• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48 
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52 
53 /*
54  * Register a new report for a device.
55  */
56 
hid_register_report(struct hid_device * device,unsigned int type,unsigned int id,unsigned int application)57 struct hid_report *hid_register_report(struct hid_device *device,
58 				       unsigned int type, unsigned int id,
59 				       unsigned int application)
60 {
61 	struct hid_report_enum *report_enum = device->report_enum + type;
62 	struct hid_report *report;
63 
64 	if (id >= HID_MAX_IDS)
65 		return NULL;
66 	if (report_enum->report_id_hash[id])
67 		return report_enum->report_id_hash[id];
68 
69 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 	if (!report)
71 		return NULL;
72 
73 	if (id != 0)
74 		report_enum->numbered = 1;
75 
76 	report->id = id;
77 	report->type = type;
78 	report->size = 0;
79 	report->device = device;
80 	report->application = application;
81 	report_enum->report_id_hash[id] = report;
82 
83 	list_add_tail(&report->list, &report_enum->report_list);
84 
85 	return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88 
89 /*
90  * Register a new field for this report.
91  */
92 
hid_register_field(struct hid_report * report,unsigned usages)93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
94 {
95 	struct hid_field *field;
96 
97 	if (report->maxfield == HID_MAX_FIELDS) {
98 		hid_err(report->device, "too many fields in report\n");
99 		return NULL;
100 	}
101 
102 	field = kzalloc((sizeof(struct hid_field) +
103 			 usages * sizeof(struct hid_usage) +
104 			 usages * sizeof(unsigned)), GFP_KERNEL);
105 	if (!field)
106 		return NULL;
107 
108 	field->index = report->maxfield++;
109 	report->field[field->index] = field;
110 	field->usage = (struct hid_usage *)(field + 1);
111 	field->value = (s32 *)(field->usage + usages);
112 	field->report = report;
113 
114 	return field;
115 }
116 
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120 
open_collection(struct hid_parser * parser,unsigned type)121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 	struct hid_collection *collection;
124 	unsigned usage;
125 	int collection_index;
126 
127 	usage = parser->local.usage[0];
128 
129 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 		unsigned int *collection_stack;
131 		unsigned int new_size = parser->collection_stack_size +
132 					HID_COLLECTION_STACK_SIZE;
133 
134 		collection_stack = krealloc(parser->collection_stack,
135 					    new_size * sizeof(unsigned int),
136 					    GFP_KERNEL);
137 		if (!collection_stack)
138 			return -ENOMEM;
139 
140 		parser->collection_stack = collection_stack;
141 		parser->collection_stack_size = new_size;
142 	}
143 
144 	if (parser->device->maxcollection == parser->device->collection_size) {
145 		collection = kmalloc(
146 				array3_size(sizeof(struct hid_collection),
147 					    parser->device->collection_size,
148 					    2),
149 				GFP_KERNEL);
150 		if (collection == NULL) {
151 			hid_err(parser->device, "failed to reallocate collection array\n");
152 			return -ENOMEM;
153 		}
154 		memcpy(collection, parser->device->collection,
155 			sizeof(struct hid_collection) *
156 			parser->device->collection_size);
157 		memset(collection + parser->device->collection_size, 0,
158 			sizeof(struct hid_collection) *
159 			parser->device->collection_size);
160 		kfree(parser->device->collection);
161 		parser->device->collection = collection;
162 		parser->device->collection_size *= 2;
163 	}
164 
165 	parser->collection_stack[parser->collection_stack_ptr++] =
166 		parser->device->maxcollection;
167 
168 	collection_index = parser->device->maxcollection++;
169 	collection = parser->device->collection + collection_index;
170 	collection->type = type;
171 	collection->usage = usage;
172 	collection->level = parser->collection_stack_ptr - 1;
173 	collection->parent_idx = (collection->level == 0) ? -1 :
174 		parser->collection_stack[collection->level - 1];
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
close_collection(struct hid_parser * parser)186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
hid_lookup_collection(struct hid_parser * parser,unsigned type)201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218 
complete_usage(struct hid_parser * parser,unsigned int index)219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 	parser->local.usage[index] &= 0xFFFF;
222 	parser->local.usage[index] |=
223 		(parser->global.usage_page & 0xFFFF) << 16;
224 }
225 
226 /*
227  * Add a usage to the temporary parser table.
228  */
229 
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 	if (parser->local.usage_index >= HID_MAX_USAGES) {
233 		hid_err(parser->device, "usage index exceeded\n");
234 		return -1;
235 	}
236 	parser->local.usage[parser->local.usage_index] = usage;
237 
238 	/*
239 	 * If Usage item only includes usage id, concatenate it with
240 	 * currently defined usage page
241 	 */
242 	if (size <= 2)
243 		complete_usage(parser, parser->local.usage_index);
244 
245 	parser->local.usage_size[parser->local.usage_index] = size;
246 	parser->local.collection_index[parser->local.usage_index] =
247 		parser->collection_stack_ptr ?
248 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 	parser->local.usage_index++;
250 	return 0;
251 }
252 
253 /*
254  * Register a new field for this report.
255  */
256 
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 	struct hid_report *report;
260 	struct hid_field *field;
261 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
262 	unsigned int usages;
263 	unsigned int offset;
264 	unsigned int i;
265 	unsigned int application;
266 
267 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
268 
269 	report = hid_register_report(parser->device, report_type,
270 				     parser->global.report_id, application);
271 	if (!report) {
272 		hid_err(parser->device, "hid_register_report failed\n");
273 		return -1;
274 	}
275 
276 	/* Handle both signed and unsigned cases properly */
277 	if ((parser->global.logical_minimum < 0 &&
278 		parser->global.logical_maximum <
279 		parser->global.logical_minimum) ||
280 		(parser->global.logical_minimum >= 0 &&
281 		(__u32)parser->global.logical_maximum <
282 		(__u32)parser->global.logical_minimum)) {
283 		dbg_hid("logical range invalid 0x%x 0x%x\n",
284 			parser->global.logical_minimum,
285 			parser->global.logical_maximum);
286 		return -1;
287 	}
288 
289 	offset = report->size;
290 	report->size += parser->global.report_size * parser->global.report_count;
291 
292 	if (parser->device->ll_driver->max_buffer_size)
293 		max_buffer_size = parser->device->ll_driver->max_buffer_size;
294 
295 	/* Total size check: Allow for possible report index byte */
296 	if (report->size > (max_buffer_size - 1) << 3) {
297 		hid_err(parser->device, "report is too long\n");
298 		return -1;
299 	}
300 
301 	if (!parser->local.usage_index) /* Ignore padding fields */
302 		return 0;
303 
304 	usages = max_t(unsigned, parser->local.usage_index,
305 				 parser->global.report_count);
306 
307 	field = hid_register_field(report, usages);
308 	if (!field)
309 		return 0;
310 
311 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
312 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
313 	field->application = application;
314 
315 	for (i = 0; i < usages; i++) {
316 		unsigned j = i;
317 		/* Duplicate the last usage we parsed if we have excess values */
318 		if (i >= parser->local.usage_index)
319 			j = parser->local.usage_index - 1;
320 		field->usage[i].hid = parser->local.usage[j];
321 		field->usage[i].collection_index =
322 			parser->local.collection_index[j];
323 		field->usage[i].usage_index = i;
324 		field->usage[i].resolution_multiplier = 1;
325 	}
326 
327 	field->maxusage = usages;
328 	field->flags = flags;
329 	field->report_offset = offset;
330 	field->report_type = report_type;
331 	field->report_size = parser->global.report_size;
332 	field->report_count = parser->global.report_count;
333 	field->logical_minimum = parser->global.logical_minimum;
334 	field->logical_maximum = parser->global.logical_maximum;
335 	field->physical_minimum = parser->global.physical_minimum;
336 	field->physical_maximum = parser->global.physical_maximum;
337 	field->unit_exponent = parser->global.unit_exponent;
338 	field->unit = parser->global.unit;
339 
340 	return 0;
341 }
342 
343 /*
344  * Read data value from item.
345  */
346 
item_udata(struct hid_item * item)347 static u32 item_udata(struct hid_item *item)
348 {
349 	switch (item->size) {
350 	case 1: return item->data.u8;
351 	case 2: return item->data.u16;
352 	case 4: return item->data.u32;
353 	}
354 	return 0;
355 }
356 
item_sdata(struct hid_item * item)357 static s32 item_sdata(struct hid_item *item)
358 {
359 	switch (item->size) {
360 	case 1: return item->data.s8;
361 	case 2: return item->data.s16;
362 	case 4: return item->data.s32;
363 	}
364 	return 0;
365 }
366 
367 /*
368  * Process a global item.
