1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5
6 #include "iavf.h"
7 #include "iavf_trace.h"
8 #include "iavf_prototype.h"
9
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)10 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
11 u32 td_tag)
12 {
13 return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
14 ((u64)td_cmd << IAVF_TXD_QW1_CMD_SHIFT) |
15 ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
16 ((u64)size << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
17 ((u64)td_tag << IAVF_TXD_QW1_L2TAG1_SHIFT));
18 }
19
20 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
21
22 /**
23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
24 * @ring: the ring that owns the buffer
25 * @tx_buffer: the buffer to free
26 **/
iavf_unmap_and_free_tx_resource(struct iavf_ring * ring,struct iavf_tx_buffer * tx_buffer)27 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
28 struct iavf_tx_buffer *tx_buffer)
29 {
30 if (tx_buffer->skb) {
31 if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
32 kfree(tx_buffer->raw_buf);
33 else
34 dev_kfree_skb_any(tx_buffer->skb);
35 if (dma_unmap_len(tx_buffer, len))
36 dma_unmap_single(ring->dev,
37 dma_unmap_addr(tx_buffer, dma),
38 dma_unmap_len(tx_buffer, len),
39 DMA_TO_DEVICE);
40 } else if (dma_unmap_len(tx_buffer, len)) {
41 dma_unmap_page(ring->dev,
42 dma_unmap_addr(tx_buffer, dma),
43 dma_unmap_len(tx_buffer, len),
44 DMA_TO_DEVICE);
45 }
46
47 tx_buffer->next_to_watch = NULL;
48 tx_buffer->skb = NULL;
49 dma_unmap_len_set(tx_buffer, len, 0);
50 /* tx_buffer must be completely set up in the transmit path */
51 }
52
53 /**
54 * iavf_clean_tx_ring - Free any empty Tx buffers
55 * @tx_ring: ring to be cleaned
56 **/
iavf_clean_tx_ring(struct iavf_ring * tx_ring)57 void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
58 {
59 unsigned long bi_size;
60 u16 i;
61
62 /* ring already cleared, nothing to do */
63 if (!tx_ring->tx_bi)
64 return;
65
66 /* Free all the Tx ring sk_buffs */
67 for (i = 0; i < tx_ring->count; i++)
68 iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
69
70 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
71 memset(tx_ring->tx_bi, 0, bi_size);
72
73 /* Zero out the descriptor ring */
74 memset(tx_ring->desc, 0, tx_ring->size);
75
76 tx_ring->next_to_use = 0;
77 tx_ring->next_to_clean = 0;
78
79 if (!tx_ring->netdev)
80 return;
81
82 /* cleanup Tx queue statistics */
83 netdev_tx_reset_queue(txring_txq(tx_ring));
84 }
85
86 /**
87 * iavf_free_tx_resources - Free Tx resources per queue
88 * @tx_ring: Tx descriptor ring for a specific queue
89 *
90 * Free all transmit software resources
91 **/
iavf_free_tx_resources(struct iavf_ring * tx_ring)92 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
93 {
94 iavf_clean_tx_ring(tx_ring);
95 kfree(tx_ring->tx_bi);
96 tx_ring->tx_bi = NULL;
97
98 if (tx_ring->desc) {
99 dma_free_coherent(tx_ring->dev, tx_ring->size,
100 tx_ring->desc, tx_ring->dma);
101 tx_ring->desc = NULL;
102 }
103 }
104
105 /**
106 * iavf_get_tx_pending - how many Tx descriptors not processed
107 * @ring: the ring of descriptors
108 * @in_sw: is tx_pending being checked in SW or HW
109 *
110 * Since there is no access to the ring head register
111 * in XL710, we need to use our local copies
112 **/
iavf_get_tx_pending(struct iavf_ring * ring,bool in_sw)113 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
114 {
115 u32 head, tail;
116
117 /* underlying hardware might not allow access and/or always return
118 * 0 for the head/tail registers so just use the cached values
119 */
120 head = ring->next_to_clean;
121 tail = ring->next_to_use;
122
123 if (head != tail)
124 return (head < tail) ?
125 tail - head : (tail + ring->count - head);
126
127 return 0;
128 }
129
130 /**
131 * iavf_detect_recover_hung - Function to detect and recover hung_queues
132 * @vsi: pointer to vsi struct with tx queues
133 *
134 * VSI has netdev and netdev has TX queues. This function is to check each of
135 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
136 **/
iavf_detect_recover_hung(struct iavf_vsi * vsi)137 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
138 {
139 struct iavf_ring *tx_ring = NULL;
140 struct net_device *netdev;
141 unsigned int i;
142 int packets;
143
144 if (!vsi)
145 return;
146
147 if (test_bit(__IAVF_VSI_DOWN, vsi->state))
148 return;
149
150 netdev = vsi->netdev;
151 if (!netdev)
152 return;
153
154 if (!netif_carrier_ok(netdev))
155 return;
156
157 for (i = 0; i < vsi->back->num_active_queues; i++) {
158 tx_ring = &vsi->back->tx_rings[i];
159 if (tx_ring && tx_ring->desc) {
160 /* If packet counter has not changed the queue is
161 * likely stalled, so force an interrupt for this
162 * queue.
163 *
164 * prev_pkt_ctr would be negative if there was no
165 * pending work.
166 */
167 packets = tx_ring->stats.packets & INT_MAX;
168 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
169 iavf_force_wb(vsi, tx_ring->q_vector);
170 continue;
171 }
172
173 /* Memory barrier between read of packet count and call
174 * to iavf_get_tx_pending()
175 */
176 smp_rmb();
177 tx_ring->tx_stats.prev_pkt_ctr =
178 iavf_get_tx_pending(tx_ring, true) ? packets : -1;
179 }
180 }
181 }
182
183 #define WB_STRIDE 4
184
185 /**
186 * iavf_clean_tx_irq - Reclaim resources after transmit completes
187 * @vsi: the VSI we care about
188 * @tx_ring: Tx ring to clean
189 * @napi_budget: Used to determine if we are in netpoll
190 *
191 * Returns true if there's any budget left (e.g. the clean is finished)
192 **/
iavf_clean_tx_irq(struct iavf_vsi * vsi,struct iavf_ring * tx_ring,int napi_budget)193 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
194 struct iavf_ring *tx_ring, int napi_budget)
195 {
196 int i = tx_ring->next_to_clean;
197 struct iavf_tx_buffer *tx_buf;
198 struct iavf_tx_desc *tx_desc;
199 unsigned int total_bytes = 0, total_packets = 0;
200 unsigned int budget = vsi->work_limit;
201
202 tx_buf = &tx_ring->tx_bi[i];
203 tx_desc = IAVF_TX_DESC(tx_ring, i);
204 i -= tx_ring->count;
205
206 do {
207 struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
208
209 /* if next_to_watch is not set then there is no work pending */
210 if (!eop_desc)
211 break;
212
213 /* prevent any other reads prior to eop_desc */
214 smp_rmb();
215
216 iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
217 /* if the descriptor isn't done, no work yet to do */
218 if (!(eop_desc->cmd_type_offset_bsz &
219 cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
220 break;
221
222 /* clear next_to_watch to prevent false hangs */
223 tx_buf->next_to_watch = NULL;
224
225 /* update the statistics for this packet */
226 total_bytes += tx_buf->bytecount;
227 total_packets += tx_buf->gso_segs;
228
229 /* free the skb */
230 napi_consume_skb(tx_buf->skb, napi_budget);
231
232 /* unmap skb header data */
233 dma_unmap_single(tx_ring->dev,
234 dma_unmap_addr(tx_buf, dma),
235 dma_unmap_len(tx_buf, len),
236 DMA_TO_DEVICE);
237
238 /* clear tx_buffer data */
239 tx_buf->skb = NULL;
240 dma_unmap_len_set(tx_buf, len, 0);
241
242 /* unmap remaining buffers */
243 while (tx_desc != eop_desc) {
244 iavf_trace(clean_tx_irq_unmap,
245 tx_ring, tx_desc, tx_buf);
246
247 tx_buf++;
248 tx_desc++;
249 i++;
250 if (unlikely(!i)) {
251 i -= tx_ring->count;
252 tx_buf = tx_ring->tx_bi;
253 tx_desc = IAVF_TX_DESC(tx_ring, 0);
254 }
255
256 /* unmap any remaining paged data */
257 if (dma_unmap_len(tx_buf, len)) {
258 dma_unmap_page(tx_ring->dev,
259 dma_unmap_addr(tx_buf, dma),
260 dma_unmap_len(tx_buf, len),
261 DMA_TO_DEVICE);
262 dma_unmap_len_set(tx_buf, len, 0);
263 }
264 }
265
266 /* move us one more past the eop_desc for start of next pkt */
267 tx_buf++;
268 tx_desc++;
269 i++;
270 if (unlikely(!i)) {
271 i -= tx_ring->count;
272 tx_buf = tx_ring->tx_bi;
273 tx_desc = IAVF_TX_DESC(tx_ring, 0);
274 }
275
276 prefetch(tx_desc);
277
278 /* update budget accounting */
279 budget--;
280 } while (likely(budget));
281
282 i += tx_ring->count;
283 tx_ring->next_to_clean = i;
284 u64_stats_update_begin(&tx_ring->syncp);
285 tx_ring->stats.bytes += total_bytes;
286 tx_ring->stats.packets += total_packets;
287 u64_stats_update_end(&tx_ring->syncp);
288 tx_ring->q_vector->tx.total_bytes += total_bytes;
289 tx_ring->q_vector->tx.total_packets += total_packets;
290
291 if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
292 /* check to see if there are < 4 descriptors
293 * waiting to be written back, then kick the hardware to force
294 * them to be written back in case we stay in NAPI.
295 * In this mode on X722 we do not enable Interrupt.
