• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/kcov.h>
21 #include <linux/bitops.h>
22 #include <net/mac80211.h>
23 #include <net/ieee80211_radiotap.h>
24 #include <asm/unaligned.h>
25 
26 #include "ieee80211_i.h"
27 #include "driver-ops.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "tkip.h"
33 #include "wme.h"
34 #include "rate.h"
35 
36 /*
37  * monitor mode reception
38  *
39  * This function cleans up the SKB, i.e. it removes all the stuff
40  * only useful for monitoring.
41  */
ieee80211_clean_skb(struct sk_buff * skb,unsigned int present_fcs_len,unsigned int rtap_space)42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
43 					   unsigned int present_fcs_len,
44 					   unsigned int rtap_space)
45 {
46 	struct ieee80211_hdr *hdr;
47 	unsigned int hdrlen;
48 	__le16 fc;
49 
50 	if (present_fcs_len)
51 		__pskb_trim(skb, skb->len - present_fcs_len);
52 	__pskb_pull(skb, rtap_space);
53 
54 	hdr = (void *)skb->data;
55 	fc = hdr->frame_control;
56 
57 	/*
58 	 * Remove the HT-Control field (if present) on management
59 	 * frames after we've sent the frame to monitoring. We
60 	 * (currently) don't need it, and don't properly parse
61 	 * frames with it present, due to the assumption of a
62 	 * fixed management header length.
63 	 */
64 	if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
65 		return skb;
66 
67 	hdrlen = ieee80211_hdrlen(fc);
68 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
69 
70 	if (!pskb_may_pull(skb, hdrlen)) {
71 		dev_kfree_skb(skb);
72 		return NULL;
73 	}
74 
75 	memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
76 		hdrlen - IEEE80211_HT_CTL_LEN);
77 	__pskb_pull(skb, IEEE80211_HT_CTL_LEN);
78 
79 	return skb;
80 }
81 
should_drop_frame(struct sk_buff * skb,int present_fcs_len,unsigned int rtap_space)82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
83 				     unsigned int rtap_space)
84 {
85 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
86 	struct ieee80211_hdr *hdr;
87 
88 	hdr = (void *)(skb->data + rtap_space);
89 
90 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
91 			    RX_FLAG_FAILED_PLCP_CRC |
92 			    RX_FLAG_ONLY_MONITOR |
93 			    RX_FLAG_NO_PSDU))
94 		return true;
95 
96 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
97 		return true;
98 
99 	if (ieee80211_is_ctl(hdr->frame_control) &&
100 	    !ieee80211_is_pspoll(hdr->frame_control) &&
101 	    !ieee80211_is_back_req(hdr->frame_control))
102 		return true;
103 
104 	return false;
105 }
106 
107 static int
ieee80211_rx_radiotap_hdrlen(struct ieee80211_local * local,struct ieee80211_rx_status * status,struct sk_buff * skb)108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
109 			     struct ieee80211_rx_status *status,
110 			     struct sk_buff *skb)
111 {
112 	int len;
113 
114 	/* always present fields */
115 	len = sizeof(struct ieee80211_radiotap_header) + 8;
116 
117 	/* allocate extra bitmaps */
118 	if (status->chains)
119 		len += 4 * hweight8(status->chains);
120 	/* vendor presence bitmap */
121 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
122 		len += 4;
123 
124 	if (ieee80211_have_rx_timestamp(status)) {
125 		len = ALIGN(len, 8);
126 		len += 8;
127 	}
128 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
129 		len += 1;
130 
131 	/* antenna field, if we don't have per-chain info */
132 	if (!status->chains)
133 		len += 1;
134 
135 	/* padding for RX_FLAGS if necessary */
136 	len = ALIGN(len, 2);
137 
138 	if (status->encoding == RX_ENC_HT) /* HT info */
139 		len += 3;
140 
141 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
142 		len = ALIGN(len, 4);
143 		len += 8;
144 	}
145 
146 	if (status->encoding == RX_ENC_VHT) {
147 		len = ALIGN(len, 2);
148 		len += 12;
149 	}
150 
151 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
152 		len = ALIGN(len, 8);
153 		len += 12;
154 	}
155 
156 	if (status->encoding == RX_ENC_HE &&
157 	    status->flag & RX_FLAG_RADIOTAP_HE) {
158 		len = ALIGN(len, 2);
159 		len += 12;
160 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
161 	}
162 
163 	if (status->encoding == RX_ENC_HE &&
164 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
165 		len = ALIGN(len, 2);
166 		len += 12;
167 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
168 	}
169 
170 	if (status->flag & RX_FLAG_NO_PSDU)
171 		len += 1;
172 
173 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
174 		len = ALIGN(len, 2);
175 		len += 4;
176 		BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
177 	}
178 
179 	if (status->chains) {
180 		/* antenna and antenna signal fields */
181 		len += 2 * hweight8(status->chains);
182 	}
183 
184 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
185 		struct ieee80211_vendor_radiotap *rtap;
186 		int vendor_data_offset = 0;
187 
188 		/*
189 		 * The position to look at depends on the existence (or non-
190 		 * existence) of other elements, so take that into account...
191 		 */
192 		if (status->flag & RX_FLAG_RADIOTAP_HE)
193 			vendor_data_offset +=
194 				sizeof(struct ieee80211_radiotap_he);
195 		if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
196 			vendor_data_offset +=
197 				sizeof(struct ieee80211_radiotap_he_mu);
198 		if (status->flag & RX_FLAG_RADIOTAP_LSIG)
199 			vendor_data_offset +=
200 				sizeof(struct ieee80211_radiotap_lsig);
201 
202 		rtap = (void *)&skb->data[vendor_data_offset];
203 
204 		/* alignment for fixed 6-byte vendor data header */
205 		len = ALIGN(len, 2);
206 		/* vendor data header */
207 		len += 6;
208 		if (WARN_ON(rtap->align == 0))
209 			rtap->align = 1;
210 		len = ALIGN(len, rtap->align);
211 		len += rtap->len + rtap->pad;
212 	}
213 
214 	return len;
215 }
216 
__ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
218 					   struct sta_info *sta,
219 					   struct sk_buff *skb)
220 {
221 	skb_queue_tail(&sdata->skb_queue, skb);
222 	ieee80211_queue_work(&sdata->local->hw, &sdata->work);
223 	if (sta)
224 		sta->deflink.rx_stats.packets++;
225 }
226 
ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,struct sk_buff * skb)227 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
228 					 struct sta_info *sta,
229 					 struct sk_buff *skb)
230 {
231 	skb->protocol = 0;
232 	__ieee80211_queue_skb_to_iface(sdata, sta, skb);
233 }
234 
ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data * sdata,struct sk_buff * skb,int rtap_space)235 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
236 					 struct sk_buff *skb,
237 					 int rtap_space)
238 {
239 	struct {
240 		struct ieee80211_hdr_3addr hdr;
241 		u8 category;
242 		u8 action_code;
243 	} __packed __aligned(2) action;
244 
245 	if (!sdata)
246 		return;
247 
248 	BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
249 
250 	if (skb->len < rtap_space + sizeof(action) +
251 		       VHT_MUMIMO_GROUPS_DATA_LEN)
252 		return;
253 
254 	if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
255 		return;
256 
257 	skb_copy_bits(skb, rtap_space, &action, sizeof(action));
258 
259 	if (!ieee80211_is_action(action.hdr.frame_control))
260 		return;
261 
262 	if (action.category != WLAN_CATEGORY_VHT)
263 		return;
264 
265 	if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
266 		return;
267 
268 	if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
269 		return;
270 
271 	skb = skb_copy(skb, GFP_ATOMIC);
272 	if (!skb)
273 		return;
274 
275 	ieee80211_queue_skb_to_iface(sdata, NULL, skb);
276 }
277 
278 /*
279  * ieee80211_add_rx_radiotap_header - add radiotap header
280  *
281  * add a radiotap header containing all the fields which the hardware provided.
282  */
283 static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local * local,struct sk_buff * skb,struct ieee80211_rate * rate,int rtap_len,bool has_fcs)284 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
285 				 struct sk_buff *skb,
286 				 struct ieee80211_rate *rate,
287 				 int rtap_len, bool has_fcs)
288 {
289 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
290 	struct ieee80211_radiotap_header *rthdr;
291 	unsigned char *pos;
292 	__le32 *it_present;
293 	u32 it_present_val;
294 	u16 rx_flags = 0;
295 	u16 channel_flags = 0;
296 	int mpdulen, chain;
297 	unsigned long chains = status->chains;
298 	struct ieee80211_vendor_radiotap rtap = {};
299 	struct ieee80211_radiotap_he he = {};
300 	struct ieee80211_radiotap_he_mu he_mu = {};
301 	struct ieee80211_radiotap_lsig lsig = {};
302 
303 	if (status->flag & RX_FLAG_RADIOTAP_HE) {
304 		he = *(struct ieee80211_radiotap_he *)skb->data;
305 		skb_pull(skb, sizeof(he));
306 		WARN_ON_ONCE(status->encoding != RX_ENC_HE);
307 	}
308 
309 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
310 		he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
311 		skb_pull(skb, sizeof(he_mu));
312 	}
313 
314 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
315 		lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
316 		skb_pull(skb, sizeof(lsig));
317 	}
318 
319 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
320 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
321 		/* rtap.len and rtap.pad are undone immediately */
322 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
323 	}
324 
325 	mpdulen = skb->len;
326 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
327 		mpdulen += FCS_LEN;
328 
329 	rthdr = skb_push(skb, rtap_len);
330 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
331 	it_present = &rthdr->it_present;
332 
333 	/* radiotap header, set always present flags */
334 	rthdr->it_len = cpu_to_le16(rtap_len);
335 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
336 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
337 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
338 
339 	if (!status->chains)
340 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
341 
342 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
343 		it_present_val |=
344 			BIT(IEEE80211_RADIOTAP_EXT) |
345 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
346 		put_unaligned_le32(it_present_val, it_present);
347 		it_present++;
348 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
349 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
350 	}
351 
352 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
353 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
354 				  BIT(IEEE80211_RADIOTAP_EXT);
355 		put_unaligned_le32(it_present_val, it_present);
356 		it_present++;
357 		it_present_val = rtap.present;
358 	}
359 
360 	put_unaligned_le32(it_present_val, it_present);
361 
362 	/* This references through an offset into it_optional[] rather
363 	 * than via it_present otherwise later uses of pos will cause
364 	 * the compiler to think we have walked past the end of the
365 	 * struct member.
366 	 */
367 	pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
368 
369 	/* the order of the following fields is important */
370 
371 	/* IEEE80211_RADIOTAP_TSFT */
372 	if (ieee80211_have_rx_timestamp(status)) {
373 		/* padding */
374 		while ((pos - (u8 *)rthdr) & 7)
375 			*pos++ = 0;
376 		put_unaligned_le64(
377 			ieee80211_calculate_rx_timestamp(local, status,
378 							 mpdulen, 0),
379 			pos);
380 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
381 		pos += 8;
382 	}
383 
384 	/* IEEE80211_RADIOTAP_FLAGS */
385 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
386 		*pos |= IEEE80211_RADIOTAP_F_FCS;
387 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
388 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
389 	if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
390 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
391 	pos++;
392 
393 	/* IEEE80211_RADIOTAP_RATE */
394 	if (!rate || status->encoding != RX_ENC_LEGACY) {
395 		/*
396 		 * Without rate information don't add it. If we have,
397 		 * MCS information is a separate field in radiotap,
398 		 * added below. The byte here is needed as padding
399 		 * for the channel though, so initialise it to 0.
400 		 */
401 		*pos = 0;
402 	} else {
403 		int shift = 0;
404 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
405 		if (status->bw == RATE_INFO_BW_10)
406 			shift = 1;
407 		else if (status->bw == RATE_INFO_BW_5)
408 			shift = 2;
409 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
410 	}
411 	pos++;
412 
413 	/* IEEE80211_RADIOTAP_CHANNEL */
414 	/* TODO: frequency offset in KHz */
415 	put_unaligned_le16(status->freq, pos);
416 	pos += 2;
417 	if (status->bw == RATE_INFO_BW_10)
418 		channel_flags |= IEEE80211_CHAN_HALF;
419 	else if (status->bw == RATE_INFO_BW_5)
420 		channel_flags |= IEEE80211_CHAN_QUARTER;
421 
422 	if (status->band == NL80211_BAND_5GHZ ||
423 	    status->band == NL80211_BAND_6GHZ)
424 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
425 	else if (status->encoding != RX_ENC_LEGACY)
426 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
427 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
428 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
429 	else if (rate)
430 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
431 	else
432 		channel_flags |= IEEE80211_CHAN_2GHZ;
433 	put_unaligned_le16(channel_flags, pos);
434 	pos += 2;
435 
436 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
437 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
438 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
439 		*pos = status->signal;
440 		rthdr->it_present |=
441 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
442 		pos++;
443 	}
444 
445 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
446 
447 	if (!status->chains) {
448 		/* IEEE80211_RADIOTAP_ANTENNA */
449 		*pos = status->antenna;
450 		pos++;
451 	}
452 
453 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
454 
455 	/* IEEE80211_RADIOTAP_RX_FLAGS */
456 	/* ensure 2 byte alignment for the 2 byte field as required */
457 	if ((pos - (u8 *)rthdr) & 1)
458 		*pos++ = 0;
459 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
460 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
461 	put_unaligned_le16(rx_flags, pos);
462 	pos += 2;
463 
464 	if (status->encoding == RX_ENC_HT) {
465 		unsigned int stbc;
466 
467 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
468 		*pos++ = local->hw.radiotap_mcs_details;
469 		*pos = 0;
470 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
471 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
472 		if (status->bw == RATE_INFO_BW_40)
473 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
474 		if (status->enc_flags & RX_ENC_FLAG_HT_GF)
475 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
476 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
477 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
478 		stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
479 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
480 		pos++;
481 		*pos++ = status->rate_idx;
482 	}
483 
484 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
485 		u16 flags = 0;
486 
487 		/* ensure 4 byte alignment */
488 		while ((pos - (u8 *)rthdr) & 3)
489 			pos++;
490 		rthdr->it_present |=
491 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
492 		put_unaligned_le32(status->ampdu_reference, pos);
493 		pos += 4;
494 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
495 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
496 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
497 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
498 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
499 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
500 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
501 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
502 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
503 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
504 		if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
505 			flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
506 		put_unaligned_le16(flags, pos);
507 		pos += 2;
508 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
509 			*pos++ = status->ampdu_delimiter_crc;
510 		else
511 			*pos++ = 0;
512 		*pos++ = 0;
513 	}
514 
515 	if (status->encoding == RX_ENC_VHT) {
516 		u16 known = local->hw.radiotap_vht_details;
517 
518 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
519 		put_unaligned_le16(known, pos);
520 		pos += 2;
521 		/* flags */
522 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
523 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
524 		/* in VHT, STBC is binary */
525 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
526 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
527 		if (status->enc_flags & RX_ENC_FLAG_BF)
528 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
529 		pos++;
530 		/* bandwidth */
531 		switch (status->bw) {
532 		case RATE_INFO_BW_80:
533 			*pos++ = 4;
534 			break;
535 		case RATE_INFO_BW_160:
536 			*pos++ = 11;
537 			break;
538 		case RATE_INFO_BW_40:
539 			*pos++ = 1;
540 			break;
541 		default:
542 			*pos++ = 0;
543 		}
544 		/* MCS/NSS */
545 		*pos = (status->rate_idx << 4) | status->nss;
546 		pos += 4;
547 		/* coding field */
548 		if (status->enc_flags & RX_ENC_FLAG_LDPC)
549 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
550 		pos++;
551 		/* group ID */
552 		pos++;
553 		/* partial_aid */
554 		pos += 2;
555 	}
556 
557 	if (local->hw.radiotap_timestamp.units_pos >= 0) {
558 		u16 accuracy = 0;
559 		u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
560 
561 		rthdr->it_present |=
562 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
563 
564 		/* ensure 8 byte alignment */
565 		while ((pos - (u8 *)rthdr) & 7)
566 			pos++;
567 
568 		put_unaligned_le64(status->device_timestamp, pos);
569 		pos += sizeof(u64);
570 
571 		if (local->hw.radiotap_timestamp.accuracy >= 0) {
572 			accuracy = local->hw.radiotap_timestamp.accuracy;
573 			flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
574 		}
575 		put_unaligned_le16(accuracy, pos);
576 		pos += sizeof(u16);
577 
578 		*pos++ = local->hw.radiotap_timestamp.units_pos;
579 		*pos++ = flags;
580 	}
581 
582 	if (status->encoding == RX_ENC_HE &&
583 	    status->flag & RX_FLAG_RADIOTAP_HE) {
584 #define HE_PREP(f, val)	le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
585 
586 		if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
587 			he.data6 |= HE_PREP(DATA6_NSTS,
588 					    FIELD_GET(RX_ENC_FLAG_STBC_MASK,
589 						      status->enc_flags));
590 			he.data3 |= HE_PREP(DATA3_STBC, 1);
591 		} else {
592 			he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
593 		}
594 
595 #define CHECK_GI(s) \
596 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
597 		     (int)NL80211_RATE_INFO_HE_GI_##s)
598 
599 		CHECK_GI(0_8);
600 		CHECK_GI(1_6);
601 		CHECK_GI(3_2);
602 
603 		he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
604 		he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
605 		he.data3 |= HE_PREP(DATA3_CODING,
606 				    !!(status->enc_flags & RX_ENC_FLAG_LDPC));
607 
608 		he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
609 
610 		switch (status->bw) {
611 		case RATE_INFO_BW_20:
612 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
613 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
614 			break;
615 		case RATE_INFO_BW_40:
616 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
617 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
618 			break;
619 		case RATE_INFO_BW_80:
620 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
621 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
622 			break;
623 		case RATE_INFO_BW_160:
624 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
625 					    IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
626 			break;
627 		case RATE_INFO_BW_HE_RU:
628 #define CHECK_RU_ALLOC(s) \
629 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
630 		     NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
631 
632 			CHECK_RU_ALLOC(26);
633 			CHECK_RU_ALLOC(52);
634 			CHECK_RU_ALLOC(106);
635 			CHECK_RU_ALLOC(242);
636 			CHECK_RU_ALLOC(484);
637 			CHECK_RU_ALLOC(996);
638 			CHECK_RU_ALLOC(2x996);
639 
640 			he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 					    status->he_ru + 4);
642 			break;
643 		default:
644 			WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
645 		}
646 
647 		/* ensure 2 byte alignment */
648 		while ((pos - (u8 *)rthdr) & 1)
649 			pos++;
650 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
651 		memcpy(pos, &he, sizeof(he));
652 		pos += sizeof(he);
653 	}
654 
655 	if (status->encoding == RX_ENC_HE &&
656 	    status->flag & RX_FLAG_RADIOTAP_HE_MU) {
657 		/* ensure 2 byte alignment */
658 		while ((pos - (u8 *)rthdr) & 1)
659 			pos++;
660 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
661 		memcpy(pos, &he_mu, sizeof(he_mu));
662 		pos += sizeof(he_mu);
663 	}
664 
665 	if (status->flag & RX_FLAG_NO_PSDU) {
666 		rthdr->it_present |=
667 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
668 		*pos++ = status->zero_length_psdu_type;
669 	}
670 
671 	if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
672 		/* ensure 2 byte alignment */
673 		while ((pos - (u8 *)rthdr) & 1)
674 			pos++;
675 		rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
676 		memcpy(pos, &lsig, sizeof(lsig));
677 		pos += sizeof(lsig);
678 	}
679 
680 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
681 		*pos++ = status->chain_signal[chain];
682 		*pos++ = chain;
683 	}
684 
685 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
686 		/* ensure 2 byte alignment for the vendor field as required */
687 		if ((pos - (u8 *)rthdr) & 1)
688 			*pos++ = 0;
689 		*pos++ = rtap.oui[0];
690 		*pos++ = rtap.oui[1];
691 		*pos++ = rtap.oui[2];
692 		*pos++ = rtap.subns;
693 		put_unaligned_le16(rtap.len, pos);
694 		pos += 2;
695 		/* align the actual payload as requested */
696 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
697 			*pos++ = 0;
698 		/* data (and possible padding) already follows */
699 	}
700 }
701 
702 static struct sk_buff *
ieee80211_make_monitor_skb(struct ieee80211_local * local,struct sk_buff ** origskb,struct ieee80211_rate * rate,int rtap_space,bool use_origskb)703 ieee80211_make_monitor_skb(struct ieee80211_local *local,
704 			   struct sk_buff **origskb,
705 			   struct ieee80211_rate *rate,
706 			   int rtap_space, bool use_origskb)
707 {
708 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
709 	int rt_hdrlen, needed_headroom;
710 	struct sk_buff *skb;
711 
712 	/* room for the radiotap header based on driver features */
713 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
714 	needed_headroom = rt_hdrlen - rtap_space;
715 
716 	if (use_origskb) {
717 		/* only need to expand headroom if necessary */
718 		skb = *origskb;
719 		*origskb = NULL;
720 
721 		/*
722 		 * This shouldn't trigger often because most devices have an
723 		 * RX header they pull before we get here, and that should
724 		 * be big enough for our radiotap information. We should
725 		 * probably export the length to drivers so that we can have
726 		 * them allocate enough headroom to start with.
