1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
__vmalloc(unsigned long size,gfp_t gfp_mask)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157 {
158 return __vmalloc(size, gfp_mask);
159 }
160
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163 {
164 return __vmalloc(size, gfp_mask);
165 }
166
__vmalloc_user_flags(unsigned long size,gfp_t flags)167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
180 }
181
182 return ret;
183 }
184
vmalloc_user(unsigned long size)185 void *vmalloc_user(unsigned long size)
186 {
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
vmalloc_to_page(const void * addr)191 struct page *vmalloc_to_page(const void *addr)
192 {
193 return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
vmalloc_to_pfn(const void * addr)197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
vread(char * buf,char * addr,unsigned long count)203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211 }
212
213 /*
214 * vmalloc - allocate virtually contiguous memory
215 *
216 * @size: allocation size
217 *
218 * Allocate enough pages to cover @size from the page level
219 * allocator and map them into contiguous kernel virtual space.
220 *
221 * For tight control over page level allocator and protection flags
222 * use __vmalloc() instead.
223 */
vmalloc(unsigned long size)224 void *vmalloc(unsigned long size)
225 {
226 return __vmalloc(size, GFP_KERNEL);
227 }
228 EXPORT_SYMBOL(vmalloc);
229
230 /*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
vzalloc(unsigned long size)242 void *vzalloc(unsigned long size)
243 {
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
vmalloc_node(unsigned long size,int node)259 void *vmalloc_node(unsigned long size, int node)
260 {
261 return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
vzalloc_node(unsigned long size,int node)277 void *vzalloc_node(unsigned long size, int node)
278 {
279 return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
vmalloc_32(unsigned long size)290 void *vmalloc_32(unsigned long size)
291 {
292 return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
vmalloc_32_user(unsigned long size)306 void *vmalloc_32_user(unsigned long size)
307 {
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 BUG();
319 return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
vunmap(const void * addr)323 void vunmap(const void *addr)
324 {
325 BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
vm_map_ram(struct page ** pages,unsigned int count,int node)329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 BUG();
332 return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
vm_unmap_ram(const void * mem,unsigned int count)336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
vm_unmap_aliases(void)342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
free_vm_area(struct vm_struct * area)347 void free_vm_area(struct vm_struct *area)
348 {
349 BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355 {
356 return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362 {
363 return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369 {
370 return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
SYSCALL_DEFINE1(brk,unsigned long,brk)381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404 }
405
406 /*
407 * initialise the percpu counter for VM and region record slabs
408 */
mmap_init(void)409 void __init mmap_init(void)
410 {
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)423 static noinline void validate_nommu_regions(void)
424 {
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446 }
447 #else
validate_nommu_regions(void)448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454 * add a region into the global tree
455 */
add_nommu_region(struct vm_region * region)456 static void add_nommu_region(struct vm_region *region)
457 {
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482 }
483
484 /*
485 * delete a region from the global tree
486 */
delete_nommu_region(struct vm_region * region)487 static void delete_nommu_region(struct vm_region *region)
488 {
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494 }
495
496 /*
497 * free a contiguous series of pages
498 */
free_page_series(unsigned long from,unsigned long to)499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page(from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507 }
508
509 /*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
__put_nommu_region(struct vm_region * region)515 static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517 {
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536 }
537
538 /*
539 * release a reference to a region
540 */
put_nommu_region(struct vm_region * region)541 static void put_nommu_region(struct vm_region *region)
542 {
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545 }
546
547 /*
548 * add a VMA into a process's mm_struct in the appropriate place in the list
549 * and tree and add to the address space's page tree also if not an anonymous
550 * page
551 * - should be called with mm->mmap_lock held writelocked
552 */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)553 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
554 {
555 struct vm_area_struct *pvma, *prev;
556 struct address_space *mapping;
557 struct rb_node **p, *parent, *rb_prev;
558
559 BUG_ON(!vma->vm_region);
560
561 mm->map_count++;
562 vma->vm_mm = mm;
563
564 /* add the VMA to the mapping */
565 if (vma->vm_file) {
566 mapping = vma->vm_file->f_mapping;
567
568 i_mmap_lock_write(mapping);
569 flush_dcache_mmap_lock(mapping);