296 */
297 unsigned int j = iavf_get_tx_pending(tx_ring, false);
298
299 if (budget &&
300 ((j / WB_STRIDE) == 0) && (j > 0) &&
301 !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
302 (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
303 tx_ring->arm_wb = true;
304 }
305
306 /* notify netdev of completed buffers */
307 netdev_tx_completed_queue(txring_txq(tx_ring),
308 total_packets, total_bytes);
309
310 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
311 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
312 (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
313 /* Make sure that anybody stopping the queue after this
314 * sees the new next_to_clean.
315 */
316 smp_mb();
317 if (__netif_subqueue_stopped(tx_ring->netdev,
318 tx_ring->queue_index) &&
319 !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
320 netif_wake_subqueue(tx_ring->netdev,
321 tx_ring->queue_index);
322 ++tx_ring->tx_stats.restart_queue;
323 }
324 }
325
326 return !!budget;
327 }
328
329 /**
330 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
331 * @vsi: the VSI we care about
332 * @q_vector: the vector on which to enable writeback
333 *
334 **/
iavf_enable_wb_on_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)335 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
336 struct iavf_q_vector *q_vector)
337 {
338 u16 flags = q_vector->tx.ring[0].flags;
339 u32 val;
340
341 if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
342 return;
343
344 if (q_vector->arm_wb_state)
345 return;
346
347 val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
348 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
349
350 wr32(&vsi->back->hw,
351 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
352 q_vector->arm_wb_state = true;
353 }
354
355 /**
356 * iavf_force_wb - Issue SW Interrupt so HW does a wb
357 * @vsi: the VSI we care about
358 * @q_vector: the vector on which to force writeback
359 *
360 **/
iavf_force_wb(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)361 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
362 {
363 u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
364 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
365 IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
366 IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
367 /* allow 00 to be written to the index */;
368
369 wr32(&vsi->back->hw,
370 IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
371 val);
372 }
373
iavf_container_is_rx(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)374 static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
375 struct iavf_ring_container *rc)
376 {
377 return &q_vector->rx == rc;
378 }
379
iavf_itr_divisor(struct iavf_q_vector * q_vector)380 static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
381 {
382 unsigned int divisor;
383
384 switch (q_vector->adapter->link_speed) {
385 case VIRTCHNL_LINK_SPEED_40GB:
386 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
387 break;
388 case VIRTCHNL_LINK_SPEED_25GB:
389 case VIRTCHNL_LINK_SPEED_20GB:
390 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
391 break;
392 default:
393 case VIRTCHNL_LINK_SPEED_10GB:
394 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
395 break;
396 case VIRTCHNL_LINK_SPEED_1GB:
397 case VIRTCHNL_LINK_SPEED_100MB:
398 divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
399 break;
400 }
401
402 return divisor;
403 }
404
405 /**
406 * iavf_update_itr - update the dynamic ITR value based on statistics
407 * @q_vector: structure containing interrupt and ring information
408 * @rc: structure containing ring performance data
409 *
410 * Stores a new ITR value based on packets and byte
411 * counts during the last interrupt. The advantage of per interrupt
412 * computation is faster updates and more accurate ITR for the current
413 * traffic pattern. Constants in this function were computed
414 * based on theoretical maximum wire speed and thresholds were set based
415 * on testing data as well as attempting to minimize response time
416 * while increasing bulk throughput.
417 **/
iavf_update_itr(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)418 static void iavf_update_itr(struct iavf_q_vector *q_vector,
419 struct iavf_ring_container *rc)
420 {
421 unsigned int avg_wire_size, packets, bytes, itr;
422 unsigned long next_update = jiffies;
423
424 /* If we don't have any rings just leave ourselves set for maximum
425 * possible latency so we take ourselves out of the equation.
426 */
427 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
428 return;
429
430 /* For Rx we want to push the delay up and default to low latency.
431 * for Tx we want to pull the delay down and default to high latency.
432 */
433 itr = iavf_container_is_rx(q_vector, rc) ?
434 IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
435 IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
436
437 /* If we didn't update within up to 1 - 2 jiffies we can assume
438 * that either packets are coming in so slow there hasn't been
439 * any work, or that there is so much work that NAPI is dealing
440 * with interrupt moderation and we don't need to do anything.
441 */
442 if (time_after(next_update, rc->next_update))
443 goto clear_counts;
444
445 /* If itr_countdown is set it means we programmed an ITR within
446 * the last 4 interrupt cycles. This has a side effect of us
447 * potentially firing an early interrupt. In order to work around
448 * this we need to throw out any data received for a few
449 * interrupts following the update.
450 */
451 if (q_vector->itr_countdown) {
452 itr = rc->target_itr;
453 goto clear_counts;
454 }
455
456 packets = rc->total_packets;
457 bytes = rc->total_bytes;
458
459 if (iavf_container_is_rx(q_vector, rc)) {
460 /* If Rx there are 1 to 4 packets and bytes are less than
461 * 9000 assume insufficient data to use bulk rate limiting
462 * approach unless Tx is already in bulk rate limiting. We
463 * are likely latency driven.
464 */
465 if (packets && packets < 4 && bytes < 9000 &&
466 (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
467 itr = IAVF_ITR_ADAPTIVE_LATENCY;
468 goto adjust_by_size;
469 }
470 } else if (packets < 4) {
471 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
472 * bulk mode and we are receiving 4 or fewer packets just
473 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
474 * that the Rx can relax.
475 */
476 if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
477 (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
478 IAVF_ITR_ADAPTIVE_MAX_USECS)
479 goto clear_counts;
480 } else if (packets > 32) {
481 /* If we have processed over 32 packets in a single interrupt
482 * for Tx assume we need to switch over to "bulk" mode.
483 */
484 rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
485 }
486
487 /* We have no packets to actually measure against. This means
488 * either one of the other queues on this vector is active or
489 * we are a Tx queue doing TSO with too high of an interrupt rate.
490 *
491 * Between 4 and 56 we can assume that our current interrupt delay
492 * is only slightly too low. As such we should increase it by a small
493 * fixed amount.
494 */
495 if (packets < 56) {
496 itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
497 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
498 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
499 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
500 }
501 goto clear_counts;
502 }
503
504 if (packets <= 256) {
505 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
506 itr &= IAVF_ITR_MASK;
507
508 /* Between 56 and 112 is our "goldilocks" zone where we are
509 * working out "just right". Just report that our current
510 * ITR is good for us.
511 */
512 if (packets <= 112)
513 goto clear_counts;
514
515 /* If packet count is 128 or greater we are likely looking
516 * at a slight overrun of the delay we want. Try halving
517 * our delay to see if that will cut the number of packets
518 * in half per interrupt.
519 */
520 itr /= 2;
521 itr &= IAVF_ITR_MASK;
522 if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
523 itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
524
525 goto clear_counts;
526 }
527
528 /* The paths below assume we are dealing with a bulk ITR since
529 * number of packets is greater than 256. We are just going to have
530 * to compute a value and try to bring the count under control,
531 * though for smaller packet sizes there isn't much we can do as
532 * NAPI polling will likely be kicking in sooner rather than later.
533 */
534 itr = IAVF_ITR_ADAPTIVE_BULK;
535
536 adjust_by_size:
537 /* If packet counts are 256 or greater we can assume we have a gross
538 * overestimation of what the rate should be. Instead of trying to fine
539 * tune it just use the formula below to try and dial in an exact value
540 * give the current packet size of the frame.
541 */
542 avg_wire_size = bytes / packets;
543
544 /* The following is a crude approximation of:
545 * wmem_default / (size + overhead) = desired_pkts_per_int
546 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
547 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
548 *
549 * Assuming wmem_default is 212992 and overhead is 640 bytes per
550 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
551 * formula down to
552 *
553 * (170 * (size + 24)) / (size + 640) = ITR
554 *
555 * We first do some math on the packet size and then finally bitshift
556 * by 8 after rounding up. We also have to account for PCIe link speed
557 * difference as ITR scales based on this.
558 */
559 if (avg_wire_size <= 60) {
560 /* Start at 250k ints/sec */
561 avg_wire_size = 4096;
562 } else if (avg_wire_size <= 380) {
563 /* 250K ints/sec to 60K ints/sec */
564 avg_wire_size *= 40;
565 avg_wire_size += 1696;
566 } else if (avg_wire_size <= 1084) {
567 /* 60K ints/sec to 36K ints/sec */
568 avg_wire_size *= 15;
569 avg_wire_size += 11452;
570 } else if (avg_wire_size <= 1980) {
571 /* 36K ints/sec to 30K ints/sec */
572 avg_wire_size *= 5;
573 avg_wire_size += 22420;
574 } else {
575 /* plateau at a limit of 30K ints/sec */
576 avg_wire_size = 32256;
577 }
578
579 /* If we are in low latency mode halve our delay which doubles the
580 * rate to somewhere between 100K to 16K ints/sec
581 */
582 if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
583 avg_wire_size /= 2;
584
585 /* Resultant value is 256 times larger than it needs to be. This
586 * gives us room to adjust the value as needed to either increase
587 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
588 *
589 * Use addition as we have already recorded the new latency flag
590 * for the ITR value.
