• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
5  *
6  * Contact Information:
7  *  Intel Linux Wireless <ilw@linux.intel.com>
8  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9  *
10  *****************************************************************************/
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/delay.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/units.h>
21 #include <net/mac80211.h>
22 #include <linux/etherdevice.h>
23 #include <asm/unaligned.h>
24 
25 #include "common.h"
26 #include "4965.h"
27 
28 /*
29  * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
30  *   using sample data 100 bytes apart.  If these sample points are good,
31  *   it's a pretty good bet that everything between them is good, too.
32  */
33 static int
il4965_verify_inst_sparse(struct il_priv * il,__le32 * image,u32 len)34 il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
35 {
36 	u32 val;
37 	int ret = 0;
38 	u32 errcnt = 0;
39 	u32 i;
40 
41 	D_INFO("ucode inst image size is %u\n", len);
42 
43 	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
44 		/* read data comes through single port, auto-incr addr */
45 		/* NOTE: Use the debugless read so we don't flood kernel log
46 		 * if IL_DL_IO is set */
47 		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
48 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
49 		if (val != le32_to_cpu(*image)) {
50 			ret = -EIO;
51 			errcnt++;
52 			if (errcnt >= 3)
53 				break;
54 		}
55 	}
56 
57 	return ret;
58 }
59 
60 /*
61  * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
62  *     looking at all data.
63  */
64 static int
il4965_verify_inst_full(struct il_priv * il,__le32 * image,u32 len)65 il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
66 {
67 	u32 val;
68 	u32 save_len = len;
69 	int ret = 0;
70 	u32 errcnt;
71 
72 	D_INFO("ucode inst image size is %u\n", len);
73 
74 	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
75 
76 	errcnt = 0;
77 	for (; len > 0; len -= sizeof(u32), image++) {
78 		/* read data comes through single port, auto-incr addr */
79 		/* NOTE: Use the debugless read so we don't flood kernel log
80 		 * if IL_DL_IO is set */
81 		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
82 		if (val != le32_to_cpu(*image)) {
83 			IL_ERR("uCode INST section is invalid at "
84 			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
85 			       save_len - len, val, le32_to_cpu(*image));
86 			ret = -EIO;
87 			errcnt++;
88 			if (errcnt >= 20)
89 				break;
90 		}
91 	}
92 
93 	if (!errcnt)
94 		D_INFO("ucode image in INSTRUCTION memory is good\n");
95 
96 	return ret;
97 }
98 
99 /*
100  * il4965_verify_ucode - determine which instruction image is in SRAM,
101  *    and verify its contents
102  */
103 int
il4965_verify_ucode(struct il_priv * il)104 il4965_verify_ucode(struct il_priv *il)
105 {
106 	__le32 *image;
107 	u32 len;
108 	int ret;
109 
110 	/* Try bootstrap */
111 	image = (__le32 *) il->ucode_boot.v_addr;
112 	len = il->ucode_boot.len;
113 	ret = il4965_verify_inst_sparse(il, image, len);
114 	if (!ret) {
115 		D_INFO("Bootstrap uCode is good in inst SRAM\n");
116 		return 0;
117 	}
118 
119 	/* Try initialize */
120 	image = (__le32 *) il->ucode_init.v_addr;
121 	len = il->ucode_init.len;
122 	ret = il4965_verify_inst_sparse(il, image, len);
123 	if (!ret) {
124 		D_INFO("Initialize uCode is good in inst SRAM\n");
125 		return 0;
126 	}
127 
128 	/* Try runtime/protocol */
129 	image = (__le32 *) il->ucode_code.v_addr;
130 	len = il->ucode_code.len;
131 	ret = il4965_verify_inst_sparse(il, image, len);
132 	if (!ret) {
133 		D_INFO("Runtime uCode is good in inst SRAM\n");
134 		return 0;
135 	}
136 
137 	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
138 
139 	/* Since nothing seems to match, show first several data entries in
140 	 * instruction SRAM, so maybe visual inspection will give a clue.
141 	 * Selection of bootstrap image (vs. other images) is arbitrary. */
142 	image = (__le32 *) il->ucode_boot.v_addr;
143 	len = il->ucode_boot.len;
144 	ret = il4965_verify_inst_full(il, image, len);
145 
146 	return ret;
147 }
148 
149 /******************************************************************************
150  *
151  * EEPROM related functions
152  *
153 ******************************************************************************/
154 
155 /*
156  * The device's EEPROM semaphore prevents conflicts between driver and uCode
157  * when accessing the EEPROM; each access is a series of pulses to/from the
158  * EEPROM chip, not a single event, so even reads could conflict if they
159  * weren't arbitrated by the semaphore.
