• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
__vmalloc(unsigned long size,gfp_t gfp_mask)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 		unsigned long start, unsigned long end, gfp_t gfp_mask,
155 		pgprot_t prot, unsigned long vm_flags, int node,
156 		const void *caller)
157 {
158 	return __vmalloc(size, gfp_mask);
159 }
160 
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 		int node, const void *caller)
163 {
164 	return __vmalloc(size, gfp_mask);
165 }
166 
__vmalloc_user_flags(unsigned long size,gfp_t flags)167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 	void *ret;
170 
171 	ret = __vmalloc(size, flags);
172 	if (ret) {
173 		struct vm_area_struct *vma;
174 
175 		mmap_write_lock(current->mm);
176 		vma = find_vma(current->mm, (unsigned long)ret);
177 		if (vma)
178 			vma->vm_flags |= VM_USERMAP;
179 		mmap_write_unlock(current->mm);
180 	}
181 
182 	return ret;
183 }
184 
vmalloc_user(unsigned long size)185 void *vmalloc_user(unsigned long size)
186 {
187 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190 
vmalloc_to_page(const void * addr)191 struct page *vmalloc_to_page(const void *addr)
192 {
193 	return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196 
vmalloc_to_pfn(const void * addr)197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 	return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202 
vread(char * buf,char * addr,unsigned long count)203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 	/* Don't allow overflow */
206 	if ((unsigned long) buf + count < count)
207 		count = -(unsigned long) buf;
208 
209 	memcpy(buf, addr, count);
210 	return count;
211 }
212 
213 /*
214  *	vmalloc  -  allocate virtually contiguous memory
215  *
216  *	@size:		allocation size
217  *
218  *	Allocate enough pages to cover @size from the page level
219  *	allocator and map them into contiguous kernel virtual space.
220  *
221  *	For tight control over page level allocator and protection flags
222  *	use __vmalloc() instead.
223  */
vmalloc(unsigned long size)224 void *vmalloc(unsigned long size)
225 {
226 	return __vmalloc(size, GFP_KERNEL);
227 }
228 EXPORT_SYMBOL(vmalloc);
229 
230 /*
231  *	vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *	@size:		allocation size
234  *
235  *	Allocate enough pages to cover @size from the page level
236  *	allocator and map them into contiguous kernel virtual space.
237  *	The memory allocated is set to zero.
238  *
239  *	For tight control over page level allocator and protection flags
240  *	use __vmalloc() instead.
241  */
vzalloc(unsigned long size)242 void *vzalloc(unsigned long size)
243 {
244 	return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247 
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:	allocation size
251  * @node:	numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
vmalloc_node(unsigned long size,int node)259 void *vmalloc_node(unsigned long size, int node)
260 {
261 	return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264 
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:	allocation size
268  * @node:	numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
vzalloc_node(unsigned long size,int node)277 void *vzalloc_node(unsigned long size, int node)
278 {
279 	return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282 
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *	@size:		allocation size
286  *
287  *	Allocate enough 32bit PA addressable pages to cover @size from the
288  *	page level allocator and map them into contiguous kernel virtual space.
289  */
vmalloc_32(unsigned long size)290 void *vmalloc_32(unsigned long size)
291 {
292 	return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295 
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *	@size:		allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
vmalloc_32_user(unsigned long size)306 void *vmalloc_32_user(unsigned long size)
307 {
308 	/*
309 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 	 * but for now this can simply use vmalloc_user() directly.
311 	 */
312 	return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 	BUG();
319 	return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322 
vunmap(const void * addr)323 void vunmap(const void *addr)
324 {
325 	BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328 
vm_map_ram(struct page ** pages,unsigned int count,int node)329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 	BUG();
332 	return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335 
vm_unmap_ram(const void * mem,unsigned int count)336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 	BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341 
vm_unmap_aliases(void)342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346 
free_vm_area(struct vm_struct * area)347 void free_vm_area(struct vm_struct *area)
348 {
349 	BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 		   struct page *page)
355 {
356 	return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359 
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 			unsigned long num)
362 {
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366 
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 				unsigned long num)
369 {
370 	return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373 
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
SYSCALL_DEFINE1(brk,unsigned long,brk)381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 	struct mm_struct *mm = current->mm;
384 
385 	if (brk < mm->start_brk || brk > mm->context.end_brk)
386 		return mm->brk;
387 
388 	if (mm->brk == brk)
389 		return mm->brk;
390 
391 	/*
392 	 * Always allow shrinking brk
393 	 */
394 	if (brk <= mm->brk) {
395 		mm->brk = brk;
396 		return brk;
397 	}
398 
399 	/*
400 	 * Ok, looks good - let it rip.