369  */
370 
hid_parser_global(struct hid_parser * parser,struct hid_item * item)371 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
372 {
373 	__s32 raw_value;
374 	switch (item->tag) {
375 	case HID_GLOBAL_ITEM_TAG_PUSH:
376 
377 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
378 			hid_err(parser->device, "global environment stack overflow\n");
379 			return -1;
380 		}
381 
382 		memcpy(parser->global_stack + parser->global_stack_ptr++,
383 			&parser->global, sizeof(struct hid_global));
384 		return 0;
385 
386 	case HID_GLOBAL_ITEM_TAG_POP:
387 
388 		if (!parser->global_stack_ptr) {
389 			hid_err(parser->device, "global environment stack underflow\n");
390 			return -1;
391 		}
392 
393 		memcpy(&parser->global, parser->global_stack +
394 			--parser->global_stack_ptr, sizeof(struct hid_global));
395 		return 0;
396 
397 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
398 		parser->global.usage_page = item_udata(item);
399 		return 0;
400 
401 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
402 		parser->global.logical_minimum = item_sdata(item);
403 		return 0;
404 
405 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
406 		if (parser->global.logical_minimum < 0)
407 			parser->global.logical_maximum = item_sdata(item);
408 		else
409 			parser->global.logical_maximum = item_udata(item);
410 		return 0;
411 
412 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
413 		parser->global.physical_minimum = item_sdata(item);
414 		return 0;
415 
416 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
417 		if (parser->global.physical_minimum < 0)
418 			parser->global.physical_maximum = item_sdata(item);
419 		else
420 			parser->global.physical_maximum = item_udata(item);
421 		return 0;
422 
423 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
424 		/* Many devices provide unit exponent as a two's complement
425 		 * nibble due to the common misunderstanding of HID
426 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
427 		 * both this and the standard encoding. */
428 		raw_value = item_sdata(item);
429 		if (!(raw_value & 0xfffffff0))
430 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
431 		else
432 			parser->global.unit_exponent = raw_value;
433 		return 0;
434 
435 	case HID_GLOBAL_ITEM_TAG_UNIT:
436 		parser->global.unit = item_udata(item);
437 		return 0;
438 
439 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
440 		parser->global.report_size = item_udata(item);
441 		if (parser->global.report_size > 256) {
442 			hid_err(parser->device, "invalid report_size %d\n",
443 					parser->global.report_size);
444 			return -1;
445 		}
446 		return 0;
447 
448 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
449 		parser->global.report_count = item_udata(item);
450 		if (parser->global.report_count > HID_MAX_USAGES) {
451 			hid_err(parser->device, "invalid report_count %d\n",
452 					parser->global.report_count);
453 			return -1;
454 		}
455 		return 0;
456 
457 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
458 		parser->global.report_id = item_udata(item);
459 		if (parser->global.report_id == 0 ||
460 		    parser->global.report_id >= HID_MAX_IDS) {
461 			hid_err(parser->device, "report_id %u is invalid\n",
462 				parser->global.report_id);
463 			return -1;
464 		}
465 		return 0;
466 
467 	default:
468 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
469 		return -1;
470 	}
471 }
472 
473 /*
474  * Process a local item.
475  */
476 
hid_parser_local(struct hid_parser * parser,struct hid_item * item)477 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
478 {
479 	__u32 data;
480 	unsigned n;
481 	__u32 count;
482 
483 	data = item_udata(item);
484 
485 	switch (item->tag) {
486 	case HID_LOCAL_ITEM_TAG_DELIMITER:
487 
488 		if (data) {
489 			/*
490 			 * We treat items before the first delimiter
491 			 * as global to all usage sets (branch 0).
492 			 * In the moment we process only these global
493 			 * items and the first delimiter set.
494 			 */
495 			if (parser->local.delimiter_depth != 0) {
496 				hid_err(parser->device, "nested delimiters\n");
497 				return -1;
498 			}
499 			parser->local.delimiter_depth++;
500 			parser->local.delimiter_branch++;
501 		} else {
502 			if (parser->local.delimiter_depth < 1) {
503 				hid_err(parser->device, "bogus close delimiter\n");
504 				return -1;
505 			}
506 			parser->local.delimiter_depth--;
507 		}
508 		return 0;
509 
510 	case HID_LOCAL_ITEM_TAG_USAGE:
511 
512 		if (parser->local.delimiter_branch > 1) {
513 			dbg_hid("alternative usage ignored\n");
514 			return 0;
515 		}
516 
517 		return hid_add_usage(parser, data, item->size);
518 
519 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
520 
521 		if (parser->local.delimiter_branch > 1) {
522 			dbg_hid("alternative usage ignored\n");
523 			return 0;
524 		}
525 
526 		parser->local.usage_minimum = data;
527 		return 0;
528 
529 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
530 
531 		if (parser->local.delimiter_branch > 1) {
532 			dbg_hid("alternative usage ignored\n");
533 			return 0;
534 		}
535 
536 		count = data - parser->local.usage_minimum;
537 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
538 			/*
539 			 * We do not warn if the name is not set, we are
540 			 * actually pre-scanning the device.
541 			 */
542 			if (dev_name(&parser->device->dev))
543 				hid_warn(parser->device,
544 					 "ignoring exceeding usage max\n");
545 			data = HID_MAX_USAGES - parser->local.usage_index +
546 				parser->local.usage_minimum - 1;
547 			if (data <= 0) {
548 				hid_err(parser->device,
549 					"no more usage index available\n");
550 				return -1;
551 			}
552 		}
553 
554 		for (n = parser->local.usage_minimum; n <= data; n++)
555 			if (hid_add_usage(parser, n, item->size)) {
556 				dbg_hid("hid_add_usage failed\n");
557 				return -1;
558 			}
559 		return 0;
560 
561 	default:
562 
563 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
564 		return 0;
565 	}
566 	return 0;
567 }
568 
569 /*
570  * Concatenate Usage Pages into Usages where relevant:
571  * As per specification, 6.2.2.8: "When the parser encounters a main item it
572  * concatenates the last declared Usage Page with a Usage to form a complete
573  * usage value."
574  */
575 
hid_concatenate_last_usage_page(struct hid_parser * parser)576 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
577 {
578 	int i;
579 	unsigned int usage_page;
580 	unsigned int current_page;
581 
582 	if (!parser->local.usage_index)
583 		return;
584 
585 	usage_page = parser->global.usage_page;
586 
587 	/*
588 	 * Concatenate usage page again only if last declared Usage Page
589 	 * has not been already used in previous usages concatenation
590 	 */
591 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
592 		if (parser->local.usage_size[i] > 2)
593 			/* Ignore extended usages */
594 			continue;
595 
596 		current_page = parser->local.usage[i] >> 16;
597 		if (current_page == usage_page)
598 			break;
599 
600 		complete_usage(parser, i);
601 	}
602 }
603 
604 /*
605  * Process a main item.
606  */
607 
hid_parser_main(struct hid_parser * parser,struct hid_item * item)608 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
609 {
610 	__u32 data;
611 	int ret;
612 
613 	hid_concatenate_last_usage_page(parser);
614 
615 	data = item_udata(item);
616 
617 	switch (item->tag) {
618 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
619 		ret = open_collection(parser, data & 0xff);
620 		break;
621 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
622 		ret = close_collection(parser);
623 		break;
624 	case HID_MAIN_ITEM_TAG_INPUT:
625 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
626 		break;
627 	case HID_MAIN_ITEM_TAG_OUTPUT:
628 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
629 		break;
630 	case HID_MAIN_ITEM_TAG_FEATURE:
631 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
632 		break;
633 	default:
634 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
635 		ret = 0;
636 	}
637 
638 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
639 
640 	return ret;
641 }
642 
643 /*
644  * Process a reserved item.
645  */
646 
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)647 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
648 {
649 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
650 	return 0;
651 }
652 
653 /*
654  * Free a report and all registered fields. The field->usage and
655  * field->value table's are allocated behind the field, so we need
656  * only to free(field) itself.
657  */
658 
hid_free_report(struct hid_report * report)659 static void hid_free_report(struct hid_report *report)
660 {
661 	unsigned n;
662 
663 	for (n = 0; n < report->maxfield; n++)
664 		kfree(report->field[n]);
665 	kfree(report);
666 }
667 
668 /*
669  * Close report. This function returns the device
670  * state to the point prior to hid_open_report().
671  */
hid_close_report(struct hid_device * device)672 static void hid_close_report(struct hid_device *device)
673 {
674 	unsigned i, j;
675 
676 	for (i = 0; i < HID_REPORT_TYPES; i++) {
677 		struct hid_report_enum *report_enum = device->report_enum + i;
678 
679 		for (j = 0; j < HID_MAX_IDS; j++) {
680 			struct hid_report *report = report_enum->report_id_hash[j];
681 			if (report)
682 				hid_free_report(report);
683 		}
684 		memset(report_enum, 0, sizeof(*report_enum));
685 		INIT_LIST_HEAD(&report_enum->report_list);
686 	}
687 
688 	kfree(device->rdesc);
689 	device->rdesc = NULL;
690 	device->rsize = 0;
691 
692 	kfree(device->collection);
693 	device->collection = NULL;
694 	device->collection_size = 0;
695 	device->maxcollection = 0;
696 	device->maxapplication = 0;
697 
698 	device->status &= ~HID_STAT_PARSED;
699 }
700 
701 /*
702  * Free a device structure, all reports, and all fields.
703  */
704 
hid_device_release(struct device * dev)705 static void hid_device_release(struct device *dev)
706 {
707 	struct hid_device *hid = to_hid_device(dev);
708 
709 	hid_close_report(hid);
710 	kfree(hid->dev_rdesc);
711 	kfree(hid);
712 }
713 
714 /*
715  * Fetch a report description item from the data stream. We support long
716  * items, though they are not used yet.
