < 48.
8127  *
8128  * SDMA interrupts are grouped by type:
8129  *
8130  *	 0 -  N-1 = SDma
8131  *	 N - 2N-1 = SDmaProgress
8132  *	2N - 3N-1 = SDmaIdle
8133  */
is_sdma_eng_int(struct hfi1_devdata * dd,unsigned int source)8134 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8135 {
8136 	/* what interrupt */
8137 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8138 	/* which engine */
8139 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8140 
8141 #ifdef CONFIG_SDMA_VERBOSITY
8142 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8143 		   slashstrip(__FILE__), __LINE__, __func__);
8144 	sdma_dumpstate(&dd->per_sdma[which]);
8145 #endif
8146 
8147 	if (likely(what < 3 && which < dd->num_sdma)) {
8148 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8149 	} else {
8150 		/* should not happen */
8151 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8152 	}
8153 }
8154 
8155 /**
8156  * is_rcv_avail_int() - User receive context available IRQ handler
8157  * @dd: valid dd
8158  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8159  *
8160  * RX block receive available interrupt.  Source is < 160.
8161  *
8162  * This is the general interrupt handler for user (PSM) receive contexts,
8163  * and can only be used for non-threaded IRQs.
8164  */
is_rcv_avail_int(struct hfi1_devdata * dd,unsigned int source)8165 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8166 {
8167 	struct hfi1_ctxtdata *rcd;
8168 	char *err_detail;
8169 
8170 	if (likely(source < dd->num_rcv_contexts)) {
8171 		rcd = hfi1_rcd_get_by_index(dd, source);
8172 		if (rcd) {
8173 			handle_user_interrupt(rcd);
8174 			hfi1_rcd_put(rcd);
8175 			return;	/* OK */
8176 		}
8177 		/* received an interrupt, but no rcd */
8178 		err_detail = "dataless";
8179 	} else {
8180 		/* received an interrupt, but are not using that context */
8181 		err_detail = "out of range";
8182 	}
8183 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8184 		   err_detail, source);
8185 }
8186 
8187 /**
8188  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8189  * @dd: valid dd
8190  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8191  *
8192  * RX block receive urgent interrupt.  Source is < 160.
8193  *
8194  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8195  */
is_rcv_urgent_int(struct hfi1_devdata * dd,unsigned int source)8196 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8197 {
8198 	struct hfi1_ctxtdata *rcd;
8199 	char *err_detail;
8200 
8201 	if (likely(source < dd->num_rcv_contexts)) {
8202 		rcd = hfi1_rcd_get_by_index(dd, source);
8203 		if (rcd) {
8204 			handle_user_interrupt(rcd);
8205 			hfi1_rcd_put(rcd);
8206 			return;	/* OK */
8207 		}
8208 		/* received an interrupt, but no rcd */
8209 		err_detail = "dataless";
8210 	} else {
8211 		/* received an interrupt, but are not using that context */
8212 		err_detail = "out of range";
8213 	}
8214 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8215 		   err_detail, source);
8216 }
8217 
8218 /*
8219  * Reserved range interrupt.  Should not be called in normal operation.
8220  */
is_reserved_int(struct hfi1_devdata * dd,unsigned int source)8221 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8222 {
8223 	char name[64];
8224 
8225 	dd_dev_err(dd, "unexpected %s interrupt\n",
8226 		   is_reserved_name(name, sizeof(name), source));
8227 }
8228 
8229 static const struct is_table is_table[] = {
8230 /*
8231  * start		 end
8232  *				name func		interrupt func
8233  */
8234 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8235 				is_misc_err_name,	is_misc_err_int },
8236 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8237 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8238 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8239 				is_sendctxt_err_name,	is_sendctxt_err_int },
8240 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8241 				is_sdma_eng_name,	is_sdma_eng_int },
8242 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8243 				is_various_name,	is_various_int },
8244 { IS_DC_START,	     IS_DC_END,
8245 				is_dc_name,		is_dc_int },
8246 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8247 				is_rcv_avail_name,	is_rcv_avail_int },
8248 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8249 				is_rcv_urgent_name,	is_rcv_urgent_int },
8250 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8251 				is_send_credit_name,	is_send_credit_int},
8252 { IS_RESERVED_START,     IS_RESERVED_END,
8253 				is_reserved_name,	is_reserved_int},
8254 };
8255 
8256 /*
8257  * Interrupt source interrupt - called when the given source has an interrupt.
8258  * Source is a bit index into an array of 64-bit integers.
8259  */
is_interrupt(struct hfi1_devdata * dd,unsigned int source)8260 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8261 {
8262 	const struct is_table *entry;
8263 
8264 	/* avoids a double compare by walking the table in-order */
8265 	for (entry = &is_table[0]; entry->is_name; entry++) {
8266 		if (source <= entry->end) {
8267 			trace_hfi1_interrupt(dd, entry, source);
8268 			entry->is_int(dd, source - entry->start);
8269 			return;
8270 		}
8271 	}
8272 	/* fell off the end */
8273 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8274 }
8275 
8276 /**
8277  * general_interrupt -  General interrupt handler
8278  * @irq: MSIx IRQ vector
8279  * @data: hfi1 devdata
8280  *
8281  * This is able to correctly handle all non-threaded interrupts.  Receive
8282  * context DATA IRQs are threaded and are not supported by this handler.
8283  *
8284  */
general_interrupt(int irq,void * data)8285 irqreturn_t general_interrupt(int irq, void *data)
8286 {
8287 	struct hfi1_devdata *dd = data;
8288 	u64 regs[CCE_NUM_INT_CSRS];
8289 	u32 bit;
8290 	int i;
8291 	irqreturn_t handled = IRQ_NONE;
8292 
8293 	this_cpu_inc(*dd->int_counter);
8294 
8295 	/* phase 1: scan and clear all handled interrupts */
8296 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8297 		if (dd->gi_mask[i] == 0) {
8298 			regs[i] = 0;	/* used later */
8299 			continue;
8300 		}
8301 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8302 				dd->gi_mask[i];
8303 		/* only clear if anything is set */
8304 		if (regs[i])
8305 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8306 	}
8307 
8308 	/* phase 2: call the appropriate handler */
8309 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8310 			 CCE_NUM_INT_CSRS * 64) {
8311 		is_interrupt(dd, bit);
8312 		handled = IRQ_HANDLED;
8313 	}
8314 
8315 	return handled;
8316 }
8317 
sdma_interrupt(int irq,void * data)8318 irqreturn_t sdma_interrupt(int irq, void *data)
8319 {
8320 	struct sdma_engine *sde = data;
8321 	struct hfi1_devdata *dd = sde->dd;
8322 	u64 status;
8323 
8324 #ifdef CONFIG_SDMA_VERBOSITY
8325 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8326 		   slashstrip(__FILE__), __LINE__, __func__);
8327 	sdma_dumpstate(sde);
8328 #endif
8329 
8330 	this_cpu_inc(*dd->int_counter);
8331 
8332 	/* This read_csr is really bad in the hot path */
8333 	status = read_csr(dd,
8334 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8335 			  & sde->imask;
8336 	if (likely(status)) {
8337 		/* clear the interrupt(s) */
8338 		write_csr(dd,
8339 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8340 			  status);
8341 
8342 		/* handle the interrupt(s) */
8343 		sdma_engine_interrupt(sde, status);
8344 	} else {
8345 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8346 					sde->this_idx);
8347 	}
8348 	return IRQ_HANDLED;
8349 }
8350 
8351 /*
8352  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8353  * to insure that the write completed.  This does NOT guarantee that
8354  * queued DMA writes to memory from the chip are pushed.
8355  */
clear_recv_intr(struct hfi1_ctxtdata * rcd)8356 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8357 {
8358 	struct hfi1_devdata *dd = rcd->dd;
8359 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8360 
8361 	write_csr(dd, addr, rcd->imask);
8362 	/* force the above write on the chip and get a value back */
8363 	(void)read_csr(dd, addr);
8364 }
8365 
8366 /* force the receive interrupt */
force_recv_intr(struct hfi1_ctxtdata * rcd)8367 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8368 {
8369 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8370 }
8371 
8372 /*
8373  * Return non-zero if a packet is present.
8374  *
8375  * This routine is called when rechecking for packets after the RcvAvail
8376  * interrupt has been cleared down.  First, do a quick check of memory for
8377  * a packet present.  If not found, use an expensive CSR read of the context
8378  * tail to determine the actual tail.  The CSR read is necessary because there
8379  * is no method to push pending DMAs to memory other than an interrupt and we
8380  * are trying to determine if we need to force an interrupt.
8381  */
check_packet_present(struct hfi1_ctxtdata * rcd)8382 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8383 {
8384 	u32 tail;
8385 
8386 	if (hfi1_packet_present(rcd))
8387 		return 1;
8388 
8389 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8390 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8391 	return hfi1_rcd_head(rcd) != tail;
8392 }
8393 
8394 /*
8395  * Common code for receive contexts interrupt handlers.
8396  * Update traces, increment kernel IRQ counter and
8397  * setup ASPM when needed.
8398  */
receive_interrupt_common(struct hfi1_ctxtdata * rcd)8399 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8400 {
8401 	struct hfi1_devdata *dd = rcd->dd;
8402 
8403 	trace_hfi1_receive_interrupt(dd, rcd);
8404 	this_cpu_inc(*dd->int_counter);
8405 	aspm_ctx_disable(rcd);
8406 }
8407 
8408 /*
8409  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8410  * when there are packets present in the queue. When calling
8411  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8412  *
8413  * @rcd: valid receive context
8414  */
__hfi1_rcd_eoi_intr(struct hfi1_ctxtdata * rcd)8415 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8416 {
8417 	if (!rcd->rcvhdrq)
8418 		return;
8419 	clear_recv_intr(rcd);
8420 	if (check_packet_present(rcd))
8421 		force_recv_intr(rcd);
8422 }
8423 
8424 /**
8425  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8426  *
8427  * @rcd: Ptr to hfi1_ctxtdata of receive context
8428  *
8429  *  Hold IRQs so we can safely clear the interrupt and
8430  *  recheck for a packet that may have arrived after the previous
8431  *  check and the interrupt clear.  If a packet arrived, force another
8432  *  interrupt. This routine can be called at the end of receive packet
8433  *  processing in interrupt service routines, interrupt service thread
8434  *  and softirqs
8435  */
hfi1_rcd_eoi_intr(struct hfi1_ctxtdata * rcd)8436 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8437 {
8438 	unsigned long flags;
8439 
8440 	local_irq_save(flags);
8441 	__hfi1_rcd_eoi_intr(rcd);
8442 	local_irq_restore(flags);
8443 }
8444 
8445 /**
8446  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8447  * @napi: pointer to napi object
8448  * @budget: netdev budget
8449  */
hfi1_netdev_rx_napi(struct napi_struct * napi,int budget)8450 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8451 {
8452 	struct hfi1_netdev_rxq *rxq = container_of(napi,
8453 			struct hfi1_netdev_rxq, napi);
8454 	struct hfi1_ctxtdata *rcd = rxq->rcd;
8455 	int work_done = 0;
8456 
8457 	work_done = rcd->do_interrupt(rcd, budget);
8458 
8459 	if (work_done < budget) {
8460 		napi_complete_done(napi, work_done);
8461 		hfi1_rcd_eoi_intr(rcd);
8462 	}
8463 
8464 	return work_done;
8465 }
8466 
8467 /* Receive packet napi handler for netdevs VNIC and AIP  */
receive_context_interrupt_napi(int irq,void * data)8468 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8469 {
8470 	struct hfi1_ctxtdata *rcd = data;
8471 
8472 	receive_interrupt_common(rcd);
8473 
8474 	if (likely(rcd->napi)) {
8475 		if (likely(napi_schedule_prep(rcd->napi)))
8476 			__napi_schedule_irqoff(rcd->napi);
8477 		else
8478 			__hfi1_rcd_eoi_intr(rcd);
8479 	} else {
8480 		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8481 			  rcd->ctxt);
8482 		__hfi1_rcd_eoi_intr(rcd);
8483 	}
8484 
8485 	return IRQ_HANDLED;
8486 }
8487 
8488 /*
8489  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8490  * This routine will try to handle packets immediately (latency), but if
8491  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8492  * chip receive interrupt is *not* cleared down until this or the thread (if
8493  * invoked) is finished.  The intent is to avoid extra interrupts while we
8494  * are processing packets anyway.
8495  */
receive_context_interrupt(int irq,void * data)8496 irqreturn_t receive_context_interrupt(int irq, void *data)
8497 {
8498 	struct hfi1_ctxtdata *rcd = data;
8499 	int disposition;
8500 
8501 	receive_interrupt_common(rcd);
8502 
8503 	/* receive interrupt remains blocked while processing packets */
8504 	disposition = rcd->do_interrupt(rcd, 0);
8505 
8506 	/*
8507 	 * Too many packets were seen while processing packets in this
8508 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8509 	 * remains blocked.
8510 	 */
8511 	if (disposition == RCV_PKT_LIMIT)
8512 		return IRQ_WAKE_THREAD;
8513 
8514 	__hfi1_rcd_eoi_intr(rcd);
8515 	return IRQ_HANDLED;
8516 }
8517 
8518 /*
8519  * Receive packet thread handler.  This expects to be invoked with the
8520  * receive interrupt still blocked.
8521  */
receive_context_thread(int irq,void * data)8522 irqreturn_t receive_context_thread(int irq, void *data)
8523 {
8524 	struct hfi1_ctxtdata *rcd = data;
8525 
8526 	/* receive interrupt is still blocked from the IRQ handler */
8527 	(void)rcd->do_interrupt(rcd, 1);
8528 
8529 	hfi1_rcd_eoi_intr(rcd);
8530 
8531 	return IRQ_HANDLED;
8532 }
8533 
8534 /* ========================================================================= */
8535 
read_physical_state(struct hfi1_devdata * dd)8536 u32 read_physical_state(struct hfi1_devdata *dd)
8537 {
8538 	u64 reg;
8539 
8540 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8541 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8542 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8543 }
8544 
read_logical_state(struct hfi1_devdata * dd)8545 u32 read_logical_state(struct hfi1_devdata *dd)
8546 {
8547 	u64 reg;
8548 
8549 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8550 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8551 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8552 }
8553 
set_logical_state(struct hfi1_devdata * dd,u32 chip_lstate)8554 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8555 {
8556 	u64 reg;
8557 
8558 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8559 	/* clear current state, set new state */
8560 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8561 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8562 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8563 }
8564 
8565 /*
8566  * Use the 8051 to read a LCB CSR.
8567  */
read_lcb_via_8051(struct hfi1_devdata * dd,u32 addr,u64 * data)8568 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8569 {
8570 	u32 regno;
8571 	int ret;
8572 
8573 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8574 		if (acquire_lcb_access(dd, 0) == 0) {
8575 			*data = read_csr(dd, addr);
8576 			release_lcb_access(dd, 0);
8577 			return 0;
8578 		}
8579 		return -EBUSY;
8580 	}
8581 
8582 	/* register is an index of LCB registers: (offset - base) / 8 */
8583 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8584 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8585 	if (ret != HCMD_SUCCESS)
8586 		return -EBUSY;
8587 	return 0;
8588 }
8589 
8590 /*
8591  * Provide a cache for some of the LCB registers in case the LCB is
8592  * unavailable.
8593  * (The LCB is unavailable in certain link states, for example.)
8594  */
8595 struct lcb_datum {
8596 	u32 off;
8597 	u64 val;
8598 };
8599 
8600 static struct lcb_datum lcb_cache[] = {
8601 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8602 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8603 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8604 };
8605 
update_lcb_cache(struct hfi1_devdata * dd)8606 static void update_lcb_cache(struct hfi1_devdata *dd)
8607 {
8608 	int i;
8609 	int ret;
8610 	u64 val;
8611 
8612 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8613 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8614 
8615 		/* Update if we get good data */
8616 		if (likely(ret != -EBUSY))
8617 			lcb_cache[i].val = val;
8618 	}
8619 }
8620 
read_lcb_cache(u32 off,u64 * val)8621 static int read_lcb_cache(u32 off, u64 *val)
8622 {
8623 	int i;
8624 
8625 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8626 		if (lcb_cache[i].off == off) {
8627 			*val = lcb_cache[i].val;
8628 			return 0;
8629 		}
8630 	}
8631 
8632 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8633 	return -1;
8634 }
8635 
8636 /*
8637  * Read an LCB CSR.  Access may not be in host control, so check.
8638  * Return 0 on success, -EBUSY on failure.
8639  */
read_lcb_csr(struct hfi1_devdata * dd,u32 addr,u64 * data)8640 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8641 {
8642 	struct hfi1_pportdata *ppd = dd->pport;
8643 
8644 	/* if up, go through the 8051 for the value */
8645 	if (ppd->host_link_state & HLS_UP)
8646 		return read_lcb_via_8051(dd, addr, data);
8647 	/* if going up or down, check the cache, otherwise, no access */
8648 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8649 		if (read_lcb_cache(addr, data))
8650 			return -EBUSY;
8651 		return 0;
8652 	}
8653 
8654 	/* otherwise, host has access */
8655 	*data = read_csr(dd, addr);
8656 	return 0;
8657 }
8658 
8659 /*
8660  * Use the 8051 to write a LCB CSR.
8661  */
write_lcb_via_8051(struct hfi1_devdata * dd,u32 addr,u64 data)8662 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8663 {
8664 	u32 regno;
8665 	int ret;
8666 
8667 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8668 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8669 		if (acquire_lcb_access(dd, 0) == 0) {
8670 			write_csr(dd, addr, data);
8671 			release_lcb_access(dd, 0);
8672 			return 0;
8673 		}
8674 		return -EBUSY;
8675 	}
8676 
8677 	/* register is an index of LCB registers: (offset - base) / 8 */
8678 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8679 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8680 	if (ret != HCMD_SUCCESS)
8681 		return -EBUSY;
8682 	return 0;
8683 }
8684 
8685 /*
8686  * Write an LCB CSR.  Access may not be in host control, so check.
8687  * Return 0 on success, -EBUSY on failure.
8688  */
write_lcb_csr(struct hfi1_devdata * dd,u32 addr,u64 data)8689 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8690 {
8691 	struct hfi1_pportdata *ppd = dd->pport;
8692 
8693 	/* if up, go through the 8051 for the value */
8694 	if (ppd->host_link_state & HLS_UP)
8695 		return write_lcb_via_8051(dd, addr, data);
8696 	/* if going up or down, no access */
8697 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8698 		return -EBUSY;
8699 	/* otherwise, host has access */
8700 	write_csr(dd, addr, data);
8701 	return 0;
8702 }
8703 
8704 /*
8705  * Returns:
8706  *	< 0 = Linux error, not able to get access
8707  *	> 0 = 8051 command RETURN_CODE
8708  */
do_8051_command(struct hfi1_devdata * dd,u32 type,u64 in_data,u64 * out_data)8709 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8710 			   u64 *out_data)
8711 {
8712 	u64 reg, completed;
8713 	int return_code;
8714 	unsigned long timeout;
8715 
8716 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8717 
8718 	mutex_lock(&dd->dc8051_lock);
8719 
8720 	/* We can't send any commands to the 8051 if it's in reset */
8721 	if (dd->dc_shutdown) {
8722 		return_code = -ENODEV;
8723 		goto fail;
8724 	}
8725 
8726 	/*
8727 	 * If an 8051 host command timed out previously, then the 8051 is
8728 	 * stuck.
8729 	 *
8730 	 * On first timeout, attempt to reset and restart the entire DC
8731 	 * block (including 8051). (Is this too big of a hammer?)
8732 	 *
8733 	 * If the 8051 times out a second time, the reset did not bring it
8734 	 * back to healthy life. In that case, fail any subsequent commands.
8735 	 */
8736 	if (dd->dc8051_timed_out) {
8737 		if (dd->dc8051_timed_out > 1) {
8738 			dd_dev_err(dd,
8739 				   "Previous 8051 host command timed out, skipping command %u\n",
8740 				   type);
8741 			return_code = -ENXIO;
8742 			goto fail;
8743 		}
8744 		_dc_shutdown(dd);
8745 		_dc_start(dd);
8746 	}
8747 
8748 	/*
8749 	 * If there is no timeout, then the 8051 command interface is
8750 	 * waiting for a command.
8751 	 */
8752 
8753 	/*
8754 	 * When writing a LCB CSR, out_data contains the full value to
8755 	 * to be written, while in_data contains the relative LCB
8756 	 * address in 7:0.  Do the work here, rather than the caller,
8757 	 * of distrubting the write data to where it needs to go:
8758 	 *
8759 	 * Write data
8760 	 *   39:00 -> in_data[47:8]
8761 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8762 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8763 	 */
8764 	if (type == HCMD_WRITE_LCB_CSR) {
8765 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8766 		/* must preserve COMPLETED - it is tied to hardware */
8767 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8768 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8769 		reg |= ((((*out_data) >> 40) & 0xff) <<
8770 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8771 		      | ((((*out_data) >> 48) & 0xffff) <<
8772 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8773 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8774 	}
8775 
8776 	/*
8777 	 * Do two writes: the first to stabilize the type and req_data, the
8778 	 * second to activate.
8779 	 */
8780 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8781 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8782 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8783 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8784 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8785 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8786 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8787 
8788 	/* wait for completion, alternate: interrupt */
8789 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8790 	while (1) {
8791 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8792 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8793 		if (completed)
8794 			break;
8795 		if (time_after(jiffies, timeout)) {
8796 			dd->dc8051_timed_out++;
8797 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8798 			if (out_data)
8799 				*out_data = 0;
8800 			return_code = -ETIMEDOUT;
8801 			goto fail;
8802 		}
8803 		udelay(2);
8804 	}
8805 
8806 	if (out_data) {
8807 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8808 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8809 		if (type == HCMD_READ_LCB_CSR) {
8810 			/* top 16 bits are in a different register */
8811 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8812 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8813 				<< (48
8814 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8815 		}
8816 	}
8817 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8818 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8819 	dd->dc8051_timed_out = 0;
8820 	/*
8821 	 * Clear command for next user.
8822 	 */
8823 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8824 
8825 fail:
8826 	mutex_unlock(&dd->dc8051_lock);
8827 	return return_code;
8828 }
8829 
set_physical_link_state(struct hfi1_devdata * dd,u64 state)8830 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8831 {
8832 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8833 }
8834 
load_8051_config(struct hfi1_devdata * dd,u8 field_id,u8 lane_id,u32 config_data)8835 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8836 		     u8 lane_id, u32 config_data)
8837 {
8838 	u64 data;
8839 	int ret;
8840 
8841 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8842 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8843 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8844 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8845 	if (ret != HCMD_SUCCESS) {
8846 		dd_dev_err(dd,
8847 			   "load 8051 config: field id %d, lane %d, err %d\n",
8848 			   (int)field_id, (int)lane_id, ret);
8849 	}
8850 	return ret;
8851 }
8852 
8853 /*
8854  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8855  * set the result, even on error.
8856  * Return 0 on success, -errno on failure
8857  */
read_8051_config(struct hfi1_devdata * dd,u8 field_id,u8 lane_id,u32 * result)8858 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8859 		     u32 *result)
8860 {
8861 	u64 big_data;
8862 	u32 addr;
8863 	int ret;
8864 
8865 	/* address start depends on the lane_id */
8866 	if (lane_id < 4)
8867 		addr = (4 * NUM_GENERAL_FIELDS)
8868 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8869 	else
8870 		addr = 0;
8871 	addr += field_id * 4;
8872 
8873 	/* read is in 8-byte chunks, hardware will truncate the address down */
8874 	ret = read_8051_data(dd, addr, 8, &big_data);
8875 
8876 	if (ret == 0) {
8877 		/* extract the 4 bytes we want */
8878 		if (addr & 0x4)
8879 			*result = (u32)(big_data >> 32);
8880 		else
8881 			*result = (u32)big_data;
8882 	} else {
8883 		*result = 0;
8884 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8885 			   __func__, lane_id, field_id);
8886 	}
8887 
8888 	return ret;
8889 }
8890 
write_vc_local_phy(struct hfi1_devdata * dd,u8 power_management,u8 continuous)8891 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8892 			      u8 continuous)
8893 {
8894 	u32 frame;
8895 
8896 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8897 		| power_management << POWER_MANAGEMENT_SHIFT;
8898 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8899 				GENERAL_CONFIG, frame);
8900 }
8901 
write_vc_local_fabric(struct hfi1_devdata * dd,u8 vau,u8 z,u8 vcu,u16 vl15buf,u8 crc_sizes)8902 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8903 				 u16 vl15buf, u8 crc_sizes)
8904 {
8905 	u32 frame;
8906 
8907 	frame = (u32)vau << VAU_SHIFT
8908 		| (u32)z << Z_SHIFT
8909 		| (u32)vcu << VCU_SHIFT
8910 		| (u32)vl15buf << VL15BUF_SHIFT
8911 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8912 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8913 				GENERAL_CONFIG, frame);
8914 }
8915 
read_vc_local_link_mode(struct hfi1_devdata * dd,u8 * misc_bits,u8 * flag_bits,u16 * link_widths)8916 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8917 				    u8 *flag_bits, u16 *link_widths)
8918 {
8919 	u32 frame;
8920 
8921 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8922 			 &frame);
8923 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8924 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8925 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8926 }
8927 
write_vc_local_link_mode(struct hfi1_devdata * dd,u8 misc_bits,u8 flag_bits,u16 link_widths)8928 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8929 				    u8 misc_bits,
8930 				    u8 flag_bits,
8931 				    u16 link_widths)
8932 {
8933 	u32 frame;
8934 
8935 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8936 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8937 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8938 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8939 		     frame);
8940 }
8941 
write_local_device_id(struct hfi1_devdata * dd,u16 device_id,u8 device_rev)8942 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8943 				 u8 device_rev)
8944 {
8945 	u32 frame;
8946 
8947 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8948 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8949 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8950 }
8951 
read_remote_device_id(struct hfi1_devdata * dd,u16 * device_id,u8 * device_rev)8952 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8953 				  u8 *device_rev)
8954 {
8955 	u32 frame;
8956 
8957 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8958 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8959 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8960 			& REMOTE_DEVICE_REV_MASK;
8961 }
8962 
write_host_interface_version(struct hfi1_devdata * dd,u8 version)8963 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8964 {
8965 	u32 frame;
8966 	u32 mask;
8967 
8968 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8969 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8970 	/* Clear, then set field */
8971 	frame &= ~mask;
8972 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8973 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8974 				frame);
8975 }
8976 
read_misc_status(struct hfi1_devdata * dd,u8 * ver_major,u8 * ver_minor,u8 * ver_patch)8977 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8978 		      u8 *ver_patch)
8979 {
8980 	u32 frame;
8981 
8982 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8983 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8984 		STS_FM_VERSION_MAJOR_MASK;
8985 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8986 		STS_FM_VERSION_MINOR_MASK;
8987 
8988 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8989 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8990 		STS_FM_VERSION_PATCH_MASK;
8991 }
8992 
read_vc_remote_phy(struct hfi1_devdata * dd,u8 * power_management,u8 * continuous)8993 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8994 			       u8 *continuous)
8995 {
8996 	u32 frame;
8997 
8998 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8999 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9000 					& POWER_MANAGEMENT_MASK;
9001 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9002 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9003 }
9004 
read_vc_remote_fabric(struct hfi1_devdata * dd,u8 * vau,u8 * z,u8 * vcu,u16 * vl15buf,u8 * crc_sizes)9005 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9006 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9007 {
9008 	u32 frame;
9009 
9010 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9011 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9012 	*z = (frame >> Z_SHIFT) & Z_MASK;
9013 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9014 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9015 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9016 }
9017 
read_vc_remote_link_width(struct hfi1_devdata * dd,u8 * remote_tx_rate,u16 * link_widths)9018 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9019 				      u8 *remote_tx_rate,
9020 				      u16 *link_widths)
9021 {
9022 	u32 frame;
9023 
9024 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9025 			 &frame);
9026 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9027 				& REMOTE_TX_RATE_MASK;
9028 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9029 }
9030 
read_local_lni(struct hfi1_devdata * dd,u8 * enable_lane_rx)9031 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9032 {
9033 	u32 frame;
9034 
9035 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9036 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9037 }
9038 
read_last_local_state(struct hfi1_devdata * dd,u32 * lls)9039 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9040 {
9041 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9042 }
9043 
read_last_remote_state(struct hfi1_devdata * dd,u32 * lrs)9044 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9045 {
9046 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9047 }
9048 
hfi1_read_link_quality(struct hfi1_devdata * dd,u8 * link_quality)9049 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9050 {
9051 	u32 frame;
9052 	int ret;
9053 
9054 	*link_quality = 0;
9055 	if (dd->pport->host_link_state & HLS_UP) {
9056 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9057 				       &frame);
9058 		if (ret == 0)
9059 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9060 						& LINK_QUALITY_MASK;
9061 	}
9062 }
9063 
read_planned_down_reason_code(struct hfi1_devdata * dd,u8 * pdrrc)9064 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9065 {
9066 	u32 frame;
9067 
9068 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9069 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9070 }
9071 
read_link_down_reason(struct hfi1_devdata * dd,u8 * ldr)9072 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9073 {
9074 	u32 frame;
9075 
9076 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9077 	*ldr = (frame & 0xff);
9078 }
9079 
read_tx_settings(struct hfi1_devdata * dd,u8 * enable_lane_tx,u8 * tx_polarity_inversion,u8 * rx_polarity_inversion,u8 * max_rate)9080 static int read_tx_settings(struct hfi1_devdata *dd,
9081 			    u8 *enable_lane_tx,
9082 			    u8 *tx_polarity_inversion,
9083 			    u8 *rx_polarity_inversion,
9084 			    u8 *max_rate)
9085 {
9086 	u32 frame;
9087 	int ret;
9088 
9089 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9090 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9091 				& ENABLE_LANE_TX_MASK;
9092 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9093 				& TX_POLARITY_INVERSION_MASK;
9094 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9095 				& RX_POLARITY_INVERSION_MASK;
9096 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9097 	return ret;
9098 }
9099 
write_tx_settings(struct hfi1_devdata * dd,u8 enable_lane_tx,u8 tx_polarity_inversion,u8 rx_polarity_inversion,u8 max_rate)9100 static int write_tx_settings(struct hfi1_devdata *dd,
9101 			     u8 enable_lane_tx,
9102 			     u8 tx_polarity_inversion,
9103 			     u8 rx_polarity_inversion,
9104 			     u8 max_rate)
9105 {
9106 	u32 frame;
9107 
9108 	/* no need to mask, all variable sizes match field widths */
9109 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9110 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9111 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9112 		| max_rate << MAX_RATE_SHIFT;
9113 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9114 }
9115 
9116 /*
9117  * Read an idle LCB message.
