1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13
14 #define MAX_CPU_FEATURES 64
15 #define cpu_feature(x) KERNEL_HWCAP_ ## x
16
17 #ifndef __ASSEMBLY__
18
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22
23 /*
24 * CPU feature register tracking
25 *
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
30 *
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
35 */
36
37 enum ftr_type {
38 FTR_EXACT, /* Use a predefined safe value */
39 FTR_LOWER_SAFE, /* Smaller value is safe */
40 FTR_HIGHER_SAFE, /* Bigger value is safe */
41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
42 };
43
44 #define FTR_STRICT true /* SANITY check strict matching required */
45 #define FTR_NONSTRICT false /* SANITY check ignored */
46
47 #define FTR_SIGNED true /* Value should be treated as signed */
48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
49
50 #define FTR_VISIBLE true /* Feature visible to the user space */
51 #define FTR_HIDDEN false /* Feature is hidden from the user */
52
53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55
56 struct arm64_ftr_bits {
57 bool sign; /* Value is signed ? */
58 bool visible;
59 bool strict; /* CPU Sanity check: strict matching required ? */
60 enum ftr_type type;
61 u8 shift;
62 u8 width;
63 s64 safe_val; /* safe value for FTR_EXACT features */
64 };
65
66 /*
67 * Describe the early feature override to the core override code:
68 *
69 * @val Values that are to be merged into the final
70 * sanitised value of the register. Only the bitfields
71 * set to 1 in @mask are valid
72 * @mask Mask of the features that are overridden by @val
73 *
74 * A @mask field set to full-1 indicates that the corresponding field
75 * in @val is a valid override.
76 *
77 * A @mask field set to full-0 with the corresponding @val field set
78 * to full-0 denotes that this field has no override
79 *
80 * A @mask field set to full-0 with the corresponding @val field set
81 * to full-1 denotes thath this field has an invalid override.
82 */
83 struct arm64_ftr_override {
84 u64 val;
85 u64 mask;
86 };
87
88 /*
89 * @arm64_ftr_reg - Feature register
90 * @strict_mask Bits which should match across all CPUs for sanity.
91 * @sys_val Safe value across the CPUs (system view)
92 */
93 struct arm64_ftr_reg {
94 const char *name;
95 u64 strict_mask;
96 u64 user_mask;
97 u64 sys_val;
98 u64 user_val;
99 struct arm64_ftr_override *override;
100 const struct arm64_ftr_bits *ftr_bits;
101 };
102
103 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
104
105 /*
106 * CPU capabilities:
107 *
108 * We use arm64_cpu_capabilities to represent system features, errata work
109 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
110 * ELF HWCAPs (which are exposed to user).
111 *
112 * To support systems with heterogeneous CPUs, we need to make sure that we
113 * detect the capabilities correctly on the system and take appropriate
114 * measures to ensure there are no incompatibilities.
115 *
116 * This comment tries to explain how we treat the capabilities.
117 * Each capability has the following list of attributes :
118 *
119 * 1) Scope of Detection : The system detects a given capability by
120 * performing some checks at runtime. This could be, e.g, checking the
121 * value of a field in CPU ID feature register or checking the cpu
122 * model. The capability provides a call back ( @matches() ) to
123 * perform the check. Scope defines how the checks should be performed.
124 * There are three cases:
125 *
126 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
127 * matches. This implies, we have to run the check on all the
128 * booting CPUs, until the system decides that state of the
129 * capability is finalised. (See section 2 below)
130 * Or
131 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
132 * matches. This implies, we run the check only once, when the
133 * system decides to finalise the state of the capability. If the
134 * capability relies on a field in one of the CPU ID feature
135 * registers, we use the sanitised value of the register from the
136 * CPU feature infrastructure to make the decision.
137 * Or
138 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
139 * feature. This category is for features that are "finalised"
140 * (or used) by the kernel very early even before the SMP cpus
141 * are brought up.
142 *
143 * The process of detection is usually denoted by "update" capability
144 * state in the code.
