1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11 /*
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39 * Version Information
40 */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54 * Register a new report for a device.
55 */
56
hid_register_report(struct hid_device * device,unsigned int type,unsigned int id,unsigned int application)57 struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
60 {
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84
85 return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88
89 /*
90 * Register a new field for this report.
91 */
92
hid_register_field(struct hid_report * report,unsigned usages)93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
94 {
95 struct hid_field *field;
96
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
100 }
101
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 usages * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
107
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
113
114 return field;
115 }
116
117 /*
118 * Open a collection. The type/usage is pushed on the stack.
119 */
120
open_collection(struct hid_parser * parser,unsigned type)121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
133
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
139
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
142 }
143
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
148 2),
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
153 }
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
163 }
164
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
167
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
175
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
178
179 return 0;
180 }
181
182 /*
183 * Close a collection.
184 */
185
close_collection(struct hid_parser * parser)186 static int close_collection(struct hid_parser *parser)
187 {
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
191 }
192 parser->collection_stack_ptr--;
193 return 0;
194 }
195
196 /*
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
199 */
200
hid_lookup_collection(struct hid_parser * parser,unsigned type)201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 struct hid_collection *collection = parser->device->collection;
204 int n;
205
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
210 }
211 return 0; /* we know nothing about this usage type */
212 }
213
214 /*
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
217 */
218
complete_usage(struct hid_parser * parser,unsigned int index)219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 parser->local.usage[index] &= 0xFFFF;
222 parser->local.usage[index] |=
223 (parser->global.usage_page & 0xFFFF) << 16;
224 }
225
226 /*
227 * Add a usage to the temporary parser table.
228 */
229
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 if (parser->local.usage_index >= HID_MAX_USAGES) {
233 hid_err(parser->device, "usage index exceeded\n");
234 return -1;
235 }
236 parser->local.usage[parser->local.usage_index] = usage;
237
238 /*
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
241 */
242 if (size <= 2)
243 complete_usage(parser, parser->local.usage_index);
244
245 parser->local.usage_size[parser->local.usage_index] = size;
246 parser->local.collection_index[parser->local.usage_index] =
247 parser->collection_stack_ptr ?
248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 parser->local.usage_index++;
250 return 0;
251 }
252
253 /*
254 * Register a new field for this report.
255 */
256
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 struct hid_report *report;
260 struct hid_field *field;
261 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
262 unsigned int usages;
263 unsigned int offset;
264 unsigned int i;
265 unsigned int application;
266
267 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
268
269 report = hid_register_report(parser->device, report_type,
270 parser->global.report_id, application);
271 if (!report) {
272 hid_err(parser->device, "hid_register_report failed\n");
273 return -1;
274 }
275
276 /* Handle both signed and unsigned cases properly */
277 if ((parser->global.logical_minimum < 0 &&
278 parser->global.logical_maximum <
279 parser->global.logical_minimum) ||
280 (parser->global.logical_minimum >= 0 &&
281 (__u32)parser->global.logical_maximum <
282 (__u32)parser->global.logical_minimum)) {
283 dbg_hid("logical range invalid 0x%x 0x%x\n",
284 parser->global.logical_minimum,
285 parser->global.logical_maximum);
286 return -1;
287 }
288
289 offset = report->size;
290 report->size += parser->global.report_size * parser->global.report_count;
291
292 if (parser->device->ll_driver->max_buffer_size)
293 max_buffer_size = parser->device->ll_driver->max_buffer_size;
294
295 /* Total size check: Allow for possible report index byte */
296 if (report->size > (max_buffer_size - 1) << 3) {
297 hid_err(parser->device, "report is too long\n");
298 return -1;
299 }
300
301 if (!parser->local.usage_index) /* Ignore padding fields */
302 return 0;
303
304 usages = max_t(unsigned, parser->local.usage_index,
305 parser->global.report_count);
306
307 field = hid_register_field(report, usages);
308 if (!field)
309 return 0;
310
311 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
312 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
313 field->application = application;
314
315 for (i = 0; i < usages; i++) {
316 unsigned j = i;
317 /* Duplicate the last usage we parsed if we have excess values */
318 if (i >= parser->local.usage_index)
319 j = parser->local.usage_index - 1;
320 field->usage[i].hid = parser->local.usage[j];
321 field->usage[i].collection_index =
322 parser->local.collection_index[j];
323 field->usage[i].usage_index = i;
324 field->usage[i].resolution_multiplier = 1;
325 }
326
327 field->maxusage = usages;
328 field->flags = flags;
329 field->report_offset = offset;
330 field->report_type = report_type;
331 field->report_size = parser->global.report_size;
332 field->report_count = parser->global.report_count;
333 field->logical_minimum = parser->global.logical_minimum;
334 field->logical_maximum = parser->global.logical_maximum;
335 field->physical_minimum = parser->global.physical_minimum;
336 field->physical_maximum = parser->global.physical_maximum;
337 field->unit_exponent = parser->global.unit_exponent;
338 field->unit = parser->global.unit;
339
340 return 0;
341 }
342
343 /*
344 * Read data value from item.
345 */
346
item_udata(struct hid_item * item)347 static u32 item_udata(struct hid_item *item)
348 {
349 switch (item->size) {
350 case 1: return item->data.u8;
351 case 2: return item->data.u16;
352 case 4: return item->data.u32;
353 }
354 return 0;
355 }
356
item_sdata(struct hid_item * item)357 static s32 item_sdata(struct hid_item *item)
358 {
359 switch (item->size) {
360 case 1: return item->data.s8;
361 case 2: return item->data.s16;
362 case 4: return item->data.s32;
363 }
364 return 0;
365 }
366
367 /*
368 * Process a global item.
369 */
370
hid_parser_global(struct hid_parser * parser,struct hid_item * item)371 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
372 {
373 __s32 raw_value;
374 switch (item->tag) {
375 case HID_GLOBAL_ITEM_TAG_PUSH:
376
377 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
378 hid_err(parser->device, "global environment stack overflow\n");
379 return -1;
380 }
381
382 memcpy(parser->global_stack + parser->global_stack_ptr++,
383 &parser->global, sizeof(struct hid_global));
384 return 0;
385
386 case HID_GLOBAL_ITEM_TAG_POP:
387
388 if (!parser->global_stack_ptr) {
389 hid_err(parser->device, "global environment stack underflow\n");
390 return -1;
391 }
392
393 memcpy(&parser->global, parser->global_stack +
394 --parser->global_stack_ptr, sizeof(struct hid_global));
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
398 parser->global.usage_page = item_udata(item);
399 return 0;
400
401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
402 parser->global.logical_minimum = item_sdata(item);
403 return 0;
404
405 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
406 if (parser->global.logical_minimum < 0)
407 parser->global.logical_maximum = item_sdata(item);
408 else
409 parser->global.logical_maximum = item_udata(item);
410 return 0;
411
412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
413 parser->global.physical_minimum = item_sdata(item);
414 return 0;
415
416 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
417 if (parser->global.physical_minimum < 0)
418 parser->global.physical_maximum = item_sdata(item);
419 else
420 parser->global.physical_maximum = item_udata(item);
421 return 0;
422
423 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
424 /* Many devices provide unit exponent as a two's complement
425 * nibble due to the common misunderstanding of HID
426 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
427 * both this and the standard encoding. */
428 raw_value = item_sdata(item);
429 if (!(raw_value & 0xfffffff0))
430 parser->global.unit_exponent = hid_snto32(raw_value, 4);
431 else
432 parser->global.unit_exponent = raw_value;
433 return 0;
434
435 case HID_GLOBAL_ITEM_TAG_UNIT:
436 parser->global.unit = item_udata(item);
437 return 0;
438
439 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
440 parser->global.report_size = item_udata(item);
441 if (parser->global.report_size > 256) {
442 hid_err(parser->device, "invalid report_size %d\n",
443 parser->global.report_size);
444 return -1;
445 }
446 return 0;
447
448 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
449 parser->global.report_count = item_udata(item);
450 if (parser->global.report_count > HID_MAX_USAGES) {
451 hid_err(parser->device, "invalid report_count %d\n",
452 parser->global.report_count);
453 return -1;
454 }
455 return 0;
456
457 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
458 parser->global.report_id = item_udata(item);
459 if (parser->global.report_id == 0 ||
460 parser->global.report_id >= HID_MAX_IDS) {
461 hid_err(parser->device, "report_id %u is invalid\n",
462 parser->global.report_id);
463 return -1;
464 }
465 return 0;
466
467 default:
468 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
469 return -1;
470 }
471 }
472
473 /*
474 * Process a local item.
475 */
476
hid_parser_local(struct hid_parser * parser,struct hid_item * item)477 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
478 {
479 __u32 data;
480 unsigned n;
481 __u32 count;
482
483 data = item_udata(item);
484
485 switch (item->tag) {
486 case HID_LOCAL_ITEM_TAG_DELIMITER:
487
488 if (data) {
489 /*
490 * We treat items before the first delimiter
491 * as global to all usage sets (branch 0).
492 * In the moment we process only these global
493 * items and the first delimiter set.
