• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/prism2/driver/hfa384x_usb.c
3  *
4  * Functions that talk to the USB variant of the Intersil hfa384x MAC
5  *
6  * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
7  * --------------------------------------------------------------------
8  *
9  * linux-wlan
10  *
11  *   The contents of this file are subject to the Mozilla Public
12  *   License Version 1.1 (the "License"); you may not use this file
13  *   except in compliance with the License. You may obtain a copy of
14  *   the License at http://www.mozilla.org/MPL/
15  *
16  *   Software distributed under the License is distributed on an "AS
17  *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18  *   implied. See the License for the specific language governing
19  *   rights and limitations under the License.
20  *
21  *   Alternatively, the contents of this file may be used under the
22  *   terms of the GNU Public License version 2 (the "GPL"), in which
23  *   case the provisions of the GPL are applicable instead of the
24  *   above.  If you wish to allow the use of your version of this file
25  *   only under the terms of the GPL and not to allow others to use
26  *   your version of this file under the MPL, indicate your decision
27  *   by deleting the provisions above and replace them with the notice
28  *   and other provisions required by the GPL.  If you do not delete
29  *   the provisions above, a recipient may use your version of this
30  *   file under either the MPL or the GPL.
31  *
32  * --------------------------------------------------------------------
33  *
34  * Inquiries regarding the linux-wlan Open Source project can be
35  * made directly to:
36  *
37  * AbsoluteValue Systems Inc.
38  * info@linux-wlan.com
39  * http://www.linux-wlan.com
40  *
41  * --------------------------------------------------------------------
42  *
43  * Portions of the development of this software were funded by
44  * Intersil Corporation as part of PRISM(R) chipset product development.
45  *
46  * --------------------------------------------------------------------
47  *
48  * This file implements functions that correspond to the prism2/hfa384x
49  * 802.11 MAC hardware and firmware host interface.
50  *
51  * The functions can be considered to represent several levels of
52  * abstraction.  The lowest level functions are simply C-callable wrappers
53  * around the register accesses.  The next higher level represents C-callable
54  * prism2 API functions that match the Intersil documentation as closely
55  * as is reasonable.  The next higher layer implements common sequences
56  * of invocations of the API layer (e.g. write to bap, followed by cmd).
57  *
58  * Common sequences:
59  * hfa384x_drvr_xxx	Highest level abstractions provided by the
60  *			hfa384x code.  They are driver defined wrappers
61  *			for common sequences.  These functions generally
62  *			use the services of the lower levels.
63  *
64  * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
65  *			functions are wrappers for the RID get/set
66  *			sequence. They call copy_[to|from]_bap() and
67  *			cmd_access(). These functions operate on the
68  *			RIDs and buffers without validation. The caller
69  *			is responsible for that.
70  *
71  * API wrapper functions:
72  * hfa384x_cmd_xxx	functions that provide access to the f/w commands.
73  *			The function arguments correspond to each command
74  *			argument, even command arguments that get packed
75  *			into single registers.  These functions _just_
76  *			issue the command by setting the cmd/parm regs
77  *			& reading the status/resp regs.  Additional
78  *			activities required to fully use a command
79  *			(read/write from/to bap, get/set int status etc.)
80  *			are implemented separately.  Think of these as
81  *			C-callable prism2 commands.
82  *
83  * Lowest Layer Functions:
84  * hfa384x_docmd_xxx	These functions implement the sequence required
85  *			to issue any prism2 command.  Primarily used by the
86  *			hfa384x_cmd_xxx functions.
87  *
88  * hfa384x_bap_xxx	BAP read/write access functions.
89  *			Note: we usually use BAP0 for non-interrupt context
90  *			 and BAP1 for interrupt context.
91  *
92  * hfa384x_dl_xxx	download related functions.
93  *
94  * Driver State Issues:
95  * Note that there are two pairs of functions that manage the
96  * 'initialized' and 'running' states of the hw/MAC combo.  The four
97  * functions are create(), destroy(), start(), and stop().  create()
98  * sets up the data structures required to support the hfa384x_*
99  * functions and destroy() cleans them up.  The start() function gets
100  * the actual hardware running and enables the interrupts.  The stop()
101  * function shuts the hardware down.  The sequence should be:
102  * create()
103  * start()
104  *  .
105  *  .  Do interesting things w/ the hardware
106  *  .
107  * stop()
108  * destroy()
109  *
110  * Note that destroy() can be called without calling stop() first.
111  * --------------------------------------------------------------------
112  */
113 
114 #include <linux/module.h>
115 #include <linux/kernel.h>
116 #include <linux/sched.h>
117 #include <linux/types.h>
118 #include <linux/slab.h>
119 #include <linux/wireless.h>
120 #include <linux/netdevice.h>
121 #include <linux/timer.h>
122 #include <linux/io.h>
123 #include <linux/delay.h>
124 #include <asm/byteorder.h>
125 #include <linux/bitops.h>
126 #include <linux/list.h>
127 #include <linux/usb.h>
128 #include <linux/byteorder/generic.h>
129 
130 #include "p80211types.h"
131 #include "p80211hdr.h"
132 #include "p80211mgmt.h"
133 #include "p80211conv.h"
134 #include "p80211msg.h"
135 #include "p80211netdev.h"
136 #include "p80211req.h"
137 #include "p80211metadef.h"
138 #include "p80211metastruct.h"
139 #include "hfa384x.h"
140 #include "prism2mgmt.h"
141 
142 enum cmd_mode {
143 	DOWAIT = 0,
144 	DOASYNC
145 };
146 
147 #define THROTTLE_JIFFIES	(HZ / 8)
148 #define URB_ASYNC_UNLINK 0
149 #define USB_QUEUE_BULK 0
150 
151 #define ROUNDUP64(a) (((a) + 63) & ~63)
152 
153 #ifdef DEBUG_USB
154 static void dbprint_urb(struct urb *urb);
155 #endif
156 
157 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
158 				  struct hfa384x_usb_rxfrm *rxfrm);
159 
160 static void hfa384x_usb_defer(struct work_struct *data);
161 
162 static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
163 
164 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
165 
166 /*---------------------------------------------------*/
167 /* Callbacks */
168 static void hfa384x_usbout_callback(struct urb *urb);
169 static void hfa384x_ctlxout_callback(struct urb *urb);
170 static void hfa384x_usbin_callback(struct urb *urb);
171 
172 static void
173 hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
174 
175 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
176 
177 static void hfa384x_usbin_info(struct wlandevice *wlandev,
178 			       union hfa384x_usbin *usbin);
179 
180 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
181 			       int urb_status);
182 
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185 
186 static void hfa384x_usbctlxq_run(struct hfa384x *hw);
187 
188 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
189 
190 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
191 
192 static void hfa384x_usb_throttlefn(struct timer_list *t);
193 
194 static void hfa384x_usbctlx_completion_task(struct tasklet_struct *t);
195 
196 static void hfa384x_usbctlx_reaper_task(struct tasklet_struct *t);
197 
198 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
199 				  struct hfa384x_usbctlx *ctlx);
200 
201 static void unlocked_usbctlx_complete(struct hfa384x *hw,
202 				      struct hfa384x_usbctlx *ctlx);
203 
204 struct usbctlx_completor {
205 	int (*complete)(struct usbctlx_completor *completor);
206 };
207 
208 static int
209 hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
210 			      struct hfa384x_usbctlx *ctlx,
211 			      struct usbctlx_completor *completor);
212 
213 static int
214 unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
215 
216 static void hfa384x_cb_status(struct hfa384x *hw,
217 			      const struct hfa384x_usbctlx *ctlx);
218 
219 static int
220 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
221 		   struct hfa384x_cmdresult *result);
222 
223 static void
224 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
225 		       struct hfa384x_rridresult *result);
226 
227 /*---------------------------------------------------*/
228 /* Low level req/resp CTLX formatters and submitters */
229 static inline int
230 hfa384x_docmd(struct hfa384x *hw,
231 	      struct hfa384x_metacmd *cmd);
232 
233 static int
234 hfa384x_dorrid(struct hfa384x *hw,
235 	       enum cmd_mode mode,
236 	       u16 rid,
237 	       void *riddata,
238 	       unsigned int riddatalen,
239 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
240 
241 static int
242 hfa384x_dowrid(struct hfa384x *hw,
243 	       enum cmd_mode mode,
244 	       u16 rid,
245 	       void *riddata,
246 	       unsigned int riddatalen,
247 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
248 
249 static int
250 hfa384x_dormem(struct hfa384x *hw,
251 	       u16 page,
252 	       u16 offset,
253 	       void *data,
254 	       unsigned int len);
255 
256 static int
257 hfa384x_dowmem(struct hfa384x *hw,
258 	       u16 page,
259 	       u16 offset,
260 	       void *data,
261 	       unsigned int len);
262 
263 static int hfa384x_isgood_pdrcode(u16 pdrcode);
264 
ctlxstr(enum ctlx_state s)265 static inline const char *ctlxstr(enum ctlx_state s)
266 {
267 	static const char * const ctlx_str[] = {
268 		"Initial state",
269 		"Complete",
270 		"Request failed",
271 		"Request pending",
272 		"Request packet submitted",
273 		"Request packet completed",
274 		"Response packet completed"
275 	};
276 
277 	return ctlx_str[s];
278 };
279 
get_active_ctlx(struct hfa384x * hw)280 static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
281 {
282 	return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
283 }
284 
285 #ifdef DEBUG_USB
dbprint_urb(struct urb * urb)286 void dbprint_urb(struct urb *urb)
287 {
288 	pr_debug("urb->pipe=0x%08x\n", urb->pipe);
289 	pr_debug("urb->status=0x%08x\n", urb->status);
290 	pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
291 	pr_debug("urb->transfer_buffer=0x%08x\n",
292 		 (unsigned int)urb->transfer_buffer);
293 	pr_debug("urb->transfer_buffer_length=0x%08x\n",
294 		 urb->transfer_buffer_length);
295 	pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
296 	pr_debug("urb->setup_packet(ctl)=0x%08x\n",
297 		 (unsigned int)urb->setup_packet);
298 	pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
299 	pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
300 	pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
301 	pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
302 	pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
303 }
304 #endif
305 
306 /*----------------------------------------------------------------
307  * submit_rx_urb
308  *
309  * Listen for input data on the BULK-IN pipe. If the pipe has
310  * stalled then schedule it to be reset.
311  *
312  * Arguments:
313  *	hw		device struct
314  *	memflags	memory allocation flags
315  *
316  * Returns:
317  *	error code from submission
318  *
319  * Call context:
320  *	Any
321  *----------------------------------------------------------------
322  */
submit_rx_urb(struct hfa384x * hw,gfp_t memflags)323 static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
324 {
325 	struct sk_buff *skb;
326 	int result;
327 
328 	skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
329 	if (!skb) {
330 		result = -ENOMEM;
331 		goto done;
332 	}
333 
334 	/* Post the IN urb */
335 	usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
336 			  hw->endp_in,
337 			  skb->data, sizeof(union hfa384x_usbin),
338 			  hfa384x_usbin_callback, hw->wlandev);
339 
340 	hw->rx_urb_skb = skb;
341 
342 	result = -ENOLINK;
343 	if (!hw->wlandev->hwremoved &&
344 	    !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
345 		result = usb_submit_urb(&hw->rx_urb, memflags);
346 
347 		/* Check whether we need to reset the RX pipe */
348 		if (result == -EPIPE) {
349 			netdev_warn(hw->wlandev->netdev,
350 				    "%s rx pipe stalled: requesting reset\n",
351 				    hw->wlandev->netdev->name);
352 			if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
353 				schedule_work(&hw->usb_work);
354 		}
355 	}
356 
357 	/* Don't leak memory if anything should go wrong */
358 	if (result != 0) {
359 		dev_kfree_skb(skb);
360 		hw->rx_urb_skb = NULL;
361 	}
362 
363 done:
364 	return result;
365 }
366 
367 /*----------------------------------------------------------------
368  * submit_tx_urb
369  *
370  * Prepares and submits the URB of transmitted data. If the
371  * submission fails then it will schedule the output pipe to
372  * be reset.
373  *
374  * Arguments:
375  *	hw		device struct
376  *	tx_urb		URB of data for transmission
377  *	memflags	memory allocation flags
378  *
379  * Returns:
380  *	error code from submission
381  *
382  * Call context:
383  *	Any
384  *----------------------------------------------------------------
385  */
submit_tx_urb(struct hfa384x * hw,struct urb * tx_urb,gfp_t memflags)386 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
387 {
388 	struct net_device *netdev = hw->wlandev->netdev;
389 	int result;
390 
391 	result = -ENOLINK;
392 	if (netif_running(netdev)) {
393 		if (!hw->wlandev->hwremoved &&
394 		    !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
395 			result = usb_submit_urb(tx_urb, memflags);
396 
397 			/* Test whether we need to reset the TX pipe */
398 			if (result == -EPIPE) {
399 				netdev_warn(hw->wlandev->netdev,
400 					    "%s tx pipe stalled: requesting reset\n",
401 					    netdev->name);
402 				set_bit(WORK_TX_HALT, &hw->usb_flags);
403 				schedule_work(&hw->usb_work);
404 			} else if (result == 0) {
405 				netif_stop_queue(netdev);
406 			}
407 		}
408 	}
409 
410 	return result;
411 }
412 
413 /*----------------------------------------------------------------
414  * hfa394x_usb_defer
415  *
416  * There are some things that the USB stack cannot do while
417  * in interrupt context, so we arrange this function to run
418  * in process context.
419  *
420  * Arguments:
421  *	hw	device structure
422  *
423  * Returns:
424  *	nothing
425  *
426  * Call context:
427  *	process (by design)
428  *----------------------------------------------------------------
429  */
hfa384x_usb_defer(struct work_struct * data)430 static void hfa384x_usb_defer(struct work_struct *data)
431 {
432 	struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
433 	struct net_device *netdev = hw->wlandev->netdev;
434 
435 	/* Don't bother trying to reset anything if the plug
436 	 * has been pulled ...
437 	 */
438 	if (hw->wlandev->hwremoved)
439 		return;
440 
441 	/* Reception has stopped: try to reset the input pipe */
442 	if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
443 		int ret;
444 
445 		usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
446 
447 		ret = usb_clear_halt(hw->usb, hw->endp_in);
448 		if (ret != 0) {
449 			netdev_err(hw->wlandev->netdev,
450 				   "Failed to clear rx pipe for %s: err=%d\n",
451 				   netdev->name, ret);
452 		} else {
453 			netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
454 				    netdev->name);
455 			clear_bit(WORK_RX_HALT, &hw->usb_flags);
456 			set_bit(WORK_RX_RESUME, &hw->usb_flags);
457 		}
458 	}
459 
460 	/* Resume receiving data back from the device. */
461 	if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
462 		int ret;
463 
464 		ret = submit_rx_urb(hw, GFP_KERNEL);
465 		if (ret != 0) {
466 			netdev_err(hw->wlandev->netdev,
467 				   "Failed to resume %s rx pipe.\n",
468 				   netdev->name);
469 		} else {
470 			clear_bit(WORK_RX_RESUME, &hw->usb_flags);
471 		}
472 	}
473 
474 	/* Transmission has stopped: try to reset the output pipe */
475 	if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
476 		int ret;
477 
478 		usb_kill_urb(&hw->tx_urb);
479 		ret = usb_clear_halt(hw->usb, hw->endp_out);
480 		if (ret != 0) {
481 			netdev_err(hw->wlandev->netdev,
482 				   "Failed to clear tx pipe for %s: err=%d\n",
483 				   netdev->name, ret);
484 		} else {
485 			netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
486 				    netdev->name);
487 			clear_bit(WORK_TX_HALT, &hw->usb_flags);
488 			set_bit(WORK_TX_RESUME, &hw->usb_flags);
489 
490 			/* Stopping the BULK-OUT pipe also blocked
491 			 * us from sending any more CTLX URBs, so
492 			 * we need to re-run our queue ...