145 *
146 * 2) Finalise the state : The kernel should finalise the state of a
147 * capability at some point during its execution and take necessary
148 * actions if any. Usually, this is done, after all the boot-time
149 * enabled CPUs are brought up by the kernel, so that it can make
150 * better decision based on the available set of CPUs. However, there
151 * are some special cases, where the action is taken during the early
152 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
153 * Virtualisation Host Extensions). The kernel usually disallows any
154 * changes to the state of a capability once it finalises the capability
155 * and takes any action, as it may be impossible to execute the actions
156 * safely. A CPU brought up after a capability is "finalised" is
157 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
158 * CPUs are treated "late CPUs" for capabilities determined by the boot
159 * CPU.
160 *
161 * At the moment there are two passes of finalising the capabilities.
162 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
163 * setup_boot_cpu_capabilities().
164 * b) Everything except (a) - Run via setup_system_capabilities().
165 *
166 * 3) Verification: When a CPU is brought online (e.g, by user or by the
167 * kernel), the kernel should make sure that it is safe to use the CPU,
168 * by verifying that the CPU is compliant with the state of the
169 * capabilities finalised already. This happens via :
170 *
171 * secondary_start_kernel()-> check_local_cpu_capabilities()
172 *
173 * As explained in (2) above, capabilities could be finalised at
174 * different points in the execution. Each newly booted CPU is verified
175 * against the capabilities that have been finalised by the time it
176 * boots.
177 *
178 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
179 * except for the primary boot CPU.
180 *
181 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
182 * user after the kernel boot are verified against the capability.
183 *
184 * If there is a conflict, the kernel takes an action, based on the
185 * severity (e.g, a CPU could be prevented from booting or cause a
186 * kernel panic). The CPU is allowed to "affect" the state of the
187 * capability, if it has not been finalised already. See section 5
188 * for more details on conflicts.
189 *
190 * 4) Action: As mentioned in (2), the kernel can take an action for each
191 * detected capability, on all CPUs on the system. Appropriate actions
192 * include, turning on an architectural feature, modifying the control
193 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
194 * alternatives. The kernel patching is batched and performed at later
195 * point. The actions are always initiated only after the capability
196 * is finalised. This is usally denoted by "enabling" the capability.
197 * The actions are initiated as follows :
198 * a) Action is triggered on all online CPUs, after the capability is
199 * finalised, invoked within the stop_machine() context from
200 * enable_cpu_capabilitie().
201 *
202 * b) Any late CPU, brought up after (1), the action is triggered via:
203 *
204 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
205 *
206 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
207 * the system state, we could have the following combinations :
208 *
209 * x-----------------------------x
210 * | Type | System | Late CPU |
211 * |-----------------------------|
212 * | a | y | n |
213 * |-----------------------------|
214 * | b | n | y |
215 * x-----------------------------x
216 *
217 * Two separate flag bits are defined to indicate whether each kind of
218 * conflict can be allowed:
219 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
220 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
221 *
222 * Case (a) is not permitted for a capability that the system requires
223 * all CPUs to have in order for the capability to be enabled. This is
224 * typical for capabilities that represent enhanced functionality.
225 *
226 * Case (b) is not permitted for a capability that must be enabled
227 * during boot if any CPU in the system requires it in order to run
228 * safely. This is typical for erratum work arounds that cannot be
229 * enabled after the corresponding capability is finalised.
230 *
231 * In some non-typical cases either both (a) and (b), or neither,
232 * should be permitted. This can be described by including neither
233 * or both flags in the capability's type field.
234 *
235 * In case of a conflict, the CPU is prevented from booting. If the
236 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
237 * then a kernel panic is triggered.
238 */
239
240
241 /*
242 * Decide how the capability is detected.
243 * On any local CPU vs System wide vs the primary boot CPU
244 */
245 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
246 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
247 /*
248 * The capabilitiy is detected on the Boot CPU and is used by kernel
249 * during early boot. i.e, the capability should be "detected" and
250 * "enabled" as early as possibly on all booting CPUs.