717  */
718 
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)719 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
720 {
721 	u8 b;
722 
723 	if ((end - start) <= 0)
724 		return NULL;
725 
726 	b = *start++;
727 
728 	item->type = (b >> 2) & 3;
729 	item->tag  = (b >> 4) & 15;
730 
731 	if (item->tag == HID_ITEM_TAG_LONG) {
732 
733 		item->format = HID_ITEM_FORMAT_LONG;
734 
735 		if ((end - start) < 2)
736 			return NULL;
737 
738 		item->size = *start++;
739 		item->tag  = *start++;
740 
741 		if ((end - start) < item->size)
742 			return NULL;
743 
744 		item->data.longdata = start;
745 		start += item->size;
746 		return start;
747 	}
748 
749 	item->format = HID_ITEM_FORMAT_SHORT;
750 	item->size = b & 3;
751 
752 	switch (item->size) {
753 	case 0:
754 		return start;
755 
756 	case 1:
757 		if ((end - start) < 1)
758 			return NULL;
759 		item->data.u8 = *start++;
760 		return start;
761 
762 	case 2:
763 		if ((end - start) < 2)
764 			return NULL;
765 		item->data.u16 = get_unaligned_le16(start);
766 		start = (__u8 *)((__le16 *)start + 1);
767 		return start;
768 
769 	case 3:
770 		item->size++;
771 		if ((end - start) < 4)
772 			return NULL;
773 		item->data.u32 = get_unaligned_le32(start);
774 		start = (__u8 *)((__le32 *)start + 1);
775 		return start;
776 	}
777 
778 	return NULL;
779 }
780 
hid_scan_input_usage(struct hid_parser * parser,u32 usage)781 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
782 {
783 	struct hid_device *hid = parser->device;
784 
785 	if (usage == HID_DG_CONTACTID)
786 		hid->group = HID_GROUP_MULTITOUCH;
787 }
788 
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)789 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
790 {
791 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
792 	    parser->global.report_size == 8)
793 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 
795 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
796 	    parser->global.report_size == 8)
797 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
798 }
799 
hid_scan_collection(struct hid_parser * parser,unsigned type)800 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
801 {
802 	struct hid_device *hid = parser->device;
803 	int i;
804 
805 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
806 	    type == HID_COLLECTION_PHYSICAL)
807 		hid->group = HID_GROUP_SENSOR_HUB;
808 
809 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
810 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
811 	    hid->group == HID_GROUP_MULTITOUCH)
812 		hid->group = HID_GROUP_GENERIC;
813 
814 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
815 		for (i = 0; i < parser->local.usage_index; i++)
816 			if (parser->local.usage[i] == HID_GD_POINTER)
817 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
818 
819 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
820 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
821 
822 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
823 		for (i = 0; i < parser->local.usage_index; i++)
824 			if (parser->local.usage[i] ==
825 					(HID_UP_GOOGLEVENDOR | 0x0001))
826 				parser->device->group =
827 					HID_GROUP_VIVALDI;
828 }
829 
hid_scan_main(struct hid_parser * parser,struct hid_item * item)830 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
831 {
832 	__u32 data;
833 	int i;
834 
835 	hid_concatenate_last_usage_page(parser);
836 
837 	data = item_udata(item);
838 
839 	switch (item->tag) {
840 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
841 		hid_scan_collection(parser, data & 0xff);
842 		break;
843 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
844 		break;
845 	case HID_MAIN_ITEM_TAG_INPUT:
846 		/* ignore constant inputs, they will be ignored by hid-input */
847 		if (data & HID_MAIN_ITEM_CONSTANT)
848 			break;
849 		for (i = 0; i < parser->local.usage_index; i++)
850 			hid_scan_input_usage(parser, parser->local.usage[i]);
851 		break;
852 	case HID_MAIN_ITEM_TAG_OUTPUT:
853 		break;
854 	case HID_MAIN_ITEM_TAG_FEATURE:
855 		for (i = 0; i < parser->local.usage_index; i++)
856 			hid_scan_feature_usage(parser, parser->local.usage[i]);
857 		break;
858 	}
859 
860 	/* Reset the local parser environment */
861 	memset(&parser->local, 0, sizeof(parser->local));
862 
863 	return 0;
864 }
865 
866 /*
867  * Scan a report descriptor before the device is added to the bus.
868  * Sets device groups and other properties that determine what driver
869  * to load.
870  */
hid_scan_report(struct hid_device * hid)871 static int hid_scan_report(struct hid_device *hid)
872 {
873 	struct hid_parser *parser;
874 	struct hid_item item;
875 	__u8 *start = hid->dev_rdesc;
876 	__u8 *end = start + hid->dev_rsize;
877 	static int (*dispatch_type[])(struct hid_parser *parser,
878 				      struct hid_item *item) = {
879 		hid_scan_main,
880 		hid_parser_global,
881 		hid_parser_local,
882 		hid_parser_reserved
883 	};
884 
885 	parser = vzalloc(sizeof(struct hid_parser));
886 	if (!parser)
887 		return -ENOMEM;
888 
889 	parser->device = hid;
890 	hid->group = HID_GROUP_GENERIC;
891 
892 	/*
893 	 * The parsing is simpler than the one in hid_open_report() as we should
894 	 * be robust against hid errors. Those errors will be raised by
895 	 * hid_open_report() anyway.
896 	 */
897 	while ((start = fetch_item(start, end, &item)) != NULL)
898 		dispatch_type[item.type](parser, &item);
899 
900 	/*
901 	 * Handle special flags set during scanning.
902 	 */
903 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
904 	    (hid->group == HID_GROUP_MULTITOUCH))
905 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
906 
907 	/*
908 	 * Vendor specific handlings
909 	 */
910 	switch (hid->vendor) {
911 	case USB_VENDOR_ID_WACOM:
912 		hid->group = HID_GROUP_WACOM;
913 		break;
914 	case USB_VENDOR_ID_SYNAPTICS:
915 		if (hid->group == HID_GROUP_GENERIC)
916 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
917 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
918 				/*
919 				 * hid-rmi should take care of them,
920 				 * not hid-generic
921 				 */
922 				hid->group = HID_GROUP_RMI;
923 		break;
924 	}
925 
926 	kfree(parser->collection_stack);
927 	vfree(parser);
928 	return 0;
929 }
930 
931 /**
932  * hid_parse_report - parse device report
933  *
934  * @hid: hid device
935  * @start: report start
936  * @size: report size
937  *
938  * Allocate the device report as read by the bus driver. This function should
939  * only be called from parse() in ll drivers.
940  */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)941 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
942 {
943 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
944 	if (!hid->dev_rdesc)
945 		return -ENOMEM;
946 	hid->dev_rsize = size;
947 	return 0;
948 }
949 EXPORT_SYMBOL_GPL(hid_parse_report);
950 
951 static const char * const hid_report_names[] = {
952 	"HID_INPUT_REPORT",
953 	"HID_OUTPUT_REPORT",
954 	"HID_FEATURE_REPORT",
955 };
956 /**
957  * hid_validate_values - validate existing device report's value indexes
958  *
959  * @hid: hid device
960  * @type: which report type to examine
961  * @id: which report ID to examine (0 for first)
962  * @field_index: which report field to examine
963  * @report_counts: expected number of values
964  *
965  * Validate the number of values in a given field of a given report, after
966  * parsing.
967  */
hid_validate_values(struct hid_device * hid,unsigned int type,unsigned int id,unsigned int field_index,unsigned int report_counts)968 struct hid_report *hid_validate_values(struct hid_device *hid,
969 				       unsigned int type, unsigned int id,
970 				       unsigned int field_index,
971 				       unsigned int report_counts)
972 {
973 	struct hid_report *report;
974 
975 	if (type > HID_FEATURE_REPORT) {
976 		hid_err(hid, "invalid HID report type %u\n", type);
977 		return NULL;
978 	}
979 
980 	if (id >= HID_MAX_IDS) {
981 		hid_err(hid, "invalid HID report id %u\n", id);
982 		return NULL;
983 	}
984 
985 	/*
986 	 * Explicitly not using hid_get_report() here since it depends on
987 	 * ->numbered being checked, which may not always be the case when
988 	 * drivers go to access report values.
989 	 */
990 	if (id == 0) {
991 		/*
992 		 * Validating on id 0 means we should examine the first
993 		 * report in the list.
994 		 */
995 		report = list_first_entry_or_null(
996 				&hid->report_enum[type].report_list,
997 				struct hid_report, list);
998 	} else {
999 		report = hid->report_enum[type].report_id_hash[id];
1000 	}
1001 	if (!report) {
1002 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1003 		return NULL;
1004 	}
1005 	if (report->maxfield <= field_index) {
1006 		hid_err(hid, "not enough fields in %s %u\n",
1007 			hid_report_names[type], id);
1008 		return NULL;
1009 	}
1010 	if (report->field[field_index]->report_count < report_counts) {
1011 		hid_err(hid, "not enough values in %s %u field %u\n",
1012 			hid_report_names[type], id, field_index);
1013 		return NULL;
1014 	}
1015 	return report;
1016 }
1017 EXPORT_SYMBOL_GPL(hid_validate_values);
1018 
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1019 static int hid_calculate_multiplier(struct hid_device *hid,
1020 				     struct hid_field *multiplier)
1021 {
1022 	int m;
1023 	__s32 v = *multiplier->value;
1024 	__s32 lmin = multiplier->logical_minimum;
1025 	__s32 lmax = multiplier->logical_maximum;
1026 	__s32 pmin = multiplier->physical_minimum;
1027 	__s32 pmax = multiplier->physical_maximum;
1028 
1029 	/*
1030 	 * "Because OS implementations will generally divide the control's
1031 	 * reported count by the Effective Resolution Multiplier, designers
1032 	 * should take care not to establish a potential Effective
1033 	 * Resolution Multiplier of zero."
1034 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1035 	 */
1036 	if (lmax - lmin == 0)
1037 		return 1;
1038 	/*
1039 	 * Handling the unit exponent is left as an exercise to whoever
1040 	 * finds a device where that exponent is not 0.
1041 	 */
1042 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1043 	if (unlikely(multiplier->unit_exponent != 0)) {
1044 		hid_warn(hid,
1045 			 "unsupported Resolution Multiplier unit exponent %d\n",
1046 			 multiplier->unit_exponent);
1047 	}
1048 
1049 	/* There are no devices with an effective multiplier > 255 */
1050 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1051 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1052 		m = 1;
1053 	}
1054 
1055 	return m;
1056 }
1057 
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1058 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1059 					  struct hid_field *field,
1060 					  struct hid_collection *multiplier_collection,
1061 					  int effective_multiplier)
1062 {
1063 	struct hid_collection *collection;
1064 	struct hid_usage *usage;
1065 	int i;
1066 
1067 	/*
1068 	 * If multiplier_collection is NULL, the multiplier applies
1069 	 * to all fields in the report.
1070 	 * Otherwise, it is the Logical Collection the multiplier applies to
1071 	 * but our field may be in a subcollection of that collection.