401 	 */
402 	flush_icache_user_range(mm->brk, brk);
403 	return mm->brk = brk;
404 }
405 
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
mmap_init(void)409 void __init mmap_init(void)
410 {
411 	int ret;
412 
413 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 	VM_BUG_ON(ret);
415 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417 
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)423 static noinline void validate_nommu_regions(void)
424 {
425 	struct vm_region *region, *last;
426 	struct rb_node *p, *lastp;
427 
428 	lastp = rb_first(&nommu_region_tree);
429 	if (!lastp)
430 		return;
431 
432 	last = rb_entry(lastp, struct vm_region, vm_rb);
433 	BUG_ON(last->vm_end <= last->vm_start);
434 	BUG_ON(last->vm_top < last->vm_end);
435 
436 	while ((p = rb_next(lastp))) {
437 		region = rb_entry(p, struct vm_region, vm_rb);
438 		last = rb_entry(lastp, struct vm_region, vm_rb);
439 
440 		BUG_ON(region->vm_end <= region->vm_start);
441 		BUG_ON(region->vm_top < region->vm_end);
442 		BUG_ON(region->vm_start < last->vm_top);
443 
444 		lastp = p;
445 	}
446 }
447 #else
validate_nommu_regions(void)448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452 
453 /*
454  * add a region into the global tree
455  */
add_nommu_region(struct vm_region * region)456 static void add_nommu_region(struct vm_region *region)
457 {
458 	struct vm_region *pregion;
459 	struct rb_node **p, *parent;
460 
461 	validate_nommu_regions();
462 
463 	parent = NULL;
464 	p = &nommu_region_tree.rb_node;
465 	while (*p) {
466 		parent = *p;
467 		pregion = rb_entry(parent, struct vm_region, vm_rb);
468 		if (region->vm_start < pregion->vm_start)
469 			p = &(*p)->rb_left;
470 		else if (region->vm_start > pregion->vm_start)
471 			p = &(*p)->rb_right;
472 		else if (pregion == region)
473 			return;
474 		else
475 			BUG();
476 	}
477 
478 	rb_link_node(&region->vm_rb, parent, p);
479 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
480 
481 	validate_nommu_regions();
482 }
483 
484 /*
485  * delete a region from the global tree
486  */
delete_nommu_region(struct vm_region * region)487 static void delete_nommu_region(struct vm_region *region)
488 {
489 	BUG_ON(!nommu_region_tree.rb_node);
490 
491 	validate_nommu_regions();
492 	rb_erase(&region->vm_rb, &nommu_region_tree);
493 	validate_nommu_regions();
494 }
495 
496 /*
497  * free a contiguous series of pages
498  */
free_page_series(unsigned long from,unsigned long to)499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 	for (; from < to; from += PAGE_SIZE) {
502 		struct page *page = virt_to_page(from);
503 
504 		atomic_long_dec(&mmap_pages_allocated);
505 		put_page(page);
506 	}
507 }
508 
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
__put_nommu_region(struct vm_region * region)515 static void __put_nommu_region(struct vm_region *region)
516 	__releases(nommu_region_sem)
517 {
518 	BUG_ON(!nommu_region_tree.rb_node);
519 
520 	if (--region->vm_usage == 0) {
521 		if (region->vm_top > region->vm_start)
522 			delete_nommu_region(region);
523 		up_write(&nommu_region_sem);
524 
525 		if (region->vm_file)
526 			fput(region->vm_file);
527 
528 		/* IO memory and memory shared directly out of the pagecache
529 		 * from ramfs/tmpfs mustn't be released here */
530 		if (region->vm_flags & VM_MAPPED_COPY)
531 			free_page_series(region->vm_start, region->vm_top);
532 		kmem_cache_free(vm_region_jar, region);
533 	} else {
534 		up_write(&nommu_region_sem);
535 	}
536 }
537 
538 /*
539  * release a reference to a region
540  */
put_nommu_region(struct vm_region * region)541 static void put_nommu_region(struct vm_region *region)
542 {
543 	down_write(&nommu_region_sem);
544 	__put_nommu_region(region);
545 }
546 
547 /*
548  * add a VMA into a process's mm_struct in the appropriate place in the list
549  * and tree and add to the address space's page tree also if not an anonymous
550  * page
551  * - should be called with mm->mmap_lock held writelocked
552  */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)553 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
554 {
555 	struct vm_area_struct *pvma, *prev;
556 	struct address_space *mapping;
557 	struct rb_node **p, *parent, *rb_prev;
558 
559 	BUG_ON(!vma->vm_region);
560 
561 	mm->map_count++;
562 	vma->vm_mm = mm;
563 
564 	/* add the VMA to the mapping */
565 	if (vma->vm_file) {
566 		mapping = vma->vm_file->f_mapping;
567 
568 		i_mmap_lock_write(mapping);
569 		flush_dcache_mmap_lock(mapping);
570 		vma_interval_tree_insert(vma, &mapping->i_mmap);
571 		flush_dcache_mmap_unlock(mapping);
572 		i_mmap_unlock_write(mapping);
573 	}
574 
575 	/* add the VMA to the tree */
576 	parent = rb_prev = NULL;
577 	p = &mm->mm_rb.rb_node;
578 	while (*p) {
579 		parent = *p;
580 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
581 
582 		/* sort by: start addr, end addr, VMA struct addr in that order
583 		 * (the latter is necessary as we may get identical VMAs) */
584 		if (vma->vm_start < pvma->vm_start)
585 			p = &(*p)->rb_left;
586 		else if (vma->vm_start > pvma->vm_start) {
587 			rb_prev = parent;
588 			p = &(*p)->rb_right;
589 		} else if (vma->vm_end < pvma->vm_end)
590 			p = &(*p)->rb_left;
591 		else if (vma->vm_end > pvma->vm_end) {
592 			rb_prev = parent;
593 			p = &(*p)->rb_right;
594 		} else if (vma < pvma)
595 			p = &(*p)->rb_left;
596 		else if (vma > pvma) {
597 			rb_prev = parent;
598 			p = &(*p)->rb_right;
599 		} else
600 			BUG();
601 	}
602 
603 	rb_link_node(&vma->vm_rb, parent, p);
604 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
605 
606 	/* add VMA to the VMA list also */
607 	prev = NULL;
608 	if (rb_prev)
609 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
610 
611 	__vma_link_list(mm, vma, prev);
612 }
613 
614 /*
615  * delete a VMA from its owning mm_struct and address space
616  */
delete_vma_from_mm(struct vm_area_struct * vma)617 static void delete_vma_from_mm(struct vm_area_struct *vma)
618 {
619 	int i;
620 	struct address_space *mapping;
621 	struct mm_struct *mm = vma->vm_mm;
622 	struct task_struct *curr = current;
623 
624 	mm->map_count--;
625 	for (i = 0; i < VMACACHE_SIZE; i++) {
626 		/* if the vma is cached, invalidate the entire cache */