591 */
592 itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
593 IAVF_ITR_ADAPTIVE_MIN_INC;
594
595 if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
596 itr &= IAVF_ITR_ADAPTIVE_LATENCY;
597 itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
598 }
599
600 clear_counts:
601 /* write back value */
602 rc->target_itr = itr;
603
604 /* next update should occur within next jiffy */
605 rc->next_update = next_update + 1;
606
607 rc->total_bytes = 0;
608 rc->total_packets = 0;
609 }
610
611 /**
612 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
613 * @tx_ring: the tx ring to set up
614 *
615 * Return 0 on success, negative on error
616 **/
iavf_setup_tx_descriptors(struct iavf_ring * tx_ring)617 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
618 {
619 struct device *dev = tx_ring->dev;
620 int bi_size;
621
622 if (!dev)
623 return -ENOMEM;
624
625 /* warn if we are about to overwrite the pointer */
626 WARN_ON(tx_ring->tx_bi);
627 bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
628 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
629 if (!tx_ring->tx_bi)
630 goto err;
631
632 /* round up to nearest 4K */
633 tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
634 tx_ring->size = ALIGN(tx_ring->size, 4096);
635 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
636 &tx_ring->dma, GFP_KERNEL);
637 if (!tx_ring->desc) {
638 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
639 tx_ring->size);
640 goto err;
641 }
642
643 tx_ring->next_to_use = 0;
644 tx_ring->next_to_clean = 0;
645 tx_ring->tx_stats.prev_pkt_ctr = -1;
646 return 0;
647
648 err:
649 kfree(tx_ring->tx_bi);
650 tx_ring->tx_bi = NULL;
651 return -ENOMEM;
652 }
653
654 /**
655 * iavf_clean_rx_ring - Free Rx buffers
656 * @rx_ring: ring to be cleaned
657 **/
iavf_clean_rx_ring(struct iavf_ring * rx_ring)658 void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
659 {
660 unsigned long bi_size;
661 u16 i;
662
663 /* ring already cleared, nothing to do */
664 if (!rx_ring->rx_bi)
665 return;
666
667 if (rx_ring->skb) {
668 dev_kfree_skb(rx_ring->skb);
669 rx_ring->skb = NULL;
670 }
671
672 /* Free all the Rx ring sk_buffs */
673 for (i = 0; i < rx_ring->count; i++) {
674 struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
675
676 if (!rx_bi->page)
677 continue;
678
679 /* Invalidate cache lines that may have been written to by
680 * device so that we avoid corrupting memory.
681 */
682 dma_sync_single_range_for_cpu(rx_ring->dev,
683 rx_bi->dma,
684 rx_bi->page_offset,
685 rx_ring->rx_buf_len,
686 DMA_FROM_DEVICE);
687
688 /* free resources associated with mapping */
689 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
690 iavf_rx_pg_size(rx_ring),
691 DMA_FROM_DEVICE,
692 IAVF_RX_DMA_ATTR);
693
694 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
695
696 rx_bi->page = NULL;
697 rx_bi->page_offset = 0;
698 }
699
700 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
701 memset(rx_ring->rx_bi, 0, bi_size);
702
703 /* Zero out the descriptor ring */
704 memset(rx_ring->desc, 0, rx_ring->size);
705
706 rx_ring->next_to_alloc = 0;
707 rx_ring->next_to_clean = 0;
708 rx_ring->next_to_use = 0;
709 }
710
711 /**
712 * iavf_free_rx_resources - Free Rx resources
713 * @rx_ring: ring to clean the resources from
714 *
715 * Free all receive software resources
716 **/
iavf_free_rx_resources(struct iavf_ring * rx_ring)717 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
718 {
719 iavf_clean_rx_ring(rx_ring);
720 kfree(rx_ring->rx_bi);
721 rx_ring->rx_bi = NULL;
722
723 if (rx_ring->desc) {
724 dma_free_coherent(rx_ring->dev, rx_ring->size,
725 rx_ring->desc, rx_ring->dma);
726 rx_ring->desc = NULL;
727 }
728 }
729
730 /**
731 * iavf_setup_rx_descriptors - Allocate Rx descriptors
732 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
733 *
734 * Returns 0 on success, negative on failure
735 **/
iavf_setup_rx_descriptors(struct iavf_ring * rx_ring)736 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
737 {
738 struct device *dev = rx_ring->dev;
739 int bi_size;
740
741 /* warn if we are about to overwrite the pointer */
742 WARN_ON(rx_ring->rx_bi);
743 bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
744 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
745 if (!rx_ring->rx_bi)
746 goto err;
747
748 u64_stats_init(&rx_ring->syncp);
749
750 /* Round up to nearest 4K */
751 rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
752 rx_ring->size = ALIGN(rx_ring->size, 4096);
753 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
754 &rx_ring->dma, GFP_KERNEL);
755
756 if (!rx_ring->desc) {
757 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
758 rx_ring->size);
759 goto err;
760 }
761
762 rx_ring->next_to_alloc = 0;
763 rx_ring->next_to_clean = 0;
764 rx_ring->next_to_use = 0;
765
766 return 0;
767 err:
768 kfree(rx_ring->rx_bi);
769 rx_ring->rx_bi = NULL;
770 return -ENOMEM;
771 }
772
773 /**
774 * iavf_release_rx_desc - Store the new tail and head values
775 * @rx_ring: ring to bump
776 * @val: new head index
777 **/
iavf_release_rx_desc(struct iavf_ring * rx_ring,u32 val)778 static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
779 {
780 rx_ring->next_to_use = val;
781
782 /* update next to alloc since we have filled the ring */
783 rx_ring->next_to_alloc = val;
784
785 /* Force memory writes to complete before letting h/w
786 * know there are new descriptors to fetch. (Only
787 * applicable for weak-ordered memory model archs,
788 * such as IA-64).
789 */
790 wmb();
791 writel(val, rx_ring->tail);
792 }
793
794 /**
795 * iavf_rx_offset - Return expected offset into page to access data
796 * @rx_ring: Ring we are requesting offset of
797 *
798 * Returns the offset value for ring into the data buffer.
799 */
iavf_rx_offset(struct iavf_ring * rx_ring)800 static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
801 {
802 return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
803 }
804
805 /**
806 * iavf_alloc_mapped_page - recycle or make a new page
807 * @rx_ring: ring to use
808 * @bi: rx_buffer struct to modify
809 *
810 * Returns true if the page was successfully allocated or
811 * reused.
812 **/
iavf_alloc_mapped_page(struct iavf_ring * rx_ring,struct iavf_rx_buffer * bi)813 static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
814 struct iavf_rx_buffer *bi)
815 {
816 struct page *page = bi->page;
817 dma_addr_t dma;
818
819 /* since we are recycling buffers we should seldom need to alloc */
820 if (likely(page)) {
821 rx_ring->rx_stats.page_reuse_count++;
822 return true;
823 }
824
825 /* alloc new page for storage */
826 page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
827 if (unlikely(!page)) {
828 rx_ring->rx_stats.alloc_page_failed++;
829 return false;
830 }
831
832 /* map page for use */
833 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
834 iavf_rx_pg_size(rx_ring),
835 DMA_FROM_DEVICE,
836 IAVF_RX_DMA_ATTR);
837
838 /* if mapping failed free memory back to system since
839 * there isn't much point in holding memory we can't use
840 */
841 if (dma_mapping_error(rx_ring->dev, dma)) {
842 __free_pages(page, iavf_rx_pg_order(rx_ring));
843 rx_ring->rx_stats.alloc_page_failed++;
844 return false;
845 }
846
847 bi->dma = dma;
848 bi->page = page;
849 bi->page_offset = iavf_rx_offset(rx_ring);
850
851 /* initialize pagecnt_bias to 1 representing we fully own page */
852 bi->pagecnt_bias = 1;
853
854 return true;
855 }
856
857 /**
858 * iavf_receive_skb - Send a completed packet up the stack
859 * @rx_ring: rx ring in play
860 * @skb: packet to send up
861 * @vlan_tag: vlan tag for packet
862 **/
iavf_receive_skb(struct iavf_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)863 static void iavf_receive_skb(struct iavf_ring *rx_ring,
864 struct sk_buff *skb, u16 vlan_tag)
865 {
866 struct iavf_q_vector *q_vector = rx_ring->q_vector;
867
868 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
869 (vlan_tag & VLAN_VID_MASK))
870 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
871
872 napi_gro_receive(&q_vector->napi, skb);
873 }
874
875 /**
876 * iavf_alloc_rx_buffers - Replace used receive buffers
877 * @rx_ring: ring to place buffers on
878 * @cleaned_count: number of buffers to replace
879 *
880 * Returns false if all allocations were successful, true if any fail
881 **/
iavf_alloc_rx_buffers(struct iavf_ring * rx_ring,u16 cleaned_count)882 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
883 {
884 u16 ntu = rx_ring->next_to_use;
885 union iavf_rx_desc *rx_desc;
886 struct iavf_rx_buffer *bi;
887
888 /* do nothing if no valid netdev defined */
889 if (!rx_ring->netdev || !cleaned_count)
890 return false;
891
892 rx_desc = IAVF_RX_DESC(rx_ring, ntu);
893 bi = &rx_ring->rx_bi[ntu];
894
895 do {
896 if (!iavf_alloc_mapped_page(rx_ring, bi))
897 goto no_buffers;
898
899 /* sync the buffer for use by the device */
900 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
901 bi->page_offset,
902 rx_ring->rx_buf_len,
903 DMA_FROM_DEVICE);
904
905 /* Refresh the desc even if buffer_addrs didn't change
906 * because each write-back erases this info.