251 */
252 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
253 #define ARM64_CPUCAP_SCOPE_MASK \
254 (ARM64_CPUCAP_SCOPE_SYSTEM | \
255 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
256 ARM64_CPUCAP_SCOPE_BOOT_CPU)
257
258 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
259 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
260 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
261 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
262
263 /*
264 * Is it permitted for a late CPU to have this capability when system
265 * hasn't already enabled it ?
266 */
267 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
268 /* Is it safe for a late CPU to miss this capability when system has it */
269 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
270 /* Panic when a conflict is detected */
271 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6))
272
273 /*
274 * CPU errata workarounds that need to be enabled at boot time if one or
275 * more CPUs in the system requires it. When one of these capabilities
276 * has been enabled, it is safe to allow any CPU to boot that doesn't
277 * require the workaround. However, it is not safe if a "late" CPU
278 * requires a workaround and the system hasn't enabled it already.
279 */
280 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
281 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
282 /*
283 * CPU feature detected at boot time based on system-wide value of a
284 * feature. It is safe for a late CPU to have this feature even though
285 * the system hasn't enabled it, although the feature will not be used
286 * by Linux in this case. If the system has enabled this feature already,
287 * then every late CPU must have it.
288 */
289 #define ARM64_CPUCAP_SYSTEM_FEATURE \
290 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
291 /*
292 * CPU feature detected at boot time based on feature of one or more CPUs.
293 * All possible conflicts for a late CPU are ignored.
294 * NOTE: this means that a late CPU with the feature will *not* cause the
295 * capability to be advertised by cpus_have_*cap()!
296 */
297 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
298 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
299 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
300 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
301
302 /*
303 * CPU feature detected at boot time, on one or more CPUs. A late CPU
304 * is not allowed to have the capability when the system doesn't have it.
305 * It is Ok for a late CPU to miss the feature.
306 */
307 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
308 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
309 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
310
311 /*
312 * CPU feature used early in the boot based on the boot CPU. All secondary
313 * CPUs must match the state of the capability as detected by the boot CPU. In
314 * case of a conflict, a kernel panic is triggered.
315 */
316 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \
317 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
318
319 /*
320 * CPU feature used early in the boot based on the boot CPU. It is safe for a
321 * late CPU to have this feature even though the boot CPU hasn't enabled it,
322 * although the feature will not be used by Linux in this case. If the boot CPU
323 * has enabled this feature already, then every late CPU must have it.
324 */
325 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \
326 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
327
328 struct arm64_cpu_capabilities {
329 const char *desc;
330 u16 capability;
331 u16 type;
332 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
333 /*
334 * Take the appropriate actions to configure this capability
335 * for this CPU. If the capability is detected by the kernel
336 * this will be called on all the CPUs in the system,
337 * including the hotplugged CPUs, regardless of whether the
338 * capability is available on that specific CPU. This is
339 * useful for some capabilities (e.g, working around CPU
340 * errata), where all the CPUs must take some action (e.g,
341 * changing system control/configuration). Thus, if an action
342 * is required only if the CPU has the capability, then the
343 * routine must check it before taking any action.
344 */
345 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
346 union {
347 struct { /* To be used for erratum handling only */
348 struct midr_range midr_range;
349 const struct arm64_midr_revidr {
350 u32 midr_rv; /* revision/variant */
351 u32 revidr_mask;
352 } * const fixed_revs;
353 };
354
355 const struct midr_range *midr_range_list;
356 struct { /* Feature register checking */
357 u32 sys_reg;
358 u8 field_pos;
359 u8 field_width;
360 u8 min_field_value;
361 u8 hwcap_type;
362 bool sign;
363 unsigned long hwcap;
364 };
365 };
366
367 /*
368 * An optional list of "matches/cpu_enable" pair for the same
369 * "capability" of the same "type" as described by the parent.
