1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/mm.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/tracehook.h>
27
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
30 #include <asm/rse.h>
31 #include <linux/uaccess.h>
32 #include <asm/unwind.h>
33
34 #include "entry.h"
35
36 /*
37 * Bits in the PSR that we allow ptrace() to change:
38 * be, up, ac, mfl, mfh (the user mask; five bits total)
39 * db (debug breakpoint fault; one bit)
40 * id (instruction debug fault disable; one bit)
41 * dd (data debug fault disable; one bit)
42 * ri (restart instruction; two bits)
43 * is (instruction set; one bit)
44 */
45 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
46 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47
48 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
49 #define PFM_MASK MASK(38)
50
51 #define PTRACE_DEBUG 0
52
53 #if PTRACE_DEBUG
54 # define dprintk(format...) printk(format)
55 # define inline
56 #else
57 # define dprintk(format...)
58 #endif
59
60 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
61
62 static inline int
in_syscall(struct pt_regs * pt)63 in_syscall (struct pt_regs *pt)
64 {
65 return (long) pt->cr_ifs >= 0;
66 }
67
68 /*
69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70 * bitset where bit i is set iff the NaT bit of register i is set.
71 */
72 unsigned long
ia64_get_scratch_nat_bits(struct pt_regs * pt,unsigned long scratch_unat)73 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
74 {
75 # define GET_BITS(first, last, unat) \
76 ({ \
77 unsigned long bit = ia64_unat_pos(&pt->r##first); \
78 unsigned long nbits = (last - first + 1); \
79 unsigned long mask = MASK(nbits) << first; \
80 unsigned long dist; \
81 if (bit < first) \
82 dist = 64 + bit - first; \
83 else \
84 dist = bit - first; \
85 ia64_rotr(unat, dist) & mask; \
86 })
87 unsigned long val;
88
89 /*
90 * Registers that are stored consecutively in struct pt_regs
91 * can be handled in parallel. If the register order in
92 * struct_pt_regs changes, this code MUST be updated.
93 */
94 val = GET_BITS( 1, 1, scratch_unat);
95 val |= GET_BITS( 2, 3, scratch_unat);
96 val |= GET_BITS(12, 13, scratch_unat);
97 val |= GET_BITS(14, 14, scratch_unat);
98 val |= GET_BITS(15, 15, scratch_unat);
99 val |= GET_BITS( 8, 11, scratch_unat);
100 val |= GET_BITS(16, 31, scratch_unat);
101 return val;
102
103 # undef GET_BITS
104 }
105
106 /*
107 * Set the NaT bits for the scratch registers according to NAT and
108 * return the resulting unat (assuming the scratch registers are
109 * stored in PT).
110 */
111 unsigned long
ia64_put_scratch_nat_bits(struct pt_regs * pt,unsigned long nat)112 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
113 {
114 # define PUT_BITS(first, last, nat) \
115 ({ \
116 unsigned long bit = ia64_unat_pos(&pt->r##first); \
117 unsigned long nbits = (last - first + 1); \
118 unsigned long mask = MASK(nbits) << first; \
119 long dist; \
120 if (bit < first) \
121 dist = 64 + bit - first; \
122 else \
123 dist = bit - first; \
124 ia64_rotl(nat & mask, dist); \
125 })
126 unsigned long scratch_unat;
127
128 /*
129 * Registers that are stored consecutively in struct pt_regs
130 * can be handled in parallel. If the register order in
131 * struct_pt_regs changes, this code MUST be updated.
132 */
133 scratch_unat = PUT_BITS( 1, 1, nat);
134 scratch_unat |= PUT_BITS( 2, 3, nat);
135 scratch_unat |= PUT_BITS(12, 13, nat);
136 scratch_unat |= PUT_BITS(14, 14, nat);
137 scratch_unat |= PUT_BITS(15, 15, nat);
138 scratch_unat |= PUT_BITS( 8, 11, nat);
139 scratch_unat |= PUT_BITS(16, 31, nat);
140
141 return scratch_unat;
142
143 # undef PUT_BITS
144 }
145
146 #define IA64_MLX_TEMPLATE 0x2
147 #define IA64_MOVL_OPCODE 6
148
149 void
ia64_increment_ip(struct pt_regs * regs)150 ia64_increment_ip (struct pt_regs *regs)
151 {
152 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
153
154 if (ri > 2) {
155 ri = 0;
156 regs->cr_iip += 16;
157 } else if (ri == 2) {
158 get_user(w0, (char __user *) regs->cr_iip + 0);
159 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
160 /*
161 * rfi'ing to slot 2 of an MLX bundle causes
162 * an illegal operation fault. We don't want
163 * that to happen...
164 */
165 ri = 0;
166 regs->cr_iip += 16;
167 }
168 }
169 ia64_psr(regs)->ri = ri;
170 }
171
172 void
ia64_decrement_ip(struct pt_regs * regs)173 ia64_decrement_ip (struct pt_regs *regs)
174 {
175 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
176
177 if (ia64_psr(regs)->ri == 0) {
178 regs->cr_iip -= 16;
179 ri = 2;
180 get_user(w0, (char __user *) regs->cr_iip + 0);
181 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
182 /*
183 * rfi'ing to slot 2 of an MLX bundle causes
184 * an illegal operation fault. We don't want
185 * that to happen...
186 */
187 ri = 1;
188 }
189 }
190 ia64_psr(regs)->ri = ri;
191 }
192
193 /*
194 * This routine is used to read an rnat bits that are stored on the
195 * kernel backing store. Since, in general, the alignment of the user
196 * and kernel are different, this is not completely trivial. In
197 * essence, we need to construct the user RNAT based on up to two
198 * kernel RNAT values and/or the RNAT value saved in the child's
199 * pt_regs.
200 *
201 * user rbs
202 *
203 * +--------+ <-- lowest address
204 * | slot62 |
205 * +--------+
206 * | rnat | 0x....1f8
207 * +--------+
208 * | slot00 | \
209 * +--------+ |
210 * | slot01 | > child_regs->ar_rnat
211 * +--------+ |
212 * | slot02 | / kernel rbs
213 * +--------+ +--------+
214 * <- child_regs->ar_bspstore | slot61 | <-- krbs
215 * +- - - - + +--------+
216 * | slot62 |
217 * +- - - - + +--------+
218 * | rnat |
219 * +- - - - + +--------+
220 * vrnat | slot00 |
221 * +- - - - + +--------+
222 * = =
223 * +--------+
224 * | slot00 | \
225 * +--------+ |
226 * | slot01 | > child_stack->ar_rnat
227 * +--------+ |
228 * | slot02 | /
229 * +--------+
230 * <--- child_stack->ar_bspstore
231 *
232 * The way to think of this code is as follows: bit 0 in the user rnat
233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234 * value. The kernel rnat value holding this bit is stored in
235 * variable rnat0. rnat1 is loaded with the kernel rnat value that
236 * form the upper bits of the user rnat value.
237 *
238 * Boundary cases:
239 *
240 * o when reading the rnat "below" the first rnat slot on the kernel
241 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
242 * merged in from pt->ar_rnat.