727 		 */
728 		if (skb_headroom(skb) < needed_headroom &&
729 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
730 			dev_kfree_skb(skb);
731 			return NULL;
732 		}
733 	} else {
734 		/*
735 		 * Need to make a copy and possibly remove radiotap header
736 		 * and FCS from the original.
737 		 */
738 		skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD,
739 				      0, GFP_ATOMIC);
740 
741 		if (!skb)
742 			return NULL;
743 	}
744 
745 	/* prepend radiotap information */
746 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
747 
748 	skb_reset_mac_header(skb);
749 	skb->ip_summed = CHECKSUM_UNNECESSARY;
750 	skb->pkt_type = PACKET_OTHERHOST;
751 	skb->protocol = htons(ETH_P_802_2);
752 
753 	return skb;
754 }
755 
756 /*
757  * This function copies a received frame to all monitor interfaces and
758  * returns a cleaned-up SKB that no longer includes the FCS nor the
759  * radiotap header the driver might have added.
760  */
761 static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local * local,struct sk_buff * origskb,struct ieee80211_rate * rate)762 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
763 		     struct ieee80211_rate *rate)
764 {
765 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
766 	struct ieee80211_sub_if_data *sdata;
767 	struct sk_buff *monskb = NULL;
768 	int present_fcs_len = 0;
769 	unsigned int rtap_space = 0;
770 	struct ieee80211_sub_if_data *monitor_sdata =
771 		rcu_dereference(local->monitor_sdata);
772 	bool only_monitor = false;
773 	unsigned int min_head_len;
774 
775 	if (status->flag & RX_FLAG_RADIOTAP_HE)
776 		rtap_space += sizeof(struct ieee80211_radiotap_he);
777 
778 	if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
779 		rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
780 
781 	if (status->flag & RX_FLAG_RADIOTAP_LSIG)
782 		rtap_space += sizeof(struct ieee80211_radiotap_lsig);
783 
784 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
785 		struct ieee80211_vendor_radiotap *rtap =
786 			(void *)(origskb->data + rtap_space);
787 
788 		rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
789 	}
790 
791 	min_head_len = rtap_space;
792 
793 	/*
794 	 * First, we may need to make a copy of the skb because
795 	 *  (1) we need to modify it for radiotap (if not present), and
796 	 *  (2) the other RX handlers will modify the skb we got.
797 	 *
798 	 * We don't need to, of course, if we aren't going to return
799 	 * the SKB because it has a bad FCS/PLCP checksum.
800 	 */
801 
802 	if (!(status->flag & RX_FLAG_NO_PSDU)) {
803 		if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
804 			if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
805 				/* driver bug */
806 				WARN_ON(1);
807 				dev_kfree_skb(origskb);
808 				return NULL;
809 			}
810 			present_fcs_len = FCS_LEN;
811 		}
812 
813 		/* also consider the hdr->frame_control */
814 		min_head_len += 2;
815 	}
816 
817 	/* ensure that the expected data elements are in skb head */
818 	if (!pskb_may_pull(origskb, min_head_len)) {
819 		dev_kfree_skb(origskb);
820 		return NULL;
821 	}
822 
823 	only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
824 
825 	if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
826 		if (only_monitor) {
827 			dev_kfree_skb(origskb);
828 			return NULL;
829 		}
830 
831 		return ieee80211_clean_skb(origskb, present_fcs_len,
832 					   rtap_space);
833 	}
834 
835 	ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
836 
837 	list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
838 		bool last_monitor = list_is_last(&sdata->u.mntr.list,
839 						 &local->mon_list);
840 
841 		if (!monskb)
842 			monskb = ieee80211_make_monitor_skb(local, &origskb,
843 							    rate, rtap_space,
844 							    only_monitor &&
845 							    last_monitor);
846 
847 		if (monskb) {
848 			struct sk_buff *skb;
849 
850 			if (last_monitor) {
851 				skb = monskb;
852 				monskb = NULL;
853 			} else {
854 				skb = skb_clone(monskb, GFP_ATOMIC);
855 			}
856 
857 			if (skb) {
858 				skb->dev = sdata->dev;
859 				dev_sw_netstats_rx_add(skb->dev, skb->len);
860 				netif_receive_skb(skb);
861 			}
862 		}
863 
864 		if (last_monitor)
865 			break;
866 	}
867 
868 	/* this happens if last_monitor was erroneously false */
869 	dev_kfree_skb(monskb);
870 
871 	/* ditto */
872 	if (!origskb)
873 		return NULL;
874 
875 	return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
876 }
877 
ieee80211_parse_qos(struct ieee80211_rx_data * rx)878 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
879 {
880 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
881 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
882 	int tid, seqno_idx, security_idx;
883 
884 	/* does the frame have a qos control field? */
885 	if (ieee80211_is_data_qos(hdr->frame_control)) {
886 		u8 *qc = ieee80211_get_qos_ctl(hdr);
887 		/* frame has qos control */
888 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
889 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
890 			status->rx_flags |= IEEE80211_RX_AMSDU;
891 
892 		seqno_idx = tid;
893 		security_idx = tid;
894 	} else {
895 		/*
896 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
897 		 *
898 		 *	Sequence numbers for management frames, QoS data
899 		 *	frames with a broadcast/multicast address in the
900 		 *	Address 1 field, and all non-QoS data frames sent
901 		 *	by QoS STAs are assigned using an additional single
902 		 *	modulo-4096 counter, [...]
903 		 *
904 		 * We also use that counter for non-QoS STAs.
905 		 */
906 		seqno_idx = IEEE80211_NUM_TIDS;
907 		security_idx = 0;
908 		if (ieee80211_is_mgmt(hdr->frame_control))
909 			security_idx = IEEE80211_NUM_TIDS;
910 		tid = 0;
911 	}
912 
913 	rx->seqno_idx = seqno_idx;
914 	rx->security_idx = security_idx;
915 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
916 	 * For now, set skb->priority to 0 for other cases. */
917 	rx->skb->priority = (tid > 7) ? 0 : tid;
918 }
919 
920 /**
921  * DOC: Packet alignment
922  *
923  * Drivers always need to pass packets that are aligned to two-byte boundaries
924  * to the stack.
925  *
926  * Additionally, should, if possible, align the payload data in a way that
927  * guarantees that the contained IP header is aligned to a four-byte
928  * boundary. In the case of regular frames, this simply means aligning the
929  * payload to a four-byte boundary (because either the IP header is directly
930  * contained, or IV/RFC1042 headers that have a length divisible by four are
931  * in front of it).  If the payload data is not properly aligned and the
932  * architecture doesn't support efficient unaligned operations, mac80211
933  * will align the data.
934  *
935  * With A-MSDU frames, however, the payload data address must yield two modulo
936  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
937  * push the IP header further back to a multiple of four again. Thankfully, the
938  * specs were sane enough this time around to require padding each A-MSDU
939  * subframe to a length that is a multiple of four.
940  *
941  * Padding like Atheros hardware adds which is between the 802.11 header and
942  * the payload is not supported, the driver is required to move the 802.11
943  * header to be directly in front of the payload in that case.
944  */
ieee80211_verify_alignment(struct ieee80211_rx_data * rx)945 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
946 {
947 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
948 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
949 #endif
950 }
951 
952 
953 /* rx handlers */
954 
ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff * skb)955 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
956 {
957 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
958 
959 	if (is_multicast_ether_addr(hdr->addr1))
960 		return 0;
961 
962 	return ieee80211_is_robust_mgmt_frame(skb);
963 }
964 
965 
ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff * skb)966 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
967 {
968 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
969 
970 	if (!is_multicast_ether_addr(hdr->addr1))
971 		return 0;
972 
973 	return ieee80211_is_robust_mgmt_frame(skb);
974 }
975 
976 
977 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
ieee80211_get_mmie_keyidx(struct sk_buff * skb)978 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
979 {
980 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
981 	struct ieee80211_mmie *mmie;
982 	struct ieee80211_mmie_16 *mmie16;
983 
984 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
985 		return -1;
986 
987 	if (!ieee80211_is_robust_mgmt_frame(skb) &&
988 	    !ieee80211_is_beacon(hdr->frame_control))
989 		return -1; /* not a robust management frame */
990 
991 	mmie = (struct ieee80211_mmie *)
992 		(skb->data + skb->len - sizeof(*mmie));
993 	if (mmie->element_id == WLAN_EID_MMIE &&
994 	    mmie->length == sizeof(*mmie) - 2)
995 		return le16_to_cpu(mmie->key_id);
996 
997 	mmie16 = (struct ieee80211_mmie_16 *)
998 		(skb->data + skb->len - sizeof(*mmie16));
999 	if (skb->len >= 24 + sizeof(*mmie16) &&
1000 	    mmie16->element_id == WLAN_EID_MMIE &&
1001 	    mmie16->length == sizeof(*mmie16) - 2)
1002 		return le16_to_cpu(mmie16->key_id);
1003 
1004 	return -1;
1005 }
1006 
ieee80211_get_keyid(struct sk_buff * skb,const struct ieee80211_cipher_scheme * cs)1007 static int ieee80211_get_keyid(struct sk_buff *skb,
1008 			       const struct ieee80211_cipher_scheme *cs)
1009 {
1010 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1011 	__le16 fc;
1012 	int hdrlen;
1013 	int minlen;
1014 	u8 key_idx_off;
1015 	u8 key_idx_shift;
1016 	u8 keyid;
1017 
1018 	fc = hdr->frame_control;
1019 	hdrlen = ieee80211_hdrlen(fc);
1020 
1021 	if (cs) {
1022 		minlen = hdrlen + cs->hdr_len;
1023 		key_idx_off = hdrlen + cs->key_idx_off;
1024 		key_idx_shift = cs->key_idx_shift;
1025 	} else {
1026 		/* WEP, TKIP, CCMP and GCMP */
1027 		minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1028 		key_idx_off = hdrlen + 3;
1029 		key_idx_shift = 6;
1030 	}
1031 
1032 	if (unlikely(skb->len < minlen))
1033 		return -EINVAL;
1034 
1035 	skb_copy_bits(skb, key_idx_off, &keyid, 1);
1036 
1037 	if (cs)
1038 		keyid &= cs->key_idx_mask;
1039 	keyid >>= key_idx_shift;
1040 
1041 	/* cs could use more than the usual two bits for the keyid */
1042 	if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1043 		return -EINVAL;
1044 
1045 	return keyid;
1046 }
1047 
ieee80211_rx_mesh_check(struct ieee80211_rx_data * rx)1048 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1049 {
1050 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1051 	char *dev_addr = rx->sdata->vif.addr;
1052 
1053 	if (ieee80211_is_data(hdr->frame_control)) {
1054 		if (is_multicast_ether_addr(hdr->addr1)) {
1055 			if (ieee80211_has_tods(hdr->frame_control) ||
1056 			    !ieee80211_has_fromds(hdr->frame_control))
1057 				return RX_DROP_MONITOR;
1058 			if (ether_addr_equal(hdr->addr3, dev_addr))
1059 				return RX_DROP_MONITOR;
1060 		} else {
1061 			if (!ieee80211_has_a4(hdr->frame_control))
1062 				return RX_DROP_MONITOR;
1063 			if (ether_addr_equal(hdr->addr4, dev_addr))
1064 				return RX_DROP_MONITOR;
1065 		}
1066 	}
1067 
1068 	/* If there is not an established peer link and this is not a peer link
1069 	 * establisment frame, beacon or probe, drop the frame.
1070 	 */
1071 
1072 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1073 		struct ieee80211_mgmt *mgmt;
1074 
1075 		if (!ieee80211_is_mgmt(hdr->frame_control))
1076 			return RX_DROP_MONITOR;
1077 
1078 		if (ieee80211_is_action(hdr->frame_control)) {
1079 			u8 category;
1080 
1081 			/* make sure category field is present */
1082 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1083 				return RX_DROP_MONITOR;
1084 
1085 			mgmt = (struct ieee80211_mgmt *)hdr;
1086 			category = mgmt->u.action.category;
1087 			if (category != WLAN_CATEGORY_MESH_ACTION &&
1088 			    category != WLAN_CATEGORY_SELF_PROTECTED)
1089 				return RX_DROP_MONITOR;
1090 			return RX_CONTINUE;
1091 		}
1092 
1093 		if (ieee80211_is_probe_req(hdr->frame_control) ||
1094 		    ieee80211_is_probe_resp(hdr->frame_control) ||
1095 		    ieee80211_is_beacon(hdr->frame_control) ||
1096 		    ieee80211_is_auth(hdr->frame_control))
1097 			return RX_CONTINUE;
1098 
1099 		return RX_DROP_MONITOR;
1100 	}
1101 
1102 	return RX_CONTINUE;
1103 }
1104 
ieee80211_rx_reorder_ready(struct tid_ampdu_rx * tid_agg_rx,int index)1105 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1106 					      int index)
1107 {
1108 	struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1109 	struct sk_buff *tail = skb_peek_tail(frames);
1110 	struct ieee80211_rx_status *status;
1111 
1112 	if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1113 		return true;
1114 
1115 	if (!tail)
1116 		return false;
1117 
1118 	status = IEEE80211_SKB_RXCB(tail);
1119 	if (status->flag & RX_FLAG_AMSDU_MORE)
1120 		return false;
1121 
1122 	return true;
1123 }
1124 
ieee80211_release_reorder_frame(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,int index,struct sk_buff_head * frames)1125 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1126 					    struct tid_ampdu_rx *tid_agg_rx,
1127 					    int index,
1128 					    struct sk_buff_head *frames)
1129 {
1130 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1131 	struct sk_buff *skb;
1132 	struct ieee80211_rx_status *status;
1133 
1134 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1135 
1136 	if (skb_queue_empty(skb_list))
1137 		goto no_frame;
1138 
1139 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1140 		__skb_queue_purge(skb_list);
1141 		goto no_frame;
1142 	}
1143 
1144 	/* release frames from the reorder ring buffer */
1145 	tid_agg_rx->stored_mpdu_num--;
1146 	while ((skb = __skb_dequeue(skb_list))) {
1147 		status = IEEE80211_SKB_RXCB(skb);
1148 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1149 		__skb_queue_tail(frames, skb);
1150 	}
1151 
1152 no_frame:
1153 	tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1154 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1155 }
1156 
ieee80211_release_reorder_frames(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,u16 head_seq_num,struct sk_buff_head * frames)1157 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1158 					     struct tid_ampdu_rx *tid_agg_rx,
1159 					     u16 head_seq_num,
1160 					     struct sk_buff_head *frames)
1161 {
1162 	int index;
1163 
1164 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1165 
1166 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1167 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1168 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1169 						frames);
1170 	}
1171 }
1172 
1173 /*
1174  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1175  * the skb was added to the buffer longer than this time ago, the earlier
1176  * frames that have not yet been received are assumed to be lost and the skb
1177  * can be released for processing. This may also release other skb's from the
1178  * reorder buffer if there are no additional gaps between the frames.
1179  *
1180  * Callers must hold tid_agg_rx->reorder_lock.
1181  */
1182 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1183 
ieee80211_sta_reorder_release(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff_head * frames)1184 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1185 					  struct tid_ampdu_rx *tid_agg_rx,
1186 					  struct sk_buff_head *frames)
1187 {
1188 	int index, i, j;
1189 
1190 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
1191 
1192 	/* release the buffer until next missing frame */
1193 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1194 	if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1195 	    tid_agg_rx->stored_mpdu_num) {
1196 		/*
1197 		 * No buffers ready to be released, but check whether any
1198 		 * frames in the reorder buffer have timed out.
1199 		 */
1200 		int skipped = 1;
1201 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1202 		     j = (j + 1) % tid_agg_rx->buf_size) {
1203 			if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1204 				skipped++;
1205 				continue;
1206 			}
1207 			if (skipped &&
1208 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1209 					HT_RX_REORDER_BUF_TIMEOUT))
1210 				goto set_release_timer;
1211 
1212 			/* don't leave incomplete A-MSDUs around */
1213 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1214 			     i = (i + 1) % tid_agg_rx->buf_size)
1215 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1216 
1217 			ht_dbg_ratelimited(sdata,
1218 					   "release an RX reorder frame due to timeout on earlier frames\n");
1219 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1220 							frames);
1221 
1222 			/*
1223 			 * Increment the head seq# also for the skipped slots.
1224 			 */
1225 			tid_agg_rx->head_seq_num =
1226 				(tid_agg_rx->head_seq_num +
1227 				 skipped) & IEEE80211_SN_MASK;
1228 			skipped = 0;
1229 		}
1230 	} else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1231 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1232 						frames);
1233 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1234 	}
1235 
1236 	if (tid_agg_rx->stored_mpdu_num) {
1237 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1238 
1239 		for (; j != (index - 1) % tid_agg_rx->buf_size;
1240 		     j = (j + 1) % tid_agg_rx->buf_size) {
1241 			if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1242 				break;
1243 		}
1244 
1245  set_release_timer:
1246 
1247 		if (!tid_agg_rx->removed)
1248 			mod_timer(&tid_agg_rx->reorder_timer,
1249 				  tid_agg_rx->reorder_time[j] + 1 +
1250 				  HT_RX_REORDER_BUF_TIMEOUT);
1251 	} else {
1252 		del_timer(&tid_agg_rx->reorder_timer);
1253 	}
1254 }
1255 
1256 /*
1257  * As this function belongs to the RX path it must be under
1258  * rcu_read_lock protection. It returns false if the frame
1259  * can be processed immediately, true if it was consumed.
1260  */
ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data * sdata,struct tid_ampdu_rx * tid_agg_rx,struct sk_buff * skb,struct sk_buff_head * frames)1261 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1262 					     struct tid_ampdu_rx *tid_agg_rx,
1263 					     struct sk_buff *skb,
1264 					     struct sk_buff_head *frames)
1265 {
1266 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1267 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1268 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
1269 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1270 	u16 head_seq_num, buf_size;
1271 	int index;
1272 	bool ret = true;
1273 
1274 	spin_lock(&tid_agg_rx->reorder_lock);
1275 
1276 	/*
1277 	 * Offloaded BA sessions have no known starting sequence number so pick
1278 	 * one from first Rxed frame for this tid after BA was started.
1279 	 */
1280 	if (unlikely(tid_agg_rx->auto_seq)) {
1281 		tid_agg_rx->auto_seq = false;
1282 		tid_agg_rx->ssn = mpdu_seq_num;
1283 		tid_agg_rx->head_seq_num = mpdu_seq_num;
1284 	}
1285 
1286 	buf_size = tid_agg_rx->buf_size;
1287 	head_seq_num = tid_agg_rx->head_seq_num;
1288 
1289 	/*
1290 	 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1291 	 * be reordered.