570 vma_interval_tree_insert(vma, &mapping->i_mmap);
571 flush_dcache_mmap_unlock(mapping);
572 i_mmap_unlock_write(mapping);
573 }
574
575 /* add the VMA to the tree */
576 parent = rb_prev = NULL;
577 p = &mm->mm_rb.rb_node;
578 while (*p) {
579 parent = *p;
580 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
581
582 /* sort by: start addr, end addr, VMA struct addr in that order
583 * (the latter is necessary as we may get identical VMAs) */
584 if (vma->vm_start < pvma->vm_start)
585 p = &(*p)->rb_left;
586 else if (vma->vm_start > pvma->vm_start) {
587 rb_prev = parent;
588 p = &(*p)->rb_right;
589 } else if (vma->vm_end < pvma->vm_end)
590 p = &(*p)->rb_left;
591 else if (vma->vm_end > pvma->vm_end) {
592 rb_prev = parent;
593 p = &(*p)->rb_right;
594 } else if (vma < pvma)
595 p = &(*p)->rb_left;
596 else if (vma > pvma) {
597 rb_prev = parent;
598 p = &(*p)->rb_right;
599 } else
600 BUG();
601 }
602
603 rb_link_node(&vma->vm_rb, parent, p);
604 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
605
606 /* add VMA to the VMA list also */
607 prev = NULL;
608 if (rb_prev)
609 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
610
611 __vma_link_list(mm, vma, prev);
612 }
613
614 /*
615 * delete a VMA from its owning mm_struct and address space
616 */
delete_vma_from_mm(struct vm_area_struct * vma)617 static void delete_vma_from_mm(struct vm_area_struct *vma)
618 {
619 int i;
620 struct address_space *mapping;
621 struct mm_struct *mm = vma->vm_mm;
622 struct task_struct *curr = current;
623
624 mm->map_count--;
625 for (i = 0; i < VMACACHE_SIZE; i++) {
626 /* if the vma is cached, invalidate the entire cache */
627 if (curr->vmacache.vmas[i] == vma) {
628 vmacache_invalidate(mm);
629 break;
630 }
631 }
632
633 /* remove the VMA from the mapping */
634 if (vma->vm_file) {
635 mapping = vma->vm_file->f_mapping;
636
637 i_mmap_lock_write(mapping);
638 flush_dcache_mmap_lock(mapping);
639 vma_interval_tree_remove(vma, &mapping->i_mmap);
640 flush_dcache_mmap_unlock(mapping);
641 i_mmap_unlock_write(mapping);
642 }
643
644 /* remove from the MM's tree and list */
645 rb_erase(&vma->vm_rb, &mm->mm_rb);
646
647 __vma_unlink_list(mm, vma);
648 }
649
650 /*
651 * destroy a VMA record
652 */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)653 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
654 {
655 if (vma->vm_ops && vma->vm_ops->close)
656 vma->vm_ops->close(vma);
657 put_nommu_region(vma->vm_region);
658 /* fput(vma->vm_file) happens within vm_area_free() */
659 vm_area_free(vma);
660 }
661
find_vma_from_tree(struct mm_struct * mm,unsigned long addr)662 struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm, unsigned long addr)
663 {
664 struct vm_area_struct *vma;
665
666 /* trawl the list (there may be multiple mappings in which addr
667 * resides) */
668 for (vma = mm->mmap; vma; vma = vma->vm_next) {
669 if (vma->vm_start > addr)
670 return NULL;
671 if (vma->vm_end > addr)
672 return vma;
673 }
674
675 return NULL;
676 }
677
678 /*
679 * look up the first VMA in which addr resides, NULL if none
680 * - should be called with mm->mmap_lock at least held readlocked
681 */
__find_vma(struct mm_struct * mm,unsigned long addr)682 struct vm_area_struct *__find_vma(struct mm_struct *mm, unsigned long addr)
683 {
684 struct vm_area_struct *vma;
685
686 /* Check the cache first. */
687 vma = vmacache_find(mm, addr);
688 if (likely(vma))
689 return vma;
690
691 vma = find_vma_from_tree(mm, addr);
692
693 if (vma)
694 vmacache_update(addr, vma);
695 return vma;
696 }
697 EXPORT_SYMBOL(__find_vma);
698
699 /*
700 * find a VMA
701 * - we don't extend stack VMAs under NOMMU conditions
702 */
find_extend_vma(struct mm_struct * mm,unsigned long addr)703 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
704 {
705 return find_vma(mm, addr);
706 }
707
708 /*
709 * expand a stack to a given address
710 * - not supported under NOMMU conditions
711 */
expand_stack(struct vm_area_struct * vma,unsigned long address)712 int expand_stack(struct vm_area_struct *vma, unsigned long address)
713 {
714 return -ENOMEM;
715 }
716
717 /*
718 * look up the first VMA exactly that exactly matches addr
719 * - should be called with mm->mmap_lock at least held readlocked
720 */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)721 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
722 unsigned long addr,
723 unsigned long len)
724 {
725 struct vm_area_struct *vma;
726 unsigned long end = addr + len;
727
728 /* check the cache first */
729 vma = vmacache_find_exact(mm, addr, end);
730 if (vma)
731 return vma;
732
733 /* trawl the list (there may be multiple mappings in which addr
734 * resides) */
735 for (vma = mm->mmap; vma; vma = vma->vm_next) {
736 if (vma->vm_start < addr)
737 continue;
738 if (vma->vm_start > addr)
739 return NULL;
740 if (vma->vm_end == end) {
741 vmacache_update(addr, vma);
742 return vma;
743 }
744 }
745
746 return NULL;
747 }
748
749 /*
750 * determine whether a mapping should be permitted and, if so, what sort of
751 * mapping we're capable of supporting
752 */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)753 static int validate_mmap_request(struct file *file,
754 unsigned long addr,
755 unsigned long len,
756 unsigned long prot,
757 unsigned long flags,
758 unsigned long pgoff,
759 unsigned long *_capabilities)
760 {
761 unsigned long capabilities, rlen;
762 int ret;
763
764 /* do the simple checks first */
765 if (flags & MAP_FIXED)
766 return -EINVAL;
767
768 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
769 (flags & MAP_TYPE) != MAP_SHARED)
