1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2020 Broadcom Limited
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <asm/byteorder.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmapool.h>
13 #include <linux/errno.h>
14 #include <linux/ethtool.h>
15 #include <linux/if_ether.h>
16 #include <linux/io.h>
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/netdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23
24 #include "bnxt_hsi.h"
25 #include "bnxt.h"
26 #include "bnxt_hwrm.h"
27
hwrm_calc_sentinel(struct bnxt_hwrm_ctx * ctx,u16 req_type)28 static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type)
29 {
30 return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL;
31 }
32
33 /**
34 * __hwrm_req_init() - Initialize an HWRM request.
35 * @bp: The driver context.
36 * @req: A pointer to the request pointer to initialize.
37 * @req_type: The request type. This will be converted to the little endian
38 * before being written to the req_type field of the returned request.
39 * @req_len: The length of the request to be allocated.
40 *
41 * Allocate DMA resources and initialize a new HWRM request object of the
42 * given type. The response address field in the request is configured with
43 * the DMA bus address that has been mapped for the response and the passed
44 * request is pointed to kernel virtual memory mapped for the request (such
45 * that short_input indirection can be accomplished without copying). The
46 * request’s target and completion ring are initialized to default values and
47 * can be overridden by writing to the returned request object directly.
48 *
49 * The initialized request can be further customized by writing to its fields
50 * directly, taking care to covert such fields to little endian. The request
51 * object will be consumed (and all its associated resources release) upon
52 * passing it to hwrm_req_send() unless ownership of the request has been
53 * claimed by the caller via a call to hwrm_req_hold(). If the request is not
54 * consumed, either because it is never sent or because ownership has been
55 * claimed, then it must be released by a call to hwrm_req_drop().
56 *
57 * Return: zero on success, negative error code otherwise:
58 * E2BIG: the type of request pointer is too large to fit.
59 * ENOMEM: an allocation failure occurred.
60 */
__hwrm_req_init(struct bnxt * bp,void ** req,u16 req_type,u32 req_len)61 int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len)
62 {
63 struct bnxt_hwrm_ctx *ctx;
64 dma_addr_t dma_handle;
65 u8 *req_addr;
66
67 if (req_len > BNXT_HWRM_CTX_OFFSET)
68 return -E2BIG;
69
70 req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO,
71 &dma_handle);
72 if (!req_addr)
73 return -ENOMEM;
74
75 ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET);
76 /* safety first, sentinel used to check for invalid requests */
77 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
78 ctx->req_len = req_len;
79 ctx->req = (struct input *)req_addr;
80 ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET);
81 ctx->dma_handle = dma_handle;
82 ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */
83 ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT;
84 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
85 ctx->gfp = GFP_KERNEL;
86 ctx->slice_addr = NULL;
87
88 /* initialize common request fields */
89 ctx->req->req_type = cpu_to_le16(req_type);
90 ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET);
91 ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING);
92 ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET);
93 *req = ctx->req;
94
95 return 0;
96 }
97
__hwrm_ctx(struct bnxt * bp,u8 * req_addr)98 static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr)
99 {
100 void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET;
101 struct input *req = (struct input *)req_addr;
102 struct bnxt_hwrm_ctx *ctx = ctx_addr;
103 u64 sentinel;
104
105 if (!req) {
106 /* can only be due to software bug, be loud */
107 netdev_err(bp->dev, "null HWRM request");
108 dump_stack();
109 return NULL;
110 }
111
112 /* HWRM API has no type safety, verify sentinel to validate address */
113 sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type));
114 if (ctx->sentinel != sentinel) {
115 /* can only be due to software bug, be loud */
116 netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n",
117 (u32)le16_to_cpu(req->req_type));
118 dump_stack();
119 return NULL;
120 }
121
122 return ctx;
123 }
124
125 /**
126 * hwrm_req_timeout() - Set the completion timeout for the request.
127 * @bp: The driver context.
128 * @req: The request to set the timeout.
129 * @timeout: The timeout in milliseconds.
130 *
131 * Set the timeout associated with the request for subsequent calls to
132 * hwrm_req_send(). Some requests are long running and require a different
133 * timeout than the default.
134 */
hwrm_req_timeout(struct bnxt * bp,void * req,unsigned int timeout)135 void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout)
136 {
137 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
138
139 if (ctx)
140 ctx->timeout = timeout;
141 }
142
143 /**
144 * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices.