1292 	 */
1293 	if (unlikely(!tid_agg_rx->started)) {
1294 		if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1295 			ret = false;
1296 			goto out;
1297 		}
1298 		tid_agg_rx->started = true;
1299 	}
1300 
1301 	/* frame with out of date sequence number */
1302 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1303 		dev_kfree_skb(skb);
1304 		goto out;
1305 	}
1306 
1307 	/*
1308 	 * If frame the sequence number exceeds our buffering window
1309 	 * size release some previous frames to make room for this one.
1310 	 */
1311 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1312 		head_seq_num = ieee80211_sn_inc(
1313 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
1314 		/* release stored frames up to new head to stack */
1315 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1316 						 head_seq_num, frames);
1317 	}
1318 
1319 	/* Now the new frame is always in the range of the reordering buffer */
1320 
1321 	index = mpdu_seq_num % tid_agg_rx->buf_size;
1322 
1323 	/* check if we already stored this frame */
1324 	if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1325 		dev_kfree_skb(skb);
1326 		goto out;
1327 	}
1328 
1329 	/*
1330 	 * If the current MPDU is in the right order and nothing else
1331 	 * is stored we can process it directly, no need to buffer it.
1332 	 * If it is first but there's something stored, we may be able
1333 	 * to release frames after this one.
1334 	 */
1335 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1336 	    tid_agg_rx->stored_mpdu_num == 0) {
1337 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1338 			tid_agg_rx->head_seq_num =
1339 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1340 		ret = false;
1341 		goto out;
1342 	}
1343 
1344 	/* put the frame in the reordering buffer */
1345 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1346 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1347 		tid_agg_rx->reorder_time[index] = jiffies;
1348 		tid_agg_rx->stored_mpdu_num++;
1349 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1350 	}
1351 
1352  out:
1353 	spin_unlock(&tid_agg_rx->reorder_lock);
1354 	return ret;
1355 }
1356 
1357 /*
1358  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1359  * true if the MPDU was buffered, false if it should be processed.
1360  */
ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)1361 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1362 				       struct sk_buff_head *frames)
1363 {
1364 	struct sk_buff *skb = rx->skb;
1365 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1366 	struct sta_info *sta = rx->sta;
1367 	struct tid_ampdu_rx *tid_agg_rx;
1368 	u16 sc;
1369 	u8 tid, ack_policy;
1370 
1371 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1372 	    is_multicast_ether_addr(hdr->addr1))
1373 		goto dont_reorder;
1374 
1375 	/*
1376 	 * filter the QoS data rx stream according to
1377 	 * STA/TID and check if this STA/TID is on aggregation
1378 	 */
1379 
1380 	if (!sta)
1381 		goto dont_reorder;
1382 
1383 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1384 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1385 	tid = ieee80211_get_tid(hdr);
1386 
1387 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1388 	if (!tid_agg_rx) {
1389 		if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1390 		    !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1391 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1392 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1393 					     WLAN_BACK_RECIPIENT,
1394 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
1395 		goto dont_reorder;
1396 	}
1397 
1398 	/* qos null data frames are excluded */
1399 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1400 		goto dont_reorder;
1401 
1402 	/* not part of a BA session */
1403 	if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1404 		goto dont_reorder;
1405 
1406 	/* new, potentially un-ordered, ampdu frame - process it */
1407 
1408 	/* reset session timer */
1409 	if (tid_agg_rx->timeout)
1410 		tid_agg_rx->last_rx = jiffies;
1411 
1412 	/* if this mpdu is fragmented - terminate rx aggregation session */
1413 	sc = le16_to_cpu(hdr->seq_ctrl);
1414 	if (sc & IEEE80211_SCTL_FRAG) {
1415 		ieee80211_queue_skb_to_iface(rx->sdata, NULL, skb);
1416 		return;
1417 	}
1418 
1419 	/*
1420 	 * No locking needed -- we will only ever process one
1421 	 * RX packet at a time, and thus own tid_agg_rx. All
1422 	 * other code manipulating it needs to (and does) make
1423 	 * sure that we cannot get to it any more before doing
1424 	 * anything with it.
1425 	 */
1426 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1427 					     frames))
1428 		return;
1429 
1430  dont_reorder:
1431 	__skb_queue_tail(frames, skb);
1432 }
1433 
1434 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_dup(struct ieee80211_rx_data * rx)1435 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1436 {
1437 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1438 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1439 
1440 	if (status->flag & RX_FLAG_DUP_VALIDATED)
1441 		return RX_CONTINUE;
1442 
1443 	/*
1444 	 * Drop duplicate 802.11 retransmissions
1445 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1446 	 */
1447 
1448 	if (rx->skb->len < 24)
1449 		return RX_CONTINUE;
1450 
1451 	if (ieee80211_is_ctl(hdr->frame_control) ||
1452 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1453 	    is_multicast_ether_addr(hdr->addr1))
1454 		return RX_CONTINUE;
1455 
1456 	if (!rx->sta)
1457 		return RX_CONTINUE;
1458 
1459 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1460 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1461 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1462 		rx->sta->deflink.rx_stats.num_duplicates++;
1463 		return RX_DROP_UNUSABLE;
1464 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1465 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1466 	}
1467 
1468 	return RX_CONTINUE;
1469 }
1470 
1471 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data * rx)1472 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1473 {
1474 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1475 
1476 	/* Drop disallowed frame classes based on STA auth/assoc state;
1477 	 * IEEE 802.11, Chap 5.5.
1478 	 *
1479 	 * mac80211 filters only based on association state, i.e. it drops
1480 	 * Class 3 frames from not associated stations. hostapd sends
1481 	 * deauth/disassoc frames when needed. In addition, hostapd is
1482 	 * responsible for filtering on both auth and assoc states.
1483 	 */
1484 
1485 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1486 		return ieee80211_rx_mesh_check(rx);
1487 
1488 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1489 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1490 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1491 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1492 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1493 		/*
1494 		 * accept port control frames from the AP even when it's not
1495 		 * yet marked ASSOC to prevent a race where we don't set the
1496 		 * assoc bit quickly enough before it sends the first frame
1497 		 */
1498 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1499 		    ieee80211_is_data_present(hdr->frame_control)) {
1500 			unsigned int hdrlen;
1501 			__be16 ethertype;
1502 
1503 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1504 
1505 			if (rx->skb->len < hdrlen + 8)
1506 				return RX_DROP_MONITOR;
1507 
1508 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1509 			if (ethertype == rx->sdata->control_port_protocol)
1510 				return RX_CONTINUE;
1511 		}
1512 
1513 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1514 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1515 					       hdr->addr2,
1516 					       GFP_ATOMIC))
1517 			return RX_DROP_UNUSABLE;
1518 
1519 		return RX_DROP_MONITOR;
1520 	}
1521 
1522 	return RX_CONTINUE;
1523 }
1524 
1525 
1526 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data * rx)1527 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1528 {
1529 	struct ieee80211_local *local;
1530 	struct ieee80211_hdr *hdr;
1531 	struct sk_buff *skb;
1532 
1533 	local = rx->local;
1534 	skb = rx->skb;
1535 	hdr = (struct ieee80211_hdr *) skb->data;
1536 
1537 	if (!local->pspolling)
1538 		return RX_CONTINUE;
1539 
1540 	if (!ieee80211_has_fromds(hdr->frame_control))
1541 		/* this is not from AP */
1542 		return RX_CONTINUE;
1543 
1544 	if (!ieee80211_is_data(hdr->frame_control))
1545 		return RX_CONTINUE;
1546 
1547 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1548 		/* AP has no more frames buffered for us */
1549 		local->pspolling = false;
1550 		return RX_CONTINUE;
1551 	}
1552 
1553 	/* more data bit is set, let's request a new frame from the AP */
1554 	ieee80211_send_pspoll(local, rx->sdata);
1555 
1556 	return RX_CONTINUE;
1557 }
1558 
sta_ps_start(struct sta_info * sta)1559 static void sta_ps_start(struct sta_info *sta)
1560 {
1561 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1562 	struct ieee80211_local *local = sdata->local;
1563 	struct ps_data *ps;
1564 	int tid;
1565 
1566 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1567 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1568 		ps = &sdata->bss->ps;
1569 	else
1570 		return;
1571 
1572 	atomic_inc(&ps->num_sta_ps);
1573 	set_sta_flag(sta, WLAN_STA_PS_STA);
1574 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1575 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1576 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1577 	       sta->sta.addr, sta->sta.aid);
1578 
1579 	ieee80211_clear_fast_xmit(sta);
1580 
1581 	if (!sta->sta.txq[0])
1582 		return;
1583 
1584 	for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1585 		struct ieee80211_txq *txq = sta->sta.txq[tid];
1586 
1587 		ieee80211_unschedule_txq(&local->hw, txq, false);
1588 
1589 		if (txq_has_queue(txq))
1590 			set_bit(tid, &sta->txq_buffered_tids);
1591 		else
1592 			clear_bit(tid, &sta->txq_buffered_tids);
1593 	}
1594 }
1595 
sta_ps_end(struct sta_info * sta)1596 static void sta_ps_end(struct sta_info *sta)
1597 {
1598 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1599 	       sta->sta.addr, sta->sta.aid);
1600 
1601 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1602 		/*
1603 		 * Clear the flag only if the other one is still set
1604 		 * so that the TX path won't start TX'ing new frames
1605 		 * directly ... In the case that the driver flag isn't
1606 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1607 		 */
1608 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1609 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1610 		       sta->sta.addr, sta->sta.aid);
1611 		return;
1612 	}
1613 
1614 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1615 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1616 	ieee80211_sta_ps_deliver_wakeup(sta);
1617 }
1618 
ieee80211_sta_ps_transition(struct ieee80211_sta * pubsta,bool start)1619 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1620 {
1621 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1622 	bool in_ps;
1623 
1624 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1625 
1626 	/* Don't let the same PS state be set twice */
1627 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1628 	if ((start && in_ps) || (!start && !in_ps))
1629 		return -EINVAL;
1630 
1631 	if (start)
1632 		sta_ps_start(sta);
1633 	else
1634 		sta_ps_end(sta);
1635 
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1639 
ieee80211_sta_pspoll(struct ieee80211_sta * pubsta)1640 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1641 {
1642 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1643 
1644 	if (test_sta_flag(sta, WLAN_STA_SP))
1645 		return;
1646 
1647 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1648 		ieee80211_sta_ps_deliver_poll_response(sta);
1649 	else
1650 		set_sta_flag(sta, WLAN_STA_PSPOLL);
1651 }
1652 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1653 
ieee80211_sta_uapsd_trigger(struct ieee80211_sta * pubsta,u8 tid)1654 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1655 {
1656 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1657 	int ac = ieee80211_ac_from_tid(tid);
1658 
1659 	/*
1660 	 * If this AC is not trigger-enabled do nothing unless the
1661 	 * driver is calling us after it already checked.
1662 	 *
1663 	 * NB: This could/should check a separate bitmap of trigger-
1664 	 * enabled queues, but for now we only implement uAPSD w/o
1665 	 * TSPEC changes to the ACs, so they're always the same.
1666 	 */
1667 	if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1668 	    tid != IEEE80211_NUM_TIDS)
1669 		return;
1670 
1671 	/* if we are in a service period, do nothing */
1672 	if (test_sta_flag(sta, WLAN_STA_SP))
1673 		return;
1674 
1675 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1676 		ieee80211_sta_ps_deliver_uapsd(sta);
1677 	else
1678 		set_sta_flag(sta, WLAN_STA_UAPSD);
1679 }
1680 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1681 
1682 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data * rx)1683 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1684 {
1685 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1686 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1687 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1688 
1689 	if (!rx->sta)
1690 		return RX_CONTINUE;
1691 
1692 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1693 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1694 		return RX_CONTINUE;
1695 
1696 	/*
1697 	 * The device handles station powersave, so don't do anything about
1698 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1699 	 * it to mac80211 since they're handled.)
1700 	 */
1701 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1702 		return RX_CONTINUE;
1703 
1704 	/*
1705 	 * Don't do anything if the station isn't already asleep. In
1706 	 * the uAPSD case, the station will probably be marked asleep,
1707 	 * in the PS-Poll case the station must be confused ...
1708 	 */
1709 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1710 		return RX_CONTINUE;
1711 
1712 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1713 		ieee80211_sta_pspoll(&rx->sta->sta);
1714 
1715 		/* Free PS Poll skb here instead of returning RX_DROP that would
1716 		 * count as an dropped frame. */
1717 		dev_kfree_skb(rx->skb);
1718 
1719 		return RX_QUEUED;
1720 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1721 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1722 		   ieee80211_has_pm(hdr->frame_control) &&
1723 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1724 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1725 		u8 tid = ieee80211_get_tid(hdr);
1726 
1727 		ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1728 	}
1729 
1730 	return RX_CONTINUE;
1731 }
1732 
1733 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data * rx)1734 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1735 {
1736 	struct sta_info *sta = rx->sta;
1737 	struct sk_buff *skb = rx->skb;
1738 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1739 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1740 	int i;
1741 
1742 	if (!sta)
1743 		return RX_CONTINUE;
1744 
1745 	/*
1746 	 * Update last_rx only for IBSS packets which are for the current
1747 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1748 	 * current IBSS network alive in cases where other STAs start
1749 	 * using different BSSID. This will also give the station another
1750 	 * chance to restart the authentication/authorization in case
1751 	 * something went wrong the first time.
1752 	 */
1753 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1754 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1755 						NL80211_IFTYPE_ADHOC);
1756 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1757 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1758 			sta->deflink.rx_stats.last_rx = jiffies;
1759 			if (ieee80211_is_data(hdr->frame_control) &&
1760 			    !is_multicast_ether_addr(hdr->addr1))
1761 				sta->deflink.rx_stats.last_rate =
1762 					sta_stats_encode_rate(status);
1763 		}
1764 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1765 		sta->deflink.rx_stats.last_rx = jiffies;
1766 	} else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1767 		   !is_multicast_ether_addr(hdr->addr1)) {
1768 		/*
1769 		 * Mesh beacons will update last_rx when if they are found to
1770 		 * match the current local configuration when processed.
1771 		 */
1772 		sta->deflink.rx_stats.last_rx = jiffies;
1773 		if (ieee80211_is_data(hdr->frame_control))
1774 			sta->deflink.rx_stats.last_rate = sta_stats_encode_rate(status);
1775 	}
1776 
1777 	sta->deflink.rx_stats.fragments++;
1778 
1779 	u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
1780 	sta->deflink.rx_stats.bytes += rx->skb->len;
1781 	u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
1782 
1783 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1784 		sta->deflink.rx_stats.last_signal = status->signal;
1785 		ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
1786 				-status->signal);
1787 	}
1788 
1789 	if (status->chains) {
1790 		sta->deflink.rx_stats.chains = status->chains;
1791 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1792 			int signal = status->chain_signal[i];
1793 
1794 			if (!(status->chains & BIT(i)))
1795 				continue;
1796 
1797 			sta->deflink.rx_stats.chain_signal_last[i] = signal;
1798 			ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
1799 					-signal);
1800 		}
1801 	}
1802 
1803 	if (ieee80211_is_s1g_beacon(hdr->frame_control))
1804 		return RX_CONTINUE;
1805 
1806 	/*
1807 	 * Change STA power saving mode only at the end of a frame
1808 	 * exchange sequence, and only for a data or management
1809 	 * frame as specified in IEEE 802.11-2016 11.2.3.2
1810 	 */
1811 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1812 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1813 	    !is_multicast_ether_addr(hdr->addr1) &&
1814 	    (ieee80211_is_mgmt(hdr->frame_control) ||
1815 	     ieee80211_is_data(hdr->frame_control)) &&
1816 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1817 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1818 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1819 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1820 			if (!ieee80211_has_pm(hdr->frame_control))
1821 				sta_ps_end(sta);
1822 		} else {
1823 			if (ieee80211_has_pm(hdr->frame_control))
1824 				sta_ps_start(sta);
1825 		}
1826 	}
1827 
1828 	/* mesh power save support */
1829 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1830 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1831 
1832 	/*
1833 	 * Drop (qos-)data::nullfunc frames silently, since they
1834 	 * are used only to control station power saving mode.
1835 	 */
1836 	if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1837 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1838 
1839 		/*
1840 		 * If we receive a 4-addr nullfunc frame from a STA
1841 		 * that was not moved to a 4-addr STA vlan yet send
1842 		 * the event to userspace and for older hostapd drop
1843 		 * the frame to the monitor interface.
1844 		 */
1845 		if (ieee80211_has_a4(hdr->frame_control) &&
1846 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1847 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1848 		      !rx->sdata->u.vlan.sta))) {
1849 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1850 				cfg80211_rx_unexpected_4addr_frame(
1851 					rx->sdata->dev, sta->sta.addr,
1852 					GFP_ATOMIC);
1853 			return RX_DROP_MONITOR;
1854 		}
1855 		/*
1856 		 * Update counter and free packet here to avoid
1857 		 * counting this as a dropped packed.
1858 		 */
1859 		sta->deflink.rx_stats.packets++;
1860 		dev_kfree_skb(rx->skb);
1861 		return RX_QUEUED;
1862 	}
1863 
1864 	return RX_CONTINUE;
1865 } /* ieee80211_rx_h_sta_process */
1866 
1867 static struct ieee80211_key *
ieee80211_rx_get_bigtk(struct ieee80211_rx_data * rx,int idx)1868 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1869 {
1870 	struct ieee80211_key *key = NULL;
1871 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1872 	int idx2;
1873 
1874 	/* Make sure key gets set if either BIGTK key index is set so that
1875 	 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1876 	 * Beacon frames and Beacon frames that claim to use another BIGTK key
1877 	 * index (i.e., a key that we do not have).
1878 	 */
1879 
1880 	if (idx < 0) {
1881 		idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1882 		idx2 = idx + 1;
1883 	} else {
1884 		if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1885 			idx2 = idx + 1;
1886 		else
1887 			idx2 = idx - 1;
1888 	}
1889 
1890 	if (rx->sta)
1891 		key = rcu_dereference(rx->sta->deflink.gtk[idx]);
1892 	if (!key)
1893 		key = rcu_dereference(sdata->keys[idx]);
1894 	if (!key && rx->sta)
1895 		key = rcu_dereference(rx->sta->deflink.gtk[idx2]);
1896 	if (!key)
1897 		key = rcu_dereference(sdata->keys[idx2]);
1898 
1899 	return key;
1900 }
1901 
1902 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data * rx)1903 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1904 {
1905 	struct sk_buff *skb = rx->skb;
1906 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1907 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1908 	int keyidx;
1909 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1910 	struct ieee80211_key *sta_ptk = NULL;
1911 	struct ieee80211_key *ptk_idx = NULL;
1912 	int mmie_keyidx = -1;
1913 	__le16 fc;
1914 	const struct ieee80211_cipher_scheme *cs = NULL;
1915 
1916 	if (ieee80211_is_ext(hdr->frame_control))
1917 		return RX_CONTINUE;
1918 
1919 	/*
1920 	 * Key selection 101
1921 	 *
1922 	 * There are five types of keys:
1923 	 *  - GTK (group keys)
1924 	 *  - IGTK (group keys for management frames)
1925 	 *  - BIGTK (group keys for Beacon frames)
1926 	 *  - PTK (pairwise keys)
1927 	 *  - STK (station-to-station pairwise keys)
1928 	 *
1929 	 * When selecting a key, we have to distinguish between multicast
1930 	 * (including broadcast) and unicast frames, the latter can only
1931 	 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1932 	 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1933 	 * then unicast frames can also use key indices like GTKs. Hence, if we
1934 	 * don't have a PTK/STK we check the key index for a WEP key.
1935 	 *
1936 	 * Note that in a regular BSS, multicast frames are sent by the
1937 	 * AP only, associated stations unicast the frame to the AP first
1938 	 * which then multicasts it on their behalf.
1939 	 *
1940 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1941 	 * with each station, that is something we don't currently handle.
1942 	 * The spec seems to expect that one negotiates the same key with
1943 	 * every station but there's no such requirement; VLANs could be
1944 	 * possible.