770 return -EINVAL;
771
772 if (!len)
773 return -EINVAL;
774
775 /* Careful about overflows.. */
776 rlen = PAGE_ALIGN(len);
777 if (!rlen || rlen > TASK_SIZE)
778 return -ENOMEM;
779
780 /* offset overflow? */
781 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
782 return -EOVERFLOW;
783
784 if (file) {
785 /* files must support mmap */
786 if (!file->f_op->mmap)
787 return -ENODEV;
788
789 /* work out if what we've got could possibly be shared
790 * - we support chardevs that provide their own "memory"
791 * - we support files/blockdevs that are memory backed
792 */
793 if (file->f_op->mmap_capabilities) {
794 capabilities = file->f_op->mmap_capabilities(file);
795 } else {
796 /* no explicit capabilities set, so assume some
797 * defaults */
798 switch (file_inode(file)->i_mode & S_IFMT) {
799 case S_IFREG:
800 case S_IFBLK:
801 capabilities = NOMMU_MAP_COPY;
802 break;
803
804 case S_IFCHR:
805 capabilities =
806 NOMMU_MAP_DIRECT |
807 NOMMU_MAP_READ |
808 NOMMU_MAP_WRITE;
809 break;
810
811 default:
812 return -EINVAL;
813 }
814 }
815
816 /* eliminate any capabilities that we can't support on this
817 * device */
818 if (!file->f_op->get_unmapped_area)
819 capabilities &= ~NOMMU_MAP_DIRECT;
820 if (!(file->f_mode & FMODE_CAN_READ))
821 capabilities &= ~NOMMU_MAP_COPY;
822
823 /* The file shall have been opened with read permission. */
824 if (!(file->f_mode & FMODE_READ))
825 return -EACCES;
826
827 if (flags & MAP_SHARED) {
828 /* do checks for writing, appending and locking */
829 if ((prot & PROT_WRITE) &&
830 !(file->f_mode & FMODE_WRITE))
831 return -EACCES;
832
833 if (IS_APPEND(file_inode(file)) &&
834 (file->f_mode & FMODE_WRITE))
835 return -EACCES;
836
837 if (!(capabilities & NOMMU_MAP_DIRECT))
838 return -ENODEV;
839
840 /* we mustn't privatise shared mappings */
841 capabilities &= ~NOMMU_MAP_COPY;
842 } else {
843 /* we're going to read the file into private memory we
844 * allocate */
845 if (!(capabilities & NOMMU_MAP_COPY))
846 return -ENODEV;
847
848 /* we don't permit a private writable mapping to be
849 * shared with the backing device */
850 if (prot & PROT_WRITE)
851 capabilities &= ~NOMMU_MAP_DIRECT;
852 }
853
854 if (capabilities & NOMMU_MAP_DIRECT) {
855 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
856 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
857 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
858 ) {
859 capabilities &= ~NOMMU_MAP_DIRECT;
860 if (flags & MAP_SHARED) {
861 pr_warn("MAP_SHARED not completely supported on !MMU\n");
862 return -EINVAL;
863 }
864 }
865 }
866
867 /* handle executable mappings and implied executable
868 * mappings */
869 if (path_noexec(&file->f_path)) {
870 if (prot & PROT_EXEC)
871 return -EPERM;
872 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
873 /* handle implication of PROT_EXEC by PROT_READ */
874 if (current->personality & READ_IMPLIES_EXEC) {
875 if (capabilities & NOMMU_MAP_EXEC)
876 prot |= PROT_EXEC;
877 }
878 } else if ((prot & PROT_READ) &&
879 (prot & PROT_EXEC) &&
880 !(capabilities & NOMMU_MAP_EXEC)
881 ) {
882 /* backing file is not executable, try to copy */
883 capabilities &= ~NOMMU_MAP_DIRECT;
884 }
885 } else {
886 /* anonymous mappings are always memory backed and can be
887 * privately mapped
888 */
889 capabilities = NOMMU_MAP_COPY;
890
891 /* handle PROT_EXEC implication by PROT_READ */
892 if ((prot & PROT_READ) &&
893 (current->personality & READ_IMPLIES_EXEC))
894 prot |= PROT_EXEC;
895 }
896
897 /* allow the security API to have its say */
898 ret = security_mmap_addr(addr);
899 if (ret < 0)
900 return ret;
901
902 /* looks okay */
903 *_capabilities = capabilities;
904 return 0;
905 }
906
907 /*
908 * we've determined that we can make the mapping, now translate what we
909 * now know into VMA flags
910 */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)911 static unsigned long determine_vm_flags(struct file *file,
912 unsigned long prot,
913 unsigned long flags,
914 unsigned long capabilities)
915 {
916 unsigned long vm_flags;
917
918 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
919 /* vm_flags |= mm->def_flags; */
920
921 if (!(capabilities & NOMMU_MAP_DIRECT)) {
922 /* attempt to share read-only copies of mapped file chunks */
923 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
924 if (file && !(prot & PROT_WRITE))
925 vm_flags |= VM_MAYSHARE;
926 } else {
927 /* overlay a shareable mapping on the backing device or inode
928 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
929 * romfs/cramfs */
930 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
931 if (flags & MAP_SHARED)
932 vm_flags |= VM_SHARED;
933 }
934
935 /* refuse to let anyone share private mappings with this process if
936 * it's being traced - otherwise breakpoints set in it may interfere
937 * with another untraced process
938 */
939 if ((flags & MAP_PRIVATE) && current->ptrace)
940 vm_flags &= ~VM_MAYSHARE;
941
942 return vm_flags;
943 }
944
945 /*
946 * set up a shared mapping on a file (the driver or filesystem provides and
947 * pins the storage)
948 */
do_mmap_shared_file(struct vm_area_struct * vma)949 static int do_mmap_shared_file(struct vm_area_struct *vma)
950 {
951 int ret;
952
953 ret = call_mmap(vma->vm_file, vma);
954 if (ret == 0) {
955 vma->vm_region->vm_top = vma->vm_region->vm_end;
956 return 0;
957 }
958 if (ret != -ENOSYS)
959 return ret;
960
961 /* getting -ENOSYS indicates that direct mmap isn't possible (as
962 * opposed to tried but failed) so we can only give a suitable error as
963 * it's not possible to make a private copy if MAP_SHARED was given */
