1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2021 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /*
37 * monitor mode reception
38 *
39 * This function cleans up the SKB, i.e. it removes all the stuff
40 * only useful for monitoring.
41 */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 unsigned int present_fcs_len,
44 unsigned int rtap_space)
45 {
46 struct ieee80211_hdr *hdr;
47 unsigned int hdrlen;
48 __le16 fc;
49
50 if (present_fcs_len)
51 __pskb_trim(skb, skb->len - present_fcs_len);
52 __pskb_pull(skb, rtap_space);
53
54 hdr = (void *)skb->data;
55 fc = hdr->frame_control;
56
57 /*
58 * Remove the HT-Control field (if present) on management
59 * frames after we've sent the frame to monitoring. We
60 * (currently) don't need it, and don't properly parse
61 * frames with it present, due to the assumption of a
62 * fixed management header length.
63 */
64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 return skb;
66
67 hdrlen = ieee80211_hdrlen(fc);
68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69
70 if (!pskb_may_pull(skb, hdrlen)) {
71 dev_kfree_skb(skb);
72 return NULL;
73 }
74
75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 hdrlen - IEEE80211_HT_CTL_LEN);
77 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78
79 return skb;
80 }
81
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 unsigned int rtap_space)
84 {
85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 struct ieee80211_hdr *hdr;
87
88 hdr = (void *)(skb->data + rtap_space);
89
90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 RX_FLAG_FAILED_PLCP_CRC |
92 RX_FLAG_ONLY_MONITOR |
93 RX_FLAG_NO_PSDU))
94 return true;
95
96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 return true;
98
99 if (ieee80211_is_ctl(hdr->frame_control) &&
100 !ieee80211_is_pspoll(hdr->frame_control) &&
101 !ieee80211_is_back_req(hdr->frame_control))
102 return true;
103
104 return false;
105 }
106
107 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 struct ieee80211_rx_status *status,
110 struct sk_buff *skb)
111 {
112 int len;
113
114 /* always present fields */
115 len = sizeof(struct ieee80211_radiotap_header) + 8;
116
117 /* allocate extra bitmaps */
118 if (status->chains)
119 len += 4 * hweight8(status->chains);
120 /* vendor presence bitmap */
121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 len += 4;
123
124 if (ieee80211_have_rx_timestamp(status)) {
125 len = ALIGN(len, 8);
126 len += 8;
127 }
128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 len += 1;
130
131 /* antenna field, if we don't have per-chain info */
132 if (!status->chains)
133 len += 1;
134
135 /* padding for RX_FLAGS if necessary */
136 len = ALIGN(len, 2);
137
138 if (status->encoding == RX_ENC_HT) /* HT info */
139 len += 3;
140
141 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 len = ALIGN(len, 4);
143 len += 8;
144 }
145
146 if (status->encoding == RX_ENC_VHT) {
147 len = ALIGN(len, 2);
148 len += 12;
149 }
150
151 if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 len = ALIGN(len, 8);
153 len += 12;
154 }
155
156 if (status->encoding == RX_ENC_HE &&
157 status->flag & RX_FLAG_RADIOTAP_HE) {
158 len = ALIGN(len, 2);
159 len += 12;
160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 }
162
163 if (status->encoding == RX_ENC_HE &&
164 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 len = ALIGN(len, 2);
166 len += 12;
167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 }
169
170 if (status->flag & RX_FLAG_NO_PSDU)
171 len += 1;
172
173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 len = ALIGN(len, 2);
175 len += 4;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 }
178
179 if (status->chains) {
180 /* antenna and antenna signal fields */
181 len += 2 * hweight8(status->chains);
182 }
183
184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 struct ieee80211_vendor_radiotap *rtap;
186 int vendor_data_offset = 0;
187
188 /*
189 * The position to look at depends on the existence (or non-
190 * existence) of other elements, so take that into account...
191 */
192 if (status->flag & RX_FLAG_RADIOTAP_HE)
193 vendor_data_offset +=
194 sizeof(struct ieee80211_radiotap_he);
195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 vendor_data_offset +=
197 sizeof(struct ieee80211_radiotap_he_mu);
198 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 vendor_data_offset +=
200 sizeof(struct ieee80211_radiotap_lsig);
201
202 rtap = (void *)&skb->data[vendor_data_offset];
203
204 /* alignment for fixed 6-byte vendor data header */
205 len = ALIGN(len, 2);
206 /* vendor data header */
207 len += 6;
208 if (WARN_ON(rtap->align == 0))
209 rtap->align = 1;
210 len = ALIGN(len, rtap->align);
211 len += rtap->len + rtap->pad;
212 }
213
214 return len;
215 }
216
__ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 struct sta_info *sta,
219 struct sk_buff *skb)
220 {
221 skb_queue_tail(&sdata->skb_queue, skb);
222 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 if (sta)
224 sta->deflink.rx_stats.packets++;
225 }
226
ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 struct sta_info *sta,
229 struct sk_buff *skb)
230 {
231 skb->protocol = 0;
232 __ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 struct sk_buff *skb,
237 int rtap_space)
238 {
239 struct {
240 struct ieee80211_hdr_3addr hdr;
241 u8 category;
242 u8 action_code;
243 } __packed __aligned(2) action;
244
245 if (!sdata)
246 return;
247
248 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249
250 if (skb->len < rtap_space + sizeof(action) +
251 VHT_MUMIMO_GROUPS_DATA_LEN)
252 return;
253
254 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 return;
256
257 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258
259 if (!ieee80211_is_action(action.hdr.frame_control))
260 return;
261
262 if (action.category != WLAN_CATEGORY_VHT)
263 return;
264
265 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 return;
267
268 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 return;
270
271 skb = skb_copy(skb, GFP_ATOMIC);
272 if (!skb)
273 return;
274
275 ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277
278 /*
279 * ieee80211_add_rx_radiotap_header - add radiotap header
280 *
281 * add a radiotap header containing all the fields which the hardware provided.
282 */
283 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 struct sk_buff *skb,
286 struct ieee80211_rate *rate,
287 int rtap_len, bool has_fcs)
288 {
289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 struct ieee80211_radiotap_header *rthdr;
291 unsigned char *pos;
292 __le32 *it_present;
293 u32 it_present_val;
294 u16 rx_flags = 0;
295 u16 channel_flags = 0;
296 int mpdulen, chain;
297 unsigned long chains = status->chains;
298 struct ieee80211_vendor_radiotap rtap = {};
299 struct ieee80211_radiotap_he he = {};
300 struct ieee80211_radiotap_he_mu he_mu = {};
301 struct ieee80211_radiotap_lsig lsig = {};
302
303 if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 he = *(struct ieee80211_radiotap_he *)skb->data;
305 skb_pull(skb, sizeof(he));
306 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 }
308
309 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 skb_pull(skb, sizeof(he_mu));
312 }
313
314 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 skb_pull(skb, sizeof(lsig));
317 }
318
319 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 /* rtap.len and rtap.pad are undone immediately */
322 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 }
324
325 mpdulen = skb->len;
326 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 mpdulen += FCS_LEN;
328
329 rthdr = skb_push(skb, rtap_len);
330 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 it_present = &rthdr->it_present;
332
333 /* radiotap header, set always present flags */
334 rthdr->it_len = cpu_to_le16(rtap_len);
335 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338
339 if (!status->chains)
340 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341
342 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 it_present_val |=
344 BIT(IEEE80211_RADIOTAP_EXT) |
345 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 put_unaligned_le32(it_present_val, it_present);
347 it_present++;
348 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 }
351
352 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 BIT(IEEE80211_RADIOTAP_EXT);
355 put_unaligned_le32(it_present_val, it_present);
356 it_present++;
357 it_present_val = rtap.present;
358 }
359
360 put_unaligned_le32(it_present_val, it_present);
361
362 /* This references through an offset into it_optional[] rather
363 * than via it_present otherwise later uses of pos will cause
364 * the compiler to think we have walked past the end of the
365 * struct member.
366 */
367 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
368
369 /* the order of the following fields is important */
370
371 /* IEEE80211_RADIOTAP_TSFT */
372 if (ieee80211_have_rx_timestamp(status)) {
373 /* padding */
374 while ((pos - (u8 *)rthdr) & 7)
375 *pos++ = 0;
376 put_unaligned_le64(
377 ieee80211_calculate_rx_timestamp(local, status,
378 mpdulen, 0),
379 pos);
380 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 pos += 8;
382 }
383
384 /* IEEE80211_RADIOTAP_FLAGS */
385 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 *pos |= IEEE80211_RADIOTAP_F_FCS;
387 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 pos++;
392
393 /* IEEE80211_RADIOTAP_RATE */
394 if (!rate || status->encoding != RX_ENC_LEGACY) {
395 /*
396 * Without rate information don't add it. If we have,
397 * MCS information is a separate field in radiotap,
398 * added below. The byte here is needed as padding
399 * for the channel though, so initialise it to 0.
400 */
401 *pos = 0;
402 } else {
403 int shift = 0;
404 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 if (status->bw == RATE_INFO_BW_10)
406 shift = 1;
407 else if (status->bw == RATE_INFO_BW_5)
408 shift = 2;
409 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 }
411 pos++;
412
413 /* IEEE80211_RADIOTAP_CHANNEL */
414 /* TODO: frequency offset in KHz */
415 put_unaligned_le16(status->freq, pos);
416 pos += 2;
417 if (status->bw == RATE_INFO_BW_10)
418 channel_flags |= IEEE80211_CHAN_HALF;
419 else if (status->bw == RATE_INFO_BW_5)
420 channel_flags |= IEEE80211_CHAN_QUARTER;
421
422 if (status->band == NL80211_BAND_5GHZ ||
423 status->band == NL80211_BAND_6GHZ)
424 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 else if (status->encoding != RX_ENC_LEGACY)
426 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 else if (rate)
430 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 else
432 channel_flags |= IEEE80211_CHAN_2GHZ;
433 put_unaligned_le16(channel_flags, pos);
434 pos += 2;
435
436 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 *pos = status->signal;
440 rthdr->it_present |=
441 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 pos++;
443 }
444
445 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446
447 if (!status->chains) {
448 /* IEEE80211_RADIOTAP_ANTENNA */
449 *pos = status->antenna;
450 pos++;
451 }
452
453 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454
455 /* IEEE80211_RADIOTAP_RX_FLAGS */
456 /* ensure 2 byte alignment for the 2 byte field as required */
457 if ((pos - (u8 *)rthdr) & 1)
458 *pos++ = 0;
459 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 put_unaligned_le16(rx_flags, pos);
462 pos += 2;
463
464 if (status->encoding == RX_ENC_HT) {
465 unsigned int stbc;
466
467 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 *pos++ = local->hw.radiotap_mcs_details;
469 *pos = 0;
470 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
471 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
472 if (status->bw == RATE_INFO_BW_40)
473 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
474 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
475 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
476 if (status->enc_flags & RX_ENC_FLAG_LDPC)
477 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
478 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
479 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
480 pos++;
481 *pos++ = status->rate_idx;
482 }
483
484 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
485 u16 flags = 0;
486
487 /* ensure 4 byte alignment */
488 while ((pos - (u8 *)rthdr) & 3)
489 pos++;
490 rthdr->it_present |=
491 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
492 put_unaligned_le32(status->ampdu_reference, pos);
493 pos += 4;
494 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
495 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
496 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
497 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
498 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
499 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
500 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
501 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
502 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
503 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
504 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
505 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
506 put_unaligned_le16(flags, pos);
507 pos += 2;
508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
509 *pos++ = status->ampdu_delimiter_crc;
510 else
511 *pos++ = 0;
512 *pos++ = 0;
513 }
514
515 if (status->encoding == RX_ENC_VHT) {
516 u16 known = local->hw.radiotap_vht_details;
517
518 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
519 put_unaligned_le16(known, pos);
520 pos += 2;
521 /* flags */
522 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
523 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
524 /* in VHT, STBC is binary */
525 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
526 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
527 if (status->enc_flags & RX_ENC_FLAG_BF)
528 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
529 pos++;
530 /* bandwidth */
531 switch (status->bw) {
532 case RATE_INFO_BW_80:
533 *pos++ = 4;
534 break;
535 case RATE_INFO_BW_160:
536 *pos++ = 11;
537 break;
538 case RATE_INFO_BW_40:
539 *pos++ = 1;
540 break;
541 default:
542 *pos++ = 0;
543 }
544 /* MCS/NSS */
545 *pos = (status->rate_idx << 4) | status->nss;
546 pos += 4;
547 /* coding field */
548 if (status->enc_flags & RX_ENC_FLAG_LDPC)
549 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
550 pos++;
551 /* group ID */
552 pos++;
553 /* partial_aid */
554 pos += 2;
555 }
556
557 if (local->hw.radiotap_timestamp.units_pos >= 0) {
558 u16 accuracy = 0;
559 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
560
561 rthdr->it_present |=
562 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
563
564 /* ensure 8 byte alignment */
565 while ((pos - (u8 *)rthdr) & 7)
566 pos++;
567
568 put_unaligned_le64(status->device_timestamp, pos);
569 pos += sizeof(u64);
570
571 if (local->hw.radiotap_timestamp.accuracy >= 0) {
572 accuracy = local->hw.radiotap_timestamp.accuracy;
573 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
574 }
575 put_unaligned_le16(accuracy, pos);
576 pos += sizeof(u16);
577
578 *pos++ = local->hw.radiotap_timestamp.units_pos;
579 *pos++ = flags;
580 }
581
582 if (status->encoding == RX_ENC_HE &&
583 status->flag & RX_FLAG_RADIOTAP_HE) {
584 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585
586 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
587 he.data6 |= HE_PREP(DATA6_NSTS,
588 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
589 status->enc_flags));
590 he.data3 |= HE_PREP(DATA3_STBC, 1);
591 } else {
592 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
593 }
594
595 #define CHECK_GI(s) \
596 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
597 (int)NL80211_RATE_INFO_HE_GI_##s)
598
599 CHECK_GI(0_8);
600 CHECK_GI(1_6);
601 CHECK_GI(3_2);
602
603 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
604 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
605 he.data3 |= HE_PREP(DATA3_CODING,
606 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
607
608 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
609
610 switch (status->bw) {
611 case RATE_INFO_BW_20:
612 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
613 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
614 break;
615 case RATE_INFO_BW_40:
616 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
617 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
618 break;
619 case RATE_INFO_BW_80:
620 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
621 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
622 break;
623 case RATE_INFO_BW_160:
624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
625 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
626 break;
627 case RATE_INFO_BW_HE_RU:
628 #define CHECK_RU_ALLOC(s) \
629 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
630 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
631
632 CHECK_RU_ALLOC(26);
633 CHECK_RU_ALLOC(52);
634 CHECK_RU_ALLOC(106);
635 CHECK_RU_ALLOC(242);
636 CHECK_RU_ALLOC(484);
637 CHECK_RU_ALLOC(996);
638 CHECK_RU_ALLOC(2x996);
639
640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 status->he_ru + 4);
642 break;
643 default:
644 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
645 }
646
647 /* ensure 2 byte alignment */
648 while ((pos - (u8 *)rthdr) & 1)
649 pos++;
650 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
651 memcpy(pos, &he, sizeof(he));
652 pos += sizeof(he);
653 }
654
655 if (status->encoding == RX_ENC_HE &&
656 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
657 /* ensure 2 byte alignment */
658 while ((pos - (u8 *)rthdr) & 1)
659 pos++;
660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
661 memcpy(pos, &he_mu, sizeof(he_mu));
662 pos += sizeof(he_mu);
663 }
664
665 if (status->flag & RX_FLAG_NO_PSDU) {
666 rthdr->it_present |=
667 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
668 *pos++ = status->zero_length_psdu_type;
669 }
670
671 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
672 /* ensure 2 byte alignment */
673 while ((pos - (u8 *)rthdr) & 1)
674 pos++;
675 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
676 memcpy(pos, &lsig, sizeof(lsig));
677 pos += sizeof(lsig);
678 }
679
680 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
681 *pos++ = status->chain_signal[chain];
682 *pos++ = chain;
683 }
684
685 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
686 /* ensure 2 byte alignment for the vendor field as required */
687 if ((pos - (u8 *)rthdr) & 1)
688 *pos++ = 0;
689 *pos++ = rtap.oui[0];
690 *pos++ = rtap.oui[1];
691 *pos++ = rtap.oui[2];
692 *pos++ = rtap.subns;
693 put_unaligned_le16(rtap.len, pos);
694 pos += 2;
695 /* align the actual payload as requested */
696 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
697 *pos++ = 0;
698 /* data (and possible padding) already follows */
699 }
700 }
701
702 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)703 ieee80211_make_monitor_skb(struct ieee80211_local *local,
704 struct sk_buff **origskb,
705 struct ieee80211_rate *rate,
706 int rtap_space, bool use_origskb)
707 {
708 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
709 int rt_hdrlen, needed_headroom;
710 struct sk_buff *skb;
711
712 /* room for the radiotap header based on driver features */
713 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
714 needed_headroom = rt_hdrlen - rtap_space;
715
716 if (use_origskb) {
717 /* only need to expand headroom if necessary */
718 skb = *origskb;
719 *origskb = NULL;
720
721 /*
722 * This shouldn't trigger often because most devices have an
723 * RX header they pull before we get here, and that should
724 * be big enough for our radiotap information. We should
725 * probably export the length to drivers so that we can have
726 * them allocate enough headroom to start with.
727 */
728 if (skb_headroom(skb) < needed_headroom &&
729 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
730 dev_kfree_skb(skb);
731 return NULL;
732 }
733 } else {
734 /*
735 * Need to make a copy and possibly remove radiotap header
736 * and FCS from the original.