627 		if (curr->vmacache.vmas[i] == vma) {
628 			vmacache_invalidate(mm);
629 			break;
630 		}
631 	}
632 
633 	/* remove the VMA from the mapping */
634 	if (vma->vm_file) {
635 		mapping = vma->vm_file->f_mapping;
636 
637 		i_mmap_lock_write(mapping);
638 		flush_dcache_mmap_lock(mapping);
639 		vma_interval_tree_remove(vma, &mapping->i_mmap);
640 		flush_dcache_mmap_unlock(mapping);
641 		i_mmap_unlock_write(mapping);
642 	}
643 
644 	/* remove from the MM's tree and list */
645 	rb_erase(&vma->vm_rb, &mm->mm_rb);
646 
647 	__vma_unlink_list(mm, vma);
648 }
649 
650 /*
651  * destroy a VMA record
652  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)653 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
654 {
655 	if (vma->vm_ops && vma->vm_ops->close)
656 		vma->vm_ops->close(vma);
657 	put_nommu_region(vma->vm_region);
658 	/* fput(vma->vm_file) happens within vm_area_free() */
659 	vm_area_free(vma);
660 }
661 
find_vma_from_tree(struct mm_struct * mm,unsigned long addr)662 struct vm_area_struct *find_vma_from_tree(struct mm_struct *mm, unsigned long addr)
663 {
664 	struct vm_area_struct *vma;
665 
666 	/* trawl the list (there may be multiple mappings in which addr
667 	 * resides) */
668 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
669 		if (vma->vm_start > addr)
670 			return NULL;
671 		if (vma->vm_end > addr)
672 			return vma;
673 	}
674 
675 	return NULL;
676 }
677 
678 /*
679  * look up the first VMA in which addr resides, NULL if none
680  * - should be called with mm->mmap_lock at least held readlocked
681  */
__find_vma(struct mm_struct * mm,unsigned long addr)682 struct vm_area_struct *__find_vma(struct mm_struct *mm, unsigned long addr)
683 {
684 	struct vm_area_struct *vma;
685 
686 	/* Check the cache first. */
687 	vma = vmacache_find(mm, addr);
688 	if (likely(vma))
689 		return vma;
690 
691 	vma = find_vma_from_tree(mm, addr);
692 
693 	if (vma)
694 		vmacache_update(addr, vma);
695 	return vma;
696 }
697 EXPORT_SYMBOL(__find_vma);
698 
699 /*
700  * find a VMA
701  * - we don't extend stack VMAs under NOMMU conditions
702  */
find_extend_vma(struct mm_struct * mm,unsigned long addr)703 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
704 {
705 	return find_vma(mm, addr);
706 }
707 
708 /*
709  * expand a stack to a given address
710  * - not supported under NOMMU conditions
711  */
expand_stack(struct vm_area_struct * vma,unsigned long address)712 int expand_stack(struct vm_area_struct *vma, unsigned long address)
713 {
714 	return -ENOMEM;
715 }
716 
717 /*
718  * look up the first VMA exactly that exactly matches addr
719  * - should be called with mm->mmap_lock at least held readlocked
720  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)721 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
722 					     unsigned long addr,
723 					     unsigned long len)
724 {
725 	struct vm_area_struct *vma;
726 	unsigned long end = addr + len;
727 
728 	/* check the cache first */
729 	vma = vmacache_find_exact(mm, addr, end);
730 	if (vma)
731 		return vma;
732 
733 	/* trawl the list (there may be multiple mappings in which addr
734 	 * resides) */
735 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
736 		if (vma->vm_start < addr)
737 			continue;
738 		if (vma->vm_start > addr)
739 			return NULL;
740 		if (vma->vm_end == end) {
741 			vmacache_update(addr, vma);
742 			return vma;
743 		}
744 	}
745 
746 	return NULL;
747 }
748 
749 /*
750  * determine whether a mapping should be permitted and, if so, what sort of
751  * mapping we're capable of supporting
752  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)753 static int validate_mmap_request(struct file *file,
754 				 unsigned long addr,
755 				 unsigned long len,
756 				 unsigned long prot,
757 				 unsigned long flags,
758 				 unsigned long pgoff,
759 				 unsigned long *_capabilities)
760 {
761 	unsigned long capabilities, rlen;
762 	int ret;
763 
764 	/* do the simple checks first */
765 	if (flags & MAP_FIXED)
766 		return -EINVAL;
767 
768 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
769 	    (flags & MAP_TYPE) != MAP_SHARED)
770 		return -EINVAL;
771 
772 	if (!len)
773 		return -EINVAL;
774 
775 	/* Careful about overflows.. */
776 	rlen = PAGE_ALIGN(len);
777 	if (!rlen || rlen > TASK_SIZE)
778 		return -ENOMEM;
779 
780 	/* offset overflow? */
781 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
782 		return -EOVERFLOW;
783 
784 	if (file) {
785 		/* files must support mmap */
786 		if (!file->f_op->mmap)
787 			return -ENODEV;
788 
789 		/* work out if what we've got could possibly be shared
790 		 * - we support chardevs that provide their own "memory"
791 		 * - we support files/blockdevs that are memory backed
792 		 */
793 		if (file->f_op->mmap_capabilities) {
794 			capabilities = file->f_op->mmap_capabilities(file);
795 		} else {
796 			/* no explicit capabilities set, so assume some
797 			 * defaults */
798 			switch (file_inode(file)->i_mode & S_IFMT) {
799 			case S_IFREG:
800 			case S_IFBLK:
801 				capabilities = NOMMU_MAP_COPY;
802 				break;
803 
804 			case S_IFCHR:
805 				capabilities =
806 					NOMMU_MAP_DIRECT |
807 					NOMMU_MAP_READ |
808 					NOMMU_MAP_WRITE;
809 				break;
810 
811 			default:
812 				return -EINVAL;
813 			}
814 		}
815 
816 		/* eliminate any capabilities that we can't support on this
817 		 * device */
818 		if (!file->f_op->get_unmapped_area)
819 			capabilities &= ~NOMMU_MAP_DIRECT;
820 		if (!(file->f_mode & FMODE_CAN_READ))
821 			capabilities &= ~NOMMU_MAP_COPY;
822 
823 		/* The file shall have been opened with read permission. */
824 		if (!(file->f_mode & FMODE_READ))
825 			return -EACCES;
826 
827 		if (flags & MAP_SHARED) {
828 			/* do checks for writing, appending and locking */
829 			if ((prot & PROT_WRITE) &&
830 			    !(file->f_mode & FMODE_WRITE))
831 				return -EACCES;
832 
833 			if (IS_APPEND(file_inode(file)) &&
834 			    (file->f_mode & FMODE_WRITE))
835 				return -EACCES;
836 
837 			if (!(capabilities & NOMMU_MAP_DIRECT))
838 				return -ENODEV;
839 
840 			/* we mustn't privatise shared mappings */
841 			capabilities &= ~NOMMU_MAP_COPY;
842 		} else {
843 			/* we're going to read the file into private memory we