964 return -ENODEV;
965 }
966
967 /*
968 * set up a private mapping or an anonymous shared mapping
969 */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)970 static int do_mmap_private(struct vm_area_struct *vma,
971 struct vm_region *region,
972 unsigned long len,
973 unsigned long capabilities)
974 {
975 unsigned long total, point;
976 void *base;
977 int ret, order;
978
979 /* invoke the file's mapping function so that it can keep track of
980 * shared mappings on devices or memory
981 * - VM_MAYSHARE will be set if it may attempt to share
982 */
983 if (capabilities & NOMMU_MAP_DIRECT) {
984 ret = call_mmap(vma->vm_file, vma);
985 if (ret == 0) {
986 /* shouldn't return success if we're not sharing */
987 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
988 vma->vm_region->vm_top = vma->vm_region->vm_end;
989 return 0;
990 }
991 if (ret != -ENOSYS)
992 return ret;
993
994 /* getting an ENOSYS error indicates that direct mmap isn't
995 * possible (as opposed to tried but failed) so we'll try to
996 * make a private copy of the data and map that instead */
997 }
998
999
1000 /* allocate some memory to hold the mapping
1001 * - note that this may not return a page-aligned address if the object
1002 * we're allocating is smaller than a page
1003 */
1004 order = get_order(len);
1005 total = 1 << order;
1006 point = len >> PAGE_SHIFT;
1007
1008 /* we don't want to allocate a power-of-2 sized page set */
1009 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1010 total = point;
1011
1012 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1013 if (!base)
1014 goto enomem;
1015
1016 atomic_long_add(total, &mmap_pages_allocated);
1017
1018 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1019 region->vm_start = (unsigned long) base;
1020 region->vm_end = region->vm_start + len;
1021 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1022
1023 vma->vm_start = region->vm_start;
1024 vma->vm_end = region->vm_start + len;
1025
1026 if (vma->vm_file) {
1027 /* read the contents of a file into the copy */
1028 loff_t fpos;
1029
1030 fpos = vma->vm_pgoff;
1031 fpos <<= PAGE_SHIFT;
1032
1033 ret = kernel_read(vma->vm_file, base, len, &fpos);
1034 if (ret < 0)
1035 goto error_free;
1036
1037 /* clear the last little bit */
1038 if (ret < len)
1039 memset(base + ret, 0, len - ret);
1040
1041 } else {
1042 vma_set_anonymous(vma);
1043 }
1044
1045 return 0;
1046
1047 error_free:
1048 free_page_series(region->vm_start, region->vm_top);
1049 region->vm_start = vma->vm_start = 0;
1050 region->vm_end = vma->vm_end = 0;
1051 region->vm_top = 0;
1052 return ret;
1053
1054 enomem:
1055 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1056 len, current->pid, current->comm);
1057 show_free_areas(0, NULL);
1058 return -ENOMEM;
1059 }
1060
1061 /*
1062 * handle mapping creation for uClinux
1063 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1064 unsigned long do_mmap(struct file *file,
1065 unsigned long addr,
1066 unsigned long len,
1067 unsigned long prot,
1068 unsigned long flags,
1069 unsigned long pgoff,
1070 unsigned long *populate,
1071 struct list_head *uf)
1072 {
1073 struct vm_area_struct *vma;
1074 struct vm_region *region;
1075 struct rb_node *rb;
1076 vm_flags_t vm_flags;
1077 unsigned long capabilities, result;
1078 int ret;
1079
1080 *populate = 0;
1081
1082 /* decide whether we should attempt the mapping, and if so what sort of
1083 * mapping */
1084 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1085 &capabilities);
1086 if (ret < 0)
1087 return ret;
1088
1089 /* we ignore the address hint */
1090 addr = 0;
1091 len = PAGE_ALIGN(len);
1092
1093 /* we've determined that we can make the mapping, now translate what we
1094 * now know into VMA flags */
1095 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1096
1097 /* we're going to need to record the mapping */
1098 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1099 if (!region)
1100 goto error_getting_region;
1101
1102 vma = vm_area_alloc(current->mm);
1103 if (!vma)
1104 goto error_getting_vma;
1105
1106 region->vm_usage = 1;
1107 region->vm_flags = vm_flags;
1108 region->vm_pgoff = pgoff;
1109
1110 vma->vm_flags = vm_flags;
1111 vma->vm_pgoff = pgoff;
1112
1113 if (file) {
1114 region->vm_file = get_file(file);
1115 vma->vm_file = get_file(file);
1116 }
1117
1118 down_write(&nommu_region_sem);
1119
1120 /* if we want to share, we need to check for regions created by other
1121 * mmap() calls that overlap with our proposed mapping
1122 * - we can only share with a superset match on most regular files
1123 * - shared mappings on character devices and memory backed files are
1124 * permitted to overlap inexactly as far as we are concerned for in
1125 * these cases, sharing is handled in the driver or filesystem rather
1126 * than here
1127 */
1128 if (vm_flags & VM_MAYSHARE) {
1129 struct vm_region *pregion;
1130 unsigned long pglen, rpglen, pgend, rpgend, start;
1131
1132 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1133 pgend = pgoff + pglen;
1134
1135 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1136 pregion = rb_entry(rb, struct vm_region, vm_rb);
1137
1138 if (!(pregion->vm_flags & VM_MAYSHARE))
1139 continue;
1140
1141 /* search for overlapping mappings on the same file */
1142 if (file_inode(pregion->vm_file) !=
1143 file_inode(file))
1144 continue;
1145
1146 if (pregion->vm_pgoff >= pgend)
1147 continue;
1148
1149 rpglen = pregion->vm_end - pregion->vm_start;
1150 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1151 rpgend = pregion->vm_pgoff + rpglen;
