1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include "i915_drv.h"
8 #include "i915_gem_object.h"
9 #include "i915_scatterlist.h"
10 #include "i915_gem_lmem.h"
11 #include "i915_gem_mman.h"
12
13 #include "gt/intel_gt.h"
14
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages,unsigned int sg_page_sizes)15 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
16 struct sg_table *pages,
17 unsigned int sg_page_sizes)
18 {
19 struct drm_i915_private *i915 = to_i915(obj->base.dev);
20 unsigned long supported = INTEL_INFO(i915)->page_sizes;
21 bool shrinkable;
22 int i;
23
24 assert_object_held_shared(obj);
25
26 if (i915_gem_object_is_volatile(obj))
27 obj->mm.madv = I915_MADV_DONTNEED;
28
29 /* Make the pages coherent with the GPU (flushing any swapin). */
30 if (obj->cache_dirty) {
31 obj->write_domain = 0;
32 if (i915_gem_object_has_struct_page(obj))
33 drm_clflush_sg(pages);
34 obj->cache_dirty = false;
35 }
36
37 obj->mm.get_page.sg_pos = pages->sgl;
38 obj->mm.get_page.sg_idx = 0;
39 obj->mm.get_dma_page.sg_pos = pages->sgl;
40 obj->mm.get_dma_page.sg_idx = 0;
41
42 obj->mm.pages = pages;
43
44 GEM_BUG_ON(!sg_page_sizes);
45 obj->mm.page_sizes.phys = sg_page_sizes;
46
47 /*
48 * Calculate the supported page-sizes which fit into the given
49 * sg_page_sizes. This will give us the page-sizes which we may be able
50 * to use opportunistically when later inserting into the GTT. For
51 * example if phys=2G, then in theory we should be able to use 1G, 2M,
52 * 64K or 4K pages, although in practice this will depend on a number of
53 * other factors.
54 */
55 obj->mm.page_sizes.sg = 0;
56 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
57 if (obj->mm.page_sizes.phys & ~0u << i)
58 obj->mm.page_sizes.sg |= BIT(i);
59 }
60 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
61
62 shrinkable = i915_gem_object_is_shrinkable(obj);
63
64 if (i915_gem_object_is_tiled(obj) &&
65 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
66 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
67 i915_gem_object_set_tiling_quirk(obj);
68 GEM_BUG_ON(!list_empty(&obj->mm.link));
69 atomic_inc(&obj->mm.shrink_pin);
70 shrinkable = false;
71 }
72
73 if (shrinkable) {
74 struct list_head *list;
75 unsigned long flags;
76
77 assert_object_held(obj);
78 spin_lock_irqsave(&i915->mm.obj_lock, flags);
79
80 i915->mm.shrink_count++;
81 i915->mm.shrink_memory += obj->base.size;
82
83 if (obj->mm.madv != I915_MADV_WILLNEED)
84 list = &i915->mm.purge_list;
85 else
86 list = &i915->mm.shrink_list;
87 list_add_tail(&obj->mm.link, list);
88
89 atomic_set(&obj->mm.shrink_pin, 0);
90 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
91 }
92 }
93
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)94 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
95 {
96 struct drm_i915_private *i915 = to_i915(obj->base.dev);
97 int err;
98
99 assert_object_held_shared(obj);
100
101 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
102 drm_dbg(&i915->drm,
103 "Attempting to obtain a purgeable object\n");
104 return -EFAULT;
105 }
106
107 err = obj->ops->get_pages(obj);
108 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
109
110 return err;
111 }
112
113 /* Ensure that the associated pages are gathered from the backing storage
114 * and pinned into our object. i915_gem_object_pin_pages() may be called
115 * multiple times before they are released by a single call to
116 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
117 * either as a result of memory pressure (reaping pages under the shrinker)
118 * or as the object is itself released.