9118  *
9119  * Returns 0 on success, -EINVAL on error
9120  */
read_idle_message(struct hfi1_devdata * dd,u64 type,u64 * data_out)9121 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9122 {
9123 	int ret;
9124 
9125 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9126 	if (ret != HCMD_SUCCESS) {
9127 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9128 			   (u32)type, ret);
9129 		return -EINVAL;
9130 	}
9131 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9132 	/* return only the payload as we already know the type */
9133 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9134 	return 0;
9135 }
9136 
9137 /*
9138  * Read an idle SMA message.  To be done in response to a notification from
9139  * the 8051.
9140  *
9141  * Returns 0 on success, -EINVAL on error
9142  */
read_idle_sma(struct hfi1_devdata * dd,u64 * data)9143 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9144 {
9145 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9146 				 data);
9147 }
9148 
9149 /*
9150  * Send an idle LCB message.
9151  *
9152  * Returns 0 on success, -EINVAL on error
9153  */
send_idle_message(struct hfi1_devdata * dd,u64 data)9154 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9155 {
9156 	int ret;
9157 
9158 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9159 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9160 	if (ret != HCMD_SUCCESS) {
9161 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9162 			   data, ret);
9163 		return -EINVAL;
9164 	}
9165 	return 0;
9166 }
9167 
9168 /*
9169  * Send an idle SMA message.
9170  *
9171  * Returns 0 on success, -EINVAL on error
9172  */
send_idle_sma(struct hfi1_devdata * dd,u64 message)9173 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9174 {
9175 	u64 data;
9176 
9177 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9178 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9179 	return send_idle_message(dd, data);
9180 }
9181 
9182 /*
9183  * Initialize the LCB then do a quick link up.  This may or may not be
9184  * in loopback.
9185  *
9186  * return 0 on success, -errno on error
9187  */
do_quick_linkup(struct hfi1_devdata * dd)9188 static int do_quick_linkup(struct hfi1_devdata *dd)
9189 {
9190 	int ret;
9191 
9192 	lcb_shutdown(dd, 0);
9193 
9194 	if (loopback) {
9195 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9196 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9197 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9198 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9199 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9200 	}
9201 
9202 	/* start the LCBs */
9203 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9204 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9205 
9206 	/* simulator only loopback steps */
9207 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9208 		/* LCB_CFG_RUN.EN = 1 */
9209 		write_csr(dd, DC_LCB_CFG_RUN,
9210 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9211 
9212 		ret = wait_link_transfer_active(dd, 10);
9213 		if (ret)
9214 			return ret;
9215 
9216 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9217 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9218 	}
9219 
9220 	if (!loopback) {
9221 		/*
9222 		 * When doing quick linkup and not in loopback, both
9223 		 * sides must be done with LCB set-up before either
9224 		 * starts the quick linkup.  Put a delay here so that
9225 		 * both sides can be started and have a chance to be
9226 		 * done with LCB set up before resuming.
9227 		 */
9228 		dd_dev_err(dd,
9229 			   "Pausing for peer to be finished with LCB set up\n");
9230 		msleep(5000);
9231 		dd_dev_err(dd, "Continuing with quick linkup\n");
9232 	}
9233 
9234 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9235 	set_8051_lcb_access(dd);
9236 
9237 	/*
9238 	 * State "quick" LinkUp request sets the physical link state to
9239 	 * LinkUp without a verify capability sequence.
9240 	 * This state is in simulator v37 and later.
9241 	 */
9242 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9243 	if (ret != HCMD_SUCCESS) {
9244 		dd_dev_err(dd,
9245 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9246 			   __func__, ret);
9247 
9248 		set_host_lcb_access(dd);
9249 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9250 
9251 		if (ret >= 0)
9252 			ret = -EINVAL;
9253 		return ret;
9254 	}
9255 
9256 	return 0; /* success */
9257 }
9258 
9259 /*
9260  * Do all special steps to set up loopback.
9261  */
init_loopback(struct hfi1_devdata * dd)9262 static int init_loopback(struct hfi1_devdata *dd)
9263 {
9264 	dd_dev_info(dd, "Entering loopback mode\n");
9265 
9266 	/* all loopbacks should disable self GUID check */
9267 	write_csr(dd, DC_DC8051_CFG_MODE,
9268 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9269 
9270 	/*
9271 	 * The simulator has only one loopback option - LCB.  Switch
9272 	 * to that option, which includes quick link up.
9273 	 *
9274 	 * Accept all valid loopback values.
9275 	 */
9276 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9277 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9278 	     loopback == LOOPBACK_CABLE)) {
9279 		loopback = LOOPBACK_LCB;
9280 		quick_linkup = 1;
9281 		return 0;
9282 	}
9283 
9284 	/*
9285 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9286 	 */
9287 	if (loopback == LOOPBACK_SERDES)
9288 		return 0;
9289 
9290 	/* LCB loopback - handled at poll time */
9291 	if (loopback == LOOPBACK_LCB) {
9292 		quick_linkup = 1; /* LCB is always quick linkup */
9293 
9294 		/* not supported in emulation due to emulation RTL changes */
9295 		if (dd->icode == ICODE_FPGA_EMULATION) {
9296 			dd_dev_err(dd,
9297 				   "LCB loopback not supported in emulation\n");
9298 			return -EINVAL;
9299 		}
9300 		return 0;
9301 	}
9302 
9303 	/* external cable loopback requires no extra steps */
9304 	if (loopback == LOOPBACK_CABLE)
9305 		return 0;
9306 
9307 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9308 	return -EINVAL;
9309 }
9310 
9311 /*
9312  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9313  * used in the Verify Capability link width attribute.
9314  */
opa_to_vc_link_widths(u16 opa_widths)9315 static u16 opa_to_vc_link_widths(u16 opa_widths)
9316 {
9317 	int i;
9318 	u16 result = 0;
9319 
9320 	static const struct link_bits {
9321 		u16 from;
9322 		u16 to;
9323 	} opa_link_xlate[] = {
9324 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9325 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9326 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9327 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9328 	};
9329 
9330 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9331 		if (opa_widths & opa_link_xlate[i].from)
9332 			result |= opa_link_xlate[i].to;
9333 	}
9334 	return result;
9335 }
9336 
9337 /*
9338  * Set link attributes before moving to polling.
9339  */
set_local_link_attributes(struct hfi1_pportdata * ppd)9340 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9341 {
9342 	struct hfi1_devdata *dd = ppd->dd;
9343 	u8 enable_lane_tx;
9344 	u8 tx_polarity_inversion;
9345 	u8 rx_polarity_inversion;
9346 	int ret;
9347 	u32 misc_bits = 0;
9348 	/* reset our fabric serdes to clear any lingering problems */
9349 	fabric_serdes_reset(dd);
9350 
9351 	/* set the local tx rate - need to read-modify-write */
9352 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9353 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9354 	if (ret)
9355 		goto set_local_link_attributes_fail;
9356 
9357 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9358 		/* set the tx rate to the fastest enabled */
9359 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9360 			ppd->local_tx_rate = 1;
9361 		else
9362 			ppd->local_tx_rate = 0;
9363 	} else {
9364 		/* set the tx rate to all enabled */
9365 		ppd->local_tx_rate = 0;
9366 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9367 			ppd->local_tx_rate |= 2;
9368 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9369 			ppd->local_tx_rate |= 1;
9370 	}
9371 
9372 	enable_lane_tx = 0xF; /* enable all four lanes */
9373 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9374 				rx_polarity_inversion, ppd->local_tx_rate);
9375 	if (ret != HCMD_SUCCESS)
9376 		goto set_local_link_attributes_fail;
9377 
9378 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9379 	if (ret != HCMD_SUCCESS) {
9380 		dd_dev_err(dd,
9381 			   "Failed to set host interface version, return 0x%x\n",
9382 			   ret);
9383 		goto set_local_link_attributes_fail;
9384 	}
9385 
9386 	/*
9387 	 * DC supports continuous updates.
9388 	 */
9389 	ret = write_vc_local_phy(dd,
9390 				 0 /* no power management */,
9391 				 1 /* continuous updates */);
9392 	if (ret != HCMD_SUCCESS)
9393 		goto set_local_link_attributes_fail;
9394 
9395 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9396 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9397 				    ppd->port_crc_mode_enabled);
9398 	if (ret != HCMD_SUCCESS)
9399 		goto set_local_link_attributes_fail;
9400 
9401 	/*
9402 	 * SerDes loopback init sequence requires
9403 	 * setting bit 0 of MISC_CONFIG_BITS
9404 	 */
9405 	if (loopback == LOOPBACK_SERDES)
9406 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9407 
9408 	/*
9409 	 * An external device configuration request is used to reset the LCB
9410 	 * to retry to obtain operational lanes when the first attempt is
9411 	 * unsuccesful.
9412 	 */
9413 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9414 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9415 
9416 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9417 				       opa_to_vc_link_widths(
9418 						ppd->link_width_enabled));
9419 	if (ret != HCMD_SUCCESS)
9420 		goto set_local_link_attributes_fail;
9421 
9422 	/* let peer know who we are */
9423 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9424 	if (ret == HCMD_SUCCESS)
9425 		return 0;
9426 
9427 set_local_link_attributes_fail:
9428 	dd_dev_err(dd,
9429 		   "Failed to set local link attributes, return 0x%x\n",
9430 		   ret);
9431 	return ret;
9432 }
9433 
9434 /*
9435  * Call this to start the link.
9436  * Do not do anything if the link is disabled.
9437  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9438  */
start_link(struct hfi1_pportdata * ppd)9439 int start_link(struct hfi1_pportdata *ppd)
9440 {
9441 	/*
9442 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9443 	 * error rate.  Needs to be done before starting the link.
9444 	 */
9445 	tune_serdes(ppd);
9446 
9447 	if (!ppd->driver_link_ready) {
9448 		dd_dev_info(ppd->dd,
9449 			    "%s: stopping link start because driver is not ready\n",
9450 			    __func__);
9451 		return 0;
9452 	}
9453 
9454 	/*
9455 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9456 	 * pkey table can be configured properly if the HFI unit is connected
9457 	 * to switch port with MgmtAllowed=NO
9458 	 */
9459 	clear_full_mgmt_pkey(ppd);
9460 
9461 	return set_link_state(ppd, HLS_DN_POLL);
9462 }
9463 
wait_for_qsfp_init(struct hfi1_pportdata * ppd)9464 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9465 {
9466 	struct hfi1_devdata *dd = ppd->dd;
9467 	u64 mask;
9468 	unsigned long timeout;
9469 
9470 	/*
9471 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9472 	 * effect of power up on plug-in. We ignore this false positive
9473 	 * interrupt until the module has finished powering up by waiting for
9474 	 * a minimum timeout of the module inrush initialization time of
9475 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9476 	 * module have stabilized.
9477 	 */
9478 	msleep(500);
9479 
9480 	/*
9481 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9482 	 */
9483 	timeout = jiffies + msecs_to_jiffies(2000);
9484 	while (1) {
9485 		mask = read_csr(dd, dd->hfi1_id ?
9486 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9487 		if (!(mask & QSFP_HFI0_INT_N))
9488 			break;
9489 		if (time_after(jiffies, timeout)) {
9490 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9491 				    __func__);
9492 			break;
9493 		}
9494 		udelay(2);
9495 	}
9496 }
9497 
set_qsfp_int_n(struct hfi1_pportdata * ppd,u8 enable)9498 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9499 {
9500 	struct hfi1_devdata *dd = ppd->dd;
9501 	u64 mask;
9502 
9503 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9504 	if (enable) {
9505 		/*
9506 		 * Clear the status register to avoid an immediate interrupt
9507 		 * when we re-enable the IntN pin
9508 		 */
9509 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9510 			  QSFP_HFI0_INT_N);
9511 		mask |= (u64)QSFP_HFI0_INT_N;
9512 	} else {
9513 		mask &= ~(u64)QSFP_HFI0_INT_N;
9514 	}
9515 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9516 }
9517 
reset_qsfp(struct hfi1_pportdata * ppd)9518 int reset_qsfp(struct hfi1_pportdata *ppd)
9519 {
9520 	struct hfi1_devdata *dd = ppd->dd;
9521 	u64 mask, qsfp_mask;
9522 
9523 	/* Disable INT_N from triggering QSFP interrupts */
9524 	set_qsfp_int_n(ppd, 0);
9525 
9526 	/* Reset the QSFP */
9527 	mask = (u64)QSFP_HFI0_RESET_N;
9528 
9529 	qsfp_mask = read_csr(dd,
9530 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9531 	qsfp_mask &= ~mask;
9532 	write_csr(dd,
9533 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9534 
9535 	udelay(10);
9536 
9537 	qsfp_mask |= mask;
9538 	write_csr(dd,
9539 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9540 
9541 	wait_for_qsfp_init(ppd);
9542 
9543 	/*
9544 	 * Allow INT_N to trigger the QSFP interrupt to watch
9545 	 * for alarms and warnings
9546 	 */
9547 	set_qsfp_int_n(ppd, 1);
9548 
9549 	/*
9550 	 * After the reset, AOC transmitters are enabled by default. They need
9551 	 * to be turned off to complete the QSFP setup before they can be
9552 	 * enabled again.
9553 	 */
9554 	return set_qsfp_tx(ppd, 0);
9555 }
9556 
handle_qsfp_error_conditions(struct hfi1_pportdata * ppd,u8 * qsfp_interrupt_status)9557 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9558 					u8 *qsfp_interrupt_status)
9559 {
9560 	struct hfi1_devdata *dd = ppd->dd;
9561 
9562 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9563 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9564 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9565 			   __func__);
9566 
9567 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9568 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9569 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9570 			   __func__);
9571 
9572 	/*
9573 	 * The remaining alarms/warnings don't matter if the link is down.
9574 	 */
9575 	if (ppd->host_link_state & HLS_DOWN)
9576 		return 0;
9577 
9578 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9579 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9580 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9581 			   __func__);
9582 
9583 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9584 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9585 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9586 			   __func__);
9587 
9588 	/* Byte 2 is vendor specific */
9589 
9590 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9591 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9592 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9593 			   __func__);
9594 
9595 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9596 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9597 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9598 			   __func__);
9599 
9600 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9601 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9602 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9603 			   __func__);
9604 
9605 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9606 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9607 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9608 			   __func__);
9609 
9610 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9611 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9612 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9613 			   __func__);
9614 
9615 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9616 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9617 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9618 			   __func__);
9619 
9620 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9621 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9622 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9623 			   __func__);
9624 
9625 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9626 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9627 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9628 			   __func__);
9629 
9630 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9631 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9632 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9633 			   __func__);
9634 
9635 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9636 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9637 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9638 			   __func__);
9639 
9640 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9641 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9642 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9643 			   __func__);
9644 
9645 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9646 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9647 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9648 			   __func__);
9649 
9650 	/* Bytes 9-10 and 11-12 are reserved */
9651 	/* Bytes 13-15 are vendor specific */
9652 
9653 	return 0;
9654 }
9655 
9656 /* This routine will only be scheduled if the QSFP module present is asserted */
qsfp_event(struct work_struct * work)9657 void qsfp_event(struct work_struct *work)
9658 {
9659 	struct qsfp_data *qd;
9660 	struct hfi1_pportdata *ppd;
9661 	struct hfi1_devdata *dd;
9662 
9663 	qd = container_of(work, struct qsfp_data, qsfp_work);
9664 	ppd = qd->ppd;
9665 	dd = ppd->dd;
9666 
9667 	/* Sanity check */
9668 	if (!qsfp_mod_present(ppd))
9669 		return;
9670 
9671 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9672 		dd_dev_info(ppd->dd,
9673 			    "%s: stopping link start because link is disabled\n",
9674 			    __func__);
9675 		return;
9676 	}
9677 
9678 	/*
9679 	 * Turn DC back on after cable has been re-inserted. Up until
9680 	 * now, the DC has been in reset to save power.
9681 	 */
9682 	dc_start(dd);
9683 
9684 	if (qd->cache_refresh_required) {
9685 		set_qsfp_int_n(ppd, 0);
9686 
9687 		wait_for_qsfp_init(ppd);
9688 
9689 		/*
9690 		 * Allow INT_N to trigger the QSFP interrupt to watch
9691 		 * for alarms and warnings
9692 		 */
9693 		set_qsfp_int_n(ppd, 1);
9694 
9695 		start_link(ppd);
9696 	}
9697 
9698 	if (qd->check_interrupt_flags) {
9699 		u8 qsfp_interrupt_status[16] = {0,};
9700 
9701 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9702 				  &qsfp_interrupt_status[0], 16) != 16) {
9703 			dd_dev_info(dd,
9704 				    "%s: Failed to read status of QSFP module\n",
9705 				    __func__);
9706 		} else {
9707 			unsigned long flags;
9708 
9709 			handle_qsfp_error_conditions(
9710 					ppd, qsfp_interrupt_status);
9711 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9712 			ppd->qsfp_info.check_interrupt_flags = 0;
9713 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9714 					       flags);
9715 		}
9716 	}
9717 }
9718 
init_qsfp_int(struct hfi1_devdata * dd)9719 void init_qsfp_int(struct hfi1_devdata *dd)
9720 {
9721 	struct hfi1_pportdata *ppd = dd->pport;
9722 	u64 qsfp_mask;
9723 
9724 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9725 	/* Clear current status to avoid spurious interrupts */
9726 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9727 		  qsfp_mask);
9728 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9729 		  qsfp_mask);
9730 
9731 	set_qsfp_int_n(ppd, 0);
9732 
9733 	/* Handle active low nature of INT_N and MODPRST_N pins */
9734 	if (qsfp_mod_present(ppd))
9735 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9736 	write_csr(dd,
9737 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9738 		  qsfp_mask);
9739 
9740 	/* Enable the appropriate QSFP IRQ source */
9741 	if (!dd->hfi1_id)
9742 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9743 	else
9744 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9745 }
9746 
9747 /*
9748  * Do a one-time initialize of the LCB block.
9749  */
init_lcb(struct hfi1_devdata * dd)9750 static void init_lcb(struct hfi1_devdata *dd)
9751 {
9752 	/* simulator does not correctly handle LCB cclk loopback, skip */
9753 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9754 		return;
9755 
9756 	/* the DC has been reset earlier in the driver load */
9757 
9758 	/* set LCB for cclk loopback on the port */
9759 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9760 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9761 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9762 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9763 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9764 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9765 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9766 }
9767 
9768 /*
9769  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9770  * on error.
9771  */
test_qsfp_read(struct hfi1_pportdata * ppd)9772 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9773 {
9774 	int ret;
9775 	u8 status;
9776 
9777 	/*
9778 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9779 	 * not present
9780 	 */
9781 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9782 		return 0;
9783 
9784 	/* read byte 2, the status byte */
9785 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9786 	if (ret < 0)
9787 		return ret;
9788 	if (ret != 1)
9789 		return -EIO;
9790 
9791 	return 0; /* success */
9792 }
9793 
9794 /*
9795  * Values for QSFP retry.
9796  *
9797  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9798  * arrived at from experience on a large cluster.
9799  */
9800 #define MAX_QSFP_RETRIES 20
9801 #define QSFP_RETRY_WAIT 500 /* msec */
9802 
9803 /*
9804  * Try a QSFP read.  If it fails, schedule a retry for later.
9805  * Called on first link activation after driver load.
9806  */
try_start_link(struct hfi1_pportdata * ppd)9807 static void try_start_link(struct hfi1_pportdata *ppd)
9808 {
9809 	if (test_qsfp_read(ppd)) {
9810 		/* read failed */
9811 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9812 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9813 			return;
9814 		}
9815 		dd_dev_info(ppd->dd,
9816 			    "QSFP not responding, waiting and retrying %d\n",
9817 			    (int)ppd->qsfp_retry_count);
9818 		ppd->qsfp_retry_count++;
9819 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9820 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9821 		return;
9822 	}
9823 	ppd->qsfp_retry_count = 0;
9824 
9825 	start_link(ppd);
9826 }
9827 
9828 /*
9829  * Workqueue function to start the link after a delay.
9830  */
handle_start_link(struct work_struct * work)9831 void handle_start_link(struct work_struct *work)
9832 {
9833 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9834 						  start_link_work.work);
9835 	try_start_link(ppd);
9836 }
9837 
bringup_serdes(struct hfi1_pportdata * ppd)9838 int bringup_serdes(struct hfi1_pportdata *ppd)
9839 {
9840 	struct hfi1_devdata *dd = ppd->dd;
9841 	u64 guid;
9842 	int ret;
9843 
9844 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9845 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9846 
9847 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9848 	if (!guid) {
9849 		if (dd->base_guid)
9850 			guid = dd->base_guid + ppd->port - 1;
9851 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9852 	}
9853 
9854 	/* Set linkinit_reason on power up per OPA spec */
9855 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9856 
9857 	/* one-time init of the LCB */
9858 	init_lcb(dd);
9859 
9860 	if (loopback) {
9861 		ret = init_loopback(dd);
9862 		if (ret < 0)
9863 			return ret;
9864 	}
9865 
9866 	get_port_type(ppd);
9867 	if (ppd->port_type == PORT_TYPE_QSFP) {
9868 		set_qsfp_int_n(ppd, 0);
9869 		wait_for_qsfp_init(ppd);
9870 		set_qsfp_int_n(ppd, 1);
9871 	}
9872 
9873 	try_start_link(ppd);
9874 	return 0;
9875 }
9876 
hfi1_quiet_serdes(struct hfi1_pportdata * ppd)9877 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9878 {
9879 	struct hfi1_devdata *dd = ppd->dd;
9880 
9881 	/*
9882 	 * Shut down the link and keep it down.   First turn off that the
9883 	 * driver wants to allow the link to be up (driver_link_ready).
9884 	 * Then make sure the link is not automatically restarted
9885 	 * (link_enabled).  Cancel any pending restart.  And finally
9886 	 * go offline.
9887 	 */
9888 	ppd->driver_link_ready = 0;
9889 	ppd->link_enabled = 0;
9890 
9891 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9892 	flush_delayed_work(&ppd->start_link_work);
9893 	cancel_delayed_work_sync(&ppd->start_link_work);
9894 
9895 	ppd->offline_disabled_reason =
9896 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9897 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9898 			     OPA_LINKDOWN_REASON_REBOOT);
9899 	set_link_state(ppd, HLS_DN_OFFLINE);
9900 
9901 	/* disable the port */
9902 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9903 	cancel_work_sync(&ppd->freeze_work);
9904 }
9905 
init_cpu_counters(struct hfi1_devdata * dd)9906 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9907 {
9908 	struct hfi1_pportdata *ppd;
9909 	int i;
9910 
9911 	ppd = (struct hfi1_pportdata *)(dd + 1);
9912 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9913 		ppd->ibport_data.rvp.rc_acks = NULL;
9914 		ppd->ibport_data.rvp.rc_qacks = NULL;
9915 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9916 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9917 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9918 		if (!ppd->ibport_data.rvp.rc_acks ||
9919 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9920 		    !ppd->ibport_data.rvp.rc_qacks)
9921 			return -ENOMEM;
9922 	}
9923 
9924 	return 0;
9925 }
9926 
9927 /*
9928  * index is the index into the receive array
9929  */
hfi1_put_tid(struct hfi1_devdata * dd,u32 index,u32 type,unsigned long pa,u16 order)9930 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9931 		  u32 type, unsigned long pa, u16 order)
9932 {
9933 	u64 reg;
9934 
9935 	if (!(dd->flags & HFI1_PRESENT))
9936 		goto done;
9937 
9938 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9939 		pa = 0;
9940 		order = 0;
9941 	} else if (type > PT_INVALID) {
9942 		dd_dev_err(dd,
9943 			   "unexpected receive array type %u for index %u, not handled\n",
9944 			   type, index);
9945 		goto done;
9946 	}
9947 	trace_hfi1_put_tid(dd, index, type, pa, order);
9948 
9949 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9950 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9951 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9952 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9953 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9954 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9955 	writeq(reg, dd->rcvarray_wc + (index * 8));
9956 
9957 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9958 		/*
9959 		 * Eager entries are written and flushed
9960 		 *
9961 		 * Expected entries are flushed every 4 writes
9962 		 */
9963 		flush_wc();
9964 done:
9965 	return;
9966 }
9967 
hfi1_clear_tids(struct hfi1_ctxtdata * rcd)9968 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9969 {
9970 	struct hfi1_devdata *dd = rcd->dd;
9971 	u32 i;
9972 
9973 	/* this could be optimized */
9974 	for (i = rcd->eager_base; i < rcd->eager_base +
9975 		     rcd->egrbufs.alloced; i++)
9976 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9977 
9978 	for (i = rcd->expected_base;
9979 			i < rcd->expected_base + rcd->expected_count; i++)
9980 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9981 }
9982 
9983 static const char * const ib_cfg_name_strings[] = {
9984 	"HFI1_IB_CFG_LIDLMC",
9985 	"HFI1_IB_CFG_LWID_DG_ENB",
9986 	"HFI1_IB_CFG_LWID_ENB",
9987 	"HFI1_IB_CFG_LWID",
9988 	"HFI1_IB_CFG_SPD_ENB",
9989 	"HFI1_IB_CFG_SPD",
9990 	"HFI1_IB_CFG_RXPOL_ENB",
9991 	"HFI1_IB_CFG_LREV_ENB",
9992 	"HFI1_IB_CFG_LINKLATENCY",
9993 	"HFI1_IB_CFG_HRTBT",
9994 	"HFI1_IB_CFG_OP_VLS",
9995 	"HFI1_IB_CFG_VL_HIGH_CAP",
9996 	"HFI1_IB_CFG_VL_LOW_CAP",
9997 	"HFI1_IB_CFG_OVERRUN_THRESH",
9998 	"HFI1_IB_CFG_PHYERR_THRESH",
9999 	"HFI1_IB_CFG_LINKDEFAULT",
10000 	"HFI1_IB_CFG_PKEYS",
10001 	"HFI1_IB_CFG_MTU",
10002 	"HFI1_IB_CFG_LSTATE",
10003 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10004 	"HFI1_IB_CFG_PMA_TICKS",
10005 	"HFI1_IB_CFG_PORT"
10006 };
10007 
ib_cfg_name(int which)10008 static const char *ib_cfg_name(int which)
10009 {
10010 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10011 		return "invalid";
10012 	return ib_cfg_name_strings[which];
10013 }
10014 
hfi1_get_ib_cfg(struct hfi1_pportdata * ppd,int which)10015 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10016 {
10017 	struct hfi1_devdata *dd = ppd->dd;
10018 	int val = 0;
10019 
10020 	switch (which) {
10021 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10022 		val = ppd->link_width_enabled;
10023 		break;
10024 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10025 		val = ppd->link_width_active;
10026 		break;
10027 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10028 		val = ppd->link_speed_enabled;
10029 		break;
10030 	case HFI1_IB_CFG_SPD: /* current Link speed */
10031 		val = ppd->link_speed_active;
10032 		break;
10033 
10034 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10035 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10036 	case HFI1_IB_CFG_LINKLATENCY:
10037 		goto unimplemented;
10038 
10039 	case HFI1_IB_CFG_OP_VLS:
10040 		val = ppd->actual_vls_operational;
10041 		break;
10042 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10043 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10044 		break;
10045 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10046 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10047 		break;
10048 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10049 		val = ppd->overrun_threshold;
10050 		break;
10051 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10052 		val = ppd->phy_error_threshold;
10053 		break;
10054 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10055 		val = HLS_DEFAULT;
10056 		break;
10057 
10058 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10059 	case HFI1_IB_CFG_PMA_TICKS:
10060 	default:
10061 unimplemented:
10062 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10063 			dd_dev_info(
10064 				dd,
10065 				"%s: which %s: not implemented\n",
10066 				__func__,
10067 				ib_cfg_name(which));
10068 		break;
10069 	}
10070 
10071 	return val;
10072 }
10073 
10074 /*
10075  * The largest MAD packet size.