243 *
244 * o when reading the rnat "above" the last rnat slot on the kernel
245 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
246 */
247 static unsigned long
get_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long * urbs_end)248 get_rnat (struct task_struct *task, struct switch_stack *sw,
249 unsigned long *krbs, unsigned long *urnat_addr,
250 unsigned long *urbs_end)
251 {
252 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
253 unsigned long umask = 0, mask, m;
254 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
255 long num_regs, nbits;
256 struct pt_regs *pt;
257
258 pt = task_pt_regs(task);
259 kbsp = (unsigned long *) sw->ar_bspstore;
260 ubspstore = (unsigned long *) pt->ar_bspstore;
261
262 if (urbs_end < urnat_addr)
263 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
264 else
265 nbits = 63;
266 mask = MASK(nbits);
267 /*
268 * First, figure out which bit number slot 0 in user-land maps
269 * to in the kernel rnat. Do this by figuring out how many
270 * register slots we're beyond the user's backingstore and
271 * then computing the equivalent address in kernel space.
272 */
273 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
274 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
275 shift = ia64_rse_slot_num(slot0_kaddr);
276 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
277 rnat0_kaddr = rnat1_kaddr - 64;
278
279 if (ubspstore + 63 > urnat_addr) {
280 /* some bits need to be merged in from pt->ar_rnat */
281 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
282 urnat = (pt->ar_rnat & umask);
283 mask &= ~umask;
284 if (!mask)
285 return urnat;
286 }
287
288 m = mask << shift;
289 if (rnat0_kaddr >= kbsp)
290 rnat0 = sw->ar_rnat;
291 else if (rnat0_kaddr > krbs)
292 rnat0 = *rnat0_kaddr;
293 urnat |= (rnat0 & m) >> shift;
294
295 m = mask >> (63 - shift);
296 if (rnat1_kaddr >= kbsp)
297 rnat1 = sw->ar_rnat;
298 else if (rnat1_kaddr > krbs)
299 rnat1 = *rnat1_kaddr;
300 urnat |= (rnat1 & m) << (63 - shift);
301 return urnat;
302 }
303
304 /*
305 * The reverse of get_rnat.
306 */
307 static void
put_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long urnat,unsigned long * urbs_end)308 put_rnat (struct task_struct *task, struct switch_stack *sw,
309 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
310 unsigned long *urbs_end)
311 {
312 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
313 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
314 long num_regs, nbits;
315 struct pt_regs *pt;
316 unsigned long cfm, *urbs_kargs;
317
318 pt = task_pt_regs(task);
319 kbsp = (unsigned long *) sw->ar_bspstore;
320 ubspstore = (unsigned long *) pt->ar_bspstore;
321
322 urbs_kargs = urbs_end;
323 if (in_syscall(pt)) {
324 /*
325 * If entered via syscall, don't allow user to set rnat bits
326 * for syscall args.
327 */
328 cfm = pt->cr_ifs;
329 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
330 }
331
332 if (urbs_kargs >= urnat_addr)
333 nbits = 63;
334 else {
335 if ((urnat_addr - 63) >= urbs_kargs)
336 return;
337 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
338 }
339 mask = MASK(nbits);
340
341 /*
342 * First, figure out which bit number slot 0 in user-land maps
343 * to in the kernel rnat. Do this by figuring out how many
344 * register slots we're beyond the user's backingstore and
345 * then computing the equivalent address in kernel space.
346 */
347 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
348 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
349 shift = ia64_rse_slot_num(slot0_kaddr);
350 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
351 rnat0_kaddr = rnat1_kaddr - 64;
352
353 if (ubspstore + 63 > urnat_addr) {
354 /* some bits need to be place in pt->ar_rnat: */
355 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
356 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
357 mask &= ~umask;
358 if (!mask)
359 return;
360 }
361 /*
362 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 * rnat slot is ignored. so we don't have to clear it here.
364 */
365 rnat0 = (urnat << shift);
366 m = mask << shift;
367 if (rnat0_kaddr >= kbsp)
368 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
369 else if (rnat0_kaddr > krbs)
370 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
371
372 rnat1 = (urnat >> (63 - shift));
373 m = mask >> (63 - shift);
374 if (rnat1_kaddr >= kbsp)
375 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
376 else if (rnat1_kaddr > krbs)
377 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
378 }
379
380 static inline int
on_kernel_rbs(unsigned long addr,unsigned long bspstore,unsigned long urbs_end)381 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
382 unsigned long urbs_end)
383 {
384 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
385 urbs_end);
386 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
387 }
388
389 /*
390 * Read a word from the user-level backing store of task CHILD. ADDR
391 * is the user-level address to read the word from, VAL a pointer to
392 * the return value, and USER_BSP gives the end of the user-level
393 * backing store (i.e., it's the address that would be in ar.bsp after
394 * the user executed a "cover" instruction).
395 *
396 * This routine takes care of accessing the kernel register backing
397 * store for those registers that got spilled there. It also takes
398 * care of calculating the appropriate RNaT collection words.
399 */
400 long
ia64_peek(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long * val)401 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
402 unsigned long user_rbs_end, unsigned long addr, long *val)
403 {
404 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
405 struct pt_regs *child_regs;
406 size_t copied;
407 long ret;
408
409 urbs_end = (long *) user_rbs_end;
410 laddr = (unsigned long *) addr;
411 child_regs = task_pt_regs(child);
412 bspstore = (unsigned long *) child_regs->ar_bspstore;
413 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
414 if (on_kernel_rbs(addr, (unsigned long) bspstore,
415 (unsigned long) urbs_end))
416 {
417 /*
418 * Attempt to read the RBS in an area that's actually
419 * on the kernel RBS => read the corresponding bits in
420 * the kernel RBS.
421 */
422 rnat_addr = ia64_rse_rnat_addr(laddr);
423 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
424
425 if (laddr == rnat_addr) {
426 /* return NaT collection word itself */
427 *val = ret;
428 return 0;
429 }
430
431 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
432 /*
433 * It is implementation dependent whether the
434 * data portion of a NaT value gets saved on a
435 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 * 4.4.4.6 Register Spill and Fill). To get
437 * consistent behavior across all possible
438 * IA-64 implementations, we return zero in
439 * this case.
440 */
441 *val = 0;
442 return 0;
443 }
444
445 if (laddr < urbs_end) {
446 /*
447 * The desired word is on the kernel RBS and
448 * is not a NaT.
449 */
450 regnum = ia64_rse_num_regs(bspstore, laddr);
451 *val = *ia64_rse_skip_regs(krbs, regnum);
452 return 0;
453 }
454 }
455 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
456 if (copied != sizeof(ret))
457 return -EIO;
458 *val = ret;
459 return 0;
460 }
461
462 long
ia64_poke(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long val)463 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
464 unsigned long user_rbs_end, unsigned long addr, long val)
465 {
466 unsigned long *bspstore, *krbs, regnum, *laddr;
467 unsigned long *urbs_end = (long *) user_rbs_end;
468 struct pt_regs *child_regs;
469
470 laddr = (unsigned long *) addr;
471 child_regs = task_pt_regs(child);
472 bspstore = (unsigned long *) child_regs->ar_bspstore;
473 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
474 if (on_kernel_rbs(addr, (unsigned long) bspstore,
475 (unsigned long) urbs_end))
476 {
477 /*
478 * Attempt to write the RBS in an area that's actually
479 * on the kernel RBS => write the corresponding bits
480 * in the kernel RBS.