1072 	 */
1073 	for (i = 0; i < field->maxusage; i++) {
1074 		usage = &field->usage[i];
1075 
1076 		collection = &hid->collection[usage->collection_index];
1077 		while (collection->parent_idx != -1 &&
1078 		       collection != multiplier_collection)
1079 			collection = &hid->collection[collection->parent_idx];
1080 
1081 		if (collection->parent_idx != -1 ||
1082 		    multiplier_collection == NULL)
1083 			usage->resolution_multiplier = effective_multiplier;
1084 
1085 	}
1086 }
1087 
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1088 static void hid_apply_multiplier(struct hid_device *hid,
1089 				 struct hid_field *multiplier)
1090 {
1091 	struct hid_report_enum *rep_enum;
1092 	struct hid_report *rep;
1093 	struct hid_field *field;
1094 	struct hid_collection *multiplier_collection;
1095 	int effective_multiplier;
1096 	int i;
1097 
1098 	/*
1099 	 * "The Resolution Multiplier control must be contained in the same
1100 	 * Logical Collection as the control(s) to which it is to be applied.
1101 	 * If no Resolution Multiplier is defined, then the Resolution
1102 	 * Multiplier defaults to 1.  If more than one control exists in a
1103 	 * Logical Collection, the Resolution Multiplier is associated with
1104 	 * all controls in the collection. If no Logical Collection is
1105 	 * defined, the Resolution Multiplier is associated with all
1106 	 * controls in the report."
1107 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1108 	 *
1109 	 * Thus, search from the current collection upwards until we find a
1110 	 * logical collection. Then search all fields for that same parent
1111 	 * collection. Those are the fields the multiplier applies to.
1112 	 *
1113 	 * If we have more than one multiplier, it will overwrite the
1114 	 * applicable fields later.
1115 	 */
1116 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1117 	while (multiplier_collection->parent_idx != -1 &&
1118 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1119 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1120 
1121 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1122 
1123 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1124 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1125 		for (i = 0; i < rep->maxfield; i++) {
1126 			field = rep->field[i];
1127 			hid_apply_multiplier_to_field(hid, field,
1128 						      multiplier_collection,
1129 						      effective_multiplier);
1130 		}
1131 	}
1132 }
1133 
1134 /*
1135  * hid_setup_resolution_multiplier - set up all resolution multipliers
1136  *
1137  * @device: hid device
1138  *
1139  * Search for all Resolution Multiplier Feature Reports and apply their
1140  * value to all matching Input items. This only updates the internal struct
1141  * fields.
1142  *
1143  * The Resolution Multiplier is applied by the hardware. If the multiplier
1144  * is anything other than 1, the hardware will send pre-multiplied events
1145  * so that the same physical interaction generates an accumulated
1146  *	accumulated_value = value * * multiplier
1147  * This may be achieved by sending
1148  * - "value * multiplier" for each event, or
1149  * - "value" but "multiplier" times as frequently, or
1150  * - a combination of the above
1151  * The only guarantee is that the same physical interaction always generates
1152  * an accumulated 'value * multiplier'.
1153  *
1154  * This function must be called before any event processing and after
1155  * any SetRequest to the Resolution Multiplier.
1156  */
hid_setup_resolution_multiplier(struct hid_device * hid)1157 void hid_setup_resolution_multiplier(struct hid_device *hid)
1158 {
1159 	struct hid_report_enum *rep_enum;
1160 	struct hid_report *rep;
1161 	struct hid_usage *usage;
1162 	int i, j;
1163 
1164 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1165 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1166 		for (i = 0; i < rep->maxfield; i++) {
1167 			/* Ignore if report count is out of bounds. */
1168 			if (rep->field[i]->report_count < 1)
1169 				continue;
1170 
1171 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1172 				usage = &rep->field[i]->usage[j];
1173 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1174 					hid_apply_multiplier(hid,
1175 							     rep->field[i]);
1176 			}
1177 		}
1178 	}
1179 }
1180 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1181 
1182 /**
1183  * hid_open_report - open a driver-specific device report
1184  *
1185  * @device: hid device
1186  *
1187  * Parse a report description into a hid_device structure. Reports are
1188  * enumerated, fields are attached to these reports.
1189  * 0 returned on success, otherwise nonzero error value.
1190  *
1191  * This function (or the equivalent hid_parse() macro) should only be
1192  * called from probe() in drivers, before starting the device.
1193  */
hid_open_report(struct hid_device * device)1194 int hid_open_report(struct hid_device *device)
1195 {
1196 	struct hid_parser *parser;
1197 	struct hid_item item;
1198 	unsigned int size;
1199 	__u8 *start;
1200 	__u8 *buf;
1201 	__u8 *end;
1202 	__u8 *next;
1203 	int ret;
1204 	int i;
1205 	static int (*dispatch_type[])(struct hid_parser *parser,
1206 				      struct hid_item *item) = {
1207 		hid_parser_main,
1208 		hid_parser_global,
1209 		hid_parser_local,
1210 		hid_parser_reserved
1211 	};
1212 
1213 	if (WARN_ON(device->status & HID_STAT_PARSED))
1214 		return -EBUSY;
1215 
1216 	start = device->dev_rdesc;
1217 	if (WARN_ON(!start))
1218 		return -ENODEV;
1219 	size = device->dev_rsize;
1220 
1221 	buf = kmemdup(start, size, GFP_KERNEL);
1222 	if (buf == NULL)
1223 		return -ENOMEM;
1224 
1225 	if (device->driver->report_fixup)
1226 		start = device->driver->report_fixup(device, buf, &size);
1227 	else
1228 		start = buf;
1229 
1230 	start = kmemdup(start, size, GFP_KERNEL);
1231 	kfree(buf);
1232 	if (start == NULL)
1233 		return -ENOMEM;
1234 
1235 	device->rdesc = start;
1236 	device->rsize = size;
1237 
1238 	parser = vzalloc(sizeof(struct hid_parser));
1239 	if (!parser) {
1240 		ret = -ENOMEM;
1241 		goto alloc_err;
1242 	}
1243 
1244 	parser->device = device;
1245 
1246 	end = start + size;
1247 
1248 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1249 				     sizeof(struct hid_collection), GFP_KERNEL);
1250 	if (!device->collection) {
1251 		ret = -ENOMEM;
1252 		goto err;
1253 	}
1254 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1255 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1256 		device->collection[i].parent_idx = -1;
1257 
1258 	ret = -EINVAL;
1259 	while ((next = fetch_item(start, end, &item)) != NULL) {
1260 		start = next;
1261 
1262 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1263 			hid_err(device, "unexpected long global item\n");
1264 			goto err;
1265 		}
1266 
1267 		if (dispatch_type[item.type](parser, &item)) {
1268 			hid_err(device, "item %u %u %u %u parsing failed\n",
1269 				item.format, (unsigned)item.size,
1270 				(unsigned)item.type, (unsigned)item.tag);
1271 			goto err;
1272 		}
1273 
1274 		if (start == end) {
1275 			if (parser->collection_stack_ptr) {
1276 				hid_err(device, "unbalanced collection at end of report description\n");
1277 				goto err;
1278 			}
1279 			if (parser->local.delimiter_depth) {
1280 				hid_err(device, "unbalanced delimiter at end of report description\n");
1281 				goto err;
1282 			}
1283 
1284 			/*
1285 			 * fetch initial values in case the device's
1286 			 * default multiplier isn't the recommended 1
1287 			 */
1288 			hid_setup_resolution_multiplier(device);
1289 
1290 			kfree(parser->collection_stack);
1291 			vfree(parser);
1292 			device->status |= HID_STAT_PARSED;
1293 
1294 			return 0;
1295 		}
1296 	}
1297 
1298 	hid_err(device, "item fetching failed at offset %u/%u\n",
1299 		size - (unsigned int)(end - start), size);
1300 err:
1301 	kfree(parser->collection_stack);
1302 alloc_err:
1303 	vfree(parser);
1304 	hid_close_report(device);
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(hid_open_report);
1308 
1309 /*
1310  * Convert a signed n-bit integer to signed 32-bit integer. Common
1311  * cases are done through the compiler, the screwed things has to be
1312  * done by hand.
1313  */
1314 
snto32(__u32 value,unsigned n)1315 static s32 snto32(__u32 value, unsigned n)
1316 {
1317 	if (!value || !n)
1318 		return 0;
1319 
1320 	if (n > 32)
1321 		n = 32;
1322 
1323 	switch (n) {
1324 	case 8:  return ((__s8)value);
1325 	case 16: return ((__s16)value);
1326 	case 32: return ((__s32)value);
1327 	}
1328 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1329 }
1330 
hid_snto32(__u32 value,unsigned n)1331 s32 hid_snto32(__u32 value, unsigned n)
1332 {
1333 	return snto32(value, n);
1334 }
1335 EXPORT_SYMBOL_GPL(hid_snto32);
1336 
1337 /*
1338  * Convert a signed 32-bit integer to a signed n-bit integer.
1339  */
1340 
s32ton(__s32 value,unsigned n)1341 static u32 s32ton(__s32 value, unsigned n)
1342 {
1343 	s32 a = value >> (n - 1);
1344 	if (a && a != -1)
1345 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1346 	return value & ((1 << n) - 1);
1347 }
1348 
1349 /*
1350  * Extract/implement a data field from/to a little endian report (bit array).
1351  *
1352  * Code sort-of follows HID spec:
1353  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1354  *
1355  * While the USB HID spec allows unlimited length bit fields in "report
1356  * descriptors", most devices never use more than 16 bits.
1357  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1358  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1359  */
1360 
__extract(u8 * report,unsigned offset,int n)1361 static u32 __extract(u8 *report, unsigned offset, int n)
1362 {
1363 	unsigned int idx = offset / 8;
1364 	unsigned int bit_nr = 0;
1365 	unsigned int bit_shift = offset % 8;
1366 	int bits_to_copy = 8 - bit_shift;
1367 	u32 value = 0;
1368 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1369 
1370 	while (n > 0) {
1371 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1372 		n -= bits_to_copy;
1373 		bit_nr += bits_to_copy;
1374 		bits_to_copy = 8;
1375 		bit_shift = 0;
1376 		idx++;
1377 	}
1378 
1379 	return value & mask;
1380 }
1381 
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1382 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1383 			unsigned offset, unsigned n)
1384 {
1385 	if (n > 32) {
1386 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1387 			      __func__, n, current->comm);
1388 		n = 32;
1389 	}
1390 
1391 	return __extract(report, offset, n);
1392 }
1393 EXPORT_SYMBOL_GPL(hid_field_extract);
1394 
1395 /*
1396  * "implement" : set bits in a little endian bit stream.