160  */
161 int
il4965_eeprom_acquire_semaphore(struct il_priv * il)162 il4965_eeprom_acquire_semaphore(struct il_priv *il)
163 {
164 	u16 count;
165 	int ret;
166 
167 	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
168 		/* Request semaphore */
169 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
170 			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
171 
172 		/* See if we got it */
173 		ret =
174 		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
175 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
176 				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
177 				 EEPROM_SEM_TIMEOUT);
178 		if (ret >= 0)
179 			return ret;
180 	}
181 
182 	return ret;
183 }
184 
185 void
il4965_eeprom_release_semaphore(struct il_priv * il)186 il4965_eeprom_release_semaphore(struct il_priv *il)
187 {
188 	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
189 		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
190 
191 }
192 
193 int
il4965_eeprom_check_version(struct il_priv * il)194 il4965_eeprom_check_version(struct il_priv *il)
195 {
196 	u16 eeprom_ver;
197 	u16 calib_ver;
198 
199 	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
200 	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
201 
202 	if (eeprom_ver < il->cfg->eeprom_ver ||
203 	    calib_ver < il->cfg->eeprom_calib_ver)
204 		goto err;
205 
206 	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
207 
208 	return 0;
209 err:
210 	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
211 	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
212 	       calib_ver, il->cfg->eeprom_calib_ver);
213 	return -EINVAL;
214 
215 }
216 
217 void
il4965_eeprom_get_mac(const struct il_priv * il,u8 * mac)218 il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
219 {
220 	const u8 *addr = il_eeprom_query_addr(il,
221 					      EEPROM_MAC_ADDRESS);
222 	memcpy(mac, addr, ETH_ALEN);
223 }
224 
225 /* Send led command */
226 static int
il4965_send_led_cmd(struct il_priv * il,struct il_led_cmd * led_cmd)227 il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
228 {
229 	struct il_host_cmd cmd = {
230 		.id = C_LEDS,
231 		.len = sizeof(struct il_led_cmd),
232 		.data = led_cmd,
233 		.flags = CMD_ASYNC,
234 		.callback = NULL,
235 	};
236 	u32 reg;
237 
238 	reg = _il_rd(il, CSR_LED_REG);
239 	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
240 		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
241 
242 	return il_send_cmd(il, &cmd);
243 }
244 
245 /* Set led register off */
246 void
il4965_led_enable(struct il_priv * il)247 il4965_led_enable(struct il_priv *il)
248 {
249 	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
250 }
251 
252 static int il4965_send_tx_power(struct il_priv *il);
253 static int il4965_hw_get_temperature(struct il_priv *il);
254 
255 /* Highest firmware API version supported */
256 #define IL4965_UCODE_API_MAX 2
257 
258 /* Lowest firmware API version supported */
259 #define IL4965_UCODE_API_MIN 2
260 
261 #define IL4965_FW_PRE "iwlwifi-4965-"
262 #define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
263 #define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
264 
265 /* check contents of special bootstrap uCode SRAM */
266 static int
il4965_verify_bsm(struct il_priv * il)267 il4965_verify_bsm(struct il_priv *il)
268 {
269 	__le32 *image = il->ucode_boot.v_addr;
270 	u32 len = il->ucode_boot.len;
271 	u32 reg;
272 	u32 val;
273 
274 	D_INFO("Begin verify bsm\n");
275 
276 	/* verify BSM SRAM contents */
277 	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
278 	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
279 	     reg += sizeof(u32), image++) {
280 		val = il_rd_prph(il, reg);
281 		if (val != le32_to_cpu(*image)) {
282 			IL_ERR("BSM uCode verification failed at "
283 			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
284 			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
285 			       len, val, le32_to_cpu(*image));
286 			return -EIO;
287 		}
288 	}
289 
290 	D_INFO("BSM bootstrap uCode image OK\n");
291 
292 	return 0;
293 }
294 
295 /*
296  * il4965_load_bsm - Load bootstrap instructions
297  *
298  * BSM operation:
299  *
300  * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
301  * in special SRAM that does not power down during RFKILL.  When powering back
302  * up after power-saving sleeps (or during initial uCode load), the BSM loads
303  * the bootstrap program into the on-board processor, and starts it.
304  *
305  * The bootstrap program loads (via DMA) instructions and data for a new
306  * program from host DRAM locations indicated by the host driver in the
307  * BSM_DRAM_* registers.  Once the new program is loaded, it starts
308  * automatically.
309  *
310  * When initializing the NIC, the host driver points the BSM to the
311  * "initialize" uCode image.  This uCode sets up some internal data, then
312  * notifies host via "initialize alive" that it is complete.
313  *
314  * The host then replaces the BSM_DRAM_* pointer values to point to the
315  * normal runtime uCode instructions and a backup uCode data cache buffer
316  * (filled initially with starting data values for the on-board processor),
317  * then triggers the "initialize" uCode to load and launch the runtime uCode,
318  * which begins normal operation.
319  *
320  * When doing a power-save shutdown, runtime uCode saves data SRAM into
321  * the backup data cache in DRAM before SRAM is powered down.
322  *
323  * When powering back up, the BSM loads the bootstrap program.  This reloads
324  * the runtime uCode instructions and the backup data cache into SRAM,
325  * and re-launches the runtime uCode from where it left off.
326  */
327 static int
il4965_load_bsm(struct il_priv * il)328 il4965_load_bsm(struct il_priv *il)
329 {
330 	__le32 *image = il->ucode_boot.v_addr;
331 	u32 len = il->ucode_boot.len;
332 	dma_addr_t pinst;
333 	dma_addr_t pdata;
334 	u32 inst_len;
335 	u32 data_len;
336 	int i;
337 	u32 done;
338 	u32 reg_offset;
339 	int ret;
340 
341 	D_INFO("Begin load bsm\n");
342 
343 	il->ucode_type = UCODE_RT;
344 
345 	/* make sure bootstrap program is no larger than BSM's SRAM size */
346 	if (len > IL49_MAX_BSM_SIZE)
347 		return -EINVAL;
348 
349 	/* Tell bootstrap uCode where to find the "Initialize" uCode
350 	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
351 	 * NOTE:  il_init_alive_start() will replace these values,
352 	 *        after the "initialize" uCode has run, to point to
353 	 *        runtime/protocol instructions and backup data cache.