737 */
738 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
739 0, GFP_ATOMIC);
740
741 if (!skb)
742 return NULL;
743 }
744
745 /* prepend radiotap information */
746 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
747
748 skb_reset_mac_header(skb);
749 skb->ip_summed = CHECKSUM_UNNECESSARY;
750 skb->pkt_type = PACKET_OTHERHOST;
751 skb->protocol = htons(ETH_P_802_2);
752
753 return skb;
754 }
755
756 /*
757 * This function copies a received frame to all monitor interfaces and
758 * returns a cleaned-up SKB that no longer includes the FCS nor the
759 * radiotap header the driver might have added.
760 */
761 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
763 struct ieee80211_rate *rate)
764 {
765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
766 struct ieee80211_sub_if_data *sdata;
767 struct sk_buff *monskb = NULL;
768 int present_fcs_len = 0;
769 unsigned int rtap_space = 0;
770 struct ieee80211_sub_if_data *monitor_sdata =
771 rcu_dereference(local->monitor_sdata);
772 bool only_monitor = false;
773 unsigned int min_head_len;
774
775 if (status->flag & RX_FLAG_RADIOTAP_HE)
776 rtap_space += sizeof(struct ieee80211_radiotap_he);
777
778 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
779 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
780
781 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
782 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
783
784 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
785 struct ieee80211_vendor_radiotap *rtap =
786 (void *)(origskb->data + rtap_space);
787
788 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
789 }
790
791 min_head_len = rtap_space;
792
793 /*
794 * First, we may need to make a copy of the skb because
795 * (1) we need to modify it for radiotap (if not present), and
796 * (2) the other RX handlers will modify the skb we got.
797 *
798 * We don't need to, of course, if we aren't going to return
799 * the SKB because it has a bad FCS/PLCP checksum.
800 */
801
802 if (!(status->flag & RX_FLAG_NO_PSDU)) {
803 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
804 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
805 /* driver bug */
806 WARN_ON(1);
807 dev_kfree_skb(origskb);
808 return NULL;
809 }
810 present_fcs_len = FCS_LEN;
811 }
812
813 /* also consider the hdr->frame_control */
814 min_head_len += 2;
815 }
816
817 /* ensure that the expected data elements are in skb head */
818 if (!pskb_may_pull(origskb, min_head_len)) {
819 dev_kfree_skb(origskb);
820 return NULL;
821 }
822
823 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
824
825 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
826 if (only_monitor) {
827 dev_kfree_skb(origskb);
828 return NULL;
829 }
830
831 return ieee80211_clean_skb(origskb, present_fcs_len,
832 rtap_space);
833 }
834
835 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
836
837 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
838 bool last_monitor = list_is_last(&sdata->u.mntr.list,
839 &local->mon_list);
840
841 if (!monskb)
842 monskb = ieee80211_make_monitor_skb(local, &origskb,
843 rate, rtap_space,
844 only_monitor &&
845 last_monitor);
846
847 if (monskb) {
848 struct sk_buff *skb;
849
850 if (last_monitor) {
851 skb = monskb;
852 monskb = NULL;
853 } else {
854 skb = skb_clone(monskb, GFP_ATOMIC);
855 }
856
857 if (skb) {
858 skb->dev = sdata->dev;
859 dev_sw_netstats_rx_add(skb->dev, skb->len);
860 netif_receive_skb(skb);
861 }
862 }
863
864 if (last_monitor)
865 break;
866 }
867
868 /* this happens if last_monitor was erroneously false */
869 dev_kfree_skb(monskb);
870
871 /* ditto */
872 if (!origskb)
873 return NULL;
874
875 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
876 }
877
ieee80211_parse_qos(struct ieee80211_rx_data * rx)878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
879 {
880 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
882 int tid, seqno_idx, security_idx;
883
884 /* does the frame have a qos control field? */
885 if (ieee80211_is_data_qos(hdr->frame_control)) {
886 u8 *qc = ieee80211_get_qos_ctl(hdr);
887 /* frame has qos control */
888 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
889 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
890 status->rx_flags |= IEEE80211_RX_AMSDU;
891
892 seqno_idx = tid;
893 security_idx = tid;
894 } else {
895 /*
896 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 *
898 * Sequence numbers for management frames, QoS data
899 * frames with a broadcast/multicast address in the
900 * Address 1 field, and all non-QoS data frames sent
901 * by QoS STAs are assigned using an additional single
902 * modulo-4096 counter, [...]
903 *
904 * We also use that counter for non-QoS STAs.
905 */
906 seqno_idx = IEEE80211_NUM_TIDS;
907 security_idx = 0;
908 if (ieee80211_is_mgmt(hdr->frame_control))
909 security_idx = IEEE80211_NUM_TIDS;
910 tid = 0;
911 }
912
913 rx->seqno_idx = seqno_idx;
914 rx->security_idx = security_idx;
915 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
916 * For now, set skb->priority to 0 for other cases. */
917 rx->skb->priority = (tid > 7) ? 0 : tid;
918 }
919
920 /**
921 * DOC: Packet alignment
922 *
923 * Drivers always need to pass packets that are aligned to two-byte boundaries
924 * to the stack.
925 *
926 * Additionally, should, if possible, align the payload data in a way that
927 * guarantees that the contained IP header is aligned to a four-byte
928 * boundary. In the case of regular frames, this simply means aligning the
929 * payload to a four-byte boundary (because either the IP header is directly
930 * contained, or IV/RFC1042 headers that have a length divisible by four are
931 * in front of it). If the payload data is not properly aligned and the
932 * architecture doesn't support efficient unaligned operations, mac80211
933 * will align the data.
934 *
935 * With A-MSDU frames, however, the payload data address must yield two modulo
936 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
937 * push the IP header further back to a multiple of four again. Thankfully, the
938 * specs were sane enough this time around to require padding each A-MSDU
939 * subframe to a length that is a multiple of four.
940 *
941 * Padding like Atheros hardware adds which is between the 802.11 header and
942 * the payload is not supported, the driver is required to move the 802.11
943 * header to be directly in front of the payload in that case.
944 */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
946 {
947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
948 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
949 #endif
950 }
951
952
953 /* rx handlers */
954
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
956 {
957 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
958
959 if (is_multicast_ether_addr(hdr->addr1))
960 return 0;
961
962 return ieee80211_is_robust_mgmt_frame(skb);
963 }
964
965
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
967 {
968 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
969
970 if (!is_multicast_ether_addr(hdr->addr1))
971 return 0;
972
973 return ieee80211_is_robust_mgmt_frame(skb);
974 }
975
976
977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
979 {
980 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
981 struct ieee80211_mmie *mmie;
982 struct ieee80211_mmie_16 *mmie16;
983
984 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
985 return -1;
986
987 if (!ieee80211_is_robust_mgmt_frame(skb) &&
988 !ieee80211_is_beacon(hdr->frame_control))
989 return -1; /* not a robust management frame */
990
991 mmie = (struct ieee80211_mmie *)
992 (skb->data + skb->len - sizeof(*mmie));
993 if (mmie->element_id == WLAN_EID_MMIE &&
994 mmie->length == sizeof(*mmie) - 2)
995 return le16_to_cpu(mmie->key_id);
996
997 mmie16 = (struct ieee80211_mmie_16 *)
998 (skb->data + skb->len - sizeof(*mmie16));
999 if (skb->len >= 24 + sizeof(*mmie16) &&
1000 mmie16->element_id == WLAN_EID_MMIE &&
1001 mmie16->length == sizeof(*mmie16) - 2)
1002 return le16_to_cpu(mmie16->key_id);
1003
1004 return -1;
1005 }
1006
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)1007 static int ieee80211_get_keyid(struct sk_buff *skb,
1008 const struct ieee80211_cipher_scheme *cs)
1009 {
1010 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1011 __le16 fc;
1012 int hdrlen;
1013 int minlen;
1014 u8 key_idx_off;
1015 u8 key_idx_shift;
1016 u8 keyid;
1017
1018 fc = hdr->frame_control;
1019 hdrlen = ieee80211_hdrlen(fc);
1020
1021 if (cs) {
1022 minlen = hdrlen + cs->hdr_len;
1023 key_idx_off = hdrlen + cs->key_idx_off;
1024 key_idx_shift = cs->key_idx_shift;
1025 } else {
1026 /* WEP, TKIP, CCMP and GCMP */
1027 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1028 key_idx_off = hdrlen + 3;
1029 key_idx_shift = 6;
1030 }
1031
1032 if (unlikely(skb->len < minlen))
1033 return -EINVAL;
1034
1035 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1036
1037 if (cs)
1038 keyid &= cs->key_idx_mask;
1039 keyid >>= key_idx_shift;
1040
1041 /* cs could use more than the usual two bits for the keyid */
1042 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1043 return -EINVAL;
1044
1045 return keyid;
1046 }
1047
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1049 {
1050 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1051 char *dev_addr = rx->sdata->vif.addr;
1052
1053 if (ieee80211_is_data(hdr->frame_control)) {
1054 if (is_multicast_ether_addr(hdr->addr1)) {
1055 if (ieee80211_has_tods(hdr->frame_control) ||
1056 !ieee80211_has_fromds(hdr->frame_control))
1057 return RX_DROP_MONITOR;
1058 if (ether_addr_equal(hdr->addr3, dev_addr))
1059 return RX_DROP_MONITOR;
1060 } else {
1061 if (!ieee80211_has_a4(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063 if (ether_addr_equal(hdr->addr4, dev_addr))
1064 return RX_DROP_MONITOR;
1065 }
1066 }
1067
1068 /* If there is not an established peer link and this is not a peer link
1069 * establisment frame, beacon or probe, drop the frame.
1070 */
1071
1072 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1073 struct ieee80211_mgmt *mgmt;
1074
1075 if (!ieee80211_is_mgmt(hdr->frame_control))
1076 return RX_DROP_MONITOR;
1077
1078 if (ieee80211_is_action(hdr->frame_control)) {
1079 u8 category;
1080
1081 /* make sure category field is present */
1082 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1083 return RX_DROP_MONITOR;
1084
1085 mgmt = (struct ieee80211_mgmt *)hdr;
1086 category = mgmt->u.action.category;
1087 if (category != WLAN_CATEGORY_MESH_ACTION &&
1088 category != WLAN_CATEGORY_SELF_PROTECTED)
1089 return RX_DROP_MONITOR;
1090 return RX_CONTINUE;
1091 }
1092
1093 if (ieee80211_is_probe_req(hdr->frame_control) ||
1094 ieee80211_is_probe_resp(hdr->frame_control) ||
1095 ieee80211_is_beacon(hdr->frame_control) ||
1096 ieee80211_is_auth(hdr->frame_control))
1097 return RX_CONTINUE;
1098
1099 return RX_DROP_MONITOR;
1100 }
1101
1102 return RX_CONTINUE;
1103 }
1104
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1106 int index)
1107 {
1108 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1109 struct sk_buff *tail = skb_peek_tail(frames);
1110 struct ieee80211_rx_status *status;
1111
1112 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1113 return true;
1114
1115 if (!tail)
1116 return false;
1117
1118 status = IEEE80211_SKB_RXCB(tail);
1119 if (status->flag & RX_FLAG_AMSDU_MORE)
1120 return false;
1121
1122 return true;
1123 }
1124
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1126 struct tid_ampdu_rx *tid_agg_rx,
1127 int index,
1128 struct sk_buff_head *frames)
1129 {
1130 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1131 struct sk_buff *skb;
1132 struct ieee80211_rx_status *status;
1133
1134 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1135
1136 if (skb_queue_empty(skb_list))
1137 goto no_frame;
1138
1139 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1140 __skb_queue_purge(skb_list);
1141 goto no_frame;
1142 }
1143
1144 /* release frames from the reorder ring buffer */
1145 tid_agg_rx->stored_mpdu_num--;
1146 while ((skb = __skb_dequeue(skb_list))) {
1147 status = IEEE80211_SKB_RXCB(skb);
1148 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1149 __skb_queue_tail(frames, skb);
1150 }
1151
1152 no_frame:
1153 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1154 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1155 }
1156
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1158 struct tid_ampdu_rx *tid_agg_rx,
1159 u16 head_seq_num,
1160 struct sk_buff_head *frames)
1161 {
1162 int index;
1163
1164 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1165
1166 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1168 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1169 frames);
1170 }
1171 }
1172
1173 /*
1174 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1175 * the skb was added to the buffer longer than this time ago, the earlier
1176 * frames that have not yet been received are assumed to be lost and the skb
1177 * can be released for processing. This may also release other skb's from the
1178 * reorder buffer if there are no additional gaps between the frames.
1179 *
1180 * Callers must hold tid_agg_rx->reorder_lock.
1181 */
1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1185 struct tid_ampdu_rx *tid_agg_rx,
1186 struct sk_buff_head *frames)
1187 {
1188 int index, i, j;
1189
1190 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1191
1192 /* release the buffer until next missing frame */
1193 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1194 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1195 tid_agg_rx->stored_mpdu_num) {
1196 /*
1197 * No buffers ready to be released, but check whether any
1198 * frames in the reorder buffer have timed out.
1199 */
1200 int skipped = 1;
1201 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1202 j = (j + 1) % tid_agg_rx->buf_size) {
1203 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1204 skipped++;
1205 continue;
1206 }
1207 if (skipped &&
1208 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1209 HT_RX_REORDER_BUF_TIMEOUT))
1210 goto set_release_timer;
1211
1212 /* don't leave incomplete A-MSDUs around */
1213 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1214 i = (i + 1) % tid_agg_rx->buf_size)
1215 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1216
1217 ht_dbg_ratelimited(sdata,
1218 "release an RX reorder frame due to timeout on earlier frames\n");
1219 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1220 frames);
1221
1222 /*
1223 * Increment the head seq# also for the skipped slots.
1224 */
1225 tid_agg_rx->head_seq_num =
1226 (tid_agg_rx->head_seq_num +
1227 skipped) & IEEE80211_SN_MASK;
1228 skipped = 0;
1229 }
1230 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1231 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1232 frames);
1233 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1234 }
1235
1236 if (tid_agg_rx->stored_mpdu_num) {
1237 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1238
1239 for (; j != (index - 1) % tid_agg_rx->buf_size;
1240 j = (j + 1) % tid_agg_rx->buf_size) {
1241 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1242 break;
1243 }
1244
1245 set_release_timer:
1246
1247 if (!tid_agg_rx->removed)
1248 mod_timer(&tid_agg_rx->reorder_timer,
1249 tid_agg_rx->reorder_time[j] + 1 +
1250 HT_RX_REORDER_BUF_TIMEOUT);
1251 } else {
1252 del_timer(&tid_agg_rx->reorder_timer);
1253 }
1254 }
1255
1256 /*
1257 * As this function belongs to the RX path it must be under
1258 * rcu_read_lock protection. It returns false if the frame
1259 * can be processed immediately, true if it was consumed.
1260 */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1262 struct tid_ampdu_rx *tid_agg_rx,
1263 struct sk_buff *skb,
1264 struct sk_buff_head *frames)
1265 {
1266 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1268 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1269 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1270 u16 head_seq_num, buf_size;
1271 int index;
1272 bool ret = true;
1273
1274 spin_lock(&tid_agg_rx->reorder_lock);
1275
1276 /*
1277 * Offloaded BA sessions have no known starting sequence number so pick
1278 * one from first Rxed frame for this tid after BA was started.
1279 */
1280 if (unlikely(tid_agg_rx->auto_seq)) {
1281 tid_agg_rx->auto_seq = false;
1282 tid_agg_rx->ssn = mpdu_seq_num;
1283 tid_agg_rx->head_seq_num = mpdu_seq_num;
1284 }
1285
1286 buf_size = tid_agg_rx->buf_size;
1287 head_seq_num = tid_agg_rx->head_seq_num;
1288
1289 /*
1290 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1291 * be reordered.
1292 */
1293 if (unlikely(!tid_agg_rx->started)) {
1294 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1295 ret = false;
1296 goto out;
1297 }
1298 tid_agg_rx->started = true;
1299 }
1300
1301 /* frame with out of date sequence number */
1302 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1303 dev_kfree_skb(skb);
1304 goto out;
1305 }
1306
1307 /*
1308 * If frame the sequence number exceeds our buffering window
1309 * size release some previous frames to make room for this one.
1310 */
1311 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1312 head_seq_num = ieee80211_sn_inc(
1313 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1314 /* release stored frames up to new head to stack */
1315 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1316 head_seq_num, frames);
1317 }
1318
1319 /* Now the new frame is always in the range of the reordering buffer */
1320
1321 index = mpdu_seq_num % tid_agg_rx->buf_size;
1322
1323 /* check if we already stored this frame */
1324 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1325 dev_kfree_skb(skb);
1326 goto out;
1327 }
1328
1329 /*
1330 * If the current MPDU is in the right order and nothing else
1331 * is stored we can process it directly, no need to buffer it.
1332 * If it is first but there's something stored, we may be able
1333 * to release frames after this one.
1334 */
1335 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1336 tid_agg_rx->stored_mpdu_num == 0) {
1337 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1338 tid_agg_rx->head_seq_num =
1339 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1340 ret = false;
1341 goto out;
1342 }
1343
1344 /* put the frame in the reordering buffer */
1345 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1346 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1347 tid_agg_rx->reorder_time[index] = jiffies;
1348 tid_agg_rx->stored_mpdu_num++;
1349 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1350 }
1351
1352 out:
1353 spin_unlock(&tid_agg_rx->reorder_lock);
1354 return ret;
1355 }
1356
1357 /*
1358 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1359 * true if the MPDU was buffered, false if it should be processed.