119 */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)120 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
121 {
122 int err;
123
124 assert_object_held(obj);
125
126 assert_object_held_shared(obj);
127
128 if (unlikely(!i915_gem_object_has_pages(obj))) {
129 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
130
131 err = ____i915_gem_object_get_pages(obj);
132 if (err)
133 return err;
134
135 smp_mb__before_atomic();
136 }
137 atomic_inc(&obj->mm.pages_pin_count);
138
139 return 0;
140 }
141
i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object * obj)142 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
143 {
144 struct i915_gem_ww_ctx ww;
145 int err;
146
147 i915_gem_ww_ctx_init(&ww, true);
148 retry:
149 err = i915_gem_object_lock(obj, &ww);
150 if (!err)
151 err = i915_gem_object_pin_pages(obj);
152
153 if (err == -EDEADLK) {
154 err = i915_gem_ww_ctx_backoff(&ww);
155 if (!err)
156 goto retry;
157 }
158 i915_gem_ww_ctx_fini(&ww);
159 return err;
160 }
161
162 /* Immediately discard the backing storage */
i915_gem_object_truncate(struct drm_i915_gem_object * obj)163 void i915_gem_object_truncate(struct drm_i915_gem_object *obj)
164 {
165 if (obj->ops->truncate)
166 obj->ops->truncate(obj);
167 }
168
169 /* Try to discard unwanted pages */
i915_gem_object_writeback(struct drm_i915_gem_object * obj)170 void i915_gem_object_writeback(struct drm_i915_gem_object *obj)
171 {
172 assert_object_held_shared(obj);
173 GEM_BUG_ON(i915_gem_object_has_pages(obj));
174
175 if (obj->ops->writeback)
176 obj->ops->writeback(obj);
177 }
178
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)179 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
180 {
181 struct radix_tree_iter iter;
182 void __rcu **slot;
183
184 rcu_read_lock();
185 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
186 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
187 radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
188 radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
189 rcu_read_unlock();
190 }
191
unmap_object(struct drm_i915_gem_object * obj,void * ptr)192 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
193 {
194 if (is_vmalloc_addr(ptr))
195 vunmap(ptr);
196 }
197
198 struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)199 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
200 {
201 struct sg_table *pages;
202
203 assert_object_held_shared(obj);
204
205 pages = fetch_and_zero(&obj->mm.pages);
206 if (IS_ERR_OR_NULL(pages))
207 return pages;
208
209 if (i915_gem_object_is_volatile(obj))
210 obj->mm.madv = I915_MADV_WILLNEED;
211
212 i915_gem_object_make_unshrinkable(obj);
213
214 if (obj->mm.mapping) {
215 unmap_object(obj, page_mask_bits(obj->mm.mapping));
216 obj->mm.mapping = NULL;
217 }
218
219 __i915_gem_object_reset_page_iter(obj);
220 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
221
222 if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) {
223 struct drm_i915_private *i915 = to_i915(obj->base.dev);
224 intel_wakeref_t wakeref;
225
226 with_intel_runtime_pm_if_active(&i915->runtime_pm, wakeref)
227 intel_gt_invalidate_tlbs(&i915->gt);
228 }
229
230 return pages;
231 }
232
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj)233 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
234 {
235 struct sg_table *pages;
236
237 if (i915_gem_object_has_pinned_pages(obj))
238 return -EBUSY;
239
240 /* May be called by shrinker from within get_pages() (on another bo) */
241 assert_object_held_shared(obj);
242
243 i915_gem_object_release_mmap_offset(obj);
244
245 /*
246 * ->put_pages might need to allocate memory for the bit17 swizzle
247 * array, hence protect them from being reaped by removing them from gtt
248 * lists early.
249 */
250 pages = __i915_gem_object_unset_pages(obj);
251
252 /*
253 * XXX Temporary hijinx to avoid updating all backends to handle
254 * NULL pages. In the future, when we have more asynchronous
255 * get_pages backends we should be better able to handle the
256 * cancellation of the async task in a more uniform manner.