844 			 * allocate */
845 			if (!(capabilities & NOMMU_MAP_COPY))
846 				return -ENODEV;
847 
848 			/* we don't permit a private writable mapping to be
849 			 * shared with the backing device */
850 			if (prot & PROT_WRITE)
851 				capabilities &= ~NOMMU_MAP_DIRECT;
852 		}
853 
854 		if (capabilities & NOMMU_MAP_DIRECT) {
855 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
856 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
857 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
858 			    ) {
859 				capabilities &= ~NOMMU_MAP_DIRECT;
860 				if (flags & MAP_SHARED) {
861 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
862 					return -EINVAL;
863 				}
864 			}
865 		}
866 
867 		/* handle executable mappings and implied executable
868 		 * mappings */
869 		if (path_noexec(&file->f_path)) {
870 			if (prot & PROT_EXEC)
871 				return -EPERM;
872 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
873 			/* handle implication of PROT_EXEC by PROT_READ */
874 			if (current->personality & READ_IMPLIES_EXEC) {
875 				if (capabilities & NOMMU_MAP_EXEC)
876 					prot |= PROT_EXEC;
877 			}
878 		} else if ((prot & PROT_READ) &&
879 			 (prot & PROT_EXEC) &&
880 			 !(capabilities & NOMMU_MAP_EXEC)
881 			 ) {
882 			/* backing file is not executable, try to copy */
883 			capabilities &= ~NOMMU_MAP_DIRECT;
884 		}
885 	} else {
886 		/* anonymous mappings are always memory backed and can be
887 		 * privately mapped
888 		 */
889 		capabilities = NOMMU_MAP_COPY;
890 
891 		/* handle PROT_EXEC implication by PROT_READ */
892 		if ((prot & PROT_READ) &&
893 		    (current->personality & READ_IMPLIES_EXEC))
894 			prot |= PROT_EXEC;
895 	}
896 
897 	/* allow the security API to have its say */
898 	ret = security_mmap_addr(addr);
899 	if (ret < 0)
900 		return ret;
901 
902 	/* looks okay */
903 	*_capabilities = capabilities;
904 	return 0;
905 }
906 
907 /*
908  * we've determined that we can make the mapping, now translate what we
909  * now know into VMA flags
910  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)911 static unsigned long determine_vm_flags(struct file *file,
912 					unsigned long prot,
913 					unsigned long flags,
914 					unsigned long capabilities)
915 {
916 	unsigned long vm_flags;
917 
918 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
919 	/* vm_flags |= mm->def_flags; */
920 
921 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
922 		/* attempt to share read-only copies of mapped file chunks */
923 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
924 		if (file && !(prot & PROT_WRITE))
925 			vm_flags |= VM_MAYSHARE;
926 	} else {
927 		/* overlay a shareable mapping on the backing device or inode
928 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
929 		 * romfs/cramfs */
930 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
931 		if (flags & MAP_SHARED)
932 			vm_flags |= VM_SHARED;
933 	}
934 
935 	/* refuse to let anyone share private mappings with this process if
936 	 * it's being traced - otherwise breakpoints set in it may interfere
937 	 * with another untraced process
938 	 */
939 	if ((flags & MAP_PRIVATE) && current->ptrace)
940 		vm_flags &= ~VM_MAYSHARE;
941 
942 	return vm_flags;
943 }
944 
945 /*
946  * set up a shared mapping on a file (the driver or filesystem provides and
947  * pins the storage)
948  */
do_mmap_shared_file(struct vm_area_struct * vma)949 static int do_mmap_shared_file(struct vm_area_struct *vma)
950 {
951 	int ret;
952 
953 	ret = call_mmap(vma->vm_file, vma);
954 	if (ret == 0) {
955 		vma->vm_region->vm_top = vma->vm_region->vm_end;
956 		return 0;
957 	}
958 	if (ret != -ENOSYS)
959 		return ret;
960 
961 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
962 	 * opposed to tried but failed) so we can only give a suitable error as
963 	 * it's not possible to make a private copy if MAP_SHARED was given */
964 	return -ENODEV;
965 }
966 
967 /*
968  * set up a private mapping or an anonymous shared mapping
969  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)970 static int do_mmap_private(struct vm_area_struct *vma,
971 			   struct vm_region *region,
972 			   unsigned long len,
973 			   unsigned long capabilities)
974 {
975 	unsigned long total, point;
976 	void *base;
977 	int ret, order;
978 
979 	/* invoke the file's mapping function so that it can keep track of
980 	 * shared mappings on devices or memory
981 	 * - VM_MAYSHARE will be set if it may attempt to share
982 	 */
983 	if (capabilities & NOMMU_MAP_DIRECT) {
984 		ret = call_mmap(vma->vm_file, vma);
985 		if (ret == 0) {
986 			/* shouldn't return success if we're not sharing */
987 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
988 			vma->vm_region->vm_top = vma->vm_region->vm_end;
989 			return 0;
990 		}
991 		if (ret != -ENOSYS)
992 			return ret;
993 
994 		/* getting an ENOSYS error indicates that direct mmap isn't
995 		 * possible (as opposed to tried but failed) so we'll try to
996 		 * make a private copy of the data and map that instead */
997 	}
998 
999 
1000 	/* allocate some memory to hold the mapping
1001 	 * - note that this may not return a page-aligned address if the object
1002 	 *   we're allocating is smaller than a page
1003 	 */
1004 	order = get_order(len);
1005 	total = 1 << order;
1006 	point = len >> PAGE_SHIFT;
1007 
1008 	/* we don't want to allocate a power-of-2 sized page set */
1009 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1010 		total = point;
1011 
1012 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1013 	if (!base)
1014 		goto enomem;
1015 
1016 	atomic_long_add(total, &mmap_pages_allocated);
1017 
1018 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1019 	region->vm_start = (unsigned long) base;
1020 	region->vm_end   = region->vm_start + len;
1021 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1022 
1023 	vma->vm_start = region->vm_start;
1024 	vma->vm_end   = region->vm_start + len;
1025 
1026 	if (vma->vm_file) {
1027 		/* read the contents of a file into the copy */
1028 		loff_t fpos;
1029 
1030 		fpos = vma->vm_pgoff;
1031 		fpos <<= PAGE_SHIFT;
1032 
1033 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1034 		if (ret < 0)