1360 */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1362 struct sk_buff_head *frames)
1363 {
1364 struct sk_buff *skb = rx->skb;
1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1366 struct sta_info *sta = rx->sta;
1367 struct tid_ampdu_rx *tid_agg_rx;
1368 u16 sc;
1369 u8 tid, ack_policy;
1370
1371 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1372 is_multicast_ether_addr(hdr->addr1))
1373 goto dont_reorder;
1374
1375 /*
1376 * filter the QoS data rx stream according to
1377 * STA/TID and check if this STA/TID is on aggregation
1378 */
1379
1380 if (!sta)
1381 goto dont_reorder;
1382
1383 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1385 tid = ieee80211_get_tid(hdr);
1386
1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1388 if (!tid_agg_rx) {
1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1393 WLAN_BACK_RECIPIENT,
1394 WLAN_REASON_QSTA_REQUIRE_SETUP);
1395 goto dont_reorder;
1396 }
1397
1398 /* qos null data frames are excluded */
1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1400 goto dont_reorder;
1401
1402 /* not part of a BA session */
1403 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1404 goto dont_reorder;
1405
1406 /* new, potentially un-ordered, ampdu frame - process it */
1407
1408 /* reset session timer */
1409 if (tid_agg_rx->timeout)
1410 tid_agg_rx->last_rx = jiffies;
1411
1412 /* if this mpdu is fragmented - terminate rx aggregation session */
1413 sc = le16_to_cpu(hdr->seq_ctrl);
1414 if (sc & IEEE80211_SCTL_FRAG) {
1415 ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1416 return;
1417 }
1418
1419 /*
1420 * No locking needed -- we will only ever process one
1421 * RX packet at a time, and thus own tid_agg_rx. All
1422 * other code manipulating it needs to (and does) make
1423 * sure that we cannot get to it any more before doing
1424 * anything with it.
1425 */
1426 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1427 frames))
1428 return;
1429
1430 dont_reorder:
1431 __skb_queue_tail(frames, skb);
1432 }
1433
1434 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1435 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1436 {
1437 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1438 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1439
1440 if (status->flag & RX_FLAG_DUP_VALIDATED)
1441 return RX_CONTINUE;
1442
1443 /*
1444 * Drop duplicate 802.11 retransmissions
1445 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1446 */
1447
1448 if (rx->skb->len < 24)
1449 return RX_CONTINUE;
1450
1451 if (ieee80211_is_ctl(hdr->frame_control) ||
1452 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1453 is_multicast_ether_addr(hdr->addr1))
1454 return RX_CONTINUE;
1455
1456 if (!rx->sta)
1457 return RX_CONTINUE;
1458
1459 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1460 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1461 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1462 rx->sta->deflink.rx_stats.num_duplicates++;
1463 return RX_DROP_UNUSABLE;
1464 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1465 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1466 }
1467
1468 return RX_CONTINUE;
1469 }
1470
1471 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1472 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1473 {
1474 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1475
1476 /* Drop disallowed frame classes based on STA auth/assoc state;
1477 * IEEE 802.11, Chap 5.5.
1478 *
1479 * mac80211 filters only based on association state, i.e. it drops
1480 * Class 3 frames from not associated stations. hostapd sends
1481 * deauth/disassoc frames when needed. In addition, hostapd is
1482 * responsible for filtering on both auth and assoc states.
1483 */
1484
1485 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1486 return ieee80211_rx_mesh_check(rx);
1487
1488 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1489 ieee80211_is_pspoll(hdr->frame_control)) &&
1490 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1491 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1492 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1493 /*
1494 * accept port control frames from the AP even when it's not
1495 * yet marked ASSOC to prevent a race where we don't set the
1496 * assoc bit quickly enough before it sends the first frame
1497 */
1498 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1499 ieee80211_is_data_present(hdr->frame_control)) {
1500 unsigned int hdrlen;
1501 __be16 ethertype;
1502
1503 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1504
1505 if (rx->skb->len < hdrlen + 8)
1506 return RX_DROP_MONITOR;
1507
1508 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2);
1509 if (ethertype == rx->sdata->control_port_protocol)
1510 return RX_CONTINUE;
1511 }
1512
1513 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1514 cfg80211_rx_spurious_frame(rx->sdata->dev,
1515 hdr->addr2,
1516 GFP_ATOMIC))
1517 return RX_DROP_UNUSABLE;
1518
1519 return RX_DROP_MONITOR;
1520 }
1521
1522 return RX_CONTINUE;
1523 }
1524
1525
1526 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1527 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1528 {
1529 struct ieee80211_local *local;
1530 struct ieee80211_hdr *hdr;
1531 struct sk_buff *skb;
1532
1533 local = rx->local;
1534 skb = rx->skb;
1535 hdr = (struct ieee80211_hdr *) skb->data;
1536
1537 if (!local->pspolling)
1538 return RX_CONTINUE;
1539
1540 if (!ieee80211_has_fromds(hdr->frame_control))
1541 /* this is not from AP */
1542 return RX_CONTINUE;
1543
1544 if (!ieee80211_is_data(hdr->frame_control))
1545 return RX_CONTINUE;
1546
1547 if (!ieee80211_has_moredata(hdr->frame_control)) {
1548 /* AP has no more frames buffered for us */
1549 local->pspolling = false;
1550 return RX_CONTINUE;
1551 }
1552
1553 /* more data bit is set, let's request a new frame from the AP */
1554 ieee80211_send_pspoll(local, rx->sdata);
1555
1556 return RX_CONTINUE;
1557 }
1558
sta_ps_start(struct sta_info * sta)1559 static void sta_ps_start(struct sta_info *sta)
1560 {
1561 struct ieee80211_sub_if_data *sdata = sta->sdata;
1562 struct ieee80211_local *local = sdata->local;
1563 struct ps_data *ps;
1564 int tid;
1565
1566 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1567 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1568 ps = &sdata->bss->ps;
1569 else
1570 return;
1571
1572 atomic_inc(&ps->num_sta_ps);
1573 set_sta_flag(sta, WLAN_STA_PS_STA);
1574 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1575 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1576 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1577 sta->sta.addr, sta->sta.aid);
1578
1579 ieee80211_clear_fast_xmit(sta);
1580
1581 if (!sta->sta.txq[0])
1582 return;
1583
1584 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1585 struct ieee80211_txq *txq = sta->sta.txq[tid];
1586
1587 ieee80211_unschedule_txq(&local->hw, txq, false);
1588
1589 if (txq_has_queue(txq))
1590 set_bit(tid, &sta->txq_buffered_tids);
1591 else
1592 clear_bit(tid, &sta->txq_buffered_tids);
1593 }
1594 }
1595
sta_ps_end(struct sta_info * sta)1596 static void sta_ps_end(struct sta_info *sta)
1597 {
1598 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1599 sta->sta.addr, sta->sta.aid);
1600
1601 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1602 /*
1603 * Clear the flag only if the other one is still set
1604 * so that the TX path won't start TX'ing new frames
1605 * directly ... In the case that the driver flag isn't
1606 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1607 */
1608 clear_sta_flag(sta, WLAN_STA_PS_STA);
1609 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1610 sta->sta.addr, sta->sta.aid);
1611 return;
1612 }
1613
1614 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1615 clear_sta_flag(sta, WLAN_STA_PS_STA);
1616 ieee80211_sta_ps_deliver_wakeup(sta);
1617 }
1618
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1619 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1620 {
1621 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1622 bool in_ps;
1623
1624 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1625
1626 /* Don't let the same PS state be set twice */
1627 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1628 if ((start && in_ps) || (!start && !in_ps))
1629 return -EINVAL;
1630
1631 if (start)
1632 sta_ps_start(sta);
1633 else
1634 sta_ps_end(sta);
1635
1636 return 0;
1637 }
1638 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1639
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1640 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1641 {
1642 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1643
1644 if (test_sta_flag(sta, WLAN_STA_SP))
1645 return;
1646
1647 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1648 ieee80211_sta_ps_deliver_poll_response(sta);
1649 else
1650 set_sta_flag(sta, WLAN_STA_PSPOLL);
1651 }
1652 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1653
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1654 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1655 {
1656 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1657 int ac = ieee80211_ac_from_tid(tid);
1658
1659 /*
1660 * If this AC is not trigger-enabled do nothing unless the
1661 * driver is calling us after it already checked.
1662 *
1663 * NB: This could/should check a separate bitmap of trigger-
1664 * enabled queues, but for now we only implement uAPSD w/o
1665 * TSPEC changes to the ACs, so they're always the same.
1666 */
1667 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1668 tid != IEEE80211_NUM_TIDS)
1669 return;
1670
1671 /* if we are in a service period, do nothing */
1672 if (test_sta_flag(sta, WLAN_STA_SP))
1673 return;
1674
1675 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1676 ieee80211_sta_ps_deliver_uapsd(sta);
1677 else
1678 set_sta_flag(sta, WLAN_STA_UAPSD);
1679 }
1680 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1681
1682 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1683 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1684 {
1685 struct ieee80211_sub_if_data *sdata = rx->sdata;
1686 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1687 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1688
1689 if (!rx->sta)
1690 return RX_CONTINUE;
1691
1692 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1693 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1694 return RX_CONTINUE;
1695
1696 /*
1697 * The device handles station powersave, so don't do anything about
1698 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1699 * it to mac80211 since they're handled.)
1700 */
1701 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1702 return RX_CONTINUE;
1703
1704 /*
1705 * Don't do anything if the station isn't already asleep. In
1706 * the uAPSD case, the station will probably be marked asleep,
1707 * in the PS-Poll case the station must be confused ...
1708 */
1709 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1710 return RX_CONTINUE;
1711
1712 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1713 ieee80211_sta_pspoll(&rx->sta->sta);
1714
1715 /* Free PS Poll skb here instead of returning RX_DROP that would
1716 * count as an dropped frame. */
1717 dev_kfree_skb(rx->skb);
1718
1719 return RX_QUEUED;
1720 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1721 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1722 ieee80211_has_pm(hdr->frame_control) &&
1723 (ieee80211_is_data_qos(hdr->frame_control) ||
1724 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1725 u8 tid = ieee80211_get_tid(hdr);
1726
1727 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1728 }
1729
1730 return RX_CONTINUE;
1731 }
1732
1733 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1734 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1735 {
1736 struct sta_info *sta = rx->sta;
1737 struct sk_buff *skb = rx->skb;
1738 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1739 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1740 int i;
1741
1742 if (!sta)
1743 return RX_CONTINUE;
1744
1745 /*
1746 * Update last_rx only for IBSS packets which are for the current
1747 * BSSID and for station already AUTHORIZED to avoid keeping the
1748 * current IBSS network alive in cases where other STAs start
1749 * using different BSSID. This will also give the station another
1750 * chance to restart the authentication/authorization in case
1751 * something went wrong the first time.
1752 */
1753 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1754 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1755 NL80211_IFTYPE_ADHOC);
1756 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1757 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1758 sta->deflink.rx_stats.last_rx = jiffies;
1759 if (ieee80211_is_data(hdr->frame_control) &&
1760 !is_multicast_ether_addr(hdr->addr1))
1761 sta->deflink.rx_stats.last_rate =
1762 sta_stats_encode_rate(status);
1763 }
1764 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1765 sta->deflink.rx_stats.last_rx = jiffies;
1766 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1767 !is_multicast_ether_addr(hdr->addr1)) {
1768 /*
1769 * Mesh beacons will update last_rx when if they are found to
1770 * match the current local configuration when processed.
1771 */
1772 sta->deflink.rx_stats.last_rx = jiffies;
1773 if (ieee80211_is_data(hdr->frame_control))
1774 sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status);
1775 }
1776
1777 sta->deflink.rx_stats.fragments++;
1778
1779 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
1780 sta->deflink.rx_stats.bytes += rx->skb->len;
1781 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
1782
1783 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1784 sta->deflink.rx_stats.last_signal = status->signal;
1785 ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
1786 -status->signal);
1787 }
1788
1789 if (status->chains) {
1790 sta->deflink.rx_stats.chains = status->chains;
1791 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1792 int signal = status->chain_signal[i];
1793
1794 if (!(status->chains & BIT(i)))
1795 continue;
1796
1797 sta->deflink.rx_stats.chain_signal_last[i] = signal;
1798 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
1799 -signal);
1800 }
1801 }
1802
1803 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1804 return RX_CONTINUE;
1805
1806 /*
1807 * Change STA power saving mode only at the end of a frame
1808 * exchange sequence, and only for a data or management
1809 * frame as specified in IEEE 802.11-2016 11.2.3.2
1810 */
1811 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1812 !ieee80211_has_morefrags(hdr->frame_control) &&
1813 !is_multicast_ether_addr(hdr->addr1) &&
1814 (ieee80211_is_mgmt(hdr->frame_control) ||
1815 ieee80211_is_data(hdr->frame_control)) &&
1816 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1817 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1818 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1819 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1820 if (!ieee80211_has_pm(hdr->frame_control))
1821 sta_ps_end(sta);
1822 } else {
1823 if (ieee80211_has_pm(hdr->frame_control))
1824 sta_ps_start(sta);
1825 }
1826 }
1827
1828 /* mesh power save support */
1829 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1830 ieee80211_mps_rx_h_sta_process(sta, hdr);
1831
1832 /*
1833 * Drop (qos-)data::nullfunc frames silently, since they
1834 * are used only to control station power saving mode.
1835 */
1836 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1837 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1838
1839 /*
1840 * If we receive a 4-addr nullfunc frame from a STA
1841 * that was not moved to a 4-addr STA vlan yet send
1842 * the event to userspace and for older hostapd drop
1843 * the frame to the monitor interface.
1844 */
1845 if (ieee80211_has_a4(hdr->frame_control) &&
1846 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1847 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1848 !rx->sdata->u.vlan.sta))) {
1849 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1850 cfg80211_rx_unexpected_4addr_frame(
1851 rx->sdata->dev, sta->sta.addr,
1852 GFP_ATOMIC);
1853 return RX_DROP_MONITOR;
1854 }
1855 /*
1856 * Update counter and free packet here to avoid
1857 * counting this as a dropped packed.
1858 */
1859 sta->deflink.rx_stats.packets++;
1860 dev_kfree_skb(rx->skb);
1861 return RX_QUEUED;
1862 }
1863
1864 return RX_CONTINUE;
1865 } /* ieee80211_rx_h_sta_process */
1866
1867 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1868 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1869 {
1870 struct ieee80211_key *key = NULL;
1871 struct ieee80211_sub_if_data *sdata = rx->sdata;
1872 int idx2;
1873
1874 /* Make sure key gets set if either BIGTK key index is set so that
1875 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1876 * Beacon frames and Beacon frames that claim to use another BIGTK key
1877 * index (i.e., a key that we do not have).
1878 */
1879
1880 if (idx < 0) {
1881 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1882 idx2 = idx + 1;
1883 } else {
1884 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1885 idx2 = idx + 1;
1886 else
1887 idx2 = idx - 1;
1888 }
1889
1890 if (rx->sta)
1891 key = rcu_dereference(rx->sta->deflink.gtk[idx]);
1892 if (!key)
1893 key = rcu_dereference(sdata->keys[idx]);
1894 if (!key && rx->sta)
1895 key = rcu_dereference(rx->sta->deflink.gtk[idx2]);
1896 if (!key)
1897 key = rcu_dereference(sdata->keys[idx2]);
1898
1899 return key;
1900 }
1901
1902 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1903 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1904 {
1905 struct sk_buff *skb = rx->skb;
1906 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1908 int keyidx;
1909 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1910 struct ieee80211_key *sta_ptk = NULL;
1911 struct ieee80211_key *ptk_idx = NULL;
1912 int mmie_keyidx = -1;
1913 __le16 fc;
1914 const struct ieee80211_cipher_scheme *cs = NULL;
1915
1916 if (ieee80211_is_ext(hdr->frame_control))
1917 return RX_CONTINUE;
1918
1919 /*
1920 * Key selection 101
1921 *
1922 * There are five types of keys:
1923 * - GTK (group keys)
1924 * - IGTK (group keys for management frames)
1925 * - BIGTK (group keys for Beacon frames)
1926 * - PTK (pairwise keys)
1927 * - STK (station-to-station pairwise keys)
1928 *
1929 * When selecting a key, we have to distinguish between multicast
1930 * (including broadcast) and unicast frames, the latter can only
1931 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1932 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1933 * then unicast frames can also use key indices like GTKs. Hence, if we
1934 * don't have a PTK/STK we check the key index for a WEP key.
1935 *
1936 * Note that in a regular BSS, multicast frames are sent by the
1937 * AP only, associated stations unicast the frame to the AP first
1938 * which then multicasts it on their behalf.
1939 *
1940 * There is also a slight problem in IBSS mode: GTKs are negotiated
1941 * with each station, that is something we don't currently handle.
1942 * The spec seems to expect that one negotiates the same key with
1943 * every station but there's no such requirement; VLANs could be
1944 * possible.
1945 */
1946
1947 /* start without a key */
1948 rx->key = NULL;
1949 fc = hdr->frame_control;
1950
1951 if (rx->sta) {
1952 int keyid = rx->sta->ptk_idx;
1953 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1954
1955 if (ieee80211_has_protected(fc) &&
1956 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1957 cs = rx->sta->cipher_scheme;
1958 keyid = ieee80211_get_keyid(rx->skb, cs);
1959
1960 if (unlikely(keyid < 0))
1961 return RX_DROP_UNUSABLE;
1962
1963 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1964 }
1965 }
1966
1967 if (!ieee80211_has_protected(fc))
1968 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1969
1970 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1971 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1972 if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 (status->flag & RX_FLAG_IV_STRIPPED))
1974 return RX_CONTINUE;
1975 /* Skip decryption if the frame is not protected. */
1976 if (!ieee80211_has_protected(fc))
1977 return RX_CONTINUE;
1978 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1979 /* Broadcast/multicast robust management frame / BIP */
1980 if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 (status->flag & RX_FLAG_IV_STRIPPED))
1982 return RX_CONTINUE;
1983
1984 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1985 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1986 NUM_DEFAULT_BEACON_KEYS) {
1987 if (rx->sdata->dev)
1988 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1989 skb->data,
1990 skb->len);
1991 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1992 }
1993
1994 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1995 if (!rx->key)
1996 return RX_CONTINUE; /* Beacon protection not in use */
1997 } else if (mmie_keyidx >= 0) {
1998 /* Broadcast/multicast robust management frame / BIP */
1999 if ((status->flag & RX_FLAG_DECRYPTED) &&
2000 (status->flag & RX_FLAG_IV_STRIPPED))
2001 return RX_CONTINUE;
2002
2003 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2004 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2005 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2006 if (rx->sta) {
2007 if (ieee80211_is_group_privacy_action(skb) &&
2008 test_sta_flag(rx->sta, WLAN_STA_MFP))
2009 return RX_DROP_MONITOR;
2010
2011 rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]);
2012 }
2013 if (!rx->key)
2014 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2015 } else if (!ieee80211_has_protected(fc)) {
2016 /*
2017 * The frame was not protected, so skip decryption. However, we
2018 * need to set rx->key if there is a key that could have been
2019 * used so that the frame may be dropped if encryption would
2020 * have been expected.