1397  * Same concepts as "extract" (see comments above).
1398  * The data mangled in the bit stream remains in little endian
1399  * order the whole time. It make more sense to talk about
1400  * endianness of register values by considering a register
1401  * a "cached" copy of the little endian bit stream.
1402  */
1403 
__implement(u8 * report,unsigned offset,int n,u32 value)1404 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1405 {
1406 	unsigned int idx = offset / 8;
1407 	unsigned int bit_shift = offset % 8;
1408 	int bits_to_set = 8 - bit_shift;
1409 
1410 	while (n - bits_to_set >= 0) {
1411 		report[idx] &= ~(0xff << bit_shift);
1412 		report[idx] |= value << bit_shift;
1413 		value >>= bits_to_set;
1414 		n -= bits_to_set;
1415 		bits_to_set = 8;
1416 		bit_shift = 0;
1417 		idx++;
1418 	}
1419 
1420 	/* last nibble */
1421 	if (n) {
1422 		u8 bit_mask = ((1U << n) - 1);
1423 		report[idx] &= ~(bit_mask << bit_shift);
1424 		report[idx] |= value << bit_shift;
1425 	}
1426 }
1427 
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1428 static void implement(const struct hid_device *hid, u8 *report,
1429 		      unsigned offset, unsigned n, u32 value)
1430 {
1431 	if (unlikely(n > 32)) {
1432 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1433 			 __func__, n, current->comm);
1434 		n = 32;
1435 	} else if (n < 32) {
1436 		u32 m = (1U << n) - 1;
1437 
1438 		if (unlikely(value > m)) {
1439 			hid_warn(hid,
1440 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1441 				 __func__, value, n, current->comm);
1442 			WARN_ON(1);
1443 			value &= m;
1444 		}
1445 	}
1446 
1447 	__implement(report, offset, n, value);
1448 }
1449 
1450 /*
1451  * Search an array for a value.
1452  */
1453 
search(__s32 * array,__s32 value,unsigned n)1454 static int search(__s32 *array, __s32 value, unsigned n)
1455 {
1456 	while (n--) {
1457 		if (*array++ == value)
1458 			return 0;
1459 	}
1460 	return -1;
1461 }
1462 
1463 /**
1464  * hid_match_report - check if driver's raw_event should be called
1465  *
1466  * @hid: hid device
1467  * @report: hid report to match against
1468  *
1469  * compare hid->driver->report_table->report_type to report->type
1470  */
hid_match_report(struct hid_device * hid,struct hid_report * report)1471 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1472 {
1473 	const struct hid_report_id *id = hid->driver->report_table;
1474 
1475 	if (!id) /* NULL means all */
1476 		return 1;
1477 
1478 	for (; id->report_type != HID_TERMINATOR; id++)
1479 		if (id->report_type == HID_ANY_ID ||
1480 				id->report_type == report->type)
1481 			return 1;
1482 	return 0;
1483 }
1484 
1485 /**
1486  * hid_match_usage - check if driver's event should be called
1487  *
1488  * @hid: hid device
1489  * @usage: usage to match against
1490  *
1491  * compare hid->driver->usage_table->usage_{type,code} to
1492  * usage->usage_{type,code}
1493  */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1494 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1495 {
1496 	const struct hid_usage_id *id = hid->driver->usage_table;
1497 
1498 	if (!id) /* NULL means all */
1499 		return 1;
1500 
1501 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1502 		if ((id->usage_hid == HID_ANY_ID ||
1503 				id->usage_hid == usage->hid) &&
1504 				(id->usage_type == HID_ANY_ID ||
1505 				id->usage_type == usage->type) &&
1506 				(id->usage_code == HID_ANY_ID ||
1507 				 id->usage_code == usage->code))
1508 			return 1;
1509 	return 0;
1510 }
1511 
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1512 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1513 		struct hid_usage *usage, __s32 value, int interrupt)
1514 {
1515 	struct hid_driver *hdrv = hid->driver;
1516 	int ret;
1517 
1518 	if (!list_empty(&hid->debug_list))
1519 		hid_dump_input(hid, usage, value);
1520 
1521 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1522 		ret = hdrv->event(hid, field, usage, value);
1523 		if (ret != 0) {
1524 			if (ret < 0)
1525 				hid_err(hid, "%s's event failed with %d\n",
1526 						hdrv->name, ret);
1527 			return;
1528 		}
1529 	}
1530 
1531 	if (hid->claimed & HID_CLAIMED_INPUT)
1532 		hidinput_hid_event(hid, field, usage, value);
1533 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1534 		hid->hiddev_hid_event(hid, field, usage, value);
1535 }
1536 
1537 /*
1538  * Analyse a received field, and fetch the data from it. The field
1539  * content is stored for next report processing (we do differential
1540  * reporting to the layer).
1541  */
1542 
hid_input_field(struct hid_device * hid,struct hid_field * field,__u8 * data,int interrupt)1543 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1544 			    __u8 *data, int interrupt)
1545 {
1546 	unsigned n;
1547 	unsigned count = field->report_count;
1548 	unsigned offset = field->report_offset;
1549 	unsigned size = field->report_size;
1550 	__s32 min = field->logical_minimum;
1551 	__s32 max = field->logical_maximum;
1552 	__s32 *value;
1553 
1554 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1555 	if (!value)
1556 		return;
1557 
1558 	for (n = 0; n < count; n++) {
1559 
1560 		value[n] = min < 0 ?
1561 			snto32(hid_field_extract(hid, data, offset + n * size,
1562 			       size), size) :
1563 			hid_field_extract(hid, data, offset + n * size, size);
1564 
1565 		/* Ignore report if ErrorRollOver */
1566 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1567 		    value[n] >= min && value[n] <= max &&
1568 		    value[n] - min < field->maxusage &&
1569 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1570 			goto exit;
1571 	}
1572 
1573 	for (n = 0; n < count; n++) {
1574 
1575 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1576 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1577 			continue;
1578 		}
1579 
1580 		if (field->value[n] >= min && field->value[n] <= max
1581 			&& field->value[n] - min < field->maxusage
1582 			&& field->usage[field->value[n] - min].hid
1583 			&& search(value, field->value[n], count))
1584 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1585 
1586 		if (value[n] >= min && value[n] <= max
1587 			&& value[n] - min < field->maxusage
1588 			&& field->usage[value[n] - min].hid
1589 			&& search(field->value, value[n], count))
1590 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1591 	}
1592 
1593 	memcpy(field->value, value, count * sizeof(__s32));
1594 exit:
1595 	kfree(value);
1596 }
1597 
1598 /*
1599  * Output the field into the report.
1600  */
1601 
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1602 static void hid_output_field(const struct hid_device *hid,
1603 			     struct hid_field *field, __u8 *data)
1604 {
1605 	unsigned count = field->report_count;
1606 	unsigned offset = field->report_offset;
1607 	unsigned size = field->report_size;
1608 	unsigned n;
1609 
1610 	for (n = 0; n < count; n++) {
1611 		if (field->logical_minimum < 0)	/* signed values */
1612 			implement(hid, data, offset + n * size, size,
1613 				  s32ton(field->value[n], size));
1614 		else				/* unsigned values */
1615 			implement(hid, data, offset + n * size, size,
1616 				  field->value[n]);
1617 	}
1618 }
1619 
1620 /*
1621  * Compute the size of a report.
1622  */
hid_compute_report_size(struct hid_report * report)1623 static size_t hid_compute_report_size(struct hid_report *report)
1624 {
1625 	if (report->size)
1626 		return ((report->size - 1) >> 3) + 1;
1627 
1628 	return 0;
1629 }
1630 
1631 /*
1632  * Create a report. 'data' has to be allocated using
1633  * hid_alloc_report_buf() so that it has proper size.
1634  */
1635 
hid_output_report(struct hid_report * report,__u8 * data)1636 void hid_output_report(struct hid_report *report, __u8 *data)
1637 {
1638 	unsigned n;
1639 
1640 	if (report->id > 0)
1641 		*data++ = report->id;
1642 
1643 	memset(data, 0, hid_compute_report_size(report));
1644 	for (n = 0; n < report->maxfield; n++)
1645 		hid_output_field(report->device, report->field[n], data);
1646 }
1647 EXPORT_SYMBOL_GPL(hid_output_report);
1648 
1649 /*
1650  * Allocator for buffer that is going to be passed to hid_output_report()
1651  */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1652 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1653 {
1654 	/*
1655 	 * 7 extra bytes are necessary to achieve proper functionality
1656 	 * of implement() working on 8 byte chunks
1657 	 */
1658 
1659 	u32 len = hid_report_len(report) + 7;
1660 
1661 	return kmalloc(len, flags);
1662 }
1663 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1664 
1665 /*
1666  * Set a field value. The report this field belongs to has to be
1667  * created and transferred to the device, to set this value in the
1668  * device.