907 */
908 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
909
910 rx_desc++;
911 bi++;
912 ntu++;
913 if (unlikely(ntu == rx_ring->count)) {
914 rx_desc = IAVF_RX_DESC(rx_ring, 0);
915 bi = rx_ring->rx_bi;
916 ntu = 0;
917 }
918
919 /* clear the status bits for the next_to_use descriptor */
920 rx_desc->wb.qword1.status_error_len = 0;
921
922 cleaned_count--;
923 } while (cleaned_count);
924
925 if (rx_ring->next_to_use != ntu)
926 iavf_release_rx_desc(rx_ring, ntu);
927
928 return false;
929
930 no_buffers:
931 if (rx_ring->next_to_use != ntu)
932 iavf_release_rx_desc(rx_ring, ntu);
933
934 /* make sure to come back via polling to try again after
935 * allocation failure
936 */
937 return true;
938 }
939
940 /**
941 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
942 * @vsi: the VSI we care about
943 * @skb: skb currently being received and modified
944 * @rx_desc: the receive descriptor
945 **/
iavf_rx_checksum(struct iavf_vsi * vsi,struct sk_buff * skb,union iavf_rx_desc * rx_desc)946 static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
947 struct sk_buff *skb,
948 union iavf_rx_desc *rx_desc)
949 {
950 struct iavf_rx_ptype_decoded decoded;
951 u32 rx_error, rx_status;
952 bool ipv4, ipv6;
953 u8 ptype;
954 u64 qword;
955
956 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
957 ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
958 rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
959 IAVF_RXD_QW1_ERROR_SHIFT;
960 rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
961 IAVF_RXD_QW1_STATUS_SHIFT;
962 decoded = decode_rx_desc_ptype(ptype);
963
964 skb->ip_summed = CHECKSUM_NONE;
965
966 skb_checksum_none_assert(skb);
967
968 /* Rx csum enabled and ip headers found? */
969 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
970 return;
971
972 /* did the hardware decode the packet and checksum? */
973 if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
974 return;
975
976 /* both known and outer_ip must be set for the below code to work */
977 if (!(decoded.known && decoded.outer_ip))
978 return;
979
980 ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
981 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
982 ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
983 (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
984
985 if (ipv4 &&
986 (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
987 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
988 goto checksum_fail;
989
990 /* likely incorrect csum if alternate IP extension headers found */
991 if (ipv6 &&
992 rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
993 /* don't increment checksum err here, non-fatal err */
994 return;
995
996 /* there was some L4 error, count error and punt packet to the stack */
997 if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
998 goto checksum_fail;
999
1000 /* handle packets that were not able to be checksummed due
1001 * to arrival speed, in this case the stack can compute
1002 * the csum.
1003 */
1004 if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1005 return;
1006
1007 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1008 switch (decoded.inner_prot) {
1009 case IAVF_RX_PTYPE_INNER_PROT_TCP:
1010 case IAVF_RX_PTYPE_INNER_PROT_UDP:
1011 case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1012 skb->ip_summed = CHECKSUM_UNNECESSARY;
1013 fallthrough;
1014 default:
1015 break;
1016 }
1017
1018 return;
1019
1020 checksum_fail:
1021 vsi->back->hw_csum_rx_error++;
1022 }
1023
1024 /**
1025 * iavf_ptype_to_htype - get a hash type
1026 * @ptype: the ptype value from the descriptor
1027 *
1028 * Returns a hash type to be used by skb_set_hash
1029 **/
iavf_ptype_to_htype(u8 ptype)1030 static inline int iavf_ptype_to_htype(u8 ptype)
1031 {
1032 struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1033
1034 if (!decoded.known)
1035 return PKT_HASH_TYPE_NONE;
1036
1037 if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1039 return PKT_HASH_TYPE_L4;
1040 else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1041 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1042 return PKT_HASH_TYPE_L3;
1043 else
1044 return PKT_HASH_TYPE_L2;
1045 }
1046
1047 /**
1048 * iavf_rx_hash - set the hash value in the skb
1049 * @ring: descriptor ring
1050 * @rx_desc: specific descriptor
1051 * @skb: skb currently being received and modified
1052 * @rx_ptype: Rx packet type
1053 **/
iavf_rx_hash(struct iavf_ring * ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1054 static inline void iavf_rx_hash(struct iavf_ring *ring,
1055 union iavf_rx_desc *rx_desc,
1056 struct sk_buff *skb,
1057 u8 rx_ptype)
1058 {
1059 u32 hash;
1060 const __le64 rss_mask =
1061 cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1062 IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1063
1064 if (!(ring->netdev->features & NETIF_F_RXHASH))
1065 return;
1066
1067 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1068 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1069 skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1070 }
1071 }
1072
1073 /**
1074 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1075 * @rx_ring: rx descriptor ring packet is being transacted on
1076 * @rx_desc: pointer to the EOP Rx descriptor
1077 * @skb: pointer to current skb being populated
1078 * @rx_ptype: the packet type decoded by hardware
1079 *
1080 * This function checks the ring, descriptor, and packet information in
1081 * order to populate the hash, checksum, VLAN, protocol, and
1082 * other fields within the skb.
1083 **/
1084 static inline
iavf_process_skb_fields(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1085 void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1086 union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1087 u8 rx_ptype)
1088 {
1089 iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1090
1091 iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1092
1093 skb_record_rx_queue(skb, rx_ring->queue_index);
1094
1095 /* modifies the skb - consumes the enet header */
1096 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1097 }
1098
1099 /**
1100 * iavf_cleanup_headers - Correct empty headers
1101 * @rx_ring: rx descriptor ring packet is being transacted on
1102 * @skb: pointer to current skb being fixed
1103 *
1104 * Also address the case where we are pulling data in on pages only
1105 * and as such no data is present in the skb header.
1106 *
1107 * In addition if skb is not at least 60 bytes we need to pad it so that
1108 * it is large enough to qualify as a valid Ethernet frame.
1109 *
1110 * Returns true if an error was encountered and skb was freed.
1111 **/
iavf_cleanup_headers(struct iavf_ring * rx_ring,struct sk_buff * skb)1112 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1113 {
1114 /* if eth_skb_pad returns an error the skb was freed */
1115 if (eth_skb_pad(skb))
1116 return true;
1117
1118 return false;
1119 }
1120
1121 /**
1122 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1123 * @rx_ring: rx descriptor ring to store buffers on
1124 * @old_buff: donor buffer to have page reused
1125 *
1126 * Synchronizes page for reuse by the adapter
1127 **/
iavf_reuse_rx_page(struct iavf_ring * rx_ring,struct iavf_rx_buffer * old_buff)1128 static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1129 struct iavf_rx_buffer *old_buff)
1130 {
1131 struct iavf_rx_buffer *new_buff;
1132 u16 nta = rx_ring->next_to_alloc;
1133
1134 new_buff = &rx_ring->rx_bi[nta];
1135
1136 /* update, and store next to alloc */
1137 nta++;
1138 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1139
1140 /* transfer page from old buffer to new buffer */
1141 new_buff->dma = old_buff->dma;
1142 new_buff->page = old_buff->page;
1143 new_buff->page_offset = old_buff->page_offset;
1144 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1145 }
1146
1147 /**
1148 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1149 * the adapter for another receive
1150 *
1151 * @rx_buffer: buffer containing the page
1152 *
1153 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1154 * an unused region in the page.
1155 *
1156 * For small pages, @truesize will be a constant value, half the size
1157 * of the memory at page. We'll attempt to alternate between high and
1158 * low halves of the page, with one half ready for use by the hardware
1159 * and the other half being consumed by the stack. We use the page
1160 * ref count to determine whether the stack has finished consuming the
1161 * portion of this page that was passed up with a previous packet. If
1162 * the page ref count is >1, we'll assume the "other" half page is
1163 * still busy, and this page cannot be reused.
1164 *
1165 * For larger pages, @truesize will be the actual space used by the
1166 * received packet (adjusted upward to an even multiple of the cache
1167 * line size). This will advance through the page by the amount
1168 * actually consumed by the received packets while there is still
1169 * space for a buffer. Each region of larger pages will be used at
1170 * most once, after which the page will not be reused.
1171 *
1172 * In either case, if the page is reusable its refcount is increased.
1173 **/
iavf_can_reuse_rx_page(struct iavf_rx_buffer * rx_buffer)1174 static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1175 {
1176 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1177 struct page *page = rx_buffer->page;
1178
1179 /* Is any reuse possible? */
1180 if (!dev_page_is_reusable(page))
1181 return false;
1182
1183 #if (PAGE_SIZE < 8192)
1184 /* if we are only owner of page we can reuse it */
1185 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1186 return false;
1187 #else
1188 #define IAVF_LAST_OFFSET \
1189 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1190 if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1191 return false;
1192 #endif
1193
1194 /* If we have drained the page fragment pool we need to update
1195 * the pagecnt_bias and page count so that we fully restock the
1196 * number of references the driver holds.
1197 */
1198 if (unlikely(!pagecnt_bias)) {
1199 page_ref_add(page, USHRT_MAX);
1200 rx_buffer->pagecnt_bias = USHRT_MAX;
1201 }
1202
1203 return true;
1204 }
1205
1206 /**
1207 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1208 * @rx_ring: rx descriptor ring to transact packets on
1209 * @rx_buffer: buffer containing page to add
1210 * @skb: sk_buff to place the data into
1211 * @size: packet length from rx_desc
1212 *
1213 * This function will add the data contained in rx_buffer->page to the skb.
1214 * It will just attach the page as a frag to the skb.
1215 *
1216 * The function will then update the page offset.
1217 **/
iavf_add_rx_frag(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1218 static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1219 struct iavf_rx_buffer *rx_buffer,
1220 struct sk_buff *skb,
1221 unsigned int size)
1222 {
1223 #if (PAGE_SIZE < 8192)
1224 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1225 #else
1226 unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1227 #endif
1228
1229 if (!size)
1230 return;
1231
1232 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1233 rx_buffer->page_offset, size, truesize);
1234
1235 /* page is being used so we must update the page offset */
1236 #if (PAGE_SIZE < 8192)
1237 rx_buffer->page_offset ^= truesize;
1238 #else
1239 rx_buffer->page_offset += truesize;
1240 #endif
1241 }
1242
1243 /**
1244 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1245 * @rx_ring: rx descriptor ring to transact packets on
1246 * @size: size of buffer to add to skb
1247 *
1248 * This function will pull an Rx buffer from the ring and synchronize it
1249 * for use by the CPU.
1250 */
iavf_get_rx_buffer(struct iavf_ring * rx_ring,const unsigned int size)1251 static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1252 const unsigned int size)
1253 {
1254 struct iavf_rx_buffer *rx_buffer;
1255
1256 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1257 prefetchw(rx_buffer->page);
1258 if (!size)
1259 return rx_buffer;
1260
1261 /* we are reusing so sync this buffer for CPU use */
1262 dma_sync_single_range_for_cpu(rx_ring->dev,
1263 rx_buffer->dma,
1264 rx_buffer->page_offset,
1265 size,
1266 DMA_FROM_DEVICE);
1267
1268 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1269 rx_buffer->pagecnt_bias--;
1270
1271 return rx_buffer;
1272 }
1273
1274 /**
1275 * iavf_construct_skb - Allocate skb and populate it
1276 * @rx_ring: rx descriptor ring to transact packets on
1277 * @rx_buffer: rx buffer to pull data from
1278 * @size: size of buffer to add to skb
1279 *
1280 * This function allocates an skb. It then populates it with the page
1281 * data from the current receive descriptor, taking care to set up the
1282 * skb correctly.