493 			 */
494 			hfa384x_usbctlxq_run(hw);
495 		}
496 	}
497 
498 	/* Resume transmitting. */
499 	if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
500 		netif_wake_queue(hw->wlandev->netdev);
501 }
502 
503 /*----------------------------------------------------------------
504  * hfa384x_create
505  *
506  * Sets up the struct hfa384x data structure for use.  Note this
507  * does _not_ initialize the actual hardware, just the data structures
508  * we use to keep track of its state.
509  *
510  * Arguments:
511  *	hw		device structure
512  *	irq		device irq number
513  *	iobase		i/o base address for register access
514  *	membase		memory base address for register access
515  *
516  * Returns:
517  *	nothing
518  *
519  * Side effects:
520  *
521  * Call context:
522  *	process
523  *----------------------------------------------------------------
524  */
hfa384x_create(struct hfa384x * hw,struct usb_device * usb)525 void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
526 {
527 	hw->usb = usb;
528 
529 	/* Set up the waitq */
530 	init_waitqueue_head(&hw->cmdq);
531 
532 	/* Initialize the command queue */
533 	spin_lock_init(&hw->ctlxq.lock);
534 	INIT_LIST_HEAD(&hw->ctlxq.pending);
535 	INIT_LIST_HEAD(&hw->ctlxq.active);
536 	INIT_LIST_HEAD(&hw->ctlxq.completing);
537 	INIT_LIST_HEAD(&hw->ctlxq.reapable);
538 
539 	/* Initialize the authentication queue */
540 	skb_queue_head_init(&hw->authq);
541 
542 	tasklet_setup(&hw->reaper_bh, hfa384x_usbctlx_reaper_task);
543 	tasklet_setup(&hw->completion_bh, hfa384x_usbctlx_completion_task);
544 	INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
545 	INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
546 
547 	timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
548 
549 	timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
550 
551 	timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
552 
553 	usb_init_urb(&hw->rx_urb);
554 	usb_init_urb(&hw->tx_urb);
555 	usb_init_urb(&hw->ctlx_urb);
556 
557 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
558 	hw->state = HFA384x_STATE_INIT;
559 
560 	INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
561 	timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
562 }
563 
564 /*----------------------------------------------------------------
565  * hfa384x_destroy
566  *
567  * Partner to hfa384x_create().  This function cleans up the hw
568  * structure so that it can be freed by the caller using a simple
569  * kfree.  Currently, this function is just a placeholder.  If, at some
570  * point in the future, an hw in the 'shutdown' state requires a 'deep'
571  * kfree, this is where it should be done.  Note that if this function
572  * is called on a _running_ hw structure, the drvr_stop() function is
573  * called.
574  *
575  * Arguments:
576  *	hw		device structure
577  *
578  * Returns:
579  *	nothing, this function is not allowed to fail.
580  *
581  * Side effects:
582  *
583  * Call context:
584  *	process
585  *----------------------------------------------------------------
586  */
hfa384x_destroy(struct hfa384x * hw)587 void hfa384x_destroy(struct hfa384x *hw)
588 {
589 	struct sk_buff *skb;
590 
591 	if (hw->state == HFA384x_STATE_RUNNING)
592 		hfa384x_drvr_stop(hw);
593 	hw->state = HFA384x_STATE_PREINIT;
594 
595 	kfree(hw->scanresults);
596 	hw->scanresults = NULL;
597 
598 	/* Now to clean out the auth queue */
599 	while ((skb = skb_dequeue(&hw->authq)))
600 		dev_kfree_skb(skb);
601 }
602 
usbctlx_alloc(void)603 static struct hfa384x_usbctlx *usbctlx_alloc(void)
604 {
605 	struct hfa384x_usbctlx *ctlx;
606 
607 	ctlx = kzalloc(sizeof(*ctlx),
608 		       in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
609 	if (ctlx)
610 		init_completion(&ctlx->done);
611 
612 	return ctlx;
613 }
614 
615 static int
usbctlx_get_status(const struct hfa384x_usb_statusresp * cmdresp,struct hfa384x_cmdresult * result)616 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
617 		   struct hfa384x_cmdresult *result)
618 {
619 	result->status = le16_to_cpu(cmdresp->status);
620 	result->resp0 = le16_to_cpu(cmdresp->resp0);
621 	result->resp1 = le16_to_cpu(cmdresp->resp1);
622 	result->resp2 = le16_to_cpu(cmdresp->resp2);
623 
624 	pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
625 		 result->status, result->resp0, result->resp1, result->resp2);
626 
627 	return result->status & HFA384x_STATUS_RESULT;
628 }
629 
630 static void
usbctlx_get_rridresult(const struct hfa384x_usb_rridresp * rridresp,struct hfa384x_rridresult * result)631 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
632 		       struct hfa384x_rridresult *result)
633 {
634 	result->rid = le16_to_cpu(rridresp->rid);
635 	result->riddata = rridresp->data;
636 	result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
637 }
638 
639 /*----------------------------------------------------------------
640  * Completor object:
641  * This completor must be passed to hfa384x_usbctlx_complete_sync()
642  * when processing a CTLX that returns a struct hfa384x_cmdresult structure.
643  *----------------------------------------------------------------
644  */
645 struct usbctlx_cmd_completor {
646 	struct usbctlx_completor head;
647 
648 	const struct hfa384x_usb_statusresp *cmdresp;
649 	struct hfa384x_cmdresult *result;
650 };
651 
usbctlx_cmd_completor_fn(struct usbctlx_completor * head)652 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
653 {
654 	struct usbctlx_cmd_completor *complete;
655 
656 	complete = (struct usbctlx_cmd_completor *)head;
657 	return usbctlx_get_status(complete->cmdresp, complete->result);
658 }
659 
660 static inline struct usbctlx_completor *
init_cmd_completor(struct usbctlx_cmd_completor * completor,const struct hfa384x_usb_statusresp * cmdresp,struct hfa384x_cmdresult * result)661 init_cmd_completor(struct usbctlx_cmd_completor *completor,
662 		   const struct hfa384x_usb_statusresp *cmdresp,
663 		   struct hfa384x_cmdresult *result)
664 {
665 	completor->head.complete = usbctlx_cmd_completor_fn;
666 	completor->cmdresp = cmdresp;
667 	completor->result = result;
668 	return &completor->head;
669 }
670 
671 /*----------------------------------------------------------------
672  * Completor object:
673  * This completor must be passed to hfa384x_usbctlx_complete_sync()
674  * when processing a CTLX that reads a RID.
675  *----------------------------------------------------------------
676  */
677 struct usbctlx_rrid_completor {
678 	struct usbctlx_completor head;
679 
680 	const struct hfa384x_usb_rridresp *rridresp;
681 	void *riddata;
682 	unsigned int riddatalen;
683 };
684 
usbctlx_rrid_completor_fn(struct usbctlx_completor * head)685 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
686 {
687 	struct usbctlx_rrid_completor *complete;
688 	struct hfa384x_rridresult rridresult;
689 
690 	complete = (struct usbctlx_rrid_completor *)head;
691 	usbctlx_get_rridresult(complete->rridresp, &rridresult);
692 
693 	/* Validate the length, note body len calculation in bytes */
694 	if (rridresult.riddata_len != complete->riddatalen) {
695 		pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
696 			rridresult.rid,
697 			complete->riddatalen, rridresult.riddata_len);
698 		return -ENODATA;
699 	}
700 
701 	memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
702 	return 0;
703 }
704 
705 static inline struct usbctlx_completor *
init_rrid_completor(struct usbctlx_rrid_completor * completor,const struct hfa384x_usb_rridresp * rridresp,void * riddata,unsigned int riddatalen)706 init_rrid_completor(struct usbctlx_rrid_completor *completor,
707 		    const struct hfa384x_usb_rridresp *rridresp,
708 		    void *riddata,
709 		    unsigned int riddatalen)
710 {
711 	completor->head.complete = usbctlx_rrid_completor_fn;
712 	completor->rridresp = rridresp;
713 	completor->riddata = riddata;
714 	completor->riddatalen = riddatalen;
715 	return &completor->head;
716 }
717 
718 /*----------------------------------------------------------------
719  * Completor object:
720  * Interprets the results of a synchronous RID-write
721  *----------------------------------------------------------------
722  */
723 #define init_wrid_completor  init_cmd_completor
724 
725 /*----------------------------------------------------------------
726  * Completor object:
727  * Interprets the results of a synchronous memory-write
728  *----------------------------------------------------------------
729  */
730 #define init_wmem_completor  init_cmd_completor
731 
732 /*----------------------------------------------------------------
733  * Completor object:
734  * Interprets the results of a synchronous memory-read
735  *----------------------------------------------------------------
736  */
737 struct usbctlx_rmem_completor {
738 	struct usbctlx_completor head;
739 
740 	const struct hfa384x_usb_rmemresp *rmemresp;
741 	void *data;
742 	unsigned int len;
743 };
744 
usbctlx_rmem_completor_fn(struct usbctlx_completor * head)745 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
746 {
747 	struct usbctlx_rmem_completor *complete =
748 		(struct usbctlx_rmem_completor *)head;
749 
750 	pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
751 	memcpy(complete->data, complete->rmemresp->data, complete->len);
752 	return 0;
753 }
754 
755 static inline struct usbctlx_completor *
init_rmem_completor(struct usbctlx_rmem_completor * completor,struct hfa384x_usb_rmemresp * rmemresp,void * data,unsigned int len)756 init_rmem_completor(struct usbctlx_rmem_completor *completor,
757 		    struct hfa384x_usb_rmemresp *rmemresp,
758 		    void *data,
759 		    unsigned int len)
760 {
761 	completor->head.complete = usbctlx_rmem_completor_fn;
762 	completor->rmemresp = rmemresp;
763 	completor->data = data;
764 	completor->len = len;
765 	return &completor->head;
766 }
767 
768 /*----------------------------------------------------------------
769  * hfa384x_cb_status
770  *
771  * Ctlx_complete handler for async CMD type control exchanges.
772  * mark the hw struct as such.
773  *
774  * Note: If the handling is changed here, it should probably be
775  *       changed in docmd as well.
776  *
777  * Arguments:
778  *	hw		hw struct
779  *	ctlx		completed CTLX
780  *
781  * Returns:
782  *	nothing
783  *
784  * Side effects:
785  *
786  * Call context:
787  *	interrupt
788  *----------------------------------------------------------------
789  */
hfa384x_cb_status(struct hfa384x * hw,const struct hfa384x_usbctlx * ctlx)790 static void hfa384x_cb_status(struct hfa384x *hw,
791 			      const struct hfa384x_usbctlx *ctlx)
792 {
793 	if (ctlx->usercb) {
794 		struct hfa384x_cmdresult cmdresult;
795 
796 		if (ctlx->state != CTLX_COMPLETE) {
797 			memset(&cmdresult, 0, sizeof(cmdresult));
798 			cmdresult.status =
799 			    HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
800 		} else {
801 			usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
802 		}
803 
804 		ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
805 	}
806 }
807 
808 /*----------------------------------------------------------------
809  * hfa384x_cmd_initialize
810  *
811  * Issues the initialize command and sets the hw->state based
812  * on the result.
813  *
814  * Arguments:
815  *	hw		device structure
816  *
817  * Returns:
818  *	0		success
819  *	>0		f/w reported error - f/w status code
820  *	<0		driver reported error
821  *
822  * Side effects:
823  *
824  * Call context:
825  *	process
826  *----------------------------------------------------------------
827  */
hfa384x_cmd_initialize(struct hfa384x * hw)828 int hfa384x_cmd_initialize(struct hfa384x *hw)
829 {
830 	int result = 0;
831 	int i;
832 	struct hfa384x_metacmd cmd;
833 
834 	cmd.cmd = HFA384x_CMDCODE_INIT;
835 	cmd.parm0 = 0;
836 	cmd.parm1 = 0;
837 	cmd.parm2 = 0;
838 
839 	result = hfa384x_docmd(hw, &cmd);
840 
841 	pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
842 		 cmd.result.status,
843 		 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
844 	if (result == 0) {
845 		for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
846 			hw->port_enabled[i] = 0;
847 	}
848 
849 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
850 
851 	return result;
852 }
853 
854 /*----------------------------------------------------------------
855  * hfa384x_cmd_disable
856  *
857  * Issues the disable command to stop communications on one of
858  * the MACs 'ports'.
859  *
860  * Arguments:
861  *	hw		device structure
862  *	macport		MAC port number (host order)
863  *
864  * Returns:
865  *	0		success
866  *	>0		f/w reported failure - f/w status code
867  *	<0		driver reported error (timeout|bad arg)
868  *
869  * Side effects:
870  *
871  * Call context:
872  *	process
873  *----------------------------------------------------------------
874  */
hfa384x_cmd_disable(struct hfa384x * hw,u16 macport)875 int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
876 {
877 	struct hfa384x_metacmd cmd;
878 
879 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
880 	    HFA384x_CMD_MACPORT_SET(macport);
881 	cmd.parm0 = 0;
882 	cmd.parm1 = 0;
883 	cmd.parm2 = 0;
884 
885 	return hfa384x_docmd(hw, &cmd);
886 }
887 
888 /*----------------------------------------------------------------
889  * hfa384x_cmd_enable
890  *
891  * Issues the enable command to enable communications on one of
892  * the MACs 'ports'.
893  *
894  * Arguments:
895  *	hw		device structure
896  *	macport		MAC port number
897  *
898  * Returns:
899  *	0		success
900  *	>0		f/w reported failure - f/w status code
901  *	<0		driver reported error (timeout|bad arg)
902  *
903  * Side effects:
904  *
905  * Call context:
906  *	process
907  *----------------------------------------------------------------
908  */
hfa384x_cmd_enable(struct hfa384x * hw,u16 macport)909 int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
910 {
911 	struct hfa384x_metacmd cmd;
912 
913 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
914 	    HFA384x_CMD_MACPORT_SET(macport);
915 	cmd.parm0 = 0;
916 	cmd.parm1 = 0;
917 	cmd.parm2 = 0;
918 
919 	return hfa384x_docmd(hw, &cmd);
920 }
921 
922 /*----------------------------------------------------------------
923  * hfa384x_cmd_monitor
924  *
925  * Enables the 'monitor mode' of the MAC.  Here's the description of
926  * monitor mode that I've received thus far:
927  *
928  *  "The "monitor mode" of operation is that the MAC passes all
929  *  frames for which the PLCP checks are correct. All received
930  *  MPDUs are passed to the host with MAC Port = 7, with a
931  *  receive status of good, FCS error, or undecryptable. Passing
932  *  certain MPDUs is a violation of the 802.11 standard, but useful
933  *  for a debugging tool."  Normal communication is not possible
934  *  while monitor mode is enabled.
935  *
936  * Arguments:
937  *	hw		device structure
938  *	enable		a code (0x0b|0x0f) that enables/disables
939  *			monitor mode. (host order)
940  *
941  * Returns:
942  *	0		success
943  *	>0		f/w reported failure - f/w status code
944  *	<0		driver reported error (timeout|bad arg)
945  *
946  * Side effects:
947  *
948  * Call context:
949  *	process
950  *----------------------------------------------------------------
951  */
hfa384x_cmd_monitor(struct hfa384x * hw,u16 enable)952 int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
953 {
954 	struct hfa384x_metacmd cmd;
955 
956 	cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
957 	    HFA384x_CMD_AINFO_SET(enable);
958 	cmd.parm0 = 0;
959 	cmd.parm1 = 0;
960 	cmd.parm2 = 0;
961 
962 	return hfa384x_docmd(hw, &cmd);
963 }
964 
965 /*----------------------------------------------------------------
966  * hfa384x_cmd_download
967  *
968  * Sets the controls for the MAC controller code/data download
969  * process.  The arguments set the mode and address associated
970  * with a download.  Note that the aux registers should be enabled
971  * prior to setting one of the download enable modes.
972  *
973  * Arguments:
974  *	hw		device structure
975  *	mode		0 - Disable programming and begin code exec
976  *			1 - Enable volatile mem programming
977  *			2 - Enable non-volatile mem programming
978  *			3 - Program non-volatile section from NV download
979  *			    buffer.
980  *			(host order)
981  *	lowaddr
982  *	highaddr	For mode 1, sets the high & low order bits of
983  *			the "destination address".  This address will be
984  *			the execution start address when download is
985  *			subsequently disabled.