494 */
495 if (parser->local.delimiter_depth != 0) {
496 hid_err(parser->device, "nested delimiters\n");
497 return -1;
498 }
499 parser->local.delimiter_depth++;
500 parser->local.delimiter_branch++;
501 } else {
502 if (parser->local.delimiter_depth < 1) {
503 hid_err(parser->device, "bogus close delimiter\n");
504 return -1;
505 }
506 parser->local.delimiter_depth--;
507 }
508 return 0;
509
510 case HID_LOCAL_ITEM_TAG_USAGE:
511
512 if (parser->local.delimiter_branch > 1) {
513 dbg_hid("alternative usage ignored\n");
514 return 0;
515 }
516
517 return hid_add_usage(parser, data, item->size);
518
519 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
520
521 if (parser->local.delimiter_branch > 1) {
522 dbg_hid("alternative usage ignored\n");
523 return 0;
524 }
525
526 parser->local.usage_minimum = data;
527 return 0;
528
529 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
530
531 if (parser->local.delimiter_branch > 1) {
532 dbg_hid("alternative usage ignored\n");
533 return 0;
534 }
535
536 count = data - parser->local.usage_minimum;
537 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
538 /*
539 * We do not warn if the name is not set, we are
540 * actually pre-scanning the device.
541 */
542 if (dev_name(&parser->device->dev))
543 hid_warn(parser->device,
544 "ignoring exceeding usage max\n");
545 data = HID_MAX_USAGES - parser->local.usage_index +
546 parser->local.usage_minimum - 1;
547 if (data <= 0) {
548 hid_err(parser->device,
549 "no more usage index available\n");
550 return -1;
551 }
552 }
553
554 for (n = parser->local.usage_minimum; n <= data; n++)
555 if (hid_add_usage(parser, n, item->size)) {
556 dbg_hid("hid_add_usage failed\n");
557 return -1;
558 }
559 return 0;
560
561 default:
562
563 dbg_hid("unknown local item tag 0x%x\n", item->tag);
564 return 0;
565 }
566 return 0;
567 }
568
569 /*
570 * Concatenate Usage Pages into Usages where relevant:
571 * As per specification, 6.2.2.8: "When the parser encounters a main item it
572 * concatenates the last declared Usage Page with a Usage to form a complete
573 * usage value."
574 */
575
hid_concatenate_last_usage_page(struct hid_parser * parser)576 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
577 {
578 int i;
579 unsigned int usage_page;
580 unsigned int current_page;
581
582 if (!parser->local.usage_index)
583 return;
584
585 usage_page = parser->global.usage_page;
586
587 /*
588 * Concatenate usage page again only if last declared Usage Page
589 * has not been already used in previous usages concatenation
590 */
591 for (i = parser->local.usage_index - 1; i >= 0; i--) {
592 if (parser->local.usage_size[i] > 2)
593 /* Ignore extended usages */
594 continue;
595
596 current_page = parser->local.usage[i] >> 16;
597 if (current_page == usage_page)
598 break;
599
600 complete_usage(parser, i);
601 }
602 }
603
604 /*
605 * Process a main item.
606 */
607
hid_parser_main(struct hid_parser * parser,struct hid_item * item)608 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
609 {
610 __u32 data;
611 int ret;
612
613 hid_concatenate_last_usage_page(parser);
614
615 data = item_udata(item);
616
617 switch (item->tag) {
618 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
619 ret = open_collection(parser, data & 0xff);
620 break;
621 case HID_MAIN_ITEM_TAG_END_COLLECTION:
622 ret = close_collection(parser);
623 break;
624 case HID_MAIN_ITEM_TAG_INPUT:
625 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
626 break;
627 case HID_MAIN_ITEM_TAG_OUTPUT:
628 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
629 break;
630 case HID_MAIN_ITEM_TAG_FEATURE:
631 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
632 break;
633 default:
634 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
635 ret = 0;
636 }
637
638 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
639
640 return ret;
641 }
642
643 /*
644 * Process a reserved item.
645 */
646
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)647 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
648 {
649 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
650 return 0;
651 }
652
653 /*
654 * Free a report and all registered fields. The field->usage and
655 * field->value table's are allocated behind the field, so we need
656 * only to free(field) itself.
657 */
658
hid_free_report(struct hid_report * report)659 static void hid_free_report(struct hid_report *report)
660 {
661 unsigned n;
662
663 for (n = 0; n < report->maxfield; n++)
664 kfree(report->field[n]);
665 kfree(report);
666 }
667
668 /*
669 * Close report. This function returns the device
670 * state to the point prior to hid_open_report().
671 */
hid_close_report(struct hid_device * device)672 static void hid_close_report(struct hid_device *device)
673 {
674 unsigned i, j;
675
676 for (i = 0; i < HID_REPORT_TYPES; i++) {
677 struct hid_report_enum *report_enum = device->report_enum + i;
678
679 for (j = 0; j < HID_MAX_IDS; j++) {
680 struct hid_report *report = report_enum->report_id_hash[j];
681 if (report)
682 hid_free_report(report);
683 }
684 memset(report_enum, 0, sizeof(*report_enum));
685 INIT_LIST_HEAD(&report_enum->report_list);
686 }
687
688 kfree(device->rdesc);
689 device->rdesc = NULL;
690 device->rsize = 0;
691
692 kfree(device->collection);
693 device->collection = NULL;
694 device->collection_size = 0;
695 device->maxcollection = 0;
696 device->maxapplication = 0;
697
698 device->status &= ~HID_STAT_PARSED;
699 }
700
701 /*
702 * Free a device structure, all reports, and all fields.
703 */
704
hid_device_release(struct device * dev)705 static void hid_device_release(struct device *dev)
706 {
707 struct hid_device *hid = to_hid_device(dev);
708
709 hid_close_report(hid);
710 kfree(hid->dev_rdesc);
711 kfree(hid);
712 }
713
714 /*
715 * Fetch a report description item from the data stream. We support long
716 * items, though they are not used yet.
717 */
718
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)719 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
720 {
721 u8 b;
722
723 if ((end - start) <= 0)
724 return NULL;
725
726 b = *start++;
727
728 item->type = (b >> 2) & 3;
729 item->tag = (b >> 4) & 15;
730
731 if (item->tag == HID_ITEM_TAG_LONG) {
732
733 item->format = HID_ITEM_FORMAT_LONG;
734
735 if ((end - start) < 2)
736 return NULL;
737
738 item->size = *start++;
739 item->tag = *start++;
740
741 if ((end - start) < item->size)
742 return NULL;
743
744 item->data.longdata = start;
745 start += item->size;
746 return start;
747 }
748
749 item->format = HID_ITEM_FORMAT_SHORT;
750 item->size = b & 3;
751
752 switch (item->size) {
753 case 0:
754 return start;
755
756 case 1:
757 if ((end - start) < 1)
758 return NULL;
759 item->data.u8 = *start++;
760 return start;
761
762 case 2:
763 if ((end - start) < 2)
764 return NULL;
765 item->data.u16 = get_unaligned_le16(start);
766 start = (__u8 *)((__le16 *)start + 1);
767 return start;
768
769 case 3:
770 item->size++;
771 if ((end - start) < 4)
772 return NULL;
773 item->data.u32 = get_unaligned_le32(start);
774 start = (__u8 *)((__le32 *)start + 1);
775 return start;
776 }
777
778 return NULL;
779 }
780
hid_scan_input_usage(struct hid_parser * parser,u32 usage)781 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
782 {
783 struct hid_device *hid = parser->device;
784
785 if (usage == HID_DG_CONTACTID)
786 hid->group = HID_GROUP_MULTITOUCH;
787 }
788
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)789 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
790 {
791 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
792 parser->global.report_size == 8)
793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794
795 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
796 parser->global.report_size == 8)
797 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
798 }
799
hid_scan_collection(struct hid_parser * parser,unsigned type)800 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
801 {
802 struct hid_device *hid = parser->device;
803 int i;
804
805 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
806 type == HID_COLLECTION_PHYSICAL)
807 hid->group = HID_GROUP_SENSOR_HUB;
808
809 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
810 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
811 hid->group == HID_GROUP_MULTITOUCH)
812 hid->group = HID_GROUP_GENERIC;
813
814 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
815 for (i = 0; i < parser->local.usage_index; i++)
816 if (parser->local.usage[i] == HID_GD_POINTER)
817 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
818
819 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
820 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
821
822 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
823 for (i = 0; i < parser->local.usage_index; i++)
824 if (parser->local.usage[i] ==
825 (HID_UP_GOOGLEVENDOR | 0x0001))
826 parser->device->group =
827 HID_GROUP_VIVALDI;
828 }
829
hid_scan_main(struct hid_parser * parser,struct hid_item * item)830 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
831 {
832 __u32 data;
833 int i;
834
835 hid_concatenate_last_usage_page(parser);
836
837 data = item_udata(item);
838
839 switch (item->tag) {
840 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
841 hid_scan_collection(parser, data & 0xff);
842 break;
843 case HID_MAIN_ITEM_TAG_END_COLLECTION:
844 break;
845 case HID_MAIN_ITEM_TAG_INPUT:
846 /* ignore constant inputs, they will be ignored by hid-input */
847 if (data & HID_MAIN_ITEM_CONSTANT)
848 break;
849 for (i = 0; i < parser->local.usage_index; i++)
850 hid_scan_input_usage(parser, parser->local.usage[i]);
851 break;
852 case HID_MAIN_ITEM_TAG_OUTPUT:
853 break;
854 case HID_MAIN_ITEM_TAG_FEATURE:
855 for (i = 0; i < parser->local.usage_index; i++)
856 hid_scan_feature_usage(parser, parser->local.usage[i]);
857 break;
858 }
859
860 /* Reset the local parser environment */
861 memset(&parser->local, 0, sizeof(parser->local));
862
863 return 0;
864 }
865
866 /*
867 * Scan a report descriptor before the device is added to the bus.