1152 if (pgoff >= rpgend)
1153 continue;
1154
1155 /* handle inexactly overlapping matches between
1156 * mappings */
1157 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1158 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1159 /* new mapping is not a subset of the region */
1160 if (!(capabilities & NOMMU_MAP_DIRECT))
1161 goto sharing_violation;
1162 continue;
1163 }
1164
1165 /* we've found a region we can share */
1166 pregion->vm_usage++;
1167 vma->vm_region = pregion;
1168 start = pregion->vm_start;
1169 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1170 vma->vm_start = start;
1171 vma->vm_end = start + len;
1172
1173 if (pregion->vm_flags & VM_MAPPED_COPY)
1174 vma->vm_flags |= VM_MAPPED_COPY;
1175 else {
1176 ret = do_mmap_shared_file(vma);
1177 if (ret < 0) {
1178 vma->vm_region = NULL;
1179 vma->vm_start = 0;
1180 vma->vm_end = 0;
1181 pregion->vm_usage--;
1182 pregion = NULL;
1183 goto error_just_free;
1184 }
1185 }
1186 fput(region->vm_file);
1187 kmem_cache_free(vm_region_jar, region);
1188 region = pregion;
1189 result = start;
1190 goto share;
1191 }
1192
1193 /* obtain the address at which to make a shared mapping
1194 * - this is the hook for quasi-memory character devices to
1195 * tell us the location of a shared mapping
1196 */
1197 if (capabilities & NOMMU_MAP_DIRECT) {
1198 addr = file->f_op->get_unmapped_area(file, addr, len,
1199 pgoff, flags);
1200 if (IS_ERR_VALUE(addr)) {
1201 ret = addr;
1202 if (ret != -ENOSYS)
1203 goto error_just_free;
1204
1205 /* the driver refused to tell us where to site
1206 * the mapping so we'll have to attempt to copy
1207 * it */
1208 ret = -ENODEV;
1209 if (!(capabilities & NOMMU_MAP_COPY))
1210 goto error_just_free;
1211
1212 capabilities &= ~NOMMU_MAP_DIRECT;
1213 } else {
1214 vma->vm_start = region->vm_start = addr;
1215 vma->vm_end = region->vm_end = addr + len;
1216 }
1217 }
1218 }
1219
1220 vma->vm_region = region;
1221
1222 /* set up the mapping
1223 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1224 */
1225 if (file && vma->vm_flags & VM_SHARED)
1226 ret = do_mmap_shared_file(vma);
1227 else
1228 ret = do_mmap_private(vma, region, len, capabilities);
1229 if (ret < 0)
1230 goto error_just_free;
1231 add_nommu_region(region);
1232
1233 /* clear anonymous mappings that don't ask for uninitialized data */
1234 if (!vma->vm_file &&
1235 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1236 !(flags & MAP_UNINITIALIZED)))
1237 memset((void *)region->vm_start, 0,
1238 region->vm_end - region->vm_start);
1239
1240 /* okay... we have a mapping; now we have to register it */
1241 result = vma->vm_start;
1242
1243 current->mm->total_vm += len >> PAGE_SHIFT;
1244
1245 share:
1246 add_vma_to_mm(current->mm, vma);
1247
1248 /* we flush the region from the icache only when the first executable
1249 * mapping of it is made */
1250 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1251 flush_icache_user_range(region->vm_start, region->vm_end);
1252 region->vm_icache_flushed = true;
1253 }
1254
1255 up_write(&nommu_region_sem);
1256
1257 return result;
1258
1259 error_just_free:
1260 up_write(&nommu_region_sem);
1261 error:
1262 if (region->vm_file)
1263 fput(region->vm_file);
1264 kmem_cache_free(vm_region_jar, region);
1265 /* fput(vma->vm_file) happens within vm_area_free() */
1266 vm_area_free(vma);
1267 return ret;
1268
1269 sharing_violation:
1270 up_write(&nommu_region_sem);
1271 pr_warn("Attempt to share mismatched mappings\n");
1272 ret = -EINVAL;
1273 goto error;
1274
1275 error_getting_vma:
1276 kmem_cache_free(vm_region_jar, region);
1277 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1278 len, current->pid);
1279 show_free_areas(0, NULL);
1280 return -ENOMEM;
1281
1282 error_getting_region:
1283 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1284 len, current->pid);
1285 show_free_areas(0, NULL);
1286 return -ENOMEM;
1287 }
1288
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1289 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1290 unsigned long prot, unsigned long flags,
1291 unsigned long fd, unsigned long pgoff)
1292 {
1293 struct file *file = NULL;
1294 unsigned long retval = -EBADF;
1295
1296 audit_mmap_fd(fd, flags);
1297 if (!(flags & MAP_ANONYMOUS)) {
1298 file = fget(fd);
1299 if (!file)
1300 goto out;
1301 }
1302
1303 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1304
1305 if (file)
1306 fput(file);
1307 out:
1308 return retval;
1309 }
1310
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1311 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1312 unsigned long, prot, unsigned long, flags,
1313 unsigned long, fd, unsigned long, pgoff)
1314 {
1315 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1316 }
1317
1318 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1319 struct mmap_arg_struct {
1320 unsigned long addr;
1321 unsigned long len;
1322 unsigned long prot;
1323 unsigned long flags;
1324 unsigned long fd;
1325 unsigned long offset;
1326 };
1327
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1328 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1329 {
1330 struct mmap_arg_struct a;
1331
1332 if (copy_from_user(&a, arg, sizeof(a)))
1333 return -EFAULT;
1334 if (offset_in_page(a.offset))
1335 return -EINVAL;
1336
1337 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1338 a.offset >> PAGE_SHIFT);
1339 }
1340 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1341
1342 /*
1343 * split a vma into two pieces at address 'addr', a new vma is allocated either
1344 * for the first part or the tail.