986  *			For mode 2, sets the high & low order bits of
987  *			the destination in NV ram.
988  *			For modes 0 & 3, should be zero. (host order)
989  *			NOTE: these are CMD format.
990  *	codelen		Length of the data to write in mode 2,
991  *			zero otherwise. (host order)
992  *
993  * Returns:
994  *	0		success
995  *	>0		f/w reported failure - f/w status code
996  *	<0		driver reported error (timeout|bad arg)
997  *
998  * Side effects:
999  *
1000  * Call context:
1001  *	process
1002  *----------------------------------------------------------------
1003  */
hfa384x_cmd_download(struct hfa384x * hw,u16 mode,u16 lowaddr,u16 highaddr,u16 codelen)1004 int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
1005 			 u16 highaddr, u16 codelen)
1006 {
1007 	struct hfa384x_metacmd cmd;
1008 
1009 	pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1010 		 mode, lowaddr, highaddr, codelen);
1011 
1012 	cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1013 		   HFA384x_CMD_PROGMODE_SET(mode));
1014 
1015 	cmd.parm0 = lowaddr;
1016 	cmd.parm1 = highaddr;
1017 	cmd.parm2 = codelen;
1018 
1019 	return hfa384x_docmd(hw, &cmd);
1020 }
1021 
1022 /*----------------------------------------------------------------
1023  * hfa384x_corereset
1024  *
1025  * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1026  * structure is in its "created" state.  That is, it is initialized
1027  * with proper values.  Note that if a reset is done after the
1028  * device has been active for awhile, the caller might have to clean
1029  * up some leftover cruft in the hw structure.
1030  *
1031  * Arguments:
1032  *	hw		device structure
1033  *	holdtime	how long (in ms) to hold the reset
1034  *	settletime	how long (in ms) to wait after releasing
1035  *			the reset
1036  *
1037  * Returns:
1038  *	nothing
1039  *
1040  * Side effects:
1041  *
1042  * Call context:
1043  *	process
1044  *----------------------------------------------------------------
1045  */
hfa384x_corereset(struct hfa384x * hw,int holdtime,int settletime,int genesis)1046 int hfa384x_corereset(struct hfa384x *hw, int holdtime,
1047 		      int settletime, int genesis)
1048 {
1049 	int result;
1050 
1051 	result = usb_reset_device(hw->usb);
1052 	if (result < 0) {
1053 		netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1054 			   result);
1055 	}
1056 
1057 	return result;
1058 }
1059 
1060 /*----------------------------------------------------------------
1061  * hfa384x_usbctlx_complete_sync
1062  *
1063  * Waits for a synchronous CTLX object to complete,
1064  * and then handles the response.
1065  *
1066  * Arguments:
1067  *	hw		device structure
1068  *	ctlx		CTLX ptr
1069  *	completor	functor object to decide what to
1070  *			do with the CTLX's result.
1071  *
1072  * Returns:
1073  *	0		Success
1074  *	-ERESTARTSYS	Interrupted by a signal
1075  *	-EIO		CTLX failed
1076  *	-ENODEV		Adapter was unplugged
1077  *	???		Result from completor
1078  *
1079  * Side effects:
1080  *
1081  * Call context:
1082  *	process
1083  *----------------------------------------------------------------
1084  */
hfa384x_usbctlx_complete_sync(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx,struct usbctlx_completor * completor)1085 static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
1086 					 struct hfa384x_usbctlx *ctlx,
1087 					 struct usbctlx_completor *completor)
1088 {
1089 	unsigned long flags;
1090 	int result;
1091 
1092 	result = wait_for_completion_interruptible(&ctlx->done);
1093 
1094 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
1095 
1096 	/*
1097 	 * We can only handle the CTLX if the USB disconnect
1098 	 * function has not run yet ...
1099 	 */
1100 cleanup:
1101 	if (hw->wlandev->hwremoved) {
1102 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1103 		result = -ENODEV;
1104 	} else if (result != 0) {
1105 		int runqueue = 0;
1106 
1107 		/*
1108 		 * We were probably interrupted, so delete
1109 		 * this CTLX asynchronously, kill the timers
1110 		 * and the URB, and then start the next
1111 		 * pending CTLX.
1112 		 *
1113 		 * NOTE: We can only delete the timers and
1114 		 *       the URB if this CTLX is active.
1115 		 */
1116 		if (ctlx == get_active_ctlx(hw)) {
1117 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1118 
1119 			del_singleshot_timer_sync(&hw->reqtimer);
1120 			del_singleshot_timer_sync(&hw->resptimer);
1121 			hw->req_timer_done = 1;
1122 			hw->resp_timer_done = 1;
1123 			usb_kill_urb(&hw->ctlx_urb);
1124 
1125 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
1126 
1127 			runqueue = 1;
1128 
1129 			/*
1130 			 * This scenario is so unlikely that I'm
1131 			 * happy with a grubby "goto" solution ...
1132 			 */
1133 			if (hw->wlandev->hwremoved)
1134 				goto cleanup;
1135 		}
1136 
1137 		/*
1138 		 * The completion task will send this CTLX
1139 		 * to the reaper the next time it runs. We
1140 		 * are no longer in a hurry.
1141 		 */
1142 		ctlx->reapable = 1;
1143 		ctlx->state = CTLX_REQ_FAILED;
1144 		list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1145 
1146 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1147 
1148 		if (runqueue)
1149 			hfa384x_usbctlxq_run(hw);
1150 	} else {
1151 		if (ctlx->state == CTLX_COMPLETE) {
1152 			result = completor->complete(completor);
1153 		} else {
1154 			netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1155 				    le16_to_cpu(ctlx->outbuf.type),
1156 				    ctlxstr(ctlx->state));
1157 			result = -EIO;
1158 		}
1159 
1160 		list_del(&ctlx->list);
1161 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1162 		kfree(ctlx);
1163 	}
1164 
1165 	return result;
1166 }
1167 
1168 /*----------------------------------------------------------------
1169  * hfa384x_docmd
1170  *
1171  * Constructs a command CTLX and submits it.
1172  *
1173  * NOTE: Any changes to the 'post-submit' code in this function
1174  *       need to be carried over to hfa384x_cbcmd() since the handling
1175  *       is virtually identical.
1176  *
1177  * Arguments:
1178  *	hw		device structure
1179  *       cmd             cmd structure.  Includes all arguments and result
1180  *                       data points.  All in host order. in host order
1181  *
1182  * Returns:
1183  *	0		success
1184  *	-EIO		CTLX failure
1185  *	-ERESTARTSYS	Awakened on signal
1186  *	>0		command indicated error, Status and Resp0-2 are
1187  *			in hw structure.
1188  *
1189  * Side effects:
1190  *
1191  *
1192  * Call context:
1193  *	process
1194  *----------------------------------------------------------------
1195  */
1196 static inline int
hfa384x_docmd(struct hfa384x * hw,struct hfa384x_metacmd * cmd)1197 hfa384x_docmd(struct hfa384x *hw,
1198 	      struct hfa384x_metacmd *cmd)
1199 {
1200 	int result;
1201 	struct hfa384x_usbctlx *ctlx;
1202 
1203 	ctlx = usbctlx_alloc();
1204 	if (!ctlx) {
1205 		result = -ENOMEM;
1206 		goto done;
1207 	}
1208 
1209 	/* Initialize the command */
1210 	ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1211 	ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1212 	ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1213 	ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1214 	ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1215 
1216 	ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1217 
1218 	pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1219 		 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1220 
1221 	ctlx->reapable = DOWAIT;
1222 	ctlx->cmdcb = NULL;
1223 	ctlx->usercb = NULL;
1224 	ctlx->usercb_data = NULL;
1225 
1226 	result = hfa384x_usbctlx_submit(hw, ctlx);
1227 	if (result != 0) {
1228 		kfree(ctlx);
1229 	} else {
1230 		struct usbctlx_cmd_completor cmd_completor;
1231 		struct usbctlx_completor *completor;
1232 
1233 		completor = init_cmd_completor(&cmd_completor,
1234 					       &ctlx->inbuf.cmdresp,
1235 					       &cmd->result);
1236 
1237 		result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
1238 	}
1239 
1240 done:
1241 	return result;
1242 }
1243 
1244 /*----------------------------------------------------------------
1245  * hfa384x_dorrid
1246  *
1247  * Constructs a read rid CTLX and issues it.
1248  *
1249  * NOTE: Any changes to the 'post-submit' code in this function
1250  *       need to be carried over to hfa384x_cbrrid() since the handling
1251  *       is virtually identical.
1252  *
1253  * Arguments:
1254  *	hw		device structure
1255  *	mode		DOWAIT or DOASYNC
1256  *	rid		Read RID number (host order)
1257  *	riddata		Caller supplied buffer that MAC formatted RID.data
1258  *			record will be written to for DOWAIT calls. Should
1259  *			be NULL for DOASYNC calls.
1260  *	riddatalen	Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1261  *	cmdcb		command callback for async calls, NULL for DOWAIT calls
1262  *	usercb		user callback for async calls, NULL for DOWAIT calls
1263  *	usercb_data	user supplied data pointer for async calls, NULL
1264  *			for DOWAIT calls
1265  *
1266  * Returns:
1267  *	0		success
1268  *	-EIO		CTLX failure
1269  *	-ERESTARTSYS	Awakened on signal
1270  *	-ENODATA	riddatalen != macdatalen
1271  *	>0		command indicated error, Status and Resp0-2 are
1272  *			in hw structure.
1273  *
1274  * Side effects:
1275  *
1276  * Call context:
1277  *	interrupt (DOASYNC)
1278  *	process (DOWAIT or DOASYNC)
1279  *----------------------------------------------------------------
1280  */
1281 static int
hfa384x_dorrid(struct hfa384x * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1282 hfa384x_dorrid(struct hfa384x *hw,
1283 	       enum cmd_mode mode,
1284 	       u16 rid,
1285 	       void *riddata,
1286 	       unsigned int riddatalen,
1287 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1288 {
1289 	int result;
1290 	struct hfa384x_usbctlx *ctlx;
1291 
1292 	ctlx = usbctlx_alloc();
1293 	if (!ctlx) {
1294 		result = -ENOMEM;
1295 		goto done;
1296 	}
1297 
1298 	/* Initialize the command */
1299 	ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1300 	ctlx->outbuf.rridreq.frmlen =
1301 	    cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1302 	ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1303 
1304 	ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1305 
1306 	ctlx->reapable = mode;
1307 	ctlx->cmdcb = cmdcb;
1308 	ctlx->usercb = usercb;
1309 	ctlx->usercb_data = usercb_data;
1310 
1311 	/* Submit the CTLX */
1312 	result = hfa384x_usbctlx_submit(hw, ctlx);
1313 	if (result != 0) {
1314 		kfree(ctlx);
1315 	} else if (mode == DOWAIT) {
1316 		struct usbctlx_rrid_completor completor;
1317 
1318 		result =
1319 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1320 						  init_rrid_completor
1321 						  (&completor,
1322 						   &ctlx->inbuf.rridresp,
1323 						   riddata, riddatalen));
1324 	}
1325 
1326 done:
1327 	return result;
1328 }
1329 
1330 /*----------------------------------------------------------------
1331  * hfa384x_dowrid
1332  *
1333  * Constructs a write rid CTLX and issues it.
1334  *
1335  * NOTE: Any changes to the 'post-submit' code in this function
1336  *       need to be carried over to hfa384x_cbwrid() since the handling
1337  *       is virtually identical.
1338  *
1339  * Arguments:
1340  *	hw		device structure
1341  *	enum cmd_mode	DOWAIT or DOASYNC
1342  *	rid		RID code
1343  *	riddata		Data portion of RID formatted for MAC
1344  *	riddatalen	Length of the data portion in bytes
1345  *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1346  *	usercb		user callback for async calls, NULL for DOWAIT calls
1347  *	usercb_data	user supplied data pointer for async calls
1348  *
1349  * Returns:
1350  *	0		success
1351  *	-ETIMEDOUT	timed out waiting for register ready or
1352  *			command completion
1353  *	>0		command indicated error, Status and Resp0-2 are
1354  *			in hw structure.
1355  *
1356  * Side effects:
1357  *
1358  * Call context:
1359  *	interrupt (DOASYNC)
1360  *	process (DOWAIT or DOASYNC)
1361  *----------------------------------------------------------------
1362  */
1363 static int
hfa384x_dowrid(struct hfa384x * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1364 hfa384x_dowrid(struct hfa384x *hw,
1365 	       enum cmd_mode mode,
1366 	       u16 rid,
1367 	       void *riddata,
1368 	       unsigned int riddatalen,
1369 	       ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1370 {
1371 	int result;
1372 	struct hfa384x_usbctlx *ctlx;
1373 
1374 	ctlx = usbctlx_alloc();
1375 	if (!ctlx) {
1376 		result = -ENOMEM;
1377 		goto done;
1378 	}
1379 
1380 	/* Initialize the command */
1381 	ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1382 	ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1383 						   (ctlx->outbuf.wridreq.rid) +
1384 						   riddatalen + 1) / 2);
1385 	ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1386 	memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1387 
1388 	ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1389 	    sizeof(ctlx->outbuf.wridreq.frmlen) +
1390 	    sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1391 
1392 	ctlx->reapable = mode;
1393 	ctlx->cmdcb = cmdcb;
1394 	ctlx->usercb = usercb;
1395 	ctlx->usercb_data = usercb_data;
1396 
1397 	/* Submit the CTLX */
1398 	result = hfa384x_usbctlx_submit(hw, ctlx);
1399 	if (result != 0) {
1400 		kfree(ctlx);
1401 	} else if (mode == DOWAIT) {
1402 		struct usbctlx_cmd_completor completor;
1403 		struct hfa384x_cmdresult wridresult;
1404 
1405 		result = hfa384x_usbctlx_complete_sync(hw,
1406 						       ctlx,
1407 						       init_wrid_completor
1408 						       (&completor,
1409 							&ctlx->inbuf.wridresp,
1410 							&wridresult));
1411 	}
1412 
1413 done:
1414 	return result;
1415 }
1416 
1417 /*----------------------------------------------------------------
1418  * hfa384x_dormem
1419  *
1420  * Constructs a readmem CTLX and issues it.
1421  *
1422  * NOTE: Any changes to the 'post-submit' code in this function
1423  *       need to be carried over to hfa384x_cbrmem() since the handling
1424  *       is virtually identical.
1425  *
1426  * Arguments:
1427  *	hw		device structure
1428  *	page		MAC address space page (CMD format)
1429  *	offset		MAC address space offset
1430  *	data		Ptr to data buffer to receive read
1431  *	len		Length of the data to read (max == 2048)
1432  *
1433  * Returns:
1434  *	0		success
1435  *	-ETIMEDOUT	timed out waiting for register ready or
1436  *			command completion
1437  *	>0		command indicated error, Status and Resp0-2 are
1438  *			in hw structure.
1439  *
1440  * Side effects:
1441  *
1442  * Call context:
1443  *	process (DOWAIT)
1444  *----------------------------------------------------------------
1445  */
1446 static int
hfa384x_dormem(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len)1447 hfa384x_dormem(struct hfa384x *hw,
1448 	       u16 page,
1449 	       u16 offset,
1450 	       void *data,
1451 	       unsigned int len)
1452 {
1453 	int result;
1454 	struct hfa384x_usbctlx *ctlx;
1455 
1456 	ctlx = usbctlx_alloc();
1457 	if (!ctlx) {
1458 		result = -ENOMEM;
1459 		goto done;
1460 	}
1461 
1462 	/* Initialize the command */
1463 	ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1464 	ctlx->outbuf.rmemreq.frmlen =
1465 	    cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1466 			sizeof(ctlx->outbuf.rmemreq.page) + len);
1467 	ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1468 	ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1469 
1470 	ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1471 
1472 	pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1473 		 ctlx->outbuf.rmemreq.type,
1474 		 ctlx->outbuf.rmemreq.frmlen,
1475 		 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1476 
1477 	pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1478 
1479 	ctlx->reapable = DOWAIT;
1480 	ctlx->cmdcb = NULL;
1481 	ctlx->usercb = NULL;
1482 	ctlx->usercb_data = NULL;
1483 
1484 	result = hfa384x_usbctlx_submit(hw, ctlx);
1485 	if (result != 0) {
1486 		kfree(ctlx);
1487 	} else {
1488 		struct usbctlx_rmem_completor completor;
1489 
1490 		result =
1491 		    hfa384x_usbctlx_complete_sync(hw, ctlx,
1492 						  init_rmem_completor
1493 						  (&completor,
1494 						   &ctlx->inbuf.rmemresp, data,
1495 						   len));
1496 	}
1497 
1498 done:
1499 	return result;
1500 }
1501 
1502 /*----------------------------------------------------------------
1503  * hfa384x_dowmem
1504  *
1505  * Constructs a writemem CTLX and issues it.