354 	 */
355 	pinst = il->ucode_init.p_addr >> 4;
356 	pdata = il->ucode_init_data.p_addr >> 4;
357 	inst_len = il->ucode_init.len;
358 	data_len = il->ucode_init_data.len;
359 
360 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
361 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
362 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
363 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
364 
365 	/* Fill BSM memory with bootstrap instructions */
366 	for (reg_offset = BSM_SRAM_LOWER_BOUND;
367 	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
368 	     reg_offset += sizeof(u32), image++)
369 		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
370 
371 	ret = il4965_verify_bsm(il);
372 	if (ret)
373 		return ret;
374 
375 	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
376 	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
377 	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
378 	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
379 
380 	/* Load bootstrap code into instruction SRAM now,
381 	 *   to prepare to load "initialize" uCode */
382 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
383 
384 	/* Wait for load of bootstrap uCode to finish */
385 	for (i = 0; i < 100; i++) {
386 		done = il_rd_prph(il, BSM_WR_CTRL_REG);
387 		if (!(done & BSM_WR_CTRL_REG_BIT_START))
388 			break;
389 		udelay(10);
390 	}
391 	if (i < 100)
392 		D_INFO("BSM write complete, poll %d iterations\n", i);
393 	else {
394 		IL_ERR("BSM write did not complete!\n");
395 		return -EIO;
396 	}
397 
398 	/* Enable future boot loads whenever power management unit triggers it
399 	 *   (e.g. when powering back up after power-save shutdown) */
400 	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
401 
402 	return 0;
403 }
404 
405 /*
406  * il4965_set_ucode_ptrs - Set uCode address location
407  *
408  * Tell initialization uCode where to find runtime uCode.
409  *
410  * BSM registers initially contain pointers to initialization uCode.
411  * We need to replace them to load runtime uCode inst and data,
412  * and to save runtime data when powering down.
413  */
414 static int
il4965_set_ucode_ptrs(struct il_priv * il)415 il4965_set_ucode_ptrs(struct il_priv *il)
416 {
417 	dma_addr_t pinst;
418 	dma_addr_t pdata;
419 
420 	/* bits 35:4 for 4965 */
421 	pinst = il->ucode_code.p_addr >> 4;
422 	pdata = il->ucode_data_backup.p_addr >> 4;
423 
424 	/* Tell bootstrap uCode where to find image to load */
425 	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
426 	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
427 	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
428 
429 	/* Inst byte count must be last to set up, bit 31 signals uCode
430 	 *   that all new ptr/size info is in place */
431 	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
432 		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
433 	D_INFO("Runtime uCode pointers are set.\n");
434 
435 	return 0;
436 }
437 
438 /*
439  * il4965_init_alive_start - Called after N_ALIVE notification received
440  *
441  * Called after N_ALIVE notification received from "initialize" uCode.
442  *
443  * The 4965 "initialize" ALIVE reply contains calibration data for:
444  *   Voltage, temperature, and MIMO tx gain correction, now stored in il
445  *   (3945 does not contain this data).
446  *
447  * Tell "initialize" uCode to go ahead and load the runtime uCode.
448 */
449 static void
il4965_init_alive_start(struct il_priv * il)450 il4965_init_alive_start(struct il_priv *il)
451 {
452 	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
453 	 * This is a paranoid check, because we would not have gotten the
454 	 * "initialize" alive if code weren't properly loaded.  */
455 	if (il4965_verify_ucode(il)) {
456 		/* Runtime instruction load was bad;
457 		 * take it all the way back down so we can try again */
458 		D_INFO("Bad \"initialize\" uCode load.\n");
459 		goto restart;
460 	}
461 
462 	/* Calculate temperature */
463 	il->temperature = il4965_hw_get_temperature(il);
464 
465 	/* Send pointers to protocol/runtime uCode image ... init code will
466 	 * load and launch runtime uCode, which will send us another "Alive"
467 	 * notification. */
468 	D_INFO("Initialization Alive received.\n");
469 	if (il4965_set_ucode_ptrs(il)) {
470 		/* Runtime instruction load won't happen;
471 		 * take it all the way back down so we can try again */
472 		D_INFO("Couldn't set up uCode pointers.\n");
473 		goto restart;
474 	}
475 	return;
476 
477 restart:
478 	queue_work(il->workqueue, &il->restart);
479 }
480 
481 static bool
iw4965_is_ht40_channel(__le32 rxon_flags)482 iw4965_is_ht40_channel(__le32 rxon_flags)
483 {
484 	int chan_mod =
485 	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
486 	    RXON_FLG_CHANNEL_MODE_POS;
487 	return (chan_mod == CHANNEL_MODE_PURE_40 ||
488 		chan_mod == CHANNEL_MODE_MIXED);
489 }
490 
491 void
il4965_nic_config(struct il_priv * il)492 il4965_nic_config(struct il_priv *il)
493 {
494 	unsigned long flags;
495 	u16 radio_cfg;
496 
497 	spin_lock_irqsave(&il->lock, flags);
498 
499 	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
500 
501 	/* write radio config values to register */
502 	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
503 		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
504 			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
505 			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
506 			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
507 
508 	/* set CSR_HW_CONFIG_REG for uCode use */
509 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
510 		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
511 		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
512 
513 	il->calib_info =
514 	    (struct il_eeprom_calib_info *)
515 	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
516 
517 	spin_unlock_irqrestore(&il->lock, flags);
518 }
519 
520 /* Reset differential Rx gains in NIC to prepare for chain noise calibration.