10076  */
10077 #define MAX_MAD_PACKET 2048
10078 
10079 /*
10080  * Return the maximum header bytes that can go on the _wire_
10081  * for this device. This count includes the ICRC which is
10082  * not part of the packet held in memory but it is appended
10083  * by the HW.
10084  * This is dependent on the device's receive header entry size.
10085  * HFI allows this to be set per-receive context, but the
10086  * driver presently enforces a global value.
10087  */
lrh_max_header_bytes(struct hfi1_devdata * dd)10088 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10089 {
10090 	/*
10091 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10092 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10093 	 * plus one DW for the ICRC appended by HW.
10094 	 *
10095 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10096 	 * We use rcd[0] as all context will have the same value. Also,
10097 	 * the first kernel context would have been allocated by now so
10098 	 * we are guaranteed a valid value.
10099 	 */
10100 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10101 }
10102 
10103 /*
10104  * Set Send Length
10105  * @ppd: per port data
10106  *
10107  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10108  * registers compare against LRH.PktLen, so use the max bytes included
10109  * in the LRH.
10110  *
10111  * This routine changes all VL values except VL15, which it maintains at
10112  * the same value.
10113  */
set_send_length(struct hfi1_pportdata * ppd)10114 static void set_send_length(struct hfi1_pportdata *ppd)
10115 {
10116 	struct hfi1_devdata *dd = ppd->dd;
10117 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10118 	u32 maxvlmtu = dd->vld[15].mtu;
10119 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10120 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10121 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10122 	int i, j;
10123 	u32 thres;
10124 
10125 	for (i = 0; i < ppd->vls_supported; i++) {
10126 		if (dd->vld[i].mtu > maxvlmtu)
10127 			maxvlmtu = dd->vld[i].mtu;
10128 		if (i <= 3)
10129 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10130 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10131 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10132 		else
10133 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10134 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10135 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10136 	}
10137 	write_csr(dd, SEND_LEN_CHECK0, len1);
10138 	write_csr(dd, SEND_LEN_CHECK1, len2);
10139 	/* adjust kernel credit return thresholds based on new MTUs */
10140 	/* all kernel receive contexts have the same hdrqentsize */
10141 	for (i = 0; i < ppd->vls_supported; i++) {
10142 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10143 			    sc_mtu_to_threshold(dd->vld[i].sc,
10144 						dd->vld[i].mtu,
10145 						get_hdrqentsize(dd->rcd[0])));
10146 		for (j = 0; j < INIT_SC_PER_VL; j++)
10147 			sc_set_cr_threshold(
10148 					pio_select_send_context_vl(dd, j, i),
10149 					    thres);
10150 	}
10151 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10152 		    sc_mtu_to_threshold(dd->vld[15].sc,
10153 					dd->vld[15].mtu,
10154 					dd->rcd[0]->rcvhdrqentsize));
10155 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10156 
10157 	/* Adjust maximum MTU for the port in DC */
10158 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10159 		(ilog2(maxvlmtu >> 8) + 1);
10160 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10161 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10162 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10163 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10164 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10165 }
10166 
set_lidlmc(struct hfi1_pportdata * ppd)10167 static void set_lidlmc(struct hfi1_pportdata *ppd)
10168 {
10169 	int i;
10170 	u64 sreg = 0;
10171 	struct hfi1_devdata *dd = ppd->dd;
10172 	u32 mask = ~((1U << ppd->lmc) - 1);
10173 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10174 	u32 lid;
10175 
10176 	/*
10177 	 * Program 0 in CSR if port lid is extended. This prevents
10178 	 * 9B packets being sent out for large lids.
10179 	 */
10180 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10181 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10182 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10183 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10184 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10185 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10186 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10187 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10188 
10189 	/*
10190 	 * Iterate over all the send contexts and set their SLID check
10191 	 */
10192 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10193 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10194 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10195 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10196 
10197 	for (i = 0; i < chip_send_contexts(dd); i++) {
10198 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10199 			  i, (u32)sreg);
10200 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10201 	}
10202 
10203 	/* Now we have to do the same thing for the sdma engines */
10204 	sdma_update_lmc(dd, mask, lid);
10205 }
10206 
state_completed_string(u32 completed)10207 static const char *state_completed_string(u32 completed)
10208 {
10209 	static const char * const state_completed[] = {
10210 		"EstablishComm",
10211 		"OptimizeEQ",
10212 		"VerifyCap"
10213 	};
10214 
10215 	if (completed < ARRAY_SIZE(state_completed))
10216 		return state_completed[completed];
10217 
10218 	return "unknown";
10219 }
10220 
10221 static const char all_lanes_dead_timeout_expired[] =
10222 	"All lanes were inactive – was the interconnect media removed?";
10223 static const char tx_out_of_policy[] =
10224 	"Passing lanes on local port do not meet the local link width policy";
10225 static const char no_state_complete[] =
10226 	"State timeout occurred before link partner completed the state";
10227 static const char * const state_complete_reasons[] = {
10228 	[0x00] = "Reason unknown",
10229 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10230 	[0x02] = "Link partner reported failure",
10231 	[0x10] = "Unable to achieve frame sync on any lane",
10232 	[0x11] =
10233 	  "Unable to find a common bit rate with the link partner",
10234 	[0x12] =
10235 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10236 	[0x13] =
10237 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10238 	[0x14] = no_state_complete,
10239 	[0x15] =
10240 	  "State timeout occurred before link partner identified equalization presets",
10241 	[0x16] =
10242 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10243 	[0x17] = tx_out_of_policy,
10244 	[0x20] = all_lanes_dead_timeout_expired,
10245 	[0x21] =
10246 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10247 	[0x22] = no_state_complete,
10248 	[0x23] =
10249 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10250 	[0x24] = tx_out_of_policy,
10251 	[0x30] = all_lanes_dead_timeout_expired,
10252 	[0x31] =
10253 	  "State timeout occurred waiting for host to process received frames",
10254 	[0x32] = no_state_complete,
10255 	[0x33] =
10256 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10257 	[0x34] = tx_out_of_policy,
10258 	[0x35] = "Negotiated link width is mutually exclusive",
10259 	[0x36] =
10260 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10261 	[0x37] = "Unable to resolve secure data exchange",
10262 };
10263 
state_complete_reason_code_string(struct hfi1_pportdata * ppd,u32 code)10264 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10265 						     u32 code)
10266 {
10267 	const char *str = NULL;
10268 
10269 	if (code < ARRAY_SIZE(state_complete_reasons))
10270 		str = state_complete_reasons[code];
10271 
10272 	if (str)
10273 		return str;
10274 	return "Reserved";
10275 }
10276 
10277 /* describe the given last state complete frame */
decode_state_complete(struct hfi1_pportdata * ppd,u32 frame,const char * prefix)10278 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10279 				  const char *prefix)
10280 {
10281 	struct hfi1_devdata *dd = ppd->dd;
10282 	u32 success;
10283 	u32 state;
10284 	u32 reason;
10285 	u32 lanes;
10286 
10287 	/*
10288 	 * Decode frame:
10289 	 *  [ 0: 0] - success
10290 	 *  [ 3: 1] - state
10291 	 *  [ 7: 4] - next state timeout
10292 	 *  [15: 8] - reason code
10293 	 *  [31:16] - lanes
10294 	 */
10295 	success = frame & 0x1;
10296 	state = (frame >> 1) & 0x7;
10297 	reason = (frame >> 8) & 0xff;
10298 	lanes = (frame >> 16) & 0xffff;
10299 
10300 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10301 		   prefix, frame);
10302 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10303 		   state_completed_string(state), state);
10304 	dd_dev_err(dd, "    state successfully completed: %s\n",
10305 		   success ? "yes" : "no");
10306 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10307 		   reason, state_complete_reason_code_string(ppd, reason));
10308 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10309 }
10310 
10311 /*
10312  * Read the last state complete frames and explain them.  This routine
10313  * expects to be called if the link went down during link negotiation
10314  * and initialization (LNI).  That is, anywhere between polling and link up.
10315  */
check_lni_states(struct hfi1_pportdata * ppd)10316 static void check_lni_states(struct hfi1_pportdata *ppd)
10317 {
10318 	u32 last_local_state;
10319 	u32 last_remote_state;
10320 
10321 	read_last_local_state(ppd->dd, &last_local_state);
10322 	read_last_remote_state(ppd->dd, &last_remote_state);
10323 
10324 	/*
10325 	 * Don't report anything if there is nothing to report.  A value of
10326 	 * 0 means the link was taken down while polling and there was no
10327 	 * training in-process.
10328 	 */
10329 	if (last_local_state == 0 && last_remote_state == 0)
10330 		return;
10331 
10332 	decode_state_complete(ppd, last_local_state, "transmitted");
10333 	decode_state_complete(ppd, last_remote_state, "received");
10334 }
10335 
10336 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
wait_link_transfer_active(struct hfi1_devdata * dd,int wait_ms)10337 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10338 {
10339 	u64 reg;
10340 	unsigned long timeout;
10341 
10342 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10343 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10344 	while (1) {
10345 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10346 		if (reg)
10347 			break;
10348 		if (time_after(jiffies, timeout)) {
10349 			dd_dev_err(dd,
10350 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10351 			return -ETIMEDOUT;
10352 		}
10353 		udelay(2);
10354 	}
10355 	return 0;
10356 }
10357 
10358 /* called when the logical link state is not down as it should be */
force_logical_link_state_down(struct hfi1_pportdata * ppd)10359 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10360 {
10361 	struct hfi1_devdata *dd = ppd->dd;
10362 
10363 	/*
10364 	 * Bring link up in LCB loopback
10365 	 */
10366 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10367 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10368 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10369 
10370 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10371 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10372 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10373 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10374 
10375 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10376 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10377 	udelay(3);
10378 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10379 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10380 
10381 	wait_link_transfer_active(dd, 100);
10382 
10383 	/*
10384 	 * Bring the link down again.
10385 	 */
10386 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10387 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10388 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10389 
10390 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10391 }
10392 
10393 /*
10394  * Helper for set_link_state().  Do not call except from that routine.
10395  * Expects ppd->hls_mutex to be held.
10396  *
10397  * @rem_reason value to be sent to the neighbor
10398  *
10399  * LinkDownReasons only set if transition succeeds.
10400  */
goto_offline(struct hfi1_pportdata * ppd,u8 rem_reason)10401 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10402 {
10403 	struct hfi1_devdata *dd = ppd->dd;
10404 	u32 previous_state;
10405 	int offline_state_ret;
10406 	int ret;
10407 
10408 	update_lcb_cache(dd);
10409 
10410 	previous_state = ppd->host_link_state;
10411 	ppd->host_link_state = HLS_GOING_OFFLINE;
10412 
10413 	/* start offline transition */
10414 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10415 
10416 	if (ret != HCMD_SUCCESS) {
10417 		dd_dev_err(dd,
10418 			   "Failed to transition to Offline link state, return %d\n",
10419 			   ret);
10420 		return -EINVAL;
10421 	}
10422 	if (ppd->offline_disabled_reason ==
10423 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10424 		ppd->offline_disabled_reason =
10425 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10426 
10427 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10428 	if (offline_state_ret < 0)
10429 		return offline_state_ret;
10430 
10431 	/* Disabling AOC transmitters */
10432 	if (ppd->port_type == PORT_TYPE_QSFP &&
10433 	    ppd->qsfp_info.limiting_active &&
10434 	    qsfp_mod_present(ppd)) {
10435 		int ret;
10436 
10437 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10438 		if (ret == 0) {
10439 			set_qsfp_tx(ppd, 0);
10440 			release_chip_resource(dd, qsfp_resource(dd));
10441 		} else {
10442 			/* not fatal, but should warn */
10443 			dd_dev_err(dd,
10444 				   "Unable to acquire lock to turn off QSFP TX\n");
10445 		}
10446 	}
10447 
10448 	/*
10449 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10450 	 * can take a while for the link to go down.
10451 	 */
10452 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10453 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10454 		if (ret < 0)
10455 			return ret;
10456 	}
10457 
10458 	/*
10459 	 * Now in charge of LCB - must be after the physical state is
10460 	 * offline.quiet and before host_link_state is changed.
10461 	 */
10462 	set_host_lcb_access(dd);
10463 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10464 
10465 	/* make sure the logical state is also down */
10466 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10467 	if (ret)
10468 		force_logical_link_state_down(ppd);
10469 
10470 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10471 	update_statusp(ppd, IB_PORT_DOWN);
10472 
10473 	/*
10474 	 * The LNI has a mandatory wait time after the physical state
10475 	 * moves to Offline.Quiet.  The wait time may be different
10476 	 * depending on how the link went down.  The 8051 firmware
10477 	 * will observe the needed wait time and only move to ready
10478 	 * when that is completed.  The largest of the quiet timeouts
10479 	 * is 6s, so wait that long and then at least 0.5s more for
10480 	 * other transitions, and another 0.5s for a buffer.
10481 	 */
10482 	ret = wait_fm_ready(dd, 7000);
10483 	if (ret) {
10484 		dd_dev_err(dd,
10485 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10486 		/* state is really offline, so make it so */
10487 		ppd->host_link_state = HLS_DN_OFFLINE;
10488 		return ret;
10489 	}
10490 
10491 	/*
10492 	 * The state is now offline and the 8051 is ready to accept host
10493 	 * requests.
10494 	 *	- change our state
10495 	 *	- notify others if we were previously in a linkup state
10496 	 */
10497 	ppd->host_link_state = HLS_DN_OFFLINE;
10498 	if (previous_state & HLS_UP) {
10499 		/* went down while link was up */
10500 		handle_linkup_change(dd, 0);
10501 	} else if (previous_state
10502 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10503 		/* went down while attempting link up */
10504 		check_lni_states(ppd);
10505 
10506 		/* The QSFP doesn't need to be reset on LNI failure */
10507 		ppd->qsfp_info.reset_needed = 0;
10508 	}
10509 
10510 	/* the active link width (downgrade) is 0 on link down */
10511 	ppd->link_width_active = 0;
10512 	ppd->link_width_downgrade_tx_active = 0;
10513 	ppd->link_width_downgrade_rx_active = 0;
10514 	ppd->current_egress_rate = 0;
10515 	return 0;
10516 }
10517 
10518 /* return the link state name */
link_state_name(u32 state)10519 static const char *link_state_name(u32 state)
10520 {
10521 	const char *name;
10522 	int n = ilog2(state);
10523 	static const char * const names[] = {
10524 		[__HLS_UP_INIT_BP]	 = "INIT",
10525 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10526 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10527 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10528 		[__HLS_DN_POLL_BP]	 = "POLL",
10529 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10530 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10531 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10532 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10533 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10534 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10535 	};
10536 
10537 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10538 	return name ? name : "unknown";
10539 }
10540 
10541 /* return the link state reason name */
link_state_reason_name(struct hfi1_pportdata * ppd,u32 state)10542 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10543 {
10544 	if (state == HLS_UP_INIT) {
10545 		switch (ppd->linkinit_reason) {
10546 		case OPA_LINKINIT_REASON_LINKUP:
10547 			return "(LINKUP)";
10548 		case OPA_LINKINIT_REASON_FLAPPING:
10549 			return "(FLAPPING)";
10550 		case OPA_LINKINIT_OUTSIDE_POLICY:
10551 			return "(OUTSIDE_POLICY)";
10552 		case OPA_LINKINIT_QUARANTINED:
10553 			return "(QUARANTINED)";
10554 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10555 			return "(INSUFIC_CAPABILITY)";
10556 		default:
10557 			break;
10558 		}
10559 	}
10560 	return "";
10561 }
10562 
10563 /*
10564  * driver_pstate - convert the driver's notion of a port's
10565  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10566  * Return -1 (converted to a u32) to indicate error.
10567  */
driver_pstate(struct hfi1_pportdata * ppd)10568 u32 driver_pstate(struct hfi1_pportdata *ppd)
10569 {
10570 	switch (ppd->host_link_state) {
10571 	case HLS_UP_INIT:
10572 	case HLS_UP_ARMED:
10573 	case HLS_UP_ACTIVE:
10574 		return IB_PORTPHYSSTATE_LINKUP;
10575 	case HLS_DN_POLL:
10576 		return IB_PORTPHYSSTATE_POLLING;
10577 	case HLS_DN_DISABLE:
10578 		return IB_PORTPHYSSTATE_DISABLED;
10579 	case HLS_DN_OFFLINE:
10580 		return OPA_PORTPHYSSTATE_OFFLINE;
10581 	case HLS_VERIFY_CAP:
10582 		return IB_PORTPHYSSTATE_TRAINING;
10583 	case HLS_GOING_UP:
10584 		return IB_PORTPHYSSTATE_TRAINING;
10585 	case HLS_GOING_OFFLINE:
10586 		return OPA_PORTPHYSSTATE_OFFLINE;
10587 	case HLS_LINK_COOLDOWN:
10588 		return OPA_PORTPHYSSTATE_OFFLINE;
10589 	case HLS_DN_DOWNDEF:
10590 	default:
10591 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10592 			   ppd->host_link_state);
10593 		return  -1;
10594 	}
10595 }
10596 
10597 /*
10598  * driver_lstate - convert the driver's notion of a port's
10599  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10600  * (converted to a u32) to indicate error.
10601  */
driver_lstate(struct hfi1_pportdata * ppd)10602 u32 driver_lstate(struct hfi1_pportdata *ppd)
10603 {
10604 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10605 		return IB_PORT_DOWN;
10606 
10607 	switch (ppd->host_link_state & HLS_UP) {
10608 	case HLS_UP_INIT:
10609 		return IB_PORT_INIT;
10610 	case HLS_UP_ARMED:
10611 		return IB_PORT_ARMED;
10612 	case HLS_UP_ACTIVE:
10613 		return IB_PORT_ACTIVE;
10614 	default:
10615 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10616 			   ppd->host_link_state);
10617 	return -1;
10618 	}
10619 }
10620 
set_link_down_reason(struct hfi1_pportdata * ppd,u8 lcl_reason,u8 neigh_reason,u8 rem_reason)10621 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10622 			  u8 neigh_reason, u8 rem_reason)
10623 {
10624 	if (ppd->local_link_down_reason.latest == 0 &&
10625 	    ppd->neigh_link_down_reason.latest == 0) {
10626 		ppd->local_link_down_reason.latest = lcl_reason;
10627 		ppd->neigh_link_down_reason.latest = neigh_reason;
10628 		ppd->remote_link_down_reason = rem_reason;
10629 	}
10630 }
10631 
10632 /**
10633  * data_vls_operational() - Verify if data VL BCT credits and MTU
10634  *			    are both set.
10635  * @ppd: pointer to hfi1_pportdata structure
10636  *
10637  * Return: true - Ok, false -otherwise.
10638  */
data_vls_operational(struct hfi1_pportdata * ppd)10639 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10640 {
10641 	int i;
10642 	u64 reg;
10643 
10644 	if (!ppd->actual_vls_operational)
10645 		return false;
10646 
10647 	for (i = 0; i < ppd->vls_supported; i++) {
10648 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10649 		if ((reg && !ppd->dd->vld[i].mtu) ||
10650 		    (!reg && ppd->dd->vld[i].mtu))
10651 			return false;
10652 	}
10653 
10654 	return true;
10655 }
10656 
10657 /*
10658  * Change the physical and/or logical link state.
10659  *
10660  * Do not call this routine while inside an interrupt.  It contains
10661  * calls to routines that can take multiple seconds to finish.
10662  *
10663  * Returns 0 on success, -errno on failure.
10664  */
set_link_state(struct hfi1_pportdata * ppd,u32 state)10665 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10666 {
10667 	struct hfi1_devdata *dd = ppd->dd;
10668 	struct ib_event event = {.device = NULL};
10669 	int ret1, ret = 0;
10670 	int orig_new_state, poll_bounce;
10671 
10672 	mutex_lock(&ppd->hls_lock);
10673 
10674 	orig_new_state = state;
10675 	if (state == HLS_DN_DOWNDEF)
10676 		state = HLS_DEFAULT;
10677 
10678 	/* interpret poll -> poll as a link bounce */
10679 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10680 		      state == HLS_DN_POLL;
10681 
10682 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10683 		    link_state_name(ppd->host_link_state),
10684 		    link_state_name(orig_new_state),
10685 		    poll_bounce ? "(bounce) " : "",
10686 		    link_state_reason_name(ppd, state));
10687 
10688 	/*
10689 	 * If we're going to a (HLS_*) link state that implies the logical
10690 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10691 	 * reset is_sm_config_started to 0.
10692 	 */
10693 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10694 		ppd->is_sm_config_started = 0;
10695 
10696 	/*
10697 	 * Do nothing if the states match.  Let a poll to poll link bounce
10698 	 * go through.
10699 	 */
10700 	if (ppd->host_link_state == state && !poll_bounce)
10701 		goto done;
10702 
10703 	switch (state) {
10704 	case HLS_UP_INIT:
10705 		if (ppd->host_link_state == HLS_DN_POLL &&
10706 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10707 			/*
10708 			 * Quick link up jumps from polling to here.
10709 			 *
10710 			 * Whether in normal or loopback mode, the
10711 			 * simulator jumps from polling to link up.
10712 			 * Accept that here.
10713 			 */
10714 			/* OK */
10715 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10716 			goto unexpected;
10717 		}
10718 
10719 		/*
10720 		 * Wait for Link_Up physical state.
10721 		 * Physical and Logical states should already be
10722 		 * be transitioned to LinkUp and LinkInit respectively.
10723 		 */
10724 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10725 		if (ret) {
10726 			dd_dev_err(dd,
10727 				   "%s: physical state did not change to LINK-UP\n",
10728 				   __func__);
10729 			break;
10730 		}
10731 
10732 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10733 		if (ret) {
10734 			dd_dev_err(dd,
10735 				   "%s: logical state did not change to INIT\n",
10736 				   __func__);
10737 			break;
10738 		}
10739 
10740 		/* clear old transient LINKINIT_REASON code */
10741 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10742 			ppd->linkinit_reason =
10743 				OPA_LINKINIT_REASON_LINKUP;
10744 
10745 		/* enable the port */
10746 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10747 
10748 		handle_linkup_change(dd, 1);
10749 		pio_kernel_linkup(dd);
10750 
10751 		/*
10752 		 * After link up, a new link width will have been set.
10753 		 * Update the xmit counters with regards to the new
10754 		 * link width.
10755 		 */
10756 		update_xmit_counters(ppd, ppd->link_width_active);
10757 
10758 		ppd->host_link_state = HLS_UP_INIT;
10759 		update_statusp(ppd, IB_PORT_INIT);
10760 		break;
10761 	case HLS_UP_ARMED:
10762 		if (ppd->host_link_state != HLS_UP_INIT)
10763 			goto unexpected;
10764 
10765 		if (!data_vls_operational(ppd)) {
10766 			dd_dev_err(dd,
10767 				   "%s: Invalid data VL credits or mtu\n",
10768 				   __func__);
10769 			ret = -EINVAL;
10770 			break;
10771 		}
10772 
10773 		set_logical_state(dd, LSTATE_ARMED);
10774 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10775 		if (ret) {
10776 			dd_dev_err(dd,
10777 				   "%s: logical state did not change to ARMED\n",
10778 				   __func__);
10779 			break;
10780 		}
10781 		ppd->host_link_state = HLS_UP_ARMED;
10782 		update_statusp(ppd, IB_PORT_ARMED);
10783 		/*
10784 		 * The simulator does not currently implement SMA messages,
10785 		 * so neighbor_normal is not set.  Set it here when we first
10786 		 * move to Armed.
10787 		 */
10788 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10789 			ppd->neighbor_normal = 1;
10790 		break;
10791 	case HLS_UP_ACTIVE:
10792 		if (ppd->host_link_state != HLS_UP_ARMED)
10793 			goto unexpected;
10794 
10795 		set_logical_state(dd, LSTATE_ACTIVE);
10796 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10797 		if (ret) {
10798 			dd_dev_err(dd,
10799 				   "%s: logical state did not change to ACTIVE\n",
10800 				   __func__);
10801 		} else {
10802 			/* tell all engines to go running */
10803 			sdma_all_running(dd);
10804 			ppd->host_link_state = HLS_UP_ACTIVE;
10805 			update_statusp(ppd, IB_PORT_ACTIVE);
10806 
10807 			/* Signal the IB layer that the port has went active */
10808 			event.device = &dd->verbs_dev.rdi.ibdev;
10809 			event.element.port_num = ppd->port;
10810 			event.event = IB_EVENT_PORT_ACTIVE;
10811 		}
10812 		break;
10813 	case HLS_DN_POLL:
10814 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10815 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10816 		    dd->dc_shutdown)
10817 			dc_start(dd);
10818 		/* Hand LED control to the DC */
10819 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10820 
10821 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10822 			u8 tmp = ppd->link_enabled;
10823 
10824 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10825 			if (ret) {
10826 				ppd->link_enabled = tmp;
10827 				break;
10828 			}
10829 			ppd->remote_link_down_reason = 0;
10830 
10831 			if (ppd->driver_link_ready)
10832 				ppd->link_enabled = 1;
10833 		}
10834 
10835 		set_all_slowpath(ppd->dd);
10836 		ret = set_local_link_attributes(ppd);
10837 		if (ret)
10838 			break;
10839 
10840 		ppd->port_error_action = 0;
10841 
10842 		if (quick_linkup) {
10843 			/* quick linkup does not go into polling */
10844 			ret = do_quick_linkup(dd);
10845 		} else {
10846 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10847 			if (!ret1)
10848 				ret1 = wait_phys_link_out_of_offline(ppd,
10849 								     3000);
10850 			if (ret1 != HCMD_SUCCESS) {
10851 				dd_dev_err(dd,
10852 					   "Failed to transition to Polling link state, return 0x%x\n",
10853 					   ret1);
10854 				ret = -EINVAL;
10855 			}
10856 		}
10857 
10858 		/*
10859 		 * Change the host link state after requesting DC8051 to
10860 		 * change its physical state so that we can ignore any
10861 		 * interrupt with stale LNI(XX) error, which will not be
10862 		 * cleared until DC8051 transitions to Polling state.
10863 		 */
10864 		ppd->host_link_state = HLS_DN_POLL;
10865 		ppd->offline_disabled_reason =
10866 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10867 		/*
10868 		 * If an error occurred above, go back to offline.  The
10869 		 * caller may reschedule another attempt.