1283 */
iavf_construct_skb(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,unsigned int size)1284 static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1285 struct iavf_rx_buffer *rx_buffer,
1286 unsigned int size)
1287 {
1288 void *va;
1289 #if (PAGE_SIZE < 8192)
1290 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1291 #else
1292 unsigned int truesize = SKB_DATA_ALIGN(size);
1293 #endif
1294 unsigned int headlen;
1295 struct sk_buff *skb;
1296
1297 if (!rx_buffer)
1298 return NULL;
1299 /* prefetch first cache line of first page */
1300 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1301 net_prefetch(va);
1302
1303 /* allocate a skb to store the frags */
1304 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1305 IAVF_RX_HDR_SIZE,
1306 GFP_ATOMIC | __GFP_NOWARN);
1307 if (unlikely(!skb))
1308 return NULL;
1309
1310 /* Determine available headroom for copy */
1311 headlen = size;
1312 if (headlen > IAVF_RX_HDR_SIZE)
1313 headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1314
1315 /* align pull length to size of long to optimize memcpy performance */
1316 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1317
1318 /* update all of the pointers */
1319 size -= headlen;
1320 if (size) {
1321 skb_add_rx_frag(skb, 0, rx_buffer->page,
1322 rx_buffer->page_offset + headlen,
1323 size, truesize);
1324
1325 /* buffer is used by skb, update page_offset */
1326 #if (PAGE_SIZE < 8192)
1327 rx_buffer->page_offset ^= truesize;
1328 #else
1329 rx_buffer->page_offset += truesize;
1330 #endif
1331 } else {
1332 /* buffer is unused, reset bias back to rx_buffer */
1333 rx_buffer->pagecnt_bias++;
1334 }
1335
1336 return skb;
1337 }
1338
1339 /**
1340 * iavf_build_skb - Build skb around an existing buffer
1341 * @rx_ring: Rx descriptor ring to transact packets on
1342 * @rx_buffer: Rx buffer to pull data from
1343 * @size: size of buffer to add to skb
1344 *
1345 * This function builds an skb around an existing Rx buffer, taking care
1346 * to set up the skb correctly and avoid any memcpy overhead.
1347 */
iavf_build_skb(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer,unsigned int size)1348 static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1349 struct iavf_rx_buffer *rx_buffer,
1350 unsigned int size)
1351 {
1352 void *va;
1353 #if (PAGE_SIZE < 8192)
1354 unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1355 #else
1356 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1357 SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1358 #endif
1359 struct sk_buff *skb;
1360
1361 if (!rx_buffer || !size)
1362 return NULL;
1363 /* prefetch first cache line of first page */
1364 va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1365 net_prefetch(va);
1366
1367 /* build an skb around the page buffer */
1368 skb = build_skb(va - IAVF_SKB_PAD, truesize);
1369 if (unlikely(!skb))
1370 return NULL;
1371
1372 /* update pointers within the skb to store the data */
1373 skb_reserve(skb, IAVF_SKB_PAD);
1374 __skb_put(skb, size);
1375
1376 /* buffer is used by skb, update page_offset */
1377 #if (PAGE_SIZE < 8192)
1378 rx_buffer->page_offset ^= truesize;
1379 #else
1380 rx_buffer->page_offset += truesize;
1381 #endif
1382
1383 return skb;
1384 }
1385
1386 /**
1387 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1388 * @rx_ring: rx descriptor ring to transact packets on
1389 * @rx_buffer: rx buffer to pull data from
1390 *
1391 * This function will clean up the contents of the rx_buffer. It will
1392 * either recycle the buffer or unmap it and free the associated resources.
1393 */
iavf_put_rx_buffer(struct iavf_ring * rx_ring,struct iavf_rx_buffer * rx_buffer)1394 static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1395 struct iavf_rx_buffer *rx_buffer)
1396 {
1397 if (!rx_buffer)
1398 return;
1399
1400 if (iavf_can_reuse_rx_page(rx_buffer)) {
1401 /* hand second half of page back to the ring */
1402 iavf_reuse_rx_page(rx_ring, rx_buffer);
1403 rx_ring->rx_stats.page_reuse_count++;
1404 } else {
1405 /* we are not reusing the buffer so unmap it */
1406 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1407 iavf_rx_pg_size(rx_ring),
1408 DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1409 __page_frag_cache_drain(rx_buffer->page,
1410 rx_buffer->pagecnt_bias);
1411 }
1412
1413 /* clear contents of buffer_info */
1414 rx_buffer->page = NULL;
1415 }
1416
1417 /**
1418 * iavf_is_non_eop - process handling of non-EOP buffers
1419 * @rx_ring: Rx ring being processed
1420 * @rx_desc: Rx descriptor for current buffer
1421 * @skb: Current socket buffer containing buffer in progress
1422 *
1423 * This function updates next to clean. If the buffer is an EOP buffer
1424 * this function exits returning false, otherwise it will place the
1425 * sk_buff in the next buffer to be chained and return true indicating
1426 * that this is in fact a non-EOP buffer.
1427 **/
iavf_is_non_eop(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb)1428 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1429 union iavf_rx_desc *rx_desc,
1430 struct sk_buff *skb)
1431 {
1432 u32 ntc = rx_ring->next_to_clean + 1;
1433
1434 /* fetch, update, and store next to clean */
1435 ntc = (ntc < rx_ring->count) ? ntc : 0;
1436 rx_ring->next_to_clean = ntc;
1437
1438 prefetch(IAVF_RX_DESC(rx_ring, ntc));
1439
1440 /* if we are the last buffer then there is nothing else to do */
1441 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1442 if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1443 return false;
1444
1445 rx_ring->rx_stats.non_eop_descs++;
1446
1447 return true;
1448 }
1449
1450 /**
1451 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1452 * @rx_ring: rx descriptor ring to transact packets on
1453 * @budget: Total limit on number of packets to process
1454 *
1455 * This function provides a "bounce buffer" approach to Rx interrupt
1456 * processing. The advantage to this is that on systems that have
1457 * expensive overhead for IOMMU access this provides a means of avoiding
1458 * it by maintaining the mapping of the page to the system.
1459 *
1460 * Returns amount of work completed
1461 **/
iavf_clean_rx_irq(struct iavf_ring * rx_ring,int budget)1462 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1463 {
1464 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1465 struct sk_buff *skb = rx_ring->skb;
1466 u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1467 bool failure = false;
1468
1469 while (likely(total_rx_packets < (unsigned int)budget)) {
1470 struct iavf_rx_buffer *rx_buffer;
1471 union iavf_rx_desc *rx_desc;
1472 unsigned int size;
1473 u16 vlan_tag;
1474 u8 rx_ptype;
1475 u64 qword;
1476
1477 /* return some buffers to hardware, one at a time is too slow */
1478 if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1479 failure = failure ||
1480 iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1481 cleaned_count = 0;
1482 }
1483
1484 rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1485
1486 /* status_error_len will always be zero for unused descriptors
1487 * because it's cleared in cleanup, and overlaps with hdr_addr
1488 * which is always zero because packet split isn't used, if the
1489 * hardware wrote DD then the length will be non-zero
1490 */
1491 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1492
1493 /* This memory barrier is needed to keep us from reading
1494 * any other fields out of the rx_desc until we have
1495 * verified the descriptor has been written back.
1496 */
1497 dma_rmb();
1498 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1499 if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1500 break;
1501
1502 size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1503 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1504
1505 iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1506 rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1507
1508 /* retrieve a buffer from the ring */
1509 if (skb)
1510 iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1511 else if (ring_uses_build_skb(rx_ring))
1512 skb = iavf_build_skb(rx_ring, rx_buffer, size);
1513 else
1514 skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1515
1516 /* exit if we failed to retrieve a buffer */
1517 if (!skb) {
1518 rx_ring->rx_stats.alloc_buff_failed++;
1519 if (rx_buffer && size)
1520 rx_buffer->pagecnt_bias++;
1521 break;
1522 }
1523
1524 iavf_put_rx_buffer(rx_ring, rx_buffer);
1525 cleaned_count++;
1526
1527 if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1528 continue;
1529
1530 /* ERR_MASK will only have valid bits if EOP set, and
1531 * what we are doing here is actually checking
1532 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1533 * the error field
1534 */
1535 if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1536 dev_kfree_skb_any(skb);
1537 skb = NULL;
1538 continue;
1539 }
1540
1541 if (iavf_cleanup_headers(rx_ring, skb)) {
1542 skb = NULL;
1543 continue;
1544 }
1545
1546 /* probably a little skewed due to removing CRC */
1547 total_rx_bytes += skb->len;
1548
1549 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1550 rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1551 IAVF_RXD_QW1_PTYPE_SHIFT;
1552
1553 /* populate checksum, VLAN, and protocol */
1554 iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1555
1556
1557 vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1558 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1559
1560 iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1561 iavf_receive_skb(rx_ring, skb, vlan_tag);
1562 skb = NULL;
1563
1564 /* update budget accounting */
1565 total_rx_packets++;
1566 }
1567
1568 rx_ring->skb = skb;
1569
1570 u64_stats_update_begin(&rx_ring->syncp);
1571 rx_ring->stats.packets += total_rx_packets;
1572 rx_ring->stats.bytes += total_rx_bytes;
1573 u64_stats_update_end(&rx_ring->syncp);
1574 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1575 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1576
1577 /* guarantee a trip back through this routine if there was a failure */
1578 return failure ? budget : (int)total_rx_packets;
1579 }
1580
iavf_buildreg_itr(const int type,u16 itr)1581 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1582 {
1583 u32 val;
1584
1585 /* We don't bother with setting the CLEARPBA bit as the data sheet
1586 * points out doing so is "meaningless since it was already
1587 * auto-cleared". The auto-clearing happens when the interrupt is
1588 * asserted.