1345 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1346 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1347 unsigned long addr, int new_below)
1348 {
1349 struct vm_area_struct *new;
1350 struct vm_region *region;
1351 unsigned long npages;
1352
1353 /* we're only permitted to split anonymous regions (these should have
1354 * only a single usage on the region) */
1355 if (vma->vm_file)
1356 return -ENOMEM;
1357
1358 if (mm->map_count >= sysctl_max_map_count)
1359 return -ENOMEM;
1360
1361 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1362 if (!region)
1363 return -ENOMEM;
1364
1365 new = vm_area_dup(vma);
1366 if (!new) {
1367 kmem_cache_free(vm_region_jar, region);
1368 return -ENOMEM;
1369 }
1370
1371 /* most fields are the same, copy all, and then fixup */
1372 *region = *vma->vm_region;
1373 new->vm_region = region;
1374
1375 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1376
1377 if (new_below) {
1378 region->vm_top = region->vm_end = new->vm_end = addr;
1379 } else {
1380 region->vm_start = new->vm_start = addr;
1381 region->vm_pgoff = new->vm_pgoff += npages;
1382 }
1383
1384 if (new->vm_ops && new->vm_ops->open)
1385 new->vm_ops->open(new);
1386
1387 delete_vma_from_mm(vma);
1388 down_write(&nommu_region_sem);
1389 delete_nommu_region(vma->vm_region);
1390 if (new_below) {
1391 vma->vm_region->vm_start = vma->vm_start = addr;
1392 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1393 } else {
1394 vma->vm_region->vm_end = vma->vm_end = addr;
1395 vma->vm_region->vm_top = addr;
1396 }
1397 add_nommu_region(vma->vm_region);
1398 add_nommu_region(new->vm_region);
1399 up_write(&nommu_region_sem);
1400 add_vma_to_mm(mm, vma);
1401 add_vma_to_mm(mm, new);
1402 return 0;
1403 }
1404
1405 /*
1406 * shrink a VMA by removing the specified chunk from either the beginning or
1407 * the end
1408 */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1409 static int shrink_vma(struct mm_struct *mm,
1410 struct vm_area_struct *vma,
1411 unsigned long from, unsigned long to)
1412 {
1413 struct vm_region *region;
1414
1415 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1416 * and list */
1417 delete_vma_from_mm(vma);
1418 if (from > vma->vm_start)
1419 vma->vm_end = from;
1420 else
1421 vma->vm_start = to;
1422 add_vma_to_mm(mm, vma);
1423
1424 /* cut the backing region down to size */
1425 region = vma->vm_region;
1426 BUG_ON(region->vm_usage != 1);
1427
1428 down_write(&nommu_region_sem);
1429 delete_nommu_region(region);
1430 if (from > region->vm_start) {
1431 to = region->vm_top;
1432 region->vm_top = region->vm_end = from;
1433 } else {
1434 region->vm_start = to;
1435 }
1436 add_nommu_region(region);
1437 up_write(&nommu_region_sem);
1438
1439 free_page_series(from, to);
1440 return 0;
1441 }
1442
1443 /*
1444 * release a mapping
1445 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1446 * VMA, though it need not cover the whole VMA
1447 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1448 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1449 {
1450 struct vm_area_struct *vma;
1451 unsigned long end;
1452 int ret;
1453
1454 len = PAGE_ALIGN(len);
1455 if (len == 0)
1456 return -EINVAL;
1457
1458 end = start + len;
1459
1460 /* find the first potentially overlapping VMA */
1461 vma = find_vma(mm, start);
1462 if (!vma) {
1463 static int limit;
1464 if (limit < 5) {
1465 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1466 current->pid, current->comm,
1467 start, start + len - 1);
1468 limit++;
1469 }
1470 return -EINVAL;
1471 }
1472
1473 /* we're allowed to split an anonymous VMA but not a file-backed one */
1474 if (vma->vm_file) {
1475 do {
1476 if (start > vma->vm_start)
1477 return -EINVAL;
1478 if (end == vma->vm_end)
1479 goto erase_whole_vma;
1480 vma = vma->vm_next;
1481 } while (vma);
1482 return -EINVAL;
1483 } else {
1484 /* the chunk must be a subset of the VMA found */
1485 if (start == vma->vm_start && end == vma->vm_end)
1486 goto erase_whole_vma;
1487 if (start < vma->vm_start || end > vma->vm_end)
1488 return -EINVAL;
1489 if (offset_in_page(start))
1490 return -EINVAL;
1491 if (end != vma->vm_end && offset_in_page(end))
1492 return -EINVAL;
1493 if (start != vma->vm_start && end != vma->vm_end) {
1494 ret = split_vma(mm, vma, start, 1);
1495 if (ret < 0)
1496 return ret;
1497 }
1498 return shrink_vma(mm, vma, start, end);
1499 }
1500
1501 erase_whole_vma:
1502 delete_vma_from_mm(vma);
1503 delete_vma(mm, vma);
1504 return 0;
1505 }
1506
vm_munmap(unsigned long addr,size_t len)1507 int vm_munmap(unsigned long addr, size_t len)
1508 {
1509 struct mm_struct *mm = current->mm;
1510 int ret;
1511
1512 mmap_write_lock(mm);
1513 ret = do_munmap(mm, addr, len, NULL);
1514 mmap_write_unlock(mm);
1515 return ret;
1516 }
1517 EXPORT_SYMBOL(vm_munmap);
1518
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1519 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1520 {
1521 return vm_munmap(addr, len);