1506  *
1507  * NOTE: Any changes to the 'post-submit' code in this function
1508  *       need to be carried over to hfa384x_cbwmem() since the handling
1509  *       is virtually identical.
1510  *
1511  * Arguments:
1512  *	hw		device structure
1513  *	page		MAC address space page (CMD format)
1514  *	offset		MAC address space offset
1515  *	data		Ptr to data buffer containing write data
1516  *	len		Length of the data to read (max == 2048)
1517  *
1518  * Returns:
1519  *	0		success
1520  *	-ETIMEDOUT	timed out waiting for register ready or
1521  *			command completion
1522  *	>0		command indicated error, Status and Resp0-2 are
1523  *			in hw structure.
1524  *
1525  * Side effects:
1526  *
1527  * Call context:
1528  *	interrupt (DOWAIT)
1529  *	process (DOWAIT)
1530  *----------------------------------------------------------------
1531  */
1532 static int
hfa384x_dowmem(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len)1533 hfa384x_dowmem(struct hfa384x *hw,
1534 	       u16 page,
1535 	       u16 offset,
1536 	       void *data,
1537 	       unsigned int len)
1538 {
1539 	int result;
1540 	struct hfa384x_usbctlx *ctlx;
1541 
1542 	pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1543 
1544 	ctlx = usbctlx_alloc();
1545 	if (!ctlx) {
1546 		result = -ENOMEM;
1547 		goto done;
1548 	}
1549 
1550 	/* Initialize the command */
1551 	ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1552 	ctlx->outbuf.wmemreq.frmlen =
1553 	    cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1554 			sizeof(ctlx->outbuf.wmemreq.page) + len);
1555 	ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1556 	ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1557 	memcpy(ctlx->outbuf.wmemreq.data, data, len);
1558 
1559 	ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1560 	    sizeof(ctlx->outbuf.wmemreq.frmlen) +
1561 	    sizeof(ctlx->outbuf.wmemreq.offset) +
1562 	    sizeof(ctlx->outbuf.wmemreq.page) + len;
1563 
1564 	ctlx->reapable = DOWAIT;
1565 	ctlx->cmdcb = NULL;
1566 	ctlx->usercb = NULL;
1567 	ctlx->usercb_data = NULL;
1568 
1569 	result = hfa384x_usbctlx_submit(hw, ctlx);
1570 	if (result != 0) {
1571 		kfree(ctlx);
1572 	} else {
1573 		struct usbctlx_cmd_completor completor;
1574 		struct hfa384x_cmdresult wmemresult;
1575 
1576 		result = hfa384x_usbctlx_complete_sync(hw,
1577 						       ctlx,
1578 						       init_wmem_completor
1579 						       (&completor,
1580 							&ctlx->inbuf.wmemresp,
1581 							&wmemresult));
1582 	}
1583 
1584 done:
1585 	return result;
1586 }
1587 
1588 /*----------------------------------------------------------------
1589  * hfa384x_drvr_disable
1590  *
1591  * Issues the disable command to stop communications on one of
1592  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1593  * APs may also disable macports 1-6.  Only ports that have been
1594  * previously enabled may be disabled.
1595  *
1596  * Arguments:
1597  *	hw		device structure
1598  *	macport		MAC port number (host order)
1599  *
1600  * Returns:
1601  *	0		success
1602  *	>0		f/w reported failure - f/w status code
1603  *	<0		driver reported error (timeout|bad arg)
1604  *
1605  * Side effects:
1606  *
1607  * Call context:
1608  *	process
1609  *----------------------------------------------------------------
1610  */
hfa384x_drvr_disable(struct hfa384x * hw,u16 macport)1611 int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
1612 {
1613 	int result = 0;
1614 
1615 	if ((!hw->isap && macport != 0) ||
1616 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1617 	    !(hw->port_enabled[macport])) {
1618 		result = -EINVAL;
1619 	} else {
1620 		result = hfa384x_cmd_disable(hw, macport);
1621 		if (result == 0)
1622 			hw->port_enabled[macport] = 0;
1623 	}
1624 	return result;
1625 }
1626 
1627 /*----------------------------------------------------------------
1628  * hfa384x_drvr_enable
1629  *
1630  * Issues the enable command to enable communications on one of
1631  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1632  * APs may also enable macports 1-6.  Only ports that are currently
1633  * disabled may be enabled.
1634  *
1635  * Arguments:
1636  *	hw		device structure
1637  *	macport		MAC port number
1638  *
1639  * Returns:
1640  *	0		success
1641  *	>0		f/w reported failure - f/w status code
1642  *	<0		driver reported error (timeout|bad arg)
1643  *
1644  * Side effects:
1645  *
1646  * Call context:
1647  *	process
1648  *----------------------------------------------------------------
1649  */
hfa384x_drvr_enable(struct hfa384x * hw,u16 macport)1650 int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
1651 {
1652 	int result = 0;
1653 
1654 	if ((!hw->isap && macport != 0) ||
1655 	    (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1656 	    (hw->port_enabled[macport])) {
1657 		result = -EINVAL;
1658 	} else {
1659 		result = hfa384x_cmd_enable(hw, macport);
1660 		if (result == 0)
1661 			hw->port_enabled[macport] = 1;
1662 	}
1663 	return result;
1664 }
1665 
1666 /*----------------------------------------------------------------
1667  * hfa384x_drvr_flashdl_enable
1668  *
1669  * Begins the flash download state.  Checks to see that we're not
1670  * already in a download state and that a port isn't enabled.
1671  * Sets the download state and retrieves the flash download
1672  * buffer location, buffer size, and timeout length.
1673  *
1674  * Arguments:
1675  *	hw		device structure
1676  *
1677  * Returns:
1678  *	0		success
1679  *	>0		f/w reported error - f/w status code
1680  *	<0		driver reported error
1681  *
1682  * Side effects:
1683  *
1684  * Call context:
1685  *	process
1686  *----------------------------------------------------------------
1687  */
hfa384x_drvr_flashdl_enable(struct hfa384x * hw)1688 int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
1689 {
1690 	int result = 0;
1691 	int i;
1692 
1693 	/* Check that a port isn't active */
1694 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1695 		if (hw->port_enabled[i]) {
1696 			pr_debug("called when port enabled.\n");
1697 			return -EINVAL;
1698 		}
1699 	}
1700 
1701 	/* Check that we're not already in a download state */
1702 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1703 		return -EINVAL;
1704 
1705 	/* Retrieve the buffer loc&size and timeout */
1706 	result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1707 					&hw->bufinfo, sizeof(hw->bufinfo));
1708 	if (result)
1709 		return result;
1710 
1711 	le16_to_cpus(&hw->bufinfo.page);
1712 	le16_to_cpus(&hw->bufinfo.offset);
1713 	le16_to_cpus(&hw->bufinfo.len);
1714 	result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1715 					  &hw->dltimeout);
1716 	if (result)
1717 		return result;
1718 
1719 	le16_to_cpus(&hw->dltimeout);
1720 
1721 	pr_debug("flashdl_enable\n");
1722 
1723 	hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1724 
1725 	return result;
1726 }
1727 
1728 /*----------------------------------------------------------------
1729  * hfa384x_drvr_flashdl_disable
1730  *
1731  * Ends the flash download state.  Note that this will cause the MAC
1732  * firmware to restart.
1733  *
1734  * Arguments:
1735  *	hw		device structure
1736  *
1737  * Returns:
1738  *	0		success
1739  *	>0		f/w reported error - f/w status code
1740  *	<0		driver reported error
1741  *
1742  * Side effects:
1743  *
1744  * Call context:
1745  *	process
1746  *----------------------------------------------------------------
1747  */
hfa384x_drvr_flashdl_disable(struct hfa384x * hw)1748 int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
1749 {
1750 	/* Check that we're already in the download state */
1751 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1752 		return -EINVAL;
1753 
1754 	pr_debug("flashdl_enable\n");
1755 
1756 	/* There isn't much we can do at this point, so I don't */
1757 	/*  bother  w/ the return value */
1758 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1759 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
1760 
1761 	return 0;
1762 }
1763 
1764 /*----------------------------------------------------------------
1765  * hfa384x_drvr_flashdl_write
1766  *
1767  * Performs a FLASH download of a chunk of data. First checks to see
1768  * that we're in the FLASH download state, then sets the download
1769  * mode, uses the aux functions to 1) copy the data to the flash
1770  * buffer, 2) sets the download 'write flash' mode, 3) readback and
1771  * compare.  Lather rinse, repeat as many times an necessary to get
1772  * all the given data into flash.
1773  * When all data has been written using this function (possibly
1774  * repeatedly), call drvr_flashdl_disable() to end the download state
1775  * and restart the MAC.
1776  *
1777  * Arguments:
1778  *	hw		device structure
1779  *	daddr		Card address to write to. (host order)
1780  *	buf		Ptr to data to write.
1781  *	len		Length of data (host order).
1782  *
1783  * Returns:
1784  *	0		success
1785  *	>0		f/w reported error - f/w status code
1786  *	<0		driver reported error
1787  *
1788  * Side effects:
1789  *
1790  * Call context:
1791  *	process
1792  *----------------------------------------------------------------
1793  */
hfa384x_drvr_flashdl_write(struct hfa384x * hw,u32 daddr,void * buf,u32 len)1794 int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
1795 			       void *buf, u32 len)
1796 {
1797 	int result = 0;
1798 	u32 dlbufaddr;
1799 	int nburns;
1800 	u32 burnlen;
1801 	u32 burndaddr;
1802 	u16 burnlo;
1803 	u16 burnhi;
1804 	int nwrites;
1805 	u8 *writebuf;
1806 	u16 writepage;
1807 	u16 writeoffset;
1808 	u32 writelen;
1809 	int i;
1810 	int j;
1811 
1812 	pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1813 
1814 	/* Check that we're in the flash download state */
1815 	if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1816 		return -EINVAL;
1817 
1818 	netdev_info(hw->wlandev->netdev,
1819 		    "Download %d bytes to flash @0x%06x\n", len, daddr);
1820 
1821 	/* Convert to flat address for arithmetic */
1822 	/* NOTE: dlbuffer RID stores the address in AUX format */
1823 	dlbufaddr =
1824 	    HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1825 	pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1826 		 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1827 	/* Calculations to determine how many fills of the dlbuffer to do
1828 	 * and how many USB wmemreq's to do for each fill.  At this point
1829 	 * in time, the dlbuffer size and the wmemreq size are the same.
1830 	 * Therefore, nwrites should always be 1.  The extra complexity
1831 	 * here is a hedge against future changes.
1832 	 */
1833 
1834 	/* Figure out how many times to do the flash programming */
1835 	nburns = len / hw->bufinfo.len;
1836 	nburns += (len % hw->bufinfo.len) ? 1 : 0;
1837 
1838 	/* For each flash program cycle, how many USB wmemreq's are needed? */
1839 	nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1840 	nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1841 
1842 	/* For each burn */
1843 	for (i = 0; i < nburns; i++) {
1844 		/* Get the dest address and len */
1845 		burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1846 		    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1847 		burndaddr = daddr + (hw->bufinfo.len * i);
1848 		burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1849 		burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1850 
1851 		netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1852 			    burnlen, burndaddr);
1853 
1854 		/* Set the download mode */
1855 		result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1856 					      burnlo, burnhi, burnlen);
1857 		if (result) {
1858 			netdev_err(hw->wlandev->netdev,
1859 				   "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1860 				   burnlo, burnhi, burnlen, result);
1861 			goto exit_proc;
1862 		}
1863 
1864 		/* copy the data to the flash download buffer */
1865 		for (j = 0; j < nwrites; j++) {
1866 			writebuf = buf +
1867 			    (i * hw->bufinfo.len) +
1868 			    (j * HFA384x_USB_RWMEM_MAXLEN);
1869 
1870 			writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1871 						(j * HFA384x_USB_RWMEM_MAXLEN));
1872 			writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
1873 						(j * HFA384x_USB_RWMEM_MAXLEN));
1874 
1875 			writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
1876 			writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
1877 			    HFA384x_USB_RWMEM_MAXLEN : writelen;
1878 
1879 			result = hfa384x_dowmem(hw,
1880 						writepage,
1881 						writeoffset,
1882 						writebuf, writelen);
1883 		}
1884 
1885 		/* set the download 'write flash' mode */
1886 		result = hfa384x_cmd_download(hw,
1887 					      HFA384x_PROGMODE_NVWRITE,
1888 					      0, 0, 0);
1889 		if (result) {
1890 			netdev_err(hw->wlandev->netdev,
1891 				   "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1892 				   burnlo, burnhi, burnlen, result);
1893 			goto exit_proc;
1894 		}
1895 
1896 		/* TODO: We really should do a readback and compare. */
1897 	}
1898 
1899 exit_proc:
1900 
1901 	/* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
1902 	/*  actually disable programming mode.  Remember, that will cause the */
1903 	/*  the firmware to effectively reset itself. */
1904 
1905 	return result;
1906 }
1907 
1908 /*----------------------------------------------------------------
1909  * hfa384x_drvr_getconfig
1910  *
1911  * Performs the sequence necessary to read a config/info item.
1912  *
1913  * Arguments:
1914  *	hw		device structure
1915  *	rid		config/info record id (host order)
1916  *	buf		host side record buffer.  Upon return it will
1917  *			contain the body portion of the record (minus the
1918  *			RID and len).
1919  *	len		buffer length (in bytes, should match record length)
1920  *
1921  * Returns:
1922  *	0		success
1923  *	>0		f/w reported error - f/w status code
1924  *	<0		driver reported error
1925  *	-ENODATA	length mismatch between argument and retrieved
1926  *			record.
1927  *
1928  * Side effects:
1929  *
1930  * Call context:
1931  *	process
1932  *----------------------------------------------------------------
1933  */
hfa384x_drvr_getconfig(struct hfa384x * hw,u16 rid,void * buf,u16 len)1934 int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
1935 {
1936 	return hfa384x_dorrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
1937 }
1938 
1939 /*----------------------------------------------------------------
1940  * hfa384x_drvr_setconfig_async
1941  *
1942  * Performs the sequence necessary to write a config/info item.
1943  *
1944  * Arguments:
1945  *       hw              device structure
1946  *       rid             config/info record id (in host order)
1947  *       buf             host side record buffer
1948  *       len             buffer length (in bytes)
1949  *       usercb          completion callback
1950  *       usercb_data     completion callback argument
1951  *
1952  * Returns:
1953  *       0               success
1954  *       >0              f/w reported error - f/w status code
1955  *       <0              driver reported error
1956  *
1957  * Side effects:
1958  *
1959  * Call context:
1960  *       process
1961  *----------------------------------------------------------------
1962  */
1963 int
hfa384x_drvr_setconfig_async(struct hfa384x * hw,u16 rid,void * buf,u16 len,ctlx_usercb_t usercb,void * usercb_data)1964 hfa384x_drvr_setconfig_async(struct hfa384x *hw,
1965 			     u16 rid,
1966 			     void *buf,
1967 			     u16 len, ctlx_usercb_t usercb, void *usercb_data)
1968 {
1969 	return hfa384x_dowrid(hw, DOASYNC, rid, buf, len, hfa384x_cb_status,
1970 			      usercb, usercb_data);
1971 }
1972 
1973 /*----------------------------------------------------------------
1974  * hfa384x_drvr_ramdl_disable
1975  *
1976  * Ends the ram download state.
