1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55 * iavf_pdev_to_adapter - go from pci_dev to adapter
56 * @pdev: pci_dev pointer
57 */
iavf_pdev_to_adapter(struct pci_dev * pdev)58 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
59 {
60 return netdev_priv(pci_get_drvdata(pdev));
61 }
62
63 /**
64 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
65 * @hw: pointer to the HW structure
66 * @mem: ptr to mem struct to fill out
67 * @size: size of memory requested
68 * @alignment: what to align the allocation to
69 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)70 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
71 struct iavf_dma_mem *mem,
72 u64 size, u32 alignment)
73 {
74 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
75
76 if (!mem)
77 return IAVF_ERR_PARAM;
78
79 mem->size = ALIGN(size, alignment);
80 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
81 (dma_addr_t *)&mem->pa, GFP_KERNEL);
82 if (mem->va)
83 return 0;
84 else
85 return IAVF_ERR_NO_MEMORY;
86 }
87
88 /**
89 * iavf_free_dma_mem_d - OS specific memory free for shared code
90 * @hw: pointer to the HW structure
91 * @mem: ptr to mem struct to free
92 **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)93 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
94 struct iavf_dma_mem *mem)
95 {
96 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
97
98 if (!mem || !mem->va)
99 return IAVF_ERR_PARAM;
100 dma_free_coherent(&adapter->pdev->dev, mem->size,
101 mem->va, (dma_addr_t)mem->pa);
102 return 0;
103 }
104
105 /**
106 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
107 * @hw: pointer to the HW structure
108 * @mem: ptr to mem struct to fill out
109 * @size: size of memory requested
110 **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)111 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
112 struct iavf_virt_mem *mem, u32 size)
113 {
114 if (!mem)
115 return IAVF_ERR_PARAM;
116
117 mem->size = size;
118 mem->va = kzalloc(size, GFP_KERNEL);
119
120 if (mem->va)
121 return 0;
122 else
123 return IAVF_ERR_NO_MEMORY;
124 }
125
126 /**
127 * iavf_free_virt_mem_d - OS specific memory free for shared code
128 * @hw: pointer to the HW structure
129 * @mem: ptr to mem struct to free
130 **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)131 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
132 struct iavf_virt_mem *mem)
133 {
134 if (!mem)
135 return IAVF_ERR_PARAM;
136
137 /* it's ok to kfree a NULL pointer */
138 kfree(mem->va);
139
140 return 0;
141 }
142
143 /**
144 * iavf_lock_timeout - try to lock mutex but give up after timeout
145 * @lock: mutex that should be locked
146 * @msecs: timeout in msecs
147 *
148 * Returns 0 on success, negative on failure
149 **/
iavf_lock_timeout(struct mutex * lock,unsigned int msecs)150 int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
151 {
152 unsigned int wait, delay = 10;
153
154 for (wait = 0; wait < msecs; wait += delay) {
155 if (mutex_trylock(lock))
156 return 0;
157
158 msleep(delay);
159 }
160
161 return -1;
162 }
163
164 /**
165 * iavf_schedule_reset - Set the flags and schedule a reset event
166 * @adapter: board private structure
167 **/
iavf_schedule_reset(struct iavf_adapter * adapter)168 void iavf_schedule_reset(struct iavf_adapter *adapter)
169 {
170 if (!(adapter->flags &
171 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
172 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
173 queue_work(iavf_wq, &adapter->reset_task);
174 }
175 }
176
177 /**
178 * iavf_schedule_request_stats - Set the flags and schedule statistics request
179 * @adapter: board private structure
180 *
181 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
182 * request and refresh ethtool stats
183 **/
iavf_schedule_request_stats(struct iavf_adapter * adapter)184 void iavf_schedule_request_stats(struct iavf_adapter *adapter)
185 {
186 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
187 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
188 }
189
190 /**
191 * iavf_tx_timeout - Respond to a Tx Hang
192 * @netdev: network interface device structure
193 * @txqueue: queue number that is timing out
194 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)195 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
196 {
197 struct iavf_adapter *adapter = netdev_priv(netdev);
198
199 adapter->tx_timeout_count++;
200 iavf_schedule_reset(adapter);
201 }
202
203 /**
204 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
205 * @adapter: board private structure
206 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)207 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
208 {
209 struct iavf_hw *hw = &adapter->hw;
210
211 if (!adapter->msix_entries)
212 return;
213
214 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
215
216 iavf_flush(hw);
217
218 synchronize_irq(adapter->msix_entries[0].vector);
219 }
220
221 /**
222 * iavf_misc_irq_enable - Enable default interrupt generation settings
223 * @adapter: board private structure
224 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)225 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
226 {
227 struct iavf_hw *hw = &adapter->hw;
228
229 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
230 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
231 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
232
233 iavf_flush(hw);
234 }
235
236 /**
237 * iavf_irq_disable - Mask off interrupt generation on the NIC
238 * @adapter: board private structure
239 **/
iavf_irq_disable(struct iavf_adapter * adapter)240 static void iavf_irq_disable(struct iavf_adapter *adapter)
241 {
242 int i;
243 struct iavf_hw *hw = &adapter->hw;
244
245 if (!adapter->msix_entries)
246 return;
247
248 for (i = 1; i < adapter->num_msix_vectors; i++) {
249 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
250 synchronize_irq(adapter->msix_entries[i].vector);
251 }
252 iavf_flush(hw);
253 }
254
255 /**
256 * iavf_irq_enable_queues - Enable interrupt for all queues
257 * @adapter: board private structure
258 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)259 void iavf_irq_enable_queues(struct iavf_adapter *adapter)
260 {
261 struct iavf_hw *hw = &adapter->hw;
262 int i;
263
264 for (i = 1; i < adapter->num_msix_vectors; i++) {
265 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
266 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
267 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
268 }
269 }
270
271 /**
272 * iavf_irq_enable - Enable default interrupt generation settings
273 * @adapter: board private structure
274 * @flush: boolean value whether to run rd32()
275 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)276 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
277 {
278 struct iavf_hw *hw = &adapter->hw;
279
280 iavf_misc_irq_enable(adapter);
281 iavf_irq_enable_queues(adapter);
282
283 if (flush)
284 iavf_flush(hw);
285 }
286
287 /**
288 * iavf_msix_aq - Interrupt handler for vector 0
289 * @irq: interrupt number
290 * @data: pointer to netdev
291 **/
iavf_msix_aq(int irq,void * data)292 static irqreturn_t iavf_msix_aq(int irq, void *data)
293 {
294 struct net_device *netdev = data;
295 struct iavf_adapter *adapter = netdev_priv(netdev);
296 struct iavf_hw *hw = &adapter->hw;
297
298 /* handle non-queue interrupts, these reads clear the registers */
299 rd32(hw, IAVF_VFINT_ICR01);
300 rd32(hw, IAVF_VFINT_ICR0_ENA1);
301
302 if (adapter->state != __IAVF_REMOVE)
303 /* schedule work on the private workqueue */
304 queue_work(iavf_wq, &adapter->adminq_task);
305
306 return IRQ_HANDLED;
307 }
308
309 /**
310 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
311 * @irq: interrupt number
312 * @data: pointer to a q_vector
313 **/
iavf_msix_clean_rings(int irq,void * data)314 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
315 {
316 struct iavf_q_vector *q_vector = data;
317
318 if (!q_vector->tx.ring && !q_vector->rx.ring)
319 return IRQ_HANDLED;
320
321 napi_schedule_irqoff(&q_vector->napi);
322
323 return IRQ_HANDLED;
324 }
325
326 /**
327 * iavf_map_vector_to_rxq - associate irqs with rx queues
328 * @adapter: board private structure
329 * @v_idx: interrupt number
330 * @r_idx: queue number
331 **/
332 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)333 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
334 {
335 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
336 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
337 struct iavf_hw *hw = &adapter->hw;
338
339 rx_ring->q_vector = q_vector;
340 rx_ring->next = q_vector->rx.ring;
341 rx_ring->vsi = &adapter->vsi;
342 q_vector->rx.ring = rx_ring;
343 q_vector->rx.count++;
344 q_vector->rx.next_update = jiffies + 1;
345 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
346 q_vector->ring_mask |= BIT(r_idx);
347 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
348 q_vector->rx.current_itr >> 1);
349 q_vector->rx.current_itr = q_vector->rx.target_itr;
350 }
351
352 /**
353 * iavf_map_vector_to_txq - associate irqs with tx queues
354 * @adapter: board private structure
355 * @v_idx: interrupt number
356 * @t_idx: queue number
357 **/
358 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)359 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
360 {
361 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
362 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
363 struct iavf_hw *hw = &adapter->hw;
364
365 tx_ring->q_vector = q_vector;
366 tx_ring->next = q_vector->tx.ring;
367 tx_ring->vsi = &adapter->vsi;
368 q_vector->tx.ring = tx_ring;
369 q_vector->tx.count++;
370 q_vector->tx.next_update = jiffies + 1;
371 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
372 q_vector->num_ringpairs++;
373 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
374 q_vector->tx.target_itr >> 1);
375 q_vector->tx.current_itr = q_vector->tx.target_itr;
376 }
377
378 /**
379 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
380 * @adapter: board private structure to initialize
381 *
382 * This function maps descriptor rings to the queue-specific vectors
383 * we were allotted through the MSI-X enabling code. Ideally, we'd have
384 * one vector per ring/queue, but on a constrained vector budget, we
385 * group the rings as "efficiently" as possible. You would add new
386 * mapping configurations in here.
387 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)388 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
389 {
390 int rings_remaining = adapter->num_active_queues;
391 int ridx = 0, vidx = 0;
392 int q_vectors;
393
394 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
395
396 for (; ridx < rings_remaining; ridx++) {
397 iavf_map_vector_to_rxq(adapter, vidx, ridx);
398 iavf_map_vector_to_txq(adapter, vidx, ridx);
399
400 /* In the case where we have more queues than vectors, continue
401 * round-robin on vectors until all queues are mapped.
402 */
403 if (++vidx >= q_vectors)
404 vidx = 0;
405 }
406
407 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
408 }
409
410 /**
411 * iavf_irq_affinity_notify - Callback for affinity changes
412 * @notify: context as to what irq was changed
413 * @mask: the new affinity mask
414 *
415 * This is a callback function used by the irq_set_affinity_notifier function
416 * so that we may register to receive changes to the irq affinity masks.
417 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)418 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
419 const cpumask_t *mask)
420 {
421 struct iavf_q_vector *q_vector =
422 container_of(notify, struct iavf_q_vector, affinity_notify);
423
424 cpumask_copy(&q_vector->affinity_mask, mask);
425 }
426
427 /**
428 * iavf_irq_affinity_release - Callback for affinity notifier release
429 * @ref: internal core kernel usage
430 *
431 * This is a callback function used by the irq_set_affinity_notifier function
432 * to inform the current notification subscriber that they will no longer
433 * receive notifications.
434 **/
iavf_irq_affinity_release(struct kref * ref)435 static void iavf_irq_affinity_release(struct kref *ref) {}
436
437 /**
438 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
439 * @adapter: board private structure
440 * @basename: device basename
441 *
442 * Allocates MSI-X vectors for tx and rx handling, and requests
443 * interrupts from the kernel.
444 **/
445 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)446 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
447 {
448 unsigned int vector, q_vectors;
449 unsigned int rx_int_idx = 0, tx_int_idx = 0;
450 int irq_num, err;
451 int cpu;
452
453 iavf_irq_disable(adapter);
454 /* Decrement for Other and TCP Timer vectors */
455 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
456
457 for (vector = 0; vector < q_vectors; vector++) {
458 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
459
460 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
461
462 if (q_vector->tx.ring && q_vector->rx.ring) {
463 snprintf(q_vector->name, sizeof(q_vector->name),
464 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
465 tx_int_idx++;
466 } else if (q_vector->rx.ring) {
467 snprintf(q_vector->name, sizeof(q_vector->name),
468 "iavf-%s-rx-%d", basename, rx_int_idx++);
469 } else if (q_vector->tx.ring) {
470 snprintf(q_vector->name, sizeof(q_vector->name),
471 "iavf-%s-tx-%d", basename, tx_int_idx++);
472 } else {
473 /* skip this unused q_vector */
474 continue;
475 }
476 err = request_irq(irq_num,
477 iavf_msix_clean_rings,
478 0,
479 q_vector->name,
480 q_vector);
481 if (err) {
482 dev_info(&adapter->pdev->dev,
483 "Request_irq failed, error: %d\n", err);
484 goto free_queue_irqs;
485 }
486 /* register for affinity change notifications */
487 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
488 q_vector->affinity_notify.release =
489 iavf_irq_affinity_release;
490 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
491 /* Spread the IRQ affinity hints across online CPUs. Note that
492 * get_cpu_mask returns a mask with a permanent lifetime so
493 * it's safe to use as a hint for irq_set_affinity_hint.
494 */
495 cpu = cpumask_local_spread(q_vector->v_idx, -1);
496 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
497 }
498
499 return 0;
500
501 free_queue_irqs:
502 while (vector) {
503 vector--;
504 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
505 irq_set_affinity_notifier(irq_num, NULL);
506 irq_set_affinity_hint(irq_num, NULL);
507 free_irq(irq_num, &adapter->q_vectors[vector]);
508 }
509 return err;
510 }
511
512 /**
513 * iavf_request_misc_irq - Initialize MSI-X interrupts
514 * @adapter: board private structure
515 *
516 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
517 * vector is only for the admin queue, and stays active even when the netdev
518 * is closed.
519 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)520 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
521 {
522 struct net_device *netdev = adapter->netdev;
523 int err;
524
525 snprintf(adapter->misc_vector_name,
526 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
527 dev_name(&adapter->pdev->dev));
528 err = request_irq(adapter->msix_entries[0].vector,
529 &iavf_msix_aq, 0,
530 adapter->misc_vector_name, netdev);
531 if (err) {
532 dev_err(&adapter->pdev->dev,
533 "request_irq for %s failed: %d\n",
534 adapter->misc_vector_name, err);
535 free_irq(adapter->msix_entries[0].vector, netdev);
536 }
537 return err;
538 }
539
540 /**
541 * iavf_free_traffic_irqs - Free MSI-X interrupts
542 * @adapter: board private structure
543 *
544 * Frees all MSI-X vectors other than 0.
545 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)546 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
547 {
548 int vector, irq_num, q_vectors;
549
550 if (!adapter->msix_entries)
551 return;
552
553 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
554
555 for (vector = 0; vector < q_vectors; vector++) {
556 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
557 irq_set_affinity_notifier(irq_num, NULL);
558 irq_set_affinity_hint(irq_num, NULL);
559 free_irq(irq_num, &adapter->q_vectors[vector]);
560 }
561 }
562
563 /**
564 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
565 * @adapter: board private structure
566 *
567 * Frees MSI-X vector 0.
568 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)569 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
570 {
571 struct net_device *netdev = adapter->netdev;
572
573 if (!adapter->msix_entries)
574 return;
575
576 free_irq(adapter->msix_entries[0].vector, netdev);
577 }
578
579 /**
580 * iavf_configure_tx - Configure Transmit Unit after Reset
581 * @adapter: board private structure
582 *
583 * Configure the Tx unit of the MAC after a reset.
584 **/
iavf_configure_tx(struct iavf_adapter * adapter)585 static void iavf_configure_tx(struct iavf_adapter *adapter)
586 {
587 struct iavf_hw *hw = &adapter->hw;
588 int i;
589
590 for (i = 0; i < adapter->num_active_queues; i++)
591 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
592 }
593
594 /**
595 * iavf_configure_rx - Configure Receive Unit after Reset
596 * @adapter: board private structure
597 *
598 * Configure the Rx unit of the MAC after a reset.