10870 		 */
10871 		if (ret)
10872 			goto_offline(ppd, 0);
10873 		else
10874 			log_physical_state(ppd, PLS_POLLING);
10875 		break;
10876 	case HLS_DN_DISABLE:
10877 		/* link is disabled */
10878 		ppd->link_enabled = 0;
10879 
10880 		/* allow any state to transition to disabled */
10881 
10882 		/* must transition to offline first */
10883 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10884 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10885 			if (ret)
10886 				break;
10887 			ppd->remote_link_down_reason = 0;
10888 		}
10889 
10890 		if (!dd->dc_shutdown) {
10891 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10892 			if (ret1 != HCMD_SUCCESS) {
10893 				dd_dev_err(dd,
10894 					   "Failed to transition to Disabled link state, return 0x%x\n",
10895 					   ret1);
10896 				ret = -EINVAL;
10897 				break;
10898 			}
10899 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10900 			if (ret) {
10901 				dd_dev_err(dd,
10902 					   "%s: physical state did not change to DISABLED\n",
10903 					   __func__);
10904 				break;
10905 			}
10906 			dc_shutdown(dd);
10907 		}
10908 		ppd->host_link_state = HLS_DN_DISABLE;
10909 		break;
10910 	case HLS_DN_OFFLINE:
10911 		if (ppd->host_link_state == HLS_DN_DISABLE)
10912 			dc_start(dd);
10913 
10914 		/* allow any state to transition to offline */
10915 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10916 		if (!ret)
10917 			ppd->remote_link_down_reason = 0;
10918 		break;
10919 	case HLS_VERIFY_CAP:
10920 		if (ppd->host_link_state != HLS_DN_POLL)
10921 			goto unexpected;
10922 		ppd->host_link_state = HLS_VERIFY_CAP;
10923 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10924 		break;
10925 	case HLS_GOING_UP:
10926 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10927 			goto unexpected;
10928 
10929 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10930 		if (ret1 != HCMD_SUCCESS) {
10931 			dd_dev_err(dd,
10932 				   "Failed to transition to link up state, return 0x%x\n",
10933 				   ret1);
10934 			ret = -EINVAL;
10935 			break;
10936 		}
10937 		ppd->host_link_state = HLS_GOING_UP;
10938 		break;
10939 
10940 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10941 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10942 	default:
10943 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10944 			    __func__, state);
10945 		ret = -EINVAL;
10946 		break;
10947 	}
10948 
10949 	goto done;
10950 
10951 unexpected:
10952 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10953 		   __func__, link_state_name(ppd->host_link_state),
10954 		   link_state_name(state));
10955 	ret = -EINVAL;
10956 
10957 done:
10958 	mutex_unlock(&ppd->hls_lock);
10959 
10960 	if (event.device)
10961 		ib_dispatch_event(&event);
10962 
10963 	return ret;
10964 }
10965 
hfi1_set_ib_cfg(struct hfi1_pportdata * ppd,int which,u32 val)10966 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10967 {
10968 	u64 reg;
10969 	int ret = 0;
10970 
10971 	switch (which) {
10972 	case HFI1_IB_CFG_LIDLMC:
10973 		set_lidlmc(ppd);
10974 		break;
10975 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10976 		/*
10977 		 * The VL Arbitrator high limit is sent in units of 4k
10978 		 * bytes, while HFI stores it in units of 64 bytes.
10979 		 */
10980 		val *= 4096 / 64;
10981 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10982 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10983 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10984 		break;
10985 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10986 		/* HFI only supports POLL as the default link down state */
10987 		if (val != HLS_DN_POLL)
10988 			ret = -EINVAL;
10989 		break;
10990 	case HFI1_IB_CFG_OP_VLS:
10991 		if (ppd->vls_operational != val) {
10992 			ppd->vls_operational = val;
10993 			if (!ppd->port)
10994 				ret = -EINVAL;
10995 		}
10996 		break;
10997 	/*
10998 	 * For link width, link width downgrade, and speed enable, always AND
10999 	 * the setting with what is actually supported.  This has two benefits.
11000 	 * First, enabled can't have unsupported values, no matter what the
11001 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11002 	 * "fill in with your supported value" have all the bits in the
11003 	 * field set, so simply ANDing with supported has the desired result.
11004 	 */
11005 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11006 		ppd->link_width_enabled = val & ppd->link_width_supported;
11007 		break;
11008 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11009 		ppd->link_width_downgrade_enabled =
11010 				val & ppd->link_width_downgrade_supported;
11011 		break;
11012 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11013 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11014 		break;
11015 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11016 		/*
11017 		 * HFI does not follow IB specs, save this value
11018 		 * so we can report it, if asked.
11019 		 */
11020 		ppd->overrun_threshold = val;
11021 		break;
11022 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11023 		/*
11024 		 * HFI does not follow IB specs, save this value
11025 		 * so we can report it, if asked.
11026 		 */
11027 		ppd->phy_error_threshold = val;
11028 		break;
11029 
11030 	case HFI1_IB_CFG_MTU:
11031 		set_send_length(ppd);
11032 		break;
11033 
11034 	case HFI1_IB_CFG_PKEYS:
11035 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11036 			set_partition_keys(ppd);
11037 		break;
11038 
11039 	default:
11040 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11041 			dd_dev_info(ppd->dd,
11042 				    "%s: which %s, val 0x%x: not implemented\n",
11043 				    __func__, ib_cfg_name(which), val);
11044 		break;
11045 	}
11046 	return ret;
11047 }
11048 
11049 /* begin functions related to vl arbitration table caching */
init_vl_arb_caches(struct hfi1_pportdata * ppd)11050 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11051 {
11052 	int i;
11053 
11054 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11055 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11056 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11057 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11058 
11059 	/*
11060 	 * Note that we always return values directly from the
11061 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11062 	 * 'Get(VLArbTable)'. This is obviously correct after a
11063 	 * 'Set(VLArbTable)', since the cache will then be up to
11064 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11065 	 * since then both the cache, and the relevant h/w registers
11066 	 * will be zeroed.
11067 	 */
11068 
11069 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11070 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11071 }
11072 
11073 /*
11074  * vl_arb_lock_cache
11075  *
11076  * All other vl_arb_* functions should be called only after locking
11077  * the cache.
11078  */
11079 static inline struct vl_arb_cache *
vl_arb_lock_cache(struct hfi1_pportdata * ppd,int idx)11080 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11081 {
11082 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11083 		return NULL;
11084 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11085 	return &ppd->vl_arb_cache[idx];
11086 }
11087 
vl_arb_unlock_cache(struct hfi1_pportdata * ppd,int idx)11088 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11089 {
11090 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11091 }
11092 
vl_arb_get_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11093 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11094 			     struct ib_vl_weight_elem *vl)
11095 {
11096 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11097 }
11098 
vl_arb_set_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11099 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11100 			     struct ib_vl_weight_elem *vl)
11101 {
11102 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11103 }
11104 
vl_arb_match_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11105 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11106 			      struct ib_vl_weight_elem *vl)
11107 {
11108 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11109 }
11110 
11111 /* end functions related to vl arbitration table caching */
11112 
set_vl_weights(struct hfi1_pportdata * ppd,u32 target,u32 size,struct ib_vl_weight_elem * vl)11113 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11114 			  u32 size, struct ib_vl_weight_elem *vl)
11115 {
11116 	struct hfi1_devdata *dd = ppd->dd;
11117 	u64 reg;
11118 	unsigned int i, is_up = 0;
11119 	int drain, ret = 0;
11120 
11121 	mutex_lock(&ppd->hls_lock);
11122 
11123 	if (ppd->host_link_state & HLS_UP)
11124 		is_up = 1;
11125 
11126 	drain = !is_ax(dd) && is_up;
11127 
11128 	if (drain)
11129 		/*
11130 		 * Before adjusting VL arbitration weights, empty per-VL
11131 		 * FIFOs, otherwise a packet whose VL weight is being
11132 		 * set to 0 could get stuck in a FIFO with no chance to
11133 		 * egress.
11134 		 */
11135 		ret = stop_drain_data_vls(dd);
11136 
11137 	if (ret) {
11138 		dd_dev_err(
11139 			dd,
11140 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11141 			__func__);
11142 		goto err;
11143 	}
11144 
11145 	for (i = 0; i < size; i++, vl++) {
11146 		/*
11147 		 * NOTE: The low priority shift and mask are used here, but
11148 		 * they are the same for both the low and high registers.
11149 		 */
11150 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11151 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11152 		      | (((u64)vl->weight
11153 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11154 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11155 		write_csr(dd, target + (i * 8), reg);
11156 	}
11157 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11158 
11159 	if (drain)
11160 		open_fill_data_vls(dd); /* reopen all VLs */
11161 
11162 err:
11163 	mutex_unlock(&ppd->hls_lock);
11164 
11165 	return ret;
11166 }
11167 
11168 /*
11169  * Read one credit merge VL register.
11170  */
read_one_cm_vl(struct hfi1_devdata * dd,u32 csr,struct vl_limit * vll)11171 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11172 			   struct vl_limit *vll)
11173 {
11174 	u64 reg = read_csr(dd, csr);
11175 
11176 	vll->dedicated = cpu_to_be16(
11177 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11178 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11179 	vll->shared = cpu_to_be16(
11180 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11181 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11182 }
11183 
11184 /*
11185  * Read the current credit merge limits.
11186  */
get_buffer_control(struct hfi1_devdata * dd,struct buffer_control * bc,u16 * overall_limit)11187 static int get_buffer_control(struct hfi1_devdata *dd,
11188 			      struct buffer_control *bc, u16 *overall_limit)
11189 {
11190 	u64 reg;
11191 	int i;
11192 
11193 	/* not all entries are filled in */
11194 	memset(bc, 0, sizeof(*bc));
11195 
11196 	/* OPA and HFI have a 1-1 mapping */
11197 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11198 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11199 
11200 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11201 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11202 
11203 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11204 	bc->overall_shared_limit = cpu_to_be16(
11205 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11206 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11207 	if (overall_limit)
11208 		*overall_limit = (reg
11209 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11210 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11211 	return sizeof(struct buffer_control);
11212 }
11213 
get_sc2vlnt(struct hfi1_devdata * dd,struct sc2vlnt * dp)11214 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11215 {
11216 	u64 reg;
11217 	int i;
11218 
11219 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11220 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11221 	for (i = 0; i < sizeof(u64); i++) {
11222 		u8 byte = *(((u8 *)&reg) + i);
11223 
11224 		dp->vlnt[2 * i] = byte & 0xf;
11225 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11226 	}
11227 
11228 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11229 	for (i = 0; i < sizeof(u64); i++) {
11230 		u8 byte = *(((u8 *)&reg) + i);
11231 
11232 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11233 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11234 	}
11235 	return sizeof(struct sc2vlnt);
11236 }
11237 
get_vlarb_preempt(struct hfi1_devdata * dd,u32 nelems,struct ib_vl_weight_elem * vl)11238 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11239 			      struct ib_vl_weight_elem *vl)
11240 {
11241 	unsigned int i;
11242 
11243 	for (i = 0; i < nelems; i++, vl++) {
11244 		vl->vl = 0xf;
11245 		vl->weight = 0;
11246 	}
11247 }
11248 
set_sc2vlnt(struct hfi1_devdata * dd,struct sc2vlnt * dp)11249 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11250 {
11251 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11252 		  DC_SC_VL_VAL(15_0,
11253 			       0, dp->vlnt[0] & 0xf,
11254 			       1, dp->vlnt[1] & 0xf,
11255 			       2, dp->vlnt[2] & 0xf,
11256 			       3, dp->vlnt[3] & 0xf,
11257 			       4, dp->vlnt[4] & 0xf,
11258 			       5, dp->vlnt[5] & 0xf,
11259 			       6, dp->vlnt[6] & 0xf,
11260 			       7, dp->vlnt[7] & 0xf,
11261 			       8, dp->vlnt[8] & 0xf,
11262 			       9, dp->vlnt[9] & 0xf,
11263 			       10, dp->vlnt[10] & 0xf,
11264 			       11, dp->vlnt[11] & 0xf,
11265 			       12, dp->vlnt[12] & 0xf,
11266 			       13, dp->vlnt[13] & 0xf,
11267 			       14, dp->vlnt[14] & 0xf,
11268 			       15, dp->vlnt[15] & 0xf));
11269 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11270 		  DC_SC_VL_VAL(31_16,
11271 			       16, dp->vlnt[16] & 0xf,
11272 			       17, dp->vlnt[17] & 0xf,
11273 			       18, dp->vlnt[18] & 0xf,
11274 			       19, dp->vlnt[19] & 0xf,
11275 			       20, dp->vlnt[20] & 0xf,
11276 			       21, dp->vlnt[21] & 0xf,
11277 			       22, dp->vlnt[22] & 0xf,
11278 			       23, dp->vlnt[23] & 0xf,
11279 			       24, dp->vlnt[24] & 0xf,
11280 			       25, dp->vlnt[25] & 0xf,
11281 			       26, dp->vlnt[26] & 0xf,
11282 			       27, dp->vlnt[27] & 0xf,
11283 			       28, dp->vlnt[28] & 0xf,
11284 			       29, dp->vlnt[29] & 0xf,
11285 			       30, dp->vlnt[30] & 0xf,
11286 			       31, dp->vlnt[31] & 0xf));
11287 }
11288 
nonzero_msg(struct hfi1_devdata * dd,int idx,const char * what,u16 limit)11289 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11290 			u16 limit)
11291 {
11292 	if (limit != 0)
11293 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11294 			    what, (int)limit, idx);
11295 }
11296 
11297 /* change only the shared limit portion of SendCmGLobalCredit */
set_global_shared(struct hfi1_devdata * dd,u16 limit)11298 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11299 {
11300 	u64 reg;
11301 
11302 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11303 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11304 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11305 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11306 }
11307 
11308 /* change only the total credit limit portion of SendCmGLobalCredit */
set_global_limit(struct hfi1_devdata * dd,u16 limit)11309 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11310 {
11311 	u64 reg;
11312 
11313 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11314 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11315 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11316 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11317 }
11318 
11319 /* set the given per-VL shared limit */
set_vl_shared(struct hfi1_devdata * dd,int vl,u16 limit)11320 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11321 {
11322 	u64 reg;
11323 	u32 addr;
11324 
11325 	if (vl < TXE_NUM_DATA_VL)
11326 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11327 	else
11328 		addr = SEND_CM_CREDIT_VL15;
11329 
11330 	reg = read_csr(dd, addr);
11331 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11332 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11333 	write_csr(dd, addr, reg);
11334 }
11335 
11336 /* set the given per-VL dedicated limit */
set_vl_dedicated(struct hfi1_devdata * dd,int vl,u16 limit)11337 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11338 {
11339 	u64 reg;
11340 	u32 addr;
11341 
11342 	if (vl < TXE_NUM_DATA_VL)
11343 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11344 	else
11345 		addr = SEND_CM_CREDIT_VL15;
11346 
11347 	reg = read_csr(dd, addr);
11348 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11349 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11350 	write_csr(dd, addr, reg);
11351 }
11352 
11353 /* spin until the given per-VL status mask bits clear */
wait_for_vl_status_clear(struct hfi1_devdata * dd,u64 mask,const char * which)11354 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11355 				     const char *which)
11356 {
11357 	unsigned long timeout;
11358 	u64 reg;
11359 
11360 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11361 	while (1) {
11362 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11363 
11364 		if (reg == 0)
11365 			return;	/* success */
11366 		if (time_after(jiffies, timeout))
11367 			break;		/* timed out */
11368 		udelay(1);
11369 	}
11370 
11371 	dd_dev_err(dd,
11372 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11373 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11374 	/*
11375 	 * If this occurs, it is likely there was a credit loss on the link.
11376 	 * The only recovery from that is a link bounce.
11377 	 */
11378 	dd_dev_err(dd,
11379 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11380 }
11381 
11382 /*
11383  * The number of credits on the VLs may be changed while everything
11384  * is "live", but the following algorithm must be followed due to
11385  * how the hardware is actually implemented.  In particular,
11386  * Return_Credit_Status[] is the only correct status check.
11387  *
11388  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11389  *     set Global_Shared_Credit_Limit = 0
11390  *     use_all_vl = 1
11391  * mask0 = all VLs that are changing either dedicated or shared limits
11392  * set Shared_Limit[mask0] = 0
11393  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11394  * if (changing any dedicated limit)
11395  *     mask1 = all VLs that are lowering dedicated limits
11396  *     lower Dedicated_Limit[mask1]
11397  *     spin until Return_Credit_Status[mask1] == 0
11398  *     raise Dedicated_Limits
11399  * raise Shared_Limits
11400  * raise Global_Shared_Credit_Limit
11401  *
11402  * lower = if the new limit is lower, set the limit to the new value
11403  * raise = if the new limit is higher than the current value (may be changed
11404  *	earlier in the algorithm), set the new limit to the new value
11405  */
set_buffer_control(struct hfi1_pportdata * ppd,struct buffer_control * new_bc)11406 int set_buffer_control(struct hfi1_pportdata *ppd,
11407 		       struct buffer_control *new_bc)
11408 {
11409 	struct hfi1_devdata *dd = ppd->dd;
11410 	u64 changing_mask, ld_mask, stat_mask;
11411 	int change_count;
11412 	int i, use_all_mask;
11413 	int this_shared_changing;
11414 	int vl_count = 0, ret;
11415 	/*
11416 	 * A0: add the variable any_shared_limit_changing below and in the
11417 	 * algorithm above.  If removing A0 support, it can be removed.
11418 	 */
11419 	int any_shared_limit_changing;
11420 	struct buffer_control cur_bc;
11421 	u8 changing[OPA_MAX_VLS];
11422 	u8 lowering_dedicated[OPA_MAX_VLS];
11423 	u16 cur_total;
11424 	u32 new_total = 0;
11425 	const u64 all_mask =
11426 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11427 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11428 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11429 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11430 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11431 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11432 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11433 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11434 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11435 
11436 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11437 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11438 
11439 	/* find the new total credits, do sanity check on unused VLs */
11440 	for (i = 0; i < OPA_MAX_VLS; i++) {
11441 		if (valid_vl(i)) {
11442 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11443 			continue;
11444 		}
11445 		nonzero_msg(dd, i, "dedicated",
11446 			    be16_to_cpu(new_bc->vl[i].dedicated));
11447 		nonzero_msg(dd, i, "shared",
11448 			    be16_to_cpu(new_bc->vl[i].shared));
11449 		new_bc->vl[i].dedicated = 0;
11450 		new_bc->vl[i].shared = 0;
11451 	}
11452 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11453 
11454 	/* fetch the current values */
11455 	get_buffer_control(dd, &cur_bc, &cur_total);
11456 
11457 	/*
11458 	 * Create the masks we will use.
11459 	 */
11460 	memset(changing, 0, sizeof(changing));
11461 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11462 	/*
11463 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11464 	 * increasing order
11465 	 */
11466 	stat_mask =
11467 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11468 	changing_mask = 0;
11469 	ld_mask = 0;
11470 	change_count = 0;
11471 	any_shared_limit_changing = 0;
11472 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11473 		if (!valid_vl(i))
11474 			continue;
11475 		this_shared_changing = new_bc->vl[i].shared
11476 						!= cur_bc.vl[i].shared;
11477 		if (this_shared_changing)
11478 			any_shared_limit_changing = 1;
11479 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11480 		    this_shared_changing) {
11481 			changing[i] = 1;
11482 			changing_mask |= stat_mask;
11483 			change_count++;
11484 		}
11485 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11486 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11487 			lowering_dedicated[i] = 1;
11488 			ld_mask |= stat_mask;
11489 		}
11490 	}
11491 
11492 	/* bracket the credit change with a total adjustment */
11493 	if (new_total > cur_total)
11494 		set_global_limit(dd, new_total);
11495 
11496 	/*
11497 	 * Start the credit change algorithm.
11498 	 */
11499 	use_all_mask = 0;
11500 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11501 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11502 	    (is_ax(dd) && any_shared_limit_changing)) {
11503 		set_global_shared(dd, 0);
11504 		cur_bc.overall_shared_limit = 0;
11505 		use_all_mask = 1;
11506 	}
11507 
11508 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11509 		if (!valid_vl(i))
11510 			continue;
11511 
11512 		if (changing[i]) {
11513 			set_vl_shared(dd, i, 0);
11514 			cur_bc.vl[i].shared = 0;
11515 		}
11516 	}
11517 
11518 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11519 				 "shared");
11520 
11521 	if (change_count > 0) {
11522 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11523 			if (!valid_vl(i))
11524 				continue;
11525 
11526 			if (lowering_dedicated[i]) {
11527 				set_vl_dedicated(dd, i,
11528 						 be16_to_cpu(new_bc->
11529 							     vl[i].dedicated));
11530 				cur_bc.vl[i].dedicated =
11531 						new_bc->vl[i].dedicated;
11532 			}
11533 		}
11534 
11535 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11536 
11537 		/* now raise all dedicated that are going up */
11538 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11539 			if (!valid_vl(i))
11540 				continue;
11541 
11542 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11543 					be16_to_cpu(cur_bc.vl[i].dedicated))
11544 				set_vl_dedicated(dd, i,
11545 						 be16_to_cpu(new_bc->
11546 							     vl[i].dedicated));
11547 		}
11548 	}
11549 
11550 	/* next raise all shared that are going up */
11551 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11552 		if (!valid_vl(i))
11553 			continue;
11554 
11555 		if (be16_to_cpu(new_bc->vl[i].shared) >
11556 				be16_to_cpu(cur_bc.vl[i].shared))
11557 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11558 	}
11559 
11560 	/* finally raise the global shared */
11561 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11562 	    be16_to_cpu(cur_bc.overall_shared_limit))
11563 		set_global_shared(dd,
11564 				  be16_to_cpu(new_bc->overall_shared_limit));
11565 
11566 	/* bracket the credit change with a total adjustment */
11567 	if (new_total < cur_total)
11568 		set_global_limit(dd, new_total);
11569 
11570 	/*
11571 	 * Determine the actual number of operational VLS using the number of
11572 	 * dedicated and shared credits for each VL.
11573 	 */
11574 	if (change_count > 0) {
11575 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11576 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11577 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11578 				vl_count++;
11579 		ppd->actual_vls_operational = vl_count;
11580 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11581 				    ppd->actual_vls_operational :
11582 				    ppd->vls_operational,
11583 				    NULL);
11584 		if (ret == 0)
11585 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11586 					   ppd->actual_vls_operational :
11587 					   ppd->vls_operational, NULL);
11588 		if (ret)
11589 			return ret;
11590 	}
11591 	return 0;
11592 }
11593 
11594 /*
11595  * Read the given fabric manager table. Return the size of the
11596  * table (in bytes) on success, and a negative error code on
11597  * failure.
11598  */
fm_get_table(struct hfi1_pportdata * ppd,int which,void * t)11599 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11600 
11601 {
11602 	int size;
11603 	struct vl_arb_cache *vlc;
11604 
11605 	switch (which) {
11606 	case FM_TBL_VL_HIGH_ARB:
11607 		size = 256;
11608 		/*
11609 		 * OPA specifies 128 elements (of 2 bytes each), though
11610 		 * HFI supports only 16 elements in h/w.
11611 		 */
11612 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11613 		vl_arb_get_cache(vlc, t);
11614 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11615 		break;
11616 	case FM_TBL_VL_LOW_ARB:
11617 		size = 256;
11618 		/*
11619 		 * OPA specifies 128 elements (of 2 bytes each), though
11620 		 * HFI supports only 16 elements in h/w.
11621 		 */
11622 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11623 		vl_arb_get_cache(vlc, t);
11624 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11625 		break;
11626 	case FM_TBL_BUFFER_CONTROL:
11627 		size = get_buffer_control(ppd->dd, t, NULL);
11628 		break;
11629 	case FM_TBL_SC2VLNT:
11630 		size = get_sc2vlnt(ppd->dd, t);
11631 		break;
11632 	case FM_TBL_VL_PREEMPT_ELEMS:
11633 		size = 256;
11634 		/* OPA specifies 128 elements, of 2 bytes each */
11635 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11636 		break;
11637 	case FM_TBL_VL_PREEMPT_MATRIX:
11638 		size = 256;
11639 		/*
11640 		 * OPA specifies that this is the same size as the VL
11641 		 * arbitration tables (i.e., 256 bytes).
11642 		 */
11643 		break;
11644 	default:
11645 		return -EINVAL;
11646 	}
11647 	return size;
11648 }
11649 
11650 /*
11651  * Write the given fabric manager table.
11652  */
fm_set_table(struct hfi1_pportdata * ppd,int which,void * t)11653 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11654 {
11655 	int ret = 0;
11656 	struct vl_arb_cache *vlc;
11657 
11658 	switch (which) {
11659 	case FM_TBL_VL_HIGH_ARB:
11660 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11661 		if (vl_arb_match_cache(vlc, t)) {
11662 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11663 			break;
11664 		}
11665 		vl_arb_set_cache(vlc, t);
11666 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11667 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11668 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11669 		break;
11670 	case FM_TBL_VL_LOW_ARB:
11671 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11672 		if (vl_arb_match_cache(vlc, t)) {
11673 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11674 			break;
11675 		}
11676 		vl_arb_set_cache(vlc, t);
11677 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11678 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11679 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11680 		break;
11681 	case FM_TBL_BUFFER_CONTROL:
11682 		ret = set_buffer_control(ppd, t);
11683 		break;
11684 	case FM_TBL_SC2VLNT:
11685 		set_sc2vlnt(ppd->dd, t);
11686 		break;
11687 	default:
11688 		ret = -EINVAL;
11689 	}
11690 	return ret;
11691 }
11692 
11693 /*
11694  * Disable all data VLs.
11695  *
11696  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11697  */
disable_data_vls(struct hfi1_devdata * dd)11698 static int disable_data_vls(struct hfi1_devdata *dd)
11699 {
11700 	if (is_ax(dd))
11701 		return 1;
11702 
11703 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11704 
11705 	return 0;
11706 }
11707 
11708 /*
11709  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11710  * Just re-enables all data VLs (the "fill" part happens
11711  * automatically - the name was chosen for symmetry with
11712  * stop_drain_data_vls()).
11713  *
11714  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11715  */
open_fill_data_vls(struct hfi1_devdata * dd)11716 int open_fill_data_vls(struct hfi1_devdata *dd)
11717 {
11718 	if (is_ax(dd))
11719 		return 1;
11720 
11721 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11722 
11723 	return 0;
11724 }
11725 
11726 /*
11727  * drain_data_vls() - assumes that disable_data_vls() has been called,
11728  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11729  * engines to drop to 0.
11730  */
drain_data_vls(struct hfi1_devdata * dd)11731 static void drain_data_vls(struct hfi1_devdata *dd)
11732 {
11733 	sc_wait(dd);
11734 	sdma_wait(dd);
11735 	pause_for_credit_return(dd);
11736 }
11737 
11738 /*
11739  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11740  *
11741  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11742  * meant to be used like this:
11743  *
11744  * stop_drain_data_vls(dd);
11745  * // do things with per-VL resources
11746  * open_fill_data_vls(dd);
11747  */
stop_drain_data_vls(struct hfi1_devdata * dd)11748 int stop_drain_data_vls(struct hfi1_devdata *dd)
11749 {
11750 	int ret;
11751 
11752 	ret = disable_data_vls(dd);
11753 	if (ret == 0)
11754 		drain_data_vls(dd);
11755 
11756 	return ret;
11757 }
11758 
11759 /*
11760  * Convert a nanosecond time to a cclock count.  No matter how slow
11761  * the cclock, a non-zero ns will always have a non-zero result.
11762  */
ns_to_cclock(struct hfi1_devdata * dd,u32 ns)11763 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11764 {
11765 	u32 cclocks;
11766 
11767 	if (dd->icode == ICODE_FPGA_EMULATION)
11768 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11769 	else  /* simulation pretends to be ASIC */
11770 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11771 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11772 		cclocks = 1;
11773 	return cclocks;
11774 }
11775 
11776 /*
11777  * Convert a cclock count to nanoseconds. Not matter how slow
11778  * the cclock, a non-zero cclocks will always have a non-zero result.
11779  */
cclock_to_ns(struct hfi1_devdata * dd,u32 cclocks)11780 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11781 {
11782 	u32 ns;
11783 
11784 	if (dd->icode == ICODE_FPGA_EMULATION)
11785 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11786 	else  /* simulation pretends to be ASIC */
11787 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11788 	if (cclocks && !ns)
11789 		ns = 1;
11790 	return ns;
11791 }
11792 
11793 /*
11794  * Dynamically adjust the receive interrupt timeout for a context based on
11795  * incoming packet rate.
11796  *
11797  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11798  */
adjust_rcv_timeout(struct hfi1_ctxtdata * rcd,u32 npkts)11799 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11800 {
11801 	struct hfi1_devdata *dd = rcd->dd;
11802 	u32 timeout = rcd->rcvavail_timeout;
11803 
11804 	/*
11805 	 * This algorithm doubles or halves the timeout depending on whether
11806 	 * the number of packets received in this interrupt were less than or
11807 	 * greater equal the interrupt count.
11808 	 *
11809 	 * The calculations below do not allow a steady state to be achieved.
11810 	 * Only at the endpoints it is possible to have an unchanging
11811 	 * timeout.
11812 	 */
11813 	if (npkts < rcv_intr_count) {
11814 		/*
11815 		 * Not enough packets arrived before the timeout, adjust
11816 		 * timeout downward.
11817 		 */
11818 		if (timeout < 2) /* already at minimum? */
11819 			return;
11820 		timeout >>= 1;
11821 	} else {
11822 		/*
11823 		 * More than enough packets arrived before the timeout, adjust
11824 		 * timeout upward.