521  * Called after every association, but this runs only once!
522  *  ... once chain noise is calibrated the first time, it's good forever.  */
523 static void
il4965_chain_noise_reset(struct il_priv * il)524 il4965_chain_noise_reset(struct il_priv *il)
525 {
526 	struct il_chain_noise_data *data = &(il->chain_noise_data);
527 
528 	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
529 		struct il_calib_diff_gain_cmd cmd;
530 
531 		/* clear data for chain noise calibration algorithm */
532 		data->chain_noise_a = 0;
533 		data->chain_noise_b = 0;
534 		data->chain_noise_c = 0;
535 		data->chain_signal_a = 0;
536 		data->chain_signal_b = 0;
537 		data->chain_signal_c = 0;
538 		data->beacon_count = 0;
539 
540 		memset(&cmd, 0, sizeof(cmd));
541 		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
542 		cmd.diff_gain_a = 0;
543 		cmd.diff_gain_b = 0;
544 		cmd.diff_gain_c = 0;
545 		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
546 			IL_ERR("Could not send C_PHY_CALIBRATION\n");
547 		data->state = IL_CHAIN_NOISE_ACCUMULATE;
548 		D_CALIB("Run chain_noise_calibrate\n");
549 	}
550 }
551 
552 static s32
il4965_math_div_round(s32 num,s32 denom,s32 * res)553 il4965_math_div_round(s32 num, s32 denom, s32 * res)
554 {
555 	s32 sign = 1;
556 
557 	if (num < 0) {
558 		sign = -sign;
559 		num = -num;
560 	}
561 	if (denom < 0) {
562 		sign = -sign;
563 		denom = -denom;
564 	}
565 	*res = ((num * 2 + denom) / (denom * 2)) * sign;
566 
567 	return 1;
568 }
569 
570 /*
571  * il4965_get_voltage_compensation - Power supply voltage comp for txpower
572  *
573  * Determines power supply voltage compensation for txpower calculations.
574  * Returns number of 1/2-dB steps to subtract from gain table idx,
575  * to compensate for difference between power supply voltage during
576  * factory measurements, vs. current power supply voltage.
577  *
578  * Voltage indication is higher for lower voltage.
579  * Lower voltage requires more gain (lower gain table idx).
580  */
581 static s32
il4965_get_voltage_compensation(s32 eeprom_voltage,s32 current_voltage)582 il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
583 {
584 	s32 comp = 0;
585 
586 	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
587 	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
588 		return 0;
589 
590 	il4965_math_div_round(current_voltage - eeprom_voltage,
591 			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
592 
593 	if (current_voltage > eeprom_voltage)
594 		comp *= 2;
595 	if ((comp < -2) || (comp > 2))
596 		comp = 0;
597 
598 	return comp;
599 }
600 
601 static s32
il4965_get_tx_atten_grp(u16 channel)602 il4965_get_tx_atten_grp(u16 channel)
603 {
604 	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
605 	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
606 		return CALIB_CH_GROUP_5;
607 
608 	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
609 	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
610 		return CALIB_CH_GROUP_1;
611 
612 	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
613 	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
614 		return CALIB_CH_GROUP_2;
615 
616 	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
617 	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
618 		return CALIB_CH_GROUP_3;
619 
620 	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
621 	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
622 		return CALIB_CH_GROUP_4;
623 
624 	return -EINVAL;
625 }
626 
627 static u32
il4965_get_sub_band(const struct il_priv * il,u32 channel)628 il4965_get_sub_band(const struct il_priv *il, u32 channel)
629 {
630 	s32 b = -1;
631 
632 	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
633 		if (il->calib_info->band_info[b].ch_from == 0)
634 			continue;
635 
636 		if (channel >= il->calib_info->band_info[b].ch_from &&
637 		    channel <= il->calib_info->band_info[b].ch_to)
638 			break;
639 	}
640 
641 	return b;
642 }
643 
644 static s32
il4965_interpolate_value(s32 x,s32 x1,s32 y1,s32 x2,s32 y2)645 il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
646 {
647 	s32 val;
648 
649 	if (x2 == x1)
650 		return y1;
651 	else {
652 		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
653 		return val + y2;
654 	}
655 }
656 
657 /*
658  * il4965_interpolate_chan - Interpolate factory measurements for one channel
659  *
660  * Interpolates factory measurements from the two sample channels within a
661  * sub-band, to apply to channel of interest.  Interpolation is proportional to
662  * differences in channel frequencies, which is proportional to differences
663  * in channel number.