599 **/
iavf_configure_rx(struct iavf_adapter * adapter)600 static void iavf_configure_rx(struct iavf_adapter *adapter)
601 {
602 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
603 struct iavf_hw *hw = &adapter->hw;
604 int i;
605
606 /* Legacy Rx will always default to a 2048 buffer size. */
607 #if (PAGE_SIZE < 8192)
608 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
609 struct net_device *netdev = adapter->netdev;
610
611 /* For jumbo frames on systems with 4K pages we have to use
612 * an order 1 page, so we might as well increase the size
613 * of our Rx buffer to make better use of the available space
614 */
615 rx_buf_len = IAVF_RXBUFFER_3072;
616
617 /* We use a 1536 buffer size for configurations with
618 * standard Ethernet mtu. On x86 this gives us enough room
619 * for shared info and 192 bytes of padding.
620 */
621 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
622 (netdev->mtu <= ETH_DATA_LEN))
623 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
624 }
625 #endif
626
627 for (i = 0; i < adapter->num_active_queues; i++) {
628 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
629 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
630
631 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
632 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
633 else
634 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
635 }
636 }
637
638 /**
639 * iavf_find_vlan - Search filter list for specific vlan filter
640 * @adapter: board private structure
641 * @vlan: vlan tag
642 *
643 * Returns ptr to the filter object or NULL. Must be called while holding the
644 * mac_vlan_list_lock.
645 **/
646 static struct
iavf_find_vlan(struct iavf_adapter * adapter,u16 vlan)647 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
648 {
649 struct iavf_vlan_filter *f;
650
651 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
652 if (vlan == f->vlan)
653 return f;
654 }
655 return NULL;
656 }
657
658 /**
659 * iavf_add_vlan - Add a vlan filter to the list
660 * @adapter: board private structure
661 * @vlan: VLAN tag
662 *
663 * Returns ptr to the filter object or NULL when no memory available.
664 **/
665 static struct
iavf_add_vlan(struct iavf_adapter * adapter,u16 vlan)666 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
667 {
668 struct iavf_vlan_filter *f = NULL;
669
670 spin_lock_bh(&adapter->mac_vlan_list_lock);
671
672 f = iavf_find_vlan(adapter, vlan);
673 if (!f) {
674 f = kzalloc(sizeof(*f), GFP_ATOMIC);
675 if (!f)
676 goto clearout;
677
678 f->vlan = vlan;
679
680 list_add_tail(&f->list, &adapter->vlan_filter_list);
681 f->add = true;
682 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
683 }
684
685 clearout:
686 spin_unlock_bh(&adapter->mac_vlan_list_lock);
687 return f;
688 }
689
690 /**
691 * iavf_del_vlan - Remove a vlan filter from the list
692 * @adapter: board private structure
693 * @vlan: VLAN tag
694 **/
iavf_del_vlan(struct iavf_adapter * adapter,u16 vlan)695 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
696 {
697 struct iavf_vlan_filter *f;
698
699 spin_lock_bh(&adapter->mac_vlan_list_lock);
700
701 f = iavf_find_vlan(adapter, vlan);
702 if (f) {
703 f->remove = true;
704 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
705 }
706
707 spin_unlock_bh(&adapter->mac_vlan_list_lock);
708 }
709
710 /**
711 * iavf_restore_filters
712 * @adapter: board private structure
713 *
714 * Restore existing non MAC filters when VF netdev comes back up
715 **/
iavf_restore_filters(struct iavf_adapter * adapter)716 static void iavf_restore_filters(struct iavf_adapter *adapter)
717 {
718 u16 vid;
719
720 /* re-add all VLAN filters */
721 for_each_set_bit(vid, adapter->vsi.active_vlans, VLAN_N_VID)
722 iavf_add_vlan(adapter, vid);
723 }
724
725 /**
726 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
727 * @netdev: network device struct
728 * @proto: unused protocol data
729 * @vid: VLAN tag
730 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)731 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
732 __always_unused __be16 proto, u16 vid)
733 {
734 struct iavf_adapter *adapter = netdev_priv(netdev);
735
736 if (!VLAN_ALLOWED(adapter))
737 return -EIO;
738
739 if (iavf_add_vlan(adapter, vid) == NULL)
740 return -ENOMEM;
741
742 set_bit(vid, adapter->vsi.active_vlans);
743 return 0;
744 }
745
746 /**
747 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
748 * @netdev: network device struct
749 * @proto: unused protocol data
750 * @vid: VLAN tag
751 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)752 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
753 __always_unused __be16 proto, u16 vid)
754 {
755 struct iavf_adapter *adapter = netdev_priv(netdev);
756
757 iavf_del_vlan(adapter, vid);
758 clear_bit(vid, adapter->vsi.active_vlans);
759
760 return 0;
761 }
762
763 /**
764 * iavf_find_filter - Search filter list for specific mac filter
765 * @adapter: board private structure
766 * @macaddr: the MAC address
767 *
768 * Returns ptr to the filter object or NULL. Must be called while holding the
769 * mac_vlan_list_lock.
770 **/
771 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)772 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
773 const u8 *macaddr)
774 {
775 struct iavf_mac_filter *f;
776
777 if (!macaddr)
778 return NULL;
779
780 list_for_each_entry(f, &adapter->mac_filter_list, list) {
781 if (ether_addr_equal(macaddr, f->macaddr))
782 return f;
783 }
784 return NULL;
785 }
786
787 /**
788 * iavf_add_filter - Add a mac filter to the filter list
789 * @adapter: board private structure
790 * @macaddr: the MAC address
791 *
792 * Returns ptr to the filter object or NULL when no memory available.
793 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)794 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
795 const u8 *macaddr)
796 {
797 struct iavf_mac_filter *f;
798
799 if (!macaddr)
800 return NULL;
801
802 f = iavf_find_filter(adapter, macaddr);
803 if (!f) {
804 f = kzalloc(sizeof(*f), GFP_ATOMIC);
805 if (!f)
806 return f;
807
808 ether_addr_copy(f->macaddr, macaddr);
809
810 list_add_tail(&f->list, &adapter->mac_filter_list);
811 f->add = true;
812 f->is_new_mac = true;
813 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
814 } else {
815 f->remove = false;
816 }
817
818 return f;
819 }
820
821 /**
822 * iavf_set_mac - NDO callback to set port mac address
823 * @netdev: network interface device structure
824 * @p: pointer to an address structure
825 *
826 * Returns 0 on success, negative on failure
827 **/
iavf_set_mac(struct net_device * netdev,void * p)828 static int iavf_set_mac(struct net_device *netdev, void *p)
829 {
830 struct iavf_adapter *adapter = netdev_priv(netdev);
831 struct iavf_hw *hw = &adapter->hw;
832 struct iavf_mac_filter *f;
833 struct sockaddr *addr = p;
834
835 if (!is_valid_ether_addr(addr->sa_data))
836 return -EADDRNOTAVAIL;
837
838 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
839 return 0;
840
841 spin_lock_bh(&adapter->mac_vlan_list_lock);
842
843 f = iavf_find_filter(adapter, hw->mac.addr);
844 if (f) {
845 f->remove = true;
846 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
847 }
848
849 f = iavf_add_filter(adapter, addr->sa_data);
850
851 spin_unlock_bh(&adapter->mac_vlan_list_lock);
852
853 if (f) {
854 ether_addr_copy(hw->mac.addr, addr->sa_data);
855 }
856
857 return (f == NULL) ? -ENOMEM : 0;
858 }
859
860 /**
861 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
862 * @netdev: the netdevice
863 * @addr: address to add
864 *
865 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
866 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
867 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)868 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
869 {
870 struct iavf_adapter *adapter = netdev_priv(netdev);
871
872 if (iavf_add_filter(adapter, addr))
873 return 0;
874 else
875 return -ENOMEM;
876 }
877
878 /**
879 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
880 * @netdev: the netdevice
881 * @addr: address to add
882 *
883 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
884 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
885 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)886 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
887 {
888 struct iavf_adapter *adapter = netdev_priv(netdev);
889 struct iavf_mac_filter *f;
890
891 /* Under some circumstances, we might receive a request to delete
892 * our own device address from our uc list. Because we store the
893 * device address in the VSI's MAC/VLAN filter list, we need to ignore
894 * such requests and not delete our device address from this list.
895 */
896 if (ether_addr_equal(addr, netdev->dev_addr))
897 return 0;
898
899 f = iavf_find_filter(adapter, addr);
900 if (f) {
901 f->remove = true;
902 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
903 }
904 return 0;
905 }
906
907 /**
908 * iavf_set_rx_mode - NDO callback to set the netdev filters
909 * @netdev: network interface device structure
910 **/
iavf_set_rx_mode(struct net_device * netdev)911 static void iavf_set_rx_mode(struct net_device *netdev)
912 {
913 struct iavf_adapter *adapter = netdev_priv(netdev);
914
915 spin_lock_bh(&adapter->mac_vlan_list_lock);
916 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
917 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
918 spin_unlock_bh(&adapter->mac_vlan_list_lock);
919
920 if (netdev->flags & IFF_PROMISC &&
921 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
922 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
923 else if (!(netdev->flags & IFF_PROMISC) &&
924 adapter->flags & IAVF_FLAG_PROMISC_ON)
925 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
926
927 if (netdev->flags & IFF_ALLMULTI &&
928 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
929 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
930 else if (!(netdev->flags & IFF_ALLMULTI) &&
931 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
932 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
933 }
934
935 /**
936 * iavf_napi_enable_all - enable NAPI on all queue vectors
937 * @adapter: board private structure
938 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)939 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
940 {
941 int q_idx;
942 struct iavf_q_vector *q_vector;
943 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
944
945 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
946 struct napi_struct *napi;
947
948 q_vector = &adapter->q_vectors[q_idx];
949 napi = &q_vector->napi;
950 napi_enable(napi);
951 }
952 }
953
954 /**
955 * iavf_napi_disable_all - disable NAPI on all queue vectors
956 * @adapter: board private structure
957 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)958 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
959 {
960 int q_idx;
961 struct iavf_q_vector *q_vector;
962 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
963
964 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
965 q_vector = &adapter->q_vectors[q_idx];
966 napi_disable(&q_vector->napi);
967 }
968 }
969
970 /**
971 * iavf_configure - set up transmit and receive data structures
972 * @adapter: board private structure
973 **/
iavf_configure(struct iavf_adapter * adapter)974 static void iavf_configure(struct iavf_adapter *adapter)
975 {
976 struct net_device *netdev = adapter->netdev;
977 int i;
978
979 iavf_set_rx_mode(netdev);
980
981 iavf_configure_tx(adapter);
982 iavf_configure_rx(adapter);
983 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
984
985 for (i = 0; i < adapter->num_active_queues; i++) {
986 struct iavf_ring *ring = &adapter->rx_rings[i];
987
988 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
989 }
990 }
991
992 /**
993 * iavf_up_complete - Finish the last steps of bringing up a connection
994 * @adapter: board private structure
995 *
996 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
997 **/
iavf_up_complete(struct iavf_adapter * adapter)998 static void iavf_up_complete(struct iavf_adapter *adapter)
999 {
1000 iavf_change_state(adapter, __IAVF_RUNNING);
1001 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1002
1003 iavf_napi_enable_all(adapter);
1004
1005 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1006 if (CLIENT_ENABLED(adapter))
1007 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1008 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1009 }
1010
1011 /**
1012 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1013 * yet and mark other to be removed.
1014 * @adapter: board private structure
1015 **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1016 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1017 {
1018 struct iavf_vlan_filter *vlf, *vlftmp;
1019 struct iavf_mac_filter *f, *ftmp;
1020
1021 spin_lock_bh(&adapter->mac_vlan_list_lock);
1022 /* clear the sync flag on all filters */
1023 __dev_uc_unsync(adapter->netdev, NULL);
1024 __dev_mc_unsync(adapter->netdev, NULL);
1025
1026 /* remove all MAC filters */
1027 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1028 list) {
1029 if (f->add) {
1030 list_del(&f->list);
1031 kfree(f);
1032 } else {
1033 f->remove = true;
1034 }
1035 }
1036
1037 /* remove all VLAN filters */
1038 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1039 list) {
1040 if (vlf->add) {
1041 list_del(&vlf->list);
1042 kfree(vlf);
1043 } else {
1044 vlf->remove = true;
1045 }
1046 }
1047 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1048 }
1049
1050 /**
1051 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1052 * mark other to be removed.
1053 * @adapter: board private structure
1054 **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1055 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1056 {
1057 struct iavf_cloud_filter *cf, *cftmp;
1058
1059 /* remove all cloud filters */
1060 spin_lock_bh(&adapter->cloud_filter_list_lock);
1061 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1062 list) {
1063 if (cf->add) {
1064 list_del(&cf->list);
1065 kfree(cf);
1066 adapter->num_cloud_filters--;
1067 } else {
1068 cf->del = true;
1069 }
1070 }
1071 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1072 }
1073
1074 /**
1075 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1076 * other to be removed.
1077 * @adapter: board private structure
1078 **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1079 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1080 {
1081 struct iavf_fdir_fltr *fdir, *fdirtmp;
1082
1083 /* remove all Flow Director filters */
1084 spin_lock_bh(&adapter->fdir_fltr_lock);
1085 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1086 list) {
1087 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1088 list_del(&fdir->list);
1089 kfree(fdir);
1090 adapter->fdir_active_fltr--;
1091 } else {
1092 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1093 }
1094 }
1095 spin_unlock_bh(&adapter->fdir_fltr_lock);
1096 }
1097
1098 /**
1099 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1100 * other to be removed.
1101 * @adapter: board private structure
1102 **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1103 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1104 {
1105 struct iavf_adv_rss *rss, *rsstmp;
1106
1107 /* remove all advance RSS configuration */
1108 spin_lock_bh(&adapter->adv_rss_lock);
1109 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1110 list) {
1111 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1112 list_del(&rss->list);
1113 kfree(rss);
1114 } else {
1115 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1116 }
1117 }
1118 spin_unlock_bh(&adapter->adv_rss_lock);
1119 }
1120
1121 /**
1122 * iavf_down - Shutdown the connection processing
1123 * @adapter: board private structure
1124 *
1125 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1126 **/
iavf_down(struct iavf_adapter * adapter)1127 void iavf_down(struct iavf_adapter *adapter)
1128 {
1129 struct net_device *netdev = adapter->netdev;
1130
1131 if (adapter->state <= __IAVF_DOWN_PENDING)
1132 return;
1133
1134 netif_carrier_off(netdev);
1135 netif_tx_disable(netdev);
1136 adapter->link_up = false;
1137 iavf_napi_disable_all(adapter);
1138 iavf_irq_disable(adapter);
1139
1140 iavf_clear_mac_vlan_filters(adapter);
1141 iavf_clear_cloud_filters(adapter);
1142 iavf_clear_fdir_filters(adapter);
1143 iavf_clear_adv_rss_conf(adapter);
1144
1145 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1146 !(test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))) {
1147 /* cancel any current operation */
1148 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1149 /* Schedule operations to close down the HW. Don't wait
1150 * here for this to complete. The watchdog is still running
1151 * and it will take care of this.
1152 */
1153 if (!list_empty(&adapter->mac_filter_list))
1154 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1155 if (!list_empty(&adapter->vlan_filter_list))
1156 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1157 if (!list_empty(&adapter->cloud_filter_list))
1158 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1159 if (!list_empty(&adapter->fdir_list_head))
1160 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1161 if (!list_empty(&adapter->adv_rss_list_head))
1162 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1163 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1164 }
1165
1166 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1167 }
1168
1169 /**
1170 * iavf_acquire_msix_vectors - Setup the MSIX capability
1171 * @adapter: board private structure
1172 * @vectors: number of vectors to request
1173 *
1174 * Work with the OS to set up the MSIX vectors needed.
1175 *
1176 * Returns 0 on success, negative on failure
1177 **/
1178 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1179 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1180 {
1181 int err, vector_threshold;
1182
1183 /* We'll want at least 3 (vector_threshold):
1184 * 0) Other (Admin Queue and link, mostly)
1185 * 1) TxQ[0] Cleanup
1186 * 2) RxQ[0] Cleanup
1187 */
1188 vector_threshold = MIN_MSIX_COUNT;
1189
1190 /* The more we get, the more we will assign to Tx/Rx Cleanup
1191 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1192 * Right now, we simply care about how many we'll get; we'll
1193 * set them up later while requesting irq's.