11825 		 */
11826 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11827 			return;
11828 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11829 	}
11830 
11831 	rcd->rcvavail_timeout = timeout;
11832 	/*
11833 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11834 	 * been verified to be in range
11835 	 */
11836 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11837 			(u64)timeout <<
11838 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11839 }
11840 
update_usrhead(struct hfi1_ctxtdata * rcd,u32 hd,u32 updegr,u32 egrhd,u32 intr_adjust,u32 npkts)11841 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11842 		    u32 intr_adjust, u32 npkts)
11843 {
11844 	struct hfi1_devdata *dd = rcd->dd;
11845 	u64 reg;
11846 	u32 ctxt = rcd->ctxt;
11847 
11848 	/*
11849 	 * Need to write timeout register before updating RcvHdrHead to ensure
11850 	 * that a new value is used when the HW decides to restart counting.
11851 	 */
11852 	if (intr_adjust)
11853 		adjust_rcv_timeout(rcd, npkts);
11854 	if (updegr) {
11855 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11856 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11857 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11858 	}
11859 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11860 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11861 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11862 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11863 }
11864 
hdrqempty(struct hfi1_ctxtdata * rcd)11865 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11866 {
11867 	u32 head, tail;
11868 
11869 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11870 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11871 
11872 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11873 		tail = get_rcvhdrtail(rcd);
11874 	else
11875 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11876 
11877 	return head == tail;
11878 }
11879 
11880 /*
11881  * Context Control and Receive Array encoding for buffer size:
11882  *	0x0 invalid
11883  *	0x1   4 KB
11884  *	0x2   8 KB
11885  *	0x3  16 KB
11886  *	0x4  32 KB
11887  *	0x5  64 KB
11888  *	0x6 128 KB
11889  *	0x7 256 KB
11890  *	0x8 512 KB (Receive Array only)
11891  *	0x9   1 MB (Receive Array only)
11892  *	0xa   2 MB (Receive Array only)
11893  *
11894  *	0xB-0xF - reserved (Receive Array only)
11895  *
11896  *
11897  * This routine assumes that the value has already been sanity checked.
11898  */
encoded_size(u32 size)11899 static u32 encoded_size(u32 size)
11900 {
11901 	switch (size) {
11902 	case   4 * 1024: return 0x1;
11903 	case   8 * 1024: return 0x2;
11904 	case  16 * 1024: return 0x3;
11905 	case  32 * 1024: return 0x4;
11906 	case  64 * 1024: return 0x5;
11907 	case 128 * 1024: return 0x6;
11908 	case 256 * 1024: return 0x7;
11909 	case 512 * 1024: return 0x8;
11910 	case   1 * 1024 * 1024: return 0x9;
11911 	case   2 * 1024 * 1024: return 0xa;
11912 	}
11913 	return 0x1;	/* if invalid, go with the minimum size */
11914 }
11915 
11916 /**
11917  * encode_rcv_header_entry_size - return chip specific encoding for size
11918  * @size: size in dwords
11919  *
11920  * Convert a receive header entry size that to the encoding used in the CSR.
11921  *
11922  * Return a zero if the given size is invalid, otherwise the encoding.
11923  */
encode_rcv_header_entry_size(u8 size)11924 u8 encode_rcv_header_entry_size(u8 size)
11925 {
11926 	/* there are only 3 valid receive header entry sizes */
11927 	if (size == 2)
11928 		return 1;
11929 	if (size == 16)
11930 		return 2;
11931 	if (size == 32)
11932 		return 4;
11933 	return 0; /* invalid */
11934 }
11935 
11936 /**
11937  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11938  * @dd: the device data
11939  * @thecnt: the header count
11940  */
hfi1_validate_rcvhdrcnt(struct hfi1_devdata * dd,uint thecnt)11941 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11942 {
11943 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11944 		dd_dev_err(dd, "Receive header queue count too small\n");
11945 		return -EINVAL;
11946 	}
11947 
11948 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11949 		dd_dev_err(dd,
11950 			   "Receive header queue count cannot be greater than %u\n",
11951 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11952 		return -EINVAL;
11953 	}
11954 
11955 	if (thecnt % HDRQ_INCREMENT) {
11956 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11957 			   thecnt, HDRQ_INCREMENT);
11958 		return -EINVAL;
11959 	}
11960 
11961 	return 0;
11962 }
11963 
11964 /**
11965  * set_hdrq_regs - set header queue registers for context
11966  * @dd: the device data
11967  * @ctxt: the context
11968  * @entsize: the dword entry size
11969  * @hdrcnt: the number of header entries
11970  */
set_hdrq_regs(struct hfi1_devdata * dd,u8 ctxt,u8 entsize,u16 hdrcnt)11971 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11972 {
11973 	u64 reg;
11974 
11975 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11976 	      RCV_HDR_CNT_CNT_SHIFT;
11977 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11978 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
11979 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11980 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11981 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11982 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11983 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11984 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11985 
11986 	/*
11987 	 * Program dummy tail address for every receive context
11988 	 * before enabling any receive context
11989 	 */
11990 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11991 			dd->rcvhdrtail_dummy_dma);
11992 }
11993 
hfi1_rcvctrl(struct hfi1_devdata * dd,unsigned int op,struct hfi1_ctxtdata * rcd)11994 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11995 		  struct hfi1_ctxtdata *rcd)
11996 {
11997 	u64 rcvctrl, reg;
11998 	int did_enable = 0;
11999 	u16 ctxt;
12000 
12001 	if (!rcd)
12002 		return;
12003 
12004 	ctxt = rcd->ctxt;
12005 
12006 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12007 
12008 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12009 	/* if the context already enabled, don't do the extra steps */
12010 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12011 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12012 		/* reset the tail and hdr addresses, and sequence count */
12013 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12014 				rcd->rcvhdrq_dma);
12015 		if (hfi1_rcvhdrtail_kvaddr(rcd))
12016 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12017 					rcd->rcvhdrqtailaddr_dma);
12018 		hfi1_set_seq_cnt(rcd, 1);
12019 
12020 		/* reset the cached receive header queue head value */
12021 		hfi1_set_rcd_head(rcd, 0);
12022 
12023 		/*
12024 		 * Zero the receive header queue so we don't get false
12025 		 * positives when checking the sequence number.  The
12026 		 * sequence numbers could land exactly on the same spot.
12027 		 * E.g. a rcd restart before the receive header wrapped.
12028 		 */
12029 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12030 
12031 		/* starting timeout */
12032 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12033 
12034 		/* enable the context */
12035 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12036 
12037 		/* clean the egr buffer size first */
12038 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12039 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12040 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12041 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12042 
12043 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12044 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12045 		did_enable = 1;
12046 
12047 		/* zero RcvEgrIndexHead */
12048 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12049 
12050 		/* set eager count and base index */
12051 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12052 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12053 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12054 			(((rcd->eager_base >> RCV_SHIFT)
12055 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12056 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12057 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12058 
12059 		/*
12060 		 * Set TID (expected) count and base index.
12061 		 * rcd->expected_count is set to individual RcvArray entries,
12062 		 * not pairs, and the CSR takes a pair-count in groups of
12063 		 * four, so divide by 8.
12064 		 */
12065 		reg = (((rcd->expected_count >> RCV_SHIFT)
12066 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12067 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12068 		      (((rcd->expected_base >> RCV_SHIFT)
12069 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12070 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12071 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12072 		if (ctxt == HFI1_CTRL_CTXT)
12073 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12074 	}
12075 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12076 		write_csr(dd, RCV_VL15, 0);
12077 		/*
12078 		 * When receive context is being disabled turn on tail
12079 		 * update with a dummy tail address and then disable
12080 		 * receive context.
12081 		 */
12082 		if (dd->rcvhdrtail_dummy_dma) {
12083 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12084 					dd->rcvhdrtail_dummy_dma);
12085 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12086 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12087 		}
12088 
12089 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12090 	}
12091 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12092 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12093 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12094 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12095 	}
12096 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12097 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12098 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12099 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12100 	}
12101 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12102 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12103 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12104 		/* See comment on RcvCtxtCtrl.TailUpd above */
12105 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12106 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12107 	}
12108 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12109 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12110 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12111 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12112 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12113 		/*
12114 		 * In one-packet-per-eager mode, the size comes from
12115 		 * the RcvArray entry.
12116 		 */
12117 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12118 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12119 	}
12120 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12121 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12122 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12123 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12124 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12125 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12126 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12127 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12128 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12129 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12130 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12131 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12132 			      IS_RCVURGENT_START + rcd->ctxt, true);
12133 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12134 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12135 			      IS_RCVURGENT_START + rcd->ctxt, false);
12136 
12137 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12138 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12139 
12140 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12141 	if (did_enable &&
12142 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12143 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12144 		if (reg != 0) {
12145 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12146 				    ctxt, reg);
12147 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12148 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12149 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12150 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12151 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12152 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12153 				    ctxt, reg, reg == 0 ? "not" : "still");
12154 		}
12155 	}
12156 
12157 	if (did_enable) {
12158 		/*
12159 		 * The interrupt timeout and count must be set after
12160 		 * the context is enabled to take effect.
12161 		 */
12162 		/* set interrupt timeout */
12163 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12164 				(u64)rcd->rcvavail_timeout <<
12165 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12166 
12167 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12168 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12169 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12170 	}
12171 
12172 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12173 		/*
12174 		 * If the context has been disabled and the Tail Update has
12175 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12176 		 * so it doesn't contain an address that is invalid.
12177 		 */
12178 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12179 				dd->rcvhdrtail_dummy_dma);
12180 }
12181 
hfi1_read_cntrs(struct hfi1_devdata * dd,char ** namep,u64 ** cntrp)12182 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12183 {
12184 	int ret;
12185 	u64 val = 0;
12186 
12187 	if (namep) {
12188 		ret = dd->cntrnameslen;
12189 		*namep = dd->cntrnames;
12190 	} else {
12191 		const struct cntr_entry *entry;
12192 		int i, j;
12193 
12194 		ret = (dd->ndevcntrs) * sizeof(u64);
12195 
12196 		/* Get the start of the block of counters */
12197 		*cntrp = dd->cntrs;
12198 
12199 		/*
12200 		 * Now go and fill in each counter in the block.
12201 		 */
12202 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12203 			entry = &dev_cntrs[i];
12204 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12205 			if (entry->flags & CNTR_DISABLED) {
12206 				/* Nothing */
12207 				hfi1_cdbg(CNTR, "\tDisabled\n");
12208 			} else {
12209 				if (entry->flags & CNTR_VL) {
12210 					hfi1_cdbg(CNTR, "\tPer VL\n");
12211 					for (j = 0; j < C_VL_COUNT; j++) {
12212 						val = entry->rw_cntr(entry,
12213 								  dd, j,
12214 								  CNTR_MODE_R,
12215 								  0);
12216 						hfi1_cdbg(
12217 						   CNTR,
12218 						   "\t\tRead 0x%llx for %d\n",
12219 						   val, j);
12220 						dd->cntrs[entry->offset + j] =
12221 									    val;
12222 					}
12223 				} else if (entry->flags & CNTR_SDMA) {
12224 					hfi1_cdbg(CNTR,
12225 						  "\t Per SDMA Engine\n");
12226 					for (j = 0; j < chip_sdma_engines(dd);
12227 					     j++) {
12228 						val =
12229 						entry->rw_cntr(entry, dd, j,
12230 							       CNTR_MODE_R, 0);
12231 						hfi1_cdbg(CNTR,
12232 							  "\t\tRead 0x%llx for %d\n",
12233 							  val, j);
12234 						dd->cntrs[entry->offset + j] =
12235 									val;
12236 					}
12237 				} else {
12238 					val = entry->rw_cntr(entry, dd,
12239 							CNTR_INVALID_VL,
12240 							CNTR_MODE_R, 0);
12241 					dd->cntrs[entry->offset] = val;
12242 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12243 				}
12244 			}
12245 		}
12246 	}
12247 	return ret;
12248 }
12249 
12250 /*
12251  * Used by sysfs to create files for hfi stats to read
12252  */
hfi1_read_portcntrs(struct hfi1_pportdata * ppd,char ** namep,u64 ** cntrp)12253 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12254 {
12255 	int ret;
12256 	u64 val = 0;
12257 
12258 	if (namep) {
12259 		ret = ppd->dd->portcntrnameslen;
12260 		*namep = ppd->dd->portcntrnames;
12261 	} else {
12262 		const struct cntr_entry *entry;
12263 		int i, j;
12264 
12265 		ret = ppd->dd->nportcntrs * sizeof(u64);
12266 		*cntrp = ppd->cntrs;
12267 
12268 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12269 			entry = &port_cntrs[i];
12270 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12271 			if (entry->flags & CNTR_DISABLED) {
12272 				/* Nothing */
12273 				hfi1_cdbg(CNTR, "\tDisabled\n");
12274 				continue;
12275 			}
12276 
12277 			if (entry->flags & CNTR_VL) {
12278 				hfi1_cdbg(CNTR, "\tPer VL");
12279 				for (j = 0; j < C_VL_COUNT; j++) {
12280 					val = entry->rw_cntr(entry, ppd, j,
12281 							       CNTR_MODE_R,
12282 							       0);
12283 					hfi1_cdbg(
12284 					   CNTR,
12285 					   "\t\tRead 0x%llx for %d",
12286 					   val, j);
12287 					ppd->cntrs[entry->offset + j] = val;
12288 				}
12289 			} else {
12290 				val = entry->rw_cntr(entry, ppd,
12291 						       CNTR_INVALID_VL,
12292 						       CNTR_MODE_R,
12293 						       0);
12294 				ppd->cntrs[entry->offset] = val;
12295 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12296 			}
12297 		}
12298 	}
12299 	return ret;
12300 }
12301 
free_cntrs(struct hfi1_devdata * dd)12302 static void free_cntrs(struct hfi1_devdata *dd)
12303 {
12304 	struct hfi1_pportdata *ppd;
12305 	int i;
12306 
12307 	if (dd->synth_stats_timer.function)
12308 		del_timer_sync(&dd->synth_stats_timer);
12309 	cancel_work_sync(&dd->update_cntr_work);
12310 	ppd = (struct hfi1_pportdata *)(dd + 1);
12311 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12312 		kfree(ppd->cntrs);
12313 		kfree(ppd->scntrs);
12314 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12315 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12316 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12317 		ppd->cntrs = NULL;
12318 		ppd->scntrs = NULL;
12319 		ppd->ibport_data.rvp.rc_acks = NULL;
12320 		ppd->ibport_data.rvp.rc_qacks = NULL;
12321 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12322 	}
12323 	kfree(dd->portcntrnames);
12324 	dd->portcntrnames = NULL;
12325 	kfree(dd->cntrs);
12326 	dd->cntrs = NULL;
12327 	kfree(dd->scntrs);
12328 	dd->scntrs = NULL;
12329 	kfree(dd->cntrnames);
12330 	dd->cntrnames = NULL;
12331 	if (dd->update_cntr_wq) {
12332 		destroy_workqueue(dd->update_cntr_wq);
12333 		dd->update_cntr_wq = NULL;
12334 	}
12335 }
12336 
read_dev_port_cntr(struct hfi1_devdata * dd,struct cntr_entry * entry,u64 * psval,void * context,int vl)12337 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12338 			      u64 *psval, void *context, int vl)
12339 {
12340 	u64 val;
12341 	u64 sval = *psval;
12342 
12343 	if (entry->flags & CNTR_DISABLED) {
12344 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12345 		return 0;
12346 	}
12347 
12348 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12349 
12350 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12351 
12352 	/* If its a synthetic counter there is more work we need to do */
12353 	if (entry->flags & CNTR_SYNTH) {
12354 		if (sval == CNTR_MAX) {
12355 			/* No need to read already saturated */
12356 			return CNTR_MAX;
12357 		}
12358 
12359 		if (entry->flags & CNTR_32BIT) {
12360 			/* 32bit counters can wrap multiple times */
12361 			u64 upper = sval >> 32;
12362 			u64 lower = (sval << 32) >> 32;
12363 
12364 			if (lower > val) { /* hw wrapped */
12365 				if (upper == CNTR_32BIT_MAX)
12366 					val = CNTR_MAX;
12367 				else
12368 					upper++;
12369 			}
12370 
12371 			if (val != CNTR_MAX)
12372 				val = (upper << 32) | val;
12373 
12374 		} else {
12375 			/* If we rolled we are saturated */
12376 			if ((val < sval) || (val > CNTR_MAX))
12377 				val = CNTR_MAX;
12378 		}
12379 	}
12380 
12381 	*psval = val;
12382 
12383 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12384 
12385 	return val;
12386 }
12387 
write_dev_port_cntr(struct hfi1_devdata * dd,struct cntr_entry * entry,u64 * psval,void * context,int vl,u64 data)12388 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12389 			       struct cntr_entry *entry,
12390 			       u64 *psval, void *context, int vl, u64 data)
12391 {
12392 	u64 val;
12393 
12394 	if (entry->flags & CNTR_DISABLED) {
12395 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12396 		return 0;
12397 	}
12398 
12399 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12400 
12401 	if (entry->flags & CNTR_SYNTH) {
12402 		*psval = data;
12403 		if (entry->flags & CNTR_32BIT) {
12404 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12405 					     (data << 32) >> 32);
12406 			val = data; /* return the full 64bit value */
12407 		} else {
12408 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12409 					     data);
12410 		}
12411 	} else {
12412 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12413 	}
12414 
12415 	*psval = val;
12416 
12417 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12418 
12419 	return val;
12420 }
12421 
read_dev_cntr(struct hfi1_devdata * dd,int index,int vl)12422 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12423 {
12424 	struct cntr_entry *entry;
12425 	u64 *sval;
12426 
12427 	entry = &dev_cntrs[index];
12428 	sval = dd->scntrs + entry->offset;
12429 
12430 	if (vl != CNTR_INVALID_VL)
12431 		sval += vl;
12432 
12433 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12434 }
12435 
write_dev_cntr(struct hfi1_devdata * dd,int index,int vl,u64 data)12436 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12437 {
12438 	struct cntr_entry *entry;
12439 	u64 *sval;
12440 
12441 	entry = &dev_cntrs[index];
12442 	sval = dd->scntrs + entry->offset;
12443 
12444 	if (vl != CNTR_INVALID_VL)
12445 		sval += vl;
12446 
12447 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12448 }
12449 
read_port_cntr(struct hfi1_pportdata * ppd,int index,int vl)12450 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12451 {
12452 	struct cntr_entry *entry;
12453 	u64 *sval;
12454 
12455 	entry = &port_cntrs[index];
12456 	sval = ppd->scntrs + entry->offset;
12457 
12458 	if (vl != CNTR_INVALID_VL)
12459 		sval += vl;
12460 
12461 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12462 	    (index <= C_RCV_HDR_OVF_LAST)) {
12463 		/* We do not want to bother for disabled contexts */
12464 		return 0;
12465 	}
12466 
12467 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12468 }
12469 
write_port_cntr(struct hfi1_pportdata * ppd,int index,int vl,u64 data)12470 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12471 {
12472 	struct cntr_entry *entry;
12473 	u64 *sval;
12474 
12475 	entry = &port_cntrs[index];
12476 	sval = ppd->scntrs + entry->offset;
12477 
12478 	if (vl != CNTR_INVALID_VL)
12479 		sval += vl;
12480 
12481 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12482 	    (index <= C_RCV_HDR_OVF_LAST)) {
12483 		/* We do not want to bother for disabled contexts */
12484 		return 0;
12485 	}
12486 
12487 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12488 }
12489 
do_update_synth_timer(struct work_struct * work)12490 static void do_update_synth_timer(struct work_struct *work)
12491 {
12492 	u64 cur_tx;
12493 	u64 cur_rx;
12494 	u64 total_flits;
12495 	u8 update = 0;
12496 	int i, j, vl;
12497 	struct hfi1_pportdata *ppd;
12498 	struct cntr_entry *entry;
12499 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12500 					       update_cntr_work);
12501 
12502 	/*
12503 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12504 	 * check to watch for potential roll over. We can do this by looking at
12505 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12506 	 * we have to iterate all the counters and update.
12507 	 */
12508 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12509 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12510 
12511 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12512 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12513 
12514 	hfi1_cdbg(
12515 	    CNTR,
12516 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12517 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12518 
12519 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12520 		/*
12521 		 * May not be strictly necessary to update but it won't hurt and
12522 		 * simplifies the logic here.
12523 		 */
12524 		update = 1;
12525 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12526 			  dd->unit);
12527 	} else {
12528 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12529 		hfi1_cdbg(CNTR,
12530 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12531 			  total_flits, (u64)CNTR_32BIT_MAX);
12532 		if (total_flits >= CNTR_32BIT_MAX) {
12533 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12534 				  dd->unit);
12535 			update = 1;
12536 		}
12537 	}
12538 
12539 	if (update) {
12540 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12541 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12542 			entry = &dev_cntrs[i];
12543 			if (entry->flags & CNTR_VL) {
12544 				for (vl = 0; vl < C_VL_COUNT; vl++)
12545 					read_dev_cntr(dd, i, vl);
12546 			} else {
12547 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12548 			}
12549 		}
12550 		ppd = (struct hfi1_pportdata *)(dd + 1);
12551 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12552 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12553 				entry = &port_cntrs[j];
12554 				if (entry->flags & CNTR_VL) {
12555 					for (vl = 0; vl < C_VL_COUNT; vl++)
12556 						read_port_cntr(ppd, j, vl);
12557 				} else {
12558 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12559 				}
12560 			}
12561 		}
12562 
12563 		/*
12564 		 * We want the value in the register. The goal is to keep track
12565 		 * of the number of "ticks" not the counter value. In other
12566 		 * words if the register rolls we want to notice it and go ahead
12567 		 * and force an update.
12568 		 */
12569 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12570 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12571 						CNTR_MODE_R, 0);
12572 
12573 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12574 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12575 						CNTR_MODE_R, 0);
12576 
12577 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12578 			  dd->unit, dd->last_tx, dd->last_rx);
12579 
12580 	} else {
12581 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12582 	}
12583 }
12584 
update_synth_timer(struct timer_list * t)12585 static void update_synth_timer(struct timer_list *t)
12586 {
12587 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12588 
12589 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12590 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12591 }
12592 
12593 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
init_cntrs(struct hfi1_devdata * dd)12594 static int init_cntrs(struct hfi1_devdata *dd)
12595 {
12596 	int i, rcv_ctxts, j;
12597 	size_t sz;
12598 	char *p;
12599 	char name[C_MAX_NAME];
12600 	struct hfi1_pportdata *ppd;
12601 	const char *bit_type_32 = ",32";
12602 	const int bit_type_32_sz = strlen(bit_type_32);
12603 	u32 sdma_engines = chip_sdma_engines(dd);
12604 
12605 	/* set up the stats timer; the add_timer is done at the end */
12606 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12607 
12608 	/***********************/
12609 	/* per device counters */
12610 	/***********************/
12611 
12612 	/* size names and determine how many we have*/
12613 	dd->ndevcntrs = 0;
12614 	sz = 0;
12615 
12616 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12617 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12618 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12619 			continue;
12620 		}
12621 
12622 		if (dev_cntrs[i].flags & CNTR_VL) {
12623 			dev_cntrs[i].offset = dd->ndevcntrs;
12624 			for (j = 0; j < C_VL_COUNT; j++) {
12625 				snprintf(name, C_MAX_NAME, "%s%d",
12626 					 dev_cntrs[i].name, vl_from_idx(j));
12627 				sz += strlen(name);
12628 				/* Add ",32" for 32-bit counters */
12629 				if (dev_cntrs[i].flags & CNTR_32BIT)
12630 					sz += bit_type_32_sz;
12631 				sz++;
12632 				dd->ndevcntrs++;
12633 			}
12634 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12635 			dev_cntrs[i].offset = dd->ndevcntrs;
12636 			for (j = 0; j < sdma_engines; j++) {
12637 				snprintf(name, C_MAX_NAME, "%s%d",
12638 					 dev_cntrs[i].name, j);
12639 				sz += strlen(name);
12640 				/* Add ",32" for 32-bit counters */
12641 				if (dev_cntrs[i].flags & CNTR_32BIT)
12642 					sz += bit_type_32_sz;
12643 				sz++;
12644 				dd->ndevcntrs++;
12645 			}
12646 		} else {
12647 			/* +1 for newline. */
12648 			sz += strlen(dev_cntrs[i].name) + 1;
12649 			/* Add ",32" for 32-bit counters */
12650 			if (dev_cntrs[i].flags & CNTR_32BIT)
12651 				sz += bit_type_32_sz;
12652 			dev_cntrs[i].offset = dd->ndevcntrs;
12653 			dd->ndevcntrs++;
12654 		}
12655 	}
12656 
12657 	/* allocate space for the counter values */
12658 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12659 			    GFP_KERNEL);
12660 	if (!dd->cntrs)
12661 		goto bail;
12662 
12663 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12664 	if (!dd->scntrs)
12665 		goto bail;
12666 
12667 	/* allocate space for the counter names */
12668 	dd->cntrnameslen = sz;
12669 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12670 	if (!dd->cntrnames)
12671 		goto bail;
12672 
12673 	/* fill in the names */
12674 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12675 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12676 			/* Nothing */
12677 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12678 			for (j = 0; j < C_VL_COUNT; j++) {
12679 				snprintf(name, C_MAX_NAME, "%s%d",
12680 					 dev_cntrs[i].name,
12681 					 vl_from_idx(j));
12682 				memcpy(p, name, strlen(name));
12683 				p += strlen(name);
12684 
12685 				/* Counter is 32 bits */
12686 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12687 					memcpy(p, bit_type_32, bit_type_32_sz);
12688 					p += bit_type_32_sz;
12689 				}
12690 
12691 				*p++ = '\n';
12692 			}
12693 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12694 			for (j = 0; j < sdma_engines; j++) {
12695 				snprintf(name, C_MAX_NAME, "%s%d",
12696 					 dev_cntrs[i].name, j);
12697 				memcpy(p, name, strlen(name));
12698 				p += strlen(name);
12699 
12700 				/* Counter is 32 bits */
12701 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12702 					memcpy(p, bit_type_32, bit_type_32_sz);
12703 					p += bit_type_32_sz;
12704 				}
12705 
12706 				*p++ = '\n';
12707 			}
12708 		} else {
12709 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12710 			p += strlen(dev_cntrs[i].name);
12711 
12712 			/* Counter is 32 bits */
12713 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12714 				memcpy(p, bit_type_32, bit_type_32_sz);
12715 				p += bit_type_32_sz;
12716 			}
12717 
12718 			*p++ = '\n';
12719 		}
12720 	}
12721 
12722 	/*********************/
12723 	/* per port counters */
12724 	/*********************/
12725 
12726 	/*
12727 	 * Go through the counters for the overflows and disable the ones we
12728 	 * don't need. This varies based on platform so we need to do it
12729 	 * dynamically here.