664  */
665 static int
il4965_interpolate_chan(struct il_priv * il,u32 channel,struct il_eeprom_calib_ch_info * chan_info)666 il4965_interpolate_chan(struct il_priv *il, u32 channel,
667 			struct il_eeprom_calib_ch_info *chan_info)
668 {
669 	s32 s = -1;
670 	u32 c;
671 	u32 m;
672 	const struct il_eeprom_calib_measure *m1;
673 	const struct il_eeprom_calib_measure *m2;
674 	struct il_eeprom_calib_measure *omeas;
675 	u32 ch_i1;
676 	u32 ch_i2;
677 
678 	s = il4965_get_sub_band(il, channel);
679 	if (s >= EEPROM_TX_POWER_BANDS) {
680 		IL_ERR("Tx Power can not find channel %d\n", channel);
681 		return -1;
682 	}
683 
684 	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
685 	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
686 	chan_info->ch_num = (u8) channel;
687 
688 	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
689 		  ch_i1, ch_i2);
690 
691 	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
692 		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
693 			m1 = &(il->calib_info->band_info[s].ch1.
694 			       measurements[c][m]);
695 			m2 = &(il->calib_info->band_info[s].ch2.
696 			       measurements[c][m]);
697 			omeas = &(chan_info->measurements[c][m]);
698 
699 			omeas->actual_pow =
700 			    (u8) il4965_interpolate_value(channel, ch_i1,
701 							  m1->actual_pow, ch_i2,
702 							  m2->actual_pow);
703 			omeas->gain_idx =
704 			    (u8) il4965_interpolate_value(channel, ch_i1,
705 							  m1->gain_idx, ch_i2,
706 							  m2->gain_idx);
707 			omeas->temperature =
708 			    (u8) il4965_interpolate_value(channel, ch_i1,
709 							  m1->temperature,
710 							  ch_i2,
711 							  m2->temperature);
712 			omeas->pa_det =
713 			    (s8) il4965_interpolate_value(channel, ch_i1,
714 							  m1->pa_det, ch_i2,
715 							  m2->pa_det);
716 
717 			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
718 				  m, m1->actual_pow, m2->actual_pow,
719 				  omeas->actual_pow);
720 			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
721 				  m, m1->gain_idx, m2->gain_idx,
722 				  omeas->gain_idx);
723 			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
724 				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
725 			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
726 				  m, m1->temperature, m2->temperature,
727 				  omeas->temperature);
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 /* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
735  * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
736 static s32 back_off_table[] = {
737 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
738 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
739 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
740 	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
741 	10			/* CCK */
742 };
743 
744 /* Thermal compensation values for txpower for various frequency ranges ...
745  *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
746 static struct il4965_txpower_comp_entry {
747 	s32 degrees_per_05db_a;
748 	s32 degrees_per_05db_a_denom;
749 } tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
750 	{
751 	9, 2},			/* group 0 5.2, ch  34-43 */
752 	{
753 	4, 1},			/* group 1 5.2, ch  44-70 */
754 	{
755 	4, 1},			/* group 2 5.2, ch  71-124 */
756 	{
757 	4, 1},			/* group 3 5.2, ch 125-200 */
758 	{
759 	3, 1}			/* group 4 2.4, ch   all */
760 };
761 
762 static s32
get_min_power_idx(s32 rate_power_idx,u32 band)763 get_min_power_idx(s32 rate_power_idx, u32 band)
764 {
765 	if (!band) {
766 		if ((rate_power_idx & 7) <= 4)
767 			return MIN_TX_GAIN_IDX_52GHZ_EXT;
768 	}
769 	return MIN_TX_GAIN_IDX;
770 }
771 
772 struct gain_entry {
773 	u8 dsp;
774 	u8 radio;
775 };
776 
777 static const struct gain_entry gain_table[2][108] = {
778 	/* 5.2GHz power gain idx table */
779 	{
780 	 {123, 0x3F},		/* highest txpower */
781 	 {117, 0x3F},
782 	 {110, 0x3F},
783 	 {104, 0x3F},
784 	 {98, 0x3F},
785 	 {110, 0x3E},
786 	 {104, 0x3E},
787 	 {98, 0x3E},
788 	 {110, 0x3D},
789 	 {104, 0x3D},
790 	 {98, 0x3D},
791 	 {110, 0x3C},
792 	 {104, 0x3C},
793 	 {98, 0x3C},
794 	 {110, 0x3B},
795 	 {104, 0x3B},
796 	 {98, 0x3B},
797 	 {110, 0x3A},
798 	 {104, 0x3A},
799 	 {98, 0x3A},
800 	 {110, 0x39},
801 	 {104, 0x39},
802 	 {98, 0x39},
803 	 {110, 0x38},
804 	 {104, 0x38},
805 	 {98, 0x38},
806 	 {110, 0x37},
807 	 {104, 0x37},
808 	 {98, 0x37},
809 	 {110, 0x36},
810 	 {104, 0x36},
811 	 {98, 0x36},
812 	 {110, 0x35},
813 	 {104, 0x35},
814 	 {98, 0x35},
815 	 {110, 0x34},
816 	 {104, 0x34},
817 	 {98, 0x34},
818 	 {110, 0x33},
819 	 {104, 0x33},
820 	 {98, 0x33},
821 	 {110, 0x32},
822 	 {104, 0x32},
823 	 {98, 0x32},
824 	 {110, 0x31},
825 	 {104, 0x31},
826 	 {98, 0x31},
827 	 {110, 0x30},
828 	 {104, 0x30},
829 	 {98, 0x30},