2021 */
2022 struct ieee80211_key *key = NULL;
2023 struct ieee80211_sub_if_data *sdata = rx->sdata;
2024 int i;
2025
2026 if (ieee80211_is_beacon(fc)) {
2027 key = ieee80211_rx_get_bigtk(rx, -1);
2028 } else if (ieee80211_is_mgmt(fc) &&
2029 is_multicast_ether_addr(hdr->addr1)) {
2030 key = rcu_dereference(rx->sdata->default_mgmt_key);
2031 } else {
2032 if (rx->sta) {
2033 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2034 key = rcu_dereference(rx->sta->deflink.gtk[i]);
2035 if (key)
2036 break;
2037 }
2038 }
2039 if (!key) {
2040 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2041 key = rcu_dereference(sdata->keys[i]);
2042 if (key)
2043 break;
2044 }
2045 }
2046 }
2047 if (key)
2048 rx->key = key;
2049 return RX_CONTINUE;
2050 } else {
2051 /*
2052 * The device doesn't give us the IV so we won't be
2053 * able to look up the key. That's ok though, we
2054 * don't need to decrypt the frame, we just won't
2055 * be able to keep statistics accurate.
2056 * Except for key threshold notifications, should
2057 * we somehow allow the driver to tell us which key
2058 * the hardware used if this flag is set?
2059 */
2060 if ((status->flag & RX_FLAG_DECRYPTED) &&
2061 (status->flag & RX_FLAG_IV_STRIPPED))
2062 return RX_CONTINUE;
2063
2064 keyidx = ieee80211_get_keyid(rx->skb, cs);
2065
2066 if (unlikely(keyidx < 0))
2067 return RX_DROP_UNUSABLE;
2068
2069 /* check per-station GTK first, if multicast packet */
2070 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2071 rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]);
2072
2073 /* if not found, try default key */
2074 if (!rx->key) {
2075 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2076
2077 /*
2078 * RSNA-protected unicast frames should always be
2079 * sent with pairwise or station-to-station keys,
2080 * but for WEP we allow using a key index as well.
2081 */
2082 if (rx->key &&
2083 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2084 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2085 !is_multicast_ether_addr(hdr->addr1))
2086 rx->key = NULL;
2087 }
2088 }
2089
2090 if (rx->key) {
2091 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2092 return RX_DROP_MONITOR;
2093
2094 /* TODO: add threshold stuff again */
2095 } else {
2096 return RX_DROP_MONITOR;
2097 }
2098
2099 switch (rx->key->conf.cipher) {
2100 case WLAN_CIPHER_SUITE_WEP40:
2101 case WLAN_CIPHER_SUITE_WEP104:
2102 result = ieee80211_crypto_wep_decrypt(rx);
2103 break;
2104 case WLAN_CIPHER_SUITE_TKIP:
2105 result = ieee80211_crypto_tkip_decrypt(rx);
2106 break;
2107 case WLAN_CIPHER_SUITE_CCMP:
2108 result = ieee80211_crypto_ccmp_decrypt(
2109 rx, IEEE80211_CCMP_MIC_LEN);
2110 break;
2111 case WLAN_CIPHER_SUITE_CCMP_256:
2112 result = ieee80211_crypto_ccmp_decrypt(
2113 rx, IEEE80211_CCMP_256_MIC_LEN);
2114 break;
2115 case WLAN_CIPHER_SUITE_AES_CMAC:
2116 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2117 break;
2118 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2119 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2120 break;
2121 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2122 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2123 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2124 break;
2125 case WLAN_CIPHER_SUITE_GCMP:
2126 case WLAN_CIPHER_SUITE_GCMP_256:
2127 result = ieee80211_crypto_gcmp_decrypt(rx);
2128 break;
2129 default:
2130 result = ieee80211_crypto_hw_decrypt(rx);
2131 }
2132
2133 /* the hdr variable is invalid after the decrypt handlers */
2134
2135 /* either the frame has been decrypted or will be dropped */
2136 status->flag |= RX_FLAG_DECRYPTED;
2137
2138 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2139 rx->sdata->dev))
2140 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2141 skb->data, skb->len);
2142
2143 return result;
2144 }
2145
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2146 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2147 {
2148 int i;
2149
2150 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2151 skb_queue_head_init(&cache->entries[i].skb_list);
2152 }
2153
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2154 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2155 {
2156 int i;
2157
2158 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2159 __skb_queue_purge(&cache->entries[i].skb_list);
2160 }
2161
2162 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2163 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2164 unsigned int frag, unsigned int seq, int rx_queue,
2165 struct sk_buff **skb)
2166 {
2167 struct ieee80211_fragment_entry *entry;
2168
2169 entry = &cache->entries[cache->next++];
2170 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2171 cache->next = 0;
2172
2173 __skb_queue_purge(&entry->skb_list);
2174
2175 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2176 *skb = NULL;
2177 entry->first_frag_time = jiffies;
2178 entry->seq = seq;
2179 entry->rx_queue = rx_queue;
2180 entry->last_frag = frag;
2181 entry->check_sequential_pn = false;
2182 entry->extra_len = 0;
2183
2184 return entry;
2185 }
2186
2187 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2188 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2189 unsigned int frag, unsigned int seq,
2190 int rx_queue, struct ieee80211_hdr *hdr)
2191 {
2192 struct ieee80211_fragment_entry *entry;
2193 int i, idx;
2194
2195 idx = cache->next;
2196 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2197 struct ieee80211_hdr *f_hdr;
2198 struct sk_buff *f_skb;
2199
2200 idx--;
2201 if (idx < 0)
2202 idx = IEEE80211_FRAGMENT_MAX - 1;
2203
2204 entry = &cache->entries[idx];
2205 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2206 entry->rx_queue != rx_queue ||
2207 entry->last_frag + 1 != frag)
2208 continue;
2209
2210 f_skb = __skb_peek(&entry->skb_list);
2211 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2212
2213 /*
2214 * Check ftype and addresses are equal, else check next fragment
2215 */
2216 if (((hdr->frame_control ^ f_hdr->frame_control) &
2217 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2218 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2219 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2220 continue;
2221
2222 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2223 __skb_queue_purge(&entry->skb_list);
2224 continue;
2225 }
2226 return entry;
2227 }
2228
2229 return NULL;
2230 }
2231
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2232 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2233 {
2234 return rx->key &&
2235 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2236 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2237 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2238 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2239 ieee80211_has_protected(fc);
2240 }
2241
2242 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2243 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2244 {
2245 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2246 struct ieee80211_hdr *hdr;
2247 u16 sc;
2248 __le16 fc;
2249 unsigned int frag, seq;
2250 struct ieee80211_fragment_entry *entry;
2251 struct sk_buff *skb;
2252 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2253
2254 hdr = (struct ieee80211_hdr *)rx->skb->data;
2255 fc = hdr->frame_control;
2256
2257 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2258 return RX_CONTINUE;
2259
2260 sc = le16_to_cpu(hdr->seq_ctrl);
2261 frag = sc & IEEE80211_SCTL_FRAG;
2262
2263 if (rx->sta)
2264 cache = &rx->sta->frags;
2265
2266 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2267 goto out;
2268
2269 if (is_multicast_ether_addr(hdr->addr1))
2270 return RX_DROP_MONITOR;
2271
2272 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2273
2274 if (skb_linearize(rx->skb))
2275 return RX_DROP_UNUSABLE;
2276
2277 /*
2278 * skb_linearize() might change the skb->data and
2279 * previously cached variables (in this case, hdr) need to
2280 * be refreshed with the new data.
2281 */
2282 hdr = (struct ieee80211_hdr *)rx->skb->data;
2283 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2284
2285 if (frag == 0) {
2286 /* This is the first fragment of a new frame. */
2287 entry = ieee80211_reassemble_add(cache, frag, seq,
2288 rx->seqno_idx, &(rx->skb));
2289 if (requires_sequential_pn(rx, fc)) {
2290 int queue = rx->security_idx;
2291
2292 /* Store CCMP/GCMP PN so that we can verify that the
2293 * next fragment has a sequential PN value.
2294 */
2295 entry->check_sequential_pn = true;
2296 entry->is_protected = true;
2297 entry->key_color = rx->key->color;
2298 memcpy(entry->last_pn,
2299 rx->key->u.ccmp.rx_pn[queue],
2300 IEEE80211_CCMP_PN_LEN);
2301 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2302 u.ccmp.rx_pn) !=
2303 offsetof(struct ieee80211_key,
2304 u.gcmp.rx_pn));
2305 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2306 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2307 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2308 IEEE80211_GCMP_PN_LEN);
2309 } else if (rx->key &&
2310 (ieee80211_has_protected(fc) ||
2311 (status->flag & RX_FLAG_DECRYPTED))) {
2312 entry->is_protected = true;
2313 entry->key_color = rx->key->color;
2314 }
2315 return RX_QUEUED;
2316 }
2317
2318 /* This is a fragment for a frame that should already be pending in
2319 * fragment cache. Add this fragment to the end of the pending entry.
2320 */
2321 entry = ieee80211_reassemble_find(cache, frag, seq,
2322 rx->seqno_idx, hdr);
2323 if (!entry) {
2324 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2325 return RX_DROP_MONITOR;
2326 }
2327
2328 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2329 * MPDU PN values are not incrementing in steps of 1."
2330 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2331 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2332 */
2333 if (entry->check_sequential_pn) {
2334 int i;
2335 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2336
2337 if (!requires_sequential_pn(rx, fc))
2338 return RX_DROP_UNUSABLE;
2339
2340 /* Prevent mixed key and fragment cache attacks */
2341 if (entry->key_color != rx->key->color)
2342 return RX_DROP_UNUSABLE;
2343
2344 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2345 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2346 pn[i]++;
2347 if (pn[i])
2348 break;
2349 }
2350
2351 rpn = rx->ccm_gcm.pn;
2352 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2353 return RX_DROP_UNUSABLE;
2354 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2355 } else if (entry->is_protected &&
2356 (!rx->key ||
2357 (!ieee80211_has_protected(fc) &&
2358 !(status->flag & RX_FLAG_DECRYPTED)) ||
2359 rx->key->color != entry->key_color)) {
2360 /* Drop this as a mixed key or fragment cache attack, even
2361 * if for TKIP Michael MIC should protect us, and WEP is a
2362 * lost cause anyway.
2363 */
2364 return RX_DROP_UNUSABLE;
2365 } else if (entry->is_protected && rx->key &&
2366 entry->key_color != rx->key->color &&
2367 (status->flag & RX_FLAG_DECRYPTED)) {
2368 return RX_DROP_UNUSABLE;
2369 }
2370
2371 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2372 __skb_queue_tail(&entry->skb_list, rx->skb);
2373 entry->last_frag = frag;
2374 entry->extra_len += rx->skb->len;
2375 if (ieee80211_has_morefrags(fc)) {
2376 rx->skb = NULL;
2377 return RX_QUEUED;
2378 }
2379
2380 rx->skb = __skb_dequeue(&entry->skb_list);
2381 if (skb_tailroom(rx->skb) < entry->extra_len) {
2382 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2383 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2384 GFP_ATOMIC))) {
2385 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2386 __skb_queue_purge(&entry->skb_list);
2387 return RX_DROP_UNUSABLE;
2388 }
2389 }
2390 while ((skb = __skb_dequeue(&entry->skb_list))) {
2391 skb_put_data(rx->skb, skb->data, skb->len);
2392 dev_kfree_skb(skb);
2393 }
2394
2395 out:
2396 ieee80211_led_rx(rx->local);
2397 if (rx->sta)
2398 rx->sta->deflink.rx_stats.packets++;
2399 return RX_CONTINUE;
2400 }
2401
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2402 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2403 {
2404 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2405 return -EACCES;
2406
2407 return 0;
2408 }
2409
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2410 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2411 {
2412 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2413 struct sk_buff *skb = rx->skb;
2414 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2415
2416 /*
2417 * Pass through unencrypted frames if the hardware has
2418 * decrypted them already.
2419 */
2420 if (status->flag & RX_FLAG_DECRYPTED)
2421 return 0;
2422
2423 /* check mesh EAPOL frames first */
2424 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2425 ieee80211_is_data(fc))) {
2426 struct ieee80211s_hdr *mesh_hdr;
2427 u16 hdr_len = ieee80211_hdrlen(fc);
2428 u16 ethertype_offset;
2429 __be16 ethertype;
2430
2431 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2432 goto drop_check;
2433
2434 /* make sure fixed part of mesh header is there, also checks skb len */
2435 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2436 goto drop_check;
2437
2438 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2439 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2440 sizeof(rfc1042_header);
2441
2442 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 &&
2443 ethertype == rx->sdata->control_port_protocol)
2444 return 0;
2445 }
2446
2447 drop_check:
2448 /* Drop unencrypted frames if key is set. */
2449 if (unlikely(!ieee80211_has_protected(fc) &&
2450 !ieee80211_is_any_nullfunc(fc) &&
2451 ieee80211_is_data(fc) && rx->key))
2452 return -EACCES;
2453
2454 return 0;
2455 }
2456
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2457 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2458 {
2459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2460 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2461 __le16 fc = hdr->frame_control;
2462
2463 /*
2464 * Pass through unencrypted frames if the hardware has
2465 * decrypted them already.
2466 */
2467 if (status->flag & RX_FLAG_DECRYPTED)
2468 return 0;
2469
2470 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2471 if (unlikely(!ieee80211_has_protected(fc) &&
2472 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2473 rx->key)) {
2474 if (ieee80211_is_deauth(fc) ||
2475 ieee80211_is_disassoc(fc))
2476 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2477 rx->skb->data,
2478 rx->skb->len);
2479 return -EACCES;
2480 }
2481 /* BIP does not use Protected field, so need to check MMIE */
2482 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2483 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2484 if (ieee80211_is_deauth(fc) ||
2485 ieee80211_is_disassoc(fc))
2486 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2487 rx->skb->data,
2488 rx->skb->len);
2489 return -EACCES;
2490 }
2491 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2492 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2493 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2494 rx->skb->data,
2495 rx->skb->len);
2496 return -EACCES;
2497 }
2498 /*
2499 * When using MFP, Action frames are not allowed prior to
2500 * having configured keys.
2501 */
2502 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2503 ieee80211_is_robust_mgmt_frame(rx->skb)))
2504 return -EACCES;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2511 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2512 {
2513 struct ieee80211_sub_if_data *sdata = rx->sdata;
2514 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2515 bool check_port_control = false;
2516 struct ethhdr *ehdr;
2517 int ret;
2518
2519 *port_control = false;
2520 if (ieee80211_has_a4(hdr->frame_control) &&
2521 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2522 return -1;
2523
2524 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2525 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2526
2527 if (!sdata->u.mgd.use_4addr)
2528 return -1;
2529 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2530 check_port_control = true;
2531 }
2532
2533 if (is_multicast_ether_addr(hdr->addr1) &&
2534 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2535 return -1;
2536
2537 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2538 if (ret < 0)
2539 return ret;
2540
2541 ehdr = (struct ethhdr *) rx->skb->data;
2542 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2543 *port_control = true;
2544 else if (check_port_control)
2545 return -1;
2546
2547 return 0;
2548 }
2549
2550 /*
2551 * requires that rx->skb is a frame with ethernet header
2552 */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2553 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2554 {
2555 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2556 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2557 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2558
2559 /*
2560 * Allow EAPOL frames to us/the PAE group address regardless of
2561 * whether the frame was encrypted or not, and always disallow
2562 * all other destination addresses for them.
2563 */
2564 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2565 return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2566 ether_addr_equal(ehdr->h_dest, pae_group_addr);
2567
2568 if (ieee80211_802_1x_port_control(rx) ||
2569 ieee80211_drop_unencrypted(rx, fc))
2570 return false;
2571
2572 return true;
2573 }
2574
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2575 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2576 struct ieee80211_rx_data *rx)
2577 {
2578 struct ieee80211_sub_if_data *sdata = rx->sdata;
2579 struct net_device *dev = sdata->dev;
2580
2581 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2582 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2583 !sdata->control_port_no_preauth)) &&
2584 sdata->control_port_over_nl80211)) {
2585 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2586 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2587
2588 cfg80211_rx_control_port(dev, skb, noencrypt);
2589 dev_kfree_skb(skb);
2590 } else {
2591 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2592
2593 memset(skb->cb, 0, sizeof(skb->cb));
2594
2595 /*
2596 * 802.1X over 802.11 requires that the authenticator address
2597 * be used for EAPOL frames. However, 802.1X allows the use of
2598 * the PAE group address instead. If the interface is part of
2599 * a bridge and we pass the frame with the PAE group address,
2600 * then the bridge will forward it to the network (even if the
2601 * client was not associated yet), which isn't supposed to
2602 * happen.
2603 * To avoid that, rewrite the destination address to our own
2604 * address, so that the authenticator (e.g. hostapd) will see
2605 * the frame, but bridge won't forward it anywhere else. Note
2606 * that due to earlier filtering, the only other address can
2607 * be the PAE group address, unless the hardware allowed them
2608 * through in 802.3 offloaded mode.