1522 }
1523
1524 /*
1525 * release all the mappings made in a process's VM space
1526 */
exit_mmap(struct mm_struct * mm)1527 void exit_mmap(struct mm_struct *mm)
1528 {
1529 struct vm_area_struct *vma;
1530
1531 if (!mm)
1532 return;
1533
1534 mm->total_vm = 0;
1535
1536 while ((vma = mm->mmap)) {
1537 mm->mmap = vma->vm_next;
1538 delete_vma_from_mm(vma);
1539 delete_vma(mm, vma);
1540 cond_resched();
1541 }
1542 }
1543
vm_brk(unsigned long addr,unsigned long len)1544 int vm_brk(unsigned long addr, unsigned long len)
1545 {
1546 return -ENOMEM;
1547 }
1548
1549 /*
1550 * expand (or shrink) an existing mapping, potentially moving it at the same
1551 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1552 *
1553 * under NOMMU conditions, we only permit changing a mapping's size, and only
1554 * as long as it stays within the region allocated by do_mmap_private() and the
1555 * block is not shareable
1556 *
1557 * MREMAP_FIXED is not supported under NOMMU conditions
1558 */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1559 static unsigned long do_mremap(unsigned long addr,
1560 unsigned long old_len, unsigned long new_len,
1561 unsigned long flags, unsigned long new_addr)
1562 {
1563 struct vm_area_struct *vma;
1564
1565 /* insanity checks first */
1566 old_len = PAGE_ALIGN(old_len);
1567 new_len = PAGE_ALIGN(new_len);
1568 if (old_len == 0 || new_len == 0)
1569 return (unsigned long) -EINVAL;
1570
1571 if (offset_in_page(addr))
1572 return -EINVAL;
1573
1574 if (flags & MREMAP_FIXED && new_addr != addr)
1575 return (unsigned long) -EINVAL;
1576
1577 vma = find_vma_exact(current->mm, addr, old_len);
1578 if (!vma)
1579 return (unsigned long) -EINVAL;
1580
1581 if (vma->vm_end != vma->vm_start + old_len)
1582 return (unsigned long) -EFAULT;
1583
1584 if (vma->vm_flags & VM_MAYSHARE)
1585 return (unsigned long) -EPERM;
1586
1587 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1588 return (unsigned long) -ENOMEM;
1589
1590 /* all checks complete - do it */
1591 vma->vm_end = vma->vm_start + new_len;
1592 return vma->vm_start;
1593 }
1594
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1595 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1596 unsigned long, new_len, unsigned long, flags,
1597 unsigned long, new_addr)
1598 {
1599 unsigned long ret;
1600
1601 mmap_write_lock(current->mm);
1602 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1603 mmap_write_unlock(current->mm);
1604 return ret;
1605 }
1606
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1607 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1608 unsigned int foll_flags)
1609 {
1610 return NULL;
1611 }
1612
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1613 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1614 unsigned long pfn, unsigned long size, pgprot_t prot)
1615 {
1616 if (addr != (pfn << PAGE_SHIFT))
1617 return -EINVAL;
1618
1619 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(remap_pfn_range);
1623
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1624 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1625 {
1626 unsigned long pfn = start >> PAGE_SHIFT;
1627 unsigned long vm_len = vma->vm_end - vma->vm_start;
1628
1629 pfn += vma->vm_pgoff;
1630 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1631 }
1632 EXPORT_SYMBOL(vm_iomap_memory);
1633
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1634 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1635 unsigned long pgoff)
1636 {
1637 unsigned int size = vma->vm_end - vma->vm_start;
1638
1639 if (!(vma->vm_flags & VM_USERMAP))
1640 return -EINVAL;
1641
1642 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1643 vma->vm_end = vma->vm_start + size;
1644
1645 return 0;
1646 }
1647 EXPORT_SYMBOL(remap_vmalloc_range);
1648
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1649 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1650 unsigned long len, unsigned long pgoff, unsigned long flags)
1651 {
1652 return -ENOMEM;
1653 }
1654
filemap_fault(struct vm_fault * vmf)1655 vm_fault_t filemap_fault(struct vm_fault *vmf)
1656 {
1657 BUG();
1658 return 0;
1659 }
1660 EXPORT_SYMBOL(filemap_fault);
1661
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1662 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1663 pgoff_t start_pgoff, pgoff_t end_pgoff)
1664 {
1665 BUG();
1666 return 0;
1667 }
1668 EXPORT_SYMBOL(filemap_map_pages);
1669
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1670 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1671 int len, unsigned int gup_flags)
1672 {
1673 struct vm_area_struct *vma;
1674 int write = gup_flags & FOLL_WRITE;
1675
1676 if (mmap_read_lock_killable(mm))
1677 return 0;
1678
1679 /* the access must start within one of the target process's mappings */
1680 vma = find_vma(mm, addr);
1681 if (vma) {
1682 /* don't overrun this mapping */
1683 if (addr + len >= vma->vm_end)
1684 len = vma->vm_end - addr;
1685