481 */
482 if (ia64_rse_is_rnat_slot(laddr))
483 put_rnat(child, child_stack, krbs, laddr, val,
484 urbs_end);
485 else {
486 if (laddr < urbs_end) {
487 regnum = ia64_rse_num_regs(bspstore, laddr);
488 *ia64_rse_skip_regs(krbs, regnum) = val;
489 }
490 }
491 } else if (access_process_vm(child, addr, &val, sizeof(val),
492 FOLL_FORCE | FOLL_WRITE)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496 }
497
498 /*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506 unsigned long
ia64_get_user_rbs_end(struct task_struct * child,struct pt_regs * pt,unsigned long * cfmp)507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509 {
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525 }
526
527 /*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534 long
ia64_sync_user_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537 {
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val),
547 FOLL_FORCE | FOLL_WRITE)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552 }
553
554 static long
ia64_sync_kernel_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)555 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557 {
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val),
564 FOLL_FORCE)
565 != sizeof(val))
566 return -EIO;
567
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 if (ret < 0)
570 return ret;
571 }
572 return 0;
573 }
574
575 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
577
do_sync_rbs(struct unw_frame_info * info,void * arg)578 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579 {
580 struct pt_regs *pt;
581 unsigned long urbs_end;
582 syncfunc_t fn = arg;
583
584 if (unw_unwind_to_user(info) < 0)
585 return;
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590 }
591
592 /*
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
601 */
ia64_ptrace_stop(void)602 void ia64_ptrace_stop(void)
603 {
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 return;
606 set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608 }
609
610 /*
611 * This is called to read back the register backing store.
612 */
ia64_sync_krbs(void)613 void ia64_sync_krbs(void)
614 {
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616
617 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618 }
619
620 /*
621 * After PTRACE_ATTACH, a thread's register backing store area in user
622 * space is assumed to contain correct data whenever the thread is
623 * stopped. arch_ptrace_stop takes care of this on tracing stops.
624 * But if the child was already stopped for job control when we attach
625 * to it, then it might not ever get into ptrace_stop by the time we
626 * want to examine the user memory containing the RBS.
627 */
628 void
ptrace_attach_sync_user_rbs(struct task_struct * child)629 ptrace_attach_sync_user_rbs (struct task_struct *child)
630 {
631 int stopped = 0;
632 struct unw_frame_info info;
633
634 /*
635 * If the child is in TASK_STOPPED, we need to change that to
636 * TASK_TRACED momentarily while we operate on it. This ensures
637 * that the child won't be woken up and return to user mode while
638 * we are doing the sync. (It can only be woken up for SIGKILL.)
639 */
640
641 read_lock(&tasklist_lock);
642 if (child->sighand) {
643 spin_lock_irq(&child->sighand->siglock);
644 if (READ_ONCE(child->__state) == TASK_STOPPED &&
645 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
646 set_notify_resume(child);
647
648 WRITE_ONCE(child->__state, TASK_TRACED);
649 stopped = 1;
650 }
651 spin_unlock_irq(&child->sighand->siglock);
652 }
653 read_unlock(&tasklist_lock);
654
655 if (!stopped)
656 return;
657
658 unw_init_from_blocked_task(&info, child);
659 do_sync_rbs(&info, ia64_sync_user_rbs);
660
661 /*
662 * Now move the child back into TASK_STOPPED if it should be in a
663 * job control stop, so that SIGCONT can be used to wake it up.
664 */
665 read_lock(&tasklist_lock);
666 if (child->sighand) {
667 spin_lock_irq(&child->sighand->siglock);
668 if (READ_ONCE(child->__state) == TASK_TRACED &&
669 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
670 WRITE_ONCE(child->__state, TASK_STOPPED);
671 }
672 spin_unlock_irq(&child->sighand->siglock);
673 }
674 read_unlock(&tasklist_lock);
675 }
676
677 /*
678 * Write f32-f127 back to task->thread.fph if it has been modified.
679 */
680 inline void
ia64_flush_fph(struct task_struct * task)681 ia64_flush_fph (struct task_struct *task)
682 {
683 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
684
685 /*
686 * Prevent migrating this task while
687 * we're fiddling with the FPU state
688 */
689 preempt_disable();
690 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
691 psr->mfh = 0;
692 task->thread.flags |= IA64_THREAD_FPH_VALID;
693 ia64_save_fpu(&task->thread.fph[0]);
694 }
695 preempt_enable();
696 }
697
698 /*
699 * Sync the fph state of the task so that it can be manipulated
700 * through thread.fph. If necessary, f32-f127 are written back to
701 * thread.fph or, if the fph state hasn't been used before, thread.fph
702 * is cleared to zeroes. Also, access to f32-f127 is disabled to
703 * ensure that the task picks up the state from thread.fph when it
704 * executes again.
705 */
706 void
ia64_sync_fph(struct task_struct * task)707 ia64_sync_fph (struct task_struct *task)
708 {
709 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
710
711 ia64_flush_fph(task);
712 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
713 task->thread.flags |= IA64_THREAD_FPH_VALID;
714 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
715 }
716 ia64_drop_fpu(task);
717 psr->dfh = 1;
718 }
719
720 /*
721 * Change the machine-state of CHILD such that it will return via the normal
722 * kernel exit-path, rather than the syscall-exit path.
723 */
724 static void
convert_to_non_syscall(struct task_struct * child,struct pt_regs * pt,unsigned long cfm)725 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
726 unsigned long cfm)
727 {
728 struct unw_frame_info info, prev_info;
729 unsigned long ip, sp, pr;
730
731 unw_init_from_blocked_task(&info, child);
732 while (1) {
733 prev_info = info;
734 if (unw_unwind(&info) < 0)
735 return;
736
737 unw_get_sp(&info, &sp);
738 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
739 < IA64_PT_REGS_SIZE) {
740 dprintk("ptrace.%s: ran off the top of the kernel "
741 "stack\n", __func__);
742 return;
743 }
744 if (unw_get_pr (&prev_info, &pr) < 0) {
745 unw_get_rp(&prev_info, &ip);
746 dprintk("ptrace.%s: failed to read "
747 "predicate register (ip=0x%lx)\n",
748 __func__, ip);
749 return;
750 }
751 if (unw_is_intr_frame(&info)
752 && (pr & (1UL << PRED_USER_STACK)))
753 break;
754 }
755
756 /*
757 * Note: at the time of this call, the target task is blocked
758 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
759 * (aka, "pLvSys") we redirect execution from
760 * .work_pending_syscall_end to .work_processed_kernel.
761 */
762 unw_get_pr(&prev_info, &pr);
763 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
764 pr |= (1UL << PRED_NON_SYSCALL);
765 unw_set_pr(&prev_info, pr);
766
767 pt->cr_ifs = (1UL << 63) | cfm;
768 /*
769 * Clear the memory that is NOT written on syscall-entry to
770 * ensure we do not leak kernel-state to user when execution
771 * resumes.