1977  *
1978  * Arguments:
1979  *	hw		device structure
1980  *
1981  * Returns:
1982  *	0		success
1983  *	>0		f/w reported error - f/w status code
1984  *	<0		driver reported error
1985  *
1986  * Side effects:
1987  *
1988  * Call context:
1989  *	process
1990  *----------------------------------------------------------------
1991  */
hfa384x_drvr_ramdl_disable(struct hfa384x * hw)1992 int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
1993 {
1994 	/* Check that we're already in the download state */
1995 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
1996 		return -EINVAL;
1997 
1998 	pr_debug("ramdl_disable()\n");
1999 
2000 	/* There isn't much we can do at this point, so I don't */
2001 	/*  bother  w/ the return value */
2002 	hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2003 	hw->dlstate = HFA384x_DLSTATE_DISABLED;
2004 
2005 	return 0;
2006 }
2007 
2008 /*----------------------------------------------------------------
2009  * hfa384x_drvr_ramdl_enable
2010  *
2011  * Begins the ram download state.  Checks to see that we're not
2012  * already in a download state and that a port isn't enabled.
2013  * Sets the download state and calls cmd_download with the
2014  * ENABLE_VOLATILE subcommand and the exeaddr argument.
2015  *
2016  * Arguments:
2017  *	hw		device structure
2018  *	exeaddr		the card execution address that will be
2019  *                       jumped to when ramdl_disable() is called
2020  *			(host order).
2021  *
2022  * Returns:
2023  *	0		success
2024  *	>0		f/w reported error - f/w status code
2025  *	<0		driver reported error
2026  *
2027  * Side effects:
2028  *
2029  * Call context:
2030  *	process
2031  *----------------------------------------------------------------
2032  */
hfa384x_drvr_ramdl_enable(struct hfa384x * hw,u32 exeaddr)2033 int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
2034 {
2035 	int result = 0;
2036 	u16 lowaddr;
2037 	u16 hiaddr;
2038 	int i;
2039 
2040 	/* Check that a port isn't active */
2041 	for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2042 		if (hw->port_enabled[i]) {
2043 			netdev_err(hw->wlandev->netdev,
2044 				   "Can't download with a macport enabled.\n");
2045 			return -EINVAL;
2046 		}
2047 	}
2048 
2049 	/* Check that we're not already in a download state */
2050 	if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2051 		netdev_err(hw->wlandev->netdev,
2052 			   "Download state not disabled.\n");
2053 		return -EINVAL;
2054 	}
2055 
2056 	pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2057 
2058 	/* Call the download(1,addr) function */
2059 	lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2060 	hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2061 
2062 	result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2063 				      lowaddr, hiaddr, 0);
2064 
2065 	if (result == 0) {
2066 		/* Set the download state */
2067 		hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2068 	} else {
2069 		pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2070 			 lowaddr, hiaddr, result);
2071 	}
2072 
2073 	return result;
2074 }
2075 
2076 /*----------------------------------------------------------------
2077  * hfa384x_drvr_ramdl_write
2078  *
2079  * Performs a RAM download of a chunk of data. First checks to see
2080  * that we're in the RAM download state, then uses the [read|write]mem USB
2081  * commands to 1) copy the data, 2) readback and compare.  The download
2082  * state is unaffected.  When all data has been written using
2083  * this function, call drvr_ramdl_disable() to end the download state
2084  * and restart the MAC.
2085  *
2086  * Arguments:
2087  *	hw		device structure
2088  *	daddr		Card address to write to. (host order)
2089  *	buf		Ptr to data to write.
2090  *	len		Length of data (host order).
2091  *
2092  * Returns:
2093  *	0		success
2094  *	>0		f/w reported error - f/w status code
2095  *	<0		driver reported error
2096  *
2097  * Side effects:
2098  *
2099  * Call context:
2100  *	process
2101  *----------------------------------------------------------------
2102  */
hfa384x_drvr_ramdl_write(struct hfa384x * hw,u32 daddr,void * buf,u32 len)2103 int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
2104 {
2105 	int result = 0;
2106 	int nwrites;
2107 	u8 *data = buf;
2108 	int i;
2109 	u32 curraddr;
2110 	u16 currpage;
2111 	u16 curroffset;
2112 	u16 currlen;
2113 
2114 	/* Check that we're in the ram download state */
2115 	if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2116 		return -EINVAL;
2117 
2118 	netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2119 		    len, daddr);
2120 
2121 	/* How many dowmem calls?  */
2122 	nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2123 	nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2124 
2125 	/* Do blocking wmem's */
2126 	for (i = 0; i < nwrites; i++) {
2127 		/* make address args */
2128 		curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2129 		currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2130 		curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2131 		currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2132 		if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2133 			currlen = HFA384x_USB_RWMEM_MAXLEN;
2134 
2135 		/* Do blocking ctlx */
2136 		result = hfa384x_dowmem(hw,
2137 					currpage,
2138 					curroffset,
2139 					data + (i * HFA384x_USB_RWMEM_MAXLEN),
2140 					currlen);
2141 
2142 		if (result)
2143 			break;
2144 
2145 		/* TODO: We really should have a readback. */
2146 	}
2147 
2148 	return result;
2149 }
2150 
2151 /*----------------------------------------------------------------
2152  * hfa384x_drvr_readpda
2153  *
2154  * Performs the sequence to read the PDA space.  Note there is no
2155  * drvr_writepda() function.  Writing a PDA is
2156  * generally implemented by a calling component via calls to
2157  * cmd_download and writing to the flash download buffer via the
2158  * aux regs.
2159  *
2160  * Arguments:
2161  *	hw		device structure
2162  *	buf		buffer to store PDA in
2163  *	len		buffer length
2164  *
2165  * Returns:
2166  *	0		success
2167  *	>0		f/w reported error - f/w status code
2168  *	<0		driver reported error
2169  *	-ETIMEDOUT	timeout waiting for the cmd regs to become
2170  *			available, or waiting for the control reg
2171  *			to indicate the Aux port is enabled.
2172  *	-ENODATA	the buffer does NOT contain a valid PDA.
2173  *			Either the card PDA is bad, or the auxdata
2174  *			reads are giving us garbage.
2175  *
2176  *
2177  * Side effects:
2178  *
2179  * Call context:
2180  *	process or non-card interrupt.
2181  *----------------------------------------------------------------
2182  */
hfa384x_drvr_readpda(struct hfa384x * hw,void * buf,unsigned int len)2183 int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
2184 {
2185 	int result = 0;
2186 	__le16 *pda = buf;
2187 	int pdaok = 0;
2188 	int morepdrs = 1;
2189 	int currpdr = 0;	/* word offset of the current pdr */
2190 	size_t i;
2191 	u16 pdrlen;		/* pdr length in bytes, host order */
2192 	u16 pdrcode;		/* pdr code, host order */
2193 	u16 currpage;
2194 	u16 curroffset;
2195 	struct pdaloc {
2196 		u32 cardaddr;
2197 		u16 auxctl;
2198 	} pdaloc[] = {
2199 		{
2200 		HFA3842_PDA_BASE, 0}, {
2201 		HFA3841_PDA_BASE, 0}, {
2202 		HFA3841_PDA_BOGUS_BASE, 0}
2203 	};
2204 
2205 	/* Read the pda from each known address.  */
2206 	for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2207 		/* Make address */
2208 		currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2209 		curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2210 
2211 		/* units of bytes */
2212 		result = hfa384x_dormem(hw, currpage, curroffset, buf,
2213 					len);
2214 
2215 		if (result) {
2216 			netdev_warn(hw->wlandev->netdev,
2217 				    "Read from index %zd failed, continuing\n",
2218 				    i);
2219 			continue;
2220 		}
2221 
2222 		/* Test for garbage */
2223 		pdaok = 1;	/* initially assume good */
2224 		morepdrs = 1;
2225 		while (pdaok && morepdrs) {
2226 			pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2227 			pdrcode = le16_to_cpu(pda[currpdr + 1]);
2228 			/* Test the record length */
2229 			if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2230 				netdev_err(hw->wlandev->netdev,
2231 					   "pdrlen invalid=%d\n", pdrlen);
2232 				pdaok = 0;
2233 				break;
2234 			}
2235 			/* Test the code */
2236 			if (!hfa384x_isgood_pdrcode(pdrcode)) {
2237 				netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2238 					   pdrcode);
2239 				pdaok = 0;
2240 				break;
2241 			}
2242 			/* Test for completion */
2243 			if (pdrcode == HFA384x_PDR_END_OF_PDA)
2244 				morepdrs = 0;
2245 
2246 			/* Move to the next pdr (if necessary) */
2247 			if (morepdrs) {
2248 				/* note the access to pda[], need words here */
2249 				currpdr += le16_to_cpu(pda[currpdr]) + 1;
2250 			}
2251 		}
2252 		if (pdaok) {
2253 			netdev_info(hw->wlandev->netdev,
2254 				    "PDA Read from 0x%08x in %s space.\n",
2255 				    pdaloc[i].cardaddr,
2256 				    pdaloc[i].auxctl == 0 ? "EXTDS" :
2257 				    pdaloc[i].auxctl == 1 ? "NV" :
2258 				    pdaloc[i].auxctl == 2 ? "PHY" :
2259 				    pdaloc[i].auxctl == 3 ? "ICSRAM" :
2260 				    "<bogus auxctl>");
2261 			break;
2262 		}
2263 	}
2264 	result = pdaok ? 0 : -ENODATA;
2265 
2266 	if (result)
2267 		pr_debug("Failure: pda is not okay\n");
2268 
2269 	return result;
2270 }
2271 
2272 /*----------------------------------------------------------------
2273  * hfa384x_drvr_setconfig
2274  *
2275  * Performs the sequence necessary to write a config/info item.
2276  *
2277  * Arguments:
2278  *	hw		device structure
2279  *	rid		config/info record id (in host order)
2280  *	buf		host side record buffer
2281  *	len		buffer length (in bytes)
2282  *
2283  * Returns:
2284  *	0		success
2285  *	>0		f/w reported error - f/w status code
2286  *	<0		driver reported error
2287  *
2288  * Side effects:
2289  *
2290  * Call context:
2291  *	process
2292  *----------------------------------------------------------------
2293  */
hfa384x_drvr_setconfig(struct hfa384x * hw,u16 rid,void * buf,u16 len)2294 int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2295 {
2296 	return hfa384x_dowrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
2297 }
2298 
2299 /*----------------------------------------------------------------
2300  * hfa384x_drvr_start
2301  *
2302  * Issues the MAC initialize command, sets up some data structures,
2303  * and enables the interrupts.  After this function completes, the
2304  * low-level stuff should be ready for any/all commands.
2305  *
2306  * Arguments:
2307  *	hw		device structure
2308  * Returns:
2309  *	0		success
2310  *	>0		f/w reported error - f/w status code
2311  *	<0		driver reported error
2312  *
2313  * Side effects:
2314  *
2315  * Call context:
2316  *	process
2317  *----------------------------------------------------------------
2318  */
hfa384x_drvr_start(struct hfa384x * hw)2319 int hfa384x_drvr_start(struct hfa384x *hw)
2320 {
2321 	int result, result1, result2;
2322 	u16 status;
2323 
2324 	might_sleep();
2325 
2326 	/* Clear endpoint stalls - but only do this if the endpoint
2327 	 * is showing a stall status. Some prism2 cards seem to behave
2328 	 * badly if a clear_halt is called when the endpoint is already
2329 	 * ok
2330 	 */
2331 	result =
2332 	    usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
2333 			       &status);
2334 	if (result < 0) {
2335 		netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2336 		goto done;
2337 	}
2338 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2339 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2340 
2341 	result =
2342 	    usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
2343 			       &status);
2344 	if (result < 0) {
2345 		netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2346 		goto done;
2347 	}
2348 	if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2349 		netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2350 
2351 	/* Synchronous unlink, in case we're trying to restart the driver */
2352 	usb_kill_urb(&hw->rx_urb);
2353 
2354 	/* Post the IN urb */
2355 	result = submit_rx_urb(hw, GFP_KERNEL);
2356 	if (result != 0) {
2357 		netdev_err(hw->wlandev->netdev,
2358 			   "Fatal, failed to submit RX URB, result=%d\n",
2359 			   result);
2360 		goto done;
2361 	}
2362 
2363 	/* Call initialize twice, with a 1 second sleep in between.
2364 	 * This is a nasty work-around since many prism2 cards seem to
2365 	 * need time to settle after an init from cold. The second
2366 	 * call to initialize in theory is not necessary - but we call
2367 	 * it anyway as a double insurance policy:
2368 	 * 1) If the first init should fail, the second may well succeed
2369 	 *    and the card can still be used
2370 	 * 2) It helps ensures all is well with the card after the first
2371 	 *    init and settle time.
2372 	 */
2373 	result1 = hfa384x_cmd_initialize(hw);
2374 	msleep(1000);
2375 	result = hfa384x_cmd_initialize(hw);
2376 	result2 = result;
2377 	if (result1 != 0) {
2378 		if (result2 != 0) {
2379 			netdev_err(hw->wlandev->netdev,
2380 				   "cmd_initialize() failed on two attempts, results %d and %d\n",
2381 				   result1, result2);
2382 			usb_kill_urb(&hw->rx_urb);
2383 			goto done;
2384 		} else {
2385 			pr_debug("First cmd_initialize() failed (result %d),\n",
2386 				 result1);
2387 			pr_debug("but second attempt succeeded. All should be ok\n");
2388 		}
2389 	} else if (result2 != 0) {
2390 		netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2391 			    result2);
2392 		netdev_warn(hw->wlandev->netdev,
2393 			    "Most likely the card will be functional\n");
2394 		goto done;
2395 	}
2396 
2397 	hw->state = HFA384x_STATE_RUNNING;
2398 
2399 done:
2400 	return result;
2401 }
2402 
2403 /*----------------------------------------------------------------
2404  * hfa384x_drvr_stop
2405  *
2406  * Shuts down the MAC to the point where it is safe to unload the
2407  * driver.  Any subsystem that may be holding a data or function
2408  * ptr into the driver must be cleared/deinitialized.
2409  *
2410  * Arguments:
2411  *	hw		device structure
2412  * Returns:
2413  *	0		success
2414  *	>0		f/w reported error - f/w status code
2415  *	<0		driver reported error
2416  *
2417  * Side effects:
2418  *
2419  * Call context:
2420  *	process
2421  *----------------------------------------------------------------
2422  */
hfa384x_drvr_stop(struct hfa384x * hw)2423 int hfa384x_drvr_stop(struct hfa384x *hw)
2424 {
2425 	int i;
2426 
2427 	might_sleep();
2428 
2429 	/* There's no need for spinlocks here. The USB "disconnect"
2430 	 * function sets this "removed" flag and then calls us.
2431 	 */
2432 	if (!hw->wlandev->hwremoved) {
2433 		/* Call initialize to leave the MAC in its 'reset' state */
2434 		hfa384x_cmd_initialize(hw);
2435 
2436 		/* Cancel the rxurb */
2437 		usb_kill_urb(&hw->rx_urb);
2438 	}
2439 
2440 	hw->link_status = HFA384x_LINK_NOTCONNECTED;
2441 	hw->state = HFA384x_STATE_INIT;
2442 
2443 	del_timer_sync(&hw->commsqual_timer);
2444 
2445 	/* Clear all the port status */
2446 	for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2447 		hw->port_enabled[i] = 0;
2448 
2449 	return 0;
2450 }
2451 
2452 /*----------------------------------------------------------------
2453  * hfa384x_drvr_txframe
2454  *
2455  * Takes a frame from prism2sta and queues it for transmission.
2456  *
2457  * Arguments:
2458  *	hw		device structure
2459  *	skb		packet buffer struct.  Contains an 802.11
2460  *			data frame.
2461  *       p80211_hdr      points to the 802.11 header for the packet.