1589 *
1590 * Hardware errata 28 for also indicates that writing to a
1591 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1592 * an event in the PBA anyway so we need to rely on the automask
1593 * to hold pending events for us until the interrupt is re-enabled
1594 *
1595 * The itr value is reported in microseconds, and the register
1596 * value is recorded in 2 microsecond units. For this reason we
1597 * only need to shift by the interval shift - 1 instead of the
1598 * full value.
1599 */
1600 itr &= IAVF_ITR_MASK;
1601
1602 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1603 (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1604 (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1605
1606 return val;
1607 }
1608
1609 /* a small macro to shorten up some long lines */
1610 #define INTREG IAVF_VFINT_DYN_CTLN1
1611
1612 /* The act of updating the ITR will cause it to immediately trigger. In order
1613 * to prevent this from throwing off adaptive update statistics we defer the
1614 * update so that it can only happen so often. So after either Tx or Rx are
1615 * updated we make the adaptive scheme wait until either the ITR completely
1616 * expires via the next_update expiration or we have been through at least
1617 * 3 interrupts.
1618 */
1619 #define ITR_COUNTDOWN_START 3
1620
1621 /**
1622 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1623 * @vsi: the VSI we care about
1624 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1625 *
1626 **/
iavf_update_enable_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)1627 static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1628 struct iavf_q_vector *q_vector)
1629 {
1630 struct iavf_hw *hw = &vsi->back->hw;
1631 u32 intval;
1632
1633 /* These will do nothing if dynamic updates are not enabled */
1634 iavf_update_itr(q_vector, &q_vector->tx);
1635 iavf_update_itr(q_vector, &q_vector->rx);
1636
1637 /* This block of logic allows us to get away with only updating
1638 * one ITR value with each interrupt. The idea is to perform a
1639 * pseudo-lazy update with the following criteria.
1640 *
1641 * 1. Rx is given higher priority than Tx if both are in same state
1642 * 2. If we must reduce an ITR that is given highest priority.
1643 * 3. We then give priority to increasing ITR based on amount.
1644 */
1645 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1646 /* Rx ITR needs to be reduced, this is highest priority */
1647 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1648 q_vector->rx.target_itr);
1649 q_vector->rx.current_itr = q_vector->rx.target_itr;
1650 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1651 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1652 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1653 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1654 /* Tx ITR needs to be reduced, this is second priority
1655 * Tx ITR needs to be increased more than Rx, fourth priority
1656 */
1657 intval = iavf_buildreg_itr(IAVF_TX_ITR,
1658 q_vector->tx.target_itr);
1659 q_vector->tx.current_itr = q_vector->tx.target_itr;
1660 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1661 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1662 /* Rx ITR needs to be increased, third priority */
1663 intval = iavf_buildreg_itr(IAVF_RX_ITR,
1664 q_vector->rx.target_itr);
1665 q_vector->rx.current_itr = q_vector->rx.target_itr;
1666 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1667 } else {
1668 /* No ITR update, lowest priority */
1669 intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1670 if (q_vector->itr_countdown)
1671 q_vector->itr_countdown--;
1672 }
1673
1674 if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1675 wr32(hw, INTREG(q_vector->reg_idx), intval);
1676 }
1677
1678 /**
1679 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1680 * @napi: napi struct with our devices info in it
1681 * @budget: amount of work driver is allowed to do this pass, in packets
1682 *
1683 * This function will clean all queues associated with a q_vector.
1684 *
1685 * Returns the amount of work done
1686 **/
iavf_napi_poll(struct napi_struct * napi,int budget)1687 int iavf_napi_poll(struct napi_struct *napi, int budget)
1688 {
1689 struct iavf_q_vector *q_vector =
1690 container_of(napi, struct iavf_q_vector, napi);
1691 struct iavf_vsi *vsi = q_vector->vsi;
1692 struct iavf_ring *ring;
1693 bool clean_complete = true;
1694 bool arm_wb = false;
1695 int budget_per_ring;
1696 int work_done = 0;
1697
1698 if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1699 napi_complete(napi);
1700 return 0;
1701 }
1702
1703 /* Since the actual Tx work is minimal, we can give the Tx a larger
1704 * budget and be more aggressive about cleaning up the Tx descriptors.
1705 */
1706 iavf_for_each_ring(ring, q_vector->tx) {
1707 if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1708 clean_complete = false;
1709 continue;
1710 }
1711 arm_wb |= ring->arm_wb;
1712 ring->arm_wb = false;
1713 }
1714
1715 /* Handle case where we are called by netpoll with a budget of 0 */
1716 if (budget <= 0)
1717 goto tx_only;
1718
1719 /* We attempt to distribute budget to each Rx queue fairly, but don't
1720 * allow the budget to go below 1 because that would exit polling early.
1721 */
1722 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1723
1724 iavf_for_each_ring(ring, q_vector->rx) {
1725 int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1726
1727 work_done += cleaned;
1728 /* if we clean as many as budgeted, we must not be done */
1729 if (cleaned >= budget_per_ring)
1730 clean_complete = false;
1731 }
1732
1733 /* If work not completed, return budget and polling will return */
1734 if (!clean_complete) {
1735 int cpu_id = smp_processor_id();
1736
1737 /* It is possible that the interrupt affinity has changed but,
1738 * if the cpu is pegged at 100%, polling will never exit while
1739 * traffic continues and the interrupt will be stuck on this
1740 * cpu. We check to make sure affinity is correct before we
1741 * continue to poll, otherwise we must stop polling so the
1742 * interrupt can move to the correct cpu.
1743 */
1744 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1745 /* Tell napi that we are done polling */
1746 napi_complete_done(napi, work_done);
1747
1748 /* Force an interrupt */
1749 iavf_force_wb(vsi, q_vector);
1750
1751 /* Return budget-1 so that polling stops */
1752 return budget - 1;
1753 }
1754 tx_only:
1755 if (arm_wb) {
1756 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1757 iavf_enable_wb_on_itr(vsi, q_vector);
1758 }
1759 return budget;
1760 }
1761
1762 if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1763 q_vector->arm_wb_state = false;
1764
1765 /* Exit the polling mode, but don't re-enable interrupts if stack might
1766 * poll us due to busy-polling
1767 */
1768 if (likely(napi_complete_done(napi, work_done)))
1769 iavf_update_enable_itr(vsi, q_vector);
1770
1771 return min(work_done, budget - 1);
1772 }
1773
1774 /**
1775 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1776 * @skb: send buffer
1777 * @tx_ring: ring to send buffer on
1778 * @flags: the tx flags to be set
1779 *
1780 * Checks the skb and set up correspondingly several generic transmit flags
1781 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1782 *
1783 * Returns error code indicate the frame should be dropped upon error and the
1784 * otherwise returns 0 to indicate the flags has been set properly.
1785 **/
iavf_tx_prepare_vlan_flags(struct sk_buff * skb,struct iavf_ring * tx_ring,u32 * flags)1786 static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1787 struct iavf_ring *tx_ring,
1788 u32 *flags)
1789 {
1790 __be16 protocol = skb->protocol;
1791 u32 tx_flags = 0;
1792
1793 if (protocol == htons(ETH_P_8021Q) &&
1794 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1795 /* When HW VLAN acceleration is turned off by the user the
1796 * stack sets the protocol to 8021q so that the driver
1797 * can take any steps required to support the SW only
1798 * VLAN handling. In our case the driver doesn't need
1799 * to take any further steps so just set the protocol
1800 * to the encapsulated ethertype.