145 * @bp: The driver context.
146 * @req: The request for which calls to hwrm_req_dma_slice() will have altered
147 * allocation flags.
148 * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent()
149 * whenever it is used to allocate backing memory for slices. Note that
150 * calls to hwrm_req_dma_slice() will not always result in new allocations,
151 * however, memory suballocated from the request buffer is already
152 * __GFP_ZERO.
153 *
154 * Sets the GFP allocation flags associated with the request for subsequent
155 * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO
156 * for slice allocations.
157 */
hwrm_req_alloc_flags(struct bnxt * bp,void * req,gfp_t gfp)158 void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp)
159 {
160 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
161
162 if (ctx)
163 ctx->gfp = gfp;
164 }
165
166 /**
167 * hwrm_req_replace() - Replace request data.
168 * @bp: The driver context.
169 * @req: The request to modify. A call to hwrm_req_replace() is conceptually
170 * an assignment of new_req to req. Subsequent calls to HWRM API functions,
171 * such as hwrm_req_send(), should thus use req and not new_req (in fact,
172 * calls to HWRM API functions will fail if non-managed request objects
173 * are passed).
174 * @len: The length of new_req.
175 * @new_req: The pre-built request to copy or reference.
176 *
177 * Replaces the request data in req with that of new_req. This is useful in
178 * scenarios where a request object has already been constructed by a third
179 * party prior to creating a resource managed request using hwrm_req_init().
180 * Depending on the length, hwrm_req_replace() will either copy the new
181 * request data into the DMA memory allocated for req, or it will simply
182 * reference the new request and use it in lieu of req during subsequent
183 * calls to hwrm_req_send(). The resource management is associated with
184 * req and is independent of and does not apply to new_req. The caller must
185 * ensure that the lifetime of new_req is least as long as req. Any slices
186 * that may have been associated with the original request are released.
187 *
188 * Return: zero on success, negative error code otherwise:
189 * E2BIG: Request is too large.
190 * EINVAL: Invalid request to modify.
191 */
hwrm_req_replace(struct bnxt * bp,void * req,void * new_req,u32 len)192 int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len)
193 {
194 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
195 struct input *internal_req = req;
196 u16 req_type;
197
198 if (!ctx)
199 return -EINVAL;
200
201 if (len > BNXT_HWRM_CTX_OFFSET)
202 return -E2BIG;
203
204 /* free any existing slices */
205 ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET;
206 if (ctx->slice_addr) {
207 dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
208 ctx->slice_addr, ctx->slice_handle);
209 ctx->slice_addr = NULL;
210 }
211 ctx->gfp = GFP_KERNEL;
212
213 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) {
214 memcpy(internal_req, new_req, len);
215 } else {
216 internal_req->req_type = ((struct input *)new_req)->req_type;
217 ctx->req = new_req;
218 }
219
220 ctx->req_len = len;
221 ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle +
222 BNXT_HWRM_RESP_OFFSET);
223
224 /* update sentinel for potentially new request type */
225 req_type = le16_to_cpu(internal_req->req_type);
226 ctx->sentinel = hwrm_calc_sentinel(ctx, req_type);
227
228 return 0;
229 }
230
231 /**
232 * hwrm_req_flags() - Set non internal flags of the ctx
233 * @bp: The driver context.
234 * @req: The request containing the HWRM command
235 * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set
236 *
237 * ctx flags can be used by the callers to instruct how the subsequent
238 * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags
239 * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send()
240 * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout
241 * even if FW is not responding.
242 * This generic function can be used to set any flag that is not an internal flag
243 * of the HWRM module.
244 */
hwrm_req_flags(struct bnxt * bp,void * req,enum bnxt_hwrm_ctx_flags flags)245 void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags)
246 {
247 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
248
249 if (ctx)
250 ctx->flags |= (flags & HWRM_API_FLAGS);
251 }
252
253 /**
254 * hwrm_req_hold() - Claim ownership of the request's resources.
255 * @bp: The driver context.
256 * @req: A pointer to the request to own. The request will no longer be
257 * consumed by calls to hwrm_req_send().