1194 */
1195 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1196 vector_threshold, vectors);
1197 if (err < 0) {
1198 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1199 kfree(adapter->msix_entries);
1200 adapter->msix_entries = NULL;
1201 return err;
1202 }
1203
1204 /* Adjust for only the vectors we'll use, which is minimum
1205 * of max_msix_q_vectors + NONQ_VECS, or the number of
1206 * vectors we were allocated.
1207 */
1208 adapter->num_msix_vectors = err;
1209 return 0;
1210 }
1211
1212 /**
1213 * iavf_free_queues - Free memory for all rings
1214 * @adapter: board private structure to initialize
1215 *
1216 * Free all of the memory associated with queue pairs.
1217 **/
iavf_free_queues(struct iavf_adapter * adapter)1218 static void iavf_free_queues(struct iavf_adapter *adapter)
1219 {
1220 if (!adapter->vsi_res)
1221 return;
1222 adapter->num_active_queues = 0;
1223 kfree(adapter->tx_rings);
1224 adapter->tx_rings = NULL;
1225 kfree(adapter->rx_rings);
1226 adapter->rx_rings = NULL;
1227 }
1228
1229 /**
1230 * iavf_alloc_queues - Allocate memory for all rings
1231 * @adapter: board private structure to initialize
1232 *
1233 * We allocate one ring per queue at run-time since we don't know the
1234 * number of queues at compile-time. The polling_netdev array is
1235 * intended for Multiqueue, but should work fine with a single queue.
1236 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1237 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1238 {
1239 int i, num_active_queues;
1240
1241 /* If we're in reset reallocating queues we don't actually know yet for
1242 * certain the PF gave us the number of queues we asked for but we'll
1243 * assume it did. Once basic reset is finished we'll confirm once we
1244 * start negotiating config with PF.
1245 */
1246 if (adapter->num_req_queues)
1247 num_active_queues = adapter->num_req_queues;
1248 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1249 adapter->num_tc)
1250 num_active_queues = adapter->ch_config.total_qps;
1251 else
1252 num_active_queues = min_t(int,
1253 adapter->vsi_res->num_queue_pairs,
1254 (int)(num_online_cpus()));
1255
1256
1257 adapter->tx_rings = kcalloc(num_active_queues,
1258 sizeof(struct iavf_ring), GFP_KERNEL);
1259 if (!adapter->tx_rings)
1260 goto err_out;
1261 adapter->rx_rings = kcalloc(num_active_queues,
1262 sizeof(struct iavf_ring), GFP_KERNEL);
1263 if (!adapter->rx_rings)
1264 goto err_out;
1265
1266 for (i = 0; i < num_active_queues; i++) {
1267 struct iavf_ring *tx_ring;
1268 struct iavf_ring *rx_ring;
1269
1270 tx_ring = &adapter->tx_rings[i];
1271
1272 tx_ring->queue_index = i;
1273 tx_ring->netdev = adapter->netdev;
1274 tx_ring->dev = &adapter->pdev->dev;
1275 tx_ring->count = adapter->tx_desc_count;
1276 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1277 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1278 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1279
1280 rx_ring = &adapter->rx_rings[i];
1281 rx_ring->queue_index = i;
1282 rx_ring->netdev = adapter->netdev;
1283 rx_ring->dev = &adapter->pdev->dev;
1284 rx_ring->count = adapter->rx_desc_count;
1285 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1286 }
1287
1288 adapter->num_active_queues = num_active_queues;
1289
1290 return 0;
1291
1292 err_out:
1293 iavf_free_queues(adapter);
1294 return -ENOMEM;
1295 }
1296
1297 /**
1298 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1299 * @adapter: board private structure to initialize
1300 *
1301 * Attempt to configure the interrupts using the best available
1302 * capabilities of the hardware and the kernel.
1303 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1304 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1305 {
1306 int vector, v_budget;
1307 int pairs = 0;
1308 int err = 0;
1309
1310 if (!adapter->vsi_res) {
1311 err = -EIO;
1312 goto out;
1313 }
1314 pairs = adapter->num_active_queues;
1315
1316 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1317 * us much good if we have more vectors than CPUs. However, we already
1318 * limit the total number of queues by the number of CPUs so we do not
1319 * need any further limiting here.
1320 */
1321 v_budget = min_t(int, pairs + NONQ_VECS,
1322 (int)adapter->vf_res->max_vectors);
1323
1324 adapter->msix_entries = kcalloc(v_budget,
1325 sizeof(struct msix_entry), GFP_KERNEL);
1326 if (!adapter->msix_entries) {
1327 err = -ENOMEM;
1328 goto out;
1329 }
1330
1331 for (vector = 0; vector < v_budget; vector++)
1332 adapter->msix_entries[vector].entry = vector;
1333
1334 err = iavf_acquire_msix_vectors(adapter, v_budget);
1335
1336 out:
1337 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1338 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1339 return err;
1340 }
1341
1342 /**
1343 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1344 * @adapter: board private structure
1345 *
1346 * Return 0 on success, negative on failure
1347 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1348 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1349 {
1350 struct iavf_aqc_get_set_rss_key_data *rss_key =
1351 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1352 struct iavf_hw *hw = &adapter->hw;
1353 int ret = 0;
1354
1355 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1356 /* bail because we already have a command pending */
1357 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1358 adapter->current_op);
1359 return -EBUSY;
1360 }
1361
1362 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1363 if (ret) {
1364 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1365 iavf_stat_str(hw, ret),
1366 iavf_aq_str(hw, hw->aq.asq_last_status));
1367 return ret;
1368
1369 }
1370
1371 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1372 adapter->rss_lut, adapter->rss_lut_size);
1373 if (ret) {
1374 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1375 iavf_stat_str(hw, ret),
1376 iavf_aq_str(hw, hw->aq.asq_last_status));
1377 }
1378
1379 return ret;
1380
1381 }
1382
1383 /**
1384 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1385 * @adapter: board private structure
1386 *
1387 * Returns 0 on success, negative on failure
1388 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1389 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1390 {
1391 struct iavf_hw *hw = &adapter->hw;
1392 u32 *dw;
1393 u16 i;
1394
1395 dw = (u32 *)adapter->rss_key;
1396 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1397 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1398
1399 dw = (u32 *)adapter->rss_lut;
1400 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1401 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1402
1403 iavf_flush(hw);
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * iavf_config_rss - Configure RSS keys and lut
1410 * @adapter: board private structure
1411 *
1412 * Returns 0 on success, negative on failure
1413 **/
iavf_config_rss(struct iavf_adapter * adapter)1414 int iavf_config_rss(struct iavf_adapter *adapter)
1415 {
1416
1417 if (RSS_PF(adapter)) {
1418 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1419 IAVF_FLAG_AQ_SET_RSS_KEY;
1420 return 0;
1421 } else if (RSS_AQ(adapter)) {
1422 return iavf_config_rss_aq(adapter);
1423 } else {
1424 return iavf_config_rss_reg(adapter);
1425 }
1426 }
1427
1428 /**
1429 * iavf_fill_rss_lut - Fill the lut with default values
1430 * @adapter: board private structure
1431 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1432 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1433 {
1434 u16 i;
1435
1436 for (i = 0; i < adapter->rss_lut_size; i++)
1437 adapter->rss_lut[i] = i % adapter->num_active_queues;
1438 }
1439
1440 /**
1441 * iavf_init_rss - Prepare for RSS
1442 * @adapter: board private structure
1443 *
1444 * Return 0 on success, negative on failure
1445 **/
iavf_init_rss(struct iavf_adapter * adapter)1446 static int iavf_init_rss(struct iavf_adapter *adapter)
1447 {
1448 struct iavf_hw *hw = &adapter->hw;
1449
1450 if (!RSS_PF(adapter)) {
1451 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1452 if (adapter->vf_res->vf_cap_flags &
1453 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1454 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1455 else
1456 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1457
1458 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1459 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1460 }
1461
1462 iavf_fill_rss_lut(adapter);
1463 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1464
1465 return iavf_config_rss(adapter);
1466 }
1467
1468 /**
1469 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1470 * @adapter: board private structure to initialize
1471 *
1472 * We allocate one q_vector per queue interrupt. If allocation fails we
1473 * return -ENOMEM.
1474 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1475 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1476 {
1477 int q_idx = 0, num_q_vectors;
1478 struct iavf_q_vector *q_vector;
1479
1480 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1481 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1482 GFP_KERNEL);
1483 if (!adapter->q_vectors)
1484 return -ENOMEM;
1485
1486 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1487 q_vector = &adapter->q_vectors[q_idx];
1488 q_vector->adapter = adapter;
1489 q_vector->vsi = &adapter->vsi;
1490 q_vector->v_idx = q_idx;
1491 q_vector->reg_idx = q_idx;
1492 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1493 netif_napi_add(adapter->netdev, &q_vector->napi,
1494 iavf_napi_poll, NAPI_POLL_WEIGHT);
1495 }
1496
1497 return 0;
1498 }
1499
1500 /**
1501 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1502 * @adapter: board private structure to initialize
1503 *
1504 * This function frees the memory allocated to the q_vectors. In addition if
1505 * NAPI is enabled it will delete any references to the NAPI struct prior
1506 * to freeing the q_vector.
1507 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1508 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1509 {
1510 int q_idx, num_q_vectors;
1511
1512 if (!adapter->q_vectors)
1513 return;
1514
1515 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1516
1517 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1518 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1519
1520 netif_napi_del(&q_vector->napi);
1521 }
1522 kfree(adapter->q_vectors);
1523 adapter->q_vectors = NULL;
1524 }
1525
1526 /**
1527 * iavf_reset_interrupt_capability - Reset MSIX setup
1528 * @adapter: board private structure
1529 *
1530 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1531 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1532 {
1533 if (!adapter->msix_entries)
1534 return;
1535
1536 pci_disable_msix(adapter->pdev);
1537 kfree(adapter->msix_entries);
1538 adapter->msix_entries = NULL;
1539 }
1540
1541 /**
1542 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1543 * @adapter: board private structure to initialize
1544 *
1545 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1546 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1547 {
1548 int err;
1549
1550 err = iavf_alloc_queues(adapter);
1551 if (err) {
1552 dev_err(&adapter->pdev->dev,
1553 "Unable to allocate memory for queues\n");
1554 goto err_alloc_queues;
1555 }
1556
1557 rtnl_lock();
1558 err = iavf_set_interrupt_capability(adapter);
1559 rtnl_unlock();
1560 if (err) {
1561 dev_err(&adapter->pdev->dev,
1562 "Unable to setup interrupt capabilities\n");
1563 goto err_set_interrupt;
1564 }
1565
1566 err = iavf_alloc_q_vectors(adapter);
1567 if (err) {
1568 dev_err(&adapter->pdev->dev,
1569 "Unable to allocate memory for queue vectors\n");
1570 goto err_alloc_q_vectors;
1571 }
1572
1573 /* If we've made it so far while ADq flag being ON, then we haven't
1574 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1575 * resources have been allocated in the reset path.
1576 * Now we can truly claim that ADq is enabled.
1577 */
1578 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1579 adapter->num_tc)
1580 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1581 adapter->num_tc);
1582
1583 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1584 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1585 adapter->num_active_queues);
1586
1587 return 0;
1588 err_alloc_q_vectors:
1589 iavf_reset_interrupt_capability(adapter);
1590 err_set_interrupt:
1591 iavf_free_queues(adapter);
1592 err_alloc_queues:
1593 return err;
1594 }
1595
1596 /**
1597 * iavf_free_rss - Free memory used by RSS structs
1598 * @adapter: board private structure
1599 **/
iavf_free_rss(struct iavf_adapter * adapter)1600 static void iavf_free_rss(struct iavf_adapter *adapter)
1601 {
1602 kfree(adapter->rss_key);
1603 adapter->rss_key = NULL;
1604
1605 kfree(adapter->rss_lut);
1606 adapter->rss_lut = NULL;
1607 }
1608
1609 /**
1610 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1611 * @adapter: board private structure
1612 *
1613 * Returns 0 on success, negative on failure
1614 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1615 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1616 {
1617 struct net_device *netdev = adapter->netdev;
1618 int err;
1619
1620 if (netif_running(netdev))
1621 iavf_free_traffic_irqs(adapter);
1622 iavf_free_misc_irq(adapter);
1623 iavf_reset_interrupt_capability(adapter);
1624 iavf_free_q_vectors(adapter);
1625 iavf_free_queues(adapter);
1626
1627 err = iavf_init_interrupt_scheme(adapter);
1628 if (err)
1629 goto err;
1630
1631 netif_tx_stop_all_queues(netdev);
1632
1633 err = iavf_request_misc_irq(adapter);
1634 if (err)
1635 goto err;
1636
1637 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1638
1639 iavf_map_rings_to_vectors(adapter);
1640 err:
1641 return err;
1642 }
1643
1644 /**
1645 * iavf_process_aq_command - process aq_required flags
1646 * and sends aq command
1647 * @adapter: pointer to iavf adapter structure
1648 *
1649 * Returns 0 on success
1650 * Returns error code if no command was sent
1651 * or error code if the command failed.
1652 **/
iavf_process_aq_command(struct iavf_adapter * adapter)1653 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1654 {
1655 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1656 return iavf_send_vf_config_msg(adapter);
1657 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1658 iavf_disable_queues(adapter);
1659 return 0;
1660 }
1661
1662 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1663 iavf_map_queues(adapter);
1664 return 0;
1665 }
1666
1667 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1668 iavf_add_ether_addrs(adapter);
1669 return 0;
1670 }
1671
1672 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1673 iavf_add_vlans(adapter);
1674 return 0;
1675 }
1676
1677 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1678 iavf_del_ether_addrs(adapter);
1679 return 0;
1680 }
1681
1682 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1683 iavf_del_vlans(adapter);
1684 return 0;
1685 }
1686
1687 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1688 iavf_enable_vlan_stripping(adapter);
1689 return 0;
1690 }
1691
1692 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1693 iavf_disable_vlan_stripping(adapter);
1694 return 0;
1695 }
1696
1697 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1698 iavf_configure_queues(adapter);
1699 return 0;
1700 }
1701
1702 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1703 iavf_enable_queues(adapter);
1704 return 0;
1705 }
1706
1707 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1708 /* This message goes straight to the firmware, not the
1709 * PF, so we don't have to set current_op as we will
1710 * not get a response through the ARQ.
1711 */
1712 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1713 return 0;
1714 }
1715 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1716 iavf_get_hena(adapter);
1717 return 0;
1718 }
1719 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1720 iavf_set_hena(adapter);
1721 return 0;
1722 }
1723 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1724 iavf_set_rss_key(adapter);
1725 return 0;
1726 }
1727 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1728 iavf_set_rss_lut(adapter);
1729 return 0;
1730 }
1731
1732 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1733 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1734 FLAG_VF_MULTICAST_PROMISC);
1735 return 0;
1736 }
1737
1738 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1739 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1740 return 0;
1741 }
1742 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1743 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1744 iavf_set_promiscuous(adapter, 0);
1745 return 0;
1746 }
1747
1748 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1749 iavf_enable_channels(adapter);
1750 return 0;
1751 }
1752
1753 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1754 iavf_disable_channels(adapter);
1755 return 0;
1756 }
1757 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1758 iavf_add_cloud_filter(adapter);
1759 return 0;
1760 }
1761
1762 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1763 iavf_del_cloud_filter(adapter);
1764 return 0;
1765 }
1766 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1767 iavf_del_cloud_filter(adapter);
1768 return 0;
1769 }
1770 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1771 iavf_add_cloud_filter(adapter);
1772 return 0;
1773 }
1774 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
1775 iavf_add_fdir_filter(adapter);
1776 return IAVF_SUCCESS;
1777 }
1778 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
1779 iavf_del_fdir_filter(adapter);
1780 return IAVF_SUCCESS;
1781 }
1782 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
1783 iavf_add_adv_rss_cfg(adapter);
1784 return 0;
1785 }
1786 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
1787 iavf_del_adv_rss_cfg(adapter);
1788 return 0;
1789 }
1790 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
1791 iavf_request_stats(adapter);
1792 return 0;
1793 }
1794
1795 return -EAGAIN;
1796 }
1797
1798 /**
1799 * iavf_startup - first step of driver startup
1800 * @adapter: board private structure
1801 *
1802 * Function process __IAVF_STARTUP driver state.