772 */
773 pt->r2 = 0;
774 pt->r3 = 0;
775 pt->r14 = 0;
776 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
777 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
778 pt->b7 = 0;
779 pt->ar_ccv = 0;
780 pt->ar_csd = 0;
781 pt->ar_ssd = 0;
782 }
783
784 static int
access_nat_bits(struct task_struct * child,struct pt_regs * pt,struct unw_frame_info * info,unsigned long * data,int write_access)785 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
786 struct unw_frame_info *info,
787 unsigned long *data, int write_access)
788 {
789 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
790 char nat = 0;
791
792 if (write_access) {
793 nat_bits = *data;
794 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
795 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
796 dprintk("ptrace: failed to set ar.unat\n");
797 return -1;
798 }
799 for (regnum = 4; regnum <= 7; ++regnum) {
800 unw_get_gr(info, regnum, &dummy, &nat);
801 unw_set_gr(info, regnum, dummy,
802 (nat_bits >> regnum) & 1);
803 }
804 } else {
805 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
806 dprintk("ptrace: failed to read ar.unat\n");
807 return -1;
808 }
809 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
810 for (regnum = 4; regnum <= 7; ++regnum) {
811 unw_get_gr(info, regnum, &dummy, &nat);
812 nat_bits |= (nat != 0) << regnum;
813 }
814 *data = nat_bits;
815 }
816 return 0;
817 }
818
819 static int
820 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
821 unsigned long addr, unsigned long *data, int write_access);
822
823 static long
ptrace_getregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)824 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
825 {
826 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
827 struct unw_frame_info info;
828 struct ia64_fpreg fpval;
829 struct switch_stack *sw;
830 struct pt_regs *pt;
831 long ret, retval = 0;
832 char nat = 0;
833 int i;
834
835 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
836 return -EIO;
837
838 pt = task_pt_regs(child);
839 sw = (struct switch_stack *) (child->thread.ksp + 16);
840 unw_init_from_blocked_task(&info, child);
841 if (unw_unwind_to_user(&info) < 0) {
842 return -EIO;
843 }
844
845 if (((unsigned long) ppr & 0x7) != 0) {
846 dprintk("ptrace:unaligned register address %p\n", ppr);
847 return -EIO;
848 }
849
850 if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
851 access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
852 access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
853 access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
854 access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
855 access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
856 access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
857 return -EIO;
858
859 /* control regs */
860
861 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
862 retval |= __put_user(psr, &ppr->cr_ipsr);
863
864 /* app regs */
865
866 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
867 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
868 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
869 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
870 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
871 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
872
873 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
874 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
875 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
876 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
877 retval |= __put_user(cfm, &ppr->cfm);
878
879 /* gr1-gr3 */
880
881 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
882 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
883
884 /* gr4-gr7 */
885
886 for (i = 4; i < 8; i++) {
887 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
888 return -EIO;
889 retval |= __put_user(val, &ppr->gr[i]);
890 }
891
892 /* gr8-gr11 */
893
894 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
895
896 /* gr12-gr15 */
897
898 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
899 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
900 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
901
902 /* gr16-gr31 */
903
904 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
905
906 /* b0 */
907
908 retval |= __put_user(pt->b0, &ppr->br[0]);
909
910 /* b1-b5 */
911
912 for (i = 1; i < 6; i++) {
913 if (unw_access_br(&info, i, &val, 0) < 0)
914 return -EIO;
915 __put_user(val, &ppr->br[i]);
916 }
917
918 /* b6-b7 */
919
920 retval |= __put_user(pt->b6, &ppr->br[6]);
921 retval |= __put_user(pt->b7, &ppr->br[7]);
922
923 /* fr2-fr5 */
924
925 for (i = 2; i < 6; i++) {
926 if (unw_get_fr(&info, i, &fpval) < 0)
927 return -EIO;
928 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
929 }
930
931 /* fr6-fr11 */
932
933 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
934 sizeof(struct ia64_fpreg) * 6);
935
936 /* fp scratch regs(12-15) */
937
938 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
939 sizeof(struct ia64_fpreg) * 4);
940
941 /* fr16-fr31 */
942
943 for (i = 16; i < 32; i++) {
944 if (unw_get_fr(&info, i, &fpval) < 0)
945 return -EIO;
946 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
947 }
948
949 /* fph */
950
951 ia64_flush_fph(child);
952 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
953 sizeof(ppr->fr[32]) * 96);
954
955 /* preds */
956
957 retval |= __put_user(pt->pr, &ppr->pr);
958
959 /* nat bits */
960
961 retval |= __put_user(nat_bits, &ppr->nat);
962
963 ret = retval ? -EIO : 0;
964 return ret;
965 }
966
967 static long
ptrace_setregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)968 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
969 {
970 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
971 struct unw_frame_info info;
972 struct switch_stack *sw;
973 struct ia64_fpreg fpval;
974 struct pt_regs *pt;
975 long retval = 0;
976 int i;
977
978 memset(&fpval, 0, sizeof(fpval));
979
980 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
981 return -EIO;
982
983 pt = task_pt_regs(child);
984 sw = (struct switch_stack *) (child->thread.ksp + 16);
985 unw_init_from_blocked_task(&info, child);
986 if (unw_unwind_to_user(&info) < 0) {
987 return -EIO;
988 }
989
990 if (((unsigned long) ppr & 0x7) != 0) {
991 dprintk("ptrace:unaligned register address %p\n", ppr);
992 return -EIO;
993 }
994
995 /* control regs */
996
997 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
998 retval |= __get_user(psr, &ppr->cr_ipsr);
999
1000 /* app regs */
1001
1002 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1003 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1004 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1005 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1006 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1007 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1008
1009 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1010 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1011 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1012 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1013 retval |= __get_user(cfm, &ppr->cfm);
1014
1015 /* gr1-gr3 */
1016
1017 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1018 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1019
1020 /* gr4-gr7 */
1021
1022 for (i = 4; i < 8; i++) {
1023 retval |= __get_user(val, &ppr->gr[i]);
1024 /* NaT bit will be set via PT_NAT_BITS: */
1025 if (unw_set_gr(&info, i, val, 0) < 0)
1026 return -EIO;
1027 }
1028
1029 /* gr8-gr11 */
1030
1031 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1032
1033 /* gr12-gr15 */
1034
1035 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1036 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1037 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1038
1039 /* gr16-gr31 */
1040
1041 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1042
1043 /* b0 */
1044
1045 retval |= __get_user(pt->b0, &ppr->br[0]);
1046
1047 /* b1-b5 */
1048
1049 for (i = 1; i < 6; i++) {
1050 retval |= __get_user(val, &ppr->br[i]);
1051 unw_set_br(&info, i, val);
1052 }
1053
1054 /* b6-b7 */
1055
1056 retval |= __get_user(pt->b6, &ppr->br[6]);
1057 retval |= __get_user(pt->b7, &ppr->br[7]);
1058
1059 /* fr2-fr5 */
1060
1061 for (i = 2; i < 6; i++) {
1062 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1063 if (unw_set_fr(&info, i, fpval) < 0)
1064 return -EIO;
1065 }
1066
1067 /* fr6-fr11 */
1068
1069 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1070 sizeof(ppr->fr[6]) * 6);
1071
1072 /* fp scratch regs(12-15) */
1073
1074 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1075 sizeof(ppr->fr[12]) * 4);
1076
1077 /* fr16-fr31 */
1078
1079 for (i = 16; i < 32; i++) {
1080 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1081 sizeof(fpval));
1082 if (unw_set_fr(&info, i, fpval) < 0)
1083 return -EIO;
1084 }
1085
1086 /* fph */
1087
1088 ia64_sync_fph(child);
1089 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1090 sizeof(ppr->fr[32]) * 96);
1091
1092 /* preds */
1093
1094 retval |= __get_user(pt->pr, &ppr->pr);
1095
1096 /* nat bits */
1097
1098 retval |= __get_user(nat_bits, &ppr->nat);
1099
1100 retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1101 retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1102 retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1103 retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1104 retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1105 retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1106 retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1107 retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1108
1109 return retval ? -EIO : 0;
1110 }
1111
1112 void
user_enable_single_step(struct task_struct * child)1113 user_enable_single_step (struct task_struct *child)
1114 {
1115 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1116
1117 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1118 child_psr->ss = 1;
1119 }
1120
1121 void
user_enable_block_step(struct task_struct * child)1122 user_enable_block_step (struct task_struct *child)
1123 {
1124 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1125
1126 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1127 child_psr->tb = 1;
1128 }
1129
1130 void
user_disable_single_step(struct task_struct * child)1131 user_disable_single_step (struct task_struct *child)
1132 {
1133 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1134
1135 /* make sure the single step/taken-branch trap bits are not set: */
1136 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1137 child_psr->ss = 0;
1138 child_psr->tb = 0;
1139 }
1140
1141 /*
1142 * Called by kernel/ptrace.c when detaching..