1669  */
1670 
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1671 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1672 {
1673 	unsigned size;
1674 
1675 	if (!field)
1676 		return -1;
1677 
1678 	size = field->report_size;
1679 
1680 	hid_dump_input(field->report->device, field->usage + offset, value);
1681 
1682 	if (offset >= field->report_count) {
1683 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1684 				offset, field->report_count);
1685 		return -1;
1686 	}
1687 	if (field->logical_minimum < 0) {
1688 		if (value != snto32(s32ton(value, size), size)) {
1689 			hid_err(field->report->device, "value %d is out of range\n", value);
1690 			return -1;
1691 		}
1692 	}
1693 	field->value[offset] = value;
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(hid_set_field);
1697 
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1698 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1699 		const u8 *data)
1700 {
1701 	struct hid_report *report;
1702 	unsigned int n = 0;	/* Normally report number is 0 */
1703 
1704 	/* Device uses numbered reports, data[0] is report number */
1705 	if (report_enum->numbered)
1706 		n = *data;
1707 
1708 	report = report_enum->report_id_hash[n];
1709 	if (report == NULL)
1710 		dbg_hid("undefined report_id %u received\n", n);
1711 
1712 	return report;
1713 }
1714 
1715 /*
1716  * Implement a generic .request() callback, using .raw_request()
1717  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1718  */
__hid_request(struct hid_device * hid,struct hid_report * report,int reqtype)1719 int __hid_request(struct hid_device *hid, struct hid_report *report,
1720 		int reqtype)
1721 {
1722 	char *buf;
1723 	int ret;
1724 	u32 len;
1725 
1726 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1727 	if (!buf)
1728 		return -ENOMEM;
1729 
1730 	len = hid_report_len(report);
1731 
1732 	if (reqtype == HID_REQ_SET_REPORT)
1733 		hid_output_report(report, buf);
1734 
1735 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1736 					  report->type, reqtype);
1737 	if (ret < 0) {
1738 		dbg_hid("unable to complete request: %d\n", ret);
1739 		goto out;
1740 	}
1741 
1742 	if (reqtype == HID_REQ_GET_REPORT)
1743 		hid_input_report(hid, report->type, buf, ret, 0);
1744 
1745 	ret = 0;
1746 
1747 out:
1748 	kfree(buf);
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(__hid_request);
1752 
hid_report_raw_event(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1753 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1754 		int interrupt)
1755 {
1756 	struct hid_report_enum *report_enum = hid->report_enum + type;
1757 	struct hid_report *report;
1758 	struct hid_driver *hdrv;
1759 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1760 	unsigned int a;
1761 	u32 rsize, csize = size;
1762 	u8 *cdata = data;
1763 	int ret = 0;
1764 
1765 	report = hid_get_report(report_enum, data);
1766 	if (!report)
1767 		goto out;
1768 
1769 	if (report_enum->numbered) {
1770 		cdata++;
1771 		csize--;
1772 	}
1773 
1774 	rsize = hid_compute_report_size(report);
1775 
1776 	if (hid->ll_driver->max_buffer_size)
1777 		max_buffer_size = hid->ll_driver->max_buffer_size;
1778 
1779 	if (report_enum->numbered && rsize >= max_buffer_size)
1780 		rsize = max_buffer_size - 1;
1781 	else if (rsize > max_buffer_size)
1782 		rsize = max_buffer_size;
1783 
1784 	if (csize < rsize) {
1785 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1786 				csize, rsize);
1787 		memset(cdata + csize, 0, rsize - csize);
1788 	}
1789 
1790 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1791 		hid->hiddev_report_event(hid, report);
1792 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1793 		ret = hidraw_report_event(hid, data, size);
1794 		if (ret)
1795 			goto out;
1796 	}
1797 
1798 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1799 		for (a = 0; a < report->maxfield; a++)
1800 			hid_input_field(hid, report->field[a], cdata, interrupt);
1801 		hdrv = hid->driver;
1802 		if (hdrv && hdrv->report)
1803 			hdrv->report(hid, report);
1804 	}
1805 
1806 	if (hid->claimed & HID_CLAIMED_INPUT)
1807 		hidinput_report_event(hid, report);
1808 out:
1809 	return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1812 
1813 /**
1814  * hid_input_report - report data from lower layer (usb, bt...)
1815  *
1816  * @hid: hid device
1817  * @type: HID report type (HID_*_REPORT)
1818  * @data: report contents
1819  * @size: size of data parameter
1820  * @interrupt: distinguish between interrupt and control transfers
1821  *
1822  * This is data entry for lower layers.
1823  */
hid_input_report(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1824 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1825 {
1826 	struct hid_report_enum *report_enum;
1827 	struct hid_driver *hdrv;
1828 	struct hid_report *report;
1829 	int ret = 0;
1830 
1831 	if (!hid)
1832 		return -ENODEV;
1833 
1834 	if (down_trylock(&hid->driver_input_lock))
1835 		return -EBUSY;
1836 
1837 	if (!hid->driver) {
1838 		ret = -ENODEV;
1839 		goto unlock;
1840 	}
1841 	report_enum = hid->report_enum + type;
1842 	hdrv = hid->driver;
1843 
1844 	if (!size) {
1845 		dbg_hid("empty report\n");
1846 		ret = -1;
1847 		goto unlock;
1848 	}
1849 
1850 	/* Avoid unnecessary overhead if debugfs is disabled */
1851 	if (!list_empty(&hid->debug_list))
1852 		hid_dump_report(hid, type, data, size);
1853 
1854 	report = hid_get_report(report_enum, data);
1855 
1856 	if (!report) {
1857 		ret = -1;
1858 		goto unlock;
1859 	}
1860 
1861 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1862 		ret = hdrv->raw_event(hid, report, data, size);
1863 		if (ret < 0)
1864 			goto unlock;
1865 	}
1866 
1867 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1868 
1869 unlock:
1870 	up(&hid->driver_input_lock);
1871 	return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(hid_input_report);
1874 
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)1875 bool hid_match_one_id(const struct hid_device *hdev,
1876 		      const struct hid_device_id *id)
1877 {
1878 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1879 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1880 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1881 		(id->product == HID_ANY_ID || id->product == hdev->product);
1882 }
1883 
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)1884 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1885 		const struct hid_device_id *id)
1886 {
1887 	for (; id->bus; id++)
1888 		if (hid_match_one_id(hdev, id))
1889 			return id;
1890 
1891 	return NULL;
1892 }
1893 
1894 static const struct hid_device_id hid_hiddev_list[] = {
1895 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1896 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1897 	{ }
1898 };
1899 
hid_hiddev(struct hid_device * hdev)1900 static bool hid_hiddev(struct hid_device *hdev)
1901 {
1902 	return !!hid_match_id(hdev, hid_hiddev_list);
1903 }
1904 
1905 
1906 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)1907 read_report_descriptor(struct file *filp, struct kobject *kobj,
1908 		struct bin_attribute *attr,
1909 		char *buf, loff_t off, size_t count)
1910 {
1911 	struct device *dev = kobj_to_dev(kobj);
1912 	struct hid_device *hdev = to_hid_device(dev);
1913 
1914 	if (off >= hdev->rsize)
1915 		return 0;
1916 
1917 	if (off + count > hdev->rsize)
1918 		count = hdev->rsize - off;
1919 
1920 	memcpy(buf, hdev->rdesc + off, count);
1921 
1922 	return count;
1923 }
1924 
1925 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)1926 show_country(struct device *dev, struct device_attribute *attr,
1927 		char *buf)
1928 {
1929 	struct hid_device *hdev = to_hid_device(dev);
1930 
1931 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1932 }
1933 
1934 static struct bin_attribute dev_bin_attr_report_desc = {
1935 	.attr = { .name = "report_descriptor", .mode = 0444 },
1936 	.read = read_report_descriptor,
1937 	.size = HID_MAX_DESCRIPTOR_SIZE,
1938 };
1939 
1940 static const struct device_attribute dev_attr_country = {
1941 	.attr = { .name = "country", .mode = 0444 },
1942 	.show = show_country,
1943 };
1944 
hid_connect(struct hid_device * hdev,unsigned int connect_mask)1945 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1946 {
1947 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1948 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1949 		"Multi-Axis Controller"
1950 	};
1951 	const char *type, *bus;
1952 	char buf[64] = "";
1953 	unsigned int i;
1954 	int len;
1955 	int ret;
1956 
1957 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1958 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1959 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1960 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1961 	if (hdev->bus != BUS_USB)
1962 		connect_mask &= ~HID_CONNECT_HIDDEV;
1963 	if (hid_hiddev(hdev))
1964 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1965 
1966 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1967 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1968 		hdev->claimed |= HID_CLAIMED_INPUT;
1969 
1970 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1971 			!hdev->hiddev_connect(hdev,
1972 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1973 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1974 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1975 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1976 
1977 	if (connect_mask & HID_CONNECT_DRIVER)
1978 		hdev->claimed |= HID_CLAIMED_DRIVER;
1979 
1980 	/* Drivers with the ->raw_event callback set are not required to connect
1981 	 * to any other listener. */
1982 	if (!hdev->claimed && !hdev->driver->raw_event) {
1983 		hid_err(hdev, "device has no listeners, quitting\n");
1984 		return -ENODEV;
1985 	}
1986 
1987 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1988 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1989 		hdev->ff_init(hdev);
1990 
1991 	len = 0;
1992 	if (hdev->claimed & HID_CLAIMED_INPUT)
1993 		len += sprintf(buf + len, "input");
1994 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1995 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1996 				((struct hiddev *)hdev->hiddev)->minor);
1997 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1998 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1999 				((struct hidraw *)hdev->hidraw)->minor);
2000 
2001 	type = "Device";
2002 	for (i = 0; i < hdev->maxcollection; i++) {
2003 		struct hid_collection *col = &hdev->collection[i];
2004 		if (col->type == HID_COLLECTION_APPLICATION &&
2005 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2006 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2007 			type = types[col->usage & 0xffff];
2008 			break;
2009 		}
2010 	}
2011 
2012 	switch (hdev->bus) {
2013 	case BUS_USB:
2014 		bus = "USB";
2015 		break;
2016 	case BUS_BLUETOOTH:
2017 		bus = "BLUETOOTH";
2018 		break;
2019 	case BUS_I2C:
2020 		bus = "I2C";
2021 		break;
2022 	case BUS_VIRTUAL:
2023 		bus = "VIRTUAL";
2024 		break;
2025 	default:
2026 		bus = "<UNKNOWN>";
2027 	}
2028 
2029 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2030 	if (ret)
2031 		hid_warn(hdev,
2032 			 "can't create sysfs country code attribute err: %d\n", ret);
2033 
2034 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2035 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2036 		 type, hdev->name, hdev->phys);
2037 
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(hid_connect);
2041 
hid_disconnect(struct hid_device * hdev)2042 void hid_disconnect(struct hid_device *hdev)
2043 {
2044 	device_remove_file(&hdev->dev, &dev_attr_country);
2045 	if (hdev->claimed & HID_CLAIMED_INPUT)
2046 		hidinput_disconnect(hdev);
2047 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2048 		hdev->hiddev_disconnect(hdev);
2049 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2050 		hidraw_disconnect(hdev);
2051 	hdev->claimed = 0;
2052 }
2053 EXPORT_SYMBOL_GPL(hid_disconnect);
2054 
2055 /**
2056  * hid_hw_start - start underlying HW
2057  * @hdev: hid device
2058  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2059  *
2060  * Call this in probe function *after* hid_parse. This will setup HW
2061  * buffers and start the device (if not defeirred to device open).