258 *
259 * Take ownership of the request. Ownership places responsibility on the
260 * caller to free the resources associated with the request via a call to
261 * hwrm_req_drop(). The caller taking ownership implies that a subsequent
262 * call to hwrm_req_send() will not consume the request (ie. sending will
263 * not free the associated resources if the request is owned by the caller).
264 * Taking ownership returns a reference to the response. Retaining and
265 * accessing the response data is the most common reason to take ownership
266 * of the request. Ownership can also be acquired in order to reuse the same
267 * request object across multiple invocations of hwrm_req_send().
268 *
269 * Return: A pointer to the response object.
270 *
271 * The resources associated with the response will remain available to the
272 * caller until ownership of the request is relinquished via a call to
273 * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if
274 * a valid request is provided. A returned NULL value would imply a driver
275 * bug and the implementation will complain loudly in the logs to aid in
276 * detection. It should not be necessary to check the result for NULL.
277 */
hwrm_req_hold(struct bnxt * bp,void * req)278 void *hwrm_req_hold(struct bnxt *bp, void *req)
279 {
280 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
281 struct input *input = (struct input *)req;
282
283 if (!ctx)
284 return NULL;
285
286 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) {
287 /* can only be due to software bug, be loud */
288 netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n",
289 (u32)le16_to_cpu(input->req_type));
290 dump_stack();
291 return NULL;
292 }
293
294 ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED;
295 return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET;
296 }
297
__hwrm_ctx_drop(struct bnxt * bp,struct bnxt_hwrm_ctx * ctx)298 static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
299 {
300 void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET;
301 dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */
302
303 /* unmap any auxiliary DMA slice */
304 if (ctx->slice_addr)
305 dma_free_coherent(&bp->pdev->dev, ctx->slice_size,
306 ctx->slice_addr, ctx->slice_handle);
307
308 /* invalidate, ensure ownership, sentinel and dma_handle are cleared */
309 memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx));
310
311 /* return the buffer to the DMA pool */
312 if (dma_handle)
313 dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle);
314 }
315
316 /**
317 * hwrm_req_drop() - Release all resources associated with the request.
318 * @bp: The driver context.
319 * @req: The request to consume, releasing the associated resources. The
320 * request object, any slices, and its associated response are no
321 * longer valid.
322 *
323 * It is legal to call hwrm_req_drop() on an unowned request, provided it
324 * has not already been consumed by hwrm_req_send() (for example, to release
325 * an aborted request). A given request should not be dropped more than once,
326 * nor should it be dropped after having been consumed by hwrm_req_send(). To
327 * do so is an error (the context will not be found and a stack trace will be
328 * rendered in the kernel log).
329 */
hwrm_req_drop(struct bnxt * bp,void * req)330 void hwrm_req_drop(struct bnxt *bp, void *req)
331 {
332 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
333
334 if (ctx)
335 __hwrm_ctx_drop(bp, ctx);
336 }
337
__hwrm_to_stderr(u32 hwrm_err)338 static int __hwrm_to_stderr(u32 hwrm_err)
339 {
340 switch (hwrm_err) {
341 case HWRM_ERR_CODE_SUCCESS:
342 return 0;
343 case HWRM_ERR_CODE_RESOURCE_LOCKED:
344 return -EROFS;
345 case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
346 return -EACCES;
347 case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
348 return -ENOSPC;
349 case HWRM_ERR_CODE_INVALID_PARAMS:
350 case HWRM_ERR_CODE_INVALID_FLAGS:
351 case HWRM_ERR_CODE_INVALID_ENABLES:
352 case HWRM_ERR_CODE_UNSUPPORTED_TLV:
353 case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
354 return -EINVAL;
355 case HWRM_ERR_CODE_NO_BUFFER:
356 return -ENOMEM;
357 case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
358 case HWRM_ERR_CODE_BUSY:
359 return -EAGAIN;
360 case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