1803 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1804 * when fails the state is changed to __IAVF_INIT_FAILED
1805 **/
iavf_startup(struct iavf_adapter * adapter)1806 static void iavf_startup(struct iavf_adapter *adapter)
1807 {
1808 struct pci_dev *pdev = adapter->pdev;
1809 struct iavf_hw *hw = &adapter->hw;
1810 int err;
1811
1812 WARN_ON(adapter->state != __IAVF_STARTUP);
1813
1814 /* driver loaded, probe complete */
1815 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1816 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1817 err = iavf_set_mac_type(hw);
1818 if (err) {
1819 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1820 goto err;
1821 }
1822
1823 err = iavf_check_reset_complete(hw);
1824 if (err) {
1825 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1826 err);
1827 goto err;
1828 }
1829 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1830 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1831 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1832 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1833
1834 err = iavf_init_adminq(hw);
1835 if (err) {
1836 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1837 goto err;
1838 }
1839 err = iavf_send_api_ver(adapter);
1840 if (err) {
1841 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1842 iavf_shutdown_adminq(hw);
1843 goto err;
1844 }
1845 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
1846 return;
1847 err:
1848 iavf_change_state(adapter, __IAVF_INIT_FAILED);
1849 }
1850
1851 /**
1852 * iavf_init_version_check - second step of driver startup
1853 * @adapter: board private structure
1854 *
1855 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1856 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1857 * when fails the state is changed to __IAVF_INIT_FAILED
1858 **/
iavf_init_version_check(struct iavf_adapter * adapter)1859 static void iavf_init_version_check(struct iavf_adapter *adapter)
1860 {
1861 struct pci_dev *pdev = adapter->pdev;
1862 struct iavf_hw *hw = &adapter->hw;
1863 int err = -EAGAIN;
1864
1865 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1866
1867 if (!iavf_asq_done(hw)) {
1868 dev_err(&pdev->dev, "Admin queue command never completed\n");
1869 iavf_shutdown_adminq(hw);
1870 iavf_change_state(adapter, __IAVF_STARTUP);
1871 goto err;
1872 }
1873
1874 /* aq msg sent, awaiting reply */
1875 err = iavf_verify_api_ver(adapter);
1876 if (err) {
1877 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1878 err = iavf_send_api_ver(adapter);
1879 else
1880 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1881 adapter->pf_version.major,
1882 adapter->pf_version.minor,
1883 VIRTCHNL_VERSION_MAJOR,
1884 VIRTCHNL_VERSION_MINOR);
1885 goto err;
1886 }
1887 err = iavf_send_vf_config_msg(adapter);
1888 if (err) {
1889 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1890 err);
1891 goto err;
1892 }
1893 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
1894 return;
1895 err:
1896 iavf_change_state(adapter, __IAVF_INIT_FAILED);
1897 }
1898
1899 /**
1900 * iavf_init_get_resources - third step of driver startup
1901 * @adapter: board private structure
1902 *
1903 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1904 * finishes driver initialization procedure.
1905 * When success the state is changed to __IAVF_DOWN
1906 * when fails the state is changed to __IAVF_INIT_FAILED
1907 **/
iavf_init_get_resources(struct iavf_adapter * adapter)1908 static void iavf_init_get_resources(struct iavf_adapter *adapter)
1909 {
1910 struct net_device *netdev = adapter->netdev;
1911 struct pci_dev *pdev = adapter->pdev;
1912 struct iavf_hw *hw = &adapter->hw;
1913 int err;
1914
1915 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1916 /* aq msg sent, awaiting reply */
1917 if (!adapter->vf_res) {
1918 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1919 GFP_KERNEL);
1920 if (!adapter->vf_res) {
1921 err = -ENOMEM;
1922 goto err;
1923 }
1924 }
1925 err = iavf_get_vf_config(adapter);
1926 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1927 err = iavf_send_vf_config_msg(adapter);
1928 goto err;
1929 } else if (err == IAVF_ERR_PARAM) {
1930 /* We only get ERR_PARAM if the device is in a very bad
1931 * state or if we've been disabled for previous bad
1932 * behavior. Either way, we're done now.
1933 */
1934 iavf_shutdown_adminq(hw);
1935 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1936 return;
1937 }
1938 if (err) {
1939 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1940 goto err_alloc;
1941 }
1942
1943 err = iavf_process_config(adapter);
1944 if (err)
1945 goto err_alloc;
1946 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1947
1948 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1949
1950 netdev->netdev_ops = &iavf_netdev_ops;
1951 iavf_set_ethtool_ops(netdev);
1952 netdev->watchdog_timeo = 5 * HZ;
1953
1954 /* MTU range: 68 - 9710 */
1955 netdev->min_mtu = ETH_MIN_MTU;
1956 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1957
1958 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1959 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1960 adapter->hw.mac.addr);
1961 eth_hw_addr_random(netdev);
1962 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1963 } else {
1964 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1965 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1966 }
1967
1968 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1969 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1970 err = iavf_init_interrupt_scheme(adapter);
1971 if (err)
1972 goto err_sw_init;
1973 iavf_map_rings_to_vectors(adapter);
1974 if (adapter->vf_res->vf_cap_flags &
1975 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1976 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1977
1978 err = iavf_request_misc_irq(adapter);
1979 if (err)
1980 goto err_sw_init;
1981
1982 netif_carrier_off(netdev);
1983 adapter->link_up = false;
1984
1985 /* set the semaphore to prevent any callbacks after device registration
1986 * up to time when state of driver will be set to __IAVF_DOWN
1987 */
1988 rtnl_lock();
1989 if (!adapter->netdev_registered) {
1990 err = register_netdevice(netdev);
1991 if (err) {
1992 rtnl_unlock();
1993 goto err_register;
1994 }
1995 }
1996
1997 adapter->netdev_registered = true;
1998
1999 netif_tx_stop_all_queues(netdev);
2000 if (CLIENT_ALLOWED(adapter)) {
2001 err = iavf_lan_add_device(adapter);
2002 if (err)
2003 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2004 err);
2005 }
2006 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2007 if (netdev->features & NETIF_F_GRO)
2008 dev_info(&pdev->dev, "GRO is enabled\n");
2009
2010 iavf_change_state(adapter, __IAVF_DOWN);
2011 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2012 rtnl_unlock();
2013
2014 iavf_misc_irq_enable(adapter);
2015 wake_up(&adapter->down_waitqueue);
2016
2017 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2018 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2019 if (!adapter->rss_key || !adapter->rss_lut) {
2020 err = -ENOMEM;
2021 goto err_mem;
2022 }
2023 if (RSS_AQ(adapter))
2024 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2025 else
2026 iavf_init_rss(adapter);
2027
2028 return;
2029 err_mem:
2030 iavf_free_rss(adapter);
2031 err_register:
2032 iavf_free_misc_irq(adapter);
2033 err_sw_init:
2034 iavf_reset_interrupt_capability(adapter);
2035 err_alloc:
2036 kfree(adapter->vf_res);
2037 adapter->vf_res = NULL;
2038 err:
2039 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2040 }
2041
2042 /**
2043 * iavf_watchdog_task - Periodic call-back task
2044 * @work: pointer to work_struct
2045 **/
iavf_watchdog_task(struct work_struct * work)2046 static void iavf_watchdog_task(struct work_struct *work)
2047 {
2048 struct iavf_adapter *adapter = container_of(work,
2049 struct iavf_adapter,
2050 watchdog_task.work);
2051 struct iavf_hw *hw = &adapter->hw;
2052 u32 reg_val;
2053
2054 if (!mutex_trylock(&adapter->crit_lock)) {
2055 if (adapter->state == __IAVF_REMOVE)
2056 return;
2057
2058 goto restart_watchdog;
2059 }
2060
2061 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2062 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2063
2064 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2065 adapter->aq_required = 0;
2066 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2067 mutex_unlock(&adapter->crit_lock);
2068 queue_work(iavf_wq, &adapter->reset_task);
2069 return;
2070 }
2071
2072 switch (adapter->state) {
2073 case __IAVF_STARTUP:
2074 iavf_startup(adapter);
2075 mutex_unlock(&adapter->crit_lock);
2076 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2077 msecs_to_jiffies(30));
2078 return;
2079 case __IAVF_INIT_VERSION_CHECK:
2080 iavf_init_version_check(adapter);
2081 mutex_unlock(&adapter->crit_lock);
2082 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2083 msecs_to_jiffies(30));
2084 return;
2085 case __IAVF_INIT_GET_RESOURCES:
2086 iavf_init_get_resources(adapter);
2087 mutex_unlock(&adapter->crit_lock);
2088 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2089 msecs_to_jiffies(1));
2090 return;
2091 case __IAVF_INIT_FAILED:
2092 if (test_bit(__IAVF_IN_REMOVE_TASK,
2093 &adapter->crit_section)) {
2094 /* Do not update the state and do not reschedule
2095 * watchdog task, iavf_remove should handle this state
2096 * as it can loop forever
2097 */
2098 mutex_unlock(&adapter->crit_lock);
2099 return;
2100 }
2101 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2102 dev_err(&adapter->pdev->dev,
2103 "Failed to communicate with PF; waiting before retry\n");
2104 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2105 iavf_shutdown_adminq(hw);
2106 mutex_unlock(&adapter->crit_lock);
2107 queue_delayed_work(iavf_wq,
2108 &adapter->watchdog_task, (5 * HZ));
2109 return;
2110 }
2111 /* Try again from failed step*/
2112 iavf_change_state(adapter, adapter->last_state);
2113 mutex_unlock(&adapter->crit_lock);
2114 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
2115 return;
2116 case __IAVF_COMM_FAILED:
2117 if (test_bit(__IAVF_IN_REMOVE_TASK,
2118 &adapter->crit_section)) {
2119 /* Set state to __IAVF_INIT_FAILED and perform remove
2120 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2121 * doesn't bring the state back to __IAVF_COMM_FAILED.
2122 */
2123 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2124 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2125 mutex_unlock(&adapter->crit_lock);
2126 return;
2127 }
2128 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2129 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2130 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2131 reg_val == VIRTCHNL_VFR_COMPLETED) {
2132 /* A chance for redemption! */
2133 dev_err(&adapter->pdev->dev,
2134 "Hardware came out of reset. Attempting reinit.\n");
2135 /* When init task contacts the PF and
2136 * gets everything set up again, it'll restart the
2137 * watchdog for us. Down, boy. Sit. Stay. Woof.
2138 */
2139 iavf_change_state(adapter, __IAVF_STARTUP);
2140 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2141 }
2142 adapter->aq_required = 0;
2143 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2144 mutex_unlock(&adapter->crit_lock);
2145 queue_delayed_work(iavf_wq,
2146 &adapter->watchdog_task,
2147 msecs_to_jiffies(10));
2148 return;
2149 case __IAVF_RESETTING:
2150 mutex_unlock(&adapter->crit_lock);
2151 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2152 return;
2153 case __IAVF_DOWN:
2154 case __IAVF_DOWN_PENDING:
2155 case __IAVF_TESTING:
2156 case __IAVF_RUNNING:
2157 if (adapter->current_op) {
2158 if (!iavf_asq_done(hw)) {
2159 dev_dbg(&adapter->pdev->dev,
2160 "Admin queue timeout\n");
2161 iavf_send_api_ver(adapter);
2162 }
2163 } else {
2164 /* An error will be returned if no commands were
2165 * processed; use this opportunity to update stats
2166 */
2167 if (iavf_process_aq_command(adapter) &&
2168 adapter->state == __IAVF_RUNNING)
2169 iavf_request_stats(adapter);
2170 }
2171 if (adapter->state == __IAVF_RUNNING)
2172 iavf_detect_recover_hung(&adapter->vsi);
2173 break;
2174 case __IAVF_REMOVE:
2175 default:
2176 mutex_unlock(&adapter->crit_lock);
2177 return;
2178 }
2179
2180 /* check for hw reset */
2181 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2182 if (!reg_val) {
2183 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2184 adapter->aq_required = 0;
2185 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2186 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2187 queue_work(iavf_wq, &adapter->reset_task);
2188 mutex_unlock(&adapter->crit_lock);
2189 queue_delayed_work(iavf_wq,
2190 &adapter->watchdog_task, HZ * 2);
2191 return;
2192 }
2193
2194 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2195 mutex_unlock(&adapter->crit_lock);
2196 restart_watchdog:
2197 if (adapter->state >= __IAVF_DOWN)
2198 queue_work(iavf_wq, &adapter->adminq_task);
2199 if (adapter->aq_required)
2200 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
2201 msecs_to_jiffies(20));
2202 else
2203 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
2204 }
2205
2206 /**
2207 * iavf_disable_vf - disable VF
2208 * @adapter: board private structure
2209 *
2210 * Set communication failed flag and free all resources.
2211 * NOTE: This function is expected to be called with crit_lock being held.
2212 **/
iavf_disable_vf(struct iavf_adapter * adapter)2213 static void iavf_disable_vf(struct iavf_adapter *adapter)
2214 {
2215 struct iavf_mac_filter *f, *ftmp;
2216 struct iavf_vlan_filter *fv, *fvtmp;
2217 struct iavf_cloud_filter *cf, *cftmp;
2218
2219 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2220
2221 /* We don't use netif_running() because it may be true prior to
2222 * ndo_open() returning, so we can't assume it means all our open
2223 * tasks have finished, since we're not holding the rtnl_lock here.
2224 */
2225 if (adapter->state == __IAVF_RUNNING) {
2226 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2227 netif_carrier_off(adapter->netdev);
2228 netif_tx_disable(adapter->netdev);
2229 adapter->link_up = false;
2230 iavf_napi_disable_all(adapter);
2231 iavf_irq_disable(adapter);
2232 iavf_free_traffic_irqs(adapter);
2233 iavf_free_all_tx_resources(adapter);
2234 iavf_free_all_rx_resources(adapter);
2235 }
2236
2237 spin_lock_bh(&adapter->mac_vlan_list_lock);
2238
2239 /* Delete all of the filters */
2240 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2241 list_del(&f->list);
2242 kfree(f);
2243 }
2244
2245 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2246 list_del(&fv->list);
2247 kfree(fv);
2248 }
2249
2250 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2251
2252 spin_lock_bh(&adapter->cloud_filter_list_lock);
2253 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2254 list_del(&cf->list);
2255 kfree(cf);
2256 adapter->num_cloud_filters--;
2257 }
2258 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2259
2260 iavf_free_misc_irq(adapter);
2261 iavf_reset_interrupt_capability(adapter);
2262 iavf_free_q_vectors(adapter);
2263 iavf_free_queues(adapter);
2264 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2265 iavf_shutdown_adminq(&adapter->hw);
2266 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2267 iavf_change_state(adapter, __IAVF_DOWN);
2268 wake_up(&adapter->down_waitqueue);
2269 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2270 }
2271
2272 /**
2273 * iavf_reset_task - Call-back task to handle hardware reset
2274 * @work: pointer to work_struct
2275 *
2276 * During reset we need to shut down and reinitialize the admin queue
2277 * before we can use it to communicate with the PF again. We also clear
2278 * and reinit the rings because that context is lost as well.