2462  * Returns:
2463  *	0		Success and more buffs available
2464  *	1		Success but no more buffs
2465  *	2		Allocation failure
2466  *	4		Buffer full or queue busy
2467  *
2468  * Side effects:
2469  *
2470  * Call context:
2471  *	interrupt
2472  *----------------------------------------------------------------
2473  */
hfa384x_drvr_txframe(struct hfa384x * hw,struct sk_buff * skb,struct p80211_hdr * p80211_hdr,struct p80211_metawep * p80211_wep)2474 int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
2475 			 struct p80211_hdr *p80211_hdr,
2476 			 struct p80211_metawep *p80211_wep)
2477 {
2478 	int usbpktlen = sizeof(struct hfa384x_tx_frame);
2479 	int result;
2480 	int ret;
2481 	char *ptr;
2482 
2483 	if (hw->tx_urb.status == -EINPROGRESS) {
2484 		netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2485 		result = 3;
2486 		goto exit;
2487 	}
2488 
2489 	/* Build Tx frame structure */
2490 	/* Set up the control field */
2491 	memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2492 
2493 	/* Setup the usb type field */
2494 	hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2495 
2496 	/* Set up the sw_support field to identify this frame */
2497 	hw->txbuff.txfrm.desc.sw_support = 0x0123;
2498 
2499 /* Tx complete and Tx exception disable per dleach.  Might be causing
2500  * buf depletion
2501  */
2502 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2503 #if defined(DOBOTH)
2504 	hw->txbuff.txfrm.desc.tx_control =
2505 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2506 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2507 #elif defined(DOEXC)
2508 	hw->txbuff.txfrm.desc.tx_control =
2509 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2510 	    HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2511 #else
2512 	hw->txbuff.txfrm.desc.tx_control =
2513 	    HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2514 	    HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2515 #endif
2516 	cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
2517 
2518 	/* copy the header over to the txdesc */
2519 	hw->txbuff.txfrm.desc.hdr = *p80211_hdr;
2520 
2521 	/* if we're using host WEP, increase size by IV+ICV */
2522 	if (p80211_wep->data) {
2523 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2524 		usbpktlen += 8;
2525 	} else {
2526 		hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2527 	}
2528 
2529 	usbpktlen += skb->len;
2530 
2531 	/* copy over the WEP IV if we are using host WEP */
2532 	ptr = hw->txbuff.txfrm.data;
2533 	if (p80211_wep->data) {
2534 		memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2535 		ptr += sizeof(p80211_wep->iv);
2536 		memcpy(ptr, p80211_wep->data, skb->len);
2537 	} else {
2538 		memcpy(ptr, skb->data, skb->len);
2539 	}
2540 	/* copy over the packet data */
2541 	ptr += skb->len;
2542 
2543 	/* copy over the WEP ICV if we are using host WEP */
2544 	if (p80211_wep->data)
2545 		memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2546 
2547 	/* Send the USB packet */
2548 	usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
2549 			  hw->endp_out,
2550 			  &hw->txbuff, ROUNDUP64(usbpktlen),
2551 			  hfa384x_usbout_callback, hw->wlandev);
2552 	hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2553 
2554 	result = 1;
2555 	ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2556 	if (ret != 0) {
2557 		netdev_err(hw->wlandev->netdev,
2558 			   "submit_tx_urb() failed, error=%d\n", ret);
2559 		result = 3;
2560 	}
2561 
2562 exit:
2563 	return result;
2564 }
2565 
hfa384x_tx_timeout(struct wlandevice * wlandev)2566 void hfa384x_tx_timeout(struct wlandevice *wlandev)
2567 {
2568 	struct hfa384x *hw = wlandev->priv;
2569 	unsigned long flags;
2570 
2571 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2572 
2573 	if (!hw->wlandev->hwremoved) {
2574 		int sched;
2575 
2576 		sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2577 		sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2578 		if (sched)
2579 			schedule_work(&hw->usb_work);
2580 	}
2581 
2582 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2583 }
2584 
2585 /*----------------------------------------------------------------
2586  * hfa384x_usbctlx_reaper_task
2587  *
2588  * Tasklet to delete dead CTLX objects
2589  *
2590  * Arguments:
2591  *	data	ptr to a struct hfa384x
2592  *
2593  * Returns:
2594  *
2595  * Call context:
2596  *	Interrupt
2597  *----------------------------------------------------------------
2598  */
hfa384x_usbctlx_reaper_task(struct tasklet_struct * t)2599 static void hfa384x_usbctlx_reaper_task(struct tasklet_struct *t)
2600 {
2601 	struct hfa384x *hw = from_tasklet(hw, t, reaper_bh);
2602 	struct hfa384x_usbctlx *ctlx, *temp;
2603 	unsigned long flags;
2604 
2605 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2606 
2607 	/* This list is guaranteed to be empty if someone
2608 	 * has unplugged the adapter.
2609 	 */
2610 	list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2611 		list_del(&ctlx->list);
2612 		kfree(ctlx);
2613 	}
2614 
2615 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2616 }
2617 
2618 /*----------------------------------------------------------------
2619  * hfa384x_usbctlx_completion_task
2620  *
2621  * Tasklet to call completion handlers for returned CTLXs
2622  *
2623  * Arguments:
2624  *	data	ptr to struct hfa384x
2625  *
2626  * Returns:
2627  *	Nothing
2628  *
2629  * Call context:
2630  *	Interrupt
2631  *----------------------------------------------------------------
2632  */
hfa384x_usbctlx_completion_task(struct tasklet_struct * t)2633 static void hfa384x_usbctlx_completion_task(struct tasklet_struct *t)
2634 {
2635 	struct hfa384x *hw = from_tasklet(hw, t, completion_bh);
2636 	struct hfa384x_usbctlx *ctlx, *temp;
2637 	unsigned long flags;
2638 
2639 	int reap = 0;
2640 
2641 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2642 
2643 	/* This list is guaranteed to be empty if someone
2644 	 * has unplugged the adapter ...
2645 	 */
2646 	list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2647 		/* Call the completion function that this
2648 		 * command was assigned, assuming it has one.
2649 		 */
2650 		if (ctlx->cmdcb) {
2651 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2652 			ctlx->cmdcb(hw, ctlx);
2653 			spin_lock_irqsave(&hw->ctlxq.lock, flags);
2654 
2655 			/* Make sure we don't try and complete
2656 			 * this CTLX more than once!
2657 			 */
2658 			ctlx->cmdcb = NULL;
2659 
2660 			/* Did someone yank the adapter out
2661 			 * while our list was (briefly) unlocked?
2662 			 */
2663 			if (hw->wlandev->hwremoved) {
2664 				reap = 0;
2665 				break;
2666 			}
2667 		}
2668 
2669 		/*
2670 		 * "Reapable" CTLXs are ones which don't have any
2671 		 * threads waiting for them to die. Hence they must
2672 		 * be delivered to The Reaper!
2673 		 */
2674 		if (ctlx->reapable) {
2675 			/* Move the CTLX off the "completing" list (hopefully)
2676 			 * on to the "reapable" list where the reaper task
2677 			 * can find it. And "reapable" means that this CTLX
2678 			 * isn't sitting on a wait-queue somewhere.
2679 			 */
2680 			list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2681 			reap = 1;
2682 		}
2683 
2684 		complete(&ctlx->done);
2685 	}
2686 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2687 
2688 	if (reap)
2689 		tasklet_schedule(&hw->reaper_bh);
2690 }
2691 
2692 /*----------------------------------------------------------------
2693  * unlocked_usbctlx_cancel_async
2694  *
2695  * Mark the CTLX dead asynchronously, and ensure that the
2696  * next command on the queue is run afterwards.
2697  *
2698  * Arguments:
2699  *	hw	ptr to the struct hfa384x structure
2700  *	ctlx	ptr to a CTLX structure
2701  *
2702  * Returns:
2703  *	0	the CTLX's URB is inactive
2704  * -EINPROGRESS	the URB is currently being unlinked
2705  *
2706  * Call context:
2707  *	Either process or interrupt, but presumably interrupt
2708  *----------------------------------------------------------------
2709  */
unlocked_usbctlx_cancel_async(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)2710 static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
2711 					 struct hfa384x_usbctlx *ctlx)
2712 {
2713 	int ret;
2714 
2715 	/*
2716 	 * Try to delete the URB containing our request packet.
2717 	 * If we succeed, then its completion handler will be
2718 	 * called with a status of -ECONNRESET.
2719 	 */
2720 	hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2721 	ret = usb_unlink_urb(&hw->ctlx_urb);
2722 
2723 	if (ret != -EINPROGRESS) {
2724 		/*
2725 		 * The OUT URB had either already completed
2726 		 * or was still in the pending queue, so the
2727 		 * URB's completion function will not be called.
2728 		 * We will have to complete the CTLX ourselves.
2729 		 */
2730 		ctlx->state = CTLX_REQ_FAILED;
2731 		unlocked_usbctlx_complete(hw, ctlx);
2732 		ret = 0;
2733 	}
2734 
2735 	return ret;
2736 }
2737 
2738 /*----------------------------------------------------------------
2739  * unlocked_usbctlx_complete
2740  *
2741  * A CTLX has completed.  It may have been successful, it may not
2742  * have been. At this point, the CTLX should be quiescent.  The URBs
2743  * aren't active and the timers should have been stopped.
2744  *
2745  * The CTLX is migrated to the "completing" queue, and the completing
2746  * tasklet is scheduled.
2747  *
2748  * Arguments:
2749  *	hw		ptr to a struct hfa384x structure
2750  *	ctlx		ptr to a ctlx structure
2751  *
2752  * Returns:
2753  *	nothing
2754  *
2755  * Side effects:
2756  *
2757  * Call context:
2758  *	Either, assume interrupt
2759  *----------------------------------------------------------------
2760  */
unlocked_usbctlx_complete(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)2761 static void unlocked_usbctlx_complete(struct hfa384x *hw,
2762 				      struct hfa384x_usbctlx *ctlx)
2763 {
2764 	/* Timers have been stopped, and ctlx should be in
2765 	 * a terminal state. Retire it from the "active"
2766 	 * queue.
2767 	 */
2768 	list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2769 	tasklet_schedule(&hw->completion_bh);
2770 
2771 	switch (ctlx->state) {
2772 	case CTLX_COMPLETE:
2773 	case CTLX_REQ_FAILED:
2774 		/* This are the correct terminating states. */
2775 		break;
2776 
2777 	default:
2778 		netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2779 			   le16_to_cpu(ctlx->outbuf.type),
2780 			   ctlxstr(ctlx->state));
2781 		break;
2782 	}			/* switch */
2783 }
2784 
2785 /*----------------------------------------------------------------
2786  * hfa384x_usbctlxq_run
2787  *
2788  * Checks to see if the head item is running.  If not, starts it.
2789  *
2790  * Arguments:
2791  *	hw	ptr to struct hfa384x
2792  *
2793  * Returns:
2794  *	nothing
2795  *
2796  * Side effects:
2797  *
2798  * Call context:
2799  *	any
2800  *----------------------------------------------------------------
2801  */
hfa384x_usbctlxq_run(struct hfa384x * hw)2802 static void hfa384x_usbctlxq_run(struct hfa384x *hw)
2803 {
2804 	unsigned long flags;
2805 
2806 	/* acquire lock */
2807 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
2808 
2809 	/* Only one active CTLX at any one time, because there's no
2810 	 * other (reliable) way to match the response URB to the
2811 	 * correct CTLX.
2812 	 *
2813 	 * Don't touch any of these CTLXs if the hardware
2814 	 * has been removed or the USB subsystem is stalled.
2815 	 */
2816 	if (!list_empty(&hw->ctlxq.active) ||
2817 	    test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2818 		goto unlock;
2819 
2820 	while (!list_empty(&hw->ctlxq.pending)) {
2821 		struct hfa384x_usbctlx *head;
2822 		int result;
2823 
2824 		/* This is the first pending command */
2825 		head = list_entry(hw->ctlxq.pending.next,
2826 				  struct hfa384x_usbctlx, list);
2827 
2828 		/* We need to split this off to avoid a race condition */
2829 		list_move_tail(&head->list, &hw->ctlxq.active);
2830 
2831 		/* Fill the out packet */
2832 		usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
2833 				  hw->endp_out,
2834 				  &head->outbuf, ROUNDUP64(head->outbufsize),
2835 				  hfa384x_ctlxout_callback, hw);
2836 		hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2837 
2838 		/* Now submit the URB and update the CTLX's state */
2839 		result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2840 		if (result == 0) {
2841 			/* This CTLX is now running on the active queue */
2842 			head->state = CTLX_REQ_SUBMITTED;
2843 
2844 			/* Start the OUT wait timer */
2845 			hw->req_timer_done = 0;
2846 			hw->reqtimer.expires = jiffies + HZ;
2847 			add_timer(&hw->reqtimer);
2848 
2849 			/* Start the IN wait timer */
2850 			hw->resp_timer_done = 0;
2851 			hw->resptimer.expires = jiffies + 2 * HZ;
2852 			add_timer(&hw->resptimer);
2853 
2854 			break;
2855 		}
2856 
2857 		if (result == -EPIPE) {
2858 			/* The OUT pipe needs resetting, so put
2859 			 * this CTLX back in the "pending" queue
2860 			 * and schedule a reset ...
2861 			 */
2862 			netdev_warn(hw->wlandev->netdev,
2863 				    "%s tx pipe stalled: requesting reset\n",
2864 				    hw->wlandev->netdev->name);
2865 			list_move(&head->list, &hw->ctlxq.pending);
2866 			set_bit(WORK_TX_HALT, &hw->usb_flags);
2867 			schedule_work(&hw->usb_work);
2868 			break;
2869 		}
2870 
2871 		if (result == -ESHUTDOWN) {
2872 			netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
2873 				    hw->wlandev->netdev->name);
2874 			break;
2875 		}
2876 
2877 		netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
2878 			   le16_to_cpu(head->outbuf.type), result);
2879 		unlocked_usbctlx_complete(hw, head);
2880 	}			/* while */
2881 
2882 unlock:
2883 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2884 }
2885 
2886 /*----------------------------------------------------------------
2887  * hfa384x_usbin_callback
2888  *
2889  * Callback for URBs on the BULKIN endpoint.
2890  *
2891  * Arguments:
2892  *	urb		ptr to the completed urb
2893  *
2894  * Returns:
2895  *	nothing
2896  *
2897  * Side effects:
2898  *
2899  * Call context:
2900  *	interrupt
2901  *----------------------------------------------------------------
2902  */
hfa384x_usbin_callback(struct urb * urb)2903 static void hfa384x_usbin_callback(struct urb *urb)
2904 {
2905 	struct wlandevice *wlandev = urb->context;
2906 	struct hfa384x *hw;
2907 	union hfa384x_usbin *usbin;
2908 	struct sk_buff *skb = NULL;
2909 	int result;
2910 	int urb_status;
2911 	u16 type;
2912 
2913 	enum USBIN_ACTION {
2914 		HANDLE,
2915 		RESUBMIT,
2916 		ABORT
2917 	} action;
2918 
2919 	if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
2920 		goto exit;
2921 
2922 	hw = wlandev->priv;
2923 	if (!hw)
2924 		goto exit;
2925 
2926 	skb = hw->rx_urb_skb;
2927 	if (!skb || (skb->data != urb->transfer_buffer)) {
2928 		WARN_ON(1);
2929 		return;
2930 	}
2931 
2932 	hw->rx_urb_skb = NULL;
2933 
2934 	/* Check for error conditions within the URB */
2935 	switch (urb->status) {
2936 	case 0:
2937 		action = HANDLE;
2938 
2939 		/* Check for short packet */
2940 		if (urb->actual_length == 0) {
2941 			wlandev->netdev->stats.rx_errors++;
2942 			wlandev->netdev->stats.rx_length_errors++;
2943 			action = RESUBMIT;
2944 		}
2945 		break;
2946 
2947 	case -EPIPE:
2948 		netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
2949 			    wlandev->netdev->name);
2950 		if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
2951 			schedule_work(&hw->usb_work);
2952 		wlandev->netdev->stats.rx_errors++;
2953 		action = ABORT;
2954 		break;
2955 
2956 	case -EILSEQ:
2957 	case -ETIMEDOUT:
2958 	case -EPROTO:
2959 		if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
2960 		    !timer_pending(&hw->throttle)) {
2961 			mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
2962 		}
2963 		wlandev->netdev->stats.rx_errors++;
2964 		action = ABORT;
2965 		break;
2966 
2967 	case -EOVERFLOW:
2968 		wlandev->netdev->stats.rx_over_errors++;
2969 		action = RESUBMIT;
2970 		break;
2971 
2972 	case -ENODEV:
2973 	case -ESHUTDOWN:
2974 		pr_debug("status=%d, device removed.\n", urb->status);
2975 		action = ABORT;
2976 		break;
2977 
2978 	case -ENOENT:
2979 	case -ECONNRESET:
2980 		pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
2981 		action = ABORT;
2982 		break;
2983 
2984 	default:
2985 		pr_debug("urb status=%d, transfer flags=0x%x\n",
2986 			 urb->status, urb->transfer_flags);
2987 		wlandev->netdev->stats.rx_errors++;
2988 		action = RESUBMIT;
2989 		break;
2990 	}
2991 
2992 	/* Save values from the RX URB before reposting overwrites it. */
2993 	urb_status = urb->status;
2994 	usbin = (union hfa384x_usbin *)urb->transfer_buffer;
2995 
2996 	if (action != ABORT) {
2997 		/* Repost the RX URB */
2998 		result = submit_rx_urb(hw, GFP_ATOMIC);
2999 
3000 		if (result != 0) {
3001 			netdev_err(hw->wlandev->netdev,
3002 				   "Fatal, failed to resubmit rx_urb. error=%d\n",
3003 				   result);
3004 		}
3005 	}
3006 
3007 	/* Handle any USB-IN packet */
3008 	/* Note: the check of the sw_support field, the type field doesn't
3009 	 *       have bit 12 set like the docs suggest.