361 return -EOPNOTSUPP;
362 default:
363 return -EIO;
364 }
365 }
366
367 static struct bnxt_hwrm_wait_token *
__hwrm_acquire_token(struct bnxt * bp,enum bnxt_hwrm_chnl dst)368 __hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst)
369 {
370 struct bnxt_hwrm_wait_token *token;
371
372 token = kzalloc(sizeof(*token), GFP_KERNEL);
373 if (!token)
374 return NULL;
375
376 mutex_lock(&bp->hwrm_cmd_lock);
377
378 token->dst = dst;
379 token->state = BNXT_HWRM_PENDING;
380 if (dst == BNXT_HWRM_CHNL_CHIMP) {
381 token->seq_id = bp->hwrm_cmd_seq++;
382 hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list);
383 } else {
384 token->seq_id = bp->hwrm_cmd_kong_seq++;
385 }
386
387 return token;
388 }
389
390 static void
__hwrm_release_token(struct bnxt * bp,struct bnxt_hwrm_wait_token * token)391 __hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token)
392 {
393 if (token->dst == BNXT_HWRM_CHNL_CHIMP) {
394 hlist_del_rcu(&token->node);
395 kfree_rcu(token, rcu);
396 } else {
397 kfree(token);
398 }
399 mutex_unlock(&bp->hwrm_cmd_lock);
400 }
401
402 void
hwrm_update_token(struct bnxt * bp,u16 seq_id,enum bnxt_hwrm_wait_state state)403 hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state)
404 {
405 struct bnxt_hwrm_wait_token *token;
406
407 rcu_read_lock();
408 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) {
409 if (token->seq_id == seq_id) {
410 WRITE_ONCE(token->state, state);
411 rcu_read_unlock();
412 return;
413 }
414 }
415 rcu_read_unlock();
416 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
417 }
418
__hwrm_send(struct bnxt * bp,struct bnxt_hwrm_ctx * ctx)419 static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx)
420 {
421 u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
422 enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP;
423 u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
424 struct bnxt_hwrm_wait_token *token = NULL;
425 struct hwrm_short_input short_input = {0};
426 u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
427 unsigned int i, timeout, tmo_count;
428 u32 *data = (u32 *)ctx->req;
429 u32 msg_len = ctx->req_len;
430 int rc = -EBUSY;
431 u32 req_type;
432 u16 len = 0;
433 u8 *valid;
434
435 if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY)
436 memset(ctx->resp, 0, PAGE_SIZE);
437
438 req_type = le16_to_cpu(ctx->req->req_type);
439 if (BNXT_NO_FW_ACCESS(bp) && req_type != HWRM_FUNC_RESET)
440 goto exit;
441
442 if (msg_len > BNXT_HWRM_MAX_REQ_LEN &&
443 msg_len > bp->hwrm_max_ext_req_len) {
444 rc = -E2BIG;
445 goto exit;
446 }
447
448 if (bnxt_kong_hwrm_message(bp, ctx->req)) {
449 dst = BNXT_HWRM_CHNL_KONG;
450 bar_offset = BNXT_GRCPF_REG_KONG_COMM;
451 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
452 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
453 netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n",
454 req_type);
455 rc = -EINVAL;
456 goto exit;
457 }
458 }
459
460 token = __hwrm_acquire_token(bp, dst);
461 if (!token) {
462 rc = -ENOMEM;
463 goto exit;
464 }
465 ctx->req->seq_id = cpu_to_le16(token->seq_id);
466
467 if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
468 msg_len > BNXT_HWRM_MAX_REQ_LEN) {
469 short_input.req_type = ctx->req->req_type;
470 short_input.signature =
471 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
472 short_input.size = cpu_to_le16(msg_len);
473 short_input.req_addr = cpu_to_le64(ctx->dma_handle);
474
475 data = (u32 *)&short_input;
476 msg_len = sizeof(short_input);
477
478 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
479 }
480
481 /* Ensure any associated DMA buffers are written before doorbell */
482 wmb();
483
484 /* Write request msg to hwrm channel */
485 __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
486
487 for (i = msg_len; i < max_req_len; i += 4)
488 writel(0, bp->bar0 + bar_offset + i);
489
490 /* Ring channel doorbell */
491 writel(1, bp->bar0 + doorbell_offset);
492
493 if (!pci_is_enabled(bp->pdev)) {
494 rc = -ENODEV;
495 goto exit;
496 }
497
498 /* Limit timeout to an upper limit */
499 timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT);
500 /* convert timeout to usec */
501 timeout *= 1000;
502
503 i = 0;
504 /* Short timeout for the first few iterations:
505 * number of loops = number of loops for short timeout +
506 * number of loops for standard timeout.