868 * Sets device groups and other properties that determine what driver
869 * to load.
870 */
hid_scan_report(struct hid_device * hid)871 static int hid_scan_report(struct hid_device *hid)
872 {
873 struct hid_parser *parser;
874 struct hid_item item;
875 __u8 *start = hid->dev_rdesc;
876 __u8 *end = start + hid->dev_rsize;
877 static int (*dispatch_type[])(struct hid_parser *parser,
878 struct hid_item *item) = {
879 hid_scan_main,
880 hid_parser_global,
881 hid_parser_local,
882 hid_parser_reserved
883 };
884
885 parser = vzalloc(sizeof(struct hid_parser));
886 if (!parser)
887 return -ENOMEM;
888
889 parser->device = hid;
890 hid->group = HID_GROUP_GENERIC;
891
892 /*
893 * The parsing is simpler than the one in hid_open_report() as we should
894 * be robust against hid errors. Those errors will be raised by
895 * hid_open_report() anyway.
896 */
897 while ((start = fetch_item(start, end, &item)) != NULL)
898 dispatch_type[item.type](parser, &item);
899
900 /*
901 * Handle special flags set during scanning.
902 */
903 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
904 (hid->group == HID_GROUP_MULTITOUCH))
905 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
906
907 /*
908 * Vendor specific handlings
909 */
910 switch (hid->vendor) {
911 case USB_VENDOR_ID_WACOM:
912 hid->group = HID_GROUP_WACOM;
913 break;
914 case USB_VENDOR_ID_SYNAPTICS:
915 if (hid->group == HID_GROUP_GENERIC)
916 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
917 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
918 /*
919 * hid-rmi should take care of them,
920 * not hid-generic
921 */
922 hid->group = HID_GROUP_RMI;
923 break;
924 }
925
926 kfree(parser->collection_stack);
927 vfree(parser);
928 return 0;
929 }
930
931 /**
932 * hid_parse_report - parse device report
933 *
934 * @hid: hid device
935 * @start: report start
936 * @size: report size
937 *
938 * Allocate the device report as read by the bus driver. This function should
939 * only be called from parse() in ll drivers.
940 */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)941 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
942 {
943 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
944 if (!hid->dev_rdesc)
945 return -ENOMEM;
946 hid->dev_rsize = size;
947 return 0;
948 }
949 EXPORT_SYMBOL_GPL(hid_parse_report);
950
951 static const char * const hid_report_names[] = {
952 "HID_INPUT_REPORT",
953 "HID_OUTPUT_REPORT",
954 "HID_FEATURE_REPORT",
955 };
956 /**
957 * hid_validate_values - validate existing device report's value indexes
958 *
959 * @hid: hid device
960 * @type: which report type to examine
961 * @id: which report ID to examine (0 for first)
962 * @field_index: which report field to examine
963 * @report_counts: expected number of values
964 *
965 * Validate the number of values in a given field of a given report, after
966 * parsing.
967 */
hid_validate_values(struct hid_device * hid,unsigned int type,unsigned int id,unsigned int field_index,unsigned int report_counts)968 struct hid_report *hid_validate_values(struct hid_device *hid,
969 unsigned int type, unsigned int id,
970 unsigned int field_index,
971 unsigned int report_counts)
972 {
973 struct hid_report *report;
974
975 if (type > HID_FEATURE_REPORT) {
976 hid_err(hid, "invalid HID report type %u\n", type);
977 return NULL;
978 }
979
980 if (id >= HID_MAX_IDS) {
981 hid_err(hid, "invalid HID report id %u\n", id);
982 return NULL;
983 }
984
985 /*
986 * Explicitly not using hid_get_report() here since it depends on
987 * ->numbered being checked, which may not always be the case when
988 * drivers go to access report values.
989 */
990 if (id == 0) {
991 /*
992 * Validating on id 0 means we should examine the first
993 * report in the list.
994 */
995 report = list_first_entry_or_null(
996 &hid->report_enum[type].report_list,
997 struct hid_report, list);
998 } else {
999 report = hid->report_enum[type].report_id_hash[id];
1000 }
1001 if (!report) {
1002 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1003 return NULL;
1004 }
1005 if (report->maxfield <= field_index) {
1006 hid_err(hid, "not enough fields in %s %u\n",
1007 hid_report_names[type], id);
1008 return NULL;
1009 }
1010 if (report->field[field_index]->report_count < report_counts) {
1011 hid_err(hid, "not enough values in %s %u field %u\n",
1012 hid_report_names[type], id, field_index);
1013 return NULL;
1014 }
1015 return report;
1016 }
1017 EXPORT_SYMBOL_GPL(hid_validate_values);
1018
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1019 static int hid_calculate_multiplier(struct hid_device *hid,
1020 struct hid_field *multiplier)
1021 {
1022 int m;
1023 __s32 v = *multiplier->value;
1024 __s32 lmin = multiplier->logical_minimum;
1025 __s32 lmax = multiplier->logical_maximum;
1026 __s32 pmin = multiplier->physical_minimum;
1027 __s32 pmax = multiplier->physical_maximum;
1028
1029 /*
1030 * "Because OS implementations will generally divide the control's
1031 * reported count by the Effective Resolution Multiplier, designers
1032 * should take care not to establish a potential Effective
1033 * Resolution Multiplier of zero."
1034 * HID Usage Table, v1.12, Section 4.3.1, p31
1035 */
1036 if (lmax - lmin == 0)
1037 return 1;
1038 /*
1039 * Handling the unit exponent is left as an exercise to whoever
1040 * finds a device where that exponent is not 0.
1041 */
1042 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1043 if (unlikely(multiplier->unit_exponent != 0)) {
1044 hid_warn(hid,
1045 "unsupported Resolution Multiplier unit exponent %d\n",
1046 multiplier->unit_exponent);
1047 }
1048
1049 /* There are no devices with an effective multiplier > 255 */
1050 if (unlikely(m == 0 || m > 255 || m < -255)) {
1051 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1052 m = 1;
1053 }
1054
1055 return m;
1056 }
1057
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1058 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1059 struct hid_field *field,
1060 struct hid_collection *multiplier_collection,
1061 int effective_multiplier)
1062 {
1063 struct hid_collection *collection;
1064 struct hid_usage *usage;
1065 int i;
1066
1067 /*
1068 * If multiplier_collection is NULL, the multiplier applies
1069 * to all fields in the report.
1070 * Otherwise, it is the Logical Collection the multiplier applies to
1071 * but our field may be in a subcollection of that collection.
1072 */
1073 for (i = 0; i < field->maxusage; i++) {
1074 usage = &field->usage[i];
1075
1076 collection = &hid->collection[usage->collection_index];
1077 while (collection->parent_idx != -1 &&
1078 collection != multiplier_collection)
1079 collection = &hid->collection[collection->parent_idx];
1080
1081 if (collection->parent_idx != -1 ||
1082 multiplier_collection == NULL)
1083 usage->resolution_multiplier = effective_multiplier;
1084
1085 }
1086 }
1087
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1088 static void hid_apply_multiplier(struct hid_device *hid,
1089 struct hid_field *multiplier)
1090 {
1091 struct hid_report_enum *rep_enum;
1092 struct hid_report *rep;
1093 struct hid_field *field;
1094 struct hid_collection *multiplier_collection;
1095 int effective_multiplier;
1096 int i;
1097
1098 /*
1099 * "The Resolution Multiplier control must be contained in the same
1100 * Logical Collection as the control(s) to which it is to be applied.
1101 * If no Resolution Multiplier is defined, then the Resolution
1102 * Multiplier defaults to 1. If more than one control exists in a
1103 * Logical Collection, the Resolution Multiplier is associated with
1104 * all controls in the collection. If no Logical Collection is
1105 * defined, the Resolution Multiplier is associated with all
1106 * controls in the report."
1107 * HID Usage Table, v1.12, Section 4.3.1, p30
1108 *
1109 * Thus, search from the current collection upwards until we find a
1110 * logical collection. Then search all fields for that same parent
1111 * collection. Those are the fields the multiplier applies to.
1112 *
1113 * If we have more than one multiplier, it will overwrite the
1114 * applicable fields later.
1115 */
1116 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1117 while (multiplier_collection->parent_idx != -1 &&
1118 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1119 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1120
1121 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1122
1123 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1124 list_for_each_entry(rep, &rep_enum->report_list, list) {
1125 for (i = 0; i < rep->maxfield; i++) {
1126 field = rep->field[i];
1127 hid_apply_multiplier_to_field(hid, field,
1128 multiplier_collection,
1129 effective_multiplier);
1130 }
1131 }
1132 }
1133
1134 /*
1135 * hid_setup_resolution_multiplier - set up all resolution multipliers
1136 *
1137 * @device: hid device
1138 *
1139 * Search for all Resolution Multiplier Feature Reports and apply their
1140 * value to all matching Input items. This only updates the internal struct
1141 * fields.