1143 *
1144 * Make sure the single step bit is not set.
1145 */
1146 void
ptrace_disable(struct task_struct * child)1147 ptrace_disable (struct task_struct *child)
1148 {
1149 user_disable_single_step(child);
1150 }
1151
1152 static int
1153 access_uarea (struct task_struct *child, unsigned long addr,
1154 unsigned long *data, int write_access);
1155
1156 long
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1157 arch_ptrace (struct task_struct *child, long request,
1158 unsigned long addr, unsigned long data)
1159 {
1160 switch (request) {
1161 case PTRACE_PEEKTEXT:
1162 case PTRACE_PEEKDATA:
1163 /* read word at location addr */
1164 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1165 FOLL_FORCE)
1166 != sizeof(data))
1167 return -EIO;
1168 /* ensure return value is not mistaken for error code */
1169 force_successful_syscall_return();
1170 return data;
1171
1172 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1173 * by the generic ptrace_request().
1174 */
1175
1176 case PTRACE_PEEKUSR:
1177 /* read the word at addr in the USER area */
1178 if (access_uarea(child, addr, &data, 0) < 0)
1179 return -EIO;
1180 /* ensure return value is not mistaken for error code */
1181 force_successful_syscall_return();
1182 return data;
1183
1184 case PTRACE_POKEUSR:
1185 /* write the word at addr in the USER area */
1186 if (access_uarea(child, addr, &data, 1) < 0)
1187 return -EIO;
1188 return 0;
1189
1190 case PTRACE_OLD_GETSIGINFO:
1191 /* for backwards-compatibility */
1192 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1193
1194 case PTRACE_OLD_SETSIGINFO:
1195 /* for backwards-compatibility */
1196 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1197
1198 case PTRACE_GETREGS:
1199 return ptrace_getregs(child,
1200 (struct pt_all_user_regs __user *) data);
1201
1202 case PTRACE_SETREGS:
1203 return ptrace_setregs(child,
1204 (struct pt_all_user_regs __user *) data);
1205
1206 default:
1207 return ptrace_request(child, request, addr, data);
1208 }
1209 }
1210
1211
1212 /* "asmlinkage" so the input arguments are preserved... */
1213
1214 asmlinkage long
syscall_trace_enter(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1215 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1216 long arg4, long arg5, long arg6, long arg7,
1217 struct pt_regs regs)
1218 {
1219 if (test_thread_flag(TIF_SYSCALL_TRACE))
1220 if (tracehook_report_syscall_entry(®s))
1221 return -ENOSYS;
1222
1223 /* copy user rbs to kernel rbs */
1224 if (test_thread_flag(TIF_RESTORE_RSE))
1225 ia64_sync_krbs();
1226
1227
1228 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1229
1230 return 0;
1231 }
1232
1233 /* "asmlinkage" so the input arguments are preserved... */
1234
1235 asmlinkage void
syscall_trace_leave(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1236 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1237 long arg4, long arg5, long arg6, long arg7,
1238 struct pt_regs regs)
1239 {
1240 int step;
1241
1242 audit_syscall_exit(®s);
1243
1244 step = test_thread_flag(TIF_SINGLESTEP);
1245 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1246 tracehook_report_syscall_exit(®s, step);
1247
1248 /* copy user rbs to kernel rbs */
1249 if (test_thread_flag(TIF_RESTORE_RSE))
1250 ia64_sync_krbs();
1251 }
1252
1253 /* Utrace implementation starts here */
1254 struct regset_get {
1255 void *kbuf;
1256 void __user *ubuf;
1257 };
1258
1259 struct regset_set {
1260 const void *kbuf;
1261 const void __user *ubuf;
1262 };
1263
1264 struct regset_getset {
1265 struct task_struct *target;
1266 const struct user_regset *regset;
1267 union {
1268 struct regset_get get;
1269 struct regset_set set;
1270 } u;
1271 unsigned int pos;
1272 unsigned int count;
1273 int ret;
1274 };
1275
1276 static const ptrdiff_t pt_offsets[32] =
1277 {
1278 #define R(n) offsetof(struct pt_regs, r##n)
1279 [0] = -1, R(1), R(2), R(3),
1280 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1281 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1282 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1283 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1284 #undef R
1285 };
1286
1287 static int
access_elf_gpreg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1288 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1289 unsigned long addr, unsigned long *data, int write_access)
1290 {
1291 struct pt_regs *pt = task_pt_regs(target);
1292 unsigned reg = addr / sizeof(unsigned long);
1293 ptrdiff_t d = pt_offsets[reg];
1294
1295 if (d >= 0) {
1296 unsigned long *ptr = (void *)pt + d;
1297 if (write_access)
1298 *ptr = *data;
1299 else
1300 *data = *ptr;
1301 return 0;
1302 } else {
1303 char nat = 0;
1304 if (write_access) {
1305 /* read NaT bit first: */
1306 unsigned long dummy;
1307 int ret = unw_get_gr(info, reg, &dummy, &nat);
1308 if (ret < 0)
1309 return ret;
1310 }
1311 return unw_access_gr(info, reg, data, &nat, write_access);
1312 }
1313 }
1314
1315 static int
access_elf_breg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1316 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1317 unsigned long addr, unsigned long *data, int write_access)
1318 {
1319 struct pt_regs *pt;
1320 unsigned long *ptr = NULL;
1321
1322 pt = task_pt_regs(target);
1323 switch (addr) {
1324 case ELF_BR_OFFSET(0):
1325 ptr = &pt->b0;
1326 break;
1327 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1328 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1329 data, write_access);
1330 case ELF_BR_OFFSET(6):
1331 ptr = &pt->b6;
1332 break;
1333 case ELF_BR_OFFSET(7):
1334 ptr = &pt->b7;
1335 }
1336 if (write_access)
1337 *ptr = *data;
1338 else
1339 *data = *ptr;
1340 return 0;
1341 }
1342
1343 static int
access_elf_areg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1344 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1345 unsigned long addr, unsigned long *data, int write_access)
1346 {
1347 struct pt_regs *pt;
1348 unsigned long cfm, urbs_end;
1349 unsigned long *ptr = NULL;
1350
1351 pt = task_pt_regs(target);
1352 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1353 switch (addr) {
1354 case ELF_AR_RSC_OFFSET:
1355 /* force PL3 */
1356 if (write_access)
1357 pt->ar_rsc = *data | (3 << 2);
1358 else
1359 *data = pt->ar_rsc;
1360 return 0;
1361 case ELF_AR_BSP_OFFSET:
1362 /*
1363 * By convention, we use PT_AR_BSP to refer to
1364 * the end of the user-level backing store.