257 */
258 if (!IS_ERR_OR_NULL(pages))
259 obj->ops->put_pages(obj, pages);
260
261 return 0;
262 }
263
264 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map_page(struct drm_i915_gem_object * obj,enum i915_map_type type)265 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
266 enum i915_map_type type)
267 {
268 unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
269 struct page *stack[32], **pages = stack, *page;
270 struct sgt_iter iter;
271 pgprot_t pgprot;
272 void *vaddr;
273
274 switch (type) {
275 default:
276 MISSING_CASE(type);
277 fallthrough; /* to use PAGE_KERNEL anyway */
278 case I915_MAP_WB:
279 /*
280 * On 32b, highmem using a finite set of indirect PTE (i.e.
281 * vmap) to provide virtual mappings of the high pages.
282 * As these are finite, map_new_virtual() must wait for some
283 * other kmap() to finish when it runs out. If we map a large
284 * number of objects, there is no method for it to tell us
285 * to release the mappings, and we deadlock.
286 *
287 * However, if we make an explicit vmap of the page, that
288 * uses a larger vmalloc arena, and also has the ability
289 * to tell us to release unwanted mappings. Most importantly,
290 * it will fail and propagate an error instead of waiting
291 * forever.
292 *
293 * So if the page is beyond the 32b boundary, make an explicit
294 * vmap.
295 */
296 if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
297 return page_address(sg_page(obj->mm.pages->sgl));
298 pgprot = PAGE_KERNEL;
299 break;
300 case I915_MAP_WC:
301 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
302 break;
303 }
304
305 if (n_pages > ARRAY_SIZE(stack)) {
306 /* Too big for stack -- allocate temporary array instead */
307 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
308 if (!pages)
309 return ERR_PTR(-ENOMEM);
310 }
311
312 i = 0;
313 for_each_sgt_page(page, iter, obj->mm.pages)
314 pages[i++] = page;
315 vaddr = vmap(pages, n_pages, 0, pgprot);
316 if (pages != stack)
317 kvfree(pages);
318
319 return vaddr ?: ERR_PTR(-ENOMEM);
320 }
321
i915_gem_object_map_pfn(struct drm_i915_gem_object * obj,enum i915_map_type type)322 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
323 enum i915_map_type type)
324 {
325 resource_size_t iomap = obj->mm.region->iomap.base -
326 obj->mm.region->region.start;
327 unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
328 unsigned long stack[32], *pfns = stack, i;
329 struct sgt_iter iter;
330 dma_addr_t addr;
331 void *vaddr;
332
333 GEM_BUG_ON(type != I915_MAP_WC);
334
335 if (n_pfn > ARRAY_SIZE(stack)) {
336 /* Too big for stack -- allocate temporary array instead */
337 pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
338 if (!pfns)
339 return ERR_PTR(-ENOMEM);
340 }
341
342 i = 0;
343 for_each_sgt_daddr(addr, iter, obj->mm.pages)
344 pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
345 vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
346 if (pfns != stack)
347 kvfree(pfns);
348
349 return vaddr ?: ERR_PTR(-ENOMEM);
350 }
351
352 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)353 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
354 enum i915_map_type type)
355 {
356 enum i915_map_type has_type;
357 bool pinned;
358 void *ptr;
359 int err;
360
361 if (!i915_gem_object_has_struct_page(obj) &&
362 !i915_gem_object_has_iomem(obj))
363 return ERR_PTR(-ENXIO);
364
365 assert_object_held(obj);
366
367 pinned = !(type & I915_MAP_OVERRIDE);
368 type &= ~I915_MAP_OVERRIDE;
369
370 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
371 if (unlikely(!i915_gem_object_has_pages(obj))) {
372 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
373
374 err = ____i915_gem_object_get_pages(obj);
375 if (err)
376 return ERR_PTR(err);
377
378 smp_mb__before_atomic();
379 }
380 atomic_inc(&obj->mm.pages_pin_count);
381 pinned = false;
382 }
383 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
384
385 /*
386 * For discrete our CPU mappings needs to be consistent in order to
387 * function correctly on !x86. When mapping things through TTM, we use
388 * the same rules to determine the caching type.