830 	 {110, 0x25},
831 	 {104, 0x25},
832 	 {98, 0x25},
833 	 {110, 0x24},
834 	 {104, 0x24},
835 	 {98, 0x24},
836 	 {110, 0x23},
837 	 {104, 0x23},
838 	 {98, 0x23},
839 	 {110, 0x22},
840 	 {104, 0x18},
841 	 {98, 0x18},
842 	 {110, 0x17},
843 	 {104, 0x17},
844 	 {98, 0x17},
845 	 {110, 0x16},
846 	 {104, 0x16},
847 	 {98, 0x16},
848 	 {110, 0x15},
849 	 {104, 0x15},
850 	 {98, 0x15},
851 	 {110, 0x14},
852 	 {104, 0x14},
853 	 {98, 0x14},
854 	 {110, 0x13},
855 	 {104, 0x13},
856 	 {98, 0x13},
857 	 {110, 0x12},
858 	 {104, 0x08},
859 	 {98, 0x08},
860 	 {110, 0x07},
861 	 {104, 0x07},
862 	 {98, 0x07},
863 	 {110, 0x06},
864 	 {104, 0x06},
865 	 {98, 0x06},
866 	 {110, 0x05},
867 	 {104, 0x05},
868 	 {98, 0x05},
869 	 {110, 0x04},
870 	 {104, 0x04},
871 	 {98, 0x04},
872 	 {110, 0x03},
873 	 {104, 0x03},
874 	 {98, 0x03},
875 	 {110, 0x02},
876 	 {104, 0x02},
877 	 {98, 0x02},
878 	 {110, 0x01},
879 	 {104, 0x01},
880 	 {98, 0x01},
881 	 {110, 0x00},
882 	 {104, 0x00},
883 	 {98, 0x00},
884 	 {93, 0x00},
885 	 {88, 0x00},
886 	 {83, 0x00},
887 	 {78, 0x00},
888 	 },
889 	/* 2.4GHz power gain idx table */
890 	{
891 	 {110, 0x3f},		/* highest txpower */
892 	 {104, 0x3f},
893 	 {98, 0x3f},
894 	 {110, 0x3e},
895 	 {104, 0x3e},
896 	 {98, 0x3e},
897 	 {110, 0x3d},
898 	 {104, 0x3d},
899 	 {98, 0x3d},
900 	 {110, 0x3c},
901 	 {104, 0x3c},
902 	 {98, 0x3c},
903 	 {110, 0x3b},
904 	 {104, 0x3b},
905 	 {98, 0x3b},
906 	 {110, 0x3a},
907 	 {104, 0x3a},
908 	 {98, 0x3a},
909 	 {110, 0x39},
910 	 {104, 0x39},
911 	 {98, 0x39},
912 	 {110, 0x38},
913 	 {104, 0x38},
914 	 {98, 0x38},
915 	 {110, 0x37},
916 	 {104, 0x37},
917 	 {98, 0x37},
918 	 {110, 0x36},
919 	 {104, 0x36},
920 	 {98, 0x36},
921 	 {110, 0x35},
922 	 {104, 0x35},
923 	 {98, 0x35},
924 	 {110, 0x34},
925 	 {104, 0x34},
926 	 {98, 0x34},
927 	 {110, 0x33},
928 	 {104, 0x33},
929 	 {98, 0x33},
930 	 {110, 0x32},
931 	 {104, 0x32},
932 	 {98, 0x32},
933 	 {110, 0x31},
934 	 {104, 0x31},
935 	 {98, 0x31},
936 	 {110, 0x30},
937 	 {104, 0x30},
938 	 {98, 0x30},
939 	 {110, 0x6},
940 	 {104, 0x6},
941 	 {98, 0x6},
942 	 {110, 0x5},
943 	 {104, 0x5},
944 	 {98, 0x5},
945 	 {110, 0x4},
946 	 {104, 0x4},
947 	 {98, 0x4},
948 	 {110, 0x3},
949 	 {104, 0x3},
950 	 {98, 0x3},
951 	 {110, 0x2},
952 	 {104, 0x2},
953 	 {98, 0x2},
954 	 {110, 0x1},
955 	 {104, 0x1},
956 	 {98, 0x1},
957 	 {110, 0x0},
958 	 {104, 0x0},
959 	 {98, 0x0},
960 	 {97, 0},
961 	 {96, 0},
962 	 {95, 0},
963 	 {94, 0},
964 	 {93, 0},
965 	 {92, 0},
966 	 {91, 0},
967 	 {90, 0},
968 	 {89, 0},
969 	 {88, 0},
970 	 {87, 0},
971 	 {86, 0},
972 	 {85, 0},
973 	 {84, 0},
974 	 {83, 0},
975 	 {82, 0},
976 	 {81, 0},
977 	 {80, 0},
978 	 {79, 0},
979 	 {78, 0},
980 	 {77, 0},
981 	 {76, 0},
982 	 {75, 0},
983 	 {74, 0},
984 	 {73, 0},
985 	 {72, 0},
986 	 {71, 0},
987 	 {70, 0},
988 	 {69, 0},
989 	 {68, 0},
990 	 {67, 0},
991 	 {66, 0},
992 	 {65, 0},
993 	 {64, 0},
994 	 {63, 0},
995 	 {62, 0},
996 	 {61, 0},
997 	 {60, 0},
998 	 {59, 0},
999 	 }
1000 };
1001 
1002 static int
il4965_fill_txpower_tbl(struct il_priv * il,u8 band,u16 channel,u8 is_ht40,u8 ctrl_chan_high,struct il4965_tx_power_db * tx_power_tbl)1003 il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1004 			u8 ctrl_chan_high,
1005 			struct il4965_tx_power_db *tx_power_tbl)
1006 {
1007 	u8 saturation_power;
1008 	s32 target_power;
1009 	s32 user_target_power;
1010 	s32 power_limit;
1011 	s32 current_temp;
1012 	s32 reg_limit;
1013 	s32 current_regulatory;
1014 	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1015 	int i;
1016 	int c;
1017 	const struct il_channel_info *ch_info = NULL;
1018 	struct il_eeprom_calib_ch_info ch_eeprom_info;
1019 	const struct il_eeprom_calib_measure *measurement;
1020 	s16 voltage;
1021 	s32 init_voltage;
1022 	s32 voltage_compensation;
1023 	s32 degrees_per_05db_num;
1024 	s32 degrees_per_05db_denom;
1025 	s32 factory_temp;
1026 	s32 temperature_comp[2];
1027 	s32 factory_gain_idx[2];
1028 	s32 factory_actual_pwr[2];
1029 	s32 power_idx;
1030 
1031 	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1032 	 *   are used for idxing into txpower table) */
1033 	user_target_power = 2 * il->tx_power_user_lmt;
1034 
1035 	/* Get current (RXON) channel, band, width */
1036 	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1037 
1038 	ch_info = il_get_channel_info(il, il->band, channel);
1039 
1040 	if (!il_is_channel_valid(ch_info))
1041 		return -EINVAL;
1042 
1043 	/* get txatten group, used to select 1) thermal txpower adjustment
1044 	 *   and 2) mimo txpower balance between Tx chains. */
1045 	txatten_grp = il4965_get_tx_atten_grp(channel);
1046 	if (txatten_grp < 0) {
1047 		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1048 		return txatten_grp;