370 * Only matches(), cpu_enable() and fields relevant to these
371 * methods are significant in the list. The cpu_enable is
372 * invoked only if the corresponding entry "matches()".
373 * However, if a cpu_enable() method is associated
374 * with multiple matches(), care should be taken that either
375 * the match criteria are mutually exclusive, or that the
376 * method is robust against being called multiple times.
377 */
378 const struct arm64_cpu_capabilities *match_list;
379 };
380
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)381 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
382 {
383 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
384 }
385
386 /*
387 * Generic helper for handling capabilities with multiple (match,enable) pairs
388 * of call backs, sharing the same capability bit.
389 * Iterate over each entry to see if at least one matches.
390 */
391 static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities * entry,int scope)392 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
393 int scope)
394 {
395 const struct arm64_cpu_capabilities *caps;
396
397 for (caps = entry->match_list; caps->matches; caps++)
398 if (caps->matches(caps, scope))
399 return true;
400
401 return false;
402 }
403
is_vhe_hyp_code(void)404 static __always_inline bool is_vhe_hyp_code(void)
405 {
406 /* Only defined for code run in VHE hyp context */
407 return __is_defined(__KVM_VHE_HYPERVISOR__);
408 }
409
is_nvhe_hyp_code(void)410 static __always_inline bool is_nvhe_hyp_code(void)
411 {
412 /* Only defined for code run in NVHE hyp context */
413 return __is_defined(__KVM_NVHE_HYPERVISOR__);
414 }
415
is_hyp_code(void)416 static __always_inline bool is_hyp_code(void)
417 {
418 return is_vhe_hyp_code() || is_nvhe_hyp_code();
419 }
420
421 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
422 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
423 extern struct static_key_false arm64_const_caps_ready;
424
425 /* ARM64 CAPS + alternative_cb */
426 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
427 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
428
429 #define for_each_available_cap(cap) \
430 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
431
432 bool this_cpu_has_cap(unsigned int cap);
433 void cpu_set_feature(unsigned int num);
434 bool cpu_have_feature(unsigned int num);
435 unsigned long cpu_get_elf_hwcap(void);
436 unsigned long cpu_get_elf_hwcap2(void);
437
438 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
439 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
440
system_capabilities_finalized(void)441 static __always_inline bool system_capabilities_finalized(void)
442 {
443 return static_branch_likely(&arm64_const_caps_ready);
444 }
445
446 /*
447 * Test for a capability with a runtime check.
448 *
449 * Before the capability is detected, this returns false.
450 */
cpus_have_cap(unsigned int num)451 static inline bool cpus_have_cap(unsigned int num)
452 {
453 if (num >= ARM64_NCAPS)
454 return false;
455 return test_bit(num, cpu_hwcaps);
456 }
457
458 /*
459 * Test for a capability without a runtime check.
460 *
461 * Before capabilities are finalized, this returns false.
462 * After capabilities are finalized, this is patched to avoid a runtime check.
463 *
464 * @num must be a compile-time constant.
465 */
__cpus_have_const_cap(int num)466 static __always_inline bool __cpus_have_const_cap(int num)
467 {
468 if (num >= ARM64_NCAPS)
469 return false;
470 return static_branch_unlikely(&cpu_hwcap_keys[num]);
471 }
472
473 /*
474 * Test for a capability without a runtime check.
475 *
476 * Before capabilities are finalized, this will BUG().
477 * After capabilities are finalized, this is patched to avoid a runtime check.
478 *
479 * @num must be a compile-time constant.
480 */
cpus_have_final_cap(int num)481 static __always_inline bool cpus_have_final_cap(int num)
482 {
483 if (system_capabilities_finalized())
484 return __cpus_have_const_cap(num);
485 else
486 BUG();
487 }
488
489 /*
490 * Test for a capability, possibly with a runtime check for non-hyp code.
491 *
492 * For hyp code, this behaves the same as cpus_have_final_cap().
493 *
494 * For non-hyp code:
495 * Before capabilities are finalized, this behaves as cpus_have_cap().