3010 	 */
3011 	type = le16_to_cpu(usbin->type);
3012 	if (HFA384x_USB_ISRXFRM(type)) {
3013 		if (action == HANDLE) {
3014 			if (usbin->txfrm.desc.sw_support == 0x0123) {
3015 				hfa384x_usbin_txcompl(wlandev, usbin);
3016 			} else {
3017 				skb_put(skb, sizeof(*usbin));
3018 				hfa384x_usbin_rx(wlandev, skb);
3019 				skb = NULL;
3020 			}
3021 		}
3022 		goto exit;
3023 	}
3024 	if (HFA384x_USB_ISTXFRM(type)) {
3025 		if (action == HANDLE)
3026 			hfa384x_usbin_txcompl(wlandev, usbin);
3027 		goto exit;
3028 	}
3029 	switch (type) {
3030 	case HFA384x_USB_INFOFRM:
3031 		if (action == ABORT)
3032 			goto exit;
3033 		if (action == HANDLE)
3034 			hfa384x_usbin_info(wlandev, usbin);
3035 		break;
3036 
3037 	case HFA384x_USB_CMDRESP:
3038 	case HFA384x_USB_WRIDRESP:
3039 	case HFA384x_USB_RRIDRESP:
3040 	case HFA384x_USB_WMEMRESP:
3041 	case HFA384x_USB_RMEMRESP:
3042 		/* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3043 		hfa384x_usbin_ctlx(hw, usbin, urb_status);
3044 		break;
3045 
3046 	case HFA384x_USB_BUFAVAIL:
3047 		pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3048 			 usbin->bufavail.frmlen);
3049 		break;
3050 
3051 	case HFA384x_USB_ERROR:
3052 		pr_debug("Received USB_ERROR packet, errortype=%d\n",
3053 			 usbin->usberror.errortype);
3054 		break;
3055 
3056 	default:
3057 		pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3058 			 usbin->type, urb_status);
3059 		break;
3060 	}			/* switch */
3061 
3062 exit:
3063 
3064 	if (skb)
3065 		dev_kfree_skb(skb);
3066 }
3067 
3068 /*----------------------------------------------------------------
3069  * hfa384x_usbin_ctlx
3070  *
3071  * We've received a URB containing a Prism2 "response" message.
3072  * This message needs to be matched up with a CTLX on the active
3073  * queue and our state updated accordingly.
3074  *
3075  * Arguments:
3076  *	hw		ptr to struct hfa384x
3077  *	usbin		ptr to USB IN packet
3078  *	urb_status	status of this Bulk-In URB
3079  *
3080  * Returns:
3081  *	nothing
3082  *
3083  * Side effects:
3084  *
3085  * Call context:
3086  *	interrupt
3087  *----------------------------------------------------------------
3088  */
hfa384x_usbin_ctlx(struct hfa384x * hw,union hfa384x_usbin * usbin,int urb_status)3089 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
3090 			       int urb_status)
3091 {
3092 	struct hfa384x_usbctlx *ctlx;
3093 	int run_queue = 0;
3094 	unsigned long flags;
3095 
3096 retry:
3097 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3098 
3099 	/* There can be only one CTLX on the active queue
3100 	 * at any one time, and this is the CTLX that the
3101 	 * timers are waiting for.
3102 	 */
3103 	if (list_empty(&hw->ctlxq.active))
3104 		goto unlock;
3105 
3106 	/* Remove the "response timeout". It's possible that
3107 	 * we are already too late, and that the timeout is
3108 	 * already running. And that's just too bad for us,
3109 	 * because we could lose our CTLX from the active
3110 	 * queue here ...
3111 	 */
3112 	if (del_timer(&hw->resptimer) == 0) {
3113 		if (hw->resp_timer_done == 0) {
3114 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3115 			goto retry;
3116 		}
3117 	} else {
3118 		hw->resp_timer_done = 1;
3119 	}
3120 
3121 	ctlx = get_active_ctlx(hw);
3122 
3123 	if (urb_status != 0) {
3124 		/*
3125 		 * Bad CTLX, so get rid of it. But we only
3126 		 * remove it from the active queue if we're no
3127 		 * longer expecting the OUT URB to complete.
3128 		 */
3129 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3130 			run_queue = 1;
3131 	} else {
3132 		const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3133 
3134 		/*
3135 		 * Check that our message is what we're expecting ...
3136 		 */
3137 		if (ctlx->outbuf.type != intype) {
3138 			netdev_warn(hw->wlandev->netdev,
3139 				    "Expected IN[%d], received IN[%d] - ignored.\n",
3140 				    le16_to_cpu(ctlx->outbuf.type),
3141 				    le16_to_cpu(intype));
3142 			goto unlock;
3143 		}
3144 
3145 		/* This URB has succeeded, so grab the data ... */
3146 		memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3147 
3148 		switch (ctlx->state) {
3149 		case CTLX_REQ_SUBMITTED:
3150 			/*
3151 			 * We have received our response URB before
3152 			 * our request has been acknowledged. Odd,
3153 			 * but our OUT URB is still alive...
3154 			 */
3155 			pr_debug("Causality violation: please reboot Universe\n");
3156 			ctlx->state = CTLX_RESP_COMPLETE;
3157 			break;
3158 
3159 		case CTLX_REQ_COMPLETE:
3160 			/*
3161 			 * This is the usual path: our request
3162 			 * has already been acknowledged, and
3163 			 * now we have received the reply too.
3164 			 */
3165 			ctlx->state = CTLX_COMPLETE;
3166 			unlocked_usbctlx_complete(hw, ctlx);
3167 			run_queue = 1;
3168 			break;
3169 
3170 		default:
3171 			/*
3172 			 * Throw this CTLX away ...
3173 			 */
3174 			netdev_err(hw->wlandev->netdev,
3175 				   "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3176 				   le16_to_cpu(ctlx->outbuf.type),
3177 				   ctlxstr(ctlx->state));
3178 			if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3179 				run_queue = 1;
3180 			break;
3181 		}		/* switch */
3182 	}
3183 
3184 unlock:
3185 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3186 
3187 	if (run_queue)
3188 		hfa384x_usbctlxq_run(hw);
3189 }
3190 
3191 /*----------------------------------------------------------------
3192  * hfa384x_usbin_txcompl
3193  *
3194  * At this point we have the results of a previous transmit.
3195  *
3196  * Arguments:
3197  *	wlandev		wlan device
3198  *	usbin		ptr to the usb transfer buffer
3199  *
3200  * Returns:
3201  *	nothing
3202  *
3203  * Side effects:
3204  *
3205  * Call context:
3206  *	interrupt
3207  *----------------------------------------------------------------
3208  */
hfa384x_usbin_txcompl(struct wlandevice * wlandev,union hfa384x_usbin * usbin)3209 static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
3210 				  union hfa384x_usbin *usbin)
3211 {
3212 	u16 status;
3213 
3214 	status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3215 
3216 	/* Was there an error? */
3217 	if (HFA384x_TXSTATUS_ISERROR(status))
3218 		prism2sta_ev_txexc(wlandev, status);
3219 	else
3220 		prism2sta_ev_tx(wlandev, status);
3221 }
3222 
3223 /*----------------------------------------------------------------
3224  * hfa384x_usbin_rx
3225  *
3226  * At this point we have a successful received a rx frame packet.
3227  *
3228  * Arguments:
3229  *	wlandev		wlan device
3230  *	usbin		ptr to the usb transfer buffer
3231  *
3232  * Returns:
3233  *	nothing
3234  *
3235  * Side effects:
3236  *
3237  * Call context:
3238  *	interrupt
3239  *----------------------------------------------------------------
3240  */
hfa384x_usbin_rx(struct wlandevice * wlandev,struct sk_buff * skb)3241 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
3242 {
3243 	union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
3244 	struct hfa384x *hw = wlandev->priv;
3245 	int hdrlen;
3246 	struct p80211_rxmeta *rxmeta;
3247 	u16 data_len;
3248 	u16 fc;
3249 	u16 status;
3250 
3251 	/* Byte order convert once up front. */
3252 	le16_to_cpus(&usbin->rxfrm.desc.status);
3253 	le32_to_cpus(&usbin->rxfrm.desc.time);
3254 
3255 	/* Now handle frame based on port# */
3256 	status = HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status);
3257 
3258 	switch (status) {
3259 	case 0:
3260 		fc = le16_to_cpu(usbin->rxfrm.desc.hdr.frame_control);
3261 
3262 		/* If exclude and we receive an unencrypted, drop it */
3263 		if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3264 		    !WLAN_GET_FC_ISWEP(fc)) {
3265 			break;
3266 		}
3267 
3268 		data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3269 
3270 		/* How much header data do we have? */
3271 		hdrlen = p80211_headerlen(fc);
3272 
3273 		/* Pull off the descriptor */
3274 		skb_pull(skb, sizeof(struct hfa384x_rx_frame));
3275 
3276 		/* Now shunt the header block up against the data block
3277 		 * with an "overlapping" copy
3278 		 */
3279 		memmove(skb_push(skb, hdrlen),
3280 			&usbin->rxfrm.desc.hdr, hdrlen);
3281 
3282 		skb->dev = wlandev->netdev;
3283 
3284 		/* And set the frame length properly */
3285 		skb_trim(skb, data_len + hdrlen);
3286 
3287 		/* The prism2 series does not return the CRC */
3288 		memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3289 
3290 		skb_reset_mac_header(skb);
3291 
3292 		/* Attach the rxmeta, set some stuff */
3293 		p80211skb_rxmeta_attach(wlandev, skb);
3294 		rxmeta = p80211skb_rxmeta(skb);
3295 		rxmeta->mactime = usbin->rxfrm.desc.time;
3296 		rxmeta->rxrate = usbin->rxfrm.desc.rate;
3297 		rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3298 		rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3299 
3300 		p80211netdev_rx(wlandev, skb);
3301 
3302 		break;
3303 
3304 	case 7:
3305 		if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3306 			/* Copy to wlansnif skb */
3307 			hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3308 			dev_kfree_skb(skb);
3309 		} else {
3310 			pr_debug("Received monitor frame: FCSerr set\n");
3311 		}
3312 		break;
3313 
3314 	default:
3315 		netdev_warn(hw->wlandev->netdev,
3316 			    "Received frame on unsupported port=%d\n",
3317 			    status);
3318 		break;
3319 	}
3320 }
3321 
3322 /*----------------------------------------------------------------
3323  * hfa384x_int_rxmonitor
3324  *
3325  * Helper function for int_rx.  Handles monitor frames.
3326  * Note that this function allocates space for the FCS and sets it
3327  * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3328  * higher layers expect it.  0xffffffff is used as a flag to indicate
3329  * the FCS is bogus.
3330  *
3331  * Arguments:
3332  *	wlandev		wlan device structure
3333  *	rxfrm		rx descriptor read from card in int_rx
3334  *
3335  * Returns:
3336  *	nothing
3337  *
3338  * Side effects:
3339  *	Allocates an skb and passes it up via the PF_PACKET interface.
3340  * Call context:
3341  *	interrupt
3342  *----------------------------------------------------------------
3343  */
hfa384x_int_rxmonitor(struct wlandevice * wlandev,struct hfa384x_usb_rxfrm * rxfrm)3344 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
3345 				  struct hfa384x_usb_rxfrm *rxfrm)
3346 {
3347 	struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
3348 	unsigned int hdrlen = 0;
3349 	unsigned int datalen = 0;
3350 	unsigned int skblen = 0;
3351 	u8 *datap;
3352 	u16 fc;
3353 	struct sk_buff *skb;
3354 	struct hfa384x *hw = wlandev->priv;
3355 
3356 	/* Remember the status, time, and data_len fields are in host order */
3357 	/* Figure out how big the frame is */
3358 	fc = le16_to_cpu(rxdesc->hdr.frame_control);
3359 	hdrlen = p80211_headerlen(fc);
3360 	datalen = le16_to_cpu(rxdesc->data_len);
3361 
3362 	/* Allocate an ind message+framesize skb */
3363 	skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3364 
3365 	/* sanity check the length */
3366 	if (skblen >
3367 	    (sizeof(struct p80211_caphdr) +
3368 	     WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3369 		pr_debug("overlen frm: len=%zd\n",
3370 			 skblen - sizeof(struct p80211_caphdr));
3371 
3372 		return;
3373 	}
3374 
3375 	skb = dev_alloc_skb(skblen);
3376 	if (!skb)
3377 		return;
3378 
3379 	/* only prepend the prism header if in the right mode */
3380 	if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3381 	    (hw->sniffhdr != 0)) {
3382 		struct p80211_caphdr *caphdr;
3383 		/* The NEW header format! */
3384 		datap = skb_put(skb, sizeof(struct p80211_caphdr));
3385 		caphdr = (struct p80211_caphdr *)datap;
3386 
3387 		caphdr->version = htonl(P80211CAPTURE_VERSION);
3388 		caphdr->length = htonl(sizeof(struct p80211_caphdr));
3389 		caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
3390 		caphdr->hosttime = __cpu_to_be64(jiffies);
3391 		caphdr->phytype = htonl(4);	/* dss_dot11_b */
3392 		caphdr->channel = htonl(hw->sniff_channel);
3393 		caphdr->datarate = htonl(rxdesc->rate);
3394 		caphdr->antenna = htonl(0);	/* unknown */
3395 		caphdr->priority = htonl(0);	/* unknown */
3396 		caphdr->ssi_type = htonl(3);	/* rssi_raw */
3397 		caphdr->ssi_signal = htonl(rxdesc->signal);
3398 		caphdr->ssi_noise = htonl(rxdesc->silence);
3399 		caphdr->preamble = htonl(0);	/* unknown */
3400 		caphdr->encoding = htonl(1);	/* cck */
3401 	}
3402 
3403 	/* Copy the 802.11 header to the skb
3404 	 * (ctl frames may be less than a full header)
3405 	 */
3406 	skb_put_data(skb, &rxdesc->hdr.frame_control, hdrlen);
3407 
3408 	/* If any, copy the data from the card to the skb */
3409 	if (datalen > 0) {
3410 		datap = skb_put_data(skb, rxfrm->data, datalen);
3411 
3412 		/* check for unencrypted stuff if WEP bit set. */
3413 		if (*(datap - hdrlen + 1) & 0x40)	/* wep set */
3414 			if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3415 				/* clear wep; it's the 802.2 header! */
3416 				*(datap - hdrlen + 1) &= 0xbf;
3417 	}
3418 
3419 	if (hw->sniff_fcs) {
3420 		/* Set the FCS */
3421 		datap = skb_put(skb, WLAN_CRC_LEN);
3422 		memset(datap, 0xff, WLAN_CRC_LEN);
3423 	}
3424 
3425 	/* pass it back up */
3426 	p80211netdev_rx(wlandev, skb);
3427 }
3428 
3429 /*----------------------------------------------------------------
3430  * hfa384x_usbin_info
3431  *
3432  * At this point we have a successful received a Prism2 info frame.