1801 */
1802 skb->protocol = vlan_get_protocol(skb);
1803 goto out;
1804 }
1805
1806 /* if we have a HW VLAN tag being added, default to the HW one */
1807 if (skb_vlan_tag_present(skb)) {
1808 tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1809 tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1810 /* else if it is a SW VLAN, check the next protocol and store the tag */
1811 } else if (protocol == htons(ETH_P_8021Q)) {
1812 struct vlan_hdr *vhdr, _vhdr;
1813
1814 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1815 if (!vhdr)
1816 return -EINVAL;
1817
1818 protocol = vhdr->h_vlan_encapsulated_proto;
1819 tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1820 tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1821 }
1822
1823 out:
1824 *flags = tx_flags;
1825 return 0;
1826 }
1827
1828 /**
1829 * iavf_tso - set up the tso context descriptor
1830 * @first: pointer to first Tx buffer for xmit
1831 * @hdr_len: ptr to the size of the packet header
1832 * @cd_type_cmd_tso_mss: Quad Word 1
1833 *
1834 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1835 **/
iavf_tso(struct iavf_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)1836 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1837 u64 *cd_type_cmd_tso_mss)
1838 {
1839 struct sk_buff *skb = first->skb;
1840 u64 cd_cmd, cd_tso_len, cd_mss;
1841 union {
1842 struct iphdr *v4;
1843 struct ipv6hdr *v6;
1844 unsigned char *hdr;
1845 } ip;
1846 union {
1847 struct tcphdr *tcp;
1848 struct udphdr *udp;
1849 unsigned char *hdr;
1850 } l4;
1851 u32 paylen, l4_offset;
1852 u16 gso_segs, gso_size;
1853 int err;
1854
1855 if (skb->ip_summed != CHECKSUM_PARTIAL)
1856 return 0;
1857
1858 if (!skb_is_gso(skb))
1859 return 0;
1860
1861 err = skb_cow_head(skb, 0);
1862 if (err < 0)
1863 return err;
1864
1865 ip.hdr = skb_network_header(skb);
1866 l4.hdr = skb_transport_header(skb);
1867
1868 /* initialize outer IP header fields */
1869 if (ip.v4->version == 4) {
1870 ip.v4->tot_len = 0;
1871 ip.v4->check = 0;
1872 } else {
1873 ip.v6->payload_len = 0;
1874 }
1875
1876 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1877 SKB_GSO_GRE_CSUM |
1878 SKB_GSO_IPXIP4 |
1879 SKB_GSO_IPXIP6 |
1880 SKB_GSO_UDP_TUNNEL |
1881 SKB_GSO_UDP_TUNNEL_CSUM)) {
1882 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1883 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1884 l4.udp->len = 0;
1885
1886 /* determine offset of outer transport header */
1887 l4_offset = l4.hdr - skb->data;
1888
1889 /* remove payload length from outer checksum */
1890 paylen = skb->len - l4_offset;
1891 csum_replace_by_diff(&l4.udp->check,
1892 (__force __wsum)htonl(paylen));
1893 }
1894
1895 /* reset pointers to inner headers */
1896 ip.hdr = skb_inner_network_header(skb);
1897 l4.hdr = skb_inner_transport_header(skb);
1898
1899 /* initialize inner IP header fields */
1900 if (ip.v4->version == 4) {
1901 ip.v4->tot_len = 0;
1902 ip.v4->check = 0;
1903 } else {
1904 ip.v6->payload_len = 0;
1905 }
1906 }
1907
1908 /* determine offset of inner transport header */
1909 l4_offset = l4.hdr - skb->data;
1910 /* remove payload length from inner checksum */
1911 paylen = skb->len - l4_offset;
1912
1913 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1914 csum_replace_by_diff(&l4.udp->check,
1915 (__force __wsum)htonl(paylen));
1916 /* compute length of UDP segmentation header */
1917 *hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1918 } else {
1919 csum_replace_by_diff(&l4.tcp->check,
1920 (__force __wsum)htonl(paylen));
1921 /* compute length of TCP segmentation header */
1922 *hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1923 }
1924
1925 /* pull values out of skb_shinfo */
1926 gso_size = skb_shinfo(skb)->gso_size;
1927 gso_segs = skb_shinfo(skb)->gso_segs;
1928
1929 /* update GSO size and bytecount with header size */
1930 first->gso_segs = gso_segs;
1931 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1932
1933 /* find the field values */
1934 cd_cmd = IAVF_TX_CTX_DESC_TSO;
1935 cd_tso_len = skb->len - *hdr_len;
1936 cd_mss = gso_size;
1937 *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1938 (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1939 (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1940 return 1;
1941 }
1942
1943 /**
1944 * iavf_tx_enable_csum - Enable Tx checksum offloads
1945 * @skb: send buffer
1946 * @tx_flags: pointer to Tx flags currently set
1947 * @td_cmd: Tx descriptor command bits to set
1948 * @td_offset: Tx descriptor header offsets to set
1949 * @tx_ring: Tx descriptor ring
1950 * @cd_tunneling: ptr to context desc bits
1951 **/
iavf_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct iavf_ring * tx_ring,u32 * cd_tunneling)1952 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1953 u32 *td_cmd, u32 *td_offset,
1954 struct iavf_ring *tx_ring,
1955 u32 *cd_tunneling)
1956 {
1957 union {
1958 struct iphdr *v4;
1959 struct ipv6hdr *v6;
1960 unsigned char *hdr;
1961 } ip;
1962 union {
1963 struct tcphdr *tcp;
1964 struct udphdr *udp;
1965 unsigned char *hdr;
1966 } l4;
1967 unsigned char *exthdr;
1968 u32 offset, cmd = 0;
1969 __be16 frag_off;
1970 u8 l4_proto = 0;
1971
1972 if (skb->ip_summed != CHECKSUM_PARTIAL)
1973 return 0;
1974
1975 ip.hdr = skb_network_header(skb);
1976 l4.hdr = skb_transport_header(skb);
1977
1978 /* compute outer L2 header size */
1979 offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1980
1981 if (skb->encapsulation) {
1982 u32 tunnel = 0;
1983 /* define outer network header type */
1984 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1985 tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1986 IAVF_TX_CTX_EXT_IP_IPV4 :
1987 IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1988
1989 l4_proto = ip.v4->protocol;
1990 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1991 tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1992
1993 exthdr = ip.hdr + sizeof(*ip.v6);
1994 l4_proto = ip.v6->nexthdr;
1995 if (l4.hdr != exthdr)
1996 ipv6_skip_exthdr(skb, exthdr - skb->data,
1997 &l4_proto, &frag_off);
1998 }
1999
2000 /* define outer transport */
2001 switch (l4_proto) {
2002 case IPPROTO_UDP:
2003 tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2004 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2005 break;
2006 case IPPROTO_GRE:
2007 tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2008 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2009 break;
2010 case IPPROTO_IPIP:
2011 case IPPROTO_IPV6:
2012 *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2013 l4.hdr = skb_inner_network_header(skb);
2014 break;
2015 default:
2016 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2017 return -1;
2018
2019 skb_checksum_help(skb);
2020 return 0;
2021 }
2022
2023 /* compute outer L3 header size */
2024 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2025 IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2026
2027 /* switch IP header pointer from outer to inner header */
2028 ip.hdr = skb_inner_network_header(skb);
2029
2030 /* compute tunnel header size */
2031 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2032 IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2033
2034 /* indicate if we need to offload outer UDP header */
2035 if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2036 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2037 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2038 tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2039
2040 /* record tunnel offload values */
2041 *cd_tunneling |= tunnel;
2042
2043 /* switch L4 header pointer from outer to inner */
2044 l4.hdr = skb_inner_transport_header(skb);
2045 l4_proto = 0;
2046
2047 /* reset type as we transition from outer to inner headers */
2048 *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2049 if (ip.v4->version == 4)
2050 *tx_flags |= IAVF_TX_FLAGS_IPV4;
2051 if (ip.v6->version == 6)
2052 *tx_flags |= IAVF_TX_FLAGS_IPV6;
2053 }
2054
2055 /* Enable IP checksum offloads */
2056 if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2057 l4_proto = ip.v4->protocol;
2058 /* the stack computes the IP header already, the only time we
2059 * need the hardware to recompute it is in the case of TSO.
2060 */
2061 cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2062 IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2063 IAVF_TX_DESC_CMD_IIPT_IPV4;
2064 } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2065 cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2066
2067 exthdr = ip.hdr + sizeof(*ip.v6);
2068 l4_proto = ip.v6->nexthdr;
2069 if (l4.hdr != exthdr)
2070 ipv6_skip_exthdr(skb, exthdr - skb->data,
2071 &l4_proto, &frag_off);
2072 }
2073
2074 /* compute inner L3 header size */
2075 offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2076
2077 /* Enable L4 checksum offloads */
2078 switch (l4_proto) {
2079 case IPPROTO_TCP:
2080 /* enable checksum offloads */
2081 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2082 offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2083 break;
2084 case IPPROTO_SCTP:
2085 /* enable SCTP checksum offload */
2086 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2087 offset |= (sizeof(struct sctphdr) >> 2) <<
2088 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2089 break;
2090 case IPPROTO_UDP:
2091 /* enable UDP checksum offload */
2092 cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2093 offset |= (sizeof(struct udphdr) >> 2) <<
2094 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2095 break;
2096 default:
2097 if (*tx_flags & IAVF_TX_FLAGS_TSO)
2098 return -1;
2099 skb_checksum_help(skb);
2100 return 0;
2101 }
2102
2103 *td_cmd |= cmd;
2104 *td_offset |= offset;
2105
2106 return 1;
2107 }
2108
2109 /**
2110 * iavf_create_tx_ctx - Build the Tx context descriptor
2111 * @tx_ring: ring to create the descriptor on
2112 * @cd_type_cmd_tso_mss: Quad Word 1
2113 * @cd_tunneling: Quad Word 0 - bits 0-31
2114 * @cd_l2tag2: Quad Word 0 - bits 32-63
2115 **/
iavf_create_tx_ctx(struct iavf_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)2116 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2117 const u64 cd_type_cmd_tso_mss,
2118 const u32 cd_tunneling, const u32 cd_l2tag2)
2119 {
2120 struct iavf_tx_context_desc *context_desc;
2121 int i = tx_ring->next_to_use;
2122
2123 if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2124 !cd_tunneling && !cd_l2tag2)
2125 return;
2126
2127 /* grab the next descriptor */
2128 context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2129
2130 i++;
2131 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2132
2133 /* cpu_to_le32 and assign to struct fields */
2134 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2135 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2136 context_desc->rsvd = cpu_to_le16(0);
2137 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2138 }
2139
2140 /**
2141 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2142 * @skb: send buffer
2143 *
2144 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2145 * and so we need to figure out the cases where we need to linearize the skb.
2146 *
2147 * For TSO we need to count the TSO header and segment payload separately.
2148 * As such we need to check cases where we have 7 fragments or more as we
2149 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2150 * the segment payload in the first descriptor, and another 7 for the
2151 * fragments.
2152 **/
__iavf_chk_linearize(struct sk_buff * skb)2153 bool __iavf_chk_linearize(struct sk_buff *skb)
2154 {
2155 const skb_frag_t *frag, *stale;
2156 int nr_frags, sum;
2157
2158 /* no need to check if number of frags is less than 7 */
2159 nr_frags = skb_shinfo(skb)->nr_frags;
2160 if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2161 return false;
2162
2163 /* We need to walk through the list and validate that each group
2164 * of 6 fragments totals at least gso_size.
2165 */
2166 nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2167 frag = &skb_shinfo(skb)->frags[0];
2168
2169 /* Initialize size to the negative value of gso_size minus 1. We
2170 * use this as the worst case scenerio in which the frag ahead
2171 * of us only provides one byte which is why we are limited to 6
2172 * descriptors for a single transmit as the header and previous
2173 * fragment are already consuming 2 descriptors.