2609 */
2610 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2611 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2612 ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2613
2614 /* deliver to local stack */
2615 if (rx->list)
2616 list_add_tail(&skb->list, rx->list);
2617 else
2618 netif_receive_skb(skb);
2619 }
2620 }
2621
2622 /*
2623 * requires that rx->skb is a frame with ethernet header
2624 */
2625 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2626 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2627 {
2628 struct ieee80211_sub_if_data *sdata = rx->sdata;
2629 struct net_device *dev = sdata->dev;
2630 struct sk_buff *skb, *xmit_skb;
2631 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2632 struct sta_info *dsta;
2633
2634 skb = rx->skb;
2635 xmit_skb = NULL;
2636
2637 dev_sw_netstats_rx_add(dev, skb->len);
2638
2639 if (rx->sta) {
2640 /* The seqno index has the same property as needed
2641 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2642 * for non-QoS-data frames. Here we know it's a data
2643 * frame, so count MSDUs.
2644 */
2645 u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
2646 rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++;
2647 u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
2648 }
2649
2650 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2651 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2652 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2653 ehdr->h_proto != rx->sdata->control_port_protocol &&
2654 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2655 if (is_multicast_ether_addr(ehdr->h_dest) &&
2656 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2657 /*
2658 * send multicast frames both to higher layers in
2659 * local net stack and back to the wireless medium
2660 */
2661 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2662 if (!xmit_skb)
2663 net_info_ratelimited("%s: failed to clone multicast frame\n",
2664 dev->name);
2665 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2666 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2667 dsta = sta_info_get(sdata, ehdr->h_dest);
2668 if (dsta) {
2669 /*
2670 * The destination station is associated to
2671 * this AP (in this VLAN), so send the frame
2672 * directly to it and do not pass it to local
2673 * net stack.
2674 */
2675 xmit_skb = skb;
2676 skb = NULL;
2677 }
2678 }
2679 }
2680
2681 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2682 if (skb) {
2683 /* 'align' will only take the values 0 or 2 here since all
2684 * frames are required to be aligned to 2-byte boundaries
2685 * when being passed to mac80211; the code here works just
2686 * as well if that isn't true, but mac80211 assumes it can
2687 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2688 */
2689 int align;
2690
2691 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2692 if (align) {
2693 if (WARN_ON(skb_headroom(skb) < 3)) {
2694 dev_kfree_skb(skb);
2695 skb = NULL;
2696 } else {
2697 u8 *data = skb->data;
2698 size_t len = skb_headlen(skb);
2699 skb->data -= align;
2700 memmove(skb->data, data, len);
2701 skb_set_tail_pointer(skb, len);
2702 }
2703 }
2704 }
2705 #endif
2706
2707 if (skb) {
2708 skb->protocol = eth_type_trans(skb, dev);
2709 ieee80211_deliver_skb_to_local_stack(skb, rx);
2710 }
2711
2712 if (xmit_skb) {
2713 /*
2714 * Send to wireless media and increase priority by 256 to
2715 * keep the received priority instead of reclassifying
2716 * the frame (see cfg80211_classify8021d).
2717 */
2718 xmit_skb->priority += 256;
2719 xmit_skb->protocol = htons(ETH_P_802_3);
2720 skb_reset_network_header(xmit_skb);
2721 skb_reset_mac_header(xmit_skb);
2722 dev_queue_xmit(xmit_skb);
2723 }
2724 }
2725
2726 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2727 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2728 {
2729 struct net_device *dev = rx->sdata->dev;
2730 struct sk_buff *skb = rx->skb;
2731 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2732 __le16 fc = hdr->frame_control;
2733 struct sk_buff_head frame_list;
2734 struct ethhdr ethhdr;
2735 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2736
2737 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2738 check_da = NULL;
2739 check_sa = NULL;
2740 } else switch (rx->sdata->vif.type) {
2741 case NL80211_IFTYPE_AP:
2742 case NL80211_IFTYPE_AP_VLAN:
2743 check_da = NULL;
2744 break;
2745 case NL80211_IFTYPE_STATION:
2746 if (!rx->sta ||
2747 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2748 check_sa = NULL;
2749 break;
2750 case NL80211_IFTYPE_MESH_POINT:
2751 check_sa = NULL;
2752 break;
2753 default:
2754 break;
2755 }
2756
2757 skb->dev = dev;
2758 __skb_queue_head_init(&frame_list);
2759
2760 if (ieee80211_data_to_8023_exthdr(skb, ðhdr,
2761 rx->sdata->vif.addr,
2762 rx->sdata->vif.type,
2763 data_offset, true))
2764 return RX_DROP_UNUSABLE;
2765
2766 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2767 rx->sdata->vif.type,
2768 rx->local->hw.extra_tx_headroom,
2769 check_da, check_sa);
2770
2771 while (!skb_queue_empty(&frame_list)) {
2772 rx->skb = __skb_dequeue(&frame_list);
2773
2774 if (!ieee80211_frame_allowed(rx, fc)) {
2775 dev_kfree_skb(rx->skb);
2776 continue;
2777 }
2778
2779 ieee80211_deliver_skb(rx);
2780 }
2781
2782 return RX_QUEUED;
2783 }
2784
2785 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2786 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2787 {
2788 struct sk_buff *skb = rx->skb;
2789 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2790 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2791 __le16 fc = hdr->frame_control;
2792
2793 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2794 return RX_CONTINUE;
2795
2796 if (unlikely(!ieee80211_is_data(fc)))
2797 return RX_CONTINUE;
2798
2799 if (unlikely(!ieee80211_is_data_present(fc)))
2800 return RX_DROP_MONITOR;
2801
2802 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2803 switch (rx->sdata->vif.type) {
2804 case NL80211_IFTYPE_AP_VLAN:
2805 if (!rx->sdata->u.vlan.sta)
2806 return RX_DROP_UNUSABLE;
2807 break;
2808 case NL80211_IFTYPE_STATION:
2809 if (!rx->sdata->u.mgd.use_4addr)
2810 return RX_DROP_UNUSABLE;
2811 break;
2812 default:
2813 return RX_DROP_UNUSABLE;
2814 }
2815 }
2816
2817 if (is_multicast_ether_addr(hdr->addr1))
2818 return RX_DROP_UNUSABLE;
2819
2820 if (rx->key) {
2821 /*
2822 * We should not receive A-MSDUs on pre-HT connections,
2823 * and HT connections cannot use old ciphers. Thus drop
2824 * them, as in those cases we couldn't even have SPP
2825 * A-MSDUs or such.
2826 */
2827 switch (rx->key->conf.cipher) {
2828 case WLAN_CIPHER_SUITE_WEP40:
2829 case WLAN_CIPHER_SUITE_WEP104:
2830 case WLAN_CIPHER_SUITE_TKIP:
2831 return RX_DROP_UNUSABLE;
2832 default:
2833 break;
2834 }
2835 }
2836
2837 return __ieee80211_rx_h_amsdu(rx, 0);
2838 }
2839
2840 #ifdef CONFIG_MAC80211_MESH
2841 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2842 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2843 {
2844 struct ieee80211_hdr *fwd_hdr, *hdr;
2845 struct ieee80211_tx_info *info;
2846 struct ieee80211s_hdr *mesh_hdr;
2847 struct sk_buff *skb = rx->skb, *fwd_skb;
2848 struct ieee80211_local *local = rx->local;
2849 struct ieee80211_sub_if_data *sdata = rx->sdata;
2850 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2851 u16 ac, q, hdrlen;
2852 int tailroom = 0;
2853
2854 hdr = (struct ieee80211_hdr *) skb->data;
2855 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2856
2857 /* make sure fixed part of mesh header is there, also checks skb len */
2858 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2859 return RX_DROP_MONITOR;
2860
2861 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2862
2863 /* make sure full mesh header is there, also checks skb len */
2864 if (!pskb_may_pull(rx->skb,
2865 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2866 return RX_DROP_MONITOR;
2867
2868 /* reload pointers */
2869 hdr = (struct ieee80211_hdr *) skb->data;
2870 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2871
2872 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2873 return RX_DROP_MONITOR;
2874
2875 /* frame is in RMC, don't forward */
2876 if (ieee80211_is_data(hdr->frame_control) &&
2877 is_multicast_ether_addr(hdr->addr1) &&
2878 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2879 return RX_DROP_MONITOR;
2880
2881 if (!ieee80211_is_data(hdr->frame_control))
2882 return RX_CONTINUE;
2883
2884 if (!mesh_hdr->ttl)
2885 return RX_DROP_MONITOR;
2886
2887 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2888 struct mesh_path *mppath;
2889 char *proxied_addr;
2890 char *mpp_addr;
2891
2892 if (is_multicast_ether_addr(hdr->addr1)) {
2893 mpp_addr = hdr->addr3;
2894 proxied_addr = mesh_hdr->eaddr1;
2895 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2896 MESH_FLAGS_AE_A5_A6) {
2897 /* has_a4 already checked in ieee80211_rx_mesh_check */
2898 mpp_addr = hdr->addr4;
2899 proxied_addr = mesh_hdr->eaddr2;
2900 } else {
2901 return RX_DROP_MONITOR;
2902 }
2903
2904 rcu_read_lock();
2905 mppath = mpp_path_lookup(sdata, proxied_addr);
2906 if (!mppath) {
2907 mpp_path_add(sdata, proxied_addr, mpp_addr);
2908 } else {
2909 spin_lock_bh(&mppath->state_lock);
2910 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2911 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2912 mppath->exp_time = jiffies;
2913 spin_unlock_bh(&mppath->state_lock);
2914 }
2915 rcu_read_unlock();
2916 }
2917
2918 /* Frame has reached destination. Don't forward */
2919 if (!is_multicast_ether_addr(hdr->addr1) &&
2920 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2921 return RX_CONTINUE;
2922
2923 ac = ieee802_1d_to_ac[skb->priority];
2924 q = sdata->vif.hw_queue[ac];
2925 if (ieee80211_queue_stopped(&local->hw, q)) {
2926 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2927 return RX_DROP_MONITOR;
2928 }
2929 skb_set_queue_mapping(skb, ac);
2930
2931 if (!--mesh_hdr->ttl) {
2932 if (!is_multicast_ether_addr(hdr->addr1))
2933 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2934 dropped_frames_ttl);
2935 goto out;
2936 }
2937
2938 if (!ifmsh->mshcfg.dot11MeshForwarding)
2939 goto out;
2940
2941 if (sdata->crypto_tx_tailroom_needed_cnt)
2942 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2943
2944 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2945 sdata->encrypt_headroom,
2946 tailroom, GFP_ATOMIC);
2947 if (!fwd_skb)
2948 goto out;
2949
2950 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2951 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2952 info = IEEE80211_SKB_CB(fwd_skb);
2953 memset(info, 0, sizeof(*info));
2954 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2955 info->control.vif = &rx->sdata->vif;
2956 info->control.jiffies = jiffies;
2957 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2958 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2959 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2960 /* update power mode indication when forwarding */
2961 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2962 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2963 /* mesh power mode flags updated in mesh_nexthop_lookup */
2964 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2965 } else {
2966 /* unable to resolve next hop */
2967 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2968 fwd_hdr->addr3, 0,
2969 WLAN_REASON_MESH_PATH_NOFORWARD,
2970 fwd_hdr->addr2);
2971 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2972 kfree_skb(fwd_skb);
2973 return RX_DROP_MONITOR;
2974 }
2975
2976 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2977 ieee80211_add_pending_skb(local, fwd_skb);
2978 out:
2979 if (is_multicast_ether_addr(hdr->addr1))
2980 return RX_CONTINUE;
2981 return RX_DROP_MONITOR;
2982 }
2983 #endif
2984
2985 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2986 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2987 {
2988 struct ieee80211_sub_if_data *sdata = rx->sdata;
2989 struct ieee80211_local *local = rx->local;
2990 struct net_device *dev = sdata->dev;
2991 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2992 __le16 fc = hdr->frame_control;
2993 bool port_control;
2994 int err;
2995
2996 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2997 return RX_CONTINUE;
2998
2999 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3000 return RX_DROP_MONITOR;
3001
3002 /*
3003 * Send unexpected-4addr-frame event to hostapd. For older versions,
3004 * also drop the frame to cooked monitor interfaces.
3005 */
3006 if (ieee80211_has_a4(hdr->frame_control) &&
3007 sdata->vif.type == NL80211_IFTYPE_AP) {
3008 if (rx->sta &&
3009 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3010 cfg80211_rx_unexpected_4addr_frame(
3011 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3012 return RX_DROP_MONITOR;
3013 }
3014
3015 err = __ieee80211_data_to_8023(rx, &port_control);
3016 if (unlikely(err))
3017 return RX_DROP_UNUSABLE;
3018
3019 if (!ieee80211_frame_allowed(rx, fc))
3020 return RX_DROP_MONITOR;
3021
3022 /* directly handle TDLS channel switch requests/responses */
3023 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3024 cpu_to_be16(ETH_P_TDLS))) {
3025 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3026
3027 if (pskb_may_pull(rx->skb,
3028 offsetof(struct ieee80211_tdls_data, u)) &&
3029 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3030 tf->category == WLAN_CATEGORY_TDLS &&
3031 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3032 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3033 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3034 __ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3035 return RX_QUEUED;
3036 }
3037 }
3038
3039 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3040 unlikely(port_control) && sdata->bss) {
3041 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3042 u.ap);
3043 dev = sdata->dev;
3044 rx->sdata = sdata;
3045 }
3046
3047 rx->skb->dev = dev;
3048
3049 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3050 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3051 !is_multicast_ether_addr(
3052 ((struct ethhdr *)rx->skb->data)->h_dest) &&
3053 (!local->scanning &&
3054 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3055 mod_timer(&local->dynamic_ps_timer, jiffies +
3056 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3057
3058 ieee80211_deliver_skb(rx);
3059
3060 return RX_QUEUED;
3061 }
3062
3063 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3064 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3065 {
3066 struct sk_buff *skb = rx->skb;
3067 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3068 struct tid_ampdu_rx *tid_agg_rx;
3069 u16 start_seq_num;
3070 u16 tid;
3071
3072 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3073 return RX_CONTINUE;
3074
3075 if (ieee80211_is_back_req(bar->frame_control)) {
3076 struct {
3077 __le16 control, start_seq_num;
3078 } __packed bar_data;
3079 struct ieee80211_event event = {
3080 .type = BAR_RX_EVENT,
3081 };
3082
3083 if (!rx->sta)
3084 return RX_DROP_MONITOR;
3085
3086 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3087 &bar_data, sizeof(bar_data)))
3088 return RX_DROP_MONITOR;
3089
3090 tid = le16_to_cpu(bar_data.control) >> 12;
3091
3092 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3093 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3094 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3095 WLAN_BACK_RECIPIENT,
3096 WLAN_REASON_QSTA_REQUIRE_SETUP);
3097
3098 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3099 if (!tid_agg_rx)
3100 return RX_DROP_MONITOR;
3101
3102 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3103 event.u.ba.tid = tid;
3104 event.u.ba.ssn = start_seq_num;
3105 event.u.ba.sta = &rx->sta->sta;
3106
3107 /* reset session timer */
3108 if (tid_agg_rx->timeout)
3109 mod_timer(&tid_agg_rx->session_timer,
3110 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3111
3112 spin_lock(&tid_agg_rx->reorder_lock);
3113 /* release stored frames up to start of BAR */
3114 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3115 start_seq_num, frames);
3116 spin_unlock(&tid_agg_rx->reorder_lock);
3117
3118 drv_event_callback(rx->local, rx->sdata, &event);
3119
3120 kfree_skb(skb);
3121 return RX_QUEUED;
3122 }
3123
3124 /*
3125 * After this point, we only want management frames,
3126 * so we can drop all remaining control frames to
3127 * cooked monitor interfaces.
3128 */
3129 return RX_DROP_MONITOR;
3130 }
3131
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3132 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3133 struct ieee80211_mgmt *mgmt,
3134 size_t len)
3135 {
3136 struct ieee80211_local *local = sdata->local;
3137 struct sk_buff *skb;
3138 struct ieee80211_mgmt *resp;
3139
3140 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3141 /* Not to own unicast address */
3142 return;
3143 }
3144
3145 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3146 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3147 /* Not from the current AP or not associated yet. */
3148 return;
3149 }
3150
3151 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3152 /* Too short SA Query request frame */
3153 return;
3154 }
3155
3156 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3157 if (skb == NULL)
3158 return;
3159
3160 skb_reserve(skb, local->hw.extra_tx_headroom);
3161 resp = skb_put_zero(skb, 24);
3162 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3163 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3164 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3165 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3166 IEEE80211_STYPE_ACTION);
3167 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3168 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3169 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3170 memcpy(resp->u.action.u.sa_query.trans_id,
3171 mgmt->u.action.u.sa_query.trans_id,
3172 WLAN_SA_QUERY_TR_ID_LEN);
3173
3174 ieee80211_tx_skb(sdata, skb);
3175 }
3176
3177 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3178 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3179 {
3180 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3181 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3182
3183 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3184 return RX_CONTINUE;
3185
3186 /*
3187 * From here on, look only at management frames.
3188 * Data and control frames are already handled,
3189 * and unknown (reserved) frames are useless.