507 */
508 tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
509 timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
510 tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
511
512 if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) {
513 /* Wait until hwrm response cmpl interrupt is processed */
514 while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE &&
515 i++ < tmo_count) {
516 /* Abort the wait for completion if the FW health
517 * check has failed.
518 */
519 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
520 goto exit;
521 /* on first few passes, just barely sleep */
522 if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
523 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
524 HWRM_SHORT_MAX_TIMEOUT);
525 } else {
526 if (HWRM_WAIT_MUST_ABORT(bp, ctx))
527 break;
528 usleep_range(HWRM_MIN_TIMEOUT,
529 HWRM_MAX_TIMEOUT);
530 }
531 }
532
533 if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) {
534 if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
535 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
536 le16_to_cpu(ctx->req->req_type));
537 goto exit;
538 }
539 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
540 valid = ((u8 *)ctx->resp) + len - 1;
541 } else {
542 __le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */
543 int j;
544
545 /* Check if response len is updated */
546 for (i = 0; i < tmo_count; i++) {
547 /* Abort the wait for completion if the FW health
548 * check has failed.
549 */
550 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
551 goto exit;
552
553 if (token &&
554 READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) {
555 __hwrm_release_token(bp, token);
556 token = NULL;
557 }
558
559 len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len));
560 if (len) {
561 __le16 resp_seq = READ_ONCE(ctx->resp->seq_id);
562
563 if (resp_seq == ctx->req->seq_id)
564 break;
565 if (resp_seq != seen_out_of_seq) {
566 netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n",
567 le16_to_cpu(resp_seq),
568 le16_to_cpu(ctx->req->req_type),
569 le16_to_cpu(ctx->req->seq_id));
570 seen_out_of_seq = resp_seq;
571 }
572 }
573
574 /* on first few passes, just barely sleep */
575 if (i < HWRM_SHORT_TIMEOUT_COUNTER) {
576 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
577 HWRM_SHORT_MAX_TIMEOUT);
578 } else {
579 if (HWRM_WAIT_MUST_ABORT(bp, ctx))
580 goto timeout_abort;
581 usleep_range(HWRM_MIN_TIMEOUT,
582 HWRM_MAX_TIMEOUT);
583 }
584 }
585
586 if (i >= tmo_count) {
587 timeout_abort:
588 if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
589 netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n",
590 hwrm_total_timeout(i),
591 le16_to_cpu(ctx->req->req_type),
592 le16_to_cpu(ctx->req->seq_id), len);
593 goto exit;
594 }
595
596 /* Last byte of resp contains valid bit */
597 valid = ((u8 *)ctx->resp) + len - 1;
598 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; ) {
599 /* make sure we read from updated DMA memory */
600 dma_rmb();
601 if (*valid)
602 break;
603 if (j < 10) {
604 udelay(1);
605 j++;
606 } else {
607 usleep_range(20, 30);
608 j += 20;
609 }
610 }
611
612 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
613 if (!(ctx->flags & BNXT_HWRM_CTX_SILENT))
614 netdev_err(bp->dev, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n",
615 hwrm_total_timeout(i) + j,
616 le16_to_cpu(ctx->req->req_type),
617 le16_to_cpu(ctx->req->seq_id), len,
618 *valid);
619 goto exit;
620 }
621 }
622
623 /* Zero valid bit for compatibility. Valid bit in an older spec
624 * may become a new field in a newer spec. We must make sure that
625 * a new field not implemented by old spec will read zero.
626 */
627 *valid = 0;
628 rc = le16_to_cpu(ctx->resp->error_code);
629 if (rc && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) {
630 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
631 le16_to_cpu(ctx->resp->req_type),
632 le16_to_cpu(ctx->resp->seq_id), rc);
633 }
634 rc = __hwrm_to_stderr(rc);
635 exit:
636 if (token)
637 __hwrm_release_token(bp, token);
638 if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED)
639 ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY;
640 else
641 __hwrm_ctx_drop(bp, ctx);
642 return rc;
643 }
644
645 /**
646 * hwrm_req_send() - Execute an HWRM command.
647 * @bp: The driver context.
648 * @req: A pointer to the request to send. The DMA resources associated with
649 * the request will be released (ie. the request will be consumed) unless
650 * ownership of the request has been assumed by the caller via a call to
651 * hwrm_req_hold().