2279 **/
iavf_reset_task(struct work_struct * work)2280 static void iavf_reset_task(struct work_struct *work)
2281 {
2282 struct iavf_adapter *adapter = container_of(work,
2283 struct iavf_adapter,
2284 reset_task);
2285 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2286 struct net_device *netdev = adapter->netdev;
2287 struct iavf_hw *hw = &adapter->hw;
2288 struct iavf_mac_filter *f, *ftmp;
2289 struct iavf_cloud_filter *cf;
2290 u32 reg_val;
2291 int i = 0, err;
2292 bool running;
2293
2294 /* Detach interface to avoid subsequent NDO callbacks */
2295 rtnl_lock();
2296 netif_device_detach(netdev);
2297 rtnl_unlock();
2298
2299 /* When device is being removed it doesn't make sense to run the reset
2300 * task, just return in such a case.
2301 */
2302 if (!mutex_trylock(&adapter->crit_lock)) {
2303 if (adapter->state != __IAVF_REMOVE)
2304 queue_work(iavf_wq, &adapter->reset_task);
2305
2306 goto reset_finish;
2307 }
2308
2309 while (!mutex_trylock(&adapter->client_lock))
2310 usleep_range(500, 1000);
2311 if (CLIENT_ENABLED(adapter)) {
2312 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2313 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2314 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2315 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2316 cancel_delayed_work_sync(&adapter->client_task);
2317 iavf_notify_client_close(&adapter->vsi, true);
2318 }
2319 iavf_misc_irq_disable(adapter);
2320 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2321 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2322 /* Restart the AQ here. If we have been reset but didn't
2323 * detect it, or if the PF had to reinit, our AQ will be hosed.
2324 */
2325 iavf_shutdown_adminq(hw);
2326 iavf_init_adminq(hw);
2327 iavf_request_reset(adapter);
2328 }
2329 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2330
2331 /* poll until we see the reset actually happen */
2332 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2333 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2334 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2335 if (!reg_val)
2336 break;
2337 usleep_range(5000, 10000);
2338 }
2339 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2340 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2341 goto continue_reset; /* act like the reset happened */
2342 }
2343
2344 /* wait until the reset is complete and the PF is responding to us */
2345 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2346 /* sleep first to make sure a minimum wait time is met */
2347 msleep(IAVF_RESET_WAIT_MS);
2348
2349 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2350 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2351 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2352 break;
2353 }
2354
2355 pci_set_master(adapter->pdev);
2356 pci_restore_msi_state(adapter->pdev);
2357
2358 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2359 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2360 reg_val);
2361 iavf_disable_vf(adapter);
2362 mutex_unlock(&adapter->client_lock);
2363 mutex_unlock(&adapter->crit_lock);
2364 if (netif_running(netdev)) {
2365 rtnl_lock();
2366 dev_close(netdev);
2367 rtnl_unlock();
2368 }
2369 return; /* Do not attempt to reinit. It's dead, Jim. */
2370 }
2371
2372 continue_reset:
2373 /* We don't use netif_running() because it may be true prior to
2374 * ndo_open() returning, so we can't assume it means all our open
2375 * tasks have finished, since we're not holding the rtnl_lock here.
2376 */
2377 running = adapter->state == __IAVF_RUNNING;
2378
2379 if (running) {
2380 netif_carrier_off(netdev);
2381 netif_tx_stop_all_queues(netdev);
2382 adapter->link_up = false;
2383 iavf_napi_disable_all(adapter);
2384 }
2385 iavf_irq_disable(adapter);
2386
2387 iavf_change_state(adapter, __IAVF_RESETTING);
2388 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2389
2390 /* free the Tx/Rx rings and descriptors, might be better to just
2391 * re-use them sometime in the future
2392 */
2393 iavf_free_all_rx_resources(adapter);
2394 iavf_free_all_tx_resources(adapter);
2395
2396 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2397 /* kill and reinit the admin queue */
2398 iavf_shutdown_adminq(hw);
2399 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2400 err = iavf_init_adminq(hw);
2401 if (err)
2402 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2403 err);
2404 adapter->aq_required = 0;
2405
2406 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2407 err = iavf_reinit_interrupt_scheme(adapter);
2408 if (err)
2409 goto reset_err;
2410 }
2411
2412 if (RSS_AQ(adapter)) {
2413 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2414 } else {
2415 err = iavf_init_rss(adapter);
2416 if (err)
2417 goto reset_err;
2418 }
2419
2420 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2421 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2422
2423 spin_lock_bh(&adapter->mac_vlan_list_lock);
2424
2425 /* Delete filter for the current MAC address, it could have
2426 * been changed by the PF via administratively set MAC.
2427 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2428 */
2429 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2430 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2431 list_del(&f->list);
2432 kfree(f);
2433 }
2434 }
2435 /* re-add all MAC filters */
2436 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2437 f->add = true;
2438 }
2439 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2440
2441 /* check if TCs are running and re-add all cloud filters */
2442 spin_lock_bh(&adapter->cloud_filter_list_lock);
2443 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2444 adapter->num_tc) {
2445 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2446 cf->add = true;
2447 }
2448 }
2449 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2450
2451 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2452 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2453 iavf_misc_irq_enable(adapter);
2454
2455 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2456
2457 /* We were running when the reset started, so we need to restore some
2458 * state here.
2459 */
2460 if (running) {
2461 /* allocate transmit descriptors */
2462 err = iavf_setup_all_tx_resources(adapter);
2463 if (err)
2464 goto reset_err;
2465
2466 /* allocate receive descriptors */
2467 err = iavf_setup_all_rx_resources(adapter);
2468 if (err)
2469 goto reset_err;
2470
2471 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2472 err = iavf_request_traffic_irqs(adapter, netdev->name);
2473 if (err)
2474 goto reset_err;
2475
2476 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2477 }
2478
2479 iavf_configure(adapter);
2480
2481 /* iavf_up_complete() will switch device back
2482 * to __IAVF_RUNNING
2483 */
2484 iavf_up_complete(adapter);
2485
2486 iavf_irq_enable(adapter, true);
2487 } else {
2488 iavf_change_state(adapter, __IAVF_DOWN);
2489 wake_up(&adapter->down_waitqueue);
2490 }
2491 mutex_unlock(&adapter->client_lock);
2492 mutex_unlock(&adapter->crit_lock);
2493
2494 goto reset_finish;
2495 reset_err:
2496 if (running) {
2497 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2498 iavf_free_traffic_irqs(adapter);
2499 }
2500 iavf_disable_vf(adapter);
2501
2502 mutex_unlock(&adapter->client_lock);
2503 mutex_unlock(&adapter->crit_lock);
2504
2505 if (netif_running(netdev)) {
2506 /* Close device to ensure that Tx queues will not be started
2507 * during netif_device_attach() at the end of the reset task.
2508 */
2509 rtnl_lock();
2510 dev_close(netdev);
2511 rtnl_unlock();
2512 }
2513
2514 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2515 reset_finish:
2516 rtnl_lock();
2517 netif_device_attach(netdev);
2518 rtnl_unlock();
2519 }
2520
2521 /**
2522 * iavf_adminq_task - worker thread to clean the admin queue
2523 * @work: pointer to work_struct containing our data
2524 **/
iavf_adminq_task(struct work_struct * work)2525 static void iavf_adminq_task(struct work_struct *work)
2526 {
2527 struct iavf_adapter *adapter =
2528 container_of(work, struct iavf_adapter, adminq_task);
2529 struct iavf_hw *hw = &adapter->hw;
2530 struct iavf_arq_event_info event;
2531 enum virtchnl_ops v_op;
2532 enum iavf_status ret, v_ret;
2533 u32 val, oldval;
2534 u16 pending;
2535
2536 if (!mutex_trylock(&adapter->crit_lock)) {
2537 if (adapter->state == __IAVF_REMOVE)
2538 return;
2539
2540 queue_work(iavf_wq, &adapter->adminq_task);
2541 goto out;
2542 }
2543
2544 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2545 goto unlock;
2546
2547 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2548 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2549 if (!event.msg_buf)
2550 goto unlock;
2551
2552 do {
2553 ret = iavf_clean_arq_element(hw, &event, &pending);
2554 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2555 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2556
2557 if (ret || !v_op)
2558 break; /* No event to process or error cleaning ARQ */
2559
2560 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2561 event.msg_len);
2562 if (pending != 0)
2563 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2564 } while (pending);
2565
2566 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
2567 if (adapter->netdev_registered ||
2568 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2569 struct net_device *netdev = adapter->netdev;
2570
2571 rtnl_lock();
2572 netdev_update_features(netdev);
2573 rtnl_unlock();
2574 }
2575
2576 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2577 }
2578 if ((adapter->flags &
2579 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2580 adapter->state == __IAVF_RESETTING)
2581 goto freedom;
2582
2583 /* check for error indications */
2584 val = rd32(hw, hw->aq.arq.len);
2585 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2586 goto freedom;
2587 oldval = val;
2588 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2589 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2590 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2591 }
2592 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2593 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2594 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2595 }
2596 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2597 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2598 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2599 }
2600 if (oldval != val)
2601 wr32(hw, hw->aq.arq.len, val);
2602
2603 val = rd32(hw, hw->aq.asq.len);
2604 oldval = val;
2605 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2606 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2607 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2608 }
2609 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2610 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2611 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2612 }
2613 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2614 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2615 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2616 }
2617 if (oldval != val)
2618 wr32(hw, hw->aq.asq.len, val);
2619
2620 freedom:
2621 kfree(event.msg_buf);
2622 unlock:
2623 mutex_unlock(&adapter->crit_lock);
2624 out:
2625 /* re-enable Admin queue interrupt cause */
2626 iavf_misc_irq_enable(adapter);
2627 }
2628
2629 /**
2630 * iavf_client_task - worker thread to perform client work
2631 * @work: pointer to work_struct containing our data
2632 *
2633 * This task handles client interactions. Because client calls can be
2634 * reentrant, we can't handle them in the watchdog.
2635 **/
iavf_client_task(struct work_struct * work)2636 static void iavf_client_task(struct work_struct *work)
2637 {
2638 struct iavf_adapter *adapter =
2639 container_of(work, struct iavf_adapter, client_task.work);
2640
2641 /* If we can't get the client bit, just give up. We'll be rescheduled
2642 * later.
2643 */
2644
2645 if (!mutex_trylock(&adapter->client_lock))
2646 return;
2647
2648 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2649 iavf_client_subtask(adapter);
2650 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2651 goto out;
2652 }
2653 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2654 iavf_notify_client_l2_params(&adapter->vsi);
2655 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2656 goto out;
2657 }
2658 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2659 iavf_notify_client_close(&adapter->vsi, false);
2660 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2661 goto out;
2662 }
2663 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2664 iavf_notify_client_open(&adapter->vsi);
2665 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2666 }
2667 out:
2668 mutex_unlock(&adapter->client_lock);
2669 }
2670
2671 /**
2672 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2673 * @adapter: board private structure
2674 *
2675 * Free all transmit software resources
2676 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)2677 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2678 {
2679 int i;
2680
2681 if (!adapter->tx_rings)
2682 return;
2683
2684 for (i = 0; i < adapter->num_active_queues; i++)
2685 if (adapter->tx_rings[i].desc)
2686 iavf_free_tx_resources(&adapter->tx_rings[i]);
2687 }
2688
2689 /**
2690 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2691 * @adapter: board private structure
2692 *
2693 * If this function returns with an error, then it's possible one or
2694 * more of the rings is populated (while the rest are not). It is the
2695 * callers duty to clean those orphaned rings.
2696 *
2697 * Return 0 on success, negative on failure
2698 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)2699 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2700 {
2701 int i, err = 0;
2702
2703 for (i = 0; i < adapter->num_active_queues; i++) {
2704 adapter->tx_rings[i].count = adapter->tx_desc_count;
2705 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2706 if (!err)
2707 continue;
2708 dev_err(&adapter->pdev->dev,
2709 "Allocation for Tx Queue %u failed\n", i);
2710 break;
2711 }
2712
2713 return err;
2714 }
2715
2716 /**
2717 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2718 * @adapter: board private structure
2719 *
2720 * If this function returns with an error, then it's possible one or
2721 * more of the rings is populated (while the rest are not). It is the
2722 * callers duty to clean those orphaned rings.
2723 *
2724 * Return 0 on success, negative on failure
2725 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)2726 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2727 {
2728 int i, err = 0;
2729
2730 for (i = 0; i < adapter->num_active_queues; i++) {
2731 adapter->rx_rings[i].count = adapter->rx_desc_count;
2732 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2733 if (!err)
2734 continue;
2735 dev_err(&adapter->pdev->dev,
2736 "Allocation for Rx Queue %u failed\n", i);
2737 break;
2738 }
2739 return err;
2740 }
2741
2742 /**
2743 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2744 * @adapter: board private structure
2745 *
2746 * Free all receive software resources
2747 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)2748 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2749 {
2750 int i;
2751
2752 if (!adapter->rx_rings)
2753 return;
2754
2755 for (i = 0; i < adapter->num_active_queues; i++)
2756 if (adapter->rx_rings[i].desc)
2757 iavf_free_rx_resources(&adapter->rx_rings[i]);
2758 }
2759
2760 /**
2761 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2762 * @adapter: board private structure
2763 * @max_tx_rate: max Tx bw for a tc
2764 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)2765 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2766 u64 max_tx_rate)
2767 {
2768 int speed = 0, ret = 0;
2769
2770 if (ADV_LINK_SUPPORT(adapter)) {
2771 if (adapter->link_speed_mbps < U32_MAX) {
2772 speed = adapter->link_speed_mbps;
2773 goto validate_bw;
2774 } else {
2775 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2776 return -EINVAL;
2777 }
2778 }
2779
2780 switch (adapter->link_speed) {
2781 case VIRTCHNL_LINK_SPEED_40GB:
2782 speed = SPEED_40000;
2783 break;
2784 case VIRTCHNL_LINK_SPEED_25GB:
2785 speed = SPEED_25000;
2786 break;
2787 case VIRTCHNL_LINK_SPEED_20GB:
2788 speed = SPEED_20000;
2789 break;
2790 case VIRTCHNL_LINK_SPEED_10GB:
2791 speed = SPEED_10000;
2792 break;
2793 case VIRTCHNL_LINK_SPEED_5GB:
2794 speed = SPEED_5000;
2795 break;
2796 case VIRTCHNL_LINK_SPEED_2_5GB:
2797 speed = SPEED_2500;
2798 break;
2799 case VIRTCHNL_LINK_SPEED_1GB:
2800 speed = SPEED_1000;
2801 break;
2802 case VIRTCHNL_LINK_SPEED_100MB:
2803 speed = SPEED_100;
2804 break;
2805 default:
2806 break;
2807 }
2808
2809 validate_bw:
2810 if (max_tx_rate > speed) {
2811 dev_err(&adapter->pdev->dev,
2812 "Invalid tx rate specified\n");
2813 ret = -EINVAL;
2814 }
2815
2816 return ret;
2817 }
2818
2819 /**
2820 * iavf_validate_ch_config - validate queue mapping info
2821 * @adapter: board private structure
2822 * @mqprio_qopt: queue parameters
2823 *
2824 * This function validates if the config provided by the user to
2825 * configure queue channels is valid or not. Returns 0 on a valid
2826 * config.