1686 /* only read or write mappings where it is permitted */
1687 if (write && vma->vm_flags & VM_MAYWRITE)
1688 copy_to_user_page(vma, NULL, addr,
1689 (void *) addr, buf, len);
1690 else if (!write && vma->vm_flags & VM_MAYREAD)
1691 copy_from_user_page(vma, NULL, addr,
1692 buf, (void *) addr, len);
1693 else
1694 len = 0;
1695 } else {
1696 len = 0;
1697 }
1698
1699 mmap_read_unlock(mm);
1700
1701 return len;
1702 }
1703
1704 /**
1705 * access_remote_vm - access another process' address space
1706 * @mm: the mm_struct of the target address space
1707 * @addr: start address to access
1708 * @buf: source or destination buffer
1709 * @len: number of bytes to transfer
1710 * @gup_flags: flags modifying lookup behaviour
1711 *
1712 * The caller must hold a reference on @mm.
1713 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1714 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1715 void *buf, int len, unsigned int gup_flags)
1716 {
1717 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1718 }
1719
1720 /*
1721 * Access another process' address space.
1722 * - source/target buffer must be kernel space
1723 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1724 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1725 unsigned int gup_flags)
1726 {
1727 struct mm_struct *mm;
1728
1729 if (addr + len < addr)
1730 return 0;
1731
1732 mm = get_task_mm(tsk);
1733 if (!mm)
1734 return 0;
1735
1736 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1737
1738 mmput(mm);
1739 return len;
1740 }
1741 EXPORT_SYMBOL_GPL(access_process_vm);
1742
1743 /**
1744 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1745 * @inode: The inode to check
1746 * @size: The current filesize of the inode
1747 * @newsize: The proposed filesize of the inode
1748 *
1749 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1750 * make sure that any outstanding VMAs aren't broken and then shrink the
1751 * vm_regions that extend beyond so that do_mmap() doesn't
1752 * automatically grant mappings that are too large.
1753 */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1754 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1755 size_t newsize)
1756 {
1757 struct vm_area_struct *vma;
1758 struct vm_region *region;
1759 pgoff_t low, high;
1760 size_t r_size, r_top;
1761
1762 low = newsize >> PAGE_SHIFT;
1763 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1764
1765 down_write(&nommu_region_sem);
1766 i_mmap_lock_read(inode->i_mapping);
1767
1768 /* search for VMAs that fall within the dead zone */
1769 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1770 /* found one - only interested if it's shared out of the page
1771 * cache */
1772 if (vma->vm_flags & VM_SHARED) {
1773 i_mmap_unlock_read(inode->i_mapping);
1774 up_write(&nommu_region_sem);
1775 return -ETXTBSY; /* not quite true, but near enough */
1776 }
1777 }
1778
1779 /* reduce any regions that overlap the dead zone - if in existence,
1780 * these will be pointed to by VMAs that don't overlap the dead zone
1781 *
1782 * we don't check for any regions that start beyond the EOF as there
1783 * shouldn't be any
1784 */
1785 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1786 if (!(vma->vm_flags & VM_SHARED))
1787 continue;
1788
1789 region = vma->vm_region;
1790 r_size = region->vm_top - region->vm_start;
1791 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1792
1793 if (r_top > newsize) {
1794 region->vm_top -= r_top - newsize;
1795 if (region->vm_end > region->vm_top)
1796 region->vm_end = region->vm_top;
1797 }
1798 }
1799
1800 i_mmap_unlock_read(inode->i_mapping);
1801 up_write(&nommu_region_sem);
1802 return 0;
1803 }
1804
1805 /*
1806 * Initialise sysctl_user_reserve_kbytes.
1807 *
1808 * This is intended to prevent a user from starting a single memory hogging
1809 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1810 * mode.
1811 *
1812 * The default value is min(3% of free memory, 128MB)
1813 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1814 */
init_user_reserve(void)1815 static int __meminit init_user_reserve(void)
1816 {
1817 unsigned long free_kbytes;
1818
1819 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1820
1821 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1822 return 0;
1823 }
1824 subsys_initcall(init_user_reserve);
1825
1826 /*
1827 * Initialise sysctl_admin_reserve_kbytes.
1828 *
1829 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1830 * to log in and kill a memory hogging process.
1831 *
1832 * Systems with more than 256MB will reserve 8MB, enough to recover
1833 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1834 * only reserve 3% of free pages by default.
1835 */
init_admin_reserve(void)1836 static int __meminit init_admin_reserve(void)
1837 {
1838 unsigned long free_kbytes;
1839
1840 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1841
1842 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1843 return 0;
1844 }
1845 subsys_initcall(init_admin_reserve);
1846