389 *
390 * The caching rules, starting from DG1:
391 *
392 * - If the object can be placed in device local-memory, then the
393 * pages should be allocated and mapped as write-combined only.
394 *
395 * - Everything else is always allocated and mapped as write-back,
396 * with the guarantee that everything is also coherent with the
397 * GPU.
398 *
399 * Internal users of lmem are already expected to get this right, so no
400 * fudging needed there.
401 */
402 if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
403 if (type != I915_MAP_WC && !obj->mm.n_placements) {
404 ptr = ERR_PTR(-ENODEV);
405 goto err_unpin;
406 }
407
408 type = I915_MAP_WC;
409 } else if (IS_DGFX(to_i915(obj->base.dev))) {
410 type = I915_MAP_WB;
411 }
412
413 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
414 if (ptr && has_type != type) {
415 if (pinned) {
416 ptr = ERR_PTR(-EBUSY);
417 goto err_unpin;
418 }
419
420 unmap_object(obj, ptr);
421
422 ptr = obj->mm.mapping = NULL;
423 }
424
425 if (!ptr) {
426 if (GEM_WARN_ON(type == I915_MAP_WC &&
427 !static_cpu_has(X86_FEATURE_PAT)))
428 ptr = ERR_PTR(-ENODEV);
429 else if (i915_gem_object_has_struct_page(obj))
430 ptr = i915_gem_object_map_page(obj, type);
431 else
432 ptr = i915_gem_object_map_pfn(obj, type);
433 if (IS_ERR(ptr))
434 goto err_unpin;
435
436 obj->mm.mapping = page_pack_bits(ptr, type);
437 }
438
439 return ptr;
440
441 err_unpin:
442 atomic_dec(&obj->mm.pages_pin_count);
443 return ptr;
444 }
445
i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object * obj,enum i915_map_type type)446 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
447 enum i915_map_type type)
448 {
449 void *ret;
450
451 i915_gem_object_lock(obj, NULL);
452 ret = i915_gem_object_pin_map(obj, type);
453 i915_gem_object_unlock(obj);
454
455 return ret;
456 }
457
__i915_gem_object_flush_map(struct drm_i915_gem_object * obj,unsigned long offset,unsigned long size)458 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
459 unsigned long offset,
460 unsigned long size)
461 {
462 enum i915_map_type has_type;
463 void *ptr;
464
465 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
466 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
467 offset, size, obj->base.size));
468
469 wmb(); /* let all previous writes be visible to coherent partners */
470 obj->mm.dirty = true;
471
472 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
473 return;
474
475 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
476 if (has_type == I915_MAP_WC)
477 return;
478
479 drm_clflush_virt_range(ptr + offset, size);
480 if (size == obj->base.size) {
481 obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
482 obj->cache_dirty = false;
483 }
484 }
485
__i915_gem_object_release_map(struct drm_i915_gem_object * obj)486 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
487 {
488 GEM_BUG_ON(!obj->mm.mapping);
489
490 /*
491 * We allow removing the mapping from underneath pinned pages!
492 *
493 * Furthermore, since this is an unsafe operation reserved only
494 * for construction time manipulation, we ignore locking prudence.
495 */
496 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
497
498 i915_gem_object_unpin_map(obj);
499 }
500
501 struct scatterlist *
__i915_gem_object_get_sg(struct drm_i915_gem_object * obj,struct i915_gem_object_page_iter * iter,unsigned int n,unsigned int * offset,bool dma)502 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
503 struct i915_gem_object_page_iter *iter,
504 unsigned int n,
505 unsigned int *offset,
506 bool dma)
507 {
508 struct scatterlist *sg;
509 unsigned int idx, count;
510
511 might_sleep();
512 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
513 if (!i915_gem_object_has_pinned_pages(obj))
514 assert_object_held(obj);
515
516 /* As we iterate forward through the sg, we record each entry in a
517 * radixtree for quick repeated (backwards) lookups. If we have seen
518 * this index previously, we will have an entry for it.