3190 */
3191 if (rx->skb->len < 24)
3192 return RX_DROP_MONITOR;
3193
3194 if (!ieee80211_is_mgmt(mgmt->frame_control))
3195 return RX_DROP_MONITOR;
3196
3197 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3198 ieee80211_is_beacon(mgmt->frame_control) &&
3199 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3200 int sig = 0;
3201
3202 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3203 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3204 sig = status->signal;
3205
3206 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3207 rx->skb->data, rx->skb->len,
3208 ieee80211_rx_status_to_khz(status),
3209 sig);
3210 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3211 }
3212
3213 if (ieee80211_drop_unencrypted_mgmt(rx))
3214 return RX_DROP_UNUSABLE;
3215
3216 return RX_CONTINUE;
3217 }
3218
3219 static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data * rx)3220 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3221 {
3222 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3224 struct ieee80211_sub_if_data *sdata = rx->sdata;
3225 const struct ieee80211_sta_he_cap *hecap;
3226 struct ieee80211_supported_band *sband;
3227
3228 /* TWT actions are only supported in AP for the moment */
3229 if (sdata->vif.type != NL80211_IFTYPE_AP)
3230 return false;
3231
3232 if (!rx->local->ops->add_twt_setup)
3233 return false;
3234
3235 sband = rx->local->hw.wiphy->bands[status->band];
3236 hecap = ieee80211_get_he_iftype_cap(sband,
3237 ieee80211_vif_type_p2p(&sdata->vif));
3238 if (!hecap)
3239 return false;
3240
3241 if (!(hecap->he_cap_elem.mac_cap_info[0] &
3242 IEEE80211_HE_MAC_CAP0_TWT_RES))
3243 return false;
3244
3245 if (!rx->sta)
3246 return false;
3247
3248 switch (mgmt->u.action.u.s1g.action_code) {
3249 case WLAN_S1G_TWT_SETUP: {
3250 struct ieee80211_twt_setup *twt;
3251
3252 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3253 1 + /* action code */
3254 sizeof(struct ieee80211_twt_setup) +
3255 2 /* TWT req_type agrt */)
3256 break;
3257
3258 twt = (void *)mgmt->u.action.u.s1g.variable;
3259 if (twt->element_id != WLAN_EID_S1G_TWT)
3260 break;
3261
3262 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3263 4 + /* action code + token + tlv */
3264 twt->length)
3265 break;
3266
3267 return true; /* queue the frame */
3268 }
3269 case WLAN_S1G_TWT_TEARDOWN:
3270 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3271 break;
3272
3273 return true; /* queue the frame */
3274 default:
3275 break;
3276 }
3277
3278 return false;
3279 }
3280
3281 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3282 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3283 {
3284 struct ieee80211_local *local = rx->local;
3285 struct ieee80211_sub_if_data *sdata = rx->sdata;
3286 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3287 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3288 int len = rx->skb->len;
3289
3290 if (!ieee80211_is_action(mgmt->frame_control))
3291 return RX_CONTINUE;
3292
3293 /* drop too small frames */
3294 if (len < IEEE80211_MIN_ACTION_SIZE)
3295 return RX_DROP_UNUSABLE;
3296
3297 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3298 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3299 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3300 return RX_DROP_UNUSABLE;
3301
3302 switch (mgmt->u.action.category) {
3303 case WLAN_CATEGORY_HT:
3304 /* reject HT action frames from stations not supporting HT */
3305 if (!rx->sta->sta.deflink.ht_cap.ht_supported)
3306 goto invalid;
3307
3308 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3309 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3310 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3311 sdata->vif.type != NL80211_IFTYPE_AP &&
3312 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3313 break;
3314
3315 /* verify action & smps_control/chanwidth are present */
3316 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3317 goto invalid;
3318
3319 switch (mgmt->u.action.u.ht_smps.action) {
3320 case WLAN_HT_ACTION_SMPS: {
3321 struct ieee80211_supported_band *sband;
3322 enum ieee80211_smps_mode smps_mode;
3323 struct sta_opmode_info sta_opmode = {};
3324
3325 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3326 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3327 goto handled;
3328
3329 /* convert to HT capability */
3330 switch (mgmt->u.action.u.ht_smps.smps_control) {
3331 case WLAN_HT_SMPS_CONTROL_DISABLED:
3332 smps_mode = IEEE80211_SMPS_OFF;
3333 break;
3334 case WLAN_HT_SMPS_CONTROL_STATIC:
3335 smps_mode = IEEE80211_SMPS_STATIC;
3336 break;
3337 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3338 smps_mode = IEEE80211_SMPS_DYNAMIC;
3339 break;
3340 default:
3341 goto invalid;
3342 }
3343
3344 /* if no change do nothing */
3345 if (rx->sta->sta.smps_mode == smps_mode)
3346 goto handled;
3347 rx->sta->sta.smps_mode = smps_mode;
3348 sta_opmode.smps_mode =
3349 ieee80211_smps_mode_to_smps_mode(smps_mode);
3350 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3351
3352 sband = rx->local->hw.wiphy->bands[status->band];
3353
3354 rate_control_rate_update(local, sband, rx->sta,
3355 IEEE80211_RC_SMPS_CHANGED);
3356 cfg80211_sta_opmode_change_notify(sdata->dev,
3357 rx->sta->addr,
3358 &sta_opmode,
3359 GFP_ATOMIC);
3360 goto handled;
3361 }
3362 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3363 struct ieee80211_supported_band *sband;
3364 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3365 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3366 struct sta_opmode_info sta_opmode = {};
3367
3368 /* If it doesn't support 40 MHz it can't change ... */
3369 if (!(rx->sta->sta.deflink.ht_cap.cap &
3370 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3371 goto handled;
3372
3373 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3374 max_bw = IEEE80211_STA_RX_BW_20;
3375 else
3376 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3377
3378 /* set cur_max_bandwidth and recalc sta bw */
3379 rx->sta->deflink.cur_max_bandwidth = max_bw;
3380 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3381
3382 if (rx->sta->sta.deflink.bandwidth == new_bw)
3383 goto handled;
3384
3385 rx->sta->sta.deflink.bandwidth = new_bw;
3386 sband = rx->local->hw.wiphy->bands[status->band];
3387 sta_opmode.bw =
3388 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3389 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3390
3391 rate_control_rate_update(local, sband, rx->sta,
3392 IEEE80211_RC_BW_CHANGED);
3393 cfg80211_sta_opmode_change_notify(sdata->dev,
3394 rx->sta->addr,
3395 &sta_opmode,
3396 GFP_ATOMIC);
3397 goto handled;
3398 }
3399 default:
3400 goto invalid;
3401 }
3402
3403 break;
3404 case WLAN_CATEGORY_PUBLIC:
3405 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3406 goto invalid;
3407 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3408 break;
3409 if (!rx->sta)
3410 break;
3411 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3412 break;
3413 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3414 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3415 break;
3416 if (len < offsetof(struct ieee80211_mgmt,
3417 u.action.u.ext_chan_switch.variable))
3418 goto invalid;
3419 goto queue;
3420 case WLAN_CATEGORY_VHT:
3421 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3422 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3423 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3424 sdata->vif.type != NL80211_IFTYPE_AP &&
3425 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3426 break;
3427
3428 /* verify action code is present */
3429 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3430 goto invalid;
3431
3432 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3433 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3434 /* verify opmode is present */
3435 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3436 goto invalid;
3437 goto queue;
3438 }
3439 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3440 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3441 goto invalid;
3442 goto queue;
3443 }
3444 default:
3445 break;
3446 }
3447 break;
3448 case WLAN_CATEGORY_BACK:
3449 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3450 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3451 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3452 sdata->vif.type != NL80211_IFTYPE_AP &&
3453 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3454 break;
3455
3456 /* verify action_code is present */
3457 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3458 break;
3459
3460 switch (mgmt->u.action.u.addba_req.action_code) {
3461 case WLAN_ACTION_ADDBA_REQ:
3462 if (len < (IEEE80211_MIN_ACTION_SIZE +
3463 sizeof(mgmt->u.action.u.addba_req)))
3464 goto invalid;
3465 break;
3466 case WLAN_ACTION_ADDBA_RESP:
3467 if (len < (IEEE80211_MIN_ACTION_SIZE +
3468 sizeof(mgmt->u.action.u.addba_resp)))
3469 goto invalid;
3470 break;
3471 case WLAN_ACTION_DELBA:
3472 if (len < (IEEE80211_MIN_ACTION_SIZE +
3473 sizeof(mgmt->u.action.u.delba)))
3474 goto invalid;
3475 break;
3476 default:
3477 goto invalid;
3478 }
3479
3480 goto queue;
3481 case WLAN_CATEGORY_SPECTRUM_MGMT:
3482 /* verify action_code is present */
3483 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3484 break;
3485
3486 switch (mgmt->u.action.u.measurement.action_code) {
3487 case WLAN_ACTION_SPCT_MSR_REQ:
3488 if (status->band != NL80211_BAND_5GHZ)
3489 break;
3490
3491 if (len < (IEEE80211_MIN_ACTION_SIZE +
3492 sizeof(mgmt->u.action.u.measurement)))
3493 break;
3494
3495 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3496 break;
3497
3498 ieee80211_process_measurement_req(sdata, mgmt, len);
3499 goto handled;
3500 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3501 u8 *bssid;
3502 if (len < (IEEE80211_MIN_ACTION_SIZE +
3503 sizeof(mgmt->u.action.u.chan_switch)))
3504 break;
3505
3506 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3507 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3508 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3509 break;
3510
3511 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3512 bssid = sdata->u.mgd.bssid;
3513 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3514 bssid = sdata->u.ibss.bssid;
3515 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3516 bssid = mgmt->sa;
3517 else
3518 break;
3519
3520 if (!ether_addr_equal(mgmt->bssid, bssid))
3521 break;
3522
3523 goto queue;
3524 }
3525 }
3526 break;
3527 case WLAN_CATEGORY_SELF_PROTECTED:
3528 if (len < (IEEE80211_MIN_ACTION_SIZE +
3529 sizeof(mgmt->u.action.u.self_prot.action_code)))
3530 break;
3531
3532 switch (mgmt->u.action.u.self_prot.action_code) {
3533 case WLAN_SP_MESH_PEERING_OPEN:
3534 case WLAN_SP_MESH_PEERING_CLOSE:
3535 case WLAN_SP_MESH_PEERING_CONFIRM:
3536 if (!ieee80211_vif_is_mesh(&sdata->vif))
3537 goto invalid;
3538 if (sdata->u.mesh.user_mpm)
3539 /* userspace handles this frame */
3540 break;
3541 goto queue;
3542 case WLAN_SP_MGK_INFORM:
3543 case WLAN_SP_MGK_ACK:
3544 if (!ieee80211_vif_is_mesh(&sdata->vif))
3545 goto invalid;
3546 break;
3547 }
3548 break;
3549 case WLAN_CATEGORY_MESH_ACTION:
3550 if (len < (IEEE80211_MIN_ACTION_SIZE +
3551 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3552 break;
3553
3554 if (!ieee80211_vif_is_mesh(&sdata->vif))
3555 break;
3556 if (mesh_action_is_path_sel(mgmt) &&
3557 !mesh_path_sel_is_hwmp(sdata))
3558 break;
3559 goto queue;
3560 case WLAN_CATEGORY_S1G:
3561 if (len < offsetofend(typeof(*mgmt),
3562 u.action.u.s1g.action_code))
3563 break;
3564
3565 switch (mgmt->u.action.u.s1g.action_code) {
3566 case WLAN_S1G_TWT_SETUP:
3567 case WLAN_S1G_TWT_TEARDOWN:
3568 if (ieee80211_process_rx_twt_action(rx))
3569 goto queue;
3570 break;
3571 default:
3572 break;
3573 }
3574 break;
3575 }
3576
3577 return RX_CONTINUE;
3578
3579 invalid:
3580 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3581 /* will return in the next handlers */
3582 return RX_CONTINUE;
3583
3584 handled:
3585 if (rx->sta)
3586 rx->sta->deflink.rx_stats.packets++;
3587 dev_kfree_skb(rx->skb);
3588 return RX_QUEUED;
3589
3590 queue:
3591 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3592 return RX_QUEUED;
3593 }
3594
3595 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3596 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3597 {
3598 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3599 int sig = 0;
3600
3601 /* skip known-bad action frames and return them in the next handler */
3602 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3603 return RX_CONTINUE;
3604
3605 /*
3606 * Getting here means the kernel doesn't know how to handle
3607 * it, but maybe userspace does ... include returned frames
3608 * so userspace can register for those to know whether ones
3609 * it transmitted were processed or returned.
3610 */
3611
3612 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3613 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3614 sig = status->signal;
3615
3616 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3617 ieee80211_rx_status_to_khz(status), sig,
3618 rx->skb->data, rx->skb->len, 0)) {
3619 if (rx->sta)
3620 rx->sta->deflink.rx_stats.packets++;
3621 dev_kfree_skb(rx->skb);
3622 return RX_QUEUED;
3623 }
3624
3625 return RX_CONTINUE;
3626 }
3627
3628 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3629 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3630 {
3631 struct ieee80211_sub_if_data *sdata = rx->sdata;
3632 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3633 int len = rx->skb->len;
3634
3635 if (!ieee80211_is_action(mgmt->frame_control))
3636 return RX_CONTINUE;
3637
3638 switch (mgmt->u.action.category) {
3639 case WLAN_CATEGORY_SA_QUERY:
3640 if (len < (IEEE80211_MIN_ACTION_SIZE +
3641 sizeof(mgmt->u.action.u.sa_query)))
3642 break;
3643
3644 switch (mgmt->u.action.u.sa_query.action) {
3645 case WLAN_ACTION_SA_QUERY_REQUEST:
3646 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3647 break;
3648 ieee80211_process_sa_query_req(sdata, mgmt, len);
3649 goto handled;
3650 }
3651 break;
3652 }
3653
3654 return RX_CONTINUE;
3655
3656 handled:
3657 if (rx->sta)
3658 rx->sta->deflink.rx_stats.packets++;
3659 dev_kfree_skb(rx->skb);
3660 return RX_QUEUED;
3661 }
3662
3663 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3664 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3665 {
3666 struct ieee80211_local *local = rx->local;
3667 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3668 struct sk_buff *nskb;
3669 struct ieee80211_sub_if_data *sdata = rx->sdata;
3670 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3671
3672 if (!ieee80211_is_action(mgmt->frame_control))
3673 return RX_CONTINUE;
3674
3675 /*
3676 * For AP mode, hostapd is responsible for handling any action
3677 * frames that we didn't handle, including returning unknown
3678 * ones. For all other modes we will return them to the sender,
3679 * setting the 0x80 bit in the action category, as required by
3680 * 802.11-2012 9.24.4.
3681 * Newer versions of hostapd shall also use the management frame
3682 * registration mechanisms, but older ones still use cooked
3683 * monitor interfaces so push all frames there.
3684 */
3685 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3686 (sdata->vif.type == NL80211_IFTYPE_AP ||
3687 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3688 return RX_DROP_MONITOR;
3689
3690 if (is_multicast_ether_addr(mgmt->da))
3691 return RX_DROP_MONITOR;
3692
3693 /* do not return rejected action frames */
3694 if (mgmt->u.action.category & 0x80)
3695 return RX_DROP_UNUSABLE;
3696
3697 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3698 GFP_ATOMIC);
3699 if (nskb) {
3700 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3701
3702 nmgmt->u.action.category |= 0x80;
3703 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3704 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3705
3706 memset(nskb->cb, 0, sizeof(nskb->cb));
3707
3708 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3709 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3710
3711 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3712 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3713 IEEE80211_TX_CTL_NO_CCK_RATE;
3714 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3715 info->hw_queue =
3716 local->hw.offchannel_tx_hw_queue;
3717 }
3718
3719 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3720 status->band);
3721 }
3722 dev_kfree_skb(rx->skb);
3723 return RX_QUEUED;
3724 }
3725
3726 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3727 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3728 {
3729 struct ieee80211_sub_if_data *sdata = rx->sdata;
3730 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3731
3732 if (!ieee80211_is_ext(hdr->frame_control))
3733 return RX_CONTINUE;
3734
3735 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3736 return RX_DROP_MONITOR;
3737
3738 /* for now only beacons are ext, so queue them */
3739 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3740
3741 return RX_QUEUED;
3742 }
3743
3744 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3745 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3746 {
3747 struct ieee80211_sub_if_data *sdata = rx->sdata;
3748 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3749 __le16 stype;
3750
3751 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3752
3753 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3754 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3755 sdata->vif.type != NL80211_IFTYPE_OCB &&
3756 sdata->vif.type != NL80211_IFTYPE_STATION)
3757 return RX_DROP_MONITOR;
3758
3759 switch (stype) {
3760 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3761 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3762 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3763 /* process for all: mesh, mlme, ibss */
3764 break;
3765 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3766 if (is_multicast_ether_addr(mgmt->da) &&
3767 !is_broadcast_ether_addr(mgmt->da))
3768 return RX_DROP_MONITOR;
3769
3770 /* process only for station/IBSS */
3771 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3772 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3773 return RX_DROP_MONITOR;
3774 break;
3775 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3776 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3777 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3778 if (is_multicast_ether_addr(mgmt->da) &&
3779 !is_broadcast_ether_addr(mgmt->da))
3780 return RX_DROP_MONITOR;
3781
3782 /* process only for station */
3783 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3784 return RX_DROP_MONITOR;
3785 break;
3786 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3787 /* process only for ibss and mesh */
3788 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3789 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3790 return RX_DROP_MONITOR;
3791 break;
3792 default:
3793 return RX_DROP_MONITOR;
3794 }
3795
3796 ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3797
3798 return RX_QUEUED;
3799 }
3800
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3801 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3802 struct ieee80211_rate *rate)
3803 {
3804 struct ieee80211_sub_if_data *sdata;
3805 struct ieee80211_local *local = rx->local;
3806 struct sk_buff *skb = rx->skb, *skb2;
3807 struct net_device *prev_dev = NULL;
3808 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3809 int needed_headroom;
3810
3811 /*
3812 * If cooked monitor has been processed already, then
3813 * don't do it again. If not, set the flag.