2062  * hid_hw_stop must be called if this was successful.
2063  */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2064 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2065 {
2066 	int error;
2067 
2068 	error = hdev->ll_driver->start(hdev);
2069 	if (error)
2070 		return error;
2071 
2072 	if (connect_mask) {
2073 		error = hid_connect(hdev, connect_mask);
2074 		if (error) {
2075 			hdev->ll_driver->stop(hdev);
2076 			return error;
2077 		}
2078 	}
2079 
2080 	return 0;
2081 }
2082 EXPORT_SYMBOL_GPL(hid_hw_start);
2083 
2084 /**
2085  * hid_hw_stop - stop underlying HW
2086  * @hdev: hid device
2087  *
2088  * This is usually called from remove function or from probe when something
2089  * failed and hid_hw_start was called already.
2090  */
hid_hw_stop(struct hid_device * hdev)2091 void hid_hw_stop(struct hid_device *hdev)
2092 {
2093 	hid_disconnect(hdev);
2094 	hdev->ll_driver->stop(hdev);
2095 }
2096 EXPORT_SYMBOL_GPL(hid_hw_stop);
2097 
2098 /**
2099  * hid_hw_open - signal underlying HW to start delivering events
2100  * @hdev: hid device
2101  *
2102  * Tell underlying HW to start delivering events from the device.
2103  * This function should be called sometime after successful call
2104  * to hid_hw_start().
2105  */
hid_hw_open(struct hid_device * hdev)2106 int hid_hw_open(struct hid_device *hdev)
2107 {
2108 	int ret;
2109 
2110 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2111 	if (ret)
2112 		return ret;
2113 
2114 	if (!hdev->ll_open_count++) {
2115 		ret = hdev->ll_driver->open(hdev);
2116 		if (ret)
2117 			hdev->ll_open_count--;
2118 	}
2119 
2120 	mutex_unlock(&hdev->ll_open_lock);
2121 	return ret;
2122 }
2123 EXPORT_SYMBOL_GPL(hid_hw_open);
2124 
2125 /**
2126  * hid_hw_close - signal underlaying HW to stop delivering events
2127  *
2128  * @hdev: hid device
2129  *
2130  * This function indicates that we are not interested in the events
2131  * from this device anymore. Delivery of events may or may not stop,
2132  * depending on the number of users still outstanding.
2133  */
hid_hw_close(struct hid_device * hdev)2134 void hid_hw_close(struct hid_device *hdev)
2135 {
2136 	mutex_lock(&hdev->ll_open_lock);
2137 	if (!--hdev->ll_open_count)
2138 		hdev->ll_driver->close(hdev);
2139 	mutex_unlock(&hdev->ll_open_lock);
2140 }
2141 EXPORT_SYMBOL_GPL(hid_hw_close);
2142 
2143 struct hid_dynid {
2144 	struct list_head list;
2145 	struct hid_device_id id;
2146 };
2147 
2148 /**
2149  * new_id_store - add a new HID device ID to this driver and re-probe devices
2150  * @drv: target device driver
2151  * @buf: buffer for scanning device ID data
2152  * @count: input size
2153  *
2154  * Adds a new dynamic hid device ID to this driver,
2155  * and causes the driver to probe for all devices again.
2156  */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2157 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2158 		size_t count)
2159 {
2160 	struct hid_driver *hdrv = to_hid_driver(drv);
2161 	struct hid_dynid *dynid;
2162 	__u32 bus, vendor, product;
2163 	unsigned long driver_data = 0;
2164 	int ret;
2165 
2166 	ret = sscanf(buf, "%x %x %x %lx",
2167 			&bus, &vendor, &product, &driver_data);
2168 	if (ret < 3)
2169 		return -EINVAL;
2170 
2171 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2172 	if (!dynid)
2173 		return -ENOMEM;
2174 
2175 	dynid->id.bus = bus;
2176 	dynid->id.group = HID_GROUP_ANY;
2177 	dynid->id.vendor = vendor;
2178 	dynid->id.product = product;
2179 	dynid->id.driver_data = driver_data;
2180 
2181 	spin_lock(&hdrv->dyn_lock);
2182 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2183 	spin_unlock(&hdrv->dyn_lock);
2184 
2185 	ret = driver_attach(&hdrv->driver);
2186 
2187 	return ret ? : count;
2188 }
2189 static DRIVER_ATTR_WO(new_id);
2190 
2191 static struct attribute *hid_drv_attrs[] = {
2192 	&driver_attr_new_id.attr,
2193 	NULL,
2194 };
2195 ATTRIBUTE_GROUPS(hid_drv);
2196 
hid_free_dynids(struct hid_driver * hdrv)2197 static void hid_free_dynids(struct hid_driver *hdrv)
2198 {
2199 	struct hid_dynid *dynid, *n;
2200 
2201 	spin_lock(&hdrv->dyn_lock);
2202 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2203 		list_del(&dynid->list);
2204 		kfree(dynid);
2205 	}
2206 	spin_unlock(&hdrv->dyn_lock);
2207 }
2208 
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2209 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2210 					     struct hid_driver *hdrv)
2211 {
2212 	struct hid_dynid *dynid;
2213 
2214 	spin_lock(&hdrv->dyn_lock);
2215 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2216 		if (hid_match_one_id(hdev, &dynid->id)) {
2217 			spin_unlock(&hdrv->dyn_lock);
2218 			return &dynid->id;
2219 		}
2220 	}
2221 	spin_unlock(&hdrv->dyn_lock);
2222 
2223 	return hid_match_id(hdev, hdrv->id_table);
2224 }
2225 EXPORT_SYMBOL_GPL(hid_match_device);
2226 
hid_bus_match(struct device * dev,struct device_driver * drv)2227 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2228 {
2229 	struct hid_driver *hdrv = to_hid_driver(drv);
2230 	struct hid_device *hdev = to_hid_device(dev);
2231 
2232 	return hid_match_device(hdev, hdrv) != NULL;
2233 }
2234 
2235 /**
2236  * hid_compare_device_paths - check if both devices share the same path
2237  * @hdev_a: hid device
2238  * @hdev_b: hid device
2239  * @separator: char to use as separator
2240  *
2241  * Check if two devices share the same path up to the last occurrence of
2242  * the separator char. Both paths must exist (i.e., zero-length paths
2243  * don't match).
2244  */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2245 bool hid_compare_device_paths(struct hid_device *hdev_a,
2246 			      struct hid_device *hdev_b, char separator)
2247 {
2248 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2249 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2250 
2251 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2252 		return false;
2253 
2254 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2255 }
2256 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2257 
hid_device_probe(struct device * dev)2258 static int hid_device_probe(struct device *dev)
2259 {
2260 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2261 	struct hid_device *hdev = to_hid_device(dev);
2262 	const struct hid_device_id *id;
2263 	int ret = 0;
2264 
2265 	if (down_interruptible(&hdev->driver_input_lock)) {
2266 		ret = -EINTR;
2267 		goto end;
2268 	}
2269 	hdev->io_started = false;
2270 
2271 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2272 
2273 	if (!hdev->driver) {
2274 		id = hid_match_device(hdev, hdrv);
2275 		if (id == NULL) {
2276 			ret = -ENODEV;
2277 			goto unlock;
2278 		}
2279 
2280 		if (hdrv->match) {
2281 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2282 				ret = -ENODEV;
2283 				goto unlock;
2284 			}
2285 		} else {
2286 			/*
2287 			 * hid-generic implements .match(), so if
2288 			 * hid_ignore_special_drivers is set, we can safely
2289 			 * return.