1365 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1366 * to get the real value of ar.bsp at the time
1367 * the kernel was entered.
1368 *
1369 * Furthermore, when changing the contents of
1370 * PT_AR_BSP (or PT_CFM) while the task is
1371 * blocked in a system call, convert the state
1372 * so that the non-system-call exit
1373 * path is used. This ensures that the proper
1374 * state will be picked up when resuming
1375 * execution. However, it *also* means that
1376 * once we write PT_AR_BSP/PT_CFM, it won't be
1377 * possible to modify the syscall arguments of
1378 * the pending system call any longer. This
1379 * shouldn't be an issue because modifying
1380 * PT_AR_BSP/PT_CFM generally implies that
1381 * we're either abandoning the pending system
1382 * call or that we defer it's re-execution
1383 * (e.g., due to GDB doing an inferior
1384 * function call).
1385 */
1386 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1387 if (write_access) {
1388 if (*data != urbs_end) {
1389 if (in_syscall(pt))
1390 convert_to_non_syscall(target,
1391 pt,
1392 cfm);
1393 /*
1394 * Simulate user-level write
1395 * of ar.bsp:
1396 */
1397 pt->loadrs = 0;
1398 pt->ar_bspstore = *data;
1399 }
1400 } else
1401 *data = urbs_end;
1402 return 0;
1403 case ELF_AR_BSPSTORE_OFFSET:
1404 ptr = &pt->ar_bspstore;
1405 break;
1406 case ELF_AR_RNAT_OFFSET:
1407 ptr = &pt->ar_rnat;
1408 break;
1409 case ELF_AR_CCV_OFFSET:
1410 ptr = &pt->ar_ccv;
1411 break;
1412 case ELF_AR_UNAT_OFFSET:
1413 ptr = &pt->ar_unat;
1414 break;
1415 case ELF_AR_FPSR_OFFSET:
1416 ptr = &pt->ar_fpsr;
1417 break;
1418 case ELF_AR_PFS_OFFSET:
1419 ptr = &pt->ar_pfs;
1420 break;
1421 case ELF_AR_LC_OFFSET:
1422 return unw_access_ar(info, UNW_AR_LC, data,
1423 write_access);
1424 case ELF_AR_EC_OFFSET:
1425 return unw_access_ar(info, UNW_AR_EC, data,
1426 write_access);
1427 case ELF_AR_CSD_OFFSET:
1428 ptr = &pt->ar_csd;
1429 break;
1430 case ELF_AR_SSD_OFFSET:
1431 ptr = &pt->ar_ssd;
1432 }
1433 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1434 switch (addr) {
1435 case ELF_CR_IIP_OFFSET:
1436 ptr = &pt->cr_iip;
1437 break;
1438 case ELF_CFM_OFFSET:
1439 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1440 if (write_access) {
1441 if (((cfm ^ *data) & PFM_MASK) != 0) {
1442 if (in_syscall(pt))
1443 convert_to_non_syscall(target,
1444 pt,
1445 cfm);
1446 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1447 | (*data & PFM_MASK));
1448 }
1449 } else
1450 *data = cfm;
1451 return 0;
1452 case ELF_CR_IPSR_OFFSET:
1453 if (write_access) {
1454 unsigned long tmp = *data;
1455 /* psr.ri==3 is a reserved value: SDM 2:25 */
1456 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1457 tmp &= ~IA64_PSR_RI;
1458 pt->cr_ipsr = ((tmp & IPSR_MASK)
1459 | (pt->cr_ipsr & ~IPSR_MASK));
1460 } else
1461 *data = (pt->cr_ipsr & IPSR_MASK);
1462 return 0;
1463 }
1464 } else if (addr == ELF_NAT_OFFSET)
1465 return access_nat_bits(target, pt, info,
1466 data, write_access);
1467 else if (addr == ELF_PR_OFFSET)
1468 ptr = &pt->pr;
1469 else
1470 return -1;
1471
1472 if (write_access)
1473 *ptr = *data;
1474 else
1475 *data = *ptr;
1476
1477 return 0;
1478 }
1479
1480 static int
access_elf_reg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1481 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1482 unsigned long addr, unsigned long *data, int write_access)
1483 {
1484 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1485 return access_elf_gpreg(target, info, addr, data, write_access);
1486 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1487 return access_elf_breg(target, info, addr, data, write_access);
1488 else
1489 return access_elf_areg(target, info, addr, data, write_access);
1490 }
1491
1492 struct regset_membuf {
1493 struct membuf to;
1494 int ret;
1495 };
1496
do_gpregs_get(struct unw_frame_info * info,void * arg)1497 static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1498 {
1499 struct regset_membuf *dst = arg;
1500 struct membuf to = dst->to;
1501 unsigned int n;
1502 elf_greg_t reg;
1503
1504 if (unw_unwind_to_user(info) < 0)
1505 return;
1506
1507 /*
1508 * coredump format:
1509 * r0-r31
1510 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1511 * predicate registers (p0-p63)
1512 * b0-b7
1513 * ip cfm user-mask
1514 * ar.rsc ar.bsp ar.bspstore ar.rnat
1515 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1516 */
1517
1518
1519 /* Skip r0 */
1520 membuf_zero(&to, 8);
1521 for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1522 if (access_elf_reg(info->task, info, n, ®, 0) < 0) {
1523 dst->ret = -EIO;
1524 return;
1525 }
1526 membuf_store(&to, reg);
1527 }
1528 }
1529
do_gpregs_set(struct unw_frame_info * info,void * arg)1530 static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1531 {
1532 struct regset_getset *dst = arg;
1533
1534 if (unw_unwind_to_user(info) < 0)
1535 return;
1536
1537 if (!dst->count)
1538 return;
1539 /* Skip r0 */
1540 if (dst->pos < ELF_GR_OFFSET(1)) {
1541 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1542 &dst->u.set.kbuf,
1543 &dst->u.set.ubuf,
1544 0, ELF_GR_OFFSET(1));
1545 if (dst->ret)
1546 return;
1547 }
1548
1549 while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1550 unsigned int n, from, to;
1551 elf_greg_t tmp[16];
1552
1553 from = dst->pos;
1554 to = from + sizeof(tmp);
1555 if (to > ELF_AR_END_OFFSET)
1556 to = ELF_AR_END_OFFSET;
1557 /* get up to 16 values */
1558 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1559 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1560 from, to);
1561 if (dst->ret)
1562 return;
1563 /* now copy them into registers */
1564 for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1565 if (access_elf_reg(dst->target, info, from,
1566 &tmp[n], 1) < 0) {
1567 dst->ret = -EIO;
1568 return;
1569 }
1570 }
1571 }
1572
1573 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1574
do_fpregs_get(struct unw_frame_info * info,void * arg)1575 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1576 {
1577 struct task_struct *task = info->task;
1578 struct regset_membuf *dst = arg;
1579 struct membuf to = dst->to;
1580 elf_fpreg_t reg;
1581 unsigned int n;
1582
1583 if (unw_unwind_to_user(info) < 0)
1584 return;
1585
1586 /* Skip pos 0 and 1 */
1587 membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1588
1589 /* fr2-fr31 */
1590 for (n = 2; to.left && n < 32; n++) {
1591 if (unw_get_fr(info, n, ®)) {
1592 dst->ret = -EIO;
1593 return;
1594 }
1595 membuf_write(&to, ®, sizeof(reg));
1596 }
1597
1598 /* fph */
1599 if (!to.left)
1600 return;
1601
1602 ia64_flush_fph(task);
1603 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1604 membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1605 else
1606 membuf_zero(&to, 96 * sizeof(reg));
1607 }
1608