1142 *
1143 * The Resolution Multiplier is applied by the hardware. If the multiplier
1144 * is anything other than 1, the hardware will send pre-multiplied events
1145 * so that the same physical interaction generates an accumulated
1146 * accumulated_value = value * * multiplier
1147 * This may be achieved by sending
1148 * - "value * multiplier" for each event, or
1149 * - "value" but "multiplier" times as frequently, or
1150 * - a combination of the above
1151 * The only guarantee is that the same physical interaction always generates
1152 * an accumulated 'value * multiplier'.
1153 *
1154 * This function must be called before any event processing and after
1155 * any SetRequest to the Resolution Multiplier.
1156 */
hid_setup_resolution_multiplier(struct hid_device * hid)1157 void hid_setup_resolution_multiplier(struct hid_device *hid)
1158 {
1159 struct hid_report_enum *rep_enum;
1160 struct hid_report *rep;
1161 struct hid_usage *usage;
1162 int i, j;
1163
1164 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1165 list_for_each_entry(rep, &rep_enum->report_list, list) {
1166 for (i = 0; i < rep->maxfield; i++) {
1167 /* Ignore if report count is out of bounds. */
1168 if (rep->field[i]->report_count < 1)
1169 continue;
1170
1171 for (j = 0; j < rep->field[i]->maxusage; j++) {
1172 usage = &rep->field[i]->usage[j];
1173 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1174 hid_apply_multiplier(hid,
1175 rep->field[i]);
1176 }
1177 }
1178 }
1179 }
1180 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1181
1182 /**
1183 * hid_open_report - open a driver-specific device report
1184 *
1185 * @device: hid device
1186 *
1187 * Parse a report description into a hid_device structure. Reports are
1188 * enumerated, fields are attached to these reports.
1189 * 0 returned on success, otherwise nonzero error value.
1190 *
1191 * This function (or the equivalent hid_parse() macro) should only be
1192 * called from probe() in drivers, before starting the device.
1193 */
hid_open_report(struct hid_device * device)1194 int hid_open_report(struct hid_device *device)
1195 {
1196 struct hid_parser *parser;
1197 struct hid_item item;
1198 unsigned int size;
1199 __u8 *start;
1200 __u8 *buf;
1201 __u8 *end;
1202 __u8 *next;
1203 int ret;
1204 int i;
1205 static int (*dispatch_type[])(struct hid_parser *parser,
1206 struct hid_item *item) = {
1207 hid_parser_main,
1208 hid_parser_global,
1209 hid_parser_local,
1210 hid_parser_reserved
1211 };
1212
1213 if (WARN_ON(device->status & HID_STAT_PARSED))
1214 return -EBUSY;
1215
1216 start = device->dev_rdesc;
1217 if (WARN_ON(!start))
1218 return -ENODEV;
1219 size = device->dev_rsize;
1220
1221 buf = kmemdup(start, size, GFP_KERNEL);
1222 if (buf == NULL)
1223 return -ENOMEM;
1224
1225 if (device->driver->report_fixup)
1226 start = device->driver->report_fixup(device, buf, &size);
1227 else
1228 start = buf;
1229
1230 start = kmemdup(start, size, GFP_KERNEL);
1231 kfree(buf);
1232 if (start == NULL)
1233 return -ENOMEM;
1234
1235 device->rdesc = start;
1236 device->rsize = size;
1237
1238 parser = vzalloc(sizeof(struct hid_parser));
1239 if (!parser) {
1240 ret = -ENOMEM;
1241 goto alloc_err;
1242 }
1243
1244 parser->device = device;
1245
1246 end = start + size;
1247
1248 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1249 sizeof(struct hid_collection), GFP_KERNEL);
1250 if (!device->collection) {
1251 ret = -ENOMEM;
1252 goto err;
1253 }
1254 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1255 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1256 device->collection[i].parent_idx = -1;
1257
1258 ret = -EINVAL;
1259 while ((next = fetch_item(start, end, &item)) != NULL) {
1260 start = next;
1261
1262 if (item.format != HID_ITEM_FORMAT_SHORT) {
1263 hid_err(device, "unexpected long global item\n");
1264 goto err;
1265 }
1266
1267 if (dispatch_type[item.type](parser, &item)) {
1268 hid_err(device, "item %u %u %u %u parsing failed\n",
1269 item.format, (unsigned)item.size,
1270 (unsigned)item.type, (unsigned)item.tag);
1271 goto err;
1272 }
1273
1274 if (start == end) {
1275 if (parser->collection_stack_ptr) {
1276 hid_err(device, "unbalanced collection at end of report description\n");
1277 goto err;
1278 }
1279 if (parser->local.delimiter_depth) {
1280 hid_err(device, "unbalanced delimiter at end of report description\n");
1281 goto err;
1282 }
1283
1284 /*
1285 * fetch initial values in case the device's
1286 * default multiplier isn't the recommended 1
1287 */
1288 hid_setup_resolution_multiplier(device);
1289
1290 kfree(parser->collection_stack);
1291 vfree(parser);
1292 device->status |= HID_STAT_PARSED;
1293
1294 return 0;
1295 }
1296 }
1297
1298 hid_err(device, "item fetching failed at offset %u/%u\n",
1299 size - (unsigned int)(end - start), size);
1300 err:
1301 kfree(parser->collection_stack);
1302 alloc_err:
1303 vfree(parser);
1304 hid_close_report(device);
1305 return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(hid_open_report);
1308
1309 /*
1310 * Convert a signed n-bit integer to signed 32-bit integer. Common
1311 * cases are done through the compiler, the screwed things has to be
1312 * done by hand.
1313 */
1314
snto32(__u32 value,unsigned n)1315 static s32 snto32(__u32 value, unsigned n)
1316 {
1317 if (!value || !n)
1318 return 0;
1319
1320 if (n > 32)
1321 n = 32;
1322
1323 switch (n) {
1324 case 8: return ((__s8)value);
1325 case 16: return ((__s16)value);
1326 case 32: return ((__s32)value);
1327 }
1328 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1329 }
1330
hid_snto32(__u32 value,unsigned n)1331 s32 hid_snto32(__u32 value, unsigned n)
1332 {
1333 return snto32(value, n);
1334 }
1335 EXPORT_SYMBOL_GPL(hid_snto32);
1336
1337 /*
1338 * Convert a signed 32-bit integer to a signed n-bit integer.
1339 */
1340
s32ton(__s32 value,unsigned n)1341 static u32 s32ton(__s32 value, unsigned n)
1342 {
1343 s32 a = value >> (n - 1);
1344 if (a && a != -1)
1345 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1346 return value & ((1 << n) - 1);
1347 }
1348
1349 /*
1350 * Extract/implement a data field from/to a little endian report (bit array).
1351 *
1352 * Code sort-of follows HID spec:
1353 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1354 *
1355 * While the USB HID spec allows unlimited length bit fields in "report
1356 * descriptors", most devices never use more than 16 bits.
1357 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1358 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1359 */
1360
__extract(u8 * report,unsigned offset,int n)1361 static u32 __extract(u8 *report, unsigned offset, int n)
1362 {
1363 unsigned int idx = offset / 8;
1364 unsigned int bit_nr = 0;
1365 unsigned int bit_shift = offset % 8;
1366 int bits_to_copy = 8 - bit_shift;
1367 u32 value = 0;
1368 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1369
1370 while (n > 0) {
1371 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1372 n -= bits_to_copy;
1373 bit_nr += bits_to_copy;
1374 bits_to_copy = 8;
1375 bit_shift = 0;
1376 idx++;
1377 }
1378
1379 return value & mask;
1380 }
1381
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1382 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1383 unsigned offset, unsigned n)
1384 {
1385 if (n > 32) {
1386 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1387 __func__, n, current->comm);
1388 n = 32;
1389 }
1390
1391 return __extract(report, offset, n);
1392 }
1393 EXPORT_SYMBOL_GPL(hid_field_extract);
1394
1395 /*
1396 * "implement" : set bits in a little endian bit stream.
1397 * Same concepts as "extract" (see comments above).
1398 * The data mangled in the bit stream remains in little endian
1399 * order the whole time. It make more sense to talk about
1400 * endianness of register values by considering a register
1401 * a "cached" copy of the little endian bit stream.