1945 	 */
1946 
1947 	/* start without a key */
1948 	rx->key = NULL;
1949 	fc = hdr->frame_control;
1950 
1951 	if (rx->sta) {
1952 		int keyid = rx->sta->ptk_idx;
1953 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1954 
1955 		if (ieee80211_has_protected(fc) &&
1956 		    !(status->flag & RX_FLAG_IV_STRIPPED)) {
1957 			cs = rx->sta->cipher_scheme;
1958 			keyid = ieee80211_get_keyid(rx->skb, cs);
1959 
1960 			if (unlikely(keyid < 0))
1961 				return RX_DROP_UNUSABLE;
1962 
1963 			ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1964 		}
1965 	}
1966 
1967 	if (!ieee80211_has_protected(fc))
1968 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1969 
1970 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1971 		rx->key = ptk_idx ? ptk_idx : sta_ptk;
1972 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 		    (status->flag & RX_FLAG_IV_STRIPPED))
1974 			return RX_CONTINUE;
1975 		/* Skip decryption if the frame is not protected. */
1976 		if (!ieee80211_has_protected(fc))
1977 			return RX_CONTINUE;
1978 	} else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1979 		/* Broadcast/multicast robust management frame / BIP */
1980 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1981 		    (status->flag & RX_FLAG_IV_STRIPPED))
1982 			return RX_CONTINUE;
1983 
1984 		if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1985 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1986 				   NUM_DEFAULT_BEACON_KEYS) {
1987 			if (rx->sdata->dev)
1988 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1989 							     skb->data,
1990 							     skb->len);
1991 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1992 		}
1993 
1994 		rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1995 		if (!rx->key)
1996 			return RX_CONTINUE; /* Beacon protection not in use */
1997 	} else if (mmie_keyidx >= 0) {
1998 		/* Broadcast/multicast robust management frame / BIP */
1999 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2000 		    (status->flag & RX_FLAG_IV_STRIPPED))
2001 			return RX_CONTINUE;
2002 
2003 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2004 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2005 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
2006 		if (rx->sta) {
2007 			if (ieee80211_is_group_privacy_action(skb) &&
2008 			    test_sta_flag(rx->sta, WLAN_STA_MFP))
2009 				return RX_DROP_MONITOR;
2010 
2011 			rx->key = rcu_dereference(rx->sta->deflink.gtk[mmie_keyidx]);
2012 		}
2013 		if (!rx->key)
2014 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2015 	} else if (!ieee80211_has_protected(fc)) {
2016 		/*
2017 		 * The frame was not protected, so skip decryption. However, we
2018 		 * need to set rx->key if there is a key that could have been
2019 		 * used so that the frame may be dropped if encryption would
2020 		 * have been expected.
2021 		 */
2022 		struct ieee80211_key *key = NULL;
2023 		struct ieee80211_sub_if_data *sdata = rx->sdata;
2024 		int i;
2025 
2026 		if (ieee80211_is_beacon(fc)) {
2027 			key = ieee80211_rx_get_bigtk(rx, -1);
2028 		} else if (ieee80211_is_mgmt(fc) &&
2029 			   is_multicast_ether_addr(hdr->addr1)) {
2030 			key = rcu_dereference(rx->sdata->default_mgmt_key);
2031 		} else {
2032 			if (rx->sta) {
2033 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2034 					key = rcu_dereference(rx->sta->deflink.gtk[i]);
2035 					if (key)
2036 						break;
2037 				}
2038 			}
2039 			if (!key) {
2040 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2041 					key = rcu_dereference(sdata->keys[i]);
2042 					if (key)
2043 						break;
2044 				}
2045 			}
2046 		}
2047 		if (key)
2048 			rx->key = key;
2049 		return RX_CONTINUE;
2050 	} else {
2051 		/*
2052 		 * The device doesn't give us the IV so we won't be
2053 		 * able to look up the key. That's ok though, we
2054 		 * don't need to decrypt the frame, we just won't
2055 		 * be able to keep statistics accurate.
2056 		 * Except for key threshold notifications, should
2057 		 * we somehow allow the driver to tell us which key
2058 		 * the hardware used if this flag is set?
2059 		 */
2060 		if ((status->flag & RX_FLAG_DECRYPTED) &&
2061 		    (status->flag & RX_FLAG_IV_STRIPPED))
2062 			return RX_CONTINUE;
2063 
2064 		keyidx = ieee80211_get_keyid(rx->skb, cs);
2065 
2066 		if (unlikely(keyidx < 0))
2067 			return RX_DROP_UNUSABLE;
2068 
2069 		/* check per-station GTK first, if multicast packet */
2070 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2071 			rx->key = rcu_dereference(rx->sta->deflink.gtk[keyidx]);
2072 
2073 		/* if not found, try default key */
2074 		if (!rx->key) {
2075 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2076 
2077 			/*
2078 			 * RSNA-protected unicast frames should always be
2079 			 * sent with pairwise or station-to-station keys,
2080 			 * but for WEP we allow using a key index as well.
2081 			 */
2082 			if (rx->key &&
2083 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2084 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2085 			    !is_multicast_ether_addr(hdr->addr1))
2086 				rx->key = NULL;
2087 		}
2088 	}
2089 
2090 	if (rx->key) {
2091 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2092 			return RX_DROP_MONITOR;
2093 
2094 		/* TODO: add threshold stuff again */
2095 	} else {
2096 		return RX_DROP_MONITOR;
2097 	}
2098 
2099 	switch (rx->key->conf.cipher) {
2100 	case WLAN_CIPHER_SUITE_WEP40:
2101 	case WLAN_CIPHER_SUITE_WEP104:
2102 		result = ieee80211_crypto_wep_decrypt(rx);
2103 		break;
2104 	case WLAN_CIPHER_SUITE_TKIP:
2105 		result = ieee80211_crypto_tkip_decrypt(rx);
2106 		break;
2107 	case WLAN_CIPHER_SUITE_CCMP:
2108 		result = ieee80211_crypto_ccmp_decrypt(
2109 			rx, IEEE80211_CCMP_MIC_LEN);
2110 		break;
2111 	case WLAN_CIPHER_SUITE_CCMP_256:
2112 		result = ieee80211_crypto_ccmp_decrypt(
2113 			rx, IEEE80211_CCMP_256_MIC_LEN);
2114 		break;
2115 	case WLAN_CIPHER_SUITE_AES_CMAC:
2116 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
2117 		break;
2118 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2119 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2120 		break;
2121 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2122 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2123 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
2124 		break;
2125 	case WLAN_CIPHER_SUITE_GCMP:
2126 	case WLAN_CIPHER_SUITE_GCMP_256:
2127 		result = ieee80211_crypto_gcmp_decrypt(rx);
2128 		break;
2129 	default:
2130 		result = ieee80211_crypto_hw_decrypt(rx);
2131 	}
2132 
2133 	/* the hdr variable is invalid after the decrypt handlers */
2134 
2135 	/* either the frame has been decrypted or will be dropped */
2136 	status->flag |= RX_FLAG_DECRYPTED;
2137 
2138 	if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE &&
2139 		     rx->sdata->dev))
2140 		cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2141 					     skb->data, skb->len);
2142 
2143 	return result;
2144 }
2145 
ieee80211_init_frag_cache(struct ieee80211_fragment_cache * cache)2146 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2147 {
2148 	int i;
2149 
2150 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2151 		skb_queue_head_init(&cache->entries[i].skb_list);
2152 }
2153 
ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache * cache)2154 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2155 {
2156 	int i;
2157 
2158 	for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2159 		__skb_queue_purge(&cache->entries[i].skb_list);
2160 }
2161 
2162 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct sk_buff ** skb)2163 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2164 			 unsigned int frag, unsigned int seq, int rx_queue,
2165 			 struct sk_buff **skb)
2166 {
2167 	struct ieee80211_fragment_entry *entry;
2168 
2169 	entry = &cache->entries[cache->next++];
2170 	if (cache->next >= IEEE80211_FRAGMENT_MAX)
2171 		cache->next = 0;
2172 
2173 	__skb_queue_purge(&entry->skb_list);
2174 
2175 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2176 	*skb = NULL;
2177 	entry->first_frag_time = jiffies;
2178 	entry->seq = seq;
2179 	entry->rx_queue = rx_queue;
2180 	entry->last_frag = frag;
2181 	entry->check_sequential_pn = false;
2182 	entry->extra_len = 0;
2183 
2184 	return entry;
2185 }
2186 
2187 static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_fragment_cache * cache,unsigned int frag,unsigned int seq,int rx_queue,struct ieee80211_hdr * hdr)2188 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2189 			  unsigned int frag, unsigned int seq,
2190 			  int rx_queue, struct ieee80211_hdr *hdr)
2191 {
2192 	struct ieee80211_fragment_entry *entry;
2193 	int i, idx;
2194 
2195 	idx = cache->next;
2196 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2197 		struct ieee80211_hdr *f_hdr;
2198 		struct sk_buff *f_skb;
2199 
2200 		idx--;
2201 		if (idx < 0)
2202 			idx = IEEE80211_FRAGMENT_MAX - 1;
2203 
2204 		entry = &cache->entries[idx];
2205 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2206 		    entry->rx_queue != rx_queue ||
2207 		    entry->last_frag + 1 != frag)
2208 			continue;
2209 
2210 		f_skb = __skb_peek(&entry->skb_list);
2211 		f_hdr = (struct ieee80211_hdr *) f_skb->data;
2212 
2213 		/*
2214 		 * Check ftype and addresses are equal, else check next fragment
2215 		 */
2216 		if (((hdr->frame_control ^ f_hdr->frame_control) &
2217 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2218 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2219 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2220 			continue;
2221 
2222 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2223 			__skb_queue_purge(&entry->skb_list);
2224 			continue;
2225 		}
2226 		return entry;
2227 	}
2228 
2229 	return NULL;
2230 }
2231 
requires_sequential_pn(struct ieee80211_rx_data * rx,__le16 fc)2232 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2233 {
2234 	return rx->key &&
2235 		(rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2236 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2237 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2238 		 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2239 		ieee80211_has_protected(fc);
2240 }
2241 
2242 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data * rx)2243 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2244 {
2245 	struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2246 	struct ieee80211_hdr *hdr;
2247 	u16 sc;
2248 	__le16 fc;
2249 	unsigned int frag, seq;
2250 	struct ieee80211_fragment_entry *entry;
2251 	struct sk_buff *skb;
2252 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2253 
2254 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2255 	fc = hdr->frame_control;
2256 
2257 	if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2258 		return RX_CONTINUE;
2259 
2260 	sc = le16_to_cpu(hdr->seq_ctrl);
2261 	frag = sc & IEEE80211_SCTL_FRAG;
2262 
2263 	if (rx->sta)
2264 		cache = &rx->sta->frags;
2265 
2266 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2267 		goto out;
2268 
2269 	if (is_multicast_ether_addr(hdr->addr1))
2270 		return RX_DROP_MONITOR;
2271 
2272 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2273 
2274 	if (skb_linearize(rx->skb))
2275 		return RX_DROP_UNUSABLE;
2276 
2277 	/*
2278 	 *  skb_linearize() might change the skb->data and
2279 	 *  previously cached variables (in this case, hdr) need to
2280 	 *  be refreshed with the new data.
2281 	 */
2282 	hdr = (struct ieee80211_hdr *)rx->skb->data;
2283 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2284 
2285 	if (frag == 0) {
2286 		/* This is the first fragment of a new frame. */
2287 		entry = ieee80211_reassemble_add(cache, frag, seq,
2288 						 rx->seqno_idx, &(rx->skb));
2289 		if (requires_sequential_pn(rx, fc)) {
2290 			int queue = rx->security_idx;
2291 
2292 			/* Store CCMP/GCMP PN so that we can verify that the
2293 			 * next fragment has a sequential PN value.
2294 			 */
2295 			entry->check_sequential_pn = true;
2296 			entry->is_protected = true;
2297 			entry->key_color = rx->key->color;
2298 			memcpy(entry->last_pn,
2299 			       rx->key->u.ccmp.rx_pn[queue],
2300 			       IEEE80211_CCMP_PN_LEN);
2301 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
2302 					      u.ccmp.rx_pn) !=
2303 				     offsetof(struct ieee80211_key,
2304 					      u.gcmp.rx_pn));
2305 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2306 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
2307 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2308 				     IEEE80211_GCMP_PN_LEN);
2309 		} else if (rx->key &&
2310 			   (ieee80211_has_protected(fc) ||
2311 			    (status->flag & RX_FLAG_DECRYPTED))) {
2312 			entry->is_protected = true;
2313 			entry->key_color = rx->key->color;
2314 		}
2315 		return RX_QUEUED;
2316 	}
2317 
2318 	/* This is a fragment for a frame that should already be pending in
2319 	 * fragment cache. Add this fragment to the end of the pending entry.
2320 	 */
2321 	entry = ieee80211_reassemble_find(cache, frag, seq,
2322 					  rx->seqno_idx, hdr);
2323 	if (!entry) {
2324 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2325 		return RX_DROP_MONITOR;
2326 	}
2327 
2328 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
2329 	 *  MPDU PN values are not incrementing in steps of 1."
2330 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2331 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2332 	 */
2333 	if (entry->check_sequential_pn) {
2334 		int i;
2335 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2336 
2337 		if (!requires_sequential_pn(rx, fc))
2338 			return RX_DROP_UNUSABLE;
2339 
2340 		/* Prevent mixed key and fragment cache attacks */
2341 		if (entry->key_color != rx->key->color)
2342 			return RX_DROP_UNUSABLE;
2343 
2344 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2345 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2346 			pn[i]++;
2347 			if (pn[i])
2348 				break;
2349 		}
2350 
2351 		rpn = rx->ccm_gcm.pn;
2352 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2353 			return RX_DROP_UNUSABLE;
2354 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2355 	} else if (entry->is_protected &&
2356 		   (!rx->key ||
2357 		    (!ieee80211_has_protected(fc) &&
2358 		     !(status->flag & RX_FLAG_DECRYPTED)) ||
2359 		    rx->key->color != entry->key_color)) {
2360 		/* Drop this as a mixed key or fragment cache attack, even
2361 		 * if for TKIP Michael MIC should protect us, and WEP is a
2362 		 * lost cause anyway.
2363 		 */
2364 		return RX_DROP_UNUSABLE;
2365 	} else if (entry->is_protected && rx->key &&
2366 		   entry->key_color != rx->key->color &&
2367 		   (status->flag & RX_FLAG_DECRYPTED)) {
2368 		return RX_DROP_UNUSABLE;
2369 	}
2370 
2371 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
2372 	__skb_queue_tail(&entry->skb_list, rx->skb);
2373 	entry->last_frag = frag;
2374 	entry->extra_len += rx->skb->len;
2375 	if (ieee80211_has_morefrags(fc)) {
2376 		rx->skb = NULL;
2377 		return RX_QUEUED;
2378 	}
2379 
2380 	rx->skb = __skb_dequeue(&entry->skb_list);
2381 	if (skb_tailroom(rx->skb) < entry->extra_len) {
2382 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2383 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2384 					      GFP_ATOMIC))) {
2385 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2386 			__skb_queue_purge(&entry->skb_list);
2387 			return RX_DROP_UNUSABLE;
2388 		}
2389 	}
2390 	while ((skb = __skb_dequeue(&entry->skb_list))) {
2391 		skb_put_data(rx->skb, skb->data, skb->len);
2392 		dev_kfree_skb(skb);
2393 	}
2394 
2395  out:
2396 	ieee80211_led_rx(rx->local);
2397 	if (rx->sta)
2398 		rx->sta->deflink.rx_stats.packets++;
2399 	return RX_CONTINUE;
2400 }
2401 
ieee80211_802_1x_port_control(struct ieee80211_rx_data * rx)2402 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2403 {
2404 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2405 		return -EACCES;
2406 
2407 	return 0;
2408 }
2409 
ieee80211_drop_unencrypted(struct ieee80211_rx_data * rx,__le16 fc)2410 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2411 {
2412 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2413 	struct sk_buff *skb = rx->skb;
2414 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2415 
2416 	/*
2417 	 * Pass through unencrypted frames if the hardware has
2418 	 * decrypted them already.
2419 	 */
2420 	if (status->flag & RX_FLAG_DECRYPTED)
2421 		return 0;
2422 
2423 	/* check mesh EAPOL frames first */
2424 	if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2425 		     ieee80211_is_data(fc))) {
2426 		struct ieee80211s_hdr *mesh_hdr;
2427 		u16 hdr_len = ieee80211_hdrlen(fc);
2428 		u16 ethertype_offset;
2429 		__be16 ethertype;
2430 
2431 		if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2432 			goto drop_check;
2433 
2434 		/* make sure fixed part of mesh header is there, also checks skb len */
2435 		if (!pskb_may_pull(rx->skb, hdr_len + 6))
2436 			goto drop_check;
2437 
2438 		mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2439 		ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2440 				   sizeof(rfc1042_header);
2441 
2442 		if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2443 		    ethertype == rx->sdata->control_port_protocol)
2444 			return 0;
2445 	}
2446 
2447 drop_check:
2448 	/* Drop unencrypted frames if key is set. */
2449 	if (unlikely(!ieee80211_has_protected(fc) &&
2450 		     !ieee80211_is_any_nullfunc(fc) &&
2451 		     ieee80211_is_data(fc) && rx->key))
2452 		return -EACCES;
2453 
2454 	return 0;
2455 }
2456 
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data * rx)2457 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2458 {
2459 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2460 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2461 	__le16 fc = hdr->frame_control;
2462 
2463 	/*
2464 	 * Pass through unencrypted frames if the hardware has
2465 	 * decrypted them already.
2466 	 */
2467 	if (status->flag & RX_FLAG_DECRYPTED)
2468 		return 0;
2469 
2470 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2471 		if (unlikely(!ieee80211_has_protected(fc) &&
2472 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2473 			     rx->key)) {
2474 			if (ieee80211_is_deauth(fc) ||
2475 			    ieee80211_is_disassoc(fc))
2476 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2477 							     rx->skb->data,
2478 							     rx->skb->len);
2479 			return -EACCES;
2480 		}
2481 		/* BIP does not use Protected field, so need to check MMIE */
2482 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2483 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2484 			if (ieee80211_is_deauth(fc) ||
2485 			    ieee80211_is_disassoc(fc))
2486 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2487 							     rx->skb->data,
2488 							     rx->skb->len);
2489 			return -EACCES;
2490 		}
2491 		if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2492 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2493 			cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2494 						     rx->skb->data,
2495 						     rx->skb->len);
2496 			return -EACCES;
2497 		}
2498 		/*
2499 		 * When using MFP, Action frames are not allowed prior to
2500 		 * having configured keys.
2501 		 */
2502 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2503 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2504 			return -EACCES;
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static int
__ieee80211_data_to_8023(struct ieee80211_rx_data * rx,bool * port_control)2511 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2512 {
2513 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2514 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2515 	bool check_port_control = false;
2516 	struct ethhdr *ehdr;
2517 	int ret;
2518 
2519 	*port_control = false;
2520 	if (ieee80211_has_a4(hdr->frame_control) &&
2521 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2522 		return -1;
2523 
2524 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2525 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2526 
2527 		if (!sdata->u.mgd.use_4addr)
2528 			return -1;
2529 		else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2530 			check_port_control = true;
2531 	}
2532 
2533 	if (is_multicast_ether_addr(hdr->addr1) &&
2534 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2535 		return -1;
2536 
2537 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2538 	if (ret < 0)
2539 		return ret;
2540 
2541 	ehdr = (struct ethhdr *) rx->skb->data;
2542 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2543 		*port_control = true;
2544 	else if (check_port_control)
2545 		return -1;
2546 
2547 	return 0;
2548 }
2549 
2550 /*
2551  * requires that rx->skb is a frame with ethernet header
2552  */
ieee80211_frame_allowed(struct ieee80211_rx_data * rx,__le16 fc)2553 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2554 {
2555 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2556 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2557 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2558 
2559 	/*
2560 	 * Allow EAPOL frames to us/the PAE group address regardless of
2561 	 * whether the frame was encrypted or not, and always disallow
2562 	 * all other destination addresses for them.