do_fpregs_set(struct unw_frame_info * info,void * arg)1609 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1610 {
1611 struct regset_getset *dst = arg;
1612 elf_fpreg_t fpreg, tmp[30];
1613 int index, start, end;
1614
1615 if (unw_unwind_to_user(info) < 0)
1616 return;
1617
1618 /* Skip pos 0 and 1 */
1619 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1620 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1621 &dst->u.set.kbuf,
1622 &dst->u.set.ubuf,
1623 0, ELF_FP_OFFSET(2));
1624 if (dst->count == 0 || dst->ret)
1625 return;
1626 }
1627
1628 /* fr2-fr31 */
1629 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1630 start = dst->pos;
1631 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1632 dst->pos + dst->count);
1633 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1634 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1635 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1636 if (dst->ret)
1637 return;
1638
1639 if (start & 0xF) { /* only write high part */
1640 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1641 &fpreg)) {
1642 dst->ret = -EIO;
1643 return;
1644 }
1645 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1646 = fpreg.u.bits[0];
1647 start &= ~0xFUL;
1648 }
1649 if (end & 0xF) { /* only write low part */
1650 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1651 &fpreg)) {
1652 dst->ret = -EIO;
1653 return;
1654 }
1655 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1656 = fpreg.u.bits[1];
1657 end = (end + 0xF) & ~0xFUL;
1658 }
1659
1660 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1661 index = start / sizeof(elf_fpreg_t);
1662 if (unw_set_fr(info, index, tmp[index - 2])) {
1663 dst->ret = -EIO;
1664 return;
1665 }
1666 }
1667 if (dst->ret || dst->count == 0)
1668 return;
1669 }
1670
1671 /* fph */
1672 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1673 ia64_sync_fph(dst->target);
1674 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1675 &dst->u.set.kbuf,
1676 &dst->u.set.ubuf,
1677 &dst->target->thread.fph,
1678 ELF_FP_OFFSET(32), -1);
1679 }
1680 }
1681
1682 static void
unwind_and_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,void * data)1683 unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1684 struct task_struct *target, void *data)
1685 {
1686 if (target == current)
1687 unw_init_running(call, data);
1688 else {
1689 struct unw_frame_info info;
1690 memset(&info, 0, sizeof(info));
1691 unw_init_from_blocked_task(&info, target);
1692 (*call)(&info, data);
1693 }
1694 }
1695
1696 static int
do_regset_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1697 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1698 struct task_struct *target,
1699 const struct user_regset *regset,
1700 unsigned int pos, unsigned int count,
1701 const void *kbuf, const void __user *ubuf)
1702 {
1703 struct regset_getset info = { .target = target, .regset = regset,
1704 .pos = pos, .count = count,
1705 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1706 .ret = 0 };
1707 unwind_and_call(call, target, &info);
1708 return info.ret;
1709 }
1710
1711 static int
gpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1712 gpregs_get(struct task_struct *target,
1713 const struct user_regset *regset,
1714 struct membuf to)
1715 {
1716 struct regset_membuf info = {.to = to};
1717 unwind_and_call(do_gpregs_get, target, &info);
1718 return info.ret;
1719 }
1720
gpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1721 static int gpregs_set(struct task_struct *target,
1722 const struct user_regset *regset,
1723 unsigned int pos, unsigned int count,
1724 const void *kbuf, const void __user *ubuf)
1725 {
1726 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1727 kbuf, ubuf);
1728 }
1729
do_gpregs_writeback(struct unw_frame_info * info,void * arg)1730 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1731 {
1732 do_sync_rbs(info, ia64_sync_user_rbs);
1733 }
1734
1735 /*
1736 * This is called to write back the register backing store.
1737 * ptrace does this before it stops, so that a tracer reading the user
1738 * memory after the thread stops will get the current register data.
1739 */
1740 static int
gpregs_writeback(struct task_struct * target,const struct user_regset * regset,int now)1741 gpregs_writeback(struct task_struct *target,
1742 const struct user_regset *regset,
1743 int now)
1744 {
1745 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1746 return 0;
1747 set_notify_resume(target);
1748 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1749 NULL, NULL);
1750 }
1751
1752 static int
fpregs_active(struct task_struct * target,const struct user_regset * regset)1753 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1754 {
1755 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1756 }
1757
fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1758 static int fpregs_get(struct task_struct *target,
1759 const struct user_regset *regset,
1760 struct membuf to)
1761 {
1762 struct regset_membuf info = {.to = to};
1763 unwind_and_call(do_fpregs_get, target, &info);
1764 return info.ret;
1765 }
1766
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1767 static int fpregs_set(struct task_struct *target,
1768 const struct user_regset *regset,
1769 unsigned int pos, unsigned int count,
1770 const void *kbuf, const void __user *ubuf)
1771 {
1772 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1773 kbuf, ubuf);
1774 }
1775
1776 static int
access_uarea(struct task_struct * child,unsigned long addr,unsigned long * data,int write_access)1777 access_uarea(struct task_struct *child, unsigned long addr,
1778 unsigned long *data, int write_access)
1779 {
1780 unsigned int pos = -1; /* an invalid value */
1781 unsigned long *ptr, regnum;
1782
1783 if ((addr & 0x7) != 0) {
1784 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1785 return -1;
1786 }
1787 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1788 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1789 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1790 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1791 dprintk("ptrace: rejecting access to register "
1792 "address 0x%lx\n", addr);
1793 return -1;
1794 }
1795
1796 switch (addr) {
1797 case PT_F32 ... (PT_F127 + 15):
1798 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1799 break;
1800 case PT_F2 ... (PT_F5 + 15):
1801 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1802 break;
1803 case PT_F10 ... (PT_F31 + 15):
1804 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1805 break;
1806 case PT_F6 ... (PT_F9 + 15):
1807 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1808 break;
1809 }
1810
1811 if (pos != -1) {
1812 unsigned reg = pos / sizeof(elf_fpreg_t);
1813 int which_half = (pos / sizeof(unsigned long)) & 1;
1814
1815 if (reg < 32) { /* fr2-fr31 */
1816 struct unw_frame_info info;