1402 */
1403
__implement(u8 * report,unsigned offset,int n,u32 value)1404 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1405 {
1406 unsigned int idx = offset / 8;
1407 unsigned int bit_shift = offset % 8;
1408 int bits_to_set = 8 - bit_shift;
1409
1410 while (n - bits_to_set >= 0) {
1411 report[idx] &= ~(0xff << bit_shift);
1412 report[idx] |= value << bit_shift;
1413 value >>= bits_to_set;
1414 n -= bits_to_set;
1415 bits_to_set = 8;
1416 bit_shift = 0;
1417 idx++;
1418 }
1419
1420 /* last nibble */
1421 if (n) {
1422 u8 bit_mask = ((1U << n) - 1);
1423 report[idx] &= ~(bit_mask << bit_shift);
1424 report[idx] |= value << bit_shift;
1425 }
1426 }
1427
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1428 static void implement(const struct hid_device *hid, u8 *report,
1429 unsigned offset, unsigned n, u32 value)
1430 {
1431 if (unlikely(n > 32)) {
1432 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1433 __func__, n, current->comm);
1434 n = 32;
1435 } else if (n < 32) {
1436 u32 m = (1U << n) - 1;
1437
1438 if (unlikely(value > m)) {
1439 hid_warn(hid,
1440 "%s() called with too large value %d (n: %d)! (%s)\n",
1441 __func__, value, n, current->comm);
1442 WARN_ON(1);
1443 value &= m;
1444 }
1445 }
1446
1447 __implement(report, offset, n, value);
1448 }
1449
1450 /*
1451 * Search an array for a value.
1452 */
1453
search(__s32 * array,__s32 value,unsigned n)1454 static int search(__s32 *array, __s32 value, unsigned n)
1455 {
1456 while (n--) {
1457 if (*array++ == value)
1458 return 0;
1459 }
1460 return -1;
1461 }
1462
1463 /**
1464 * hid_match_report - check if driver's raw_event should be called
1465 *
1466 * @hid: hid device
1467 * @report: hid report to match against
1468 *
1469 * compare hid->driver->report_table->report_type to report->type
1470 */
hid_match_report(struct hid_device * hid,struct hid_report * report)1471 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1472 {
1473 const struct hid_report_id *id = hid->driver->report_table;
1474
1475 if (!id) /* NULL means all */
1476 return 1;
1477
1478 for (; id->report_type != HID_TERMINATOR; id++)
1479 if (id->report_type == HID_ANY_ID ||
1480 id->report_type == report->type)
1481 return 1;
1482 return 0;
1483 }
1484
1485 /**
1486 * hid_match_usage - check if driver's event should be called
1487 *
1488 * @hid: hid device
1489 * @usage: usage to match against
1490 *
1491 * compare hid->driver->usage_table->usage_{type,code} to
1492 * usage->usage_{type,code}
1493 */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1494 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1495 {
1496 const struct hid_usage_id *id = hid->driver->usage_table;
1497
1498 if (!id) /* NULL means all */
1499 return 1;
1500
1501 for (; id->usage_type != HID_ANY_ID - 1; id++)
1502 if ((id->usage_hid == HID_ANY_ID ||
1503 id->usage_hid == usage->hid) &&
1504 (id->usage_type == HID_ANY_ID ||
1505 id->usage_type == usage->type) &&
1506 (id->usage_code == HID_ANY_ID ||
1507 id->usage_code == usage->code))
1508 return 1;
1509 return 0;
1510 }
1511
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1512 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1513 struct hid_usage *usage, __s32 value, int interrupt)
1514 {
1515 struct hid_driver *hdrv = hid->driver;
1516 int ret;
1517
1518 if (!list_empty(&hid->debug_list))
1519 hid_dump_input(hid, usage, value);
1520
1521 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1522 ret = hdrv->event(hid, field, usage, value);
1523 if (ret != 0) {
1524 if (ret < 0)
1525 hid_err(hid, "%s's event failed with %d\n",
1526 hdrv->name, ret);
1527 return;
1528 }
1529 }
1530
1531 if (hid->claimed & HID_CLAIMED_INPUT)
1532 hidinput_hid_event(hid, field, usage, value);
1533 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1534 hid->hiddev_hid_event(hid, field, usage, value);
1535 }
1536
1537 /*
1538 * Analyse a received field, and fetch the data from it. The field
1539 * content is stored for next report processing (we do differential
1540 * reporting to the layer).
1541 */
1542
hid_input_field(struct hid_device * hid,struct hid_field * field,__u8 * data,int interrupt)1543 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1544 __u8 *data, int interrupt)
1545 {
1546 unsigned n;
1547 unsigned count = field->report_count;
1548 unsigned offset = field->report_offset;
1549 unsigned size = field->report_size;
1550 __s32 min = field->logical_minimum;
1551 __s32 max = field->logical_maximum;
1552 __s32 *value;
1553
1554 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1555 if (!value)
1556 return;
1557
1558 for (n = 0; n < count; n++) {
1559
1560 value[n] = min < 0 ?
1561 snto32(hid_field_extract(hid, data, offset + n * size,
1562 size), size) :
1563 hid_field_extract(hid, data, offset + n * size, size);
1564
1565 /* Ignore report if ErrorRollOver */
1566 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1567 value[n] >= min && value[n] <= max &&
1568 value[n] - min < field->maxusage &&
1569 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1570 goto exit;
1571 }
1572
1573 for (n = 0; n < count; n++) {
1574
1575 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1576 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1577 continue;
1578 }
1579
1580 if (field->value[n] >= min && field->value[n] <= max
1581 && field->value[n] - min < field->maxusage
1582 && field->usage[field->value[n] - min].hid
1583 && search(value, field->value[n], count))
1584 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1585
1586 if (value[n] >= min && value[n] <= max
1587 && value[n] - min < field->maxusage
1588 && field->usage[value[n] - min].hid
1589 && search(field->value, value[n], count))
1590 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1591 }
1592
1593 memcpy(field->value, value, count * sizeof(__s32));
1594 exit:
1595 kfree(value);
1596 }
1597
1598 /*
1599 * Output the field into the report.
1600 */
1601
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1602 static void hid_output_field(const struct hid_device *hid,
1603 struct hid_field *field, __u8 *data)
1604 {
1605 unsigned count = field->report_count;
1606 unsigned offset = field->report_offset;
1607 unsigned size = field->report_size;
1608 unsigned n;
1609
1610 for (n = 0; n < count; n++) {
1611 if (field->logical_minimum < 0) /* signed values */
1612 implement(hid, data, offset + n * size, size,
1613 s32ton(field->value[n], size));
1614 else /* unsigned values */
1615 implement(hid, data, offset + n * size, size,
1616 field->value[n]);
1617 }
1618 }
1619
1620 /*
1621 * Compute the size of a report.
1622 */
hid_compute_report_size(struct hid_report * report)1623 static size_t hid_compute_report_size(struct hid_report *report)
1624 {
1625 if (report->size)
1626 return ((report->size - 1) >> 3) + 1;
1627
1628 return 0;
1629 }
1630
1631 /*
1632 * Create a report. 'data' has to be allocated using
1633 * hid_alloc_report_buf() so that it has proper size.
1634 */
1635
hid_output_report(struct hid_report * report,__u8 * data)1636 void hid_output_report(struct hid_report *report, __u8 *data)
1637 {
1638 unsigned n;
1639
1640 if (report->id > 0)
1641 *data++ = report->id;
1642
1643 memset(data, 0, hid_compute_report_size(report));
1644 for (n = 0; n < report->maxfield; n++)
1645 hid_output_field(report->device, report->field[n], data);
1646 }
1647 EXPORT_SYMBOL_GPL(hid_output_report);
1648
1649 /*
1650 * Allocator for buffer that is going to be passed to hid_output_report()
1651 */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1652 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1653 {
1654 /*
1655 * 7 extra bytes are necessary to achieve proper functionality
1656 * of implement() working on 8 byte chunks
1657 */
1658
1659 u32 len = hid_report_len(report) + 7;
1660
1661 return kmalloc(len, flags);
1662 }
1663 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1664
1665 /*
1666 * Set a field value. The report this field belongs to has to be
1667 * created and transferred to the device, to set this value in the
1668 * device.