12730 	 */
12731 	rcv_ctxts = dd->num_rcv_contexts;
12732 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12733 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12734 		port_cntrs[i].flags |= CNTR_DISABLED;
12735 	}
12736 
12737 	/* size port counter names and determine how many we have*/
12738 	sz = 0;
12739 	dd->nportcntrs = 0;
12740 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12741 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12742 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12743 			continue;
12744 		}
12745 
12746 		if (port_cntrs[i].flags & CNTR_VL) {
12747 			port_cntrs[i].offset = dd->nportcntrs;
12748 			for (j = 0; j < C_VL_COUNT; j++) {
12749 				snprintf(name, C_MAX_NAME, "%s%d",
12750 					 port_cntrs[i].name, vl_from_idx(j));
12751 				sz += strlen(name);
12752 				/* Add ",32" for 32-bit counters */
12753 				if (port_cntrs[i].flags & CNTR_32BIT)
12754 					sz += bit_type_32_sz;
12755 				sz++;
12756 				dd->nportcntrs++;
12757 			}
12758 		} else {
12759 			/* +1 for newline */
12760 			sz += strlen(port_cntrs[i].name) + 1;
12761 			/* Add ",32" for 32-bit counters */
12762 			if (port_cntrs[i].flags & CNTR_32BIT)
12763 				sz += bit_type_32_sz;
12764 			port_cntrs[i].offset = dd->nportcntrs;
12765 			dd->nportcntrs++;
12766 		}
12767 	}
12768 
12769 	/* allocate space for the counter names */
12770 	dd->portcntrnameslen = sz;
12771 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12772 	if (!dd->portcntrnames)
12773 		goto bail;
12774 
12775 	/* fill in port cntr names */
12776 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12777 		if (port_cntrs[i].flags & CNTR_DISABLED)
12778 			continue;
12779 
12780 		if (port_cntrs[i].flags & CNTR_VL) {
12781 			for (j = 0; j < C_VL_COUNT; j++) {
12782 				snprintf(name, C_MAX_NAME, "%s%d",
12783 					 port_cntrs[i].name, vl_from_idx(j));
12784 				memcpy(p, name, strlen(name));
12785 				p += strlen(name);
12786 
12787 				/* Counter is 32 bits */
12788 				if (port_cntrs[i].flags & CNTR_32BIT) {
12789 					memcpy(p, bit_type_32, bit_type_32_sz);
12790 					p += bit_type_32_sz;
12791 				}
12792 
12793 				*p++ = '\n';
12794 			}
12795 		} else {
12796 			memcpy(p, port_cntrs[i].name,
12797 			       strlen(port_cntrs[i].name));
12798 			p += strlen(port_cntrs[i].name);
12799 
12800 			/* Counter is 32 bits */
12801 			if (port_cntrs[i].flags & CNTR_32BIT) {
12802 				memcpy(p, bit_type_32, bit_type_32_sz);
12803 				p += bit_type_32_sz;
12804 			}
12805 
12806 			*p++ = '\n';
12807 		}
12808 	}
12809 
12810 	/* allocate per port storage for counter values */
12811 	ppd = (struct hfi1_pportdata *)(dd + 1);
12812 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12813 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12814 		if (!ppd->cntrs)
12815 			goto bail;
12816 
12817 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12818 		if (!ppd->scntrs)
12819 			goto bail;
12820 	}
12821 
12822 	/* CPU counters need to be allocated and zeroed */
12823 	if (init_cpu_counters(dd))
12824 		goto bail;
12825 
12826 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12827 						     WQ_MEM_RECLAIM, dd->unit);
12828 	if (!dd->update_cntr_wq)
12829 		goto bail;
12830 
12831 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12832 
12833 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12834 	return 0;
12835 bail:
12836 	free_cntrs(dd);
12837 	return -ENOMEM;
12838 }
12839 
chip_to_opa_lstate(struct hfi1_devdata * dd,u32 chip_lstate)12840 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12841 {
12842 	switch (chip_lstate) {
12843 	case LSTATE_DOWN:
12844 		return IB_PORT_DOWN;
12845 	case LSTATE_INIT:
12846 		return IB_PORT_INIT;
12847 	case LSTATE_ARMED:
12848 		return IB_PORT_ARMED;
12849 	case LSTATE_ACTIVE:
12850 		return IB_PORT_ACTIVE;
12851 	default:
12852 		dd_dev_err(dd,
12853 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12854 			   chip_lstate);
12855 		return IB_PORT_DOWN;
12856 	}
12857 }
12858 
chip_to_opa_pstate(struct hfi1_devdata * dd,u32 chip_pstate)12859 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12860 {
12861 	/* look at the HFI meta-states only */
12862 	switch (chip_pstate & 0xf0) {
12863 	case PLS_DISABLED:
12864 		return IB_PORTPHYSSTATE_DISABLED;
12865 	case PLS_OFFLINE:
12866 		return OPA_PORTPHYSSTATE_OFFLINE;
12867 	case PLS_POLLING:
12868 		return IB_PORTPHYSSTATE_POLLING;
12869 	case PLS_CONFIGPHY:
12870 		return IB_PORTPHYSSTATE_TRAINING;
12871 	case PLS_LINKUP:
12872 		return IB_PORTPHYSSTATE_LINKUP;
12873 	case PLS_PHYTEST:
12874 		return IB_PORTPHYSSTATE_PHY_TEST;
12875 	default:
12876 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12877 			   chip_pstate);
12878 		return IB_PORTPHYSSTATE_DISABLED;
12879 	}
12880 }
12881 
12882 /* return the OPA port logical state name */
opa_lstate_name(u32 lstate)12883 const char *opa_lstate_name(u32 lstate)
12884 {
12885 	static const char * const port_logical_names[] = {
12886 		"PORT_NOP",
12887 		"PORT_DOWN",
12888 		"PORT_INIT",
12889 		"PORT_ARMED",
12890 		"PORT_ACTIVE",
12891 		"PORT_ACTIVE_DEFER",
12892 	};
12893 	if (lstate < ARRAY_SIZE(port_logical_names))
12894 		return port_logical_names[lstate];
12895 	return "unknown";
12896 }
12897 
12898 /* return the OPA port physical state name */
opa_pstate_name(u32 pstate)12899 const char *opa_pstate_name(u32 pstate)
12900 {
12901 	static const char * const port_physical_names[] = {
12902 		"PHYS_NOP",
12903 		"reserved1",
12904 		"PHYS_POLL",
12905 		"PHYS_DISABLED",
12906 		"PHYS_TRAINING",
12907 		"PHYS_LINKUP",
12908 		"PHYS_LINK_ERR_RECOVER",
12909 		"PHYS_PHY_TEST",
12910 		"reserved8",
12911 		"PHYS_OFFLINE",
12912 		"PHYS_GANGED",
12913 		"PHYS_TEST",
12914 	};
12915 	if (pstate < ARRAY_SIZE(port_physical_names))
12916 		return port_physical_names[pstate];
12917 	return "unknown";
12918 }
12919 
12920 /**
12921  * update_statusp - Update userspace status flag
12922  * @ppd: Port data structure
12923  * @state: port state information
12924  *
12925  * Actual port status is determined by the host_link_state value
12926  * in the ppd.
12927  *
12928  * host_link_state MUST be updated before updating the user space
12929  * statusp.
12930  */
update_statusp(struct hfi1_pportdata * ppd,u32 state)12931 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12932 {
12933 	/*
12934 	 * Set port status flags in the page mapped into userspace
12935 	 * memory. Do it here to ensure a reliable state - this is
12936 	 * the only function called by all state handling code.
12937 	 * Always set the flags due to the fact that the cache value
12938 	 * might have been changed explicitly outside of this
12939 	 * function.
12940 	 */
12941 	if (ppd->statusp) {
12942 		switch (state) {
12943 		case IB_PORT_DOWN:
12944 		case IB_PORT_INIT:
12945 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12946 					   HFI1_STATUS_IB_READY);
12947 			break;
12948 		case IB_PORT_ARMED:
12949 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12950 			break;
12951 		case IB_PORT_ACTIVE:
12952 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12953 			break;
12954 		}
12955 	}
12956 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12957 		    opa_lstate_name(state), state);
12958 }
12959 
12960 /**
12961  * wait_logical_linkstate - wait for an IB link state change to occur
12962  * @ppd: port device
12963  * @state: the state to wait for
12964  * @msecs: the number of milliseconds to wait
12965  *
12966  * Wait up to msecs milliseconds for IB link state change to occur.
12967  * For now, take the easy polling route.
12968  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12969  */
wait_logical_linkstate(struct hfi1_pportdata * ppd,u32 state,int msecs)12970 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12971 				  int msecs)
12972 {
12973 	unsigned long timeout;
12974 	u32 new_state;
12975 
12976 	timeout = jiffies + msecs_to_jiffies(msecs);
12977 	while (1) {
12978 		new_state = chip_to_opa_lstate(ppd->dd,
12979 					       read_logical_state(ppd->dd));
12980 		if (new_state == state)
12981 			break;
12982 		if (time_after(jiffies, timeout)) {
12983 			dd_dev_err(ppd->dd,
12984 				   "timeout waiting for link state 0x%x\n",
12985 				   state);
12986 			return -ETIMEDOUT;
12987 		}
12988 		msleep(20);
12989 	}
12990 
12991 	return 0;
12992 }
12993 
log_state_transition(struct hfi1_pportdata * ppd,u32 state)12994 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12995 {
12996 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12997 
12998 	dd_dev_info(ppd->dd,
12999 		    "physical state changed to %s (0x%x), phy 0x%x\n",
13000 		    opa_pstate_name(ib_pstate), ib_pstate, state);
13001 }
13002 
13003 /*
13004  * Read the physical hardware link state and check if it matches host
13005  * drivers anticipated state.
13006  */
log_physical_state(struct hfi1_pportdata * ppd,u32 state)13007 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13008 {
13009 	u32 read_state = read_physical_state(ppd->dd);
13010 
13011 	if (read_state == state) {
13012 		log_state_transition(ppd, state);
13013 	} else {
13014 		dd_dev_err(ppd->dd,
13015 			   "anticipated phy link state 0x%x, read 0x%x\n",
13016 			   state, read_state);
13017 	}
13018 }
13019 
13020 /*
13021  * wait_physical_linkstate - wait for an physical link state change to occur
13022  * @ppd: port device
13023  * @state: the state to wait for
13024  * @msecs: the number of milliseconds to wait
13025  *
13026  * Wait up to msecs milliseconds for physical link state change to occur.
13027  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13028  */
wait_physical_linkstate(struct hfi1_pportdata * ppd,u32 state,int msecs)13029 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13030 				   int msecs)
13031 {
13032 	u32 read_state;
13033 	unsigned long timeout;
13034 
13035 	timeout = jiffies + msecs_to_jiffies(msecs);
13036 	while (1) {
13037 		read_state = read_physical_state(ppd->dd);
13038 		if (read_state == state)
13039 			break;
13040 		if (time_after(jiffies, timeout)) {
13041 			dd_dev_err(ppd->dd,
13042 				   "timeout waiting for phy link state 0x%x\n",
13043 				   state);
13044 			return -ETIMEDOUT;
13045 		}
13046 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13047 	}
13048 
13049 	log_state_transition(ppd, state);
13050 	return 0;
13051 }
13052 
13053 /*
13054  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13055  * @ppd: port device
13056  * @msecs: the number of milliseconds to wait
13057  *
13058  * Wait up to msecs milliseconds for any offline physical link
13059  * state change to occur.
13060  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13061  */
wait_phys_link_offline_substates(struct hfi1_pportdata * ppd,int msecs)13062 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13063 					    int msecs)
13064 {
13065 	u32 read_state;
13066 	unsigned long timeout;
13067 
13068 	timeout = jiffies + msecs_to_jiffies(msecs);
13069 	while (1) {
13070 		read_state = read_physical_state(ppd->dd);
13071 		if ((read_state & 0xF0) == PLS_OFFLINE)
13072 			break;
13073 		if (time_after(jiffies, timeout)) {
13074 			dd_dev_err(ppd->dd,
13075 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13076 				   read_state, msecs);
13077 			return -ETIMEDOUT;
13078 		}
13079 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13080 	}
13081 
13082 	log_state_transition(ppd, read_state);
13083 	return read_state;
13084 }
13085 
13086 /*
13087  * wait_phys_link_out_of_offline - wait for any out of offline state
13088  * @ppd: port device
13089  * @msecs: the number of milliseconds to wait
13090  *
13091  * Wait up to msecs milliseconds for any out of offline physical link
13092  * state change to occur.
13093  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13094  */
wait_phys_link_out_of_offline(struct hfi1_pportdata * ppd,int msecs)13095 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13096 					 int msecs)
13097 {
13098 	u32 read_state;
13099 	unsigned long timeout;
13100 
13101 	timeout = jiffies + msecs_to_jiffies(msecs);
13102 	while (1) {
13103 		read_state = read_physical_state(ppd->dd);
13104 		if ((read_state & 0xF0) != PLS_OFFLINE)
13105 			break;
13106 		if (time_after(jiffies, timeout)) {
13107 			dd_dev_err(ppd->dd,
13108 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13109 				   read_state, msecs);
13110 			return -ETIMEDOUT;
13111 		}
13112 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13113 	}
13114 
13115 	log_state_transition(ppd, read_state);
13116 	return read_state;
13117 }
13118 
13119 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13120 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13121 
13122 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13123 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13124 
hfi1_init_ctxt(struct send_context * sc)13125 void hfi1_init_ctxt(struct send_context *sc)
13126 {
13127 	if (sc) {
13128 		struct hfi1_devdata *dd = sc->dd;
13129 		u64 reg;
13130 		u8 set = (sc->type == SC_USER ?
13131 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13132 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13133 		reg = read_kctxt_csr(dd, sc->hw_context,
13134 				     SEND_CTXT_CHECK_ENABLE);
13135 		if (set)
13136 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13137 		else
13138 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13139 		write_kctxt_csr(dd, sc->hw_context,
13140 				SEND_CTXT_CHECK_ENABLE, reg);
13141 	}
13142 }
13143 
hfi1_tempsense_rd(struct hfi1_devdata * dd,struct hfi1_temp * temp)13144 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13145 {
13146 	int ret = 0;
13147 	u64 reg;
13148 
13149 	if (dd->icode != ICODE_RTL_SILICON) {
13150 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13151 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13152 				    __func__);
13153 		return -EINVAL;
13154 	}
13155 	reg = read_csr(dd, ASIC_STS_THERM);
13156 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13157 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13158 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13159 			ASIC_STS_THERM_LO_TEMP_MASK);
13160 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13161 			ASIC_STS_THERM_HI_TEMP_MASK);
13162 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13163 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13164 	/* triggers is a 3-bit value - 1 bit per trigger. */
13165 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13166 
13167 	return ret;
13168 }
13169 
13170 /* ========================================================================= */
13171 
13172 /**
13173  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13174  * @dd: valid devdata
13175  * @src: IRQ source to determine register index from
13176  * @bits: the bits to set or clear
13177  * @set: true == set the bits, false == clear the bits
13178  *
13179  */
read_mod_write(struct hfi1_devdata * dd,u16 src,u64 bits,bool set)13180 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13181 			   bool set)
13182 {
13183 	u64 reg;
13184 	u16 idx = src / BITS_PER_REGISTER;
13185 
13186 	spin_lock(&dd->irq_src_lock);
13187 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13188 	if (set)
13189 		reg |= bits;
13190 	else
13191 		reg &= ~bits;
13192 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13193 	spin_unlock(&dd->irq_src_lock);
13194 }
13195 
13196 /**
13197  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13198  * @dd: valid devdata
13199  * @first: first IRQ source to set/clear
13200  * @last: last IRQ source (inclusive) to set/clear
13201  * @set: true == set the bits, false == clear the bits
13202  *
13203  * If first == last, set the exact source.
13204  */
set_intr_bits(struct hfi1_devdata * dd,u16 first,u16 last,bool set)13205 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13206 {
13207 	u64 bits = 0;
13208 	u64 bit;
13209 	u16 src;
13210 
13211 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13212 		return -EINVAL;
13213 
13214 	if (last < first)
13215 		return -ERANGE;
13216 
13217 	for (src = first; src <= last; src++) {
13218 		bit = src % BITS_PER_REGISTER;
13219 		/* wrapped to next register? */
13220 		if (!bit && bits) {
13221 			read_mod_write(dd, src - 1, bits, set);
13222 			bits = 0;
13223 		}
13224 		bits |= BIT_ULL(bit);
13225 	}
13226 	read_mod_write(dd, last, bits, set);
13227 
13228 	return 0;
13229 }
13230 
13231 /*
13232  * Clear all interrupt sources on the chip.
13233  */
clear_all_interrupts(struct hfi1_devdata * dd)13234 void clear_all_interrupts(struct hfi1_devdata *dd)
13235 {
13236 	int i;
13237 
13238 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13239 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13240 
13241 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13242 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13243 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13244 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13245 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13246 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13247 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13248 	for (i = 0; i < chip_send_contexts(dd); i++)
13249 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13250 	for (i = 0; i < chip_sdma_engines(dd); i++)
13251 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13252 
13253 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13254 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13255 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13256 }
13257 
13258 /*
13259  * Remap the interrupt source from the general handler to the given MSI-X
13260  * interrupt.
13261  */
remap_intr(struct hfi1_devdata * dd,int isrc,int msix_intr)13262 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13263 {
13264 	u64 reg;
13265 	int m, n;
13266 
13267 	/* clear from the handled mask of the general interrupt */
13268 	m = isrc / 64;
13269 	n = isrc % 64;
13270 	if (likely(m < CCE_NUM_INT_CSRS)) {
13271 		dd->gi_mask[m] &= ~((u64)1 << n);
13272 	} else {
13273 		dd_dev_err(dd, "remap interrupt err\n");
13274 		return;
13275 	}
13276 
13277 	/* direct the chip source to the given MSI-X interrupt */
13278 	m = isrc / 8;
13279 	n = isrc % 8;
13280 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13281 	reg &= ~((u64)0xff << (8 * n));
13282 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13283 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13284 }
13285 
remap_sdma_interrupts(struct hfi1_devdata * dd,int engine,int msix_intr)13286 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13287 {
13288 	/*
13289 	 * SDMA engine interrupt sources grouped by type, rather than
13290 	 * engine.  Per-engine interrupts are as follows:
13291 	 *	SDMA
13292 	 *	SDMAProgress
13293 	 *	SDMAIdle
13294 	 */
13295 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13296 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13297 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13298 }
13299 
13300 /*
13301  * Set the general handler to accept all interrupts, remap all
13302  * chip interrupts back to MSI-X 0.
13303  */
reset_interrupts(struct hfi1_devdata * dd)13304 void reset_interrupts(struct hfi1_devdata *dd)
13305 {
13306 	int i;
13307 
13308 	/* all interrupts handled by the general handler */
13309 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13310 		dd->gi_mask[i] = ~(u64)0;
13311 
13312 	/* all chip interrupts map to MSI-X 0 */
13313 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13314 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13315 }
13316 
13317 /**
13318  * set_up_interrupts() - Initialize the IRQ resources and state
13319  * @dd: valid devdata
13320  *
13321  */
set_up_interrupts(struct hfi1_devdata * dd)13322 static int set_up_interrupts(struct hfi1_devdata *dd)
13323 {
13324 	int ret;
13325 
13326 	/* mask all interrupts */
13327 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13328 
13329 	/* clear all pending interrupts */
13330 	clear_all_interrupts(dd);
13331 
13332 	/* reset general handler mask, chip MSI-X mappings */
13333 	reset_interrupts(dd);
13334 
13335 	/* ask for MSI-X interrupts */
13336 	ret = msix_initialize(dd);
13337 	if (ret)
13338 		return ret;
13339 
13340 	ret = msix_request_irqs(dd);
13341 	if (ret)
13342 		msix_clean_up_interrupts(dd);
13343 
13344 	return ret;
13345 }
13346 
13347 /*
13348  * Set up context values in dd.  Sets:
13349  *
13350  *	num_rcv_contexts - number of contexts being used
13351  *	n_krcv_queues - number of kernel contexts
13352  *	first_dyn_alloc_ctxt - first dynamically allocated context
13353  *                             in array of contexts
13354  *	freectxts  - number of free user contexts
13355  *	num_send_contexts - number of PIO send contexts being used
13356  *	num_netdev_contexts - number of contexts reserved for netdev
13357  */
set_up_context_variables(struct hfi1_devdata * dd)13358 static int set_up_context_variables(struct hfi1_devdata *dd)
13359 {
13360 	unsigned long num_kernel_contexts;
13361 	u16 num_netdev_contexts;
13362 	int ret;
13363 	unsigned ngroups;
13364 	int rmt_count;
13365 	u32 n_usr_ctxts;
13366 	u32 send_contexts = chip_send_contexts(dd);
13367 	u32 rcv_contexts = chip_rcv_contexts(dd);
13368 
13369 	/*
13370 	 * Kernel receive contexts:
13371 	 * - Context 0 - control context (VL15/multicast/error)
13372 	 * - Context 1 - first kernel context
13373 	 * - Context 2 - second kernel context
13374 	 * ...
13375 	 */
13376 	if (n_krcvqs)
13377 		/*
13378 		 * n_krcvqs is the sum of module parameter kernel receive
13379 		 * contexts, krcvqs[].  It does not include the control
13380 		 * context, so add that.
13381 		 */
13382 		num_kernel_contexts = n_krcvqs + 1;
13383 	else
13384 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13385 	/*
13386 	 * Every kernel receive context needs an ACK send context.
13387 	 * one send context is allocated for each VL{0-7} and VL15
13388 	 */
13389 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13390 		dd_dev_err(dd,
13391 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13392 			   send_contexts - num_vls - 1,
13393 			   num_kernel_contexts);
13394 		num_kernel_contexts = send_contexts - num_vls - 1;
13395 	}
13396 
13397 	/*
13398 	 * User contexts:
13399 	 *	- default to 1 user context per real (non-HT) CPU core if
13400 	 *	  num_user_contexts is negative
13401 	 */
13402 	if (num_user_contexts < 0)
13403 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13404 	else
13405 		n_usr_ctxts = num_user_contexts;
13406 	/*
13407 	 * Adjust the counts given a global max.
13408 	 */
13409 	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13410 		dd_dev_err(dd,
13411 			   "Reducing # user receive contexts to: %u, from %u\n",
13412 			   (u32)(rcv_contexts - num_kernel_contexts),
13413 			   n_usr_ctxts);
13414 		/* recalculate */
13415 		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13416 	}
13417 
13418 	num_netdev_contexts =
13419 		hfi1_num_netdev_contexts(dd, rcv_contexts -
13420 					 (num_kernel_contexts + n_usr_ctxts),
13421 					 &node_affinity.real_cpu_mask);
13422 	/*
13423 	 * RMT entries are allocated as follows:
13424 	 * 1. QOS (0 to 128 entries)
13425 	 * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts +
13426 	 *          num_netdev_contexts [b])
13427 	 * 3. netdev (NUM_NETDEV_MAP_ENTRIES)
13428 	 *
13429 	 * Notes:
13430 	 * [a] Kernel contexts (except control) are included in FECN if kernel
13431 	 *     TID_RDMA is active.
13432 	 * [b] Netdev and user contexts are randomly allocated from the same
13433 	 *     context pool, so FECN must cover all contexts in the pool.
13434 	 */
13435 	rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL)
13436 		    + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1
13437 						  : 0)
13438 		    + n_usr_ctxts
13439 		    + num_netdev_contexts
13440 		    + NUM_NETDEV_MAP_ENTRIES;
13441 	if (rmt_count > NUM_MAP_ENTRIES) {
13442 		int over = rmt_count - NUM_MAP_ENTRIES;
13443 		/* try to squish user contexts, minimum of 1 */
13444 		if (over >= n_usr_ctxts) {
13445 			dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n");
13446 			return -EINVAL;
13447 		}
13448 		dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n",
13449 			   n_usr_ctxts, n_usr_ctxts - over);
13450 		n_usr_ctxts -= over;
13451 	}
13452 
13453 	/* the first N are kernel contexts, the rest are user/netdev contexts */
13454 	dd->num_rcv_contexts =
13455 		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13456 	dd->n_krcv_queues = num_kernel_contexts;
13457 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13458 	dd->num_netdev_contexts = num_netdev_contexts;
13459 	dd->num_user_contexts = n_usr_ctxts;
13460 	dd->freectxts = n_usr_ctxts;
13461 	dd_dev_info(dd,
13462 		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13463 		    rcv_contexts,
13464 		    (int)dd->num_rcv_contexts,
13465 		    (int)dd->n_krcv_queues,
13466 		    dd->num_netdev_contexts,
13467 		    dd->num_user_contexts);
13468 
13469 	/*
13470 	 * Receive array allocation:
13471 	 *   All RcvArray entries are divided into groups of 8. This
13472 	 *   is required by the hardware and will speed up writes to
13473 	 *   consecutive entries by using write-combining of the entire
13474 	 *   cacheline.
13475 	 *
13476 	 *   The number of groups are evenly divided among all contexts.
13477 	 *   any left over groups will be given to the first N user
13478 	 *   contexts.
13479 	 */
13480 	dd->rcv_entries.group_size = RCV_INCREMENT;
13481 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13482 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13483 	dd->rcv_entries.nctxt_extra = ngroups -
13484 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13485 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13486 		    dd->rcv_entries.ngroups,
13487 		    dd->rcv_entries.nctxt_extra);
13488 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13489 	    MAX_EAGER_ENTRIES * 2) {
13490 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13491 			dd->rcv_entries.group_size;
13492 		dd_dev_info(dd,
13493 			    "RcvArray group count too high, change to %u\n",
13494 			    dd->rcv_entries.ngroups);
13495 		dd->rcv_entries.nctxt_extra = 0;
13496 	}
13497 	/*
13498 	 * PIO send contexts
13499 	 */
13500 	ret = init_sc_pools_and_sizes(dd);
13501 	if (ret >= 0) {	/* success */
13502 		dd->num_send_contexts = ret;
13503 		dd_dev_info(
13504 			dd,
13505 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13506 			send_contexts,
13507 			dd->num_send_contexts,
13508 			dd->sc_sizes[SC_KERNEL].count,
13509 			dd->sc_sizes[SC_ACK].count,
13510 			dd->sc_sizes[SC_USER].count,
13511 			dd->sc_sizes[SC_VL15].count);
13512 		ret = 0;	/* success */
13513 	}
13514 
13515 	return ret;
13516 }
13517 
13518 /*
13519  * Set the device/port partition key table. The MAD code
13520  * will ensure that, at least, the partial management
13521  * partition key is present in the table.
13522  */
set_partition_keys(struct hfi1_pportdata * ppd)13523 static void set_partition_keys(struct hfi1_pportdata *ppd)
13524 {
13525 	struct hfi1_devdata *dd = ppd->dd;
13526 	u64 reg = 0;
13527 	int i;
13528 
13529 	dd_dev_info(dd, "Setting partition keys\n");
13530 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13531 		reg |= (ppd->pkeys[i] &
13532 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13533 			((i % 4) *
13534 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13535 		/* Each register holds 4 PKey values. */
13536 		if ((i % 4) == 3) {
13537 			write_csr(dd, RCV_PARTITION_KEY +
13538 				  ((i - 3) * 2), reg);
13539 			reg = 0;
13540 		}
13541 	}
13542 
13543 	/* Always enable HW pkeys check when pkeys table is set */
13544 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13545 }
13546 
13547 /*
13548  * These CSRs and memories are uninitialized on reset and must be
13549  * written before reading to set the ECC/parity bits.
13550  *
13551  * NOTE: All user context CSRs that are not mmaped write-only
13552  * (e.g. the TID flows) must be initialized even if the driver never
13553  * reads them.