3814 */
3815 if (rx->flags & IEEE80211_RX_CMNTR)
3816 goto out_free_skb;
3817 rx->flags |= IEEE80211_RX_CMNTR;
3818
3819 /* If there are no cooked monitor interfaces, just free the SKB */
3820 if (!local->cooked_mntrs)
3821 goto out_free_skb;
3822
3823 /* vendor data is long removed here */
3824 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3825 /* room for the radiotap header based on driver features */
3826 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3827
3828 if (skb_headroom(skb) < needed_headroom &&
3829 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3830 goto out_free_skb;
3831
3832 /* prepend radiotap information */
3833 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3834 false);
3835
3836 skb_reset_mac_header(skb);
3837 skb->ip_summed = CHECKSUM_UNNECESSARY;
3838 skb->pkt_type = PACKET_OTHERHOST;
3839 skb->protocol = htons(ETH_P_802_2);
3840
3841 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3842 if (!ieee80211_sdata_running(sdata))
3843 continue;
3844
3845 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3846 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3847 continue;
3848
3849 if (prev_dev) {
3850 skb2 = skb_clone(skb, GFP_ATOMIC);
3851 if (skb2) {
3852 skb2->dev = prev_dev;
3853 netif_receive_skb(skb2);
3854 }
3855 }
3856
3857 prev_dev = sdata->dev;
3858 dev_sw_netstats_rx_add(sdata->dev, skb->len);
3859 }
3860
3861 if (prev_dev) {
3862 skb->dev = prev_dev;
3863 netif_receive_skb(skb);
3864 return;
3865 }
3866
3867 out_free_skb:
3868 dev_kfree_skb(skb);
3869 }
3870
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3871 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3872 ieee80211_rx_result res)
3873 {
3874 switch (res) {
3875 case RX_DROP_MONITOR:
3876 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3877 if (rx->sta)
3878 rx->sta->deflink.rx_stats.dropped++;
3879 fallthrough;
3880 case RX_CONTINUE: {
3881 struct ieee80211_rate *rate = NULL;
3882 struct ieee80211_supported_band *sband;
3883 struct ieee80211_rx_status *status;
3884
3885 status = IEEE80211_SKB_RXCB((rx->skb));
3886
3887 sband = rx->local->hw.wiphy->bands[status->band];
3888 if (status->encoding == RX_ENC_LEGACY)
3889 rate = &sband->bitrates[status->rate_idx];
3890
3891 ieee80211_rx_cooked_monitor(rx, rate);
3892 break;
3893 }
3894 case RX_DROP_UNUSABLE:
3895 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3896 if (rx->sta)
3897 rx->sta->deflink.rx_stats.dropped++;
3898 dev_kfree_skb(rx->skb);
3899 break;
3900 case RX_QUEUED:
3901 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3902 break;
3903 }
3904 }
3905
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3906 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3907 struct sk_buff_head *frames)
3908 {
3909 ieee80211_rx_result res = RX_DROP_MONITOR;
3910 struct sk_buff *skb;
3911
3912 #define CALL_RXH(rxh) \
3913 do { \
3914 res = rxh(rx); \
3915 if (res != RX_CONTINUE) \
3916 goto rxh_next; \
3917 } while (0)
3918
3919 /* Lock here to avoid hitting all of the data used in the RX
3920 * path (e.g. key data, station data, ...) concurrently when
3921 * a frame is released from the reorder buffer due to timeout
3922 * from the timer, potentially concurrently with RX from the
3923 * driver.
3924 */
3925 spin_lock_bh(&rx->local->rx_path_lock);
3926
3927 while ((skb = __skb_dequeue(frames))) {
3928 /*
3929 * all the other fields are valid across frames
3930 * that belong to an aMPDU since they are on the
3931 * same TID from the same station
3932 */
3933 rx->skb = skb;
3934
3935 CALL_RXH(ieee80211_rx_h_check_more_data);
3936 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3937 CALL_RXH(ieee80211_rx_h_sta_process);
3938 CALL_RXH(ieee80211_rx_h_decrypt);
3939 CALL_RXH(ieee80211_rx_h_defragment);
3940 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3941 /* must be after MMIC verify so header is counted in MPDU mic */
3942 #ifdef CONFIG_MAC80211_MESH
3943 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3944 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3945 #endif
3946 CALL_RXH(ieee80211_rx_h_amsdu);
3947 CALL_RXH(ieee80211_rx_h_data);
3948
3949 /* special treatment -- needs the queue */
3950 res = ieee80211_rx_h_ctrl(rx, frames);
3951 if (res != RX_CONTINUE)
3952 goto rxh_next;
3953
3954 CALL_RXH(ieee80211_rx_h_mgmt_check);
3955 CALL_RXH(ieee80211_rx_h_action);
3956 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3957 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3958 CALL_RXH(ieee80211_rx_h_action_return);
3959 CALL_RXH(ieee80211_rx_h_ext);
3960 CALL_RXH(ieee80211_rx_h_mgmt);
3961
3962 rxh_next:
3963 ieee80211_rx_handlers_result(rx, res);
3964
3965 #undef CALL_RXH
3966 }
3967
3968 spin_unlock_bh(&rx->local->rx_path_lock);
3969 }
3970
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3971 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3972 {
3973 struct sk_buff_head reorder_release;
3974 ieee80211_rx_result res = RX_DROP_MONITOR;
3975
3976 __skb_queue_head_init(&reorder_release);
3977
3978 #define CALL_RXH(rxh) \
3979 do { \
3980 res = rxh(rx); \
3981 if (res != RX_CONTINUE) \
3982 goto rxh_next; \
3983 } while (0)
3984
3985 CALL_RXH(ieee80211_rx_h_check_dup);
3986 CALL_RXH(ieee80211_rx_h_check);
3987
3988 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3989
3990 ieee80211_rx_handlers(rx, &reorder_release);
3991 return;
3992
3993 rxh_next:
3994 ieee80211_rx_handlers_result(rx, res);
3995
3996 #undef CALL_RXH
3997 }
3998
3999 /*
4000 * This function makes calls into the RX path, therefore
4001 * it has to be invoked under RCU read lock.
4002 */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)4003 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4004 {
4005 struct sk_buff_head frames;
4006 struct ieee80211_rx_data rx = {
4007 .sta = sta,
4008 .sdata = sta->sdata,
4009 .local = sta->local,
4010 /* This is OK -- must be QoS data frame */
4011 .security_idx = tid,
4012 .seqno_idx = tid,
4013 };
4014 struct tid_ampdu_rx *tid_agg_rx;
4015
4016 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4017 if (!tid_agg_rx)
4018 return;
4019
4020 __skb_queue_head_init(&frames);
4021
4022 spin_lock(&tid_agg_rx->reorder_lock);
4023 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4024 spin_unlock(&tid_agg_rx->reorder_lock);
4025
4026 if (!skb_queue_empty(&frames)) {
4027 struct ieee80211_event event = {
4028 .type = BA_FRAME_TIMEOUT,
4029 .u.ba.tid = tid,
4030 .u.ba.sta = &sta->sta,
4031 };
4032 drv_event_callback(rx.local, rx.sdata, &event);
4033 }
4034
4035 ieee80211_rx_handlers(&rx, &frames);
4036 }
4037
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)4038 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4039 u16 ssn, u64 filtered,
4040 u16 received_mpdus)
4041 {
4042 struct sta_info *sta;
4043 struct tid_ampdu_rx *tid_agg_rx;
4044 struct sk_buff_head frames;
4045 struct ieee80211_rx_data rx = {
4046 /* This is OK -- must be QoS data frame */
4047 .security_idx = tid,
4048 .seqno_idx = tid,
4049 };
4050 int i, diff;
4051
4052 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4053 return;
4054
4055 __skb_queue_head_init(&frames);
4056
4057 sta = container_of(pubsta, struct sta_info, sta);
4058
4059 rx.sta = sta;
4060 rx.sdata = sta->sdata;
4061 rx.local = sta->local;
4062
4063 rcu_read_lock();
4064 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4065 if (!tid_agg_rx)
4066 goto out;
4067
4068 spin_lock_bh(&tid_agg_rx->reorder_lock);
4069
4070 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4071 int release;
4072
4073 /* release all frames in the reorder buffer */
4074 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4075 IEEE80211_SN_MODULO;
4076 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4077 release, &frames);
4078 /* update ssn to match received ssn */
4079 tid_agg_rx->head_seq_num = ssn;
4080 } else {
4081 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4082 &frames);
4083 }
4084
4085 /* handle the case that received ssn is behind the mac ssn.
4086 * it can be tid_agg_rx->buf_size behind and still be valid */
4087 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4088 if (diff >= tid_agg_rx->buf_size) {
4089 tid_agg_rx->reorder_buf_filtered = 0;
4090 goto release;
4091 }
4092 filtered = filtered >> diff;
4093 ssn += diff;
4094
4095 /* update bitmap */
4096 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4097 int index = (ssn + i) % tid_agg_rx->buf_size;
4098
4099 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4100 if (filtered & BIT_ULL(i))
4101 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4102 }
4103
4104 /* now process also frames that the filter marking released */
4105 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4106
4107 release:
4108 spin_unlock_bh(&tid_agg_rx->reorder_lock);
4109
4110 ieee80211_rx_handlers(&rx, &frames);
4111
4112 out:
4113 rcu_read_unlock();
4114 }
4115 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4116
4117 /* main receive path */
4118
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4119 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4120 {
4121 struct ieee80211_sub_if_data *sdata = rx->sdata;
4122 struct sk_buff *skb = rx->skb;
4123 struct ieee80211_hdr *hdr = (void *)skb->data;
4124 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4125 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4126 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4127 ieee80211_is_s1g_beacon(hdr->frame_control);
4128
4129 switch (sdata->vif.type) {
4130 case NL80211_IFTYPE_STATION:
4131 if (!bssid && !sdata->u.mgd.use_4addr)
4132 return false;
4133 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4134 return false;
4135 if (multicast)
4136 return true;
4137 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4138 case NL80211_IFTYPE_ADHOC:
4139 if (!bssid)
4140 return false;
4141 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4142 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4143 !is_valid_ether_addr(hdr->addr2))
4144 return false;
4145 if (ieee80211_is_beacon(hdr->frame_control))
4146 return true;
4147 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4148 return false;
4149 if (!multicast &&
4150 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4151 return false;
4152 if (!rx->sta) {
4153 int rate_idx;
4154 if (status->encoding != RX_ENC_LEGACY)
4155 rate_idx = 0; /* TODO: HT/VHT rates */
4156 else
4157 rate_idx = status->rate_idx;
4158 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4159 BIT(rate_idx));
4160 }
4161 return true;
4162 case NL80211_IFTYPE_OCB:
4163 if (!bssid)
4164 return false;
4165 if (!ieee80211_is_data_present(hdr->frame_control))
4166 return false;
4167 if (!is_broadcast_ether_addr(bssid))
4168 return false;
4169 if (!multicast &&
4170 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4171 return false;
4172 if (!rx->sta) {
4173 int rate_idx;
4174 if (status->encoding != RX_ENC_LEGACY)
4175 rate_idx = 0; /* TODO: HT rates */
4176 else
4177 rate_idx = status->rate_idx;
4178 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4179 BIT(rate_idx));
4180 }
4181 return true;
4182 case NL80211_IFTYPE_MESH_POINT:
4183 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4184 return false;
4185 if (multicast)
4186 return true;
4187 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4188 case NL80211_IFTYPE_AP_VLAN:
4189 case NL80211_IFTYPE_AP:
4190 if (!bssid)
4191 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4192
4193 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4194 /*
4195 * Accept public action frames even when the
4196 * BSSID doesn't match, this is used for P2P
4197 * and location updates. Note that mac80211
4198 * itself never looks at these frames.
4199 */
4200 if (!multicast &&
4201 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4202 return false;
4203 if (ieee80211_is_public_action(hdr, skb->len))
4204 return true;
4205 return ieee80211_is_beacon(hdr->frame_control);
4206 }
4207
4208 if (!ieee80211_has_tods(hdr->frame_control)) {
4209 /* ignore data frames to TDLS-peers */
4210 if (ieee80211_is_data(hdr->frame_control))
4211 return false;
4212 /* ignore action frames to TDLS-peers */
4213 if (ieee80211_is_action(hdr->frame_control) &&
4214 !is_broadcast_ether_addr(bssid) &&
4215 !ether_addr_equal(bssid, hdr->addr1))
4216 return false;
4217 }
4218
4219 /*
4220 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4221 * the BSSID - we've checked that already but may have accepted
4222 * the wildcard (ff:ff:ff:ff:ff:ff).
4223 *
4224 * It also says:
4225 * The BSSID of the Data frame is determined as follows:
4226 * a) If the STA is contained within an AP or is associated
4227 * with an AP, the BSSID is the address currently in use
4228 * by the STA contained in the AP.
4229 *
4230 * So we should not accept data frames with an address that's
4231 * multicast.
4232 *
4233 * Accepting it also opens a security problem because stations
4234 * could encrypt it with the GTK and inject traffic that way.
4235 */
4236 if (ieee80211_is_data(hdr->frame_control) && multicast)
4237 return false;
4238
4239 return true;
4240 case NL80211_IFTYPE_P2P_DEVICE:
4241 return ieee80211_is_public_action(hdr, skb->len) ||
4242 ieee80211_is_probe_req(hdr->frame_control) ||
4243 ieee80211_is_probe_resp(hdr->frame_control) ||
4244 ieee80211_is_beacon(hdr->frame_control);
4245 case NL80211_IFTYPE_NAN:
4246 /* Currently no frames on NAN interface are allowed */
4247 return false;
4248 default:
4249 break;
4250 }
4251
4252 WARN_ON_ONCE(1);
4253 return false;
4254 }
4255
ieee80211_check_fast_rx(struct sta_info * sta)4256 void ieee80211_check_fast_rx(struct sta_info *sta)
4257 {
4258 struct ieee80211_sub_if_data *sdata = sta->sdata;
4259 struct ieee80211_local *local = sdata->local;
4260 struct ieee80211_key *key;
4261 struct ieee80211_fast_rx fastrx = {
4262 .dev = sdata->dev,
4263 .vif_type = sdata->vif.type,
4264 .control_port_protocol = sdata->control_port_protocol,
4265 }, *old, *new = NULL;
4266 bool set_offload = false;
4267 bool assign = false;
4268 bool offload;
4269
4270 /* use sparse to check that we don't return without updating */
4271 __acquire(check_fast_rx);
4272
4273 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4274 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4275 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4276 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4277
4278 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4279
4280 /* fast-rx doesn't do reordering */
4281 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4282 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4283 goto clear;
4284
4285 switch (sdata->vif.type) {
4286 case NL80211_IFTYPE_STATION:
4287 if (sta->sta.tdls) {
4288 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4289 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4290 fastrx.expected_ds_bits = 0;
4291 } else {
4292 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4293 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4294 fastrx.expected_ds_bits =
4295 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4296 }
4297
4298 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4299 fastrx.expected_ds_bits |=
4300 cpu_to_le16(IEEE80211_FCTL_TODS);
4301 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4302 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4303 }
4304
4305 if (!sdata->u.mgd.powersave)
4306 break;
4307
4308 /* software powersave is a huge mess, avoid all of it */
4309 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4310 goto clear;
4311 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4312 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4313 goto clear;
4314 break;
4315 case NL80211_IFTYPE_AP_VLAN:
4316 case NL80211_IFTYPE_AP:
4317 /* parallel-rx requires this, at least with calls to
4318 * ieee80211_sta_ps_transition()
4319 */
4320 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4321 goto clear;
4322 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4323 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4324 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4325
4326 fastrx.internal_forward =
4327 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4328 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4329 !sdata->u.vlan.sta);
4330
4331 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4332 sdata->u.vlan.sta) {
4333 fastrx.expected_ds_bits |=
4334 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4335 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4336 fastrx.internal_forward = 0;
4337 }
4338
4339 break;
4340 default:
4341 goto clear;
4342 }
4343
4344 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4345 goto clear;
4346
4347 rcu_read_lock();
4348 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4349 if (!key)
4350 key = rcu_dereference(sdata->default_unicast_key);
4351 if (key) {
4352 switch (key->conf.cipher) {
4353 case WLAN_CIPHER_SUITE_TKIP:
4354 /* we don't want to deal with MMIC in fast-rx */
4355 goto clear_rcu;
4356 case WLAN_CIPHER_SUITE_CCMP:
4357 case WLAN_CIPHER_SUITE_CCMP_256:
4358 case WLAN_CIPHER_SUITE_GCMP:
4359 case WLAN_CIPHER_SUITE_GCMP_256:
4360 break;
4361 default:
4362 /* We also don't want to deal with
4363 * WEP or cipher scheme.