1817 elf_fpreg_t fpreg;
1818
1819 memset(&info, 0, sizeof(info));
1820 unw_init_from_blocked_task(&info, child);
1821 if (unw_unwind_to_user(&info) < 0)
1822 return 0;
1823
1824 if (unw_get_fr(&info, reg, &fpreg))
1825 return -1;
1826 if (write_access) {
1827 fpreg.u.bits[which_half] = *data;
1828 if (unw_set_fr(&info, reg, fpreg))
1829 return -1;
1830 } else {
1831 *data = fpreg.u.bits[which_half];
1832 }
1833 } else { /* fph */
1834 elf_fpreg_t *p = &child->thread.fph[reg - 32];
1835 unsigned long *bits = &p->u.bits[which_half];
1836
1837 ia64_sync_fph(child);
1838 if (write_access)
1839 *bits = *data;
1840 else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1841 *data = *bits;
1842 else
1843 *data = 0;
1844 }
1845 return 0;
1846 }
1847
1848 switch (addr) {
1849 case PT_NAT_BITS:
1850 pos = ELF_NAT_OFFSET;
1851 break;
1852 case PT_R4 ... PT_R7:
1853 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1854 break;
1855 case PT_B1 ... PT_B5:
1856 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1857 break;
1858 case PT_AR_EC:
1859 pos = ELF_AR_EC_OFFSET;
1860 break;
1861 case PT_AR_LC:
1862 pos = ELF_AR_LC_OFFSET;
1863 break;
1864 case PT_CR_IPSR:
1865 pos = ELF_CR_IPSR_OFFSET;
1866 break;
1867 case PT_CR_IIP:
1868 pos = ELF_CR_IIP_OFFSET;
1869 break;
1870 case PT_CFM:
1871 pos = ELF_CFM_OFFSET;
1872 break;
1873 case PT_AR_UNAT:
1874 pos = ELF_AR_UNAT_OFFSET;
1875 break;
1876 case PT_AR_PFS:
1877 pos = ELF_AR_PFS_OFFSET;
1878 break;
1879 case PT_AR_RSC:
1880 pos = ELF_AR_RSC_OFFSET;
1881 break;
1882 case PT_AR_RNAT:
1883 pos = ELF_AR_RNAT_OFFSET;
1884 break;
1885 case PT_AR_BSPSTORE:
1886 pos = ELF_AR_BSPSTORE_OFFSET;
1887 break;
1888 case PT_PR:
1889 pos = ELF_PR_OFFSET;
1890 break;
1891 case PT_B6:
1892 pos = ELF_BR_OFFSET(6);
1893 break;
1894 case PT_AR_BSP:
1895 pos = ELF_AR_BSP_OFFSET;
1896 break;
1897 case PT_R1 ... PT_R3:
1898 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1899 break;
1900 case PT_R12 ... PT_R15:
1901 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1902 break;
1903 case PT_R8 ... PT_R11:
1904 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1905 break;
1906 case PT_R16 ... PT_R31:
1907 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1908 break;
1909 case PT_AR_CCV:
1910 pos = ELF_AR_CCV_OFFSET;
1911 break;
1912 case PT_AR_FPSR:
1913 pos = ELF_AR_FPSR_OFFSET;
1914 break;
1915 case PT_B0:
1916 pos = ELF_BR_OFFSET(0);
1917 break;
1918 case PT_B7:
1919 pos = ELF_BR_OFFSET(7);
1920 break;
1921 case PT_AR_CSD:
1922 pos = ELF_AR_CSD_OFFSET;
1923 break;
1924 case PT_AR_SSD:
1925 pos = ELF_AR_SSD_OFFSET;
1926 break;
1927 }
1928
1929 if (pos != -1) {
1930 struct unw_frame_info info;
1931
1932 memset(&info, 0, sizeof(info));
1933 unw_init_from_blocked_task(&info, child);
1934 if (unw_unwind_to_user(&info) < 0)
1935 return 0;
1936
1937 return access_elf_reg(child, &info, pos, data, write_access);
1938 }
1939
1940 /* access debug registers */
1941 if (addr >= PT_IBR) {
1942 regnum = (addr - PT_IBR) >> 3;
1943 ptr = &child->thread.ibr[0];
1944 } else {
1945 regnum = (addr - PT_DBR) >> 3;
1946 ptr = &child->thread.dbr[0];
1947 }
1948
1949 if (regnum >= 8) {
1950 dprintk("ptrace: rejecting access to register "
1951 "address 0x%lx\n", addr);
1952 return -1;
1953 }
1954
1955 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1956 child->thread.flags |= IA64_THREAD_DBG_VALID;
1957 memset(child->thread.dbr, 0,
1958 sizeof(child->thread.dbr));
1959 memset(child->thread.ibr, 0,
1960 sizeof(child->thread.ibr));
1961 }
1962
1963 ptr += regnum;
1964
1965 if ((regnum & 1) && write_access) {
1966 /* don't let the user set kernel-level breakpoints: */
1967 *ptr = *data & ~(7UL << 56);
1968 return 0;
1969 }
1970 if (write_access)
1971 *ptr = *data;
1972 else
1973 *data = *ptr;
1974 return 0;
1975 }
1976
1977 static const struct user_regset native_regsets[] = {
1978 {
1979 .core_note_type = NT_PRSTATUS,
1980 .n = ELF_NGREG,
1981 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1982 .regset_get = gpregs_get, .set = gpregs_set,
1983 .writeback = gpregs_writeback
1984 },
1985 {
1986 .core_note_type = NT_PRFPREG,
1987 .n = ELF_NFPREG,
1988 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1989 .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1990 },
1991 };
1992
1993 static const struct user_regset_view user_ia64_view = {
1994 .name = "ia64",
1995 .e_machine = EM_IA_64,
1996 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1997 };
1998
task_user_regset_view(struct task_struct * tsk)1999 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2000 {
2001 return &user_ia64_view;
2002 }
2003
2004 struct syscall_get_set_args {
2005 unsigned int i;
2006 unsigned int n;
2007 unsigned long *args;
2008 struct pt_regs *regs;
2009 int rw;
2010 };
2011
syscall_get_set_args_cb(struct unw_frame_info * info,void * data)2012 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2013 {
2014 struct syscall_get_set_args *args = data;
2015 struct pt_regs *pt = args->regs;
2016 unsigned long *krbs, cfm, ndirty, nlocals, nouts;
2017 int i, count;
2018
2019 if (unw_unwind_to_user(info) < 0)
2020 return;
2021
2022 /*
2023 * We get here via a few paths:
2024 * - break instruction: cfm is shared with caller.
2025 * syscall args are in out= regs, locals are non-empty.
2026 * - epsinstruction: cfm is set by br.call
2027 * locals don't exist.
2028 *
2029 * For both cases argguments are reachable in cfm.sof - cfm.sol.
2030 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
2031 */
2032 cfm = pt->cr_ifs;
2033 nlocals = (cfm >> 7) & 0x7f; /* aka sol */
2034 nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
2035 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2036 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2037
2038 count = 0;
2039 if (in_syscall(pt))
2040 count = min_t(int, args->n, nouts);
2041
2042 /* Iterate over outs. */
2043 for (i = 0; i < count; i++) {
2044 int j = ndirty + nlocals + i + args->i;
2045 if (args->rw)
2046 *ia64_rse_skip_regs(krbs, j) = args->args[i];
2047 else
2048 args->args[i] = *ia64_rse_skip_regs(krbs, j);
2049 }
2050
2051 if (!args->rw) {
2052 while (i < args->n) {
2053 args->args[i] = 0;
2054 i++;
2055 }
2056 }
2057 }
2058
ia64_syscall_get_set_arguments(struct task_struct * task,struct pt_regs * regs,unsigned long * args,int rw)2059 void ia64_syscall_get_set_arguments(struct task_struct *task,
2060 struct pt_regs *regs, unsigned long *args, int rw)
2061 {
2062 struct syscall_get_set_args data = {
2063 .i = 0,
2064 .n = 6,
2065 .args = args,
2066 .regs = regs,
2067 .rw = rw,
2068 };
2069
2070 if (task == current)
2071 unw_init_running(syscall_get_set_args_cb, &data);
2072 else {
2073 struct unw_frame_info ufi;
2074 memset(&ufi, 0, sizeof(ufi));
2075 unw_init_from_blocked_task(&ufi, task);
2076 syscall_get_set_args_cb(&ufi, &data);
2077 }
2078 }
2079