1669 */
1670
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1671 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1672 {
1673 unsigned size;
1674
1675 if (!field)
1676 return -1;
1677
1678 size = field->report_size;
1679
1680 hid_dump_input(field->report->device, field->usage + offset, value);
1681
1682 if (offset >= field->report_count) {
1683 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1684 offset, field->report_count);
1685 return -1;
1686 }
1687 if (field->logical_minimum < 0) {
1688 if (value != snto32(s32ton(value, size), size)) {
1689 hid_err(field->report->device, "value %d is out of range\n", value);
1690 return -1;
1691 }
1692 }
1693 field->value[offset] = value;
1694 return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(hid_set_field);
1697
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1698 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1699 const u8 *data)
1700 {
1701 struct hid_report *report;
1702 unsigned int n = 0; /* Normally report number is 0 */
1703
1704 /* Device uses numbered reports, data[0] is report number */
1705 if (report_enum->numbered)
1706 n = *data;
1707
1708 report = report_enum->report_id_hash[n];
1709 if (report == NULL)
1710 dbg_hid("undefined report_id %u received\n", n);
1711
1712 return report;
1713 }
1714
1715 /*
1716 * Implement a generic .request() callback, using .raw_request()
1717 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1718 */
__hid_request(struct hid_device * hid,struct hid_report * report,int reqtype)1719 int __hid_request(struct hid_device *hid, struct hid_report *report,
1720 int reqtype)
1721 {
1722 char *buf;
1723 int ret;
1724 u32 len;
1725
1726 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1727 if (!buf)
1728 return -ENOMEM;
1729
1730 len = hid_report_len(report);
1731
1732 if (reqtype == HID_REQ_SET_REPORT)
1733 hid_output_report(report, buf);
1734
1735 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1736 report->type, reqtype);
1737 if (ret < 0) {
1738 dbg_hid("unable to complete request: %d\n", ret);
1739 goto out;
1740 }
1741
1742 if (reqtype == HID_REQ_GET_REPORT)
1743 hid_input_report(hid, report->type, buf, ret, 0);
1744
1745 ret = 0;
1746
1747 out:
1748 kfree(buf);
1749 return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(__hid_request);
1752
hid_report_raw_event(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1753 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1754 int interrupt)
1755 {
1756 struct hid_report_enum *report_enum = hid->report_enum + type;
1757 struct hid_report *report;
1758 struct hid_driver *hdrv;
1759 int max_buffer_size = HID_MAX_BUFFER_SIZE;
1760 unsigned int a;
1761 u32 rsize, csize = size;
1762 u8 *cdata = data;
1763 int ret = 0;
1764
1765 report = hid_get_report(report_enum, data);
1766 if (!report)
1767 goto out;
1768
1769 if (report_enum->numbered) {
1770 cdata++;
1771 csize--;
1772 }
1773
1774 rsize = hid_compute_report_size(report);
1775
1776 if (hid->ll_driver->max_buffer_size)
1777 max_buffer_size = hid->ll_driver->max_buffer_size;
1778
1779 if (report_enum->numbered && rsize >= max_buffer_size)
1780 rsize = max_buffer_size - 1;
1781 else if (rsize > max_buffer_size)
1782 rsize = max_buffer_size;
1783
1784 if (csize < rsize) {
1785 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1786 csize, rsize);
1787 memset(cdata + csize, 0, rsize - csize);
1788 }
1789
1790 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1791 hid->hiddev_report_event(hid, report);
1792 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1793 ret = hidraw_report_event(hid, data, size);
1794 if (ret)
1795 goto out;
1796 }
1797
1798 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1799 for (a = 0; a < report->maxfield; a++)
1800 hid_input_field(hid, report->field[a], cdata, interrupt);
1801 hdrv = hid->driver;
1802 if (hdrv && hdrv->report)
1803 hdrv->report(hid, report);
1804 }
1805
1806 if (hid->claimed & HID_CLAIMED_INPUT)
1807 hidinput_report_event(hid, report);
1808 out:
1809 return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1812
1813 /**
1814 * hid_input_report - report data from lower layer (usb, bt...)
1815 *
1816 * @hid: hid device
1817 * @type: HID report type (HID_*_REPORT)
1818 * @data: report contents
1819 * @size: size of data parameter
1820 * @interrupt: distinguish between interrupt and control transfers
1821 *
1822 * This is data entry for lower layers.
1823 */
hid_input_report(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1824 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1825 {
1826 struct hid_report_enum *report_enum;
1827 struct hid_driver *hdrv;
1828 struct hid_report *report;
1829 int ret = 0;
1830
1831 if (!hid)
1832 return -ENODEV;
1833
1834 if (down_trylock(&hid->driver_input_lock))
1835 return -EBUSY;
1836
1837 if (!hid->driver) {
1838 ret = -ENODEV;
1839 goto unlock;
1840 }
1841 report_enum = hid->report_enum + type;
1842 hdrv = hid->driver;
1843
1844 if (!size) {
1845 dbg_hid("empty report\n");
1846 ret = -1;
1847 goto unlock;
1848 }
1849
1850 /* Avoid unnecessary overhead if debugfs is disabled */
1851 if (!list_empty(&hid->debug_list))
1852 hid_dump_report(hid, type, data, size);
1853
1854 report = hid_get_report(report_enum, data);
1855
1856 if (!report) {
1857 ret = -1;
1858 goto unlock;
1859 }
1860
1861 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1862 ret = hdrv->raw_event(hid, report, data, size);
1863 if (ret < 0)
1864 goto unlock;
1865 }
1866
1867 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1868
1869 unlock:
1870 up(&hid->driver_input_lock);
1871 return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(hid_input_report);
1874
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)1875 bool hid_match_one_id(const struct hid_device *hdev,
1876 const struct hid_device_id *id)
1877 {
1878 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1879 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1880 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1881 (id->product == HID_ANY_ID || id->product == hdev->product);
1882 }
1883
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)1884 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1885 const struct hid_device_id *id)
1886 {
1887 for (; id->bus; id++)
1888 if (hid_match_one_id(hdev, id))
1889 return id;
1890
1891 return NULL;
1892 }
1893
1894 static const struct hid_device_id hid_hiddev_list[] = {
1895 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1896 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1897 { }
1898 };
1899
hid_hiddev(struct hid_device * hdev)1900 static bool hid_hiddev(struct hid_device *hdev)
1901 {
1902 return !!hid_match_id(hdev, hid_hiddev_list);
1903 }
1904
1905
1906 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)1907 read_report_descriptor(struct file *filp, struct kobject *kobj,
1908 struct bin_attribute *attr,
1909 char *buf, loff_t off, size_t count)
1910 {
1911 struct device *dev = kobj_to_dev(kobj);
1912 struct hid_device *hdev = to_hid_device(dev);
1913
1914 if (off >= hdev->rsize)
1915 return 0;
1916
1917 if (off + count > hdev->rsize)
1918 count = hdev->rsize - off;
1919
1920 memcpy(buf, hdev->rdesc + off, count);
1921
1922 return count;
1923 }
1924
1925 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)1926 show_country(struct device *dev, struct device_attribute *attr,
1927 char *buf)
1928 {
1929 struct hid_device *hdev = to_hid_device(dev);
1930
1931 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1932 }
1933
1934 static struct bin_attribute dev_bin_attr_report_desc = {
1935 .attr = { .name = "report_descriptor", .mode = 0444 },
1936 .read = read_report_descriptor,
1937 .size = HID_MAX_DESCRIPTOR_SIZE,
1938 };
1939
1940 static const struct device_attribute dev_attr_country = {
1941 .attr = { .name = "country", .mode = 0444 },
1942 .show = show_country,
1943 };
1944
hid_connect(struct hid_device * hdev,unsigned int connect_mask)1945 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1946 {
1947 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1948 "Joystick", "Gamepad", "Keyboard", "Keypad",
1949 "Multi-Axis Controller"
1950 };
1951 const char *type, *bus;
1952 char buf[64] = "";
1953 unsigned int i;
1954 int len;
1955 int ret;
1956
1957 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1958 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1959 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1960 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1961 if (hdev->bus != BUS_USB)
1962 connect_mask &= ~HID_CONNECT_HIDDEV;
1963 if (hid_hiddev(hdev))
1964 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1965
1966 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1967 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1968 hdev->claimed |= HID_CLAIMED_INPUT;
1969
1970 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1971 !hdev->hiddev_connect(hdev,
1972 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1973 hdev->claimed |= HID_CLAIMED_HIDDEV;
1974 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1975 hdev->claimed |= HID_CLAIMED_HIDRAW;
1976
1977 if (connect_mask & HID_CONNECT_DRIVER)
1978 hdev->claimed |= HID_CLAIMED_DRIVER;
1979
1980 /* Drivers with the ->raw_event callback set are not required to connect
1981 * to any other listener. */
1982 if (!hdev->claimed && !hdev->driver->raw_event) {
1983 hid_err(hdev, "device has no listeners, quitting\n");
1984 return -ENODEV;
1985 }
1986
1987 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1988 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1989 hdev->ff_init(hdev);
1990
1991 len = 0;
1992 if (hdev->claimed & HID_CLAIMED_INPUT)
1993 len += sprintf(buf + len, "input");
1994 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1995 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1996 ((struct hiddev *)hdev->hiddev)->minor);
1997 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1998 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1999 ((struct hidraw *)hdev->hidraw)->minor);
2000
2001 type = "Device";
2002 for (i = 0; i < hdev->maxcollection; i++) {
2003 struct hid_collection *col = &hdev->collection[i];
2004 if (col->type == HID_COLLECTION_APPLICATION &&
2005 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2006 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2007 type = types[col->usage & 0xffff];
2008 break;
2009 }
2010 }
2011
2012 switch (hdev->bus) {
2013 case BUS_USB:
2014 bus = "USB";
2015 break;
2016 case BUS_BLUETOOTH:
2017 bus = "BLUETOOTH";
2018 break;
2019 case BUS_I2C:
2020 bus = "I2C";
2021 break;
2022 case BUS_VIRTUAL:
2023 bus = "VIRTUAL";
2024 break;
2025 default:
2026 bus = "<UNKNOWN>";
2027 }
2028
2029 ret = device_create_file(&hdev->dev, &dev_attr_country);
2030 if (ret)
2031 hid_warn(hdev,
2032 "can't create sysfs country code attribute err: %d\n", ret);
2033
2034 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2035 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2036 type, hdev->name, hdev->phys);
2037
2038 return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(hid_connect);
2041
hid_disconnect(struct hid_device * hdev)2042 void hid_disconnect(struct hid_device *hdev)
2043 {
2044 device_remove_file(&hdev->dev, &dev_attr_country);
2045 if (hdev->claimed & HID_CLAIMED_INPUT)
2046 hidinput_disconnect(hdev);
2047 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2048 hdev->hiddev_disconnect(hdev);
2049 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2050 hidraw_disconnect(hdev);
2051 hdev->claimed = 0;
2052 }
2053 EXPORT_SYMBOL_GPL(hid_disconnect);
2054
2055 /**
2056 * hid_hw_start - start underlying HW
2057 * @hdev: hid device
2058 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2059 *
2060 * Call this in probe function *after* hid_parse. This will setup HW
2061 * buffers and start the device (if not defeirred to device open).