2827 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)2828 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2829 struct tc_mqprio_qopt_offload *mqprio_qopt)
2830 {
2831 u64 total_max_rate = 0;
2832 u32 tx_rate_rem = 0;
2833 int i, num_qps = 0;
2834 u64 tx_rate = 0;
2835 int ret = 0;
2836
2837 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2838 mqprio_qopt->qopt.num_tc < 1)
2839 return -EINVAL;
2840
2841 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2842 if (!mqprio_qopt->qopt.count[i] ||
2843 mqprio_qopt->qopt.offset[i] != num_qps)
2844 return -EINVAL;
2845 if (mqprio_qopt->min_rate[i]) {
2846 dev_err(&adapter->pdev->dev,
2847 "Invalid min tx rate (greater than 0) specified for TC%d\n",
2848 i);
2849 return -EINVAL;
2850 }
2851
2852 /* convert to Mbps */
2853 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2854 IAVF_MBPS_DIVISOR);
2855
2856 if (mqprio_qopt->max_rate[i] &&
2857 tx_rate < IAVF_MBPS_QUANTA) {
2858 dev_err(&adapter->pdev->dev,
2859 "Invalid max tx rate for TC%d, minimum %dMbps\n",
2860 i, IAVF_MBPS_QUANTA);
2861 return -EINVAL;
2862 }
2863
2864 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
2865
2866 if (tx_rate_rem != 0) {
2867 dev_err(&adapter->pdev->dev,
2868 "Invalid max tx rate for TC%d, not divisible by %d\n",
2869 i, IAVF_MBPS_QUANTA);
2870 return -EINVAL;
2871 }
2872
2873 total_max_rate += tx_rate;
2874 num_qps += mqprio_qopt->qopt.count[i];
2875 }
2876 if (num_qps > adapter->num_active_queues) {
2877 dev_err(&adapter->pdev->dev,
2878 "Cannot support requested number of queues\n");
2879 return -EINVAL;
2880 }
2881
2882 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2883 return ret;
2884 }
2885
2886 /**
2887 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2888 * @adapter: board private structure
2889 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)2890 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2891 {
2892 struct iavf_cloud_filter *cf, *cftmp;
2893
2894 spin_lock_bh(&adapter->cloud_filter_list_lock);
2895 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2896 list) {
2897 list_del(&cf->list);
2898 kfree(cf);
2899 adapter->num_cloud_filters--;
2900 }
2901 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2902 }
2903
2904 /**
2905 * __iavf_setup_tc - configure multiple traffic classes
2906 * @netdev: network interface device structure
2907 * @type_data: tc offload data
2908 *
2909 * This function processes the config information provided by the
2910 * user to configure traffic classes/queue channels and packages the
2911 * information to request the PF to setup traffic classes.
2912 *
2913 * Returns 0 on success.
2914 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)2915 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2916 {
2917 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2918 struct iavf_adapter *adapter = netdev_priv(netdev);
2919 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2920 u8 num_tc = 0, total_qps = 0;
2921 int ret = 0, netdev_tc = 0;
2922 u64 max_tx_rate;
2923 u16 mode;
2924 int i;
2925
2926 num_tc = mqprio_qopt->qopt.num_tc;
2927 mode = mqprio_qopt->mode;
2928
2929 /* delete queue_channel */
2930 if (!mqprio_qopt->qopt.hw) {
2931 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2932 /* reset the tc configuration */
2933 netdev_reset_tc(netdev);
2934 adapter->num_tc = 0;
2935 netif_tx_stop_all_queues(netdev);
2936 netif_tx_disable(netdev);
2937 iavf_del_all_cloud_filters(adapter);
2938 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2939 total_qps = adapter->orig_num_active_queues;
2940 goto exit;
2941 } else {
2942 return -EINVAL;
2943 }
2944 }
2945
2946 /* add queue channel */
2947 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2948 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2949 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2950 return -EOPNOTSUPP;
2951 }
2952 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2953 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2954 return -EINVAL;
2955 }
2956
2957 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2958 if (ret)
2959 return ret;
2960 /* Return if same TC config is requested */
2961 if (adapter->num_tc == num_tc)
2962 return 0;
2963 adapter->num_tc = num_tc;
2964
2965 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2966 if (i < num_tc) {
2967 adapter->ch_config.ch_info[i].count =
2968 mqprio_qopt->qopt.count[i];
2969 adapter->ch_config.ch_info[i].offset =
2970 mqprio_qopt->qopt.offset[i];
2971 total_qps += mqprio_qopt->qopt.count[i];
2972 max_tx_rate = mqprio_qopt->max_rate[i];
2973 /* convert to Mbps */
2974 max_tx_rate = div_u64(max_tx_rate,
2975 IAVF_MBPS_DIVISOR);
2976 adapter->ch_config.ch_info[i].max_tx_rate =
2977 max_tx_rate;
2978 } else {
2979 adapter->ch_config.ch_info[i].count = 1;
2980 adapter->ch_config.ch_info[i].offset = 0;
2981 }
2982 }
2983
2984 /* Take snapshot of original config such as "num_active_queues"
2985 * It is used later when delete ADQ flow is exercised, so that
2986 * once delete ADQ flow completes, VF shall go back to its
2987 * original queue configuration
2988 */
2989
2990 adapter->orig_num_active_queues = adapter->num_active_queues;
2991
2992 /* Store queue info based on TC so that VF gets configured
2993 * with correct number of queues when VF completes ADQ config
2994 * flow
2995 */
2996 adapter->ch_config.total_qps = total_qps;
2997
2998 netif_tx_stop_all_queues(netdev);
2999 netif_tx_disable(netdev);
3000 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3001 netdev_reset_tc(netdev);
3002 /* Report the tc mapping up the stack */
3003 netdev_set_num_tc(adapter->netdev, num_tc);
3004 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3005 u16 qcount = mqprio_qopt->qopt.count[i];
3006 u16 qoffset = mqprio_qopt->qopt.offset[i];
3007
3008 if (i < num_tc)
3009 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3010 qoffset);
3011 }
3012 }
3013 exit:
3014 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3015 return 0;
3016
3017 netif_set_real_num_rx_queues(netdev, total_qps);
3018 netif_set_real_num_tx_queues(netdev, total_qps);
3019
3020 return ret;
3021 }
3022
3023 /**
3024 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3025 * @adapter: board private structure
3026 * @f: pointer to struct flow_cls_offload
3027 * @filter: pointer to cloud filter structure
3028 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3029 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3030 struct flow_cls_offload *f,
3031 struct iavf_cloud_filter *filter)
3032 {
3033 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3034 struct flow_dissector *dissector = rule->match.dissector;
3035 u16 n_proto_mask = 0;
3036 u16 n_proto_key = 0;
3037 u8 field_flags = 0;
3038 u16 addr_type = 0;
3039 u16 n_proto = 0;
3040 int i = 0;
3041 struct virtchnl_filter *vf = &filter->f;
3042
3043 if (dissector->used_keys &
3044 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3045 BIT(FLOW_DISSECTOR_KEY_BASIC) |
3046 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3047 BIT(FLOW_DISSECTOR_KEY_VLAN) |
3048 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3049 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3050 BIT(FLOW_DISSECTOR_KEY_PORTS) |
3051 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3052 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3053 dissector->used_keys);
3054 return -EOPNOTSUPP;
3055 }
3056
3057 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3058 struct flow_match_enc_keyid match;
3059
3060 flow_rule_match_enc_keyid(rule, &match);
3061 if (match.mask->keyid != 0)
3062 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3063 }
3064
3065 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3066 struct flow_match_basic match;
3067
3068 flow_rule_match_basic(rule, &match);
3069 n_proto_key = ntohs(match.key->n_proto);
3070 n_proto_mask = ntohs(match.mask->n_proto);
3071
3072 if (n_proto_key == ETH_P_ALL) {
3073 n_proto_key = 0;
3074 n_proto_mask = 0;
3075 }
3076 n_proto = n_proto_key & n_proto_mask;
3077 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3078 return -EINVAL;
3079 if (n_proto == ETH_P_IPV6) {
3080 /* specify flow type as TCP IPv6 */
3081 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3082 }
3083
3084 if (match.key->ip_proto != IPPROTO_TCP) {
3085 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3086 return -EINVAL;
3087 }
3088 }
3089
3090 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3091 struct flow_match_eth_addrs match;
3092
3093 flow_rule_match_eth_addrs(rule, &match);
3094
3095 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3096 if (!is_zero_ether_addr(match.mask->dst)) {
3097 if (is_broadcast_ether_addr(match.mask->dst)) {
3098 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3099 } else {
3100 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3101 match.mask->dst);
3102 return -EINVAL;
3103 }
3104 }
3105
3106 if (!is_zero_ether_addr(match.mask->src)) {
3107 if (is_broadcast_ether_addr(match.mask->src)) {
3108 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3109 } else {
3110 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3111 match.mask->src);
3112 return -EINVAL;
3113 }
3114 }
3115
3116 if (!is_zero_ether_addr(match.key->dst))
3117 if (is_valid_ether_addr(match.key->dst) ||
3118 is_multicast_ether_addr(match.key->dst)) {
3119 /* set the mask if a valid dst_mac address */
3120 for (i = 0; i < ETH_ALEN; i++)
3121 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3122 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3123 match.key->dst);
3124 }
3125
3126 if (!is_zero_ether_addr(match.key->src))
3127 if (is_valid_ether_addr(match.key->src) ||
3128 is_multicast_ether_addr(match.key->src)) {
3129 /* set the mask if a valid dst_mac address */
3130 for (i = 0; i < ETH_ALEN; i++)
3131 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3132 ether_addr_copy(vf->data.tcp_spec.src_mac,
3133 match.key->src);
3134 }
3135 }
3136
3137 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3138 struct flow_match_vlan match;
3139
3140 flow_rule_match_vlan(rule, &match);
3141 if (match.mask->vlan_id) {
3142 if (match.mask->vlan_id == VLAN_VID_MASK) {
3143 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3144 } else {
3145 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3146 match.mask->vlan_id);
3147 return -EINVAL;
3148 }
3149 }
3150 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3151 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3152 }
3153
3154 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3155 struct flow_match_control match;
3156
3157 flow_rule_match_control(rule, &match);
3158 addr_type = match.key->addr_type;
3159 }
3160
3161 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3162 struct flow_match_ipv4_addrs match;
3163
3164 flow_rule_match_ipv4_addrs(rule, &match);
3165 if (match.mask->dst) {
3166 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3167 field_flags |= IAVF_CLOUD_FIELD_IIP;
3168 } else {
3169 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3170 be32_to_cpu(match.mask->dst));
3171 return -EINVAL;
3172 }
3173 }
3174
3175 if (match.mask->src) {
3176 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3177 field_flags |= IAVF_CLOUD_FIELD_IIP;
3178 } else {
3179 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3180 be32_to_cpu(match.mask->src));
3181 return -EINVAL;
3182 }
3183 }
3184
3185 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3186 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3187 return -EINVAL;
3188 }
3189 if (match.key->dst) {
3190 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3191 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3192 }
3193 if (match.key->src) {
3194 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3195 vf->data.tcp_spec.src_ip[0] = match.key->src;
3196 }
3197 }
3198
3199 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3200 struct flow_match_ipv6_addrs match;
3201
3202 flow_rule_match_ipv6_addrs(rule, &match);
3203
3204 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3205 if (ipv6_addr_any(&match.mask->dst)) {
3206 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3207 IPV6_ADDR_ANY);
3208 return -EINVAL;
3209 }
3210
3211 /* src and dest IPv6 address should not be LOOPBACK
3212 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3213 */
3214 if (ipv6_addr_loopback(&match.key->dst) ||
3215 ipv6_addr_loopback(&match.key->src)) {
3216 dev_err(&adapter->pdev->dev,
3217 "ipv6 addr should not be loopback\n");
3218 return -EINVAL;
3219 }
3220 if (!ipv6_addr_any(&match.mask->dst) ||
3221 !ipv6_addr_any(&match.mask->src))
3222 field_flags |= IAVF_CLOUD_FIELD_IIP;
3223
3224 for (i = 0; i < 4; i++)
3225 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3226 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3227 sizeof(vf->data.tcp_spec.dst_ip));
3228 for (i = 0; i < 4; i++)
3229 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3230 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3231 sizeof(vf->data.tcp_spec.src_ip));
3232 }
3233 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3234 struct flow_match_ports match;
3235
3236 flow_rule_match_ports(rule, &match);
3237 if (match.mask->src) {
3238 if (match.mask->src == cpu_to_be16(0xffff)) {
3239 field_flags |= IAVF_CLOUD_FIELD_IIP;
3240 } else {
3241 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3242 be16_to_cpu(match.mask->src));
3243 return -EINVAL;
3244 }
3245 }
3246
3247 if (match.mask->dst) {
3248 if (match.mask->dst == cpu_to_be16(0xffff)) {
3249 field_flags |= IAVF_CLOUD_FIELD_IIP;
3250 } else {
3251 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3252 be16_to_cpu(match.mask->dst));
3253 return -EINVAL;
3254 }
3255 }
3256 if (match.key->dst) {
3257 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3258 vf->data.tcp_spec.dst_port = match.key->dst;
3259 }
3260
3261 if (match.key->src) {
3262 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3263 vf->data.tcp_spec.src_port = match.key->src;
3264 }
3265 }
3266 vf->field_flags = field_flags;
3267
3268 return 0;
3269 }
3270
3271 /**
3272 * iavf_handle_tclass - Forward to a traffic class on the device
3273 * @adapter: board private structure
3274 * @tc: traffic class index on the device
3275 * @filter: pointer to cloud filter structure
3276 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3277 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3278 struct iavf_cloud_filter *filter)
3279 {
3280 if (tc == 0)
3281 return 0;
3282 if (tc < adapter->num_tc) {
3283 if (!filter->f.data.tcp_spec.dst_port) {
3284 dev_err(&adapter->pdev->dev,
3285 "Specify destination port to redirect to traffic class other than TC0\n");
3286 return -EINVAL;
3287 }
3288 }
3289 /* redirect to a traffic class on the same device */
3290 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3291 filter->f.action_meta = tc;
3292 return 0;
3293 }
3294
3295 /**
3296 * iavf_configure_clsflower - Add tc flower filters
3297 * @adapter: board private structure
3298 * @cls_flower: Pointer to struct flow_cls_offload
3299 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3300 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3301 struct flow_cls_offload *cls_flower)
3302 {
3303 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3304 struct iavf_cloud_filter *filter = NULL;
3305 int err = -EINVAL, count = 50;
3306
3307 if (tc < 0) {
3308 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3309 return -EINVAL;
3310 }
3311
3312 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3313 if (!filter)
3314 return -ENOMEM;
3315
3316 while (!mutex_trylock(&adapter->crit_lock)) {
3317 if (--count == 0) {
3318 kfree(filter);
3319 return err;
3320 }
3321 udelay(1);
3322 }
3323
3324 filter->cookie = cls_flower->cookie;
3325
3326 /* set the mask to all zeroes to begin with */
3327 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3328 /* start out with flow type and eth type IPv4 to begin with */
3329 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3330 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3331 if (err)
3332 goto err;
3333
3334 err = iavf_handle_tclass(adapter, tc, filter);
3335 if (err)
3336 goto err;
3337
3338 /* add filter to the list */
3339 spin_lock_bh(&adapter->cloud_filter_list_lock);
3340 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3341 adapter->num_cloud_filters++;
3342 filter->add = true;
3343 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3344 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3345 err:
3346 if (err)
3347 kfree(filter);
3348
3349 mutex_unlock(&adapter->crit_lock);
3350 return err;
3351 }
3352
3353 /* iavf_find_cf - Find the cloud filter in the list
3354 * @adapter: Board private structure
3355 * @cookie: filter specific cookie
3356 *
3357 * Returns ptr to the filter object or NULL. Must be called while holding the
3358 * cloud_filter_list_lock.