2563 	 */
2564 	if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2565 		return ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2566 		       ether_addr_equal(ehdr->h_dest, pae_group_addr);
2567 
2568 	if (ieee80211_802_1x_port_control(rx) ||
2569 	    ieee80211_drop_unencrypted(rx, fc))
2570 		return false;
2571 
2572 	return true;
2573 }
2574 
ieee80211_deliver_skb_to_local_stack(struct sk_buff * skb,struct ieee80211_rx_data * rx)2575 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2576 						 struct ieee80211_rx_data *rx)
2577 {
2578 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2579 	struct net_device *dev = sdata->dev;
2580 
2581 	if (unlikely((skb->protocol == sdata->control_port_protocol ||
2582 		     (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2583 		      !sdata->control_port_no_preauth)) &&
2584 		     sdata->control_port_over_nl80211)) {
2585 		struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2586 		bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2587 
2588 		cfg80211_rx_control_port(dev, skb, noencrypt);
2589 		dev_kfree_skb(skb);
2590 	} else {
2591 		struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2592 
2593 		memset(skb->cb, 0, sizeof(skb->cb));
2594 
2595 		/*
2596 		 * 802.1X over 802.11 requires that the authenticator address
2597 		 * be used for EAPOL frames. However, 802.1X allows the use of
2598 		 * the PAE group address instead. If the interface is part of
2599 		 * a bridge and we pass the frame with the PAE group address,
2600 		 * then the bridge will forward it to the network (even if the
2601 		 * client was not associated yet), which isn't supposed to
2602 		 * happen.
2603 		 * To avoid that, rewrite the destination address to our own
2604 		 * address, so that the authenticator (e.g. hostapd) will see
2605 		 * the frame, but bridge won't forward it anywhere else. Note
2606 		 * that due to earlier filtering, the only other address can
2607 		 * be the PAE group address, unless the hardware allowed them
2608 		 * through in 802.3 offloaded mode.
2609 		 */
2610 		if (unlikely(skb->protocol == sdata->control_port_protocol &&
2611 			     !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2612 			ether_addr_copy(ehdr->h_dest, sdata->vif.addr);
2613 
2614 		/* deliver to local stack */
2615 		if (rx->list)
2616 			list_add_tail(&skb->list, rx->list);
2617 		else
2618 			netif_receive_skb(skb);
2619 	}
2620 }
2621 
2622 /*
2623  * requires that rx->skb is a frame with ethernet header
2624  */
2625 static void
ieee80211_deliver_skb(struct ieee80211_rx_data * rx)2626 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2627 {
2628 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2629 	struct net_device *dev = sdata->dev;
2630 	struct sk_buff *skb, *xmit_skb;
2631 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2632 	struct sta_info *dsta;
2633 
2634 	skb = rx->skb;
2635 	xmit_skb = NULL;
2636 
2637 	dev_sw_netstats_rx_add(dev, skb->len);
2638 
2639 	if (rx->sta) {
2640 		/* The seqno index has the same property as needed
2641 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2642 		 * for non-QoS-data frames. Here we know it's a data
2643 		 * frame, so count MSDUs.
2644 		 */
2645 		u64_stats_update_begin(&rx->sta->deflink.rx_stats.syncp);
2646 		rx->sta->deflink.rx_stats.msdu[rx->seqno_idx]++;
2647 		u64_stats_update_end(&rx->sta->deflink.rx_stats.syncp);
2648 	}
2649 
2650 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2651 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2652 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2653 	    ehdr->h_proto != rx->sdata->control_port_protocol &&
2654 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2655 		if (is_multicast_ether_addr(ehdr->h_dest) &&
2656 		    ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2657 			/*
2658 			 * send multicast frames both to higher layers in
2659 			 * local net stack and back to the wireless medium
2660 			 */
2661 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2662 			if (!xmit_skb)
2663 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2664 						    dev->name);
2665 		} else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2666 			   !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2667 			dsta = sta_info_get(sdata, ehdr->h_dest);
2668 			if (dsta) {
2669 				/*
2670 				 * The destination station is associated to
2671 				 * this AP (in this VLAN), so send the frame
2672 				 * directly to it and do not pass it to local
2673 				 * net stack.
2674 				 */
2675 				xmit_skb = skb;
2676 				skb = NULL;
2677 			}
2678 		}
2679 	}
2680 
2681 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2682 	if (skb) {
2683 		/* 'align' will only take the values 0 or 2 here since all
2684 		 * frames are required to be aligned to 2-byte boundaries
2685 		 * when being passed to mac80211; the code here works just
2686 		 * as well if that isn't true, but mac80211 assumes it can
2687 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2688 		 */
2689 		int align;
2690 
2691 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2692 		if (align) {
2693 			if (WARN_ON(skb_headroom(skb) < 3)) {
2694 				dev_kfree_skb(skb);
2695 				skb = NULL;
2696 			} else {
2697 				u8 *data = skb->data;
2698 				size_t len = skb_headlen(skb);
2699 				skb->data -= align;
2700 				memmove(skb->data, data, len);
2701 				skb_set_tail_pointer(skb, len);
2702 			}
2703 		}
2704 	}
2705 #endif
2706 
2707 	if (skb) {
2708 		skb->protocol = eth_type_trans(skb, dev);
2709 		ieee80211_deliver_skb_to_local_stack(skb, rx);
2710 	}
2711 
2712 	if (xmit_skb) {
2713 		/*
2714 		 * Send to wireless media and increase priority by 256 to
2715 		 * keep the received priority instead of reclassifying
2716 		 * the frame (see cfg80211_classify8021d).
2717 		 */
2718 		xmit_skb->priority += 256;
2719 		xmit_skb->protocol = htons(ETH_P_802_3);
2720 		skb_reset_network_header(xmit_skb);
2721 		skb_reset_mac_header(xmit_skb);
2722 		dev_queue_xmit(xmit_skb);
2723 	}
2724 }
2725 
2726 static ieee80211_rx_result debug_noinline
__ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx,u8 data_offset)2727 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2728 {
2729 	struct net_device *dev = rx->sdata->dev;
2730 	struct sk_buff *skb = rx->skb;
2731 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2732 	__le16 fc = hdr->frame_control;
2733 	struct sk_buff_head frame_list;
2734 	struct ethhdr ethhdr;
2735 	const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2736 
2737 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2738 		check_da = NULL;
2739 		check_sa = NULL;
2740 	} else switch (rx->sdata->vif.type) {
2741 		case NL80211_IFTYPE_AP:
2742 		case NL80211_IFTYPE_AP_VLAN:
2743 			check_da = NULL;
2744 			break;
2745 		case NL80211_IFTYPE_STATION:
2746 			if (!rx->sta ||
2747 			    !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2748 				check_sa = NULL;
2749 			break;
2750 		case NL80211_IFTYPE_MESH_POINT:
2751 			check_sa = NULL;
2752 			break;
2753 		default:
2754 			break;
2755 	}
2756 
2757 	skb->dev = dev;
2758 	__skb_queue_head_init(&frame_list);
2759 
2760 	if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2761 					  rx->sdata->vif.addr,
2762 					  rx->sdata->vif.type,
2763 					  data_offset, true))
2764 		return RX_DROP_UNUSABLE;
2765 
2766 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2767 				 rx->sdata->vif.type,
2768 				 rx->local->hw.extra_tx_headroom,
2769 				 check_da, check_sa);
2770 
2771 	while (!skb_queue_empty(&frame_list)) {
2772 		rx->skb = __skb_dequeue(&frame_list);
2773 
2774 		if (!ieee80211_frame_allowed(rx, fc)) {
2775 			dev_kfree_skb(rx->skb);
2776 			continue;
2777 		}
2778 
2779 		ieee80211_deliver_skb(rx);
2780 	}
2781 
2782 	return RX_QUEUED;
2783 }
2784 
2785 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data * rx)2786 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2787 {
2788 	struct sk_buff *skb = rx->skb;
2789 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2790 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2791 	__le16 fc = hdr->frame_control;
2792 
2793 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2794 		return RX_CONTINUE;
2795 
2796 	if (unlikely(!ieee80211_is_data(fc)))
2797 		return RX_CONTINUE;
2798 
2799 	if (unlikely(!ieee80211_is_data_present(fc)))
2800 		return RX_DROP_MONITOR;
2801 
2802 	if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2803 		switch (rx->sdata->vif.type) {
2804 		case NL80211_IFTYPE_AP_VLAN:
2805 			if (!rx->sdata->u.vlan.sta)
2806 				return RX_DROP_UNUSABLE;
2807 			break;
2808 		case NL80211_IFTYPE_STATION:
2809 			if (!rx->sdata->u.mgd.use_4addr)
2810 				return RX_DROP_UNUSABLE;
2811 			break;
2812 		default:
2813 			return RX_DROP_UNUSABLE;
2814 		}
2815 	}
2816 
2817 	if (is_multicast_ether_addr(hdr->addr1))
2818 		return RX_DROP_UNUSABLE;
2819 
2820 	if (rx->key) {
2821 		/*
2822 		 * We should not receive A-MSDUs on pre-HT connections,
2823 		 * and HT connections cannot use old ciphers. Thus drop
2824 		 * them, as in those cases we couldn't even have SPP
2825 		 * A-MSDUs or such.
2826 		 */
2827 		switch (rx->key->conf.cipher) {
2828 		case WLAN_CIPHER_SUITE_WEP40:
2829 		case WLAN_CIPHER_SUITE_WEP104:
2830 		case WLAN_CIPHER_SUITE_TKIP:
2831 			return RX_DROP_UNUSABLE;
2832 		default:
2833 			break;
2834 		}
2835 	}
2836 
2837 	return __ieee80211_rx_h_amsdu(rx, 0);
2838 }
2839 
2840 #ifdef CONFIG_MAC80211_MESH
2841 static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data * rx)2842 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2843 {
2844 	struct ieee80211_hdr *fwd_hdr, *hdr;
2845 	struct ieee80211_tx_info *info;
2846 	struct ieee80211s_hdr *mesh_hdr;
2847 	struct sk_buff *skb = rx->skb, *fwd_skb;
2848 	struct ieee80211_local *local = rx->local;
2849 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2850 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2851 	u16 ac, q, hdrlen;
2852 	int tailroom = 0;
2853 
2854 	hdr = (struct ieee80211_hdr *) skb->data;
2855 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2856 
2857 	/* make sure fixed part of mesh header is there, also checks skb len */
2858 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2859 		return RX_DROP_MONITOR;
2860 
2861 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2862 
2863 	/* make sure full mesh header is there, also checks skb len */
2864 	if (!pskb_may_pull(rx->skb,
2865 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2866 		return RX_DROP_MONITOR;
2867 
2868 	/* reload pointers */
2869 	hdr = (struct ieee80211_hdr *) skb->data;
2870 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2871 
2872 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2873 		return RX_DROP_MONITOR;
2874 
2875 	/* frame is in RMC, don't forward */
2876 	if (ieee80211_is_data(hdr->frame_control) &&
2877 	    is_multicast_ether_addr(hdr->addr1) &&
2878 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2879 		return RX_DROP_MONITOR;
2880 
2881 	if (!ieee80211_is_data(hdr->frame_control))
2882 		return RX_CONTINUE;
2883 
2884 	if (!mesh_hdr->ttl)
2885 		return RX_DROP_MONITOR;
2886 
2887 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2888 		struct mesh_path *mppath;
2889 		char *proxied_addr;
2890 		char *mpp_addr;
2891 
2892 		if (is_multicast_ether_addr(hdr->addr1)) {
2893 			mpp_addr = hdr->addr3;
2894 			proxied_addr = mesh_hdr->eaddr1;
2895 		} else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2896 			    MESH_FLAGS_AE_A5_A6) {
2897 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2898 			mpp_addr = hdr->addr4;
2899 			proxied_addr = mesh_hdr->eaddr2;
2900 		} else {
2901 			return RX_DROP_MONITOR;
2902 		}
2903 
2904 		rcu_read_lock();
2905 		mppath = mpp_path_lookup(sdata, proxied_addr);
2906 		if (!mppath) {
2907 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2908 		} else {
2909 			spin_lock_bh(&mppath->state_lock);
2910 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2911 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2912 			mppath->exp_time = jiffies;
2913 			spin_unlock_bh(&mppath->state_lock);
2914 		}
2915 		rcu_read_unlock();
2916 	}
2917 
2918 	/* Frame has reached destination.  Don't forward */
2919 	if (!is_multicast_ether_addr(hdr->addr1) &&
2920 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2921 		return RX_CONTINUE;
2922 
2923 	ac = ieee802_1d_to_ac[skb->priority];
2924 	q = sdata->vif.hw_queue[ac];
2925 	if (ieee80211_queue_stopped(&local->hw, q)) {
2926 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2927 		return RX_DROP_MONITOR;
2928 	}
2929 	skb_set_queue_mapping(skb, ac);
2930 
2931 	if (!--mesh_hdr->ttl) {
2932 		if (!is_multicast_ether_addr(hdr->addr1))
2933 			IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2934 						     dropped_frames_ttl);
2935 		goto out;
2936 	}
2937 
2938 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2939 		goto out;
2940 
2941 	if (sdata->crypto_tx_tailroom_needed_cnt)
2942 		tailroom = IEEE80211_ENCRYPT_TAILROOM;
2943 
2944 	fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2945 				       sdata->encrypt_headroom,
2946 				  tailroom, GFP_ATOMIC);
2947 	if (!fwd_skb)
2948 		goto out;
2949 
2950 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2951 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2952 	info = IEEE80211_SKB_CB(fwd_skb);
2953 	memset(info, 0, sizeof(*info));
2954 	info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2955 	info->control.vif = &rx->sdata->vif;
2956 	info->control.jiffies = jiffies;
2957 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2958 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2959 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2960 		/* update power mode indication when forwarding */
2961 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2962 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2963 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2964 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2965 	} else {
2966 		/* unable to resolve next hop */
2967 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2968 				   fwd_hdr->addr3, 0,
2969 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2970 				   fwd_hdr->addr2);
2971 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2972 		kfree_skb(fwd_skb);
2973 		return RX_DROP_MONITOR;
2974 	}
2975 
2976 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2977 	ieee80211_add_pending_skb(local, fwd_skb);
2978  out:
2979 	if (is_multicast_ether_addr(hdr->addr1))
2980 		return RX_CONTINUE;
2981 	return RX_DROP_MONITOR;
2982 }
2983 #endif
2984 
2985 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data * rx)2986 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2987 {
2988 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2989 	struct ieee80211_local *local = rx->local;
2990 	struct net_device *dev = sdata->dev;
2991 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2992 	__le16 fc = hdr->frame_control;
2993 	bool port_control;
2994 	int err;
2995 
2996 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2997 		return RX_CONTINUE;
2998 
2999 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3000 		return RX_DROP_MONITOR;
3001 
3002 	/*
3003 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
3004 	 * also drop the frame to cooked monitor interfaces.
3005 	 */
3006 	if (ieee80211_has_a4(hdr->frame_control) &&
3007 	    sdata->vif.type == NL80211_IFTYPE_AP) {
3008 		if (rx->sta &&
3009 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
3010 			cfg80211_rx_unexpected_4addr_frame(
3011 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
3012 		return RX_DROP_MONITOR;
3013 	}
3014 
3015 	err = __ieee80211_data_to_8023(rx, &port_control);
3016 	if (unlikely(err))
3017 		return RX_DROP_UNUSABLE;
3018 
3019 	if (!ieee80211_frame_allowed(rx, fc))
3020 		return RX_DROP_MONITOR;
3021 
3022 	/* directly handle TDLS channel switch requests/responses */
3023 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3024 						cpu_to_be16(ETH_P_TDLS))) {
3025 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3026 
3027 		if (pskb_may_pull(rx->skb,
3028 				  offsetof(struct ieee80211_tdls_data, u)) &&
3029 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3030 		    tf->category == WLAN_CATEGORY_TDLS &&
3031 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3032 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3033 			rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3034 			__ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3035 			return RX_QUEUED;
3036 		}
3037 	}
3038 
3039 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3040 	    unlikely(port_control) && sdata->bss) {
3041 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3042 				     u.ap);
3043 		dev = sdata->dev;
3044 		rx->sdata = sdata;
3045 	}
3046 
3047 	rx->skb->dev = dev;
3048 
3049 	if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3050 	    local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3051 	    !is_multicast_ether_addr(
3052 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
3053 	    (!local->scanning &&
3054 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3055 		mod_timer(&local->dynamic_ps_timer, jiffies +
3056 			  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
3057 
3058 	ieee80211_deliver_skb(rx);
3059 
3060 	return RX_QUEUED;
3061 }
3062 
3063 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3064 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3065 {
3066 	struct sk_buff *skb = rx->skb;
3067 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3068 	struct tid_ampdu_rx *tid_agg_rx;
3069 	u16 start_seq_num;
3070 	u16 tid;
3071 
3072 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
3073 		return RX_CONTINUE;
3074 
3075 	if (ieee80211_is_back_req(bar->frame_control)) {
3076 		struct {
3077 			__le16 control, start_seq_num;
3078 		} __packed bar_data;
3079 		struct ieee80211_event event = {
3080 			.type = BAR_RX_EVENT,
3081 		};
3082 
3083 		if (!rx->sta)
3084 			return RX_DROP_MONITOR;
3085 
3086 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3087 				  &bar_data, sizeof(bar_data)))
3088 			return RX_DROP_MONITOR;
3089 
3090 		tid = le16_to_cpu(bar_data.control) >> 12;
3091 
3092 		if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3093 		    !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3094 			ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3095 					     WLAN_BACK_RECIPIENT,
3096 					     WLAN_REASON_QSTA_REQUIRE_SETUP);
3097 
3098 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3099 		if (!tid_agg_rx)
3100 			return RX_DROP_MONITOR;
3101 
3102 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3103 		event.u.ba.tid = tid;
3104 		event.u.ba.ssn = start_seq_num;
3105 		event.u.ba.sta = &rx->sta->sta;
3106 
3107 		/* reset session timer */
3108 		if (tid_agg_rx->timeout)
3109 			mod_timer(&tid_agg_rx->session_timer,
3110 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
3111 
3112 		spin_lock(&tid_agg_rx->reorder_lock);
3113 		/* release stored frames up to start of BAR */
3114 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3115 						 start_seq_num, frames);
3116 		spin_unlock(&tid_agg_rx->reorder_lock);
3117 
3118 		drv_event_callback(rx->local, rx->sdata, &event);
3119 
3120 		kfree_skb(skb);
3121 		return RX_QUEUED;
3122 	}
3123 
3124 	/*
3125 	 * After this point, we only want management frames,
3126 	 * so we can drop all remaining control frames to
3127 	 * cooked monitor interfaces.
3128 	 */
3129 	return RX_DROP_MONITOR;
3130 }
3131 
ieee80211_process_sa_query_req(struct ieee80211_sub_if_data * sdata,struct ieee80211_mgmt * mgmt,size_t len)3132 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3133 					   struct ieee80211_mgmt *mgmt,
3134 					   size_t len)
3135 {
3136 	struct ieee80211_local *local = sdata->local;
3137 	struct sk_buff *skb;
3138 	struct ieee80211_mgmt *resp;
3139 
3140 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3141 		/* Not to own unicast address */
3142 		return;
3143 	}
3144 
3145 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3146 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3147 		/* Not from the current AP or not associated yet. */
3148 		return;
3149 	}
3150 
3151 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3152 		/* Too short SA Query request frame */
3153 		return;
3154 	}
3155 
3156 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3157 	if (skb == NULL)
3158 		return;
3159 
3160 	skb_reserve(skb, local->hw.extra_tx_headroom);
3161 	resp = skb_put_zero(skb, 24);
3162 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
3163 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3164 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3165 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3166 					  IEEE80211_STYPE_ACTION);
3167 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3168 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3169 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3170 	memcpy(resp->u.action.u.sa_query.trans_id,
3171 	       mgmt->u.action.u.sa_query.trans_id,
3172 	       WLAN_SA_QUERY_TR_ID_LEN);
3173 
3174 	ieee80211_tx_skb(sdata, skb);
3175 }
3176 
3177 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data * rx)3178 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3179 {
3180 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3181 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3182 
3183 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3184 		return RX_CONTINUE;
3185 
3186 	/*
3187 	 * From here on, look only at management frames.