1049 	}
1050 
1051 	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1052 		  txatten_grp);
1053 
1054 	if (is_ht40) {
1055 		if (ctrl_chan_high)
1056 			channel -= 2;
1057 		else
1058 			channel += 2;
1059 	}
1060 
1061 	/* hardware txpower limits ...
1062 	 * saturation (clipping distortion) txpowers are in half-dBm */
1063 	if (band)
1064 		saturation_power = il->calib_info->saturation_power24;
1065 	else
1066 		saturation_power = il->calib_info->saturation_power52;
1067 
1068 	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1069 	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1070 		if (band)
1071 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1072 		else
1073 			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1074 	}
1075 
1076 	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1077 	 *   max_power_avg values are in dBm, convert * 2 */
1078 	if (is_ht40)
1079 		reg_limit = ch_info->ht40_max_power_avg * 2;
1080 	else
1081 		reg_limit = ch_info->max_power_avg * 2;
1082 
1083 	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1084 	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1085 		if (band)
1086 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1087 		else
1088 			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1089 	}
1090 
1091 	/* Interpolate txpower calibration values for this channel,
1092 	 *   based on factory calibration tests on spaced channels. */
1093 	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1094 
1095 	/* calculate tx gain adjustment based on power supply voltage */
1096 	voltage = le16_to_cpu(il->calib_info->voltage);
1097 	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1098 	voltage_compensation =
1099 	    il4965_get_voltage_compensation(voltage, init_voltage);
1100 
1101 	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1102 		  voltage, voltage_compensation);
1103 
1104 	/* get current temperature (Celsius) */
1105 	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1106 	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1107 	current_temp = kelvin_to_celsius(current_temp);
1108 
1109 	/* select thermal txpower adjustment params, based on channel group
1110 	 *   (same frequency group used for mimo txatten adjustment) */
1111 	degrees_per_05db_num =
1112 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1113 	degrees_per_05db_denom =
1114 	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1115 
1116 	/* get per-chain txpower values from factory measurements */
1117 	for (c = 0; c < 2; c++) {
1118 		measurement = &ch_eeprom_info.measurements[c][1];
1119 
1120 		/* txgain adjustment (in half-dB steps) based on difference
1121 		 *   between factory and current temperature */
1122 		factory_temp = measurement->temperature;
1123 		il4965_math_div_round((current_temp -
1124 				       factory_temp) * degrees_per_05db_denom,
1125 				      degrees_per_05db_num,
1126 				      &temperature_comp[c]);
1127 
1128 		factory_gain_idx[c] = measurement->gain_idx;
1129 		factory_actual_pwr[c] = measurement->actual_pow;
1130 
1131 		D_TXPOWER("chain = %d\n", c);
1132 		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1133 			  factory_temp, current_temp, temperature_comp[c]);
1134 
1135 		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1136 			  factory_actual_pwr[c]);
1137 	}
1138 
1139 	/* for each of 33 bit-rates (including 1 for CCK) */
1140 	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1141 		u8 is_mimo_rate;
1142 		union il4965_tx_power_dual_stream tx_power;
1143 
1144 		/* for mimo, reduce each chain's txpower by half
1145 		 * (3dB, 6 steps), so total output power is regulatory
1146 		 * compliant. */
1147 		if (i & 0x8) {
1148 			current_regulatory =
1149 			    reg_limit -
1150 			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1151 			is_mimo_rate = 1;
1152 		} else {
1153 			current_regulatory = reg_limit;
1154 			is_mimo_rate = 0;
1155 		}
1156 
1157 		/* find txpower limit, either hardware or regulatory */
1158 		power_limit = saturation_power - back_off_table[i];
1159 		if (power_limit > current_regulatory)
1160 			power_limit = current_regulatory;
1161 
1162 		/* reduce user's txpower request if necessary
1163 		 * for this rate on this channel */
1164 		target_power = user_target_power;
1165 		if (target_power > power_limit)
1166 			target_power = power_limit;
1167 
1168 		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1169 			  saturation_power - back_off_table[i],
1170 			  current_regulatory, user_target_power, target_power);
1171 
1172 		/* for each of 2 Tx chains (radio transmitters) */
1173 		for (c = 0; c < 2; c++) {
1174 			s32 atten_value;
1175 
1176 			if (is_mimo_rate)
1177 				atten_value =
1178 				    (s32) le32_to_cpu(il->card_alive_init.