2062 * hid_hw_stop must be called if this was successful.
2063 */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2064 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2065 {
2066 int error;
2067
2068 error = hdev->ll_driver->start(hdev);
2069 if (error)
2070 return error;
2071
2072 if (connect_mask) {
2073 error = hid_connect(hdev, connect_mask);
2074 if (error) {
2075 hdev->ll_driver->stop(hdev);
2076 return error;
2077 }
2078 }
2079
2080 return 0;
2081 }
2082 EXPORT_SYMBOL_GPL(hid_hw_start);
2083
2084 /**
2085 * hid_hw_stop - stop underlying HW
2086 * @hdev: hid device
2087 *
2088 * This is usually called from remove function or from probe when something
2089 * failed and hid_hw_start was called already.
2090 */
hid_hw_stop(struct hid_device * hdev)2091 void hid_hw_stop(struct hid_device *hdev)
2092 {
2093 hid_disconnect(hdev);
2094 hdev->ll_driver->stop(hdev);
2095 }
2096 EXPORT_SYMBOL_GPL(hid_hw_stop);
2097
2098 /**
2099 * hid_hw_open - signal underlying HW to start delivering events
2100 * @hdev: hid device
2101 *
2102 * Tell underlying HW to start delivering events from the device.
2103 * This function should be called sometime after successful call
2104 * to hid_hw_start().
2105 */
hid_hw_open(struct hid_device * hdev)2106 int hid_hw_open(struct hid_device *hdev)
2107 {
2108 int ret;
2109
2110 ret = mutex_lock_killable(&hdev->ll_open_lock);
2111 if (ret)
2112 return ret;
2113
2114 if (!hdev->ll_open_count++) {
2115 ret = hdev->ll_driver->open(hdev);
2116 if (ret)
2117 hdev->ll_open_count--;
2118 }
2119
2120 mutex_unlock(&hdev->ll_open_lock);
2121 return ret;
2122 }
2123 EXPORT_SYMBOL_GPL(hid_hw_open);
2124
2125 /**
2126 * hid_hw_close - signal underlaying HW to stop delivering events
2127 *
2128 * @hdev: hid device
2129 *
2130 * This function indicates that we are not interested in the events
2131 * from this device anymore. Delivery of events may or may not stop,
2132 * depending on the number of users still outstanding.
2133 */
hid_hw_close(struct hid_device * hdev)2134 void hid_hw_close(struct hid_device *hdev)
2135 {
2136 mutex_lock(&hdev->ll_open_lock);
2137 if (!--hdev->ll_open_count)
2138 hdev->ll_driver->close(hdev);
2139 mutex_unlock(&hdev->ll_open_lock);
2140 }
2141 EXPORT_SYMBOL_GPL(hid_hw_close);
2142
2143 struct hid_dynid {
2144 struct list_head list;
2145 struct hid_device_id id;
2146 };
2147
2148 /**
2149 * new_id_store - add a new HID device ID to this driver and re-probe devices
2150 * @drv: target device driver
2151 * @buf: buffer for scanning device ID data
2152 * @count: input size
2153 *
2154 * Adds a new dynamic hid device ID to this driver,
2155 * and causes the driver to probe for all devices again.
2156 */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2157 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2158 size_t count)
2159 {
2160 struct hid_driver *hdrv = to_hid_driver(drv);
2161 struct hid_dynid *dynid;
2162 __u32 bus, vendor, product;
2163 unsigned long driver_data = 0;
2164 int ret;
2165
2166 ret = sscanf(buf, "%x %x %x %lx",
2167 &bus, &vendor, &product, &driver_data);
2168 if (ret < 3)
2169 return -EINVAL;
2170
2171 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2172 if (!dynid)
2173 return -ENOMEM;
2174
2175 dynid->id.bus = bus;
2176 dynid->id.group = HID_GROUP_ANY;
2177 dynid->id.vendor = vendor;
2178 dynid->id.product = product;
2179 dynid->id.driver_data = driver_data;
2180
2181 spin_lock(&hdrv->dyn_lock);
2182 list_add_tail(&dynid->list, &hdrv->dyn_list);
2183 spin_unlock(&hdrv->dyn_lock);
2184
2185 ret = driver_attach(&hdrv->driver);
2186
2187 return ret ? : count;
2188 }
2189 static DRIVER_ATTR_WO(new_id);
2190
2191 static struct attribute *hid_drv_attrs[] = {
2192 &driver_attr_new_id.attr,
2193 NULL,
2194 };
2195 ATTRIBUTE_GROUPS(hid_drv);
2196
hid_free_dynids(struct hid_driver * hdrv)2197 static void hid_free_dynids(struct hid_driver *hdrv)
2198 {
2199 struct hid_dynid *dynid, *n;
2200
2201 spin_lock(&hdrv->dyn_lock);
2202 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2203 list_del(&dynid->list);
2204 kfree(dynid);
2205 }
2206 spin_unlock(&hdrv->dyn_lock);
2207 }
2208
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2209 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2210 struct hid_driver *hdrv)
2211 {
2212 struct hid_dynid *dynid;
2213
2214 spin_lock(&hdrv->dyn_lock);
2215 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2216 if (hid_match_one_id(hdev, &dynid->id)) {
2217 spin_unlock(&hdrv->dyn_lock);
2218 return &dynid->id;
2219 }
2220 }
2221 spin_unlock(&hdrv->dyn_lock);
2222
2223 return hid_match_id(hdev, hdrv->id_table);
2224 }
2225 EXPORT_SYMBOL_GPL(hid_match_device);
2226
hid_bus_match(struct device * dev,struct device_driver * drv)2227 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2228 {
2229 struct hid_driver *hdrv = to_hid_driver(drv);
2230 struct hid_device *hdev = to_hid_device(dev);
2231
2232 return hid_match_device(hdev, hdrv) != NULL;
2233 }
2234
2235 /**
2236 * hid_compare_device_paths - check if both devices share the same path
2237 * @hdev_a: hid device
2238 * @hdev_b: hid device
2239 * @separator: char to use as separator
2240 *
2241 * Check if two devices share the same path up to the last occurrence of
2242 * the separator char. Both paths must exist (i.e., zero-length paths
2243 * don't match).
2244 */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2245 bool hid_compare_device_paths(struct hid_device *hdev_a,
2246 struct hid_device *hdev_b, char separator)
2247 {
2248 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2249 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2250
2251 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2252 return false;
2253
2254 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2255 }
2256 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2257
hid_device_probe(struct device * dev)2258 static int hid_device_probe(struct device *dev)
2259 {
2260 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2261 struct hid_device *hdev = to_hid_device(dev);
2262 const struct hid_device_id *id;
2263 int ret = 0;
2264
2265 if (down_interruptible(&hdev->driver_input_lock)) {
2266 ret = -EINTR;
2267 goto end;
2268 }
2269 hdev->io_started = false;
2270
2271 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2272
2273 if (!hdev->driver) {
2274 id = hid_match_device(hdev, hdrv);
2275 if (id == NULL) {
2276 ret = -ENODEV;
2277 goto unlock;
2278 }
2279
2280 if (hdrv->match) {
2281 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2282 ret = -ENODEV;
2283 goto unlock;
2284 }
2285 } else {
2286 /*
2287 * hid-generic implements .match(), so if
2288 * hid_ignore_special_drivers is set, we can safely
2289 * return.