3188 	 * Data and control frames are already handled,
3189 	 * and unknown (reserved) frames are useless.
3190 	 */
3191 	if (rx->skb->len < 24)
3192 		return RX_DROP_MONITOR;
3193 
3194 	if (!ieee80211_is_mgmt(mgmt->frame_control))
3195 		return RX_DROP_MONITOR;
3196 
3197 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3198 	    ieee80211_is_beacon(mgmt->frame_control) &&
3199 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3200 		int sig = 0;
3201 
3202 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3203 		    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3204 			sig = status->signal;
3205 
3206 		cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3207 						rx->skb->data, rx->skb->len,
3208 						ieee80211_rx_status_to_khz(status),
3209 						sig);
3210 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3211 	}
3212 
3213 	if (ieee80211_drop_unencrypted_mgmt(rx))
3214 		return RX_DROP_UNUSABLE;
3215 
3216 	return RX_CONTINUE;
3217 }
3218 
3219 static bool
ieee80211_process_rx_twt_action(struct ieee80211_rx_data * rx)3220 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3221 {
3222 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3223 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3224 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3225 	const struct ieee80211_sta_he_cap *hecap;
3226 	struct ieee80211_supported_band *sband;
3227 
3228 	/* TWT actions are only supported in AP for the moment */
3229 	if (sdata->vif.type != NL80211_IFTYPE_AP)
3230 		return false;
3231 
3232 	if (!rx->local->ops->add_twt_setup)
3233 		return false;
3234 
3235 	sband = rx->local->hw.wiphy->bands[status->band];
3236 	hecap = ieee80211_get_he_iftype_cap(sband,
3237 					    ieee80211_vif_type_p2p(&sdata->vif));
3238 	if (!hecap)
3239 		return false;
3240 
3241 	if (!(hecap->he_cap_elem.mac_cap_info[0] &
3242 	      IEEE80211_HE_MAC_CAP0_TWT_RES))
3243 		return false;
3244 
3245 	if (!rx->sta)
3246 		return false;
3247 
3248 	switch (mgmt->u.action.u.s1g.action_code) {
3249 	case WLAN_S1G_TWT_SETUP: {
3250 		struct ieee80211_twt_setup *twt;
3251 
3252 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3253 				   1 + /* action code */
3254 				   sizeof(struct ieee80211_twt_setup) +
3255 				   2 /* TWT req_type agrt */)
3256 			break;
3257 
3258 		twt = (void *)mgmt->u.action.u.s1g.variable;
3259 		if (twt->element_id != WLAN_EID_S1G_TWT)
3260 			break;
3261 
3262 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3263 				   4 + /* action code + token + tlv */
3264 				   twt->length)
3265 			break;
3266 
3267 		return true; /* queue the frame */
3268 	}
3269 	case WLAN_S1G_TWT_TEARDOWN:
3270 		if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3271 			break;
3272 
3273 		return true; /* queue the frame */
3274 	default:
3275 		break;
3276 	}
3277 
3278 	return false;
3279 }
3280 
3281 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data * rx)3282 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3283 {
3284 	struct ieee80211_local *local = rx->local;
3285 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3286 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3287 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3288 	int len = rx->skb->len;
3289 
3290 	if (!ieee80211_is_action(mgmt->frame_control))
3291 		return RX_CONTINUE;
3292 
3293 	/* drop too small frames */
3294 	if (len < IEEE80211_MIN_ACTION_SIZE)
3295 		return RX_DROP_UNUSABLE;
3296 
3297 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3298 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3299 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3300 		return RX_DROP_UNUSABLE;
3301 
3302 	switch (mgmt->u.action.category) {
3303 	case WLAN_CATEGORY_HT:
3304 		/* reject HT action frames from stations not supporting HT */
3305 		if (!rx->sta->sta.deflink.ht_cap.ht_supported)
3306 			goto invalid;
3307 
3308 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3309 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3310 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3311 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3312 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3313 			break;
3314 
3315 		/* verify action & smps_control/chanwidth are present */
3316 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3317 			goto invalid;
3318 
3319 		switch (mgmt->u.action.u.ht_smps.action) {
3320 		case WLAN_HT_ACTION_SMPS: {
3321 			struct ieee80211_supported_band *sband;
3322 			enum ieee80211_smps_mode smps_mode;
3323 			struct sta_opmode_info sta_opmode = {};
3324 
3325 			if (sdata->vif.type != NL80211_IFTYPE_AP &&
3326 			    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3327 				goto handled;
3328 
3329 			/* convert to HT capability */
3330 			switch (mgmt->u.action.u.ht_smps.smps_control) {
3331 			case WLAN_HT_SMPS_CONTROL_DISABLED:
3332 				smps_mode = IEEE80211_SMPS_OFF;
3333 				break;
3334 			case WLAN_HT_SMPS_CONTROL_STATIC:
3335 				smps_mode = IEEE80211_SMPS_STATIC;
3336 				break;
3337 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3338 				smps_mode = IEEE80211_SMPS_DYNAMIC;
3339 				break;
3340 			default:
3341 				goto invalid;
3342 			}
3343 
3344 			/* if no change do nothing */
3345 			if (rx->sta->sta.smps_mode == smps_mode)
3346 				goto handled;
3347 			rx->sta->sta.smps_mode = smps_mode;
3348 			sta_opmode.smps_mode =
3349 				ieee80211_smps_mode_to_smps_mode(smps_mode);
3350 			sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3351 
3352 			sband = rx->local->hw.wiphy->bands[status->band];
3353 
3354 			rate_control_rate_update(local, sband, rx->sta,
3355 						 IEEE80211_RC_SMPS_CHANGED);
3356 			cfg80211_sta_opmode_change_notify(sdata->dev,
3357 							  rx->sta->addr,
3358 							  &sta_opmode,
3359 							  GFP_ATOMIC);
3360 			goto handled;
3361 		}
3362 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3363 			struct ieee80211_supported_band *sband;
3364 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3365 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3366 			struct sta_opmode_info sta_opmode = {};
3367 
3368 			/* If it doesn't support 40 MHz it can't change ... */
3369 			if (!(rx->sta->sta.deflink.ht_cap.cap &
3370 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3371 				goto handled;
3372 
3373 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3374 				max_bw = IEEE80211_STA_RX_BW_20;
3375 			else
3376 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3377 
3378 			/* set cur_max_bandwidth and recalc sta bw */
3379 			rx->sta->deflink.cur_max_bandwidth = max_bw;
3380 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3381 
3382 			if (rx->sta->sta.deflink.bandwidth == new_bw)
3383 				goto handled;
3384 
3385 			rx->sta->sta.deflink.bandwidth = new_bw;
3386 			sband = rx->local->hw.wiphy->bands[status->band];
3387 			sta_opmode.bw =
3388 				ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3389 			sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3390 
3391 			rate_control_rate_update(local, sband, rx->sta,
3392 						 IEEE80211_RC_BW_CHANGED);
3393 			cfg80211_sta_opmode_change_notify(sdata->dev,
3394 							  rx->sta->addr,
3395 							  &sta_opmode,
3396 							  GFP_ATOMIC);
3397 			goto handled;
3398 		}
3399 		default:
3400 			goto invalid;
3401 		}
3402 
3403 		break;
3404 	case WLAN_CATEGORY_PUBLIC:
3405 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3406 			goto invalid;
3407 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3408 			break;
3409 		if (!rx->sta)
3410 			break;
3411 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3412 			break;
3413 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
3414 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3415 			break;
3416 		if (len < offsetof(struct ieee80211_mgmt,
3417 				   u.action.u.ext_chan_switch.variable))
3418 			goto invalid;
3419 		goto queue;
3420 	case WLAN_CATEGORY_VHT:
3421 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3422 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3423 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3424 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3425 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3426 			break;
3427 
3428 		/* verify action code is present */
3429 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3430 			goto invalid;
3431 
3432 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3433 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3434 			/* verify opmode is present */
3435 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3436 				goto invalid;
3437 			goto queue;
3438 		}
3439 		case WLAN_VHT_ACTION_GROUPID_MGMT: {
3440 			if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3441 				goto invalid;
3442 			goto queue;
3443 		}
3444 		default:
3445 			break;
3446 		}
3447 		break;
3448 	case WLAN_CATEGORY_BACK:
3449 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3450 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3451 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3452 		    sdata->vif.type != NL80211_IFTYPE_AP &&
3453 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3454 			break;
3455 
3456 		/* verify action_code is present */
3457 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3458 			break;
3459 
3460 		switch (mgmt->u.action.u.addba_req.action_code) {
3461 		case WLAN_ACTION_ADDBA_REQ:
3462 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3463 				   sizeof(mgmt->u.action.u.addba_req)))
3464 				goto invalid;
3465 			break;
3466 		case WLAN_ACTION_ADDBA_RESP:
3467 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3468 				   sizeof(mgmt->u.action.u.addba_resp)))
3469 				goto invalid;
3470 			break;
3471 		case WLAN_ACTION_DELBA:
3472 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3473 				   sizeof(mgmt->u.action.u.delba)))
3474 				goto invalid;
3475 			break;
3476 		default:
3477 			goto invalid;
3478 		}
3479 
3480 		goto queue;
3481 	case WLAN_CATEGORY_SPECTRUM_MGMT:
3482 		/* verify action_code is present */
3483 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3484 			break;
3485 
3486 		switch (mgmt->u.action.u.measurement.action_code) {
3487 		case WLAN_ACTION_SPCT_MSR_REQ:
3488 			if (status->band != NL80211_BAND_5GHZ)
3489 				break;
3490 
3491 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3492 				   sizeof(mgmt->u.action.u.measurement)))
3493 				break;
3494 
3495 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3496 				break;
3497 
3498 			ieee80211_process_measurement_req(sdata, mgmt, len);
3499 			goto handled;
3500 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
3501 			u8 *bssid;
3502 			if (len < (IEEE80211_MIN_ACTION_SIZE +
3503 				   sizeof(mgmt->u.action.u.chan_switch)))
3504 				break;
3505 
3506 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3507 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3508 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3509 				break;
3510 
3511 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
3512 				bssid = sdata->u.mgd.bssid;
3513 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3514 				bssid = sdata->u.ibss.bssid;
3515 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3516 				bssid = mgmt->sa;
3517 			else
3518 				break;
3519 
3520 			if (!ether_addr_equal(mgmt->bssid, bssid))
3521 				break;
3522 
3523 			goto queue;
3524 			}
3525 		}
3526 		break;
3527 	case WLAN_CATEGORY_SELF_PROTECTED:
3528 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3529 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
3530 			break;
3531 
3532 		switch (mgmt->u.action.u.self_prot.action_code) {
3533 		case WLAN_SP_MESH_PEERING_OPEN:
3534 		case WLAN_SP_MESH_PEERING_CLOSE:
3535 		case WLAN_SP_MESH_PEERING_CONFIRM:
3536 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3537 				goto invalid;
3538 			if (sdata->u.mesh.user_mpm)
3539 				/* userspace handles this frame */
3540 				break;
3541 			goto queue;
3542 		case WLAN_SP_MGK_INFORM:
3543 		case WLAN_SP_MGK_ACK:
3544 			if (!ieee80211_vif_is_mesh(&sdata->vif))
3545 				goto invalid;
3546 			break;
3547 		}
3548 		break;
3549 	case WLAN_CATEGORY_MESH_ACTION:
3550 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3551 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
3552 			break;
3553 
3554 		if (!ieee80211_vif_is_mesh(&sdata->vif))
3555 			break;
3556 		if (mesh_action_is_path_sel(mgmt) &&
3557 		    !mesh_path_sel_is_hwmp(sdata))
3558 			break;
3559 		goto queue;
3560 	case WLAN_CATEGORY_S1G:
3561 		if (len < offsetofend(typeof(*mgmt),
3562 				      u.action.u.s1g.action_code))
3563 			break;
3564 
3565 		switch (mgmt->u.action.u.s1g.action_code) {
3566 		case WLAN_S1G_TWT_SETUP:
3567 		case WLAN_S1G_TWT_TEARDOWN:
3568 			if (ieee80211_process_rx_twt_action(rx))
3569 				goto queue;
3570 			break;
3571 		default:
3572 			break;
3573 		}
3574 		break;
3575 	}
3576 
3577 	return RX_CONTINUE;
3578 
3579  invalid:
3580 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3581 	/* will return in the next handlers */
3582 	return RX_CONTINUE;
3583 
3584  handled:
3585 	if (rx->sta)
3586 		rx->sta->deflink.rx_stats.packets++;
3587 	dev_kfree_skb(rx->skb);
3588 	return RX_QUEUED;
3589 
3590  queue:
3591 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3592 	return RX_QUEUED;
3593 }
3594 
3595 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data * rx)3596 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3597 {
3598 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3599 	int sig = 0;
3600 
3601 	/* skip known-bad action frames and return them in the next handler */
3602 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3603 		return RX_CONTINUE;
3604 
3605 	/*
3606 	 * Getting here means the kernel doesn't know how to handle
3607 	 * it, but maybe userspace does ... include returned frames
3608 	 * so userspace can register for those to know whether ones
3609 	 * it transmitted were processed or returned.
3610 	 */
3611 
3612 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3613 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3614 		sig = status->signal;
3615 
3616 	if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3617 				 ieee80211_rx_status_to_khz(status), sig,
3618 				 rx->skb->data, rx->skb->len, 0)) {
3619 		if (rx->sta)
3620 			rx->sta->deflink.rx_stats.packets++;
3621 		dev_kfree_skb(rx->skb);
3622 		return RX_QUEUED;
3623 	}
3624 
3625 	return RX_CONTINUE;
3626 }
3627 
3628 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data * rx)3629 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3630 {
3631 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3632 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3633 	int len = rx->skb->len;
3634 
3635 	if (!ieee80211_is_action(mgmt->frame_control))
3636 		return RX_CONTINUE;
3637 
3638 	switch (mgmt->u.action.category) {
3639 	case WLAN_CATEGORY_SA_QUERY:
3640 		if (len < (IEEE80211_MIN_ACTION_SIZE +
3641 			   sizeof(mgmt->u.action.u.sa_query)))
3642 			break;
3643 
3644 		switch (mgmt->u.action.u.sa_query.action) {
3645 		case WLAN_ACTION_SA_QUERY_REQUEST:
3646 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
3647 				break;
3648 			ieee80211_process_sa_query_req(sdata, mgmt, len);
3649 			goto handled;
3650 		}
3651 		break;
3652 	}
3653 
3654 	return RX_CONTINUE;
3655 
3656  handled:
3657 	if (rx->sta)
3658 		rx->sta->deflink.rx_stats.packets++;
3659 	dev_kfree_skb(rx->skb);
3660 	return RX_QUEUED;
3661 }
3662 
3663 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data * rx)3664 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3665 {
3666 	struct ieee80211_local *local = rx->local;
3667 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3668 	struct sk_buff *nskb;
3669 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3670 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3671 
3672 	if (!ieee80211_is_action(mgmt->frame_control))
3673 		return RX_CONTINUE;
3674 
3675 	/*
3676 	 * For AP mode, hostapd is responsible for handling any action
3677 	 * frames that we didn't handle, including returning unknown
3678 	 * ones. For all other modes we will return them to the sender,
3679 	 * setting the 0x80 bit in the action category, as required by
3680 	 * 802.11-2012 9.24.4.
3681 	 * Newer versions of hostapd shall also use the management frame
3682 	 * registration mechanisms, but older ones still use cooked
3683 	 * monitor interfaces so push all frames there.
3684 	 */
3685 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3686 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
3687 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3688 		return RX_DROP_MONITOR;
3689 
3690 	if (is_multicast_ether_addr(mgmt->da))
3691 		return RX_DROP_MONITOR;
3692 
3693 	/* do not return rejected action frames */
3694 	if (mgmt->u.action.category & 0x80)
3695 		return RX_DROP_UNUSABLE;
3696 
3697 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3698 			       GFP_ATOMIC);
3699 	if (nskb) {
3700 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3701 
3702 		nmgmt->u.action.category |= 0x80;
3703 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3704 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3705 
3706 		memset(nskb->cb, 0, sizeof(nskb->cb));
3707 
3708 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3709 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3710 
3711 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3712 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3713 				      IEEE80211_TX_CTL_NO_CCK_RATE;
3714 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3715 				info->hw_queue =
3716 					local->hw.offchannel_tx_hw_queue;
3717 		}
3718 
3719 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3720 					    status->band);
3721 	}
3722 	dev_kfree_skb(rx->skb);
3723 	return RX_QUEUED;
3724 }
3725 
3726 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ext(struct ieee80211_rx_data * rx)3727 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3728 {
3729 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3730 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3731 
3732 	if (!ieee80211_is_ext(hdr->frame_control))
3733 		return RX_CONTINUE;
3734 
3735 	if (sdata->vif.type != NL80211_IFTYPE_STATION)
3736 		return RX_DROP_MONITOR;
3737 
3738 	/* for now only beacons are ext, so queue them */
3739 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3740 
3741 	return RX_QUEUED;
3742 }
3743 
3744 static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data * rx)3745 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3746 {
3747 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3748 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3749 	__le16 stype;
3750 
3751 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3752 
3753 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3754 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3755 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3756 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3757 		return RX_DROP_MONITOR;
3758 
3759 	switch (stype) {
3760 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3761 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3762 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3763 		/* process for all: mesh, mlme, ibss */
3764 		break;
3765 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3766 		if (is_multicast_ether_addr(mgmt->da) &&
3767 		    !is_broadcast_ether_addr(mgmt->da))
3768 			return RX_DROP_MONITOR;
3769 
3770 		/* process only for station/IBSS */
3771 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3772 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
3773 			return RX_DROP_MONITOR;
3774 		break;
3775 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3776 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3777 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3778 		if (is_multicast_ether_addr(mgmt->da) &&
3779 		    !is_broadcast_ether_addr(mgmt->da))
3780 			return RX_DROP_MONITOR;
3781 
3782 		/* process only for station */
3783 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3784 			return RX_DROP_MONITOR;
3785 		break;
3786 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3787 		/* process only for ibss and mesh */
3788 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3789 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3790 			return RX_DROP_MONITOR;
3791 		break;
3792 	default:
3793 		return RX_DROP_MONITOR;
3794 	}
3795 
3796 	ieee80211_queue_skb_to_iface(sdata, rx->sta, rx->skb);
3797 
3798 	return RX_QUEUED;
3799 }
3800 
ieee80211_rx_cooked_monitor(struct ieee80211_rx_data * rx,struct ieee80211_rate * rate)3801 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3802 					struct ieee80211_rate *rate)
3803 {
3804 	struct ieee80211_sub_if_data *sdata;
3805 	struct ieee80211_local *local = rx->local;
3806 	struct sk_buff *skb = rx->skb, *skb2;
3807 	struct net_device *prev_dev = NULL;
3808 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3809 	int needed_headroom;
3810 
3811 	/*
3812 	 * If cooked monitor has been processed already, then
3813 	 * don't do it again. If not, set the flag.