3359 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3360 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3361 unsigned long *cookie)
3362 {
3363 struct iavf_cloud_filter *filter = NULL;
3364
3365 if (!cookie)
3366 return NULL;
3367
3368 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3369 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3370 return filter;
3371 }
3372 return NULL;
3373 }
3374
3375 /**
3376 * iavf_delete_clsflower - Remove tc flower filters
3377 * @adapter: board private structure
3378 * @cls_flower: Pointer to struct flow_cls_offload
3379 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3380 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3381 struct flow_cls_offload *cls_flower)
3382 {
3383 struct iavf_cloud_filter *filter = NULL;
3384 int err = 0;
3385
3386 spin_lock_bh(&adapter->cloud_filter_list_lock);
3387 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3388 if (filter) {
3389 filter->del = true;
3390 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3391 } else {
3392 err = -EINVAL;
3393 }
3394 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3395
3396 return err;
3397 }
3398
3399 /**
3400 * iavf_setup_tc_cls_flower - flower classifier offloads
3401 * @adapter: board private structure
3402 * @cls_flower: pointer to flow_cls_offload struct with flow info
3403 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3404 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3405 struct flow_cls_offload *cls_flower)
3406 {
3407 switch (cls_flower->command) {
3408 case FLOW_CLS_REPLACE:
3409 return iavf_configure_clsflower(adapter, cls_flower);
3410 case FLOW_CLS_DESTROY:
3411 return iavf_delete_clsflower(adapter, cls_flower);
3412 case FLOW_CLS_STATS:
3413 return -EOPNOTSUPP;
3414 default:
3415 return -EOPNOTSUPP;
3416 }
3417 }
3418
3419 /**
3420 * iavf_setup_tc_block_cb - block callback for tc
3421 * @type: type of offload
3422 * @type_data: offload data
3423 * @cb_priv:
3424 *
3425 * This function is the block callback for traffic classes
3426 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3427 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3428 void *cb_priv)
3429 {
3430 struct iavf_adapter *adapter = cb_priv;
3431
3432 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3433 return -EOPNOTSUPP;
3434
3435 switch (type) {
3436 case TC_SETUP_CLSFLOWER:
3437 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3438 default:
3439 return -EOPNOTSUPP;
3440 }
3441 }
3442
3443 static LIST_HEAD(iavf_block_cb_list);
3444
3445 /**
3446 * iavf_setup_tc - configure multiple traffic classes
3447 * @netdev: network interface device structure
3448 * @type: type of offload
3449 * @type_data: tc offload data
3450 *
3451 * This function is the callback to ndo_setup_tc in the
3452 * netdev_ops.
3453 *
3454 * Returns 0 on success
3455 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3456 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3457 void *type_data)
3458 {
3459 struct iavf_adapter *adapter = netdev_priv(netdev);
3460
3461 switch (type) {
3462 case TC_SETUP_QDISC_MQPRIO:
3463 return __iavf_setup_tc(netdev, type_data);
3464 case TC_SETUP_BLOCK:
3465 return flow_block_cb_setup_simple(type_data,
3466 &iavf_block_cb_list,
3467 iavf_setup_tc_block_cb,
3468 adapter, adapter, true);
3469 default:
3470 return -EOPNOTSUPP;
3471 }
3472 }
3473
3474 /**
3475 * iavf_open - Called when a network interface is made active
3476 * @netdev: network interface device structure
3477 *
3478 * Returns 0 on success, negative value on failure
3479 *
3480 * The open entry point is called when a network interface is made
3481 * active by the system (IFF_UP). At this point all resources needed
3482 * for transmit and receive operations are allocated, the interrupt
3483 * handler is registered with the OS, the watchdog is started,
3484 * and the stack is notified that the interface is ready.
3485 **/
iavf_open(struct net_device * netdev)3486 static int iavf_open(struct net_device *netdev)
3487 {
3488 struct iavf_adapter *adapter = netdev_priv(netdev);
3489 int err;
3490
3491 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3492 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3493 return -EIO;
3494 }
3495
3496 while (!mutex_trylock(&adapter->crit_lock))
3497 usleep_range(500, 1000);
3498
3499 if (adapter->state != __IAVF_DOWN) {
3500 err = -EBUSY;
3501 goto err_unlock;
3502 }
3503
3504 if (adapter->state == __IAVF_RUNNING &&
3505 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
3506 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
3507 err = 0;
3508 goto err_unlock;
3509 }
3510
3511 /* allocate transmit descriptors */
3512 err = iavf_setup_all_tx_resources(adapter);
3513 if (err)
3514 goto err_setup_tx;
3515
3516 /* allocate receive descriptors */
3517 err = iavf_setup_all_rx_resources(adapter);
3518 if (err)
3519 goto err_setup_rx;
3520
3521 /* clear any pending interrupts, may auto mask */
3522 err = iavf_request_traffic_irqs(adapter, netdev->name);
3523 if (err)
3524 goto err_req_irq;
3525
3526 spin_lock_bh(&adapter->mac_vlan_list_lock);
3527
3528 iavf_add_filter(adapter, adapter->hw.mac.addr);
3529
3530 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3531
3532 /* Restore VLAN filters that were removed with IFF_DOWN */
3533 iavf_restore_filters(adapter);
3534
3535 iavf_configure(adapter);
3536
3537 iavf_up_complete(adapter);
3538
3539 iavf_irq_enable(adapter, true);
3540
3541 mutex_unlock(&adapter->crit_lock);
3542
3543 return 0;
3544
3545 err_req_irq:
3546 iavf_down(adapter);
3547 iavf_free_traffic_irqs(adapter);
3548 err_setup_rx:
3549 iavf_free_all_rx_resources(adapter);
3550 err_setup_tx:
3551 iavf_free_all_tx_resources(adapter);
3552 err_unlock:
3553 mutex_unlock(&adapter->crit_lock);
3554
3555 return err;
3556 }
3557
3558 /**
3559 * iavf_close - Disables a network interface
3560 * @netdev: network interface device structure
3561 *
3562 * Returns 0, this is not allowed to fail
3563 *
3564 * The close entry point is called when an interface is de-activated
3565 * by the OS. The hardware is still under the drivers control, but
3566 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3567 * are freed, along with all transmit and receive resources.
3568 **/
iavf_close(struct net_device * netdev)3569 static int iavf_close(struct net_device *netdev)
3570 {
3571 struct iavf_adapter *adapter = netdev_priv(netdev);
3572 u64 aq_to_restore;
3573 int status;
3574
3575 mutex_lock(&adapter->crit_lock);
3576
3577 if (adapter->state <= __IAVF_DOWN_PENDING) {
3578 mutex_unlock(&adapter->crit_lock);
3579 return 0;
3580 }
3581
3582 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3583 if (CLIENT_ENABLED(adapter))
3584 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3585 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
3586 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
3587 * deadlock with adminq_task() until iavf_close timeouts. We must send
3588 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
3589 * disable queues possible for vf. Give only necessary flags to
3590 * iavf_down and save other to set them right before iavf_close()
3591 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
3592 * iavf will be in DOWN state.
3593 */
3594 aq_to_restore = adapter->aq_required;
3595 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
3596
3597 /* Remove flags which we do not want to send after close or we want to
3598 * send before disable queues.
3599 */
3600 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
3601 IAVF_FLAG_AQ_ENABLE_QUEUES |
3602 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
3603 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
3604 IAVF_FLAG_AQ_ADD_MAC_FILTER |
3605 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
3606 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
3607 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
3608
3609 iavf_down(adapter);
3610 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
3611 iavf_free_traffic_irqs(adapter);
3612
3613 mutex_unlock(&adapter->crit_lock);
3614
3615 /* We explicitly don't free resources here because the hardware is
3616 * still active and can DMA into memory. Resources are cleared in
3617 * iavf_virtchnl_completion() after we get confirmation from the PF
3618 * driver that the rings have been stopped.
3619 *
3620 * Also, we wait for state to transition to __IAVF_DOWN before
3621 * returning. State change occurs in iavf_virtchnl_completion() after
3622 * VF resources are released (which occurs after PF driver processes and
3623 * responds to admin queue commands).
3624 */
3625
3626 status = wait_event_timeout(adapter->down_waitqueue,
3627 adapter->state == __IAVF_DOWN,
3628 msecs_to_jiffies(500));
3629 if (!status)
3630 netdev_warn(netdev, "Device resources not yet released\n");
3631
3632 mutex_lock(&adapter->crit_lock);
3633 adapter->aq_required |= aq_to_restore;
3634 mutex_unlock(&adapter->crit_lock);
3635 return 0;
3636 }
3637
3638 /**
3639 * iavf_change_mtu - Change the Maximum Transfer Unit
3640 * @netdev: network interface device structure
3641 * @new_mtu: new value for maximum frame size
3642 *
3643 * Returns 0 on success, negative on failure
3644 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)3645 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3646 {
3647 struct iavf_adapter *adapter = netdev_priv(netdev);
3648
3649 netdev->mtu = new_mtu;
3650 if (CLIENT_ENABLED(adapter)) {
3651 iavf_notify_client_l2_params(&adapter->vsi);
3652 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3653 }
3654
3655 if (netif_running(netdev)) {
3656 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3657 queue_work(iavf_wq, &adapter->reset_task);
3658 }
3659
3660 return 0;
3661 }
3662
3663 /**
3664 * iavf_set_features - set the netdev feature flags
3665 * @netdev: ptr to the netdev being adjusted
3666 * @features: the feature set that the stack is suggesting
3667 * Note: expects to be called while under rtnl_lock()
3668 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)3669 static int iavf_set_features(struct net_device *netdev,
3670 netdev_features_t features)
3671 {
3672 struct iavf_adapter *adapter = netdev_priv(netdev);
3673
3674 /* Don't allow enabling VLAN features when adapter is not capable
3675 * of VLAN offload/filtering
3676 */
3677 if (!VLAN_ALLOWED(adapter)) {
3678 netdev->hw_features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
3679 NETIF_F_HW_VLAN_CTAG_TX |
3680 NETIF_F_HW_VLAN_CTAG_FILTER);
3681 if (features & (NETIF_F_HW_VLAN_CTAG_RX |
3682 NETIF_F_HW_VLAN_CTAG_TX |
3683 NETIF_F_HW_VLAN_CTAG_FILTER))
3684 return -EINVAL;
3685 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3686 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3687 adapter->aq_required |=
3688 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3689 else
3690 adapter->aq_required |=
3691 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3692 }
3693
3694 return 0;
3695 }
3696
3697 /**
3698 * iavf_features_check - Validate encapsulated packet conforms to limits
3699 * @skb: skb buff
3700 * @dev: This physical port's netdev
3701 * @features: Offload features that the stack believes apply
3702 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3703 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3704 struct net_device *dev,
3705 netdev_features_t features)
3706 {
3707 size_t len;
3708
3709 /* No point in doing any of this if neither checksum nor GSO are
3710 * being requested for this frame. We can rule out both by just
3711 * checking for CHECKSUM_PARTIAL
3712 */
3713 if (skb->ip_summed != CHECKSUM_PARTIAL)
3714 return features;
3715
3716 /* We cannot support GSO if the MSS is going to be less than
3717 * 64 bytes. If it is then we need to drop support for GSO.
3718 */
3719 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3720 features &= ~NETIF_F_GSO_MASK;
3721
3722 /* MACLEN can support at most 63 words */
3723 len = skb_network_header(skb) - skb->data;
3724 if (len & ~(63 * 2))
3725 goto out_err;
3726
3727 /* IPLEN and EIPLEN can support at most 127 dwords */
3728 len = skb_transport_header(skb) - skb_network_header(skb);
3729 if (len & ~(127 * 4))
3730 goto out_err;
3731
3732 if (skb->encapsulation) {
3733 /* L4TUNLEN can support 127 words */
3734 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3735 if (len & ~(127 * 2))
3736 goto out_err;
3737
3738 /* IPLEN can support at most 127 dwords */
3739 len = skb_inner_transport_header(skb) -
3740 skb_inner_network_header(skb);
3741 if (len & ~(127 * 4))
3742 goto out_err;
3743 }
3744
3745 /* No need to validate L4LEN as TCP is the only protocol with a
3746 * a flexible value and we support all possible values supported
3747 * by TCP, which is at most 15 dwords
3748 */
3749
3750 return features;
3751 out_err:
3752 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3753 }
3754
3755 /**
3756 * iavf_fix_features - fix up the netdev feature bits
3757 * @netdev: our net device
3758 * @features: desired feature bits
3759 *
3760 * Returns fixed-up features bits
3761 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)3762 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3763 netdev_features_t features)
3764 {
3765 struct iavf_adapter *adapter = netdev_priv(netdev);
3766
3767 if (adapter->vf_res &&
3768 !(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3769 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3770 NETIF_F_HW_VLAN_CTAG_RX |
3771 NETIF_F_HW_VLAN_CTAG_FILTER);
3772
3773 return features;
3774 }
3775
3776 static const struct net_device_ops iavf_netdev_ops = {
3777 .ndo_open = iavf_open,
3778 .ndo_stop = iavf_close,
3779 .ndo_start_xmit = iavf_xmit_frame,
3780 .ndo_set_rx_mode = iavf_set_rx_mode,
3781 .ndo_validate_addr = eth_validate_addr,
3782 .ndo_set_mac_address = iavf_set_mac,
3783 .ndo_change_mtu = iavf_change_mtu,
3784 .ndo_tx_timeout = iavf_tx_timeout,
3785 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3786 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3787 .ndo_features_check = iavf_features_check,
3788 .ndo_fix_features = iavf_fix_features,
3789 .ndo_set_features = iavf_set_features,
3790 .ndo_setup_tc = iavf_setup_tc,
3791 };
3792
3793 /**
3794 * iavf_check_reset_complete - check that VF reset is complete
3795 * @hw: pointer to hw struct
3796 *
3797 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3798 **/
iavf_check_reset_complete(struct iavf_hw * hw)3799 static int iavf_check_reset_complete(struct iavf_hw *hw)
3800 {
3801 u32 rstat;
3802 int i;
3803
3804 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3805 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3806 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3807 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3808 (rstat == VIRTCHNL_VFR_COMPLETED))
3809 return 0;
3810 usleep_range(10, 20);
3811 }
3812 return -EBUSY;
3813 }
3814
3815 /**
3816 * iavf_process_config - Process the config information we got from the PF
3817 * @adapter: board private structure
3818 *
3819 * Verify that we have a valid config struct, and set up our netdev features
3820 * and our VSI struct.
3821 **/
iavf_process_config(struct iavf_adapter * adapter)3822 int iavf_process_config(struct iavf_adapter *adapter)
3823 {
3824 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3825 int i, num_req_queues = adapter->num_req_queues;
3826 struct net_device *netdev = adapter->netdev;
3827 struct iavf_vsi *vsi = &adapter->vsi;
3828 netdev_features_t hw_enc_features;
3829 netdev_features_t hw_features;
3830
3831 /* got VF config message back from PF, now we can parse it */
3832 for (i = 0; i < vfres->num_vsis; i++) {
3833 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3834 adapter->vsi_res = &vfres->vsi_res[i];
3835 }
3836 if (!adapter->vsi_res) {
3837 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3838 return -ENODEV;
3839 }
3840
3841 if (num_req_queues &&
3842 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3843 /* Problem. The PF gave us fewer queues than what we had
3844 * negotiated in our request. Need a reset to see if we can't
3845 * get back to a working state.
3846 */
3847 dev_err(&adapter->pdev->dev,
3848 "Requested %d queues, but PF only gave us %d.\n",
3849 num_req_queues,
3850 adapter->vsi_res->num_queue_pairs);
3851 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3852 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3853 iavf_schedule_reset(adapter);
3854 return -ENODEV;
3855 }
3856 adapter->num_req_queues = 0;
3857
3858 hw_enc_features = NETIF_F_SG |
3859 NETIF_F_IP_CSUM |
3860 NETIF_F_IPV6_CSUM |
3861 NETIF_F_HIGHDMA |
3862 NETIF_F_SOFT_FEATURES |
3863 NETIF_F_TSO |
3864 NETIF_F_TSO_ECN |
3865 NETIF_F_TSO6 |
3866 NETIF_F_SCTP_CRC |
3867 NETIF_F_RXHASH |
3868 NETIF_F_RXCSUM |
3869 0;
3870
3871 /* advertise to stack only if offloads for encapsulated packets is
3872 * supported
3873 */
3874 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3875 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3876 NETIF_F_GSO_GRE |
3877 NETIF_F_GSO_GRE_CSUM |
3878 NETIF_F_GSO_IPXIP4 |
3879 NETIF_F_GSO_IPXIP6 |
3880 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3881 NETIF_F_GSO_PARTIAL |
3882 0;
3883
3884 if (!(vfres->vf_cap_flags &
3885 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3886 netdev->gso_partial_features |=
3887 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3888
3889 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3890 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3891 netdev->hw_enc_features |= hw_enc_features;
3892 }
3893 /* record features VLANs can make use of */
3894 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3895
3896 /* Write features and hw_features separately to avoid polluting
3897 * with, or dropping, features that are set when we registered.