2290 */
2291 if (hid_ignore_special_drivers) {
2292 ret = -ENODEV;
2293 goto unlock;
2294 }
2295 }
2296
2297 /* reset the quirks that has been previously set */
2298 hdev->quirks = hid_lookup_quirk(hdev);
2299 hdev->driver = hdrv;
2300 if (hdrv->probe) {
2301 ret = hdrv->probe(hdev, id);
2302 } else { /* default probe */
2303 ret = hid_open_report(hdev);
2304 if (!ret)
2305 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2306 }
2307 if (ret) {
2308 hid_close_report(hdev);
2309 hdev->driver = NULL;
2310 }
2311 }
2312 unlock:
2313 if (!hdev->io_started)
2314 up(&hdev->driver_input_lock);
2315 end:
2316 return ret;
2317 }
2318
hid_device_remove(struct device * dev)2319 static void hid_device_remove(struct device *dev)
2320 {
2321 struct hid_device *hdev = to_hid_device(dev);
2322 struct hid_driver *hdrv;
2323
2324 down(&hdev->driver_input_lock);
2325 hdev->io_started = false;
2326
2327 hdrv = hdev->driver;
2328 if (hdrv) {
2329 if (hdrv->remove)
2330 hdrv->remove(hdev);
2331 else /* default remove */
2332 hid_hw_stop(hdev);
2333 hid_close_report(hdev);
2334 hdev->driver = NULL;
2335 }
2336
2337 if (!hdev->io_started)
2338 up(&hdev->driver_input_lock);
2339 }
2340
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2341 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2342 char *buf)
2343 {
2344 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2345
2346 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2347 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2348 }
2349 static DEVICE_ATTR_RO(modalias);
2350
2351 static struct attribute *hid_dev_attrs[] = {
2352 &dev_attr_modalias.attr,
2353 NULL,
2354 };
2355 static struct bin_attribute *hid_dev_bin_attrs[] = {
2356 &dev_bin_attr_report_desc,
2357 NULL
2358 };
2359 static const struct attribute_group hid_dev_group = {
2360 .attrs = hid_dev_attrs,
2361 .bin_attrs = hid_dev_bin_attrs,
2362 };
2363 __ATTRIBUTE_GROUPS(hid_dev);
2364
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2365 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2366 {
2367 struct hid_device *hdev = to_hid_device(dev);
2368
2369 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2370 hdev->bus, hdev->vendor, hdev->product))
2371 return -ENOMEM;
2372
2373 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2374 return -ENOMEM;
2375
2376 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2377 return -ENOMEM;
2378
2379 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2380 return -ENOMEM;
2381
2382 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2383 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2384 return -ENOMEM;
2385
2386 return 0;
2387 }
2388
2389 struct bus_type hid_bus_type = {
2390 .name = "hid",
2391 .dev_groups = hid_dev_groups,
2392 .drv_groups = hid_drv_groups,
2393 .match = hid_bus_match,
2394 .probe = hid_device_probe,
2395 .remove = hid_device_remove,
2396 .uevent = hid_uevent,
2397 };
2398 EXPORT_SYMBOL(hid_bus_type);
2399
hid_add_device(struct hid_device * hdev)2400 int hid_add_device(struct hid_device *hdev)
2401 {
2402 static atomic_t id = ATOMIC_INIT(0);
2403 int ret;
2404
2405 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2406 return -EBUSY;
2407
2408 hdev->quirks = hid_lookup_quirk(hdev);
2409
2410 /* we need to kill them here, otherwise they will stay allocated to
2411 * wait for coming driver */
2412 if (hid_ignore(hdev))
2413 return -ENODEV;
2414
2415 /*
2416 * Check for the mandatory transport channel.
2417 */
2418 if (!hdev->ll_driver->raw_request) {
2419 hid_err(hdev, "transport driver missing .raw_request()\n");
2420 return -EINVAL;
2421 }
2422
2423 /*
2424 * Read the device report descriptor once and use as template
2425 * for the driver-specific modifications.
2426 */
2427 ret = hdev->ll_driver->parse(hdev);
2428 if (ret)
2429 return ret;
2430 if (!hdev->dev_rdesc)
2431 return -ENODEV;
2432
2433 /*
2434 * Scan generic devices for group information
2435 */
2436 if (hid_ignore_special_drivers) {
2437 hdev->group = HID_GROUP_GENERIC;
2438 } else if (!hdev->group &&
2439 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2440 ret = hid_scan_report(hdev);
2441 if (ret)
2442 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2443 }
2444
2445 /* XXX hack, any other cleaner solution after the driver core
2446 * is converted to allow more than 20 bytes as the device name? */
2447 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2448 hdev->vendor, hdev->product, atomic_inc_return(&id));
2449
2450 hid_debug_register(hdev, dev_name(&hdev->dev));
2451 ret = device_add(&hdev->dev);
2452 if (!ret)
2453 hdev->status |= HID_STAT_ADDED;
2454 else
2455 hid_debug_unregister(hdev);
2456
2457 return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(hid_add_device);
2460
2461 /**
2462 * hid_allocate_device - allocate new hid device descriptor
2463 *
2464 * Allocate and initialize hid device, so that hid_destroy_device might be
2465 * used to free it.
2466 *
2467 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2468 * error value.
2469 */
hid_allocate_device(void)2470 struct hid_device *hid_allocate_device(void)
2471 {
2472 struct hid_device *hdev;
2473 int ret = -ENOMEM;
2474
2475 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2476 if (hdev == NULL)
2477 return ERR_PTR(ret);
2478
2479 device_initialize(&hdev->dev);
2480 hdev->dev.release = hid_device_release;
2481 hdev->dev.bus = &hid_bus_type;
2482 device_enable_async_suspend(&hdev->dev);
2483
2484 hid_close_report(hdev);
2485
2486 init_waitqueue_head(&hdev->debug_wait);
2487 INIT_LIST_HEAD(&hdev->debug_list);
2488 spin_lock_init(&hdev->debug_list_lock);
2489 sema_init(&hdev->driver_input_lock, 1);
2490 mutex_init(&hdev->ll_open_lock);
2491
2492 return hdev;
2493 }
2494 EXPORT_SYMBOL_GPL(hid_allocate_device);
2495
hid_remove_device(struct hid_device * hdev)2496 static void hid_remove_device(struct hid_device *hdev)
2497 {
2498 if (hdev->status & HID_STAT_ADDED) {
2499 device_del(&hdev->dev);
2500 hid_debug_unregister(hdev);
2501 hdev->status &= ~HID_STAT_ADDED;
2502 }
2503 kfree(hdev->dev_rdesc);
2504 hdev->dev_rdesc = NULL;
2505 hdev->dev_rsize = 0;
2506 }
2507
2508 /**
2509 * hid_destroy_device - free previously allocated device
2510 *
2511 * @hdev: hid device
2512 *
2513 * If you allocate hid_device through hid_allocate_device, you should ever
2514 * free by this function.
2515 */
hid_destroy_device(struct hid_device * hdev)2516 void hid_destroy_device(struct hid_device *hdev)
2517 {
2518 hid_remove_device(hdev);
2519 put_device(&hdev->dev);
2520 }
2521 EXPORT_SYMBOL_GPL(hid_destroy_device);
2522
2523
__hid_bus_reprobe_drivers(struct device * dev,void * data)2524 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2525 {
2526 struct hid_driver *hdrv = data;
2527 struct hid_device *hdev = to_hid_device(dev);
2528
2529 if (hdev->driver == hdrv &&
2530 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2531 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2532 return device_reprobe(dev);
2533
2534 return 0;
2535 }
2536
__hid_bus_driver_added(struct device_driver * drv,void * data)2537 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2538 {
2539 struct hid_driver *hdrv = to_hid_driver(drv);
2540
2541 if (hdrv->match) {
2542 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2543 __hid_bus_reprobe_drivers);
2544 }
2545
2546 return 0;
2547 }
2548
__bus_removed_driver(struct device_driver * drv,void * data)2549 static int __bus_removed_driver(struct device_driver *drv, void *data)
2550 {
2551 return bus_rescan_devices(&hid_bus_type);
2552 }
2553
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2554 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2555 const char *mod_name)
2556 {
2557 int ret;
2558
2559 hdrv->driver.name = hdrv->name;
2560 hdrv->driver.bus = &hid_bus_type;
2561 hdrv->driver.owner = owner;
2562 hdrv->driver.mod_name = mod_name;
2563
2564 INIT_LIST_HEAD(&hdrv->dyn_list);
2565 spin_lock_init(&hdrv->dyn_lock);
2566
2567 ret = driver_register(&hdrv->driver);
2568
2569 if (ret == 0)
2570 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2571 __hid_bus_driver_added);
2572
2573 return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(__hid_register_driver);
2576
hid_unregister_driver(struct hid_driver * hdrv)2577 void hid_unregister_driver(struct hid_driver *hdrv)
2578 {
2579 driver_unregister(&hdrv->driver);
2580 hid_free_dynids(hdrv);
2581
2582 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2583 }
2584 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2585
hid_check_keys_pressed(struct hid_device * hid)2586 int hid_check_keys_pressed(struct hid_device *hid)
2587 {
2588 struct hid_input *hidinput;
2589 int i;
2590
2591 if (!(hid->claimed & HID_CLAIMED_INPUT))
2592 return 0;
2593
2594 list_for_each_entry(hidinput, &hid->inputs, list) {
2595 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2596 if (hidinput->input->key[i])
2597 return 1;
2598 }
2599
2600 return 0;
2601 }
2602 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2603
hid_init(void)2604 static int __init hid_init(void)
2605 {
2606 int ret;
2607
2608 if (hid_debug)
2609 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2610 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2611
2612 ret = bus_register(&hid_bus_type);
2613 if (ret) {
2614 pr_err("can't register hid bus\n");
2615 goto err;
2616 }
2617
2618 ret = hidraw_init();
2619 if (ret)
2620 goto err_bus;
2621
2622 hid_debug_init();
2623
2624 return 0;
2625 err_bus:
2626 bus_unregister(&hid_bus_type);
2627 err:
2628 return ret;
2629 }
2630
hid_exit(void)2631 static void __exit hid_exit(void)
2632 {
2633 hid_debug_exit();
2634 hidraw_exit();
2635 bus_unregister(&hid_bus_type);
2636 hid_quirks_exit(HID_BUS_ANY);
2637 }
2638
2639 module_init(hid_init);
2640 module_exit(hid_exit);
2641
2642 MODULE_AUTHOR("Andreas Gal");
2643 MODULE_AUTHOR("Vojtech Pavlik");
2644 MODULE_AUTHOR("Jiri Kosina");
2645 MODULE_LICENSE("GPL");
2646