3814 	 */
3815 	if (rx->flags & IEEE80211_RX_CMNTR)
3816 		goto out_free_skb;
3817 	rx->flags |= IEEE80211_RX_CMNTR;
3818 
3819 	/* If there are no cooked monitor interfaces, just free the SKB */
3820 	if (!local->cooked_mntrs)
3821 		goto out_free_skb;
3822 
3823 	/* vendor data is long removed here */
3824 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3825 	/* room for the radiotap header based on driver features */
3826 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3827 
3828 	if (skb_headroom(skb) < needed_headroom &&
3829 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3830 		goto out_free_skb;
3831 
3832 	/* prepend radiotap information */
3833 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3834 					 false);
3835 
3836 	skb_reset_mac_header(skb);
3837 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3838 	skb->pkt_type = PACKET_OTHERHOST;
3839 	skb->protocol = htons(ETH_P_802_2);
3840 
3841 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3842 		if (!ieee80211_sdata_running(sdata))
3843 			continue;
3844 
3845 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3846 		    !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3847 			continue;
3848 
3849 		if (prev_dev) {
3850 			skb2 = skb_clone(skb, GFP_ATOMIC);
3851 			if (skb2) {
3852 				skb2->dev = prev_dev;
3853 				netif_receive_skb(skb2);
3854 			}
3855 		}
3856 
3857 		prev_dev = sdata->dev;
3858 		dev_sw_netstats_rx_add(sdata->dev, skb->len);
3859 	}
3860 
3861 	if (prev_dev) {
3862 		skb->dev = prev_dev;
3863 		netif_receive_skb(skb);
3864 		return;
3865 	}
3866 
3867  out_free_skb:
3868 	dev_kfree_skb(skb);
3869 }
3870 
ieee80211_rx_handlers_result(struct ieee80211_rx_data * rx,ieee80211_rx_result res)3871 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3872 					 ieee80211_rx_result res)
3873 {
3874 	switch (res) {
3875 	case RX_DROP_MONITOR:
3876 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3877 		if (rx->sta)
3878 			rx->sta->deflink.rx_stats.dropped++;
3879 		fallthrough;
3880 	case RX_CONTINUE: {
3881 		struct ieee80211_rate *rate = NULL;
3882 		struct ieee80211_supported_band *sband;
3883 		struct ieee80211_rx_status *status;
3884 
3885 		status = IEEE80211_SKB_RXCB((rx->skb));
3886 
3887 		sband = rx->local->hw.wiphy->bands[status->band];
3888 		if (status->encoding == RX_ENC_LEGACY)
3889 			rate = &sband->bitrates[status->rate_idx];
3890 
3891 		ieee80211_rx_cooked_monitor(rx, rate);
3892 		break;
3893 		}
3894 	case RX_DROP_UNUSABLE:
3895 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3896 		if (rx->sta)
3897 			rx->sta->deflink.rx_stats.dropped++;
3898 		dev_kfree_skb(rx->skb);
3899 		break;
3900 	case RX_QUEUED:
3901 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3902 		break;
3903 	}
3904 }
3905 
ieee80211_rx_handlers(struct ieee80211_rx_data * rx,struct sk_buff_head * frames)3906 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3907 				  struct sk_buff_head *frames)
3908 {
3909 	ieee80211_rx_result res = RX_DROP_MONITOR;
3910 	struct sk_buff *skb;
3911 
3912 #define CALL_RXH(rxh)			\
3913 	do {				\
3914 		res = rxh(rx);		\
3915 		if (res != RX_CONTINUE)	\
3916 			goto rxh_next;  \
3917 	} while (0)
3918 
3919 	/* Lock here to avoid hitting all of the data used in the RX
3920 	 * path (e.g. key data, station data, ...) concurrently when
3921 	 * a frame is released from the reorder buffer due to timeout
3922 	 * from the timer, potentially concurrently with RX from the
3923 	 * driver.
3924 	 */
3925 	spin_lock_bh(&rx->local->rx_path_lock);
3926 
3927 	while ((skb = __skb_dequeue(frames))) {
3928 		/*
3929 		 * all the other fields are valid across frames
3930 		 * that belong to an aMPDU since they are on the
3931 		 * same TID from the same station
3932 		 */
3933 		rx->skb = skb;
3934 
3935 		CALL_RXH(ieee80211_rx_h_check_more_data);
3936 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3937 		CALL_RXH(ieee80211_rx_h_sta_process);
3938 		CALL_RXH(ieee80211_rx_h_decrypt);
3939 		CALL_RXH(ieee80211_rx_h_defragment);
3940 		CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3941 		/* must be after MMIC verify so header is counted in MPDU mic */
3942 #ifdef CONFIG_MAC80211_MESH
3943 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3944 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3945 #endif
3946 		CALL_RXH(ieee80211_rx_h_amsdu);
3947 		CALL_RXH(ieee80211_rx_h_data);
3948 
3949 		/* special treatment -- needs the queue */
3950 		res = ieee80211_rx_h_ctrl(rx, frames);
3951 		if (res != RX_CONTINUE)
3952 			goto rxh_next;
3953 
3954 		CALL_RXH(ieee80211_rx_h_mgmt_check);
3955 		CALL_RXH(ieee80211_rx_h_action);
3956 		CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3957 		CALL_RXH(ieee80211_rx_h_action_post_userspace);
3958 		CALL_RXH(ieee80211_rx_h_action_return);
3959 		CALL_RXH(ieee80211_rx_h_ext);
3960 		CALL_RXH(ieee80211_rx_h_mgmt);
3961 
3962  rxh_next:
3963 		ieee80211_rx_handlers_result(rx, res);
3964 
3965 #undef CALL_RXH
3966 	}
3967 
3968 	spin_unlock_bh(&rx->local->rx_path_lock);
3969 }
3970 
ieee80211_invoke_rx_handlers(struct ieee80211_rx_data * rx)3971 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3972 {
3973 	struct sk_buff_head reorder_release;
3974 	ieee80211_rx_result res = RX_DROP_MONITOR;
3975 
3976 	__skb_queue_head_init(&reorder_release);
3977 
3978 #define CALL_RXH(rxh)			\
3979 	do {				\
3980 		res = rxh(rx);		\
3981 		if (res != RX_CONTINUE)	\
3982 			goto rxh_next;  \
3983 	} while (0)
3984 
3985 	CALL_RXH(ieee80211_rx_h_check_dup);
3986 	CALL_RXH(ieee80211_rx_h_check);
3987 
3988 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3989 
3990 	ieee80211_rx_handlers(rx, &reorder_release);
3991 	return;
3992 
3993  rxh_next:
3994 	ieee80211_rx_handlers_result(rx, res);
3995 
3996 #undef CALL_RXH
3997 }
3998 
3999 /*
4000  * This function makes calls into the RX path, therefore
4001  * it has to be invoked under RCU read lock.
4002  */
ieee80211_release_reorder_timeout(struct sta_info * sta,int tid)4003 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4004 {
4005 	struct sk_buff_head frames;
4006 	struct ieee80211_rx_data rx = {
4007 		.sta = sta,
4008 		.sdata = sta->sdata,
4009 		.local = sta->local,
4010 		/* This is OK -- must be QoS data frame */
4011 		.security_idx = tid,
4012 		.seqno_idx = tid,
4013 	};
4014 	struct tid_ampdu_rx *tid_agg_rx;
4015 
4016 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4017 	if (!tid_agg_rx)
4018 		return;
4019 
4020 	__skb_queue_head_init(&frames);
4021 
4022 	spin_lock(&tid_agg_rx->reorder_lock);
4023 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4024 	spin_unlock(&tid_agg_rx->reorder_lock);
4025 
4026 	if (!skb_queue_empty(&frames)) {
4027 		struct ieee80211_event event = {
4028 			.type = BA_FRAME_TIMEOUT,
4029 			.u.ba.tid = tid,
4030 			.u.ba.sta = &sta->sta,
4031 		};
4032 		drv_event_callback(rx.local, rx.sdata, &event);
4033 	}
4034 
4035 	ieee80211_rx_handlers(&rx, &frames);
4036 }
4037 
ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta * pubsta,u8 tid,u16 ssn,u64 filtered,u16 received_mpdus)4038 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4039 					  u16 ssn, u64 filtered,
4040 					  u16 received_mpdus)
4041 {
4042 	struct sta_info *sta;
4043 	struct tid_ampdu_rx *tid_agg_rx;
4044 	struct sk_buff_head frames;
4045 	struct ieee80211_rx_data rx = {
4046 		/* This is OK -- must be QoS data frame */
4047 		.security_idx = tid,
4048 		.seqno_idx = tid,
4049 	};
4050 	int i, diff;
4051 
4052 	if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4053 		return;
4054 
4055 	__skb_queue_head_init(&frames);
4056 
4057 	sta = container_of(pubsta, struct sta_info, sta);
4058 
4059 	rx.sta = sta;
4060 	rx.sdata = sta->sdata;
4061 	rx.local = sta->local;
4062 
4063 	rcu_read_lock();
4064 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4065 	if (!tid_agg_rx)
4066 		goto out;
4067 
4068 	spin_lock_bh(&tid_agg_rx->reorder_lock);
4069 
4070 	if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4071 		int release;
4072 
4073 		/* release all frames in the reorder buffer */
4074 		release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4075 			   IEEE80211_SN_MODULO;
4076 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
4077 						 release, &frames);
4078 		/* update ssn to match received ssn */
4079 		tid_agg_rx->head_seq_num = ssn;
4080 	} else {
4081 		ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
4082 						 &frames);
4083 	}
4084 
4085 	/* handle the case that received ssn is behind the mac ssn.
4086 	 * it can be tid_agg_rx->buf_size behind and still be valid */
4087 	diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4088 	if (diff >= tid_agg_rx->buf_size) {
4089 		tid_agg_rx->reorder_buf_filtered = 0;
4090 		goto release;
4091 	}
4092 	filtered = filtered >> diff;
4093 	ssn += diff;
4094 
4095 	/* update bitmap */
4096 	for (i = 0; i < tid_agg_rx->buf_size; i++) {
4097 		int index = (ssn + i) % tid_agg_rx->buf_size;
4098 
4099 		tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4100 		if (filtered & BIT_ULL(i))
4101 			tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4102 	}
4103 
4104 	/* now process also frames that the filter marking released */
4105 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
4106 
4107 release:
4108 	spin_unlock_bh(&tid_agg_rx->reorder_lock);
4109 
4110 	ieee80211_rx_handlers(&rx, &frames);
4111 
4112  out:
4113 	rcu_read_unlock();
4114 }
4115 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4116 
4117 /* main receive path */
4118 
ieee80211_accept_frame(struct ieee80211_rx_data * rx)4119 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4120 {
4121 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4122 	struct sk_buff *skb = rx->skb;
4123 	struct ieee80211_hdr *hdr = (void *)skb->data;
4124 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4125 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
4126 	bool multicast = is_multicast_ether_addr(hdr->addr1) ||
4127 			 ieee80211_is_s1g_beacon(hdr->frame_control);
4128 
4129 	switch (sdata->vif.type) {
4130 	case NL80211_IFTYPE_STATION:
4131 		if (!bssid && !sdata->u.mgd.use_4addr)
4132 			return false;
4133 		if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4134 			return false;
4135 		if (multicast)
4136 			return true;
4137 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4138 	case NL80211_IFTYPE_ADHOC:
4139 		if (!bssid)
4140 			return false;
4141 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
4142 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) ||
4143 		    !is_valid_ether_addr(hdr->addr2))
4144 			return false;
4145 		if (ieee80211_is_beacon(hdr->frame_control))
4146 			return true;
4147 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
4148 			return false;
4149 		if (!multicast &&
4150 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4151 			return false;
4152 		if (!rx->sta) {
4153 			int rate_idx;
4154 			if (status->encoding != RX_ENC_LEGACY)
4155 				rate_idx = 0; /* TODO: HT/VHT rates */
4156 			else
4157 				rate_idx = status->rate_idx;
4158 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4159 						 BIT(rate_idx));
4160 		}
4161 		return true;
4162 	case NL80211_IFTYPE_OCB:
4163 		if (!bssid)
4164 			return false;
4165 		if (!ieee80211_is_data_present(hdr->frame_control))
4166 			return false;
4167 		if (!is_broadcast_ether_addr(bssid))
4168 			return false;
4169 		if (!multicast &&
4170 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4171 			return false;
4172 		if (!rx->sta) {
4173 			int rate_idx;
4174 			if (status->encoding != RX_ENC_LEGACY)
4175 				rate_idx = 0; /* TODO: HT rates */
4176 			else
4177 				rate_idx = status->rate_idx;
4178 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4179 						BIT(rate_idx));
4180 		}
4181 		return true;
4182 	case NL80211_IFTYPE_MESH_POINT:
4183 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4184 			return false;
4185 		if (multicast)
4186 			return true;
4187 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4188 	case NL80211_IFTYPE_AP_VLAN:
4189 	case NL80211_IFTYPE_AP:
4190 		if (!bssid)
4191 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4192 
4193 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4194 			/*
4195 			 * Accept public action frames even when the
4196 			 * BSSID doesn't match, this is used for P2P
4197 			 * and location updates. Note that mac80211
4198 			 * itself never looks at these frames.
4199 			 */
4200 			if (!multicast &&
4201 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4202 				return false;
4203 			if (ieee80211_is_public_action(hdr, skb->len))
4204 				return true;
4205 			return ieee80211_is_beacon(hdr->frame_control);
4206 		}
4207 
4208 		if (!ieee80211_has_tods(hdr->frame_control)) {
4209 			/* ignore data frames to TDLS-peers */
4210 			if (ieee80211_is_data(hdr->frame_control))
4211 				return false;
4212 			/* ignore action frames to TDLS-peers */
4213 			if (ieee80211_is_action(hdr->frame_control) &&
4214 			    !is_broadcast_ether_addr(bssid) &&
4215 			    !ether_addr_equal(bssid, hdr->addr1))
4216 				return false;
4217 		}
4218 
4219 		/*
4220 		 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4221 		 * the BSSID - we've checked that already but may have accepted
4222 		 * the wildcard (ff:ff:ff:ff:ff:ff).
4223 		 *
4224 		 * It also says:
4225 		 *	The BSSID of the Data frame is determined as follows:
4226 		 *	a) If the STA is contained within an AP or is associated
4227 		 *	   with an AP, the BSSID is the address currently in use
4228 		 *	   by the STA contained in the AP.
4229 		 *
4230 		 * So we should not accept data frames with an address that's
4231 		 * multicast.
4232 		 *
4233 		 * Accepting it also opens a security problem because stations
4234 		 * could encrypt it with the GTK and inject traffic that way.
4235 		 */
4236 		if (ieee80211_is_data(hdr->frame_control) && multicast)
4237 			return false;
4238 
4239 		return true;
4240 	case NL80211_IFTYPE_P2P_DEVICE:
4241 		return ieee80211_is_public_action(hdr, skb->len) ||
4242 		       ieee80211_is_probe_req(hdr->frame_control) ||
4243 		       ieee80211_is_probe_resp(hdr->frame_control) ||
4244 		       ieee80211_is_beacon(hdr->frame_control);
4245 	case NL80211_IFTYPE_NAN:
4246 		/* Currently no frames on NAN interface are allowed */
4247 		return false;
4248 	default:
4249 		break;
4250 	}
4251 
4252 	WARN_ON_ONCE(1);
4253 	return false;
4254 }
4255 
ieee80211_check_fast_rx(struct sta_info * sta)4256 void ieee80211_check_fast_rx(struct sta_info *sta)
4257 {
4258 	struct ieee80211_sub_if_data *sdata = sta->sdata;
4259 	struct ieee80211_local *local = sdata->local;
4260 	struct ieee80211_key *key;
4261 	struct ieee80211_fast_rx fastrx = {
4262 		.dev = sdata->dev,
4263 		.vif_type = sdata->vif.type,
4264 		.control_port_protocol = sdata->control_port_protocol,
4265 	}, *old, *new = NULL;
4266 	bool set_offload = false;
4267 	bool assign = false;
4268 	bool offload;
4269 
4270 	/* use sparse to check that we don't return without updating */
4271 	__acquire(check_fast_rx);
4272 
4273 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4274 	BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4275 	ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4276 	ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4277 
4278 	fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4279 
4280 	/* fast-rx doesn't do reordering */
4281 	if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4282 	    !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4283 		goto clear;
4284 
4285 	switch (sdata->vif.type) {
4286 	case NL80211_IFTYPE_STATION:
4287 		if (sta->sta.tdls) {
4288 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4289 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4290 			fastrx.expected_ds_bits = 0;
4291 		} else {
4292 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4293 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4294 			fastrx.expected_ds_bits =
4295 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4296 		}
4297 
4298 		if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4299 			fastrx.expected_ds_bits |=
4300 				cpu_to_le16(IEEE80211_FCTL_TODS);
4301 			fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4302 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4303 		}
4304 
4305 		if (!sdata->u.mgd.powersave)
4306 			break;
4307 
4308 		/* software powersave is a huge mess, avoid all of it */
4309 		if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4310 			goto clear;
4311 		if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4312 		    !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4313 			goto clear;
4314 		break;
4315 	case NL80211_IFTYPE_AP_VLAN:
4316 	case NL80211_IFTYPE_AP:
4317 		/* parallel-rx requires this, at least with calls to
4318 		 * ieee80211_sta_ps_transition()
4319 		 */
4320 		if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4321 			goto clear;
4322 		fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4323 		fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4324 		fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4325 
4326 		fastrx.internal_forward =
4327 			!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4328 			(sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4329 			 !sdata->u.vlan.sta);
4330 
4331 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4332 		    sdata->u.vlan.sta) {
4333 			fastrx.expected_ds_bits |=
4334 				cpu_to_le16(IEEE80211_FCTL_FROMDS);
4335 			fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4336 			fastrx.internal_forward = 0;
4337 		}
4338 
4339 		break;
4340 	default:
4341 		goto clear;
4342 	}
4343 
4344 	if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4345 		goto clear;
4346 
4347 	rcu_read_lock();
4348 	key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4349 	if (!key)
4350 		key = rcu_dereference(sdata->default_unicast_key);
4351 	if (key) {
4352 		switch (key->conf.cipher) {
4353 		case WLAN_CIPHER_SUITE_TKIP:
4354 			/* we don't want to deal with MMIC in fast-rx */
4355 			goto clear_rcu;
4356 		case WLAN_CIPHER_SUITE_CCMP:
4357 		case WLAN_CIPHER_SUITE_CCMP_256:
4358 		case WLAN_CIPHER_SUITE_GCMP:
4359 		case WLAN_CIPHER_SUITE_GCMP_256:
4360 			break;
4361 		default:
4362 			/* We also don't want to deal with
4363 			 * WEP or cipher scheme.