496 * After capabilities are finalized, this is patched to avoid a runtime check.
497 *
498 * @num must be a compile-time constant.
499 */
cpus_have_const_cap(int num)500 static __always_inline bool cpus_have_const_cap(int num)
501 {
502 if (is_hyp_code())
503 return cpus_have_final_cap(num);
504 else if (system_capabilities_finalized())
505 return __cpus_have_const_cap(num);
506 else
507 return cpus_have_cap(num);
508 }
509
cpus_set_cap(unsigned int num)510 static inline void cpus_set_cap(unsigned int num)
511 {
512 if (num >= ARM64_NCAPS) {
513 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
514 num, ARM64_NCAPS);
515 } else {
516 __set_bit(num, cpu_hwcaps);
517 }
518 }
519
520 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)521 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
522 {
523 return (s64)(features << (64 - width - field)) >> (64 - width);
524 }
525
526 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)527 cpuid_feature_extract_signed_field(u64 features, int field)
528 {
529 return cpuid_feature_extract_signed_field_width(features, field, 4);
530 }
531
532 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)533 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
534 {
535 return (u64)(features << (64 - width - field)) >> (64 - width);
536 }
537
538 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)539 cpuid_feature_extract_unsigned_field(u64 features, int field)
540 {
541 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
542 }
543
544 /*
545 * Fields that identify the version of the Performance Monitors Extension do
546 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
547 * "Alternative ID scheme used for the Performance Monitors Extension version".
548 */
549 static inline u64 __attribute_const__
cpuid_feature_cap_perfmon_field(u64 features,int field,u64 cap)550 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
551 {
552 u64 val = cpuid_feature_extract_unsigned_field(features, field);
553 u64 mask = GENMASK_ULL(field + 3, field);
554
555 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
556 if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
557 val = 0;
558
559 if (val > cap) {
560 features &= ~mask;
561 features |= (cap << field) & mask;
562 }
563
564 return features;
565 }
566
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)567 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
568 {
569 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
570 }
571
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)572 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
573 {
574 return (reg->user_val | (reg->sys_val & reg->user_mask));
575 }
576
577 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)578 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
579 {
580 return (sign) ?
581 cpuid_feature_extract_signed_field_width(features, field, width) :
582 cpuid_feature_extract_unsigned_field_width(features, field, width);
583 }
584
585 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)586 cpuid_feature_extract_field(u64 features, int field, bool sign)
587 {
588 return cpuid_feature_extract_field_width(features, field, 4, sign);
589 }
590
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)591 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
592 {
593 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
594 }
595
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)596 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
597 {
598 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
599 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
600 }
601
id_aa64pfr0_32bit_el1(u64 pfr0)602 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
603 {
604 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
605
606 return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
607 }
608
id_aa64pfr0_32bit_el0(u64 pfr0)609 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
610 {
611 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
612
613 return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
614 }
615
id_aa64pfr0_sve(u64 pfr0)616 static inline bool id_aa64pfr0_sve(u64 pfr0)
617 {
618 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
619
620 return val > 0;
621 }
622
id_aa64pfr1_sme(u64 pfr1)623 static inline bool id_aa64pfr1_sme(u64 pfr1)
624 {
625 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
626
627 return val > 0;
628 }
629
id_aa64pfr1_mte(u64 pfr1)630 static inline bool id_aa64pfr1_mte(u64 pfr1)
631 {
632 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
633
634 return val >= ID_AA64PFR1_EL1_MTE_MTE2;
635 }
636
637 void __init setup_cpu_features(void);