13554  */
write_uninitialized_csrs_and_memories(struct hfi1_devdata * dd)13555 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13556 {
13557 	int i, j;
13558 
13559 	/* CceIntMap */
13560 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13561 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13562 
13563 	/* SendCtxtCreditReturnAddr */
13564 	for (i = 0; i < chip_send_contexts(dd); i++)
13565 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13566 
13567 	/* PIO Send buffers */
13568 	/* SDMA Send buffers */
13569 	/*
13570 	 * These are not normally read, and (presently) have no method
13571 	 * to be read, so are not pre-initialized
13572 	 */
13573 
13574 	/* RcvHdrAddr */
13575 	/* RcvHdrTailAddr */
13576 	/* RcvTidFlowTable */
13577 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13578 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13579 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13580 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13581 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13582 	}
13583 
13584 	/* RcvArray */
13585 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13586 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13587 
13588 	/* RcvQPMapTable */
13589 	for (i = 0; i < 32; i++)
13590 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13591 }
13592 
13593 /*
13594  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13595  */
clear_cce_status(struct hfi1_devdata * dd,u64 status_bits,u64 ctrl_bits)13596 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13597 			     u64 ctrl_bits)
13598 {
13599 	unsigned long timeout;
13600 	u64 reg;
13601 
13602 	/* is the condition present? */
13603 	reg = read_csr(dd, CCE_STATUS);
13604 	if ((reg & status_bits) == 0)
13605 		return;
13606 
13607 	/* clear the condition */
13608 	write_csr(dd, CCE_CTRL, ctrl_bits);
13609 
13610 	/* wait for the condition to clear */
13611 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13612 	while (1) {
13613 		reg = read_csr(dd, CCE_STATUS);
13614 		if ((reg & status_bits) == 0)
13615 			return;
13616 		if (time_after(jiffies, timeout)) {
13617 			dd_dev_err(dd,
13618 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13619 				   status_bits, reg & status_bits);
13620 			return;
13621 		}
13622 		udelay(1);
13623 	}
13624 }
13625 
13626 /* set CCE CSRs to chip reset defaults */
reset_cce_csrs(struct hfi1_devdata * dd)13627 static void reset_cce_csrs(struct hfi1_devdata *dd)
13628 {
13629 	int i;
13630 
13631 	/* CCE_REVISION read-only */
13632 	/* CCE_REVISION2 read-only */
13633 	/* CCE_CTRL - bits clear automatically */
13634 	/* CCE_STATUS read-only, use CceCtrl to clear */
13635 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13636 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13637 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13638 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13639 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13640 	/* CCE_ERR_STATUS read-only */
13641 	write_csr(dd, CCE_ERR_MASK, 0);
13642 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13643 	/* CCE_ERR_FORCE leave alone */
13644 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13645 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13646 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13647 	/* CCE_PCIE_CTRL leave alone */
13648 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13649 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13650 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13651 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13652 	}
13653 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13654 		/* CCE_MSIX_PBA read-only */
13655 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13656 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13657 	}
13658 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13659 		write_csr(dd, CCE_INT_MAP, 0);
13660 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13661 		/* CCE_INT_STATUS read-only */
13662 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13663 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13664 		/* CCE_INT_FORCE leave alone */
13665 		/* CCE_INT_BLOCKED read-only */
13666 	}
13667 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13668 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13669 }
13670 
13671 /* set MISC CSRs to chip reset defaults */
reset_misc_csrs(struct hfi1_devdata * dd)13672 static void reset_misc_csrs(struct hfi1_devdata *dd)
13673 {
13674 	int i;
13675 
13676 	for (i = 0; i < 32; i++) {
13677 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13678 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13679 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13680 	}
13681 	/*
13682 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13683 	 * only be written 128-byte chunks
13684 	 */
13685 	/* init RSA engine to clear lingering errors */
13686 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13687 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13688 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13689 	/* MISC_STS_8051_DIGEST read-only */
13690 	/* MISC_STS_SBM_DIGEST read-only */
13691 	/* MISC_STS_PCIE_DIGEST read-only */
13692 	/* MISC_STS_FAB_DIGEST read-only */
13693 	/* MISC_ERR_STATUS read-only */
13694 	write_csr(dd, MISC_ERR_MASK, 0);
13695 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13696 	/* MISC_ERR_FORCE leave alone */
13697 }
13698 
13699 /* set TXE CSRs to chip reset defaults */
reset_txe_csrs(struct hfi1_devdata * dd)13700 static void reset_txe_csrs(struct hfi1_devdata *dd)
13701 {
13702 	int i;
13703 
13704 	/*
13705 	 * TXE Kernel CSRs
13706 	 */
13707 	write_csr(dd, SEND_CTRL, 0);
13708 	__cm_reset(dd, 0);	/* reset CM internal state */
13709 	/* SEND_CONTEXTS read-only */
13710 	/* SEND_DMA_ENGINES read-only */
13711 	/* SEND_PIO_MEM_SIZE read-only */
13712 	/* SEND_DMA_MEM_SIZE read-only */
13713 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13714 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13715 	/* SEND_PIO_ERR_STATUS read-only */
13716 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13717 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13718 	/* SEND_PIO_ERR_FORCE leave alone */
13719 	/* SEND_DMA_ERR_STATUS read-only */
13720 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13721 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13722 	/* SEND_DMA_ERR_FORCE leave alone */
13723 	/* SEND_EGRESS_ERR_STATUS read-only */
13724 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13725 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13726 	/* SEND_EGRESS_ERR_FORCE leave alone */
13727 	write_csr(dd, SEND_BTH_QP, 0);
13728 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13729 	write_csr(dd, SEND_SC2VLT0, 0);
13730 	write_csr(dd, SEND_SC2VLT1, 0);
13731 	write_csr(dd, SEND_SC2VLT2, 0);
13732 	write_csr(dd, SEND_SC2VLT3, 0);
13733 	write_csr(dd, SEND_LEN_CHECK0, 0);
13734 	write_csr(dd, SEND_LEN_CHECK1, 0);
13735 	/* SEND_ERR_STATUS read-only */
13736 	write_csr(dd, SEND_ERR_MASK, 0);
13737 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13738 	/* SEND_ERR_FORCE read-only */
13739 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13740 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13741 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13742 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13743 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13744 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13745 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13746 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13747 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13748 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13749 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13750 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13751 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13752 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13753 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13754 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13755 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13756 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13757 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13758 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13759 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13760 	/* SEND_CM_CREDIT_USED_VL read-only */
13761 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13762 	/* SEND_EGRESS_CTXT_STATUS read-only */
13763 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13764 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13765 	/* SEND_EGRESS_ERR_INFO read-only */
13766 	/* SEND_EGRESS_ERR_SOURCE read-only */
13767 
13768 	/*
13769 	 * TXE Per-Context CSRs
13770 	 */
13771 	for (i = 0; i < chip_send_contexts(dd); i++) {
13772 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13773 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13774 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13775 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13776 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13777 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13778 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13779 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13780 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13781 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13782 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13783 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13784 	}
13785 
13786 	/*
13787 	 * TXE Per-SDMA CSRs
13788 	 */
13789 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13790 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13791 		/* SEND_DMA_STATUS read-only */
13792 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13793 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13794 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13795 		/* SEND_DMA_HEAD read-only */
13796 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13797 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13798 		/* SEND_DMA_IDLE_CNT read-only */
13799 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13800 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13801 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13802 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13803 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13804 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13805 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13806 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13807 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13808 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13809 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13810 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13811 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13812 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13813 	}
13814 }
13815 
13816 /*
13817  * Expect on entry:
13818  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13819  */
init_rbufs(struct hfi1_devdata * dd)13820 static void init_rbufs(struct hfi1_devdata *dd)
13821 {
13822 	u64 reg;
13823 	int count;
13824 
13825 	/*
13826 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13827 	 * clear.
13828 	 */
13829 	count = 0;
13830 	while (1) {
13831 		reg = read_csr(dd, RCV_STATUS);
13832 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13833 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13834 			break;
13835 		/*
13836 		 * Give up after 1ms - maximum wait time.
13837 		 *
13838 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13839 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13840 		 *	136 KB / (66% * 250MB/s) = 844us
13841 		 */
13842 		if (count++ > 500) {
13843 			dd_dev_err(dd,
13844 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13845 				   __func__, reg);
13846 			break;
13847 		}
13848 		udelay(2); /* do not busy-wait the CSR */
13849 	}
13850 
13851 	/* start the init - expect RcvCtrl to be 0 */
13852 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13853 
13854 	/*
13855 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13856 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13857 	 * The delay in the first run through the loop below is sufficient and
13858 	 * required before the first read of RcvStatus.RxRbufInintDone.
13859 	 */
13860 	read_csr(dd, RCV_CTRL);
13861 
13862 	/* wait for the init to finish */
13863 	count = 0;
13864 	while (1) {
13865 		/* delay is required first time through - see above */
13866 		udelay(2); /* do not busy-wait the CSR */
13867 		reg = read_csr(dd, RCV_STATUS);
13868 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13869 			break;
13870 
13871 		/* give up after 100us - slowest possible at 33MHz is 73us */
13872 		if (count++ > 50) {
13873 			dd_dev_err(dd,
13874 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13875 				   __func__);
13876 			break;
13877 		}
13878 	}
13879 }
13880 
13881 /* set RXE CSRs to chip reset defaults */
reset_rxe_csrs(struct hfi1_devdata * dd)13882 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13883 {
13884 	int i, j;
13885 
13886 	/*
13887 	 * RXE Kernel CSRs
13888 	 */
13889 	write_csr(dd, RCV_CTRL, 0);
13890 	init_rbufs(dd);
13891 	/* RCV_STATUS read-only */
13892 	/* RCV_CONTEXTS read-only */
13893 	/* RCV_ARRAY_CNT read-only */
13894 	/* RCV_BUF_SIZE read-only */
13895 	write_csr(dd, RCV_BTH_QP, 0);
13896 	write_csr(dd, RCV_MULTICAST, 0);
13897 	write_csr(dd, RCV_BYPASS, 0);
13898 	write_csr(dd, RCV_VL15, 0);
13899 	/* this is a clear-down */
13900 	write_csr(dd, RCV_ERR_INFO,
13901 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13902 	/* RCV_ERR_STATUS read-only */
13903 	write_csr(dd, RCV_ERR_MASK, 0);
13904 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13905 	/* RCV_ERR_FORCE leave alone */
13906 	for (i = 0; i < 32; i++)
13907 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13908 	for (i = 0; i < 4; i++)
13909 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13910 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13911 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13912 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13913 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13914 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13915 		clear_rsm_rule(dd, i);
13916 	for (i = 0; i < 32; i++)
13917 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13918 
13919 	/*
13920 	 * RXE Kernel and User Per-Context CSRs
13921 	 */
13922 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13923 		/* kernel */
13924 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13925 		/* RCV_CTXT_STATUS read-only */
13926 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13927 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13928 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13929 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13930 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13931 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13932 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13933 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13934 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13935 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13936 
13937 		/* user */
13938 		/* RCV_HDR_TAIL read-only */
13939 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13940 		/* RCV_EGR_INDEX_TAIL read-only */
13941 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13942 		/* RCV_EGR_OFFSET_TAIL read-only */
13943 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13944 			write_uctxt_csr(dd, i,
13945 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13946 		}
13947 	}
13948 }
13949 
13950 /*
13951  * Set sc2vl tables.
13952  *
13953  * They power on to zeros, so to avoid send context errors
13954  * they need to be set:
13955  *
13956  * SC 0-7 -> VL 0-7 (respectively)
13957  * SC 15  -> VL 15
13958  * otherwise
13959  *        -> VL 0
13960  */
init_sc2vl_tables(struct hfi1_devdata * dd)13961 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13962 {
13963 	int i;
13964 	/* init per architecture spec, constrained by hardware capability */
13965 
13966 	/* HFI maps sent packets */
13967 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13968 		0,
13969 		0, 0, 1, 1,
13970 		2, 2, 3, 3,
13971 		4, 4, 5, 5,
13972 		6, 6, 7, 7));
13973 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13974 		1,
13975 		8, 0, 9, 0,
13976 		10, 0, 11, 0,
13977 		12, 0, 13, 0,
13978 		14, 0, 15, 15));
13979 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13980 		2,
13981 		16, 0, 17, 0,
13982 		18, 0, 19, 0,
13983 		20, 0, 21, 0,
13984 		22, 0, 23, 0));
13985 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13986 		3,
13987 		24, 0, 25, 0,
13988 		26, 0, 27, 0,
13989 		28, 0, 29, 0,
13990 		30, 0, 31, 0));
13991 
13992 	/* DC maps received packets */
13993 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13994 		15_0,
13995 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13996 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13997 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13998 		31_16,
13999 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14000 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14001 
14002 	/* initialize the cached sc2vl values consistently with h/w */
14003 	for (i = 0; i < 32; i++) {
14004 		if (i < 8 || i == 15)
14005 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14006 		else
14007 			*((u8 *)(dd->sc2vl) + i) = 0;
14008 	}
14009 }
14010 
14011 /*
14012  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14013  * depend on the chip going through a power-on reset - a driver may be loaded
14014  * and unloaded many times.
14015  *
14016  * Do not write any CSR values to the chip in this routine - there may be
14017  * a reset following the (possible) FLR in this routine.
14018  *
14019  */
init_chip(struct hfi1_devdata * dd)14020 static int init_chip(struct hfi1_devdata *dd)
14021 {
14022 	int i;
14023 	int ret = 0;
14024 
14025 	/*
14026 	 * Put the HFI CSRs in a known state.
14027 	 * Combine this with a DC reset.
14028 	 *
14029 	 * Stop the device from doing anything while we do a
14030 	 * reset.  We know there are no other active users of
14031 	 * the device since we are now in charge.  Turn off
14032 	 * off all outbound and inbound traffic and make sure
14033 	 * the device does not generate any interrupts.
14034 	 */
14035 
14036 	/* disable send contexts and SDMA engines */
14037 	write_csr(dd, SEND_CTRL, 0);
14038 	for (i = 0; i < chip_send_contexts(dd); i++)
14039 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14040 	for (i = 0; i < chip_sdma_engines(dd); i++)
14041 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14042 	/* disable port (turn off RXE inbound traffic) and contexts */
14043 	write_csr(dd, RCV_CTRL, 0);
14044 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14045 		write_csr(dd, RCV_CTXT_CTRL, 0);
14046 	/* mask all interrupt sources */
14047 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14048 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14049 
14050 	/*
14051 	 * DC Reset: do a full DC reset before the register clear.
14052 	 * A recommended length of time to hold is one CSR read,
14053 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14054 	 * across the clear.
14055 	 */
14056 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14057 	(void)read_csr(dd, CCE_DC_CTRL);
14058 
14059 	if (use_flr) {
14060 		/*
14061 		 * A FLR will reset the SPC core and part of the PCIe.
14062 		 * The parts that need to be restored have already been
14063 		 * saved.
14064 		 */
14065 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14066 
14067 		/* do the FLR, the DC reset will remain */
14068 		pcie_flr(dd->pcidev);
14069 
14070 		/* restore command and BARs */
14071 		ret = restore_pci_variables(dd);
14072 		if (ret) {
14073 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14074 				   __func__);
14075 			return ret;
14076 		}
14077 
14078 		if (is_ax(dd)) {
14079 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14080 			pcie_flr(dd->pcidev);
14081 			ret = restore_pci_variables(dd);
14082 			if (ret) {
14083 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14084 					   __func__);
14085 				return ret;
14086 			}
14087 		}
14088 	} else {
14089 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14090 		reset_cce_csrs(dd);
14091 		reset_txe_csrs(dd);
14092 		reset_rxe_csrs(dd);
14093 		reset_misc_csrs(dd);
14094 	}
14095 	/* clear the DC reset */
14096 	write_csr(dd, CCE_DC_CTRL, 0);
14097 
14098 	/* Set the LED off */
14099 	setextled(dd, 0);
14100 
14101 	/*
14102 	 * Clear the QSFP reset.
14103 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14104 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14105 	 * anything plugged constantly in reset, if it pays attention
14106 	 * to RESET_N.
14107 	 * Prime examples of this are optical cables. Set all pins high.
14108 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14109 	 * MODPRS_N are input only and their value is ignored.
14110 	 */
14111 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14112 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14113 	init_chip_resources(dd);
14114 	return ret;
14115 }
14116 
init_early_variables(struct hfi1_devdata * dd)14117 static void init_early_variables(struct hfi1_devdata *dd)
14118 {
14119 	int i;
14120 
14121 	/* assign link credit variables */
14122 	dd->vau = CM_VAU;
14123 	dd->link_credits = CM_GLOBAL_CREDITS;
14124 	if (is_ax(dd))
14125 		dd->link_credits--;
14126 	dd->vcu = cu_to_vcu(hfi1_cu);
14127 	/* enough room for 8 MAD packets plus header - 17K */
14128 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14129 	if (dd->vl15_init > dd->link_credits)
14130 		dd->vl15_init = dd->link_credits;
14131 
14132 	write_uninitialized_csrs_and_memories(dd);
14133 
14134 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14135 		for (i = 0; i < dd->num_pports; i++) {
14136 			struct hfi1_pportdata *ppd = &dd->pport[i];
14137 
14138 			set_partition_keys(ppd);
14139 		}
14140 	init_sc2vl_tables(dd);
14141 }
14142 
init_kdeth_qp(struct hfi1_devdata * dd)14143 static void init_kdeth_qp(struct hfi1_devdata *dd)
14144 {
14145 	write_csr(dd, SEND_BTH_QP,
14146 		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14147 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14148 
14149 	write_csr(dd, RCV_BTH_QP,
14150 		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14151 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14152 }
14153 
14154 /**
14155  * hfi1_get_qp_map - get qp map
14156  * @dd: device data
14157  * @idx: index to read
14158  */
hfi1_get_qp_map(struct hfi1_devdata * dd,u8 idx)14159 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14160 {
14161 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14162 
14163 	reg >>= (idx % 8) * 8;
14164 	return reg;
14165 }
14166 
14167 /**
14168  * init_qpmap_table - init qp map
14169  * @dd: device data
14170  * @first_ctxt: first context
14171  * @last_ctxt: first context
14172  *
14173  * This return sets the qpn mapping table that
14174  * is indexed by qpn[8:1].
14175  *
14176  * The routine will round robin the 256 settings
14177  * from first_ctxt to last_ctxt.
14178  *
14179  * The first/last looks ahead to having specialized
14180  * receive contexts for mgmt and bypass.  Normal
14181  * verbs traffic will assumed to be on a range
14182  * of receive contexts.
14183  */
init_qpmap_table(struct hfi1_devdata * dd,u32 first_ctxt,u32 last_ctxt)14184 static void init_qpmap_table(struct hfi1_devdata *dd,
14185 			     u32 first_ctxt,
14186 			     u32 last_ctxt)
14187 {
14188 	u64 reg = 0;
14189 	u64 regno = RCV_QP_MAP_TABLE;
14190 	int i;
14191 	u64 ctxt = first_ctxt;
14192 
14193 	for (i = 0; i < 256; i++) {
14194 		reg |= ctxt << (8 * (i % 8));
14195 		ctxt++;
14196 		if (ctxt > last_ctxt)
14197 			ctxt = first_ctxt;
14198 		if (i % 8 == 7) {
14199 			write_csr(dd, regno, reg);
14200 			reg = 0;
14201 			regno += 8;
14202 		}
14203 	}
14204 
14205 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14206 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14207 }
14208 
14209 struct rsm_map_table {
14210 	u64 map[NUM_MAP_REGS];
14211 	unsigned int used;
14212 };
14213 
14214 struct rsm_rule_data {
14215 	u8 offset;
14216 	u8 pkt_type;
14217 	u32 field1_off;
14218 	u32 field2_off;
14219 	u32 index1_off;
14220 	u32 index1_width;
14221 	u32 index2_off;
14222 	u32 index2_width;
14223 	u32 mask1;
14224 	u32 value1;
14225 	u32 mask2;
14226 	u32 value2;
14227 };
14228 
14229 /*
14230  * Return an initialized RMT map table for users to fill in.  OK if it
14231  * returns NULL, indicating no table.
14232  */
alloc_rsm_map_table(struct hfi1_devdata * dd)14233 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14234 {
14235 	struct rsm_map_table *rmt;
14236 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14237 
14238 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14239 	if (rmt) {
14240 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14241 		rmt->used = 0;
14242 	}
14243 
14244 	return rmt;
14245 }
14246 
14247 /*
14248  * Write the final RMT map table to the chip and free the table.  OK if
14249  * table is NULL.
14250  */
complete_rsm_map_table(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14251 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14252 				   struct rsm_map_table *rmt)
14253 {
14254 	int i;
14255 
14256 	if (rmt) {
14257 		/* write table to chip */
14258 		for (i = 0; i < NUM_MAP_REGS; i++)
14259 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14260 
14261 		/* enable RSM */
14262 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14263 	}
14264 }
14265 
14266 /* Is a receive side mapping rule */
has_rsm_rule(struct hfi1_devdata * dd,u8 rule_index)14267 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14268 {
14269 	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14270 }
14271 
14272 /*
14273  * Add a receive side mapping rule.
14274  */
add_rsm_rule(struct hfi1_devdata * dd,u8 rule_index,struct rsm_rule_data * rrd)14275 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14276 			 struct rsm_rule_data *rrd)
14277 {
14278 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14279 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14280 		  1ull << rule_index | /* enable bit */
14281 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14282 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14283 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14284 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14285 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14286 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14287 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14288 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14289 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14290 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14291 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14292 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14293 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14294 }
14295 
14296 /*
14297  * Clear a receive side mapping rule.
14298  */
clear_rsm_rule(struct hfi1_devdata * dd,u8 rule_index)14299 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14300 {
14301 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14302 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14303 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14304 }
14305 
14306 /* return the number of RSM map table entries that will be used for QOS */
qos_rmt_entries(unsigned int n_krcv_queues,unsigned int * mp,unsigned int * np)14307 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
14308 			   unsigned int *np)
14309 {
14310 	int i;
14311 	unsigned int m, n;
14312 	uint max_by_vl = 0;
14313 
14314 	/* is QOS active at all? */
14315 	if (n_krcv_queues < MIN_KERNEL_KCTXTS ||
14316 	    num_vls == 1 ||
14317 	    krcvqsset <= 1)
14318 		goto no_qos;
14319 
14320 	/* determine bits for qpn */
14321 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14322 		if (krcvqs[i] > max_by_vl)
14323 			max_by_vl = krcvqs[i];
14324 	if (max_by_vl > 32)
14325 		goto no_qos;
14326 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14327 
14328 	/* determine bits for vl */
14329 	n = ilog2(__roundup_pow_of_two(num_vls));
14330 
14331 	/* reject if too much is used */
14332 	if ((m + n) > 7)
14333 		goto no_qos;
14334 
14335 	if (mp)
14336 		*mp = m;
14337 	if (np)
14338 		*np = n;
14339 
14340 	return 1 << (m + n);
14341 
14342 no_qos:
14343 	if (mp)
14344 		*mp = 0;
14345 	if (np)
14346 		*np = 0;
14347 	return 0;
14348 }
14349 
14350 /**
14351  * init_qos - init RX qos
14352  * @dd: device data
14353  * @rmt: RSM map table
14354  *
14355  * This routine initializes Rule 0 and the RSM map table to implement
14356  * quality of service (qos).
14357  *
14358  * If all of the limit tests succeed, qos is applied based on the array
14359  * interpretation of krcvqs where entry 0 is VL0.
14360  *
14361  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14362  * feed both the RSM map table and the single rule.
14363  */
init_qos(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14364 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14365 {
14366 	struct rsm_rule_data rrd;
14367 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14368 	unsigned int rmt_entries;
14369 	u64 reg;
14370 
14371 	if (!rmt)
14372 		goto bail;
14373 	rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n);
14374 	if (rmt_entries == 0)
14375 		goto bail;
14376 	qpns_per_vl = 1 << m;
14377 
14378 	/* enough room in the map table? */
14379 	rmt_entries = 1 << (m + n);
14380 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14381 		goto bail;
14382 
14383 	/* add qos entries to the RSM map table */
14384 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14385 		unsigned tctxt;
14386 
14387 		for (qpn = 0, tctxt = ctxt;
14388 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14389 			unsigned idx, regoff, regidx;
14390 
14391 			/* generate the index the hardware will produce */
14392 			idx = rmt->used + ((qpn << n) ^ i);
14393 			regoff = (idx % 8) * 8;
14394 			regidx = idx / 8;
14395 			/* replace default with context number */
14396 			reg = rmt->map[regidx];
14397 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14398 				<< regoff);
14399 			reg |= (u64)(tctxt++) << regoff;
14400 			rmt->map[regidx] = reg;
14401 			if (tctxt == ctxt + krcvqs[i])
14402 				tctxt = ctxt;
14403 		}
14404 		ctxt += krcvqs[i];
14405 	}
14406 
14407 	rrd.offset = rmt->used;
14408 	rrd.pkt_type = 2;
14409 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14410 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14411 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14412 	rrd.index1_width = n;
14413 	rrd.index2_off = QPN_SELECT_OFFSET;
14414 	rrd.index2_width = m + n;
14415 	rrd.mask1 = LRH_BTH_MASK;
14416 	rrd.value1 = LRH_BTH_VALUE;
14417 	rrd.mask2 = LRH_SC_MASK;
14418 	rrd.value2 = LRH_SC_VALUE;
14419 
14420 	/* add rule 0 */
14421 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14422 
14423 	/* mark RSM map entries as used */
14424 	rmt->used += rmt_entries;
14425 	/* map everything else to the mcast/err/vl15 context */
14426 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14427 	dd->qos_shift = n + 1;
14428 	return;
14429 bail:
14430 	dd->qos_shift = 1;
14431 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14432 }
14433 
init_fecn_handling(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14434 static void init_fecn_handling(struct hfi1_devdata *dd,
14435 			       struct rsm_map_table *rmt)
14436 {
14437 	struct rsm_rule_data rrd;
14438 	u64 reg;
14439 	int i, idx, regoff, regidx, start;
14440 	u8 offset;
14441 	u32 total_cnt;
14442 
14443 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14444 		/* Exclude context 0 */
14445 		start = 1;
14446 	else
14447 		start = dd->first_dyn_alloc_ctxt;
14448 
14449 	total_cnt = dd->num_rcv_contexts - start;
14450 
14451 	/* there needs to be enough room in the map table */
14452 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14453 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14454 		return;
14455 	}
14456 
14457 	/*
14458 	 * RSM will extract the destination context as an index into the
14459 	 * map table.  The destination contexts are a sequential block
14460 	 * in the range start...num_rcv_contexts-1 (inclusive).
14461 	 * Map entries are accessed as offset + extracted value.  Adjust
14462 	 * the added offset so this sequence can be placed anywhere in
14463 	 * the table - as long as the entries themselves do not wrap.
14464 	 * There are only enough bits in offset for the table size, so
14465 	 * start with that to allow for a "negative" offset.
14466 	 */
14467 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14468 
14469 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14470 	     i++, idx++) {
14471 		/* replace with identity mapping */
14472 		regoff = (idx % 8) * 8;
14473 		regidx = idx / 8;
14474 		reg = rmt->map[regidx];
14475 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14476 		reg |= (u64)i << regoff;
14477 		rmt->map[regidx] = reg;
14478 	}
14479 
14480 	/*
14481 	 * For RSM intercept of Expected FECN packets:
14482 	 * o packet type 0 - expected
14483 	 * o match on F (bit 95), using select/match 1, and
14484 	 * o match on SH (bit 133), using select/match 2.
14485 	 *
14486 	 * Use index 1 to extract the 8-bit receive context from DestQP
14487 	 * (start at bit 64).  Use that as the RSM map table index.
14488 	 */
14489 	rrd.offset = offset;
14490 	rrd.pkt_type = 0;
14491 	rrd.field1_off = 95;
14492 	rrd.field2_off = 133;
14493 	rrd.index1_off = 64;
14494 	rrd.index1_width = 8;
14495 	rrd.index2_off = 0;
14496 	rrd.index2_width = 0;
14497 	rrd.mask1 = 1;
14498 	rrd.value1 = 1;
14499 	rrd.mask2 = 1;
14500 	rrd.value2 = 1;
14501 
14502 	/* add rule 1 */
14503 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14504 
14505 	rmt->used += total_cnt;
14506 }
14507 
hfi1_is_rmt_full(int start,int spare)14508 static inline bool hfi1_is_rmt_full(int start, int spare)
14509 {
14510 	return (start + spare) > NUM_MAP_ENTRIES;
14511 }
14512 
hfi1_netdev_update_rmt(struct hfi1_devdata * dd)14513 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14514 {
14515 	u8 i, j;
14516 	u8 ctx_id = 0;
14517 	u64 reg;
14518 	u32 regoff;
14519 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14520 	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14521 
14522 	/* We already have contexts mapped in RMT */
14523 	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14524 		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14525 		return true;
14526 	}
14527 
14528 	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14529 		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14530 			   rmt_start);
14531 		return false;
14532 	}
14533 
14534 	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14535 		rmt_start,
14536 		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14537 
14538 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14539 	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14540 	reg = read_csr(dd, regoff);
14541 	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14542 		/* Update map register with netdev context */
14543 		j = (rmt_start + i) % 8;
14544 		reg &= ~(0xffllu << (j * 8));
14545 		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14546 		/* Wrap up netdev ctx index */
14547 		ctx_id %= ctxt_count;
14548 		/* Write back map register */
14549 		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14550 			dev_dbg(&(dd)->pcidev->dev,
14551 				"RMT[%d] =0x%llx\n",
14552 				regoff - RCV_RSM_MAP_TABLE, reg);
14553 
14554 			write_csr(dd, regoff, reg);
14555 			regoff += 8;
14556 			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14557 				reg = read_csr(dd, regoff);
14558 		}
14559 	}
14560 
14561 	return true;
14562 }
14563 
hfi1_enable_rsm_rule(struct hfi1_devdata * dd,int rule,struct rsm_rule_data * rrd)14564 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14565 				 int rule, struct rsm_rule_data *rrd)
14566 {
14567 	if (!hfi1_netdev_update_rmt(dd)) {
14568 		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14569 		return;
14570 	}
14571 
14572 	add_rsm_rule(dd, rule, rrd);
14573 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14574 }
14575 
hfi1_init_aip_rsm(struct hfi1_devdata * dd)14576 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14577 {
14578 	/*
14579 	 * go through with the initialisation only if this rule actually doesn't
14580 	 * exist yet
14581 	 */
14582 	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14583 		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14584 		struct rsm_rule_data rrd = {
14585 			.offset = rmt_start,
14586 			.pkt_type = IB_PACKET_TYPE,
14587 			.field1_off = LRH_BTH_MATCH_OFFSET,
14588 			.mask1 = LRH_BTH_MASK,
14589 			.value1 = LRH_BTH_VALUE,
14590 			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14591 			.mask2 = BTH_DESTQP_MASK,
14592 			.value2 = BTH_DESTQP_VALUE,
14593 			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14594 					ilog2(NUM_NETDEV_MAP_ENTRIES),
14595 			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14596 			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14597 			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14598 		};
14599 
14600 		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14601 	}
14602 }
14603 
14604 /* Initialize RSM for VNIC */
hfi1_init_vnic_rsm(struct hfi1_devdata * dd)14605 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14606 {
14607 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14608 	struct rsm_rule_data rrd = {
14609 		/* Add rule for vnic */
14610 		.offset = rmt_start,
14611 		.pkt_type = 4,
14612 		/* Match 16B packets */
14613 		.field1_off = L2_TYPE_MATCH_OFFSET,
14614 		.mask1 = L2_TYPE_MASK,
14615 		.value1 = L2_16B_VALUE,
14616 		/* Match ETH L4 packets */
14617 		.field2_off = L4_TYPE_MATCH_OFFSET,
14618 		.mask2 = L4_16B_TYPE_MASK,
14619 		.value2 = L4_16B_ETH_VALUE,
14620 		/* Calc context from veswid and entropy */
14621 		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14622 		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14623 		.index2_off = L2_16B_ENTROPY_OFFSET,
14624 		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14625 	};
14626 
14627 	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14628 }
14629 
hfi1_deinit_vnic_rsm(struct hfi1_devdata * dd)14630 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14631 {
14632 	clear_rsm_rule(dd, RSM_INS_VNIC);
14633 }
14634 
hfi1_deinit_aip_rsm(struct hfi1_devdata * dd)14635 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14636 {
14637 	/* only actually clear the rule if it's the last user asking to do so */
14638 	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14639 		clear_rsm_rule(dd, RSM_INS_AIP);
14640 }
14641 
init_rxe(struct hfi1_devdata * dd)14642 static int init_rxe(struct hfi1_devdata *dd)
14643 {
14644 	struct rsm_map_table *rmt;
14645 	u64 val;
14646 
14647 	/* enable all receive errors */
14648 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14649 
14650 	rmt = alloc_rsm_map_table(dd);
14651 	if (!rmt)
14652 		return -ENOMEM;
14653 
14654 	/* set up QOS, including the QPN map table */
14655 	init_qos(dd, rmt);
14656 	init_fecn_handling(dd, rmt);
14657 	complete_rsm_map_table(dd, rmt);
14658 	/* record number of used rsm map entries for netdev */
14659 	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14660 	kfree(rmt);
14661 
14662 	/*
14663 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14664 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14665 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14666 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14667 	 * Max_PayLoad_Size set to its minimum of 128.