1035 			goto error_free;
1036 
1037 		/* clear the last little bit */
1038 		if (ret < len)
1039 			memset(base + ret, 0, len - ret);
1040 
1041 	} else {
1042 		vma_set_anonymous(vma);
1043 	}
1044 
1045 	return 0;
1046 
1047 error_free:
1048 	free_page_series(region->vm_start, region->vm_top);
1049 	region->vm_start = vma->vm_start = 0;
1050 	region->vm_end   = vma->vm_end = 0;
1051 	region->vm_top   = 0;
1052 	return ret;
1053 
1054 enomem:
1055 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1056 	       len, current->pid, current->comm);
1057 	show_free_areas(0, NULL);
1058 	return -ENOMEM;
1059 }
1060 
1061 /*
1062  * handle mapping creation for uClinux
1063  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1064 unsigned long do_mmap(struct file *file,
1065 			unsigned long addr,
1066 			unsigned long len,
1067 			unsigned long prot,
1068 			unsigned long flags,
1069 			unsigned long pgoff,
1070 			unsigned long *populate,
1071 			struct list_head *uf)
1072 {
1073 	struct vm_area_struct *vma;
1074 	struct vm_region *region;
1075 	struct rb_node *rb;
1076 	vm_flags_t vm_flags;
1077 	unsigned long capabilities, result;
1078 	int ret;
1079 
1080 	*populate = 0;
1081 
1082 	/* decide whether we should attempt the mapping, and if so what sort of
1083 	 * mapping */
1084 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1085 				    &capabilities);
1086 	if (ret < 0)
1087 		return ret;
1088 
1089 	/* we ignore the address hint */
1090 	addr = 0;
1091 	len = PAGE_ALIGN(len);
1092 
1093 	/* we've determined that we can make the mapping, now translate what we
1094 	 * now know into VMA flags */
1095 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1096 
1097 	/* we're going to need to record the mapping */
1098 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1099 	if (!region)
1100 		goto error_getting_region;
1101 
1102 	vma = vm_area_alloc(current->mm);
1103 	if (!vma)
1104 		goto error_getting_vma;
1105 
1106 	region->vm_usage = 1;
1107 	region->vm_flags = vm_flags;
1108 	region->vm_pgoff = pgoff;
1109 
1110 	vma->vm_flags = vm_flags;
1111 	vma->vm_pgoff = pgoff;
1112 
1113 	if (file) {
1114 		region->vm_file = get_file(file);
1115 		vma->vm_file = get_file(file);
1116 	}
1117 
1118 	down_write(&nommu_region_sem);
1119 
1120 	/* if we want to share, we need to check for regions created by other
1121 	 * mmap() calls that overlap with our proposed mapping
1122 	 * - we can only share with a superset match on most regular files
1123 	 * - shared mappings on character devices and memory backed files are
1124 	 *   permitted to overlap inexactly as far as we are concerned for in
1125 	 *   these cases, sharing is handled in the driver or filesystem rather
1126 	 *   than here
1127 	 */
1128 	if (vm_flags & VM_MAYSHARE) {
1129 		struct vm_region *pregion;
1130 		unsigned long pglen, rpglen, pgend, rpgend, start;
1131 
1132 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1133 		pgend = pgoff + pglen;
1134 
1135 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1136 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1137 
1138 			if (!(pregion->vm_flags & VM_MAYSHARE))
1139 				continue;
1140 
1141 			/* search for overlapping mappings on the same file */
1142 			if (file_inode(pregion->vm_file) !=
1143 			    file_inode(file))
1144 				continue;
1145 
1146 			if (pregion->vm_pgoff >= pgend)
1147 				continue;
1148 
1149 			rpglen = pregion->vm_end - pregion->vm_start;
1150 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1151 			rpgend = pregion->vm_pgoff + rpglen;
1152 			if (pgoff >= rpgend)
1153 				continue;
1154 
1155 			/* handle inexactly overlapping matches between
1156 			 * mappings */
1157 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1158 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1159 				/* new mapping is not a subset of the region */
1160 				if (!(capabilities & NOMMU_MAP_DIRECT))
1161 					goto sharing_violation;
1162 				continue;
1163 			}
1164 
1165 			/* we've found a region we can share */
1166 			pregion->vm_usage++;
1167 			vma->vm_region = pregion;
1168 			start = pregion->vm_start;
1169 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1170 			vma->vm_start = start;
1171 			vma->vm_end = start + len;
1172 
1173 			if (pregion->vm_flags & VM_MAPPED_COPY)
1174 				vma->vm_flags |= VM_MAPPED_COPY;
1175 			else {
1176 				ret = do_mmap_shared_file(vma);
1177 				if (ret < 0) {
1178 					vma->vm_region = NULL;
1179 					vma->vm_start = 0;
1180 					vma->vm_end = 0;
1181 					pregion->vm_usage--;
1182 					pregion = NULL;
1183 					goto error_just_free;
1184 				}
1185 			}
1186 			fput(region->vm_file);
1187 			kmem_cache_free(vm_region_jar, region);
1188 			region = pregion;
1189 			result = start;
1190 			goto share;
1191 		}
1192 
1193 		/* obtain the address at which to make a shared mapping
1194 		 * - this is the hook for quasi-memory character devices to
1195 		 *   tell us the location of a shared mapping
1196 		 */
1197 		if (capabilities & NOMMU_MAP_DIRECT) {
1198 			addr = file->f_op->get_unmapped_area(file, addr, len,
1199 							     pgoff, flags);
1200 			if (IS_ERR_VALUE(addr)) {
1201 				ret = addr;
1202 				if (ret != -ENOSYS)
1203 					goto error_just_free;
1204 
1205 				/* the driver refused to tell us where to site
1206 				 * the mapping so we'll have to attempt to copy
1207 				 * it */
1208 				ret = -ENODEV;
1209 				if (!(capabilities & NOMMU_MAP_COPY))
1210 					goto error_just_free;
1211 
1212 				capabilities &= ~NOMMU_MAP_DIRECT;
1213 			} else {
1214 				vma->vm_start = region->vm_start = addr;
1215 				vma->vm_end = region->vm_end = addr + len;
1216 			}
1217 		}
1218 	}
1219 
1220 	vma->vm_region = region;
1221 
1222 	/* set up the mapping
1223 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1224 	 */
1225 	if (file && vma->vm_flags & VM_SHARED)
1226 		ret = do_mmap_shared_file(vma);
1227 	else
1228 		ret = do_mmap_private(vma, region, len, capabilities);
1229 	if (ret < 0)
1230 		goto error_just_free;
1231 	add_nommu_region(region);
1232 
1233 	/* clear anonymous mappings that don't ask for uninitialized data */
1234 	if (!vma->vm_file &&
1235 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1236 	     !(flags & MAP_UNINITIALIZED)))