638 void check_local_cpu_capabilities(void);
639
640 u64 read_sanitised_ftr_reg(u32 id);
641 u64 __read_sysreg_by_encoding(u32 sys_id);
642
cpu_supports_mixed_endian_el0(void)643 static inline bool cpu_supports_mixed_endian_el0(void)
644 {
645 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
646 }
647
648
supports_csv2p3(int scope)649 static inline bool supports_csv2p3(int scope)
650 {
651 u64 pfr0;
652 u8 csv2_val;
653
654 if (scope == SCOPE_LOCAL_CPU)
655 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
656 else
657 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
658
659 csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
660 ID_AA64PFR0_EL1_CSV2_SHIFT);
661 return csv2_val == 3;
662 }
663
supports_clearbhb(int scope)664 static inline bool supports_clearbhb(int scope)
665 {
666 u64 isar2;
667
668 if (scope == SCOPE_LOCAL_CPU)
669 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
670 else
671 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
672
673 return cpuid_feature_extract_unsigned_field(isar2,
674 ID_AA64ISAR2_EL1_BC_SHIFT);
675 }
676
677 const struct cpumask *system_32bit_el0_cpumask(void);
678 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
679
system_supports_32bit_el0(void)680 static inline bool system_supports_32bit_el0(void)
681 {
682 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
683
684 return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
685 id_aa64pfr0_32bit_el0(pfr0);
686 }
687
system_supports_4kb_granule(void)688 static inline bool system_supports_4kb_granule(void)
689 {
690 u64 mmfr0;
691 u32 val;
692
693 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
694 val = cpuid_feature_extract_unsigned_field(mmfr0,
695 ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
696
697 return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
698 (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
699 }
700
system_supports_64kb_granule(void)701 static inline bool system_supports_64kb_granule(void)
702 {
703 u64 mmfr0;
704 u32 val;
705
706 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
707 val = cpuid_feature_extract_unsigned_field(mmfr0,
708 ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
709
710 return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
711 (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
712 }
713
system_supports_16kb_granule(void)714 static inline bool system_supports_16kb_granule(void)
715 {
716 u64 mmfr0;
717 u32 val;
718
719 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
720 val = cpuid_feature_extract_unsigned_field(mmfr0,
721 ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
722
723 return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
724 (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
725 }
726
system_supports_mixed_endian_el0(void)727 static inline bool system_supports_mixed_endian_el0(void)
728 {
729 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
730 }
731
system_supports_mixed_endian(void)732 static inline bool system_supports_mixed_endian(void)
733 {
734 u64 mmfr0;
735 u32 val;
736
737 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
738 val = cpuid_feature_extract_unsigned_field(mmfr0,
739 ID_AA64MMFR0_EL1_BIGEND_SHIFT);
740
741 return val == 0x1;
742 }
743
system_supports_fpsimd(void)744 static __always_inline bool system_supports_fpsimd(void)
745 {
746 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
747 }
748
system_uses_hw_pan(void)749 static inline bool system_uses_hw_pan(void)
750 {
751 return IS_ENABLED(CONFIG_ARM64_PAN) &&
752 cpus_have_const_cap(ARM64_HAS_PAN);
753 }
754
system_uses_ttbr0_pan(void)755 static inline bool system_uses_ttbr0_pan(void)
756 {
757 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
758 !system_uses_hw_pan();
759 }
760
system_supports_sve(void)761 static __always_inline bool system_supports_sve(void)
762 {
763 return IS_ENABLED(CONFIG_ARM64_SVE) &&
764 cpus_have_const_cap(ARM64_SVE);
765 }
766
system_supports_sme(void)767 static __always_inline bool system_supports_sme(void)
768 {
769 return IS_ENABLED(CONFIG_ARM64_SME) &&
770 cpus_have_const_cap(ARM64_SME);
771 }
772
system_supports_fa64(void)773 static __always_inline bool system_supports_fa64(void)
774 {
775 return IS_ENABLED(CONFIG_ARM64_SME) &&
776 cpus_have_const_cap(ARM64_SME_FA64);
777 }
778
system_supports_tpidr2(void)779 static __always_inline bool system_supports_tpidr2(void)
780 {
781 return system_supports_sme();
782 }
783
system_supports_cnp(void)784 static __always_inline bool system_supports_cnp(void)
785 {
786 return IS_ENABLED(CONFIG_ARM64_CNP) &&
787 cpus_have_const_cap(ARM64_HAS_CNP);
788 }
789