519 *
520 * Initial lookup is O(N), but this is amortized to O(1) for
521 * sequential page access (where each new request is consecutive
522 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
523 * i.e. O(1) with a large constant!
524 */
525 if (n < READ_ONCE(iter->sg_idx))
526 goto lookup;
527
528 mutex_lock(&iter->lock);
529
530 /* We prefer to reuse the last sg so that repeated lookup of this
531 * (or the subsequent) sg are fast - comparing against the last
532 * sg is faster than going through the radixtree.
533 */
534
535 sg = iter->sg_pos;
536 idx = iter->sg_idx;
537 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
538
539 while (idx + count <= n) {
540 void *entry;
541 unsigned long i;
542 int ret;
543
544 /* If we cannot allocate and insert this entry, or the
545 * individual pages from this range, cancel updating the
546 * sg_idx so that on this lookup we are forced to linearly
547 * scan onwards, but on future lookups we will try the
548 * insertion again (in which case we need to be careful of
549 * the error return reporting that we have already inserted
550 * this index).
551 */
552 ret = radix_tree_insert(&iter->radix, idx, sg);
553 if (ret && ret != -EEXIST)
554 goto scan;
555
556 entry = xa_mk_value(idx);
557 for (i = 1; i < count; i++) {
558 ret = radix_tree_insert(&iter->radix, idx + i, entry);
559 if (ret && ret != -EEXIST)
560 goto scan;
561 }
562
563 idx += count;
564 sg = ____sg_next(sg);
565 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
566 }
567
568 scan:
569 iter->sg_pos = sg;
570 iter->sg_idx = idx;
571
572 mutex_unlock(&iter->lock);
573
574 if (unlikely(n < idx)) /* insertion completed by another thread */
575 goto lookup;
576
577 /* In case we failed to insert the entry into the radixtree, we need
578 * to look beyond the current sg.
579 */
580 while (idx + count <= n) {
581 idx += count;
582 sg = ____sg_next(sg);
583 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
584 }
585
586 *offset = n - idx;
587 return sg;
588
589 lookup:
590 rcu_read_lock();
591
592 sg = radix_tree_lookup(&iter->radix, n);
593 GEM_BUG_ON(!sg);
594
595 /* If this index is in the middle of multi-page sg entry,
596 * the radix tree will contain a value entry that points
597 * to the start of that range. We will return the pointer to
598 * the base page and the offset of this page within the
599 * sg entry's range.
600 */
601 *offset = 0;
602 if (unlikely(xa_is_value(sg))) {
603 unsigned long base = xa_to_value(sg);
604
605 sg = radix_tree_lookup(&iter->radix, base);
606 GEM_BUG_ON(!sg);
607
608 *offset = n - base;
609 }
610
611 rcu_read_unlock();
612
613 return sg;
614 }
615
616 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)617 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
618 {
619 struct scatterlist *sg;
620 unsigned int offset;
621
622 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
623
624 sg = i915_gem_object_get_sg(obj, n, &offset);
625 return nth_page(sg_page(sg), offset);
626 }
627
628 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
629 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)630 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
631 unsigned int n)
632 {
633 struct page *page;
634
635 page = i915_gem_object_get_page(obj, n);
636 if (!obj->mm.dirty)
637 set_page_dirty(page);
638
639 return page;
640 }
641
642 dma_addr_t
i915_gem_object_get_dma_address_len(struct drm_i915_gem_object * obj,unsigned long n,unsigned int * len)643 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
644 unsigned long n,
645 unsigned int *len)
646 {
647 struct scatterlist *sg;
648 unsigned int offset;
649
650 sg = i915_gem_object_get_sg_dma(obj, n, &offset);
651
652 if (len)
653 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
654
655 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
656 }
657
658 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)659 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
660 unsigned long n)
661 {
662 return i915_gem_object_get_dma_address_len(obj, n, NULL);
663 }
664