3433  *
3434  * Arguments:
3435  *	wlandev		wlan device
3436  *	usbin		ptr to the usb transfer buffer
3437  *
3438  * Returns:
3439  *	nothing
3440  *
3441  * Side effects:
3442  *
3443  * Call context:
3444  *	interrupt
3445  *----------------------------------------------------------------
3446  */
hfa384x_usbin_info(struct wlandevice * wlandev,union hfa384x_usbin * usbin)3447 static void hfa384x_usbin_info(struct wlandevice *wlandev,
3448 			       union hfa384x_usbin *usbin)
3449 {
3450 	le16_to_cpus(&usbin->infofrm.info.framelen);
3451 	prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3452 }
3453 
3454 /*----------------------------------------------------------------
3455  * hfa384x_usbout_callback
3456  *
3457  * Callback for URBs on the BULKOUT endpoint.
3458  *
3459  * Arguments:
3460  *	urb		ptr to the completed urb
3461  *
3462  * Returns:
3463  *	nothing
3464  *
3465  * Side effects:
3466  *
3467  * Call context:
3468  *	interrupt
3469  *----------------------------------------------------------------
3470  */
hfa384x_usbout_callback(struct urb * urb)3471 static void hfa384x_usbout_callback(struct urb *urb)
3472 {
3473 	struct wlandevice *wlandev = urb->context;
3474 
3475 #ifdef DEBUG_USB
3476 	dbprint_urb(urb);
3477 #endif
3478 
3479 	if (wlandev && wlandev->netdev) {
3480 		switch (urb->status) {
3481 		case 0:
3482 			prism2sta_ev_alloc(wlandev);
3483 			break;
3484 
3485 		case -EPIPE: {
3486 			struct hfa384x *hw = wlandev->priv;
3487 
3488 			netdev_warn(hw->wlandev->netdev,
3489 				    "%s tx pipe stalled: requesting reset\n",
3490 				    wlandev->netdev->name);
3491 			if (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags))
3492 				schedule_work(&hw->usb_work);
3493 			wlandev->netdev->stats.tx_errors++;
3494 			break;
3495 		}
3496 
3497 		case -EPROTO:
3498 		case -ETIMEDOUT:
3499 		case -EILSEQ: {
3500 			struct hfa384x *hw = wlandev->priv;
3501 
3502 			if (!test_and_set_bit(THROTTLE_TX, &hw->usb_flags) &&
3503 			    !timer_pending(&hw->throttle)) {
3504 				mod_timer(&hw->throttle,
3505 					  jiffies + THROTTLE_JIFFIES);
3506 			}
3507 			wlandev->netdev->stats.tx_errors++;
3508 			netif_stop_queue(wlandev->netdev);
3509 			break;
3510 		}
3511 
3512 		case -ENOENT:
3513 		case -ESHUTDOWN:
3514 			/* Ignorable errors */
3515 			break;
3516 
3517 		default:
3518 			netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3519 				    urb->status);
3520 			wlandev->netdev->stats.tx_errors++;
3521 			break;
3522 		}		/* switch */
3523 	}
3524 }
3525 
3526 /*----------------------------------------------------------------
3527  * hfa384x_ctlxout_callback
3528  *
3529  * Callback for control data on the BULKOUT endpoint.
3530  *
3531  * Arguments:
3532  *	urb		ptr to the completed urb
3533  *
3534  * Returns:
3535  * nothing
3536  *
3537  * Side effects:
3538  *
3539  * Call context:
3540  * interrupt
3541  *----------------------------------------------------------------
3542  */
hfa384x_ctlxout_callback(struct urb * urb)3543 static void hfa384x_ctlxout_callback(struct urb *urb)
3544 {
3545 	struct hfa384x *hw = urb->context;
3546 	int delete_resptimer = 0;
3547 	int timer_ok = 1;
3548 	int run_queue = 0;
3549 	struct hfa384x_usbctlx *ctlx;
3550 	unsigned long flags;
3551 
3552 	pr_debug("urb->status=%d\n", urb->status);
3553 #ifdef DEBUG_USB
3554 	dbprint_urb(urb);
3555 #endif
3556 	if ((urb->status == -ESHUTDOWN) ||
3557 	    (urb->status == -ENODEV) || !hw)
3558 		return;
3559 
3560 retry:
3561 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3562 
3563 	/*
3564 	 * Only one CTLX at a time on the "active" list, and
3565 	 * none at all if we are unplugged. However, we can
3566 	 * rely on the disconnect function to clean everything
3567 	 * up if someone unplugged the adapter.
3568 	 */
3569 	if (list_empty(&hw->ctlxq.active)) {
3570 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3571 		return;
3572 	}
3573 
3574 	/*
3575 	 * Having something on the "active" queue means
3576 	 * that we have timers to worry about ...
3577 	 */
3578 	if (del_timer(&hw->reqtimer) == 0) {
3579 		if (hw->req_timer_done == 0) {
3580 			/*
3581 			 * This timer was actually running while we
3582 			 * were trying to delete it. Let it terminate
3583 			 * gracefully instead.
3584 			 */
3585 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3586 			goto retry;
3587 		}
3588 	} else {
3589 		hw->req_timer_done = 1;
3590 	}
3591 
3592 	ctlx = get_active_ctlx(hw);
3593 
3594 	if (urb->status == 0) {
3595 		/* Request portion of a CTLX is successful */
3596 		switch (ctlx->state) {
3597 		case CTLX_REQ_SUBMITTED:
3598 			/* This OUT-ACK received before IN */
3599 			ctlx->state = CTLX_REQ_COMPLETE;
3600 			break;
3601 
3602 		case CTLX_RESP_COMPLETE:
3603 			/* IN already received before this OUT-ACK,
3604 			 * so this command must now be complete.
3605 			 */
3606 			ctlx->state = CTLX_COMPLETE;
3607 			unlocked_usbctlx_complete(hw, ctlx);
3608 			run_queue = 1;
3609 			break;
3610 
3611 		default:
3612 			/* This is NOT a valid CTLX "success" state! */
3613 			netdev_err(hw->wlandev->netdev,
3614 				   "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3615 				   le16_to_cpu(ctlx->outbuf.type),
3616 				   ctlxstr(ctlx->state), urb->status);
3617 			break;
3618 		}		/* switch */
3619 	} else {
3620 		/* If the pipe has stalled then we need to reset it */
3621 		if ((urb->status == -EPIPE) &&
3622 		    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3623 			netdev_warn(hw->wlandev->netdev,
3624 				    "%s tx pipe stalled: requesting reset\n",
3625 				    hw->wlandev->netdev->name);
3626 			schedule_work(&hw->usb_work);
3627 		}
3628 
3629 		/* If someone cancels the OUT URB then its status
3630 		 * should be either -ECONNRESET or -ENOENT.
3631 		 */
3632 		ctlx->state = CTLX_REQ_FAILED;
3633 		unlocked_usbctlx_complete(hw, ctlx);
3634 		delete_resptimer = 1;
3635 		run_queue = 1;
3636 	}
3637 
3638 delresp:
3639 	if (delete_resptimer) {
3640 		timer_ok = del_timer(&hw->resptimer);
3641 		if (timer_ok != 0)
3642 			hw->resp_timer_done = 1;
3643 	}
3644 
3645 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3646 
3647 	if (!timer_ok && (hw->resp_timer_done == 0)) {
3648 		spin_lock_irqsave(&hw->ctlxq.lock, flags);
3649 		goto delresp;
3650 	}
3651 
3652 	if (run_queue)
3653 		hfa384x_usbctlxq_run(hw);
3654 }
3655 
3656 /*----------------------------------------------------------------
3657  * hfa384x_usbctlx_reqtimerfn
3658  *
3659  * Timer response function for CTLX request timeouts.  If this
3660  * function is called, it means that the callback for the OUT
3661  * URB containing a Prism2.x XXX_Request was never called.
3662  *
3663  * Arguments:
3664  *	data		a ptr to the struct hfa384x
3665  *
3666  * Returns:
3667  *	nothing
3668  *
3669  * Side effects:
3670  *
3671  * Call context:
3672  *	interrupt
3673  *----------------------------------------------------------------
3674  */
hfa384x_usbctlx_reqtimerfn(struct timer_list * t)3675 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
3676 {
3677 	struct hfa384x *hw = from_timer(hw, t, reqtimer);
3678 	unsigned long flags;
3679 
3680 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3681 
3682 	hw->req_timer_done = 1;
3683 
3684 	/* Removing the hardware automatically empties
3685 	 * the active list ...
3686 	 */
3687 	if (!list_empty(&hw->ctlxq.active)) {
3688 		/*
3689 		 * We must ensure that our URB is removed from
3690 		 * the system, if it hasn't already expired.
3691 		 */
3692 		hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3693 		if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3694 			struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3695 
3696 			ctlx->state = CTLX_REQ_FAILED;
3697 
3698 			/* This URB was active, but has now been
3699 			 * cancelled. It will now have a status of
3700 			 * -ECONNRESET in the callback function.
3701 			 *
3702 			 * We are cancelling this CTLX, so we're
3703 			 * not going to need to wait for a response.
3704 			 * The URB's callback function will check
3705 			 * that this timer is truly dead.
3706 			 */
3707 			if (del_timer(&hw->resptimer) != 0)
3708 				hw->resp_timer_done = 1;
3709 		}
3710 	}
3711 
3712 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3713 }
3714 
3715 /*----------------------------------------------------------------
3716  * hfa384x_usbctlx_resptimerfn
3717  *
3718  * Timer response function for CTLX response timeouts.  If this
3719  * function is called, it means that the callback for the IN
3720  * URB containing a Prism2.x XXX_Response was never called.
3721  *
3722  * Arguments:
3723  *	data		a ptr to the struct hfa384x
3724  *
3725  * Returns:
3726  *	nothing
3727  *
3728  * Side effects:
3729  *
3730  * Call context:
3731  *	interrupt
3732  *----------------------------------------------------------------
3733  */
hfa384x_usbctlx_resptimerfn(struct timer_list * t)3734 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
3735 {
3736 	struct hfa384x *hw = from_timer(hw, t, resptimer);
3737 	unsigned long flags;
3738 
3739 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3740 
3741 	hw->resp_timer_done = 1;
3742 
3743 	/* The active list will be empty if the
3744 	 * adapter has been unplugged ...
3745 	 */
3746 	if (!list_empty(&hw->ctlxq.active)) {
3747 		struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3748 
3749 		if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3750 			spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3751 			hfa384x_usbctlxq_run(hw);
3752 			return;
3753 		}
3754 	}
3755 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3756 }
3757 
3758 /*----------------------------------------------------------------
3759  * hfa384x_usb_throttlefn
3760  *
3761  *
3762  * Arguments:
3763  *	data	ptr to hw
3764  *
3765  * Returns:
3766  *	Nothing
3767  *
3768  * Side effects:
3769  *
3770  * Call context:
3771  *	Interrupt
3772  *----------------------------------------------------------------
3773  */
hfa384x_usb_throttlefn(struct timer_list * t)3774 static void hfa384x_usb_throttlefn(struct timer_list *t)
3775 {
3776 	struct hfa384x *hw = from_timer(hw, t, throttle);
3777 	unsigned long flags;
3778 
3779 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3780 
3781 	pr_debug("flags=0x%lx\n", hw->usb_flags);
3782 	if (!hw->wlandev->hwremoved) {
3783 		bool rx_throttle = test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3784 				   !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags);
3785 		bool tx_throttle = test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3786 				   !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags);
3787 		/*
3788 		 * We need to check BOTH the RX and the TX throttle controls,
3789 		 * so we use the bitwise OR instead of the logical OR.
3790 		 */
3791 		if (rx_throttle | tx_throttle)
3792 			schedule_work(&hw->usb_work);
3793 	}
3794 
3795 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3796 }
3797 
3798 /*----------------------------------------------------------------
3799  * hfa384x_usbctlx_submit
3800  *
3801  * Called from the doxxx functions to submit a CTLX to the queue
3802  *
3803  * Arguments:
3804  *	hw		ptr to the hw struct
3805  *	ctlx		ctlx structure to enqueue
3806  *
3807  * Returns:
3808  *	-ENODEV if the adapter is unplugged
3809  *	0
3810  *
3811  * Side effects:
3812  *
3813  * Call context:
3814  *	process or interrupt
3815  *----------------------------------------------------------------
3816  */
hfa384x_usbctlx_submit(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)3817 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
3818 				  struct hfa384x_usbctlx *ctlx)
3819 {
3820 	unsigned long flags;
3821 
3822 	spin_lock_irqsave(&hw->ctlxq.lock, flags);
3823 
3824 	if (hw->wlandev->hwremoved) {
3825 		spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3826 		return -ENODEV;
3827 	}
3828 
3829 	ctlx->state = CTLX_PENDING;
3830 	list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3831 	spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3832 	hfa384x_usbctlxq_run(hw);
3833 
3834 	return 0;
3835 }
3836 
3837 /*----------------------------------------------------------------
3838  * hfa384x_isgood_pdrcore
3839  *
3840  * Quick check of PDR codes.
3841  *
3842  * Arguments:
3843  *	pdrcode		PDR code number (host order)
3844  *
3845  * Returns:
3846  *	zero		not good.
3847  *	one		is good.
3848  *
3849  * Side effects:
3850  *
3851  * Call context:
3852  *----------------------------------------------------------------
3853  */
hfa384x_isgood_pdrcode(u16 pdrcode)3854 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3855 {
3856 	switch (pdrcode) {
3857 	case HFA384x_PDR_END_OF_PDA:
3858 	case HFA384x_PDR_PCB_PARTNUM:
3859 	case HFA384x_PDR_PDAVER:
3860 	case HFA384x_PDR_NIC_SERIAL:
3861 	case HFA384x_PDR_MKK_MEASUREMENTS:
3862 	case HFA384x_PDR_NIC_RAMSIZE:
3863 	case HFA384x_PDR_MFISUPRANGE:
3864 	case HFA384x_PDR_CFISUPRANGE:
3865 	case HFA384x_PDR_NICID:
3866 	case HFA384x_PDR_MAC_ADDRESS:
3867 	case HFA384x_PDR_REGDOMAIN:
3868 	case HFA384x_PDR_ALLOWED_CHANNEL:
3869 	case HFA384x_PDR_DEFAULT_CHANNEL:
3870 	case HFA384x_PDR_TEMPTYPE:
3871 	case HFA384x_PDR_IFR_SETTING:
3872 	case HFA384x_PDR_RFR_SETTING:
3873 	case HFA384x_PDR_HFA3861_BASELINE:
3874 	case HFA384x_PDR_HFA3861_SHADOW:
3875 	case HFA384x_PDR_HFA3861_IFRF:
3876 	case HFA384x_PDR_HFA3861_CHCALSP:
3877 	case HFA384x_PDR_HFA3861_CHCALI:
3878 	case HFA384x_PDR_3842_NIC_CONFIG:
3879 	case HFA384x_PDR_USB_ID:
3880 	case HFA384x_PDR_PCI_ID:
3881 	case HFA384x_PDR_PCI_IFCONF:
3882 	case HFA384x_PDR_PCI_PMCONF:
3883 	case HFA384x_PDR_RFENRGY:
3884 	case HFA384x_PDR_HFA3861_MANF_TESTSP:
3885 	case HFA384x_PDR_HFA3861_MANF_TESTI:
3886 		/* code is OK */
3887 		return 1;
3888 	default:
3889 		if (pdrcode < 0x1000) {
3890 			/* code is OK, but we don't know exactly what it is */
3891 			pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
3892 				 pdrcode);
3893 			return 1;
3894 		}
3895 		break;
3896 	}
3897 	/* bad code */
3898 	pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
3899 		 pdrcode);
3900 	return 0;
3901 }
3902