2174 */
2175 sum = 1 - skb_shinfo(skb)->gso_size;
2176
2177 /* Add size of frags 0 through 4 to create our initial sum */
2178 sum += skb_frag_size(frag++);
2179 sum += skb_frag_size(frag++);
2180 sum += skb_frag_size(frag++);
2181 sum += skb_frag_size(frag++);
2182 sum += skb_frag_size(frag++);
2183
2184 /* Walk through fragments adding latest fragment, testing it, and
2185 * then removing stale fragments from the sum.
2186 */
2187 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2188 int stale_size = skb_frag_size(stale);
2189
2190 sum += skb_frag_size(frag++);
2191
2192 /* The stale fragment may present us with a smaller
2193 * descriptor than the actual fragment size. To account
2194 * for that we need to remove all the data on the front and
2195 * figure out what the remainder would be in the last
2196 * descriptor associated with the fragment.
2197 */
2198 if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2199 int align_pad = -(skb_frag_off(stale)) &
2200 (IAVF_MAX_READ_REQ_SIZE - 1);
2201
2202 sum -= align_pad;
2203 stale_size -= align_pad;
2204
2205 do {
2206 sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2207 stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2208 } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2209 }
2210
2211 /* if sum is negative we failed to make sufficient progress */
2212 if (sum < 0)
2213 return true;
2214
2215 if (!nr_frags--)
2216 break;
2217
2218 sum -= stale_size;
2219 }
2220
2221 return false;
2222 }
2223
2224 /**
2225 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2226 * @tx_ring: the ring to be checked
2227 * @size: the size buffer we want to assure is available
2228 *
2229 * Returns -EBUSY if a stop is needed, else 0
2230 **/
__iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)2231 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2232 {
2233 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2234 /* Memory barrier before checking head and tail */
2235 smp_mb();
2236
2237 /* Check again in a case another CPU has just made room available. */
2238 if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2239 return -EBUSY;
2240
2241 /* A reprieve! - use start_queue because it doesn't call schedule */
2242 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2243 ++tx_ring->tx_stats.restart_queue;
2244 return 0;
2245 }
2246
2247 /**
2248 * iavf_tx_map - Build the Tx descriptor
2249 * @tx_ring: ring to send buffer on
2250 * @skb: send buffer
2251 * @first: first buffer info buffer to use
2252 * @tx_flags: collected send information
2253 * @hdr_len: size of the packet header
2254 * @td_cmd: the command field in the descriptor
2255 * @td_offset: offset for checksum or crc
2256 **/
iavf_tx_map(struct iavf_ring * tx_ring,struct sk_buff * skb,struct iavf_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)2257 static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2258 struct iavf_tx_buffer *first, u32 tx_flags,
2259 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2260 {
2261 unsigned int data_len = skb->data_len;
2262 unsigned int size = skb_headlen(skb);
2263 skb_frag_t *frag;
2264 struct iavf_tx_buffer *tx_bi;
2265 struct iavf_tx_desc *tx_desc;
2266 u16 i = tx_ring->next_to_use;
2267 u32 td_tag = 0;
2268 dma_addr_t dma;
2269
2270 if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2271 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2272 td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2273 IAVF_TX_FLAGS_VLAN_SHIFT;
2274 }
2275
2276 first->tx_flags = tx_flags;
2277
2278 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2279
2280 tx_desc = IAVF_TX_DESC(tx_ring, i);
2281 tx_bi = first;
2282
2283 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2284 unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2285
2286 if (dma_mapping_error(tx_ring->dev, dma))
2287 goto dma_error;
2288
2289 /* record length, and DMA address */
2290 dma_unmap_len_set(tx_bi, len, size);
2291 dma_unmap_addr_set(tx_bi, dma, dma);
2292
2293 /* align size to end of page */
2294 max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2295 tx_desc->buffer_addr = cpu_to_le64(dma);
2296
2297 while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2298 tx_desc->cmd_type_offset_bsz =
2299 build_ctob(td_cmd, td_offset,
2300 max_data, td_tag);
2301
2302 tx_desc++;
2303 i++;
2304
2305 if (i == tx_ring->count) {
2306 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2307 i = 0;
2308 }
2309
2310 dma += max_data;
2311 size -= max_data;
2312
2313 max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2314 tx_desc->buffer_addr = cpu_to_le64(dma);
2315 }
2316
2317 if (likely(!data_len))
2318 break;
2319
2320 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2321 size, td_tag);
2322
2323 tx_desc++;
2324 i++;
2325
2326 if (i == tx_ring->count) {
2327 tx_desc = IAVF_TX_DESC(tx_ring, 0);
2328 i = 0;
2329 }
2330
2331 size = skb_frag_size(frag);
2332 data_len -= size;
2333
2334 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2335 DMA_TO_DEVICE);
2336
2337 tx_bi = &tx_ring->tx_bi[i];
2338 }
2339
2340 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2341
2342 i++;
2343 if (i == tx_ring->count)
2344 i = 0;
2345
2346 tx_ring->next_to_use = i;
2347
2348 iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2349
2350 /* write last descriptor with RS and EOP bits */
2351 td_cmd |= IAVF_TXD_CMD;
2352 tx_desc->cmd_type_offset_bsz =
2353 build_ctob(td_cmd, td_offset, size, td_tag);
2354
2355 skb_tx_timestamp(skb);
2356
2357 /* Force memory writes to complete before letting h/w know there
2358 * are new descriptors to fetch.
2359 *
2360 * We also use this memory barrier to make certain all of the
2361 * status bits have been updated before next_to_watch is written.
2362 */
2363 wmb();
2364
2365 /* set next_to_watch value indicating a packet is present */
2366 first->next_to_watch = tx_desc;
2367
2368 /* notify HW of packet */
2369 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2370 writel(i, tx_ring->tail);
2371 }
2372
2373 return;
2374
2375 dma_error:
2376 dev_info(tx_ring->dev, "TX DMA map failed\n");
2377
2378 /* clear dma mappings for failed tx_bi map */
2379 for (;;) {
2380 tx_bi = &tx_ring->tx_bi[i];
2381 iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2382 if (tx_bi == first)
2383 break;
2384 if (i == 0)
2385 i = tx_ring->count;
2386 i--;
2387 }
2388
2389 tx_ring->next_to_use = i;
2390 }
2391
2392 /**
2393 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2394 * @skb: send buffer
2395 * @tx_ring: ring to send buffer on
2396 *
2397 * Returns NETDEV_TX_OK if sent, else an error code
2398 **/
iavf_xmit_frame_ring(struct sk_buff * skb,struct iavf_ring * tx_ring)2399 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2400 struct iavf_ring *tx_ring)
2401 {
2402 u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2403 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2404 struct iavf_tx_buffer *first;
2405 u32 td_offset = 0;
2406 u32 tx_flags = 0;
2407 __be16 protocol;
2408 u32 td_cmd = 0;
2409 u8 hdr_len = 0;
2410 int tso, count;
2411
2412 /* prefetch the data, we'll need it later */
2413 prefetch(skb->data);
2414
2415 iavf_trace(xmit_frame_ring, skb, tx_ring);
2416
2417 count = iavf_xmit_descriptor_count(skb);
2418 if (iavf_chk_linearize(skb, count)) {
2419 if (__skb_linearize(skb)) {
2420 dev_kfree_skb_any(skb);
2421 return NETDEV_TX_OK;
2422 }
2423 count = iavf_txd_use_count(skb->len);
2424 tx_ring->tx_stats.tx_linearize++;
2425 }
2426
2427 /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2428 * + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2429 * + 4 desc gap to avoid the cache line where head is,
2430 * + 1 desc for context descriptor,
2431 * otherwise try next time
2432 */
2433 if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2434 tx_ring->tx_stats.tx_busy++;
2435 return NETDEV_TX_BUSY;
2436 }
2437
2438 /* record the location of the first descriptor for this packet */
2439 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2440 first->skb = skb;
2441 first->bytecount = skb->len;
2442 first->gso_segs = 1;
2443
2444 /* prepare the xmit flags */
2445 if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2446 goto out_drop;
2447
2448 /* obtain protocol of skb */
2449 protocol = vlan_get_protocol(skb);
2450
2451 /* setup IPv4/IPv6 offloads */
2452 if (protocol == htons(ETH_P_IP))
2453 tx_flags |= IAVF_TX_FLAGS_IPV4;
2454 else if (protocol == htons(ETH_P_IPV6))
2455 tx_flags |= IAVF_TX_FLAGS_IPV6;
2456
2457 tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2458
2459 if (tso < 0)
2460 goto out_drop;
2461 else if (tso)
2462 tx_flags |= IAVF_TX_FLAGS_TSO;
2463
2464 /* Always offload the checksum, since it's in the data descriptor */
2465 tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2466 tx_ring, &cd_tunneling);
2467 if (tso < 0)
2468 goto out_drop;
2469
2470 /* always enable CRC insertion offload */
2471 td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2472
2473 iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2474 cd_tunneling, cd_l2tag2);
2475
2476 iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2477 td_cmd, td_offset);
2478
2479 return NETDEV_TX_OK;
2480
2481 out_drop:
2482 iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2483 dev_kfree_skb_any(first->skb);
2484 first->skb = NULL;
2485 return NETDEV_TX_OK;
2486 }
2487
2488 /**
2489 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2490 * @skb: send buffer
2491 * @netdev: network interface device structure
2492 *
2493 * Returns NETDEV_TX_OK if sent, else an error code
2494 **/
iavf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2495 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2496 {
2497 struct iavf_adapter *adapter = netdev_priv(netdev);
2498 struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2499
2500 /* hardware can't handle really short frames, hardware padding works
2501 * beyond this point
2502 */
2503 if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2504 if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2505 return NETDEV_TX_OK;
2506 skb->len = IAVF_MIN_TX_LEN;
2507 skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2508 }
2509
2510 return iavf_xmit_frame_ring(skb, tx_ring);
2511 }
2512