14668 	 *
14669 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14670 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14671 	 * tune_pcie_caps() which is called after this routine.
14672 	 */
14673 
14674 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14675 	val = read_csr(dd, RCV_BYPASS);
14676 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14677 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14678 		RCV_BYPASS_HDR_SIZE_SHIFT);
14679 	write_csr(dd, RCV_BYPASS, val);
14680 	return 0;
14681 }
14682 
init_other(struct hfi1_devdata * dd)14683 static void init_other(struct hfi1_devdata *dd)
14684 {
14685 	/* enable all CCE errors */
14686 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14687 	/* enable *some* Misc errors */
14688 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14689 	/* enable all DC errors, except LCB */
14690 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14691 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14692 }
14693 
14694 /*
14695  * Fill out the given AU table using the given CU.  A CU is defined in terms
14696  * AUs.  The table is a an encoding: given the index, how many AUs does that
14697  * represent?
14698  *
14699  * NOTE: Assumes that the register layout is the same for the
14700  * local and remote tables.
14701  */
assign_cm_au_table(struct hfi1_devdata * dd,u32 cu,u32 csr0to3,u32 csr4to7)14702 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14703 			       u32 csr0to3, u32 csr4to7)
14704 {
14705 	write_csr(dd, csr0to3,
14706 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14707 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14708 		  2ull * cu <<
14709 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14710 		  4ull * cu <<
14711 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14712 	write_csr(dd, csr4to7,
14713 		  8ull * cu <<
14714 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14715 		  16ull * cu <<
14716 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14717 		  32ull * cu <<
14718 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14719 		  64ull * cu <<
14720 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14721 }
14722 
assign_local_cm_au_table(struct hfi1_devdata * dd,u8 vcu)14723 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14724 {
14725 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14726 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14727 }
14728 
assign_remote_cm_au_table(struct hfi1_devdata * dd,u8 vcu)14729 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14730 {
14731 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14732 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14733 }
14734 
init_txe(struct hfi1_devdata * dd)14735 static void init_txe(struct hfi1_devdata *dd)
14736 {
14737 	int i;
14738 
14739 	/* enable all PIO, SDMA, general, and Egress errors */
14740 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14741 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14742 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14743 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14744 
14745 	/* enable all per-context and per-SDMA engine errors */
14746 	for (i = 0; i < chip_send_contexts(dd); i++)
14747 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14748 	for (i = 0; i < chip_sdma_engines(dd); i++)
14749 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14750 
14751 	/* set the local CU to AU mapping */
14752 	assign_local_cm_au_table(dd, dd->vcu);
14753 
14754 	/*
14755 	 * Set reasonable default for Credit Return Timer
14756 	 * Don't set on Simulator - causes it to choke.
14757 	 */
14758 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14759 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14760 }
14761 
hfi1_set_ctxt_jkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 jkey)14762 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14763 		       u16 jkey)
14764 {
14765 	u8 hw_ctxt;
14766 	u64 reg;
14767 
14768 	if (!rcd || !rcd->sc)
14769 		return -EINVAL;
14770 
14771 	hw_ctxt = rcd->sc->hw_context;
14772 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14773 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14774 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14775 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14776 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14777 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14778 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14779 	/*
14780 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14781 	 */
14782 	if (!is_ax(dd)) {
14783 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14784 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14785 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14786 	}
14787 
14788 	/* Enable J_KEY check on receive context. */
14789 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14790 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14791 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14792 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14793 
14794 	return 0;
14795 }
14796 
hfi1_clear_ctxt_jkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)14797 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14798 {
14799 	u8 hw_ctxt;
14800 	u64 reg;
14801 
14802 	if (!rcd || !rcd->sc)
14803 		return -EINVAL;
14804 
14805 	hw_ctxt = rcd->sc->hw_context;
14806 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14807 	/*
14808 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14809 	 * This check would not have been enabled for A0 h/w, see
14810 	 * set_ctxt_jkey().
14811 	 */
14812 	if (!is_ax(dd)) {
14813 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14814 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14815 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14816 	}
14817 	/* Turn off the J_KEY on the receive side */
14818 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14819 
14820 	return 0;
14821 }
14822 
hfi1_set_ctxt_pkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 pkey)14823 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14824 		       u16 pkey)
14825 {
14826 	u8 hw_ctxt;
14827 	u64 reg;
14828 
14829 	if (!rcd || !rcd->sc)
14830 		return -EINVAL;
14831 
14832 	hw_ctxt = rcd->sc->hw_context;
14833 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14834 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14835 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14836 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14837 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14838 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14839 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14840 
14841 	return 0;
14842 }
14843 
hfi1_clear_ctxt_pkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * ctxt)14844 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14845 {
14846 	u8 hw_ctxt;
14847 	u64 reg;
14848 
14849 	if (!ctxt || !ctxt->sc)
14850 		return -EINVAL;
14851 
14852 	hw_ctxt = ctxt->sc->hw_context;
14853 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14854 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14855 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14856 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14857 
14858 	return 0;
14859 }
14860 
14861 /*
14862  * Start doing the clean up the chip. Our clean up happens in multiple
14863  * stages and this is just the first.
14864  */
hfi1_start_cleanup(struct hfi1_devdata * dd)14865 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14866 {
14867 	aspm_exit(dd);
14868 	free_cntrs(dd);
14869 	free_rcverr(dd);
14870 	finish_chip_resources(dd);
14871 }
14872 
14873 #define HFI_BASE_GUID(dev) \
14874 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14875 
14876 /*
14877  * Information can be shared between the two HFIs on the same ASIC
14878  * in the same OS.  This function finds the peer device and sets
14879  * up a shared structure.
14880  */
init_asic_data(struct hfi1_devdata * dd)14881 static int init_asic_data(struct hfi1_devdata *dd)
14882 {
14883 	unsigned long index;
14884 	struct hfi1_devdata *peer;
14885 	struct hfi1_asic_data *asic_data;
14886 	int ret = 0;
14887 
14888 	/* pre-allocate the asic structure in case we are the first device */
14889 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14890 	if (!asic_data)
14891 		return -ENOMEM;
14892 
14893 	xa_lock_irq(&hfi1_dev_table);
14894 	/* Find our peer device */
14895 	xa_for_each(&hfi1_dev_table, index, peer) {
14896 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14897 		    dd->unit != peer->unit)
14898 			break;
14899 	}
14900 
14901 	if (peer) {
14902 		/* use already allocated structure */
14903 		dd->asic_data = peer->asic_data;
14904 		kfree(asic_data);
14905 	} else {
14906 		dd->asic_data = asic_data;
14907 		mutex_init(&dd->asic_data->asic_resource_mutex);
14908 	}
14909 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14910 	xa_unlock_irq(&hfi1_dev_table);
14911 
14912 	/* first one through - set up i2c devices */
14913 	if (!peer)
14914 		ret = set_up_i2c(dd, dd->asic_data);
14915 
14916 	return ret;
14917 }
14918 
14919 /*
14920  * Set dd->boardname.  Use a generic name if a name is not returned from
14921  * EFI variable space.
14922  *
14923  * Return 0 on success, -ENOMEM if space could not be allocated.
14924  */
obtain_boardname(struct hfi1_devdata * dd)14925 static int obtain_boardname(struct hfi1_devdata *dd)
14926 {
14927 	/* generic board description */
14928 	const char generic[] =
14929 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14930 	unsigned long size;
14931 	int ret;
14932 
14933 	ret = read_hfi1_efi_var(dd, "description", &size,
14934 				(void **)&dd->boardname);
14935 	if (ret) {
14936 		dd_dev_info(dd, "Board description not found\n");
14937 		/* use generic description */
14938 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14939 		if (!dd->boardname)
14940 			return -ENOMEM;
14941 	}
14942 	return 0;
14943 }
14944 
14945 /*
14946  * Check the interrupt registers to make sure that they are mapped correctly.
14947  * It is intended to help user identify any mismapping by VMM when the driver
14948  * is running in a VM. This function should only be called before interrupt
14949  * is set up properly.
14950  *
14951  * Return 0 on success, -EINVAL on failure.
14952  */
check_int_registers(struct hfi1_devdata * dd)14953 static int check_int_registers(struct hfi1_devdata *dd)
14954 {
14955 	u64 reg;
14956 	u64 all_bits = ~(u64)0;
14957 	u64 mask;
14958 
14959 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14960 	mask = read_csr(dd, CCE_INT_MASK);
14961 	write_csr(dd, CCE_INT_MASK, 0ull);
14962 	reg = read_csr(dd, CCE_INT_MASK);
14963 	if (reg)
14964 		goto err_exit;
14965 
14966 	/* Clear all interrupt status bits */
14967 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14968 	reg = read_csr(dd, CCE_INT_STATUS);
14969 	if (reg)
14970 		goto err_exit;
14971 
14972 	/* Set all interrupt status bits */
14973 	write_csr(dd, CCE_INT_FORCE, all_bits);
14974 	reg = read_csr(dd, CCE_INT_STATUS);
14975 	if (reg != all_bits)
14976 		goto err_exit;
14977 
14978 	/* Restore the interrupt mask */
14979 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14980 	write_csr(dd, CCE_INT_MASK, mask);
14981 
14982 	return 0;
14983 err_exit:
14984 	write_csr(dd, CCE_INT_MASK, mask);
14985 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14986 	return -EINVAL;
14987 }
14988 
14989 /**
14990  * hfi1_init_dd() - Initialize most of the dd structure.
14991  * @dd: the dd device
14992  *
14993  * This is global, and is called directly at init to set up the
14994  * chip-specific function pointers for later use.
14995  */
hfi1_init_dd(struct hfi1_devdata * dd)14996 int hfi1_init_dd(struct hfi1_devdata *dd)
14997 {
14998 	struct pci_dev *pdev = dd->pcidev;
14999 	struct hfi1_pportdata *ppd;
15000 	u64 reg;
15001 	int i, ret;
15002 	static const char * const inames[] = { /* implementation names */
15003 		"RTL silicon",
15004 		"RTL VCS simulation",
15005 		"RTL FPGA emulation",
15006 		"Functional simulator"
15007 	};
15008 	struct pci_dev *parent = pdev->bus->self;
15009 	u32 sdma_engines = chip_sdma_engines(dd);
15010 
15011 	ppd = dd->pport;
15012 	for (i = 0; i < dd->num_pports; i++, ppd++) {
15013 		int vl;
15014 		/* init common fields */
15015 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15016 		/* DC supports 4 link widths */
15017 		ppd->link_width_supported =
15018 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15019 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15020 		ppd->link_width_downgrade_supported =
15021 			ppd->link_width_supported;
15022 		/* start out enabling only 4X */
15023 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15024 		ppd->link_width_downgrade_enabled =
15025 					ppd->link_width_downgrade_supported;
15026 		/* link width active is 0 when link is down */
15027 		/* link width downgrade active is 0 when link is down */
15028 
15029 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15030 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15031 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15032 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15033 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15034 		}
15035 		ppd->vls_supported = num_vls;
15036 		ppd->vls_operational = ppd->vls_supported;
15037 		/* Set the default MTU. */
15038 		for (vl = 0; vl < num_vls; vl++)
15039 			dd->vld[vl].mtu = hfi1_max_mtu;
15040 		dd->vld[15].mtu = MAX_MAD_PACKET;
15041 		/*
15042 		 * Set the initial values to reasonable default, will be set
15043 		 * for real when link is up.
15044 		 */
15045 		ppd->overrun_threshold = 0x4;
15046 		ppd->phy_error_threshold = 0xf;
15047 		ppd->port_crc_mode_enabled = link_crc_mask;
15048 		/* initialize supported LTP CRC mode */
15049 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15050 		/* initialize enabled LTP CRC mode */
15051 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15052 		/* start in offline */
15053 		ppd->host_link_state = HLS_DN_OFFLINE;
15054 		init_vl_arb_caches(ppd);
15055 	}
15056 
15057 	/*
15058 	 * Do remaining PCIe setup and save PCIe values in dd.
15059 	 * Any error printing is already done by the init code.
15060 	 * On return, we have the chip mapped.
15061 	 */
15062 	ret = hfi1_pcie_ddinit(dd, pdev);
15063 	if (ret < 0)
15064 		goto bail_free;
15065 
15066 	/* Save PCI space registers to rewrite after device reset */
15067 	ret = save_pci_variables(dd);
15068 	if (ret < 0)
15069 		goto bail_cleanup;
15070 
15071 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15072 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15073 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15074 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15075 
15076 	/*
15077 	 * Check interrupt registers mapping if the driver has no access to
15078 	 * the upstream component. In this case, it is likely that the driver
15079 	 * is running in a VM.
15080 	 */
15081 	if (!parent) {
15082 		ret = check_int_registers(dd);
15083 		if (ret)
15084 			goto bail_cleanup;
15085 	}
15086 
15087 	/*
15088 	 * obtain the hardware ID - NOT related to unit, which is a
15089 	 * software enumeration
15090 	 */
15091 	reg = read_csr(dd, CCE_REVISION2);
15092 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15093 					& CCE_REVISION2_HFI_ID_MASK;
15094 	/* the variable size will remove unwanted bits */
15095 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15096 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15097 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15098 		    dd->icode < ARRAY_SIZE(inames) ?
15099 		    inames[dd->icode] : "unknown", (int)dd->irev);
15100 
15101 	/* speeds the hardware can support */
15102 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15103 	/* speeds allowed to run at */
15104 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15105 	/* give a reasonable active value, will be set on link up */
15106 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15107 
15108 	/* fix up link widths for emulation _p */
15109 	ppd = dd->pport;
15110 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15111 		ppd->link_width_supported =
15112 			ppd->link_width_enabled =
15113 			ppd->link_width_downgrade_supported =
15114 			ppd->link_width_downgrade_enabled =
15115 				OPA_LINK_WIDTH_1X;
15116 	}
15117 	/* insure num_vls isn't larger than number of sdma engines */
15118 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15119 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15120 			   num_vls, sdma_engines);
15121 		num_vls = sdma_engines;
15122 		ppd->vls_supported = sdma_engines;
15123 		ppd->vls_operational = ppd->vls_supported;
15124 	}
15125 
15126 	/*
15127 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15128 	 * Limit the max if larger than the field holds.  If timeout is
15129 	 * non-zero, then the calculated field will be at least 1.
15130 	 *
15131 	 * Must be after icode is set up - the cclock rate depends
15132 	 * on knowing the hardware being used.
15133 	 */
15134 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15135 	if (dd->rcv_intr_timeout_csr >
15136 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15137 		dd->rcv_intr_timeout_csr =
15138 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15139 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15140 		dd->rcv_intr_timeout_csr = 1;
15141 
15142 	/* needs to be done before we look for the peer device */
15143 	read_guid(dd);
15144 
15145 	/* set up shared ASIC data with peer device */
15146 	ret = init_asic_data(dd);
15147 	if (ret)
15148 		goto bail_cleanup;
15149 
15150 	/* obtain chip sizes, reset chip CSRs */
15151 	ret = init_chip(dd);
15152 	if (ret)
15153 		goto bail_cleanup;
15154 
15155 	/* read in the PCIe link speed information */
15156 	ret = pcie_speeds(dd);
15157 	if (ret)
15158 		goto bail_cleanup;
15159 
15160 	/* call before get_platform_config(), after init_chip_resources() */
15161 	ret = eprom_init(dd);
15162 	if (ret)
15163 		goto bail_free_rcverr;
15164 
15165 	/* Needs to be called before hfi1_firmware_init */
15166 	get_platform_config(dd);
15167 
15168 	/* read in firmware */
15169 	ret = hfi1_firmware_init(dd);
15170 	if (ret)
15171 		goto bail_cleanup;
15172 
15173 	/*
15174 	 * In general, the PCIe Gen3 transition must occur after the
15175 	 * chip has been idled (so it won't initiate any PCIe transactions
15176 	 * e.g. an interrupt) and before the driver changes any registers
15177 	 * (the transition will reset the registers).
15178 	 *
15179 	 * In particular, place this call after:
15180 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15181 	 * - pcie_speeds()   - reads the current link speed
15182 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15183 	 *			    downloaded
15184 	 */
15185 	ret = do_pcie_gen3_transition(dd);
15186 	if (ret)
15187 		goto bail_cleanup;
15188 
15189 	/*
15190 	 * This should probably occur in hfi1_pcie_init(), but historically
15191 	 * occurs after the do_pcie_gen3_transition() code.
15192 	 */
15193 	tune_pcie_caps(dd);
15194 
15195 	/* start setting dd values and adjusting CSRs */
15196 	init_early_variables(dd);
15197 
15198 	parse_platform_config(dd);
15199 
15200 	ret = obtain_boardname(dd);
15201 	if (ret)
15202 		goto bail_cleanup;
15203 
15204 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15205 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15206 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15207 		 (u32)dd->majrev,
15208 		 (u32)dd->minrev,
15209 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15210 		    & CCE_REVISION_SW_MASK);
15211 
15212 	/* alloc VNIC/AIP rx data */
15213 	ret = hfi1_alloc_rx(dd);
15214 	if (ret)
15215 		goto bail_cleanup;
15216 
15217 	ret = set_up_context_variables(dd);
15218 	if (ret)
15219 		goto bail_cleanup;
15220 
15221 	/* set initial RXE CSRs */
15222 	ret = init_rxe(dd);
15223 	if (ret)
15224 		goto bail_cleanup;
15225 
15226 	/* set initial TXE CSRs */
15227 	init_txe(dd);
15228 	/* set initial non-RXE, non-TXE CSRs */
15229 	init_other(dd);
15230 	/* set up KDETH QP prefix in both RX and TX CSRs */
15231 	init_kdeth_qp(dd);
15232 
15233 	ret = hfi1_dev_affinity_init(dd);
15234 	if (ret)
15235 		goto bail_cleanup;
15236 
15237 	/* send contexts must be set up before receive contexts */
15238 	ret = init_send_contexts(dd);
15239 	if (ret)
15240 		goto bail_cleanup;
15241 
15242 	ret = hfi1_create_kctxts(dd);
15243 	if (ret)
15244 		goto bail_cleanup;
15245 
15246 	/*
15247 	 * Initialize aspm, to be done after gen3 transition and setting up
15248 	 * contexts and before enabling interrupts
15249 	 */
15250 	aspm_init(dd);
15251 
15252 	ret = init_pervl_scs(dd);
15253 	if (ret)
15254 		goto bail_cleanup;
15255 
15256 	/* sdma init */
15257 	for (i = 0; i < dd->num_pports; ++i) {
15258 		ret = sdma_init(dd, i);
15259 		if (ret)
15260 			goto bail_cleanup;
15261 	}
15262 
15263 	/* use contexts created by hfi1_create_kctxts */
15264 	ret = set_up_interrupts(dd);
15265 	if (ret)
15266 		goto bail_cleanup;
15267 
15268 	ret = hfi1_comp_vectors_set_up(dd);
15269 	if (ret)
15270 		goto bail_clear_intr;
15271 
15272 	/* set up LCB access - must be after set_up_interrupts() */
15273 	init_lcb_access(dd);
15274 
15275 	/*
15276 	 * Serial number is created from the base guid:
15277 	 * [27:24] = base guid [38:35]
15278 	 * [23: 0] = base guid [23: 0]
15279 	 */
15280 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15281 		 (dd->base_guid & 0xFFFFFF) |
15282 		     ((dd->base_guid >> 11) & 0xF000000));
15283 
15284 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15285 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15286 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15287 
15288 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15289 	if (ret)
15290 		goto bail_clear_intr;
15291 
15292 	thermal_init(dd);
15293 
15294 	ret = init_cntrs(dd);
15295 	if (ret)
15296 		goto bail_clear_intr;
15297 
15298 	ret = init_rcverr(dd);
15299 	if (ret)
15300 		goto bail_free_cntrs;
15301 
15302 	init_completion(&dd->user_comp);
15303 
15304 	/* The user refcount starts with one to inidicate an active device */
15305 	refcount_set(&dd->user_refcount, 1);
15306 
15307 	goto bail;
15308 
15309 bail_free_rcverr:
15310 	free_rcverr(dd);
15311 bail_free_cntrs:
15312 	free_cntrs(dd);
15313 bail_clear_intr:
15314 	hfi1_comp_vectors_clean_up(dd);
15315 	msix_clean_up_interrupts(dd);
15316 bail_cleanup:
15317 	hfi1_free_rx(dd);
15318 	hfi1_pcie_ddcleanup(dd);
15319 bail_free:
15320 	hfi1_free_devdata(dd);
15321 bail:
15322 	return ret;
15323 }
15324 
delay_cycles(struct hfi1_pportdata * ppd,u32 desired_egress_rate,u32 dw_len)15325 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15326 			u32 dw_len)
15327 {
15328 	u32 delta_cycles;
15329 	u32 current_egress_rate = ppd->current_egress_rate;
15330 	/* rates here are in units of 10^6 bits/sec */
15331 
15332 	if (desired_egress_rate == -1)
15333 		return 0; /* shouldn't happen */
15334 
15335 	if (desired_egress_rate >= current_egress_rate)
15336 		return 0; /* we can't help go faster, only slower */
15337 
15338 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15339 			egress_cycles(dw_len * 4, current_egress_rate);
15340 
15341 	return (u16)delta_cycles;
15342 }
15343 
15344 /**
15345  * create_pbc - build a pbc for transmission
15346  * @ppd: info of physical Hfi port
15347  * @flags: special case flags or-ed in built pbc
15348  * @srate_mbs: static rate
15349  * @vl: vl
15350  * @dw_len: dword length (header words + data words + pbc words)
15351  *
15352  * Create a PBC with the given flags, rate, VL, and length.
15353  *
15354  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15355  * for verbs, which does not use this PSM feature.  The lone other caller
15356  * is for the diagnostic interface which calls this if the user does not
15357  * supply their own PBC.
15358  */
create_pbc(struct hfi1_pportdata * ppd,u64 flags,int srate_mbs,u32 vl,u32 dw_len)15359 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15360 	       u32 dw_len)
15361 {
15362 	u64 pbc, delay = 0;
15363 
15364 	if (unlikely(srate_mbs))
15365 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15366 
15367 	pbc = flags
15368 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15369 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15370 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15371 		| (dw_len & PBC_LENGTH_DWS_MASK)
15372 			<< PBC_LENGTH_DWS_SHIFT;
15373 
15374 	return pbc;
15375 }
15376 
15377 #define SBUS_THERMAL    0x4f
15378 #define SBUS_THERM_MONITOR_MODE 0x1
15379 
15380 #define THERM_FAILURE(dev, ret, reason) \
15381 	dd_dev_err((dd),						\
15382 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15383 		   (reason), (ret))
15384 
15385 /*
15386  * Initialize the thermal sensor.
15387  *
15388  * After initialization, enable polling of thermal sensor through
15389  * SBus interface. In order for this to work, the SBus Master
15390  * firmware has to be loaded due to the fact that the HW polling
15391  * logic uses SBus interrupts, which are not supported with
15392  * default firmware. Otherwise, no data will be returned through
15393  * the ASIC_STS_THERM CSR.
15394  */
thermal_init(struct hfi1_devdata * dd)15395 static int thermal_init(struct hfi1_devdata *dd)
15396 {
15397 	int ret = 0;
15398 
15399 	if (dd->icode != ICODE_RTL_SILICON ||
15400 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15401 		return ret;
15402 
15403 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15404 	if (ret) {
15405 		THERM_FAILURE(dd, ret, "Acquire SBus");
15406 		return ret;
15407 	}
15408 
15409 	dd_dev_info(dd, "Initializing thermal sensor\n");
15410 	/* Disable polling of thermal readings */
15411 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15412 	msleep(100);
15413 	/* Thermal Sensor Initialization */
15414 	/*    Step 1: Reset the Thermal SBus Receiver */
15415 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15416 				RESET_SBUS_RECEIVER, 0);
15417 	if (ret) {
15418 		THERM_FAILURE(dd, ret, "Bus Reset");
15419 		goto done;
15420 	}
15421 	/*    Step 2: Set Reset bit in Thermal block */
15422 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15423 				WRITE_SBUS_RECEIVER, 0x1);
15424 	if (ret) {
15425 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15426 		goto done;
15427 	}
15428 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15429 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15430 				WRITE_SBUS_RECEIVER, 0x32);
15431 	if (ret) {
15432 		THERM_FAILURE(dd, ret, "Write Clock Div");
15433 		goto done;
15434 	}
15435 	/*    Step 4: Select temperature mode */
15436 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15437 				WRITE_SBUS_RECEIVER,
15438 				SBUS_THERM_MONITOR_MODE);
15439 	if (ret) {
15440 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15441 		goto done;
15442 	}
15443 	/*    Step 5: De-assert block reset and start conversion */
15444 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15445 				WRITE_SBUS_RECEIVER, 0x2);
15446 	if (ret) {
15447 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15448 		goto done;
15449 	}
15450 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15451 	msleep(22);
15452 
15453 	/* Enable polling of thermal readings */
15454 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15455 
15456 	/* Set initialized flag */
15457 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15458 	if (ret)
15459 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15460 
15461 done:
15462 	release_chip_resource(dd, CR_SBUS);
15463 	return ret;
15464 }
15465 
handle_temp_err(struct hfi1_devdata * dd)15466 static void handle_temp_err(struct hfi1_devdata *dd)
15467 {
15468 	struct hfi1_pportdata *ppd = &dd->pport[0];
15469 	/*
15470 	 * Thermal Critical Interrupt
15471 	 * Put the device into forced freeze mode, take link down to
15472 	 * offline, and put DC into reset.
15473 	 */
15474 	dd_dev_emerg(dd,
15475 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15476 	dd->flags |= HFI1_FORCED_FREEZE;
15477 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15478 	/*
15479 	 * Shut DC down as much and as quickly as possible.
15480 	 *
15481 	 * Step 1: Take the link down to OFFLINE. This will cause the
15482 	 *         8051 to put the Serdes in reset. However, we don't want to
15483 	 *         go through the entire link state machine since we want to
15484 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15485 	 *         but rather an attempt to save the chip.
15486 	 *         Code below is almost the same as quiet_serdes() but avoids
15487 	 *         all the extra work and the sleeps.
15488 	 */
15489 	ppd->driver_link_ready = 0;
15490 	ppd->link_enabled = 0;
15491 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15492 				PLS_OFFLINE);
15493 	/*
15494 	 * Step 2: Shutdown LCB and 8051
15495 	 *         After shutdown, do not restore DC_CFG_RESET value.
15496 	 */
15497 	dc_shutdown(dd);
15498 }
15499