1237 		memset((void *)region->vm_start, 0,
1238 		       region->vm_end - region->vm_start);
1239 
1240 	/* okay... we have a mapping; now we have to register it */
1241 	result = vma->vm_start;
1242 
1243 	current->mm->total_vm += len >> PAGE_SHIFT;
1244 
1245 share:
1246 	add_vma_to_mm(current->mm, vma);
1247 
1248 	/* we flush the region from the icache only when the first executable
1249 	 * mapping of it is made  */
1250 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1251 		flush_icache_user_range(region->vm_start, region->vm_end);
1252 		region->vm_icache_flushed = true;
1253 	}
1254 
1255 	up_write(&nommu_region_sem);
1256 
1257 	return result;
1258 
1259 error_just_free:
1260 	up_write(&nommu_region_sem);
1261 error:
1262 	if (region->vm_file)
1263 		fput(region->vm_file);
1264 	kmem_cache_free(vm_region_jar, region);
1265 	/* fput(vma->vm_file) happens within vm_area_free() */
1266 	vm_area_free(vma);
1267 	return ret;
1268 
1269 sharing_violation:
1270 	up_write(&nommu_region_sem);
1271 	pr_warn("Attempt to share mismatched mappings\n");
1272 	ret = -EINVAL;
1273 	goto error;
1274 
1275 error_getting_vma:
1276 	kmem_cache_free(vm_region_jar, region);
1277 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1278 			len, current->pid);
1279 	show_free_areas(0, NULL);
1280 	return -ENOMEM;
1281 
1282 error_getting_region:
1283 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1284 			len, current->pid);
1285 	show_free_areas(0, NULL);
1286 	return -ENOMEM;
1287 }
1288 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1289 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1290 			      unsigned long prot, unsigned long flags,
1291 			      unsigned long fd, unsigned long pgoff)
1292 {
1293 	struct file *file = NULL;
1294 	unsigned long retval = -EBADF;
1295 
1296 	audit_mmap_fd(fd, flags);
1297 	if (!(flags & MAP_ANONYMOUS)) {
1298 		file = fget(fd);
1299 		if (!file)
1300 			goto out;
1301 	}
1302 
1303 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1304 
1305 	if (file)
1306 		fput(file);
1307 out:
1308 	return retval;
1309 }
1310 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1311 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1312 		unsigned long, prot, unsigned long, flags,
1313 		unsigned long, fd, unsigned long, pgoff)
1314 {
1315 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1316 }
1317 
1318 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1319 struct mmap_arg_struct {
1320 	unsigned long addr;
1321 	unsigned long len;
1322 	unsigned long prot;
1323 	unsigned long flags;
1324 	unsigned long fd;
1325 	unsigned long offset;
1326 };
1327 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1328 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1329 {
1330 	struct mmap_arg_struct a;
1331 
1332 	if (copy_from_user(&a, arg, sizeof(a)))
1333 		return -EFAULT;
1334 	if (offset_in_page(a.offset))
1335 		return -EINVAL;
1336 
1337 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1338 			       a.offset >> PAGE_SHIFT);
1339 }
1340 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1341 
1342 /*
1343  * split a vma into two pieces at address 'addr', a new vma is allocated either
1344  * for the first part or the tail.
1345  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1346 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1347 	      unsigned long addr, int new_below)
1348 {
1349 	struct vm_area_struct *new;
1350 	struct vm_region *region;
1351 	unsigned long npages;
1352 
1353 	/* we're only permitted to split anonymous regions (these should have
1354 	 * only a single usage on the region) */
1355 	if (vma->vm_file)
1356 		return -ENOMEM;
1357 
1358 	if (mm->map_count >= sysctl_max_map_count)
1359 		return -ENOMEM;
1360 
1361 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1362 	if (!region)
1363 		return -ENOMEM;
1364 
1365 	new = vm_area_dup(vma);
1366 	if (!new) {
1367 		kmem_cache_free(vm_region_jar, region);
1368 		return -ENOMEM;
1369 	}
1370 
1371 	/* most fields are the same, copy all, and then fixup */
1372 	*region = *vma->vm_region;
1373 	new->vm_region = region;
1374 
1375 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1376 
1377 	if (new_below) {
1378 		region->vm_top = region->vm_end = new->vm_end = addr;
1379 	} else {
1380 		region->vm_start = new->vm_start = addr;
1381 		region->vm_pgoff = new->vm_pgoff += npages;
1382 	}
1383 
1384 	if (new->vm_ops && new->vm_ops->open)
1385 		new->vm_ops->open(new);
1386 
1387 	delete_vma_from_mm(vma);
1388 	down_write(&nommu_region_sem);
1389 	delete_nommu_region(vma->vm_region);
1390 	if (new_below) {
1391 		vma->vm_region->vm_start = vma->vm_start = addr;
1392 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1393 	} else {
1394 		vma->vm_region->vm_end = vma->vm_end = addr;
1395 		vma->vm_region->vm_top = addr;
1396 	}
1397 	add_nommu_region(vma->vm_region);
1398 	add_nommu_region(new->vm_region);
1399 	up_write(&nommu_region_sem);
1400 	add_vma_to_mm(mm, vma);
1401 	add_vma_to_mm(mm, new);
1402 	return 0;
1403 }
1404 
1405 /*
1406  * shrink a VMA by removing the specified chunk from either the beginning or
1407  * the end
1408  */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1409 static int shrink_vma(struct mm_struct *mm,
1410 		      struct vm_area_struct *vma,
1411 		      unsigned long from, unsigned long to)
1412 {
1413 	struct vm_region *region;
1414 
1415 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1416 	 * and list */
1417 	delete_vma_from_mm(vma);
1418 	if (from > vma->vm_start)
1419 		vma->vm_end = from;
1420 	else
1421 		vma->vm_start = to;
1422 	add_vma_to_mm(mm, vma);
1423 
1424 	/* cut the backing region down to size */
1425 	region = vma->vm_region;
1426 	BUG_ON(region->vm_usage != 1);
1427 
1428 	down_write(&nommu_region_sem);
1429 	delete_nommu_region(region);
1430 	if (from > region->vm_start) {
1431 		to = region->vm_top;
1432 		region->vm_top = region->vm_end = from;
1433 	} else {
1434 		region->vm_start = to;
1435 	}
1436 	add_nommu_region(region);
1437 	up_write(&nommu_region_sem);
1438 
1439 	free_page_series(from, to);
1440 	return 0;
1441 }
1442 
1443 /*
1444  * release a mapping