652 *
653 * Send an HWRM request to the device and wait for a response. The request is
654 * consumed if it is not owned by the caller. This function will block until
655 * the request has either completed or times out due to an error.
656 *
657 * Return: A result code.
658 *
659 * The result is zero on success, otherwise the negative error code indicates
660 * one of the following errors:
661 * E2BIG: The request was too large.
662 * EBUSY: The firmware is in a fatal state or the request timed out
663 * EACCESS: HWRM access denied.
664 * ENOSPC: HWRM resource allocation error.
665 * EINVAL: Request parameters are invalid.
666 * ENOMEM: HWRM has no buffers.
667 * EAGAIN: HWRM busy or reset in progress.
668 * EOPNOTSUPP: Invalid request type.
669 * EIO: Any other error.
670 * Error handling is orthogonal to request ownership. An unowned request will
671 * still be consumed on error. If the caller owns the request, then the caller
672 * is responsible for releasing the resources. Otherwise, hwrm_req_send() will
673 * always consume the request.
674 */
hwrm_req_send(struct bnxt * bp,void * req)675 int hwrm_req_send(struct bnxt *bp, void *req)
676 {
677 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
678
679 if (!ctx)
680 return -EINVAL;
681
682 return __hwrm_send(bp, ctx);
683 }
684
685 /**
686 * hwrm_req_send_silent() - A silent version of hwrm_req_send().
687 * @bp: The driver context.
688 * @req: The request to send without logging.
689 *
690 * The same as hwrm_req_send(), except that the request is silenced using
691 * hwrm_req_silence() prior the call. This version of the function is
692 * provided solely to preserve the legacy API’s flavor for this functionality.
693 *
694 * Return: A result code, see hwrm_req_send().
695 */
hwrm_req_send_silent(struct bnxt * bp,void * req)696 int hwrm_req_send_silent(struct bnxt *bp, void *req)
697 {
698 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
699 return hwrm_req_send(bp, req);
700 }
701
702 /**
703 * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory.
704 * @bp: The driver context.
705 * @req: The request for which indirect data will be associated.
706 * @size: The size of the allocation.
707 * @dma_handle: The bus address associated with the allocation. The HWRM API has
708 * no knowledge about the type of the request and so cannot infer how the
709 * caller intends to use the indirect data. Thus, the caller is
710 * responsible for configuring the request object appropriately to
711 * point to the associated indirect memory. Note, DMA handle has the
712 * same definition as it does in dma_alloc_coherent(), the caller is
713 * responsible for endian conversions via cpu_to_le64() before assigning
714 * this address.
715 *
716 * Allocates DMA mapped memory for indirect data related to a request. The
717 * lifetime of the DMA resources will be bound to that of the request (ie.
718 * they will be automatically released when the request is either consumed by
719 * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are
720 * efficiently suballocated out of the request buffer space, hence the name
721 * slice, while larger requests are satisfied via an underlying call to
722 * dma_alloc_coherent(). Multiple suballocations are supported, however, only
723 * one externally mapped region is.
724 *
725 * Return: The kernel virtual address of the DMA mapping.
726 */
727 void *
hwrm_req_dma_slice(struct bnxt * bp,void * req,u32 size,dma_addr_t * dma_handle)728 hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle)
729 {
730 struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req);
731 u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE;
732 struct input *input = req;
733 u8 *addr, *req_addr = req;
734 u32 max_offset, offset;
735
736 if (!ctx)
737 return NULL;
738
739 max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated;
740 offset = max_offset - size;
741 offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN);
742 addr = req_addr + offset;
743
744 if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) {
745 ctx->allocated = end - addr;
746 *dma_handle = ctx->dma_handle + offset;
747 return addr;
748 }
749
750 /* could not suballocate from ctx buffer, try create a new mapping */
751 if (ctx->slice_addr) {
752 /* if one exists, can only be due to software bug, be loud */
753 netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n",
754 (u32)le16_to_cpu(input->req_type));
755 dump_stack();
756 return NULL;
757 }
758
759 addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp);
760
761 if (!addr)
762 return NULL;
763
764 ctx->slice_addr = addr;
765 ctx->slice_size = size;
766 ctx->slice_handle = *dma_handle;
767
768 return addr;
769 }
770