4364 */
4365 goto clear_rcu;
4366 }
4367
4368 fastrx.key = true;
4369 fastrx.icv_len = key->conf.icv_len;
4370 }
4371
4372 assign = true;
4373 clear_rcu:
4374 rcu_read_unlock();
4375 clear:
4376 __release(check_fast_rx);
4377
4378 if (assign)
4379 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4380
4381 offload = assign &&
4382 (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4383
4384 if (offload)
4385 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4386 else
4387 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4388
4389 if (set_offload)
4390 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4391
4392 spin_lock_bh(&sta->lock);
4393 old = rcu_dereference_protected(sta->fast_rx, true);
4394 rcu_assign_pointer(sta->fast_rx, new);
4395 spin_unlock_bh(&sta->lock);
4396
4397 if (old)
4398 kfree_rcu(old, rcu_head);
4399 }
4400
ieee80211_clear_fast_rx(struct sta_info * sta)4401 void ieee80211_clear_fast_rx(struct sta_info *sta)
4402 {
4403 struct ieee80211_fast_rx *old;
4404
4405 spin_lock_bh(&sta->lock);
4406 old = rcu_dereference_protected(sta->fast_rx, true);
4407 RCU_INIT_POINTER(sta->fast_rx, NULL);
4408 spin_unlock_bh(&sta->lock);
4409
4410 if (old)
4411 kfree_rcu(old, rcu_head);
4412 }
4413
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4414 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4415 {
4416 struct ieee80211_local *local = sdata->local;
4417 struct sta_info *sta;
4418
4419 lockdep_assert_held(&local->sta_mtx);
4420
4421 list_for_each_entry(sta, &local->sta_list, list) {
4422 if (sdata != sta->sdata &&
4423 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4424 continue;
4425 ieee80211_check_fast_rx(sta);
4426 }
4427 }
4428
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4429 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4430 {
4431 struct ieee80211_local *local = sdata->local;
4432
4433 mutex_lock(&local->sta_mtx);
4434 __ieee80211_check_fast_rx_iface(sdata);
4435 mutex_unlock(&local->sta_mtx);
4436 }
4437
ieee80211_rx_8023(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx,int orig_len)4438 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4439 struct ieee80211_fast_rx *fast_rx,
4440 int orig_len)
4441 {
4442 struct ieee80211_sta_rx_stats *stats;
4443 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4444 struct sta_info *sta = rx->sta;
4445 struct sk_buff *skb = rx->skb;
4446 void *sa = skb->data + ETH_ALEN;
4447 void *da = skb->data;
4448
4449 stats = &sta->deflink.rx_stats;
4450 if (fast_rx->uses_rss)
4451 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4452
4453 /* statistics part of ieee80211_rx_h_sta_process() */
4454 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4455 stats->last_signal = status->signal;
4456 if (!fast_rx->uses_rss)
4457 ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
4458 -status->signal);
4459 }
4460
4461 if (status->chains) {
4462 int i;
4463
4464 stats->chains = status->chains;
4465 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4466 int signal = status->chain_signal[i];
4467
4468 if (!(status->chains & BIT(i)))
4469 continue;
4470
4471 stats->chain_signal_last[i] = signal;
4472 if (!fast_rx->uses_rss)
4473 ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
4474 -signal);
4475 }
4476 }
4477 /* end of statistics */
4478
4479 stats->last_rx = jiffies;
4480 stats->last_rate = sta_stats_encode_rate(status);
4481
4482 stats->fragments++;
4483 stats->packets++;
4484
4485 skb->dev = fast_rx->dev;
4486
4487 dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4488
4489 /* The seqno index has the same property as needed
4490 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4491 * for non-QoS-data frames. Here we know it's a data
4492 * frame, so count MSDUs.
4493 */
4494 u64_stats_update_begin(&stats->syncp);
4495 stats->msdu[rx->seqno_idx]++;
4496 stats->bytes += orig_len;
4497 u64_stats_update_end(&stats->syncp);
4498
4499 if (fast_rx->internal_forward) {
4500 struct sk_buff *xmit_skb = NULL;
4501 if (is_multicast_ether_addr(da)) {
4502 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4503 } else if (!ether_addr_equal(da, sa) &&
4504 sta_info_get(rx->sdata, da)) {
4505 xmit_skb = skb;
4506 skb = NULL;
4507 }
4508
4509 if (xmit_skb) {
4510 /*
4511 * Send to wireless media and increase priority by 256
4512 * to keep the received priority instead of
4513 * reclassifying the frame (see cfg80211_classify8021d).
4514 */
4515 xmit_skb->priority += 256;
4516 xmit_skb->protocol = htons(ETH_P_802_3);
4517 skb_reset_network_header(xmit_skb);
4518 skb_reset_mac_header(xmit_skb);
4519 dev_queue_xmit(xmit_skb);
4520 }
4521
4522 if (!skb)
4523 return;
4524 }
4525
4526 /* deliver to local stack */
4527 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4528 ieee80211_deliver_skb_to_local_stack(skb, rx);
4529 }
4530
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4531 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4532 struct ieee80211_fast_rx *fast_rx)
4533 {
4534 struct sk_buff *skb = rx->skb;
4535 struct ieee80211_hdr *hdr = (void *)skb->data;
4536 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4537 struct sta_info *sta = rx->sta;
4538 int orig_len = skb->len;
4539 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4540 int snap_offs = hdrlen;
4541 struct {
4542 u8 snap[sizeof(rfc1042_header)];
4543 __be16 proto;
4544 } *payload __aligned(2);
4545 struct {
4546 u8 da[ETH_ALEN];
4547 u8 sa[ETH_ALEN];
4548 } addrs __aligned(2);
4549 struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
4550
4551 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4552 * to a common data structure; drivers can implement that per queue
4553 * but we don't have that information in mac80211
4554 */
4555 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4556 return false;
4557
4558 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4559
4560 /* If using encryption, we also need to have:
4561 * - PN_VALIDATED: similar, but the implementation is tricky
4562 * - DECRYPTED: necessary for PN_VALIDATED
4563 */
4564 if (fast_rx->key &&
4565 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4566 return false;
4567
4568 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4569 return false;
4570
4571 if (unlikely(ieee80211_is_frag(hdr)))
4572 return false;
4573
4574 /* Since our interface address cannot be multicast, this
4575 * implicitly also rejects multicast frames without the
4576 * explicit check.
4577 *
4578 * We shouldn't get any *data* frames not addressed to us
4579 * (AP mode will accept multicast *management* frames), but
4580 * punting here will make it go through the full checks in
4581 * ieee80211_accept_frame().
4582 */
4583 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4584 return false;
4585
4586 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4587 IEEE80211_FCTL_TODS)) !=
4588 fast_rx->expected_ds_bits)
4589 return false;
4590
4591 /* assign the key to drop unencrypted frames (later)
4592 * and strip the IV/MIC if necessary
4593 */
4594 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4595 /* GCMP header length is the same */
4596 snap_offs += IEEE80211_CCMP_HDR_LEN;
4597 }
4598
4599 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4600 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4601 goto drop;
4602
4603 payload = (void *)(skb->data + snap_offs);
4604
4605 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4606 return false;
4607
4608 /* Don't handle these here since they require special code.
4609 * Accept AARP and IPX even though they should come with a
4610 * bridge-tunnel header - but if we get them this way then
4611 * there's little point in discarding them.
4612 */
4613 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4614 payload->proto == fast_rx->control_port_protocol))
4615 return false;
4616 }
4617
4618 /* after this point, don't punt to the slowpath! */
4619
4620 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4621 pskb_trim(skb, skb->len - fast_rx->icv_len))
4622 goto drop;
4623
4624 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4625 goto drop;
4626
4627 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4628 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4629 RX_QUEUED)
4630 goto drop;
4631
4632 return true;
4633 }
4634
4635 /* do the header conversion - first grab the addresses */
4636 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4637 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4638 skb_postpull_rcsum(skb, skb->data + snap_offs,
4639 sizeof(rfc1042_header) + 2);
4640 /* remove the SNAP but leave the ethertype */
4641 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4642 /* push the addresses in front */
4643 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4644
4645 ieee80211_rx_8023(rx, fast_rx, orig_len);
4646
4647 return true;
4648 drop:
4649 dev_kfree_skb(skb);
4650 if (fast_rx->uses_rss)
4651 stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4652
4653 stats->dropped++;
4654 return true;
4655 }
4656
4657 /*
4658 * This function returns whether or not the SKB
4659 * was destined for RX processing or not, which,
4660 * if consume is true, is equivalent to whether
4661 * or not the skb was consumed.
4662 */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4663 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4664 struct sk_buff *skb, bool consume)
4665 {
4666 struct ieee80211_local *local = rx->local;
4667 struct ieee80211_sub_if_data *sdata = rx->sdata;
4668
4669 rx->skb = skb;
4670
4671 /* See if we can do fast-rx; if we have to copy we already lost,
4672 * so punt in that case. We should never have to deliver a data
4673 * frame to multiple interfaces anyway.
4674 *
4675 * We skip the ieee80211_accept_frame() call and do the necessary
4676 * checking inside ieee80211_invoke_fast_rx().
4677 */
4678 if (consume && rx->sta) {
4679 struct ieee80211_fast_rx *fast_rx;
4680
4681 fast_rx = rcu_dereference(rx->sta->fast_rx);
4682 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4683 return true;
4684 }
4685
4686 if (!ieee80211_accept_frame(rx))
4687 return false;
4688
4689 if (!consume) {
4690 skb = skb_copy(skb, GFP_ATOMIC);
4691 if (!skb) {
4692 if (net_ratelimit())
4693 wiphy_debug(local->hw.wiphy,
4694 "failed to copy skb for %s\n",
4695 sdata->name);
4696 return true;
4697 }
4698
4699 rx->skb = skb;
4700 }
4701
4702 ieee80211_invoke_rx_handlers(rx);
4703 return true;
4704 }
4705
__ieee80211_rx_handle_8023(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4706 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4707 struct ieee80211_sta *pubsta,
4708 struct sk_buff *skb,
4709 struct list_head *list)
4710 {
4711 struct ieee80211_local *local = hw_to_local(hw);
4712 struct ieee80211_fast_rx *fast_rx;
4713 struct ieee80211_rx_data rx;
4714
4715 memset(&rx, 0, sizeof(rx));
4716 rx.skb = skb;
4717 rx.local = local;
4718 rx.list = list;
4719
4720 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4721
4722 /* drop frame if too short for header */
4723 if (skb->len < sizeof(struct ethhdr))
4724 goto drop;
4725
4726 if (!pubsta)
4727 goto drop;
4728
4729 rx.sta = container_of(pubsta, struct sta_info, sta);
4730 rx.sdata = rx.sta->sdata;
4731
4732 fast_rx = rcu_dereference(rx.sta->fast_rx);
4733 if (!fast_rx)
4734 goto drop;
4735
4736 ieee80211_rx_8023(&rx, fast_rx, skb->len);
4737 return;
4738
4739 drop:
4740 dev_kfree_skb(skb);
4741 }
4742
4743 /*
4744 * This is the actual Rx frames handler. as it belongs to Rx path it must
4745 * be called with rcu_read_lock protection.
4746 */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4747 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4748 struct ieee80211_sta *pubsta,
4749 struct sk_buff *skb,
4750 struct list_head *list)
4751 {
4752 struct ieee80211_local *local = hw_to_local(hw);
4753 struct ieee80211_sub_if_data *sdata;
4754 struct ieee80211_hdr *hdr;
4755 __le16 fc;
4756 struct ieee80211_rx_data rx;
4757 struct ieee80211_sub_if_data *prev;
4758 struct rhlist_head *tmp;
4759 int err = 0;
4760
4761 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4762 memset(&rx, 0, sizeof(rx));
4763 rx.skb = skb;
4764 rx.local = local;
4765 rx.list = list;
4766
4767 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4768 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4769
4770 if (ieee80211_is_mgmt(fc)) {
4771 /* drop frame if too short for header */
4772 if (skb->len < ieee80211_hdrlen(fc))
4773 err = -ENOBUFS;
4774 else
4775 err = skb_linearize(skb);
4776 } else {
4777 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4778 }
4779
4780 if (err) {
4781 dev_kfree_skb(skb);
4782 return;
4783 }
4784
4785 hdr = (struct ieee80211_hdr *)skb->data;
4786 ieee80211_parse_qos(&rx);
4787 ieee80211_verify_alignment(&rx);
4788
4789 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4790 ieee80211_is_beacon(hdr->frame_control) ||
4791 ieee80211_is_s1g_beacon(hdr->frame_control)))
4792 ieee80211_scan_rx(local, skb);
4793
4794 if (ieee80211_is_data(fc)) {
4795 struct sta_info *sta, *prev_sta;
4796
4797 if (pubsta) {
4798 rx.sta = container_of(pubsta, struct sta_info, sta);
4799 rx.sdata = rx.sta->sdata;
4800 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4801 return;
4802 goto out;
4803 }
4804
4805 prev_sta = NULL;
4806
4807 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4808 if (!prev_sta) {
4809 prev_sta = sta;
4810 continue;
4811 }
4812
4813 rx.sta = prev_sta;
4814 rx.sdata = prev_sta->sdata;
4815 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4816
4817 prev_sta = sta;
4818 }
4819
4820 if (prev_sta) {
4821 rx.sta = prev_sta;
4822 rx.sdata = prev_sta->sdata;
4823
4824 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4825 return;
4826 goto out;
4827 }
4828 }
4829
4830 prev = NULL;
4831
4832 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4833 if (!ieee80211_sdata_running(sdata))
4834 continue;
4835
4836 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4837 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4838 continue;
4839
4840 /*
4841 * frame is destined for this interface, but if it's
4842 * not also for the previous one we handle that after
4843 * the loop to avoid copying the SKB once too much
4844 */
4845
4846 if (!prev) {
4847 prev = sdata;
4848 continue;
4849 }
4850
4851 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4852 rx.sdata = prev;
4853 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4854
4855 prev = sdata;
4856 }
4857
4858 if (prev) {
4859 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4860 rx.sdata = prev;
4861
4862 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4863 return;
4864 }
4865
4866 out:
4867 dev_kfree_skb(skb);
4868 }
4869
4870 /*
4871 * This is the receive path handler. It is called by a low level driver when an
4872 * 802.11 MPDU is received from the hardware.
4873 */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4874 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4875 struct sk_buff *skb, struct list_head *list)
4876 {
4877 struct ieee80211_local *local = hw_to_local(hw);
4878 struct ieee80211_rate *rate = NULL;
4879 struct ieee80211_supported_band *sband;
4880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4881 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
4882
4883 WARN_ON_ONCE(softirq_count() == 0);
4884
4885 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4886 goto drop;
4887
4888 sband = local->hw.wiphy->bands[status->band];
4889 if (WARN_ON(!sband))
4890 goto drop;
4891
4892 /*
4893 * If we're suspending, it is possible although not too likely
4894 * that we'd be receiving frames after having already partially
4895 * quiesced the stack. We can't process such frames then since
4896 * that might, for example, cause stations to be added or other
4897 * driver callbacks be invoked.
4898 */
4899 if (unlikely(local->quiescing || local->suspended))
4900 goto drop;
4901
4902 /* We might be during a HW reconfig, prevent Rx for the same reason */
4903 if (unlikely(local->in_reconfig))
4904 goto drop;
4905
4906 /*
4907 * The same happens when we're not even started,
4908 * but that's worth a warning.
4909 */
4910 if (WARN_ON(!local->started))
4911 goto drop;
4912
4913 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4914 /*
4915 * Validate the rate, unless a PLCP error means that
4916 * we probably can't have a valid rate here anyway.
4917 */
4918
4919 switch (status->encoding) {
4920 case RX_ENC_HT:
4921 /*
4922 * rate_idx is MCS index, which can be [0-76]
4923 * as documented on:
4924 *
4925 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4926 *
4927 * Anything else would be some sort of driver or
4928 * hardware error. The driver should catch hardware
4929 * errors.
4930 */
4931 if (WARN(status->rate_idx > 76,
4932 "Rate marked as an HT rate but passed "
4933 "status->rate_idx is not "
4934 "an MCS index [0-76]: %d (0x%02x)\n",
4935 status->rate_idx,
4936 status->rate_idx))
4937 goto drop;
4938 break;
4939 case RX_ENC_VHT:
4940 if (WARN_ONCE(status->rate_idx > 11 ||
4941 !status->nss ||
4942 status->nss > 8,
4943 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4944 status->rate_idx, status->nss))
4945 goto drop;
4946 break;
4947 case RX_ENC_HE:
4948 if (WARN_ONCE(status->rate_idx > 11 ||
4949 !status->nss ||
4950 status->nss > 8,
4951 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4952 status->rate_idx, status->nss))
4953 goto drop;
4954 break;
4955 default:
4956 WARN_ON_ONCE(1);
4957 fallthrough;
4958 case RX_ENC_LEGACY:
4959 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4960 goto drop;
4961 rate = &sband->bitrates[status->rate_idx];
4962 }
4963 }
4964
4965 status->rx_flags = 0;
4966
4967 kcov_remote_start_common(skb_get_kcov_handle(skb));
4968
4969 /*
4970 * Frames with failed FCS/PLCP checksum are not returned,
4971 * all other frames are returned without radiotap header
4972 * if it was previously present.
4973 * Also, frames with less than 16 bytes are dropped.
4974 */
4975 if (!(status->flag & RX_FLAG_8023))
4976 skb = ieee80211_rx_monitor(local, skb, rate);
4977 if (skb) {
4978 if ((status->flag & RX_FLAG_8023) ||
4979 ieee80211_is_data_present(hdr->frame_control))
4980 ieee80211_tpt_led_trig_rx(local, skb->len);
4981
4982 if (status->flag & RX_FLAG_8023)
4983 __ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4984 else
4985 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4986 }
4987
4988 kcov_remote_stop();
4989 return;
4990 drop:
4991 kfree_skb(skb);
4992 }
4993 EXPORT_SYMBOL(ieee80211_rx_list);
4994
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4995 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4996 struct sk_buff *skb, struct napi_struct *napi)
4997 {
4998 struct sk_buff *tmp;
4999 LIST_HEAD(list);
5000
5001
5002 /*
5003 * key references and virtual interfaces are protected using RCU
5004 * and this requires that we are in a read-side RCU section during
5005 * receive processing
5006 */
5007 rcu_read_lock();
5008 ieee80211_rx_list(hw, pubsta, skb, &list);
5009 rcu_read_unlock();
5010
5011 if (!napi) {
5012 netif_receive_skb_list(&list);
5013 return;
5014 }
5015
5016 list_for_each_entry_safe(skb, tmp, &list, list) {
5017 skb_list_del_init(skb);
5018 napi_gro_receive(napi, skb);
5019 }
5020 }
5021 EXPORT_SYMBOL(ieee80211_rx_napi);
5022
5023 /* This is a version of the rx handler that can be called from hard irq
5024 * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)5025 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5026 {
5027 struct ieee80211_local *local = hw_to_local(hw);
5028
5029 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5030
5031 skb->pkt_type = IEEE80211_RX_MSG;
5032 skb_queue_tail(&local->skb_queue, skb);
5033 tasklet_schedule(&local->tasklet);
5034 }
5035 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5036