1445  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1446  *   VMA, though it need not cover the whole VMA
1447  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1448 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1449 {
1450 	struct vm_area_struct *vma;
1451 	unsigned long end;
1452 	int ret;
1453 
1454 	len = PAGE_ALIGN(len);
1455 	if (len == 0)
1456 		return -EINVAL;
1457 
1458 	end = start + len;
1459 
1460 	/* find the first potentially overlapping VMA */
1461 	vma = find_vma(mm, start);
1462 	if (!vma) {
1463 		static int limit;
1464 		if (limit < 5) {
1465 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1466 					current->pid, current->comm,
1467 					start, start + len - 1);
1468 			limit++;
1469 		}
1470 		return -EINVAL;
1471 	}
1472 
1473 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1474 	if (vma->vm_file) {
1475 		do {
1476 			if (start > vma->vm_start)
1477 				return -EINVAL;
1478 			if (end == vma->vm_end)
1479 				goto erase_whole_vma;
1480 			vma = vma->vm_next;
1481 		} while (vma);
1482 		return -EINVAL;
1483 	} else {
1484 		/* the chunk must be a subset of the VMA found */
1485 		if (start == vma->vm_start && end == vma->vm_end)
1486 			goto erase_whole_vma;
1487 		if (start < vma->vm_start || end > vma->vm_end)
1488 			return -EINVAL;
1489 		if (offset_in_page(start))
1490 			return -EINVAL;
1491 		if (end != vma->vm_end && offset_in_page(end))
1492 			return -EINVAL;
1493 		if (start != vma->vm_start && end != vma->vm_end) {
1494 			ret = split_vma(mm, vma, start, 1);
1495 			if (ret < 0)
1496 				return ret;
1497 		}
1498 		return shrink_vma(mm, vma, start, end);
1499 	}
1500 
1501 erase_whole_vma:
1502 	delete_vma_from_mm(vma);
1503 	delete_vma(mm, vma);
1504 	return 0;
1505 }
1506 
vm_munmap(unsigned long addr,size_t len)1507 int vm_munmap(unsigned long addr, size_t len)
1508 {
1509 	struct mm_struct *mm = current->mm;
1510 	int ret;
1511 
1512 	mmap_write_lock(mm);
1513 	ret = do_munmap(mm, addr, len, NULL);
1514 	mmap_write_unlock(mm);
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL(vm_munmap);
1518 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1519 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1520 {
1521 	return vm_munmap(addr, len);
1522 }
1523 
1524 /*
1525  * release all the mappings made in a process's VM space
1526  */
exit_mmap(struct mm_struct * mm)1527 void exit_mmap(struct mm_struct *mm)
1528 {
1529 	struct vm_area_struct *vma;
1530 
1531 	if (!mm)
1532 		return;
1533 
1534 	mm->total_vm = 0;
1535 
1536 	while ((vma = mm->mmap)) {
1537 		mm->mmap = vma->vm_next;
1538 		delete_vma_from_mm(vma);
1539 		delete_vma(mm, vma);
1540 		cond_resched();
1541 	}
1542 }
1543 
vm_brk(unsigned long addr,unsigned long len)1544 int vm_brk(unsigned long addr, unsigned long len)
1545 {
1546 	return -ENOMEM;
1547 }
1548 
1549 /*
1550  * expand (or shrink) an existing mapping, potentially moving it at the same
1551  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1552  *
1553  * under NOMMU conditions, we only permit changing a mapping's size, and only
1554  * as long as it stays within the region allocated by do_mmap_private() and the
1555  * block is not shareable
1556  *
1557  * MREMAP_FIXED is not supported under NOMMU conditions
1558  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1559 static unsigned long do_mremap(unsigned long addr,
1560 			unsigned long old_len, unsigned long new_len,
1561 			unsigned long flags, unsigned long new_addr)
1562 {
1563 	struct vm_area_struct *vma;
1564 
1565 	/* insanity checks first */
1566 	old_len = PAGE_ALIGN(old_len);
1567 	new_len = PAGE_ALIGN(new_len);
1568 	if (old_len == 0 || new_len == 0)
1569 		return (unsigned long) -EINVAL;
1570 
1571 	if (offset_in_page(addr))
1572 		return -EINVAL;
1573 
1574 	if (flags & MREMAP_FIXED && new_addr != addr)
1575 		return (unsigned long) -EINVAL;
1576 
1577 	vma = find_vma_exact(current->mm, addr, old_len);
1578 	if (!vma)
1579 		return (unsigned long) -EINVAL;
1580 
1581 	if (vma->vm_end != vma->vm_start + old_len)
1582 		return (unsigned long) -EFAULT;
1583 
1584 	if (vma->vm_flags & VM_MAYSHARE)
1585 		return (unsigned long) -EPERM;
1586 
1587 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1588 		return (unsigned long) -ENOMEM;
1589 
1590 	/* all checks complete - do it */
1591 	vma->vm_end = vma->vm_start + new_len;
1592 	return vma->vm_start;
1593 }
1594 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1595 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1596 		unsigned long, new_len, unsigned long, flags,
1597 		unsigned long, new_addr)
1598 {
1599 	unsigned long ret;
1600 
1601 	mmap_write_lock(current->mm);
1602 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1603 	mmap_write_unlock(current->mm);
1604 	return ret;
1605 }
1606 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1607 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1608 			 unsigned int foll_flags)
1609 {
1610 	return NULL;
1611 }
1612 
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1613 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1614 		unsigned long pfn, unsigned long size, pgprot_t prot)
1615 {
1616 	if (addr != (pfn << PAGE_SHIFT))
1617 		return -EINVAL;
1618 
1619 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(remap_pfn_range);
1623 
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1624 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1625 {
1626 	unsigned long pfn = start >> PAGE_SHIFT;
1627 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1628 
1629 	pfn += vma->vm_pgoff;
1630 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1631 }
1632 EXPORT_SYMBOL(vm_iomap_memory);
1633 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1634 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1635 			unsigned long pgoff)
1636 {
1637 	unsigned int size = vma->vm_end - vma->vm_start;
1638 
1639 	if (!(vma->vm_flags & VM_USERMAP))
1640 		return -EINVAL;
1641 
1642 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1643 	vma->vm_end = vma->vm_start + size;
1644 
1645 	return 0;
1646 }
1647 EXPORT_SYMBOL(remap_vmalloc_range);
1648 
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1649 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1650 	unsigned long len, unsigned long pgoff, unsigned long flags)