4364 			 */
4365 			goto clear_rcu;
4366 		}
4367 
4368 		fastrx.key = true;
4369 		fastrx.icv_len = key->conf.icv_len;
4370 	}
4371 
4372 	assign = true;
4373  clear_rcu:
4374 	rcu_read_unlock();
4375  clear:
4376 	__release(check_fast_rx);
4377 
4378 	if (assign)
4379 		new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4380 
4381 	offload = assign &&
4382 		  (sdata->vif.offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED);
4383 
4384 	if (offload)
4385 		set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4386 	else
4387 		set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD);
4388 
4389 	if (set_offload)
4390 		drv_sta_set_decap_offload(local, sdata, &sta->sta, assign);
4391 
4392 	spin_lock_bh(&sta->lock);
4393 	old = rcu_dereference_protected(sta->fast_rx, true);
4394 	rcu_assign_pointer(sta->fast_rx, new);
4395 	spin_unlock_bh(&sta->lock);
4396 
4397 	if (old)
4398 		kfree_rcu(old, rcu_head);
4399 }
4400 
ieee80211_clear_fast_rx(struct sta_info * sta)4401 void ieee80211_clear_fast_rx(struct sta_info *sta)
4402 {
4403 	struct ieee80211_fast_rx *old;
4404 
4405 	spin_lock_bh(&sta->lock);
4406 	old = rcu_dereference_protected(sta->fast_rx, true);
4407 	RCU_INIT_POINTER(sta->fast_rx, NULL);
4408 	spin_unlock_bh(&sta->lock);
4409 
4410 	if (old)
4411 		kfree_rcu(old, rcu_head);
4412 }
4413 
__ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4414 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4415 {
4416 	struct ieee80211_local *local = sdata->local;
4417 	struct sta_info *sta;
4418 
4419 	lockdep_assert_held(&local->sta_mtx);
4420 
4421 	list_for_each_entry(sta, &local->sta_list, list) {
4422 		if (sdata != sta->sdata &&
4423 		    (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4424 			continue;
4425 		ieee80211_check_fast_rx(sta);
4426 	}
4427 }
4428 
ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data * sdata)4429 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4430 {
4431 	struct ieee80211_local *local = sdata->local;
4432 
4433 	mutex_lock(&local->sta_mtx);
4434 	__ieee80211_check_fast_rx_iface(sdata);
4435 	mutex_unlock(&local->sta_mtx);
4436 }
4437 
ieee80211_rx_8023(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx,int orig_len)4438 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4439 			      struct ieee80211_fast_rx *fast_rx,
4440 			      int orig_len)
4441 {
4442 	struct ieee80211_sta_rx_stats *stats;
4443 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
4444 	struct sta_info *sta = rx->sta;
4445 	struct sk_buff *skb = rx->skb;
4446 	void *sa = skb->data + ETH_ALEN;
4447 	void *da = skb->data;
4448 
4449 	stats = &sta->deflink.rx_stats;
4450 	if (fast_rx->uses_rss)
4451 		stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4452 
4453 	/* statistics part of ieee80211_rx_h_sta_process() */
4454 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4455 		stats->last_signal = status->signal;
4456 		if (!fast_rx->uses_rss)
4457 			ewma_signal_add(&sta->deflink.rx_stats_avg.signal,
4458 					-status->signal);
4459 	}
4460 
4461 	if (status->chains) {
4462 		int i;
4463 
4464 		stats->chains = status->chains;
4465 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4466 			int signal = status->chain_signal[i];
4467 
4468 			if (!(status->chains & BIT(i)))
4469 				continue;
4470 
4471 			stats->chain_signal_last[i] = signal;
4472 			if (!fast_rx->uses_rss)
4473 				ewma_signal_add(&sta->deflink.rx_stats_avg.chain_signal[i],
4474 						-signal);
4475 		}
4476 	}
4477 	/* end of statistics */
4478 
4479 	stats->last_rx = jiffies;
4480 	stats->last_rate = sta_stats_encode_rate(status);
4481 
4482 	stats->fragments++;
4483 	stats->packets++;
4484 
4485 	skb->dev = fast_rx->dev;
4486 
4487 	dev_sw_netstats_rx_add(fast_rx->dev, skb->len);
4488 
4489 	/* The seqno index has the same property as needed
4490 	 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4491 	 * for non-QoS-data frames. Here we know it's a data
4492 	 * frame, so count MSDUs.
4493 	 */
4494 	u64_stats_update_begin(&stats->syncp);
4495 	stats->msdu[rx->seqno_idx]++;
4496 	stats->bytes += orig_len;
4497 	u64_stats_update_end(&stats->syncp);
4498 
4499 	if (fast_rx->internal_forward) {
4500 		struct sk_buff *xmit_skb = NULL;
4501 		if (is_multicast_ether_addr(da)) {
4502 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
4503 		} else if (!ether_addr_equal(da, sa) &&
4504 			   sta_info_get(rx->sdata, da)) {
4505 			xmit_skb = skb;
4506 			skb = NULL;
4507 		}
4508 
4509 		if (xmit_skb) {
4510 			/*
4511 			 * Send to wireless media and increase priority by 256
4512 			 * to keep the received priority instead of
4513 			 * reclassifying the frame (see cfg80211_classify8021d).
4514 			 */
4515 			xmit_skb->priority += 256;
4516 			xmit_skb->protocol = htons(ETH_P_802_3);
4517 			skb_reset_network_header(xmit_skb);
4518 			skb_reset_mac_header(xmit_skb);
4519 			dev_queue_xmit(xmit_skb);
4520 		}
4521 
4522 		if (!skb)
4523 			return;
4524 	}
4525 
4526 	/* deliver to local stack */
4527 	skb->protocol = eth_type_trans(skb, fast_rx->dev);
4528 	ieee80211_deliver_skb_to_local_stack(skb, rx);
4529 }
4530 
ieee80211_invoke_fast_rx(struct ieee80211_rx_data * rx,struct ieee80211_fast_rx * fast_rx)4531 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4532 				     struct ieee80211_fast_rx *fast_rx)
4533 {
4534 	struct sk_buff *skb = rx->skb;
4535 	struct ieee80211_hdr *hdr = (void *)skb->data;
4536 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4537 	struct sta_info *sta = rx->sta;
4538 	int orig_len = skb->len;
4539 	int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4540 	int snap_offs = hdrlen;
4541 	struct {
4542 		u8 snap[sizeof(rfc1042_header)];
4543 		__be16 proto;
4544 	} *payload __aligned(2);
4545 	struct {
4546 		u8 da[ETH_ALEN];
4547 		u8 sa[ETH_ALEN];
4548 	} addrs __aligned(2);
4549 	struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
4550 
4551 	/* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4552 	 * to a common data structure; drivers can implement that per queue
4553 	 * but we don't have that information in mac80211
4554 	 */
4555 	if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4556 		return false;
4557 
4558 #define FAST_RX_CRYPT_FLAGS	(RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4559 
4560 	/* If using encryption, we also need to have:
4561 	 *  - PN_VALIDATED: similar, but the implementation is tricky
4562 	 *  - DECRYPTED: necessary for PN_VALIDATED
4563 	 */
4564 	if (fast_rx->key &&
4565 	    (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4566 		return false;
4567 
4568 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4569 		return false;
4570 
4571 	if (unlikely(ieee80211_is_frag(hdr)))
4572 		return false;
4573 
4574 	/* Since our interface address cannot be multicast, this
4575 	 * implicitly also rejects multicast frames without the
4576 	 * explicit check.
4577 	 *
4578 	 * We shouldn't get any *data* frames not addressed to us
4579 	 * (AP mode will accept multicast *management* frames), but
4580 	 * punting here will make it go through the full checks in
4581 	 * ieee80211_accept_frame().
4582 	 */
4583 	if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4584 		return false;
4585 
4586 	if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4587 					      IEEE80211_FCTL_TODS)) !=
4588 	    fast_rx->expected_ds_bits)
4589 		return false;
4590 
4591 	/* assign the key to drop unencrypted frames (later)
4592 	 * and strip the IV/MIC if necessary
4593 	 */
4594 	if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4595 		/* GCMP header length is the same */
4596 		snap_offs += IEEE80211_CCMP_HDR_LEN;
4597 	}
4598 
4599 	if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4600 		if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4601 			goto drop;
4602 
4603 		payload = (void *)(skb->data + snap_offs);
4604 
4605 		if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4606 			return false;
4607 
4608 		/* Don't handle these here since they require special code.
4609 		 * Accept AARP and IPX even though they should come with a
4610 		 * bridge-tunnel header - but if we get them this way then
4611 		 * there's little point in discarding them.
4612 		 */
4613 		if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4614 			     payload->proto == fast_rx->control_port_protocol))
4615 			return false;
4616 	}
4617 
4618 	/* after this point, don't punt to the slowpath! */
4619 
4620 	if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4621 	    pskb_trim(skb, skb->len - fast_rx->icv_len))
4622 		goto drop;
4623 
4624 	if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4625 		goto drop;
4626 
4627 	if (status->rx_flags & IEEE80211_RX_AMSDU) {
4628 		if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4629 		    RX_QUEUED)
4630 			goto drop;
4631 
4632 		return true;
4633 	}
4634 
4635 	/* do the header conversion - first grab the addresses */
4636 	ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4637 	ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4638 	skb_postpull_rcsum(skb, skb->data + snap_offs,
4639 			   sizeof(rfc1042_header) + 2);
4640 	/* remove the SNAP but leave the ethertype */
4641 	skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4642 	/* push the addresses in front */
4643 	memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4644 
4645 	ieee80211_rx_8023(rx, fast_rx, orig_len);
4646 
4647 	return true;
4648  drop:
4649 	dev_kfree_skb(skb);
4650 	if (fast_rx->uses_rss)
4651 		stats = this_cpu_ptr(sta->deflink.pcpu_rx_stats);
4652 
4653 	stats->dropped++;
4654 	return true;
4655 }
4656 
4657 /*
4658  * This function returns whether or not the SKB
4659  * was destined for RX processing or not, which,
4660  * if consume is true, is equivalent to whether
4661  * or not the skb was consumed.
4662  */
ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data * rx,struct sk_buff * skb,bool consume)4663 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4664 					    struct sk_buff *skb, bool consume)
4665 {
4666 	struct ieee80211_local *local = rx->local;
4667 	struct ieee80211_sub_if_data *sdata = rx->sdata;
4668 
4669 	rx->skb = skb;
4670 
4671 	/* See if we can do fast-rx; if we have to copy we already lost,
4672 	 * so punt in that case. We should never have to deliver a data
4673 	 * frame to multiple interfaces anyway.
4674 	 *
4675 	 * We skip the ieee80211_accept_frame() call and do the necessary
4676 	 * checking inside ieee80211_invoke_fast_rx().
4677 	 */
4678 	if (consume && rx->sta) {
4679 		struct ieee80211_fast_rx *fast_rx;
4680 
4681 		fast_rx = rcu_dereference(rx->sta->fast_rx);
4682 		if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4683 			return true;
4684 	}
4685 
4686 	if (!ieee80211_accept_frame(rx))
4687 		return false;
4688 
4689 	if (!consume) {
4690 		skb = skb_copy(skb, GFP_ATOMIC);
4691 		if (!skb) {
4692 			if (net_ratelimit())
4693 				wiphy_debug(local->hw.wiphy,
4694 					"failed to copy skb for %s\n",
4695 					sdata->name);
4696 			return true;
4697 		}
4698 
4699 		rx->skb = skb;
4700 	}
4701 
4702 	ieee80211_invoke_rx_handlers(rx);
4703 	return true;
4704 }
4705 
__ieee80211_rx_handle_8023(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4706 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
4707 				       struct ieee80211_sta *pubsta,
4708 				       struct sk_buff *skb,
4709 				       struct list_head *list)
4710 {
4711 	struct ieee80211_local *local = hw_to_local(hw);
4712 	struct ieee80211_fast_rx *fast_rx;
4713 	struct ieee80211_rx_data rx;
4714 
4715 	memset(&rx, 0, sizeof(rx));
4716 	rx.skb = skb;
4717 	rx.local = local;
4718 	rx.list = list;
4719 
4720 	I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4721 
4722 	/* drop frame if too short for header */
4723 	if (skb->len < sizeof(struct ethhdr))
4724 		goto drop;
4725 
4726 	if (!pubsta)
4727 		goto drop;
4728 
4729 	rx.sta = container_of(pubsta, struct sta_info, sta);
4730 	rx.sdata = rx.sta->sdata;
4731 
4732 	fast_rx = rcu_dereference(rx.sta->fast_rx);
4733 	if (!fast_rx)
4734 		goto drop;
4735 
4736 	ieee80211_rx_8023(&rx, fast_rx, skb->len);
4737 	return;
4738 
4739 drop:
4740 	dev_kfree_skb(skb);
4741 }
4742 
4743 /*
4744  * This is the actual Rx frames handler. as it belongs to Rx path it must
4745  * be called with rcu_read_lock protection.
4746  */
__ieee80211_rx_handle_packet(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4747 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4748 					 struct ieee80211_sta *pubsta,
4749 					 struct sk_buff *skb,
4750 					 struct list_head *list)
4751 {
4752 	struct ieee80211_local *local = hw_to_local(hw);
4753 	struct ieee80211_sub_if_data *sdata;
4754 	struct ieee80211_hdr *hdr;
4755 	__le16 fc;
4756 	struct ieee80211_rx_data rx;
4757 	struct ieee80211_sub_if_data *prev;
4758 	struct rhlist_head *tmp;
4759 	int err = 0;
4760 
4761 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4762 	memset(&rx, 0, sizeof(rx));
4763 	rx.skb = skb;
4764 	rx.local = local;
4765 	rx.list = list;
4766 
4767 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4768 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4769 
4770 	if (ieee80211_is_mgmt(fc)) {
4771 		/* drop frame if too short for header */
4772 		if (skb->len < ieee80211_hdrlen(fc))
4773 			err = -ENOBUFS;
4774 		else
4775 			err = skb_linearize(skb);
4776 	} else {
4777 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4778 	}
4779 
4780 	if (err) {
4781 		dev_kfree_skb(skb);
4782 		return;
4783 	}
4784 
4785 	hdr = (struct ieee80211_hdr *)skb->data;
4786 	ieee80211_parse_qos(&rx);
4787 	ieee80211_verify_alignment(&rx);
4788 
4789 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4790 		     ieee80211_is_beacon(hdr->frame_control) ||
4791 		     ieee80211_is_s1g_beacon(hdr->frame_control)))
4792 		ieee80211_scan_rx(local, skb);
4793 
4794 	if (ieee80211_is_data(fc)) {
4795 		struct sta_info *sta, *prev_sta;
4796 
4797 		if (pubsta) {
4798 			rx.sta = container_of(pubsta, struct sta_info, sta);
4799 			rx.sdata = rx.sta->sdata;
4800 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4801 				return;
4802 			goto out;
4803 		}
4804 
4805 		prev_sta = NULL;
4806 
4807 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
4808 			if (!prev_sta) {
4809 				prev_sta = sta;
4810 				continue;
4811 			}
4812 
4813 			rx.sta = prev_sta;
4814 			rx.sdata = prev_sta->sdata;
4815 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
4816 
4817 			prev_sta = sta;
4818 		}
4819 
4820 		if (prev_sta) {
4821 			rx.sta = prev_sta;
4822 			rx.sdata = prev_sta->sdata;
4823 
4824 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4825 				return;
4826 			goto out;
4827 		}
4828 	}
4829 
4830 	prev = NULL;
4831 
4832 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4833 		if (!ieee80211_sdata_running(sdata))
4834 			continue;
4835 
4836 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4837 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4838 			continue;
4839 
4840 		/*
4841 		 * frame is destined for this interface, but if it's
4842 		 * not also for the previous one we handle that after
4843 		 * the loop to avoid copying the SKB once too much
4844 		 */
4845 
4846 		if (!prev) {
4847 			prev = sdata;
4848 			continue;
4849 		}
4850 
4851 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4852 		rx.sdata = prev;
4853 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
4854 
4855 		prev = sdata;
4856 	}
4857 
4858 	if (prev) {
4859 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
4860 		rx.sdata = prev;
4861 
4862 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4863 			return;
4864 	}
4865 
4866  out:
4867 	dev_kfree_skb(skb);
4868 }
4869 
4870 /*
4871  * This is the receive path handler. It is called by a low level driver when an
4872  * 802.11 MPDU is received from the hardware.
4873  */
ieee80211_rx_list(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct list_head * list)4874 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4875 		       struct sk_buff *skb, struct list_head *list)
4876 {
4877 	struct ieee80211_local *local = hw_to_local(hw);
4878 	struct ieee80211_rate *rate = NULL;
4879 	struct ieee80211_supported_band *sband;
4880 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4881 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
4882 
4883 	WARN_ON_ONCE(softirq_count() == 0);
4884 
4885 	if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4886 		goto drop;
4887 
4888 	sband = local->hw.wiphy->bands[status->band];
4889 	if (WARN_ON(!sband))
4890 		goto drop;
4891 
4892 	/*
4893 	 * If we're suspending, it is possible although not too likely
4894 	 * that we'd be receiving frames after having already partially
4895 	 * quiesced the stack. We can't process such frames then since
4896 	 * that might, for example, cause stations to be added or other
4897 	 * driver callbacks be invoked.
4898 	 */
4899 	if (unlikely(local->quiescing || local->suspended))
4900 		goto drop;
4901 
4902 	/* We might be during a HW reconfig, prevent Rx for the same reason */
4903 	if (unlikely(local->in_reconfig))
4904 		goto drop;
4905 
4906 	/*
4907 	 * The same happens when we're not even started,
4908 	 * but that's worth a warning.
4909 	 */
4910 	if (WARN_ON(!local->started))
4911 		goto drop;
4912 
4913 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4914 		/*
4915 		 * Validate the rate, unless a PLCP error means that
4916 		 * we probably can't have a valid rate here anyway.
4917 		 */
4918 
4919 		switch (status->encoding) {
4920 		case RX_ENC_HT:
4921 			/*
4922 			 * rate_idx is MCS index, which can be [0-76]
4923 			 * as documented on:
4924 			 *
4925 			 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4926 			 *
4927 			 * Anything else would be some sort of driver or
4928 			 * hardware error. The driver should catch hardware
4929 			 * errors.
4930 			 */
4931 			if (WARN(status->rate_idx > 76,
4932 				 "Rate marked as an HT rate but passed "
4933 				 "status->rate_idx is not "
4934 				 "an MCS index [0-76]: %d (0x%02x)\n",
4935 				 status->rate_idx,
4936 				 status->rate_idx))
4937 				goto drop;
4938 			break;
4939 		case RX_ENC_VHT:
4940 			if (WARN_ONCE(status->rate_idx > 11 ||
4941 				      !status->nss ||
4942 				      status->nss > 8,
4943 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4944 				      status->rate_idx, status->nss))
4945 				goto drop;
4946 			break;
4947 		case RX_ENC_HE:
4948 			if (WARN_ONCE(status->rate_idx > 11 ||
4949 				      !status->nss ||
4950 				      status->nss > 8,
4951 				      "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4952 				      status->rate_idx, status->nss))
4953 				goto drop;
4954 			break;
4955 		default:
4956 			WARN_ON_ONCE(1);
4957 			fallthrough;
4958 		case RX_ENC_LEGACY:
4959 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4960 				goto drop;
4961 			rate = &sband->bitrates[status->rate_idx];
4962 		}
4963 	}
4964 
4965 	status->rx_flags = 0;
4966 
4967 	kcov_remote_start_common(skb_get_kcov_handle(skb));
4968 
4969 	/*
4970 	 * Frames with failed FCS/PLCP checksum are not returned,
4971 	 * all other frames are returned without radiotap header
4972 	 * if it was previously present.
4973 	 * Also, frames with less than 16 bytes are dropped.
4974 	 */
4975 	if (!(status->flag & RX_FLAG_8023))
4976 		skb = ieee80211_rx_monitor(local, skb, rate);
4977 	if (skb) {
4978 		if ((status->flag & RX_FLAG_8023) ||
4979 			ieee80211_is_data_present(hdr->frame_control))
4980 			ieee80211_tpt_led_trig_rx(local, skb->len);
4981 
4982 		if (status->flag & RX_FLAG_8023)
4983 			__ieee80211_rx_handle_8023(hw, pubsta, skb, list);
4984 		else
4985 			__ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4986 	}
4987 
4988 	kcov_remote_stop();
4989 	return;
4990  drop:
4991 	kfree_skb(skb);
4992 }
4993 EXPORT_SYMBOL(ieee80211_rx_list);
4994 
ieee80211_rx_napi(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,struct sk_buff * skb,struct napi_struct * napi)4995 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4996 		       struct sk_buff *skb, struct napi_struct *napi)
4997 {
4998 	struct sk_buff *tmp;
4999 	LIST_HEAD(list);
5000 
5001 
5002 	/*
5003 	 * key references and virtual interfaces are protected using RCU
5004 	 * and this requires that we are in a read-side RCU section during
5005 	 * receive processing
5006 	 */
5007 	rcu_read_lock();
5008 	ieee80211_rx_list(hw, pubsta, skb, &list);
5009 	rcu_read_unlock();
5010 
5011 	if (!napi) {
5012 		netif_receive_skb_list(&list);
5013 		return;
5014 	}
5015 
5016 	list_for_each_entry_safe(skb, tmp, &list, list) {
5017 		skb_list_del_init(skb);
5018 		napi_gro_receive(napi, skb);
5019 	}
5020 }
5021 EXPORT_SYMBOL(ieee80211_rx_napi);
5022 
5023 /* This is a version of the rx handler that can be called from hard irq
5024  * context. Post the skb on the queue and schedule the tasklet */
ieee80211_rx_irqsafe(struct ieee80211_hw * hw,struct sk_buff * skb)5025 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5026 {
5027 	struct ieee80211_local *local = hw_to_local(hw);
5028 
5029 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5030 
5031 	skb->pkt_type = IEEE80211_RX_MSG;
5032 	skb_queue_tail(&local->skb_queue, skb);
5033 	tasklet_schedule(&local->tasklet);
5034 }
5035 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5036