2290 			 */
2291 			if (hid_ignore_special_drivers) {
2292 				ret = -ENODEV;
2293 				goto unlock;
2294 			}
2295 		}
2296 
2297 		/* reset the quirks that has been previously set */
2298 		hdev->quirks = hid_lookup_quirk(hdev);
2299 		hdev->driver = hdrv;
2300 		if (hdrv->probe) {
2301 			ret = hdrv->probe(hdev, id);
2302 		} else { /* default probe */
2303 			ret = hid_open_report(hdev);
2304 			if (!ret)
2305 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2306 		}
2307 		if (ret) {
2308 			hid_close_report(hdev);
2309 			hdev->driver = NULL;
2310 		}
2311 	}
2312 unlock:
2313 	if (!hdev->io_started)
2314 		up(&hdev->driver_input_lock);
2315 end:
2316 	return ret;
2317 }
2318 
hid_device_remove(struct device * dev)2319 static void hid_device_remove(struct device *dev)
2320 {
2321 	struct hid_device *hdev = to_hid_device(dev);
2322 	struct hid_driver *hdrv;
2323 
2324 	down(&hdev->driver_input_lock);
2325 	hdev->io_started = false;
2326 
2327 	hdrv = hdev->driver;
2328 	if (hdrv) {
2329 		if (hdrv->remove)
2330 			hdrv->remove(hdev);
2331 		else /* default remove */
2332 			hid_hw_stop(hdev);
2333 		hid_close_report(hdev);
2334 		hdev->driver = NULL;
2335 	}
2336 
2337 	if (!hdev->io_started)
2338 		up(&hdev->driver_input_lock);
2339 }
2340 
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2341 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2342 			     char *buf)
2343 {
2344 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2345 
2346 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2347 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2348 }
2349 static DEVICE_ATTR_RO(modalias);
2350 
2351 static struct attribute *hid_dev_attrs[] = {
2352 	&dev_attr_modalias.attr,
2353 	NULL,
2354 };
2355 static struct bin_attribute *hid_dev_bin_attrs[] = {
2356 	&dev_bin_attr_report_desc,
2357 	NULL
2358 };
2359 static const struct attribute_group hid_dev_group = {
2360 	.attrs = hid_dev_attrs,
2361 	.bin_attrs = hid_dev_bin_attrs,
2362 };
2363 __ATTRIBUTE_GROUPS(hid_dev);
2364 
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2365 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2366 {
2367 	struct hid_device *hdev = to_hid_device(dev);
2368 
2369 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2370 			hdev->bus, hdev->vendor, hdev->product))
2371 		return -ENOMEM;
2372 
2373 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2374 		return -ENOMEM;
2375 
2376 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2377 		return -ENOMEM;
2378 
2379 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2380 		return -ENOMEM;
2381 
2382 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2383 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2384 		return -ENOMEM;
2385 
2386 	return 0;
2387 }
2388 
2389 struct bus_type hid_bus_type = {
2390 	.name		= "hid",
2391 	.dev_groups	= hid_dev_groups,
2392 	.drv_groups	= hid_drv_groups,
2393 	.match		= hid_bus_match,
2394 	.probe		= hid_device_probe,
2395 	.remove		= hid_device_remove,
2396 	.uevent		= hid_uevent,
2397 };
2398 EXPORT_SYMBOL(hid_bus_type);
2399 
hid_add_device(struct hid_device * hdev)2400 int hid_add_device(struct hid_device *hdev)
2401 {
2402 	static atomic_t id = ATOMIC_INIT(0);
2403 	int ret;
2404 
2405 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2406 		return -EBUSY;
2407 
2408 	hdev->quirks = hid_lookup_quirk(hdev);
2409 
2410 	/* we need to kill them here, otherwise they will stay allocated to
2411 	 * wait for coming driver */
2412 	if (hid_ignore(hdev))
2413 		return -ENODEV;
2414 
2415 	/*
2416 	 * Check for the mandatory transport channel.
2417 	 */
2418 	 if (!hdev->ll_driver->raw_request) {
2419 		hid_err(hdev, "transport driver missing .raw_request()\n");
2420 		return -EINVAL;
2421 	 }
2422 
2423 	/*
2424 	 * Read the device report descriptor once and use as template
2425 	 * for the driver-specific modifications.
2426 	 */
2427 	ret = hdev->ll_driver->parse(hdev);
2428 	if (ret)
2429 		return ret;
2430 	if (!hdev->dev_rdesc)
2431 		return -ENODEV;
2432 
2433 	/*
2434 	 * Scan generic devices for group information
2435 	 */
2436 	if (hid_ignore_special_drivers) {
2437 		hdev->group = HID_GROUP_GENERIC;
2438 	} else if (!hdev->group &&
2439 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2440 		ret = hid_scan_report(hdev);
2441 		if (ret)
2442 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2443 	}
2444 
2445 	/* XXX hack, any other cleaner solution after the driver core
2446 	 * is converted to allow more than 20 bytes as the device name? */
2447 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2448 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2449 
2450 	hid_debug_register(hdev, dev_name(&hdev->dev));
2451 	ret = device_add(&hdev->dev);
2452 	if (!ret)
2453 		hdev->status |= HID_STAT_ADDED;
2454 	else
2455 		hid_debug_unregister(hdev);
2456 
2457 	return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(hid_add_device);
2460 
2461 /**
2462  * hid_allocate_device - allocate new hid device descriptor
2463  *
2464  * Allocate and initialize hid device, so that hid_destroy_device might be
2465  * used to free it.
2466  *
2467  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2468  * error value.
2469  */
hid_allocate_device(void)2470 struct hid_device *hid_allocate_device(void)
2471 {
2472 	struct hid_device *hdev;
2473 	int ret = -ENOMEM;
2474 
2475 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2476 	if (hdev == NULL)
2477 		return ERR_PTR(ret);
2478 
2479 	device_initialize(&hdev->dev);
2480 	hdev->dev.release = hid_device_release;
2481 	hdev->dev.bus = &hid_bus_type;
2482 	device_enable_async_suspend(&hdev->dev);
2483 
2484 	hid_close_report(hdev);
2485 
2486 	init_waitqueue_head(&hdev->debug_wait);
2487 	INIT_LIST_HEAD(&hdev->debug_list);
2488 	spin_lock_init(&hdev->debug_list_lock);
2489 	sema_init(&hdev->driver_input_lock, 1);
2490 	mutex_init(&hdev->ll_open_lock);
2491 
2492 	return hdev;
2493 }
2494 EXPORT_SYMBOL_GPL(hid_allocate_device);
2495 
hid_remove_device(struct hid_device * hdev)2496 static void hid_remove_device(struct hid_device *hdev)
2497 {
2498 	if (hdev->status & HID_STAT_ADDED) {
2499 		device_del(&hdev->dev);
2500 		hid_debug_unregister(hdev);
2501 		hdev->status &= ~HID_STAT_ADDED;
2502 	}
2503 	kfree(hdev->dev_rdesc);
2504 	hdev->dev_rdesc = NULL;
2505 	hdev->dev_rsize = 0;
2506 }
2507 
2508 /**
2509  * hid_destroy_device - free previously allocated device
2510  *
2511  * @hdev: hid device
2512  *
2513  * If you allocate hid_device through hid_allocate_device, you should ever
2514  * free by this function.
2515  */
hid_destroy_device(struct hid_device * hdev)2516 void hid_destroy_device(struct hid_device *hdev)
2517 {
2518 	hid_remove_device(hdev);
2519 	put_device(&hdev->dev);
2520 }
2521 EXPORT_SYMBOL_GPL(hid_destroy_device);
2522 
2523 
__hid_bus_reprobe_drivers(struct device * dev,void * data)2524 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2525 {
2526 	struct hid_driver *hdrv = data;
2527 	struct hid_device *hdev = to_hid_device(dev);
2528 
2529 	if (hdev->driver == hdrv &&
2530 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2531 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2532 		return device_reprobe(dev);
2533 
2534 	return 0;
2535 }
2536 
__hid_bus_driver_added(struct device_driver * drv,void * data)2537 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2538 {
2539 	struct hid_driver *hdrv = to_hid_driver(drv);
2540 
2541 	if (hdrv->match) {
2542 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2543 				 __hid_bus_reprobe_drivers);
2544 	}
2545 
2546 	return 0;
2547 }
2548 
__bus_removed_driver(struct device_driver * drv,void * data)2549 static int __bus_removed_driver(struct device_driver *drv, void *data)
2550 {
2551 	return bus_rescan_devices(&hid_bus_type);
2552 }
2553 
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2554 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2555 		const char *mod_name)
2556 {
2557 	int ret;
2558 
2559 	hdrv->driver.name = hdrv->name;
2560 	hdrv->driver.bus = &hid_bus_type;
2561 	hdrv->driver.owner = owner;
2562 	hdrv->driver.mod_name = mod_name;
2563 
2564 	INIT_LIST_HEAD(&hdrv->dyn_list);
2565 	spin_lock_init(&hdrv->dyn_lock);
2566 
2567 	ret = driver_register(&hdrv->driver);
2568 
2569 	if (ret == 0)
2570 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2571 				 __hid_bus_driver_added);
2572 
2573 	return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(__hid_register_driver);
2576 
hid_unregister_driver(struct hid_driver * hdrv)2577 void hid_unregister_driver(struct hid_driver *hdrv)
2578 {
2579 	driver_unregister(&hdrv->driver);
2580 	hid_free_dynids(hdrv);
2581 
2582 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2583 }
2584 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2585 
hid_check_keys_pressed(struct hid_device * hid)2586 int hid_check_keys_pressed(struct hid_device *hid)
2587 {
2588 	struct hid_input *hidinput;
2589 	int i;
2590 
2591 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2592 		return 0;
2593 
2594 	list_for_each_entry(hidinput, &hid->inputs, list) {
2595 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2596 			if (hidinput->input->key[i])
2597 				return 1;
2598 	}
2599 
2600 	return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2603 
hid_init(void)2604 static int __init hid_init(void)
2605 {
2606 	int ret;
2607 
2608 	if (hid_debug)
2609 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2610 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2611 
2612 	ret = bus_register(&hid_bus_type);
2613 	if (ret) {
2614 		pr_err("can't register hid bus\n");
2615 		goto err;
2616 	}
2617 
2618 	ret = hidraw_init();
2619 	if (ret)
2620 		goto err_bus;
2621 
2622 	hid_debug_init();
2623 
2624 	return 0;
2625 err_bus:
2626 	bus_unregister(&hid_bus_type);
2627 err:
2628 	return ret;
2629 }
2630 
hid_exit(void)2631 static void __exit hid_exit(void)
2632 {
2633 	hid_debug_exit();
2634 	hidraw_exit();
2635 	bus_unregister(&hid_bus_type);
2636 	hid_quirks_exit(HID_BUS_ANY);
2637 }
2638 
2639 module_init(hid_init);
2640 module_exit(hid_exit);
2641 
2642 MODULE_AUTHOR("Andreas Gal");
2643 MODULE_AUTHOR("Vojtech Pavlik");
2644 MODULE_AUTHOR("Jiri Kosina");
2645 MODULE_LICENSE("GPL");
2646