system_supports_address_auth(void)790 static inline bool system_supports_address_auth(void)
791 {
792 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
793 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
794 }
795
system_supports_generic_auth(void)796 static inline bool system_supports_generic_auth(void)
797 {
798 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
799 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
800 }
801
system_has_full_ptr_auth(void)802 static inline bool system_has_full_ptr_auth(void)
803 {
804 return system_supports_address_auth() && system_supports_generic_auth();
805 }
806
system_uses_irq_prio_masking(void)807 static __always_inline bool system_uses_irq_prio_masking(void)
808 {
809 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
810 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
811 }
812
system_supports_mte(void)813 static inline bool system_supports_mte(void)
814 {
815 return IS_ENABLED(CONFIG_ARM64_MTE) &&
816 cpus_have_const_cap(ARM64_MTE);
817 }
818
system_has_prio_mask_debugging(void)819 static inline bool system_has_prio_mask_debugging(void)
820 {
821 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
822 system_uses_irq_prio_masking();
823 }
824
system_supports_bti(void)825 static inline bool system_supports_bti(void)
826 {
827 return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
828 }
829
system_supports_tlb_range(void)830 static inline bool system_supports_tlb_range(void)
831 {
832 return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
833 cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
834 }
835
836 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
837 bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
838
id_aa64mmfr0_parange_to_phys_shift(int parange)839 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
840 {
841 switch (parange) {
842 case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
843 case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
844 case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
845 case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
846 case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
847 case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
848 case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
849 /*
850 * A future PE could use a value unknown to the kernel.
851 * However, by the "D10.1.4 Principles of the ID scheme
852 * for fields in ID registers", ARM DDI 0487C.a, any new
853 * value is guaranteed to be higher than what we know already.
854 * As a safe limit, we return the limit supported by the kernel.
855 */
856 default: return CONFIG_ARM64_PA_BITS;
857 }
858 }
859
860 /* Check whether hardware update of the Access flag is supported */
cpu_has_hw_af(void)861 static inline bool cpu_has_hw_af(void)
862 {
863 u64 mmfr1;
864
865 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
866 return false;
867
868 /*
869 * Use cached version to avoid emulated msr operation on KVM
870 * guests.
871 */
872 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
873 return cpuid_feature_extract_unsigned_field(mmfr1,
874 ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
875 }
876
cpu_has_pan(void)877 static inline bool cpu_has_pan(void)
878 {
879 u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
880 return cpuid_feature_extract_unsigned_field(mmfr1,
881 ID_AA64MMFR1_EL1_PAN_SHIFT);
882 }
883
884 #ifdef CONFIG_ARM64_AMU_EXTN
885 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
886 extern bool cpu_has_amu_feat(int cpu);
887 #else
cpu_has_amu_feat(int cpu)888 static inline bool cpu_has_amu_feat(int cpu)
889 {
890 return false;
891 }
892 #endif
893
894 /* Get a cpu that supports the Activity Monitors Unit (AMU) */
895 extern int get_cpu_with_amu_feat(void);
896
get_vmid_bits(u64 mmfr1)897 static inline unsigned int get_vmid_bits(u64 mmfr1)
898 {
899 int vmid_bits;
900
901 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
902 ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
903 if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
904 return 16;
905
906 /*
907 * Return the default here even if any reserved
908 * value is fetched from the system register.
909 */
910 return 8;
911 }
912
913 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
914
915 extern struct arm64_ftr_override id_aa64mmfr1_override;
916 extern struct arm64_ftr_override id_aa64pfr1_override;
917 extern struct arm64_ftr_override id_aa64isar1_override;
918 extern struct arm64_ftr_override id_aa64isar2_override;
919
920 u32 get_kvm_ipa_limit(void);
921 void dump_cpu_features(void);
922
923 #endif /* __ASSEMBLY__ */
924
925 #endif
926