1651 {
1652 	return -ENOMEM;
1653 }
1654 
filemap_fault(struct vm_fault * vmf)1655 vm_fault_t filemap_fault(struct vm_fault *vmf)
1656 {
1657 	BUG();
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL(filemap_fault);
1661 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1662 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1663 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1664 {
1665 	BUG();
1666 	return 0;
1667 }
1668 EXPORT_SYMBOL(filemap_map_pages);
1669 
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1670 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1671 		       int len, unsigned int gup_flags)
1672 {
1673 	struct vm_area_struct *vma;
1674 	int write = gup_flags & FOLL_WRITE;
1675 
1676 	if (mmap_read_lock_killable(mm))
1677 		return 0;
1678 
1679 	/* the access must start within one of the target process's mappings */
1680 	vma = find_vma(mm, addr);
1681 	if (vma) {
1682 		/* don't overrun this mapping */
1683 		if (addr + len >= vma->vm_end)
1684 			len = vma->vm_end - addr;
1685 
1686 		/* only read or write mappings where it is permitted */
1687 		if (write && vma->vm_flags & VM_MAYWRITE)
1688 			copy_to_user_page(vma, NULL, addr,
1689 					 (void *) addr, buf, len);
1690 		else if (!write && vma->vm_flags & VM_MAYREAD)
1691 			copy_from_user_page(vma, NULL, addr,
1692 					    buf, (void *) addr, len);
1693 		else
1694 			len = 0;
1695 	} else {
1696 		len = 0;
1697 	}
1698 
1699 	mmap_read_unlock(mm);
1700 
1701 	return len;
1702 }
1703 
1704 /**
1705  * access_remote_vm - access another process' address space
1706  * @mm:		the mm_struct of the target address space
1707  * @addr:	start address to access
1708  * @buf:	source or destination buffer
1709  * @len:	number of bytes to transfer
1710  * @gup_flags:	flags modifying lookup behaviour
1711  *
1712  * The caller must hold a reference on @mm.
1713  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1714 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1715 		void *buf, int len, unsigned int gup_flags)
1716 {
1717 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
1718 }
1719 
1720 /*
1721  * Access another process' address space.
1722  * - source/target buffer must be kernel space
1723  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1724 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1725 		unsigned int gup_flags)
1726 {
1727 	struct mm_struct *mm;
1728 
1729 	if (addr + len < addr)
1730 		return 0;
1731 
1732 	mm = get_task_mm(tsk);
1733 	if (!mm)
1734 		return 0;
1735 
1736 	len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1737 
1738 	mmput(mm);
1739 	return len;
1740 }
1741 EXPORT_SYMBOL_GPL(access_process_vm);
1742 
1743 /**
1744  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1745  * @inode: The inode to check
1746  * @size: The current filesize of the inode
1747  * @newsize: The proposed filesize of the inode
1748  *
1749  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1750  * make sure that any outstanding VMAs aren't broken and then shrink the
1751  * vm_regions that extend beyond so that do_mmap() doesn't
1752  * automatically grant mappings that are too large.
1753  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1754 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1755 				size_t newsize)
1756 {
1757 	struct vm_area_struct *vma;
1758 	struct vm_region *region;
1759 	pgoff_t low, high;
1760 	size_t r_size, r_top;
1761 
1762 	low = newsize >> PAGE_SHIFT;
1763 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1764 
1765 	down_write(&nommu_region_sem);
1766 	i_mmap_lock_read(inode->i_mapping);
1767 
1768 	/* search for VMAs that fall within the dead zone */
1769 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1770 		/* found one - only interested if it's shared out of the page
1771 		 * cache */
1772 		if (vma->vm_flags & VM_SHARED) {
1773 			i_mmap_unlock_read(inode->i_mapping);
1774 			up_write(&nommu_region_sem);
1775 			return -ETXTBSY; /* not quite true, but near enough */
1776 		}
1777 	}
1778 
1779 	/* reduce any regions that overlap the dead zone - if in existence,
1780 	 * these will be pointed to by VMAs that don't overlap the dead zone
1781 	 *
1782 	 * we don't check for any regions that start beyond the EOF as there
1783 	 * shouldn't be any
1784 	 */
1785 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1786 		if (!(vma->vm_flags & VM_SHARED))
1787 			continue;
1788 
1789 		region = vma->vm_region;
1790 		r_size = region->vm_top - region->vm_start;
1791 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1792 
1793 		if (r_top > newsize) {
1794 			region->vm_top -= r_top - newsize;
1795 			if (region->vm_end > region->vm_top)
1796 				region->vm_end = region->vm_top;
1797 		}
1798 	}
1799 
1800 	i_mmap_unlock_read(inode->i_mapping);
1801 	up_write(&nommu_region_sem);
1802 	return 0;
1803 }
1804 
1805 /*
1806  * Initialise sysctl_user_reserve_kbytes.
1807  *
1808  * This is intended to prevent a user from starting a single memory hogging
1809  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1810  * mode.
1811  *
1812  * The default value is min(3% of free memory, 128MB)
1813  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1814  */
init_user_reserve(void)1815 static int __meminit init_user_reserve(void)
1816 {
1817 	unsigned long free_kbytes;
1818 
1819 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1820 
1821 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1822 	return 0;
1823 }
1824 subsys_initcall(init_user_reserve);
1825 
1826 /*
1827  * Initialise sysctl_admin_reserve_kbytes.
1828  *
1829  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1830  * to log in and kill a memory hogging process.
1831  *
1832  * Systems with more than 256MB will reserve 8MB, enough to recover
1833  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1834  * only reserve 3% of free pages by default.
1835  */
init_admin_reserve(void)1836 static int __meminit init_admin_reserve(void)
1837 {
1838 	unsigned long free_kbytes;
1839 
1840 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1841 
1842 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1843 	return 0;
1844 }
1845 subsys_initcall(init_admin_reserve);
1846