3898 */
3899 hw_features = hw_enc_features;
3900
3901 /* Enable VLAN features if supported */
3902 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3903 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3904 NETIF_F_HW_VLAN_CTAG_RX);
3905 /* Enable cloud filter if ADQ is supported */
3906 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3907 hw_features |= NETIF_F_HW_TC;
3908 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
3909 hw_features |= NETIF_F_GSO_UDP_L4;
3910
3911 netdev->hw_features |= hw_features;
3912
3913 netdev->features |= hw_features;
3914
3915 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3916 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3917
3918 netdev->priv_flags |= IFF_UNICAST_FLT;
3919
3920 /* Do not turn on offloads when they are requested to be turned off.
3921 * TSO needs minimum 576 bytes to work correctly.
3922 */
3923 if (netdev->wanted_features) {
3924 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3925 netdev->mtu < 576)
3926 netdev->features &= ~NETIF_F_TSO;
3927 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3928 netdev->mtu < 576)
3929 netdev->features &= ~NETIF_F_TSO6;
3930 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3931 netdev->features &= ~NETIF_F_TSO_ECN;
3932 if (!(netdev->wanted_features & NETIF_F_GRO))
3933 netdev->features &= ~NETIF_F_GRO;
3934 if (!(netdev->wanted_features & NETIF_F_GSO))
3935 netdev->features &= ~NETIF_F_GSO;
3936 }
3937
3938 adapter->vsi.id = adapter->vsi_res->vsi_id;
3939
3940 adapter->vsi.back = adapter;
3941 adapter->vsi.base_vector = 1;
3942 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3943 vsi->netdev = adapter->netdev;
3944 vsi->qs_handle = adapter->vsi_res->qset_handle;
3945 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3946 adapter->rss_key_size = vfres->rss_key_size;
3947 adapter->rss_lut_size = vfres->rss_lut_size;
3948 } else {
3949 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3950 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3951 }
3952
3953 return 0;
3954 }
3955
3956 /**
3957 * iavf_shutdown - Shutdown the device in preparation for a reboot
3958 * @pdev: pci device structure
3959 **/
iavf_shutdown(struct pci_dev * pdev)3960 static void iavf_shutdown(struct pci_dev *pdev)
3961 {
3962 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
3963 struct net_device *netdev = adapter->netdev;
3964
3965 netif_device_detach(netdev);
3966
3967 if (netif_running(netdev))
3968 iavf_close(netdev);
3969
3970 if (iavf_lock_timeout(&adapter->crit_lock, 5000))
3971 dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
3972 /* Prevent the watchdog from running. */
3973 iavf_change_state(adapter, __IAVF_REMOVE);
3974 adapter->aq_required = 0;
3975 mutex_unlock(&adapter->crit_lock);
3976
3977 #ifdef CONFIG_PM
3978 pci_save_state(pdev);
3979
3980 #endif
3981 pci_disable_device(pdev);
3982 }
3983
3984 /**
3985 * iavf_probe - Device Initialization Routine
3986 * @pdev: PCI device information struct
3987 * @ent: entry in iavf_pci_tbl
3988 *
3989 * Returns 0 on success, negative on failure
3990 *
3991 * iavf_probe initializes an adapter identified by a pci_dev structure.
3992 * The OS initialization, configuring of the adapter private structure,
3993 * and a hardware reset occur.
3994 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3995 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3996 {
3997 struct net_device *netdev;
3998 struct iavf_adapter *adapter = NULL;
3999 struct iavf_hw *hw = NULL;
4000 int err;
4001
4002 err = pci_enable_device(pdev);
4003 if (err)
4004 return err;
4005
4006 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4007 if (err) {
4008 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4009 if (err) {
4010 dev_err(&pdev->dev,
4011 "DMA configuration failed: 0x%x\n", err);
4012 goto err_dma;
4013 }
4014 }
4015
4016 err = pci_request_regions(pdev, iavf_driver_name);
4017 if (err) {
4018 dev_err(&pdev->dev,
4019 "pci_request_regions failed 0x%x\n", err);
4020 goto err_pci_reg;
4021 }
4022
4023 pci_enable_pcie_error_reporting(pdev);
4024
4025 pci_set_master(pdev);
4026
4027 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4028 IAVF_MAX_REQ_QUEUES);
4029 if (!netdev) {
4030 err = -ENOMEM;
4031 goto err_alloc_etherdev;
4032 }
4033
4034 SET_NETDEV_DEV(netdev, &pdev->dev);
4035
4036 pci_set_drvdata(pdev, netdev);
4037 adapter = netdev_priv(netdev);
4038
4039 adapter->netdev = netdev;
4040 adapter->pdev = pdev;
4041
4042 hw = &adapter->hw;
4043 hw->back = adapter;
4044
4045 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4046 iavf_change_state(adapter, __IAVF_STARTUP);
4047
4048 /* Call save state here because it relies on the adapter struct. */
4049 pci_save_state(pdev);
4050
4051 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4052 pci_resource_len(pdev, 0));
4053 if (!hw->hw_addr) {
4054 err = -EIO;
4055 goto err_ioremap;
4056 }
4057 hw->vendor_id = pdev->vendor;
4058 hw->device_id = pdev->device;
4059 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4060 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4061 hw->subsystem_device_id = pdev->subsystem_device;
4062 hw->bus.device = PCI_SLOT(pdev->devfn);
4063 hw->bus.func = PCI_FUNC(pdev->devfn);
4064 hw->bus.bus_id = pdev->bus->number;
4065
4066 /* set up the locks for the AQ, do this only once in probe
4067 * and destroy them only once in remove
4068 */
4069 mutex_init(&adapter->crit_lock);
4070 mutex_init(&adapter->client_lock);
4071 mutex_init(&hw->aq.asq_mutex);
4072 mutex_init(&hw->aq.arq_mutex);
4073
4074 spin_lock_init(&adapter->mac_vlan_list_lock);
4075 spin_lock_init(&adapter->cloud_filter_list_lock);
4076 spin_lock_init(&adapter->fdir_fltr_lock);
4077 spin_lock_init(&adapter->adv_rss_lock);
4078
4079 INIT_LIST_HEAD(&adapter->mac_filter_list);
4080 INIT_LIST_HEAD(&adapter->vlan_filter_list);
4081 INIT_LIST_HEAD(&adapter->cloud_filter_list);
4082 INIT_LIST_HEAD(&adapter->fdir_list_head);
4083 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4084
4085 INIT_WORK(&adapter->reset_task, iavf_reset_task);
4086 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
4087 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4088 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4089 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
4090 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4091
4092 /* Setup the wait queue for indicating transition to down status */
4093 init_waitqueue_head(&adapter->down_waitqueue);
4094
4095 return 0;
4096
4097 err_ioremap:
4098 free_netdev(netdev);
4099 err_alloc_etherdev:
4100 pci_disable_pcie_error_reporting(pdev);
4101 pci_release_regions(pdev);
4102 err_pci_reg:
4103 err_dma:
4104 pci_disable_device(pdev);
4105 return err;
4106 }
4107
4108 /**
4109 * iavf_suspend - Power management suspend routine
4110 * @dev_d: device info pointer
4111 *
4112 * Called when the system (VM) is entering sleep/suspend.
4113 **/
iavf_suspend(struct device * dev_d)4114 static int __maybe_unused iavf_suspend(struct device *dev_d)
4115 {
4116 struct net_device *netdev = dev_get_drvdata(dev_d);
4117 struct iavf_adapter *adapter = netdev_priv(netdev);
4118
4119 netif_device_detach(netdev);
4120
4121 while (!mutex_trylock(&adapter->crit_lock))
4122 usleep_range(500, 1000);
4123
4124 if (netif_running(netdev)) {
4125 rtnl_lock();
4126 iavf_down(adapter);
4127 rtnl_unlock();
4128 }
4129 iavf_free_misc_irq(adapter);
4130 iavf_reset_interrupt_capability(adapter);
4131
4132 mutex_unlock(&adapter->crit_lock);
4133
4134 return 0;
4135 }
4136
4137 /**
4138 * iavf_resume - Power management resume routine
4139 * @dev_d: device info pointer
4140 *
4141 * Called when the system (VM) is resumed from sleep/suspend.
4142 **/
iavf_resume(struct device * dev_d)4143 static int __maybe_unused iavf_resume(struct device *dev_d)
4144 {
4145 struct pci_dev *pdev = to_pci_dev(dev_d);
4146 struct iavf_adapter *adapter;
4147 u32 err;
4148
4149 adapter = iavf_pdev_to_adapter(pdev);
4150
4151 pci_set_master(pdev);
4152
4153 rtnl_lock();
4154 err = iavf_set_interrupt_capability(adapter);
4155 if (err) {
4156 rtnl_unlock();
4157 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
4158 return err;
4159 }
4160 err = iavf_request_misc_irq(adapter);
4161 rtnl_unlock();
4162 if (err) {
4163 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
4164 return err;
4165 }
4166
4167 queue_work(iavf_wq, &adapter->reset_task);
4168
4169 netif_device_attach(adapter->netdev);
4170
4171 return err;
4172 }
4173
4174 /**
4175 * iavf_remove - Device Removal Routine
4176 * @pdev: PCI device information struct
4177 *
4178 * iavf_remove is called by the PCI subsystem to alert the driver
4179 * that it should release a PCI device. The could be caused by a
4180 * Hot-Plug event, or because the driver is going to be removed from
4181 * memory.
4182 **/
iavf_remove(struct pci_dev * pdev)4183 static void iavf_remove(struct pci_dev *pdev)
4184 {
4185 struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4186 struct iavf_fdir_fltr *fdir, *fdirtmp;
4187 struct iavf_vlan_filter *vlf, *vlftmp;
4188 struct iavf_cloud_filter *cf, *cftmp;
4189 struct iavf_adv_rss *rss, *rsstmp;
4190 struct iavf_mac_filter *f, *ftmp;
4191 struct net_device *netdev;
4192 struct iavf_hw *hw;
4193 int err;
4194
4195 netdev = adapter->netdev;
4196 hw = &adapter->hw;
4197
4198 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
4199 return;
4200
4201 /* Wait until port initialization is complete.
4202 * There are flows where register/unregister netdev may race.
4203 */
4204 while (1) {
4205 mutex_lock(&adapter->crit_lock);
4206 if (adapter->state == __IAVF_RUNNING ||
4207 adapter->state == __IAVF_DOWN ||
4208 adapter->state == __IAVF_INIT_FAILED) {
4209 mutex_unlock(&adapter->crit_lock);
4210 break;
4211 }
4212 /* Simply return if we already went through iavf_shutdown */
4213 if (adapter->state == __IAVF_REMOVE) {
4214 mutex_unlock(&adapter->crit_lock);
4215 return;
4216 }
4217
4218 mutex_unlock(&adapter->crit_lock);
4219 usleep_range(500, 1000);
4220 }
4221 cancel_delayed_work_sync(&adapter->watchdog_task);
4222
4223 if (adapter->netdev_registered) {
4224 rtnl_lock();
4225 unregister_netdevice(netdev);
4226 adapter->netdev_registered = false;
4227 rtnl_unlock();
4228 }
4229 if (CLIENT_ALLOWED(adapter)) {
4230 err = iavf_lan_del_device(adapter);
4231 if (err)
4232 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
4233 err);
4234 }
4235
4236 mutex_lock(&adapter->crit_lock);
4237 dev_info(&adapter->pdev->dev, "Remove device\n");
4238 iavf_change_state(adapter, __IAVF_REMOVE);
4239
4240 iavf_request_reset(adapter);
4241 msleep(50);
4242 /* If the FW isn't responding, kick it once, but only once. */
4243 if (!iavf_asq_done(hw)) {
4244 iavf_request_reset(adapter);
4245 msleep(50);
4246 }
4247
4248 iavf_misc_irq_disable(adapter);
4249 /* Shut down all the garbage mashers on the detention level */
4250 cancel_work_sync(&adapter->reset_task);
4251 cancel_delayed_work_sync(&adapter->watchdog_task);
4252 cancel_work_sync(&adapter->adminq_task);
4253 cancel_delayed_work_sync(&adapter->client_task);
4254
4255 adapter->aq_required = 0;
4256 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
4257
4258 iavf_free_all_tx_resources(adapter);
4259 iavf_free_all_rx_resources(adapter);
4260 iavf_free_misc_irq(adapter);
4261
4262 iavf_reset_interrupt_capability(adapter);
4263 iavf_free_q_vectors(adapter);
4264
4265 iavf_free_rss(adapter);
4266
4267 if (hw->aq.asq.count)
4268 iavf_shutdown_adminq(hw);
4269
4270 /* destroy the locks only once, here */
4271 mutex_destroy(&hw->aq.arq_mutex);
4272 mutex_destroy(&hw->aq.asq_mutex);
4273 mutex_destroy(&adapter->client_lock);
4274 mutex_unlock(&adapter->crit_lock);
4275 mutex_destroy(&adapter->crit_lock);
4276
4277 iounmap(hw->hw_addr);
4278 pci_release_regions(pdev);
4279 iavf_free_queues(adapter);
4280 kfree(adapter->vf_res);
4281 spin_lock_bh(&adapter->mac_vlan_list_lock);
4282 /* If we got removed before an up/down sequence, we've got a filter
4283 * hanging out there that we need to get rid of.
4284 */
4285 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
4286 list_del(&f->list);
4287 kfree(f);
4288 }
4289 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
4290 list) {
4291 list_del(&vlf->list);
4292 kfree(vlf);
4293 }
4294
4295 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4296
4297 spin_lock_bh(&adapter->cloud_filter_list_lock);
4298 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
4299 list_del(&cf->list);
4300 kfree(cf);
4301 }
4302 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4303
4304 spin_lock_bh(&adapter->fdir_fltr_lock);
4305 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
4306 list_del(&fdir->list);
4307 kfree(fdir);
4308 }
4309 spin_unlock_bh(&adapter->fdir_fltr_lock);
4310
4311 spin_lock_bh(&adapter->adv_rss_lock);
4312 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
4313 list) {
4314 list_del(&rss->list);
4315 kfree(rss);
4316 }
4317 spin_unlock_bh(&adapter->adv_rss_lock);
4318
4319 free_netdev(netdev);
4320
4321 pci_disable_pcie_error_reporting(pdev);
4322
4323 pci_disable_device(pdev);
4324 }
4325
4326 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
4327
4328 static struct pci_driver iavf_driver = {
4329 .name = iavf_driver_name,
4330 .id_table = iavf_pci_tbl,
4331 .probe = iavf_probe,
4332 .remove = iavf_remove,
4333 .driver.pm = &iavf_pm_ops,
4334 .shutdown = iavf_shutdown,
4335 };
4336
4337 /**
4338 * iavf_init_module - Driver Registration Routine
4339 *
4340 * iavf_init_module is the first routine called when the driver is
4341 * loaded. All it does is register with the PCI subsystem.
4342 **/
iavf_init_module(void)4343 static int __init iavf_init_module(void)
4344 {
4345 int ret;
4346
4347 pr_info("iavf: %s\n", iavf_driver_string);
4348
4349 pr_info("%s\n", iavf_copyright);
4350
4351 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4352 iavf_driver_name);
4353 if (!iavf_wq) {
4354 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4355 return -ENOMEM;
4356 }
4357
4358 ret = pci_register_driver(&iavf_driver);
4359 if (ret)
4360 destroy_workqueue(iavf_wq);
4361
4362 return ret;
4363 }
4364
4365 module_init(iavf_init_module);
4366
4367 /**
4368 * iavf_exit_module - Driver Exit Cleanup Routine
4369 *
4370 * iavf_exit_module is called just before the driver is removed
4371 * from memory.
4372 **/
iavf_exit_module(void)4373 static void __exit iavf_exit_module(void)
4374 {
4375 pci_unregister_driver(&iavf_driver);
4376 destroy_workqueue(iavf_wq);
4377 }
4378
4379 module_exit(iavf_exit_module);
4380
4381 /* iavf_main.c */
4382