1179 						      tx_atten[txatten_grp][c]);
1180 			else
1181 				atten_value = 0;
1182 
1183 			/* calculate idx; higher idx means lower txpower */
1184 			power_idx =
1185 			    (u8) (factory_gain_idx[c] -
1186 				  (target_power - factory_actual_pwr[c]) -
1187 				  temperature_comp[c] - voltage_compensation +
1188 				  atten_value);
1189 
1190 /*			D_TXPOWER("calculated txpower idx %d\n",
1191 						power_idx); */
1192 
1193 			if (power_idx < get_min_power_idx(i, band))
1194 				power_idx = get_min_power_idx(i, band);
1195 
1196 			/* adjust 5 GHz idx to support negative idxes */
1197 			if (!band)
1198 				power_idx += 9;
1199 
1200 			/* CCK, rate 32, reduce txpower for CCK */
1201 			if (i == POWER_TBL_CCK_ENTRY)
1202 				power_idx +=
1203 				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1204 
1205 			/* stay within the table! */
1206 			if (power_idx > 107) {
1207 				IL_WARN("txpower idx %d > 107\n", power_idx);
1208 				power_idx = 107;
1209 			}
1210 			if (power_idx < 0) {
1211 				IL_WARN("txpower idx %d < 0\n", power_idx);
1212 				power_idx = 0;
1213 			}
1214 
1215 			/* fill txpower command for this rate/chain */
1216 			tx_power.s.radio_tx_gain[c] =
1217 			    gain_table[band][power_idx].radio;
1218 			tx_power.s.dsp_predis_atten[c] =
1219 			    gain_table[band][power_idx].dsp;
1220 
1221 			D_TXPOWER("chain %d mimo %d idx %d "
1222 				  "gain 0x%02x dsp %d\n", c, atten_value,
1223 				  power_idx, tx_power.s.radio_tx_gain[c],
1224 				  tx_power.s.dsp_predis_atten[c]);
1225 		}		/* for each chain */
1226 
1227 		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1228 
1229 	}			/* for each rate */
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * il4965_send_tx_power - Configure the TXPOWER level user limit
1236  *
1237  * Uses the active RXON for channel, band, and characteristics (ht40, high)
1238  * The power limit is taken from il->tx_power_user_lmt.
1239  */
1240 static int
il4965_send_tx_power(struct il_priv * il)1241 il4965_send_tx_power(struct il_priv *il)
1242 {
1243 	struct il4965_txpowertable_cmd cmd = { 0 };
1244 	int ret;
1245 	u8 band = 0;
1246 	bool is_ht40 = false;
1247 	u8 ctrl_chan_high = 0;
1248 
1249 	if (WARN_ONCE
1250 	    (test_bit(S_SCAN_HW, &il->status),
1251 	     "TX Power requested while scanning!\n"))
1252 		return -EAGAIN;
1253 
1254 	band = il->band == NL80211_BAND_2GHZ;
1255 
1256 	is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1257 
1258 	if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1259 		ctrl_chan_high = 1;
1260 
1261 	cmd.band = band;
1262 	cmd.channel = il->active.channel;
1263 
1264 	ret =
1265 	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1266 				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1267 	if (ret)
1268 		goto out;
1269 
1270 	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1271 
1272 out:
1273 	return ret;
1274 }
1275 
1276 static int
il4965_send_rxon_assoc(struct il_priv * il)1277 il4965_send_rxon_assoc(struct il_priv *il)
1278 {
1279 	int ret = 0;
1280 	struct il4965_rxon_assoc_cmd rxon_assoc;
1281 	const struct il_rxon_cmd *rxon1 = &il->staging;
1282 	const struct il_rxon_cmd *rxon2 = &il->active;
1283 
1284 	lockdep_assert_held(&il->mutex);
1285 
1286 	if (rxon1->flags == rxon2->flags &&
1287 	    rxon1->filter_flags == rxon2->filter_flags &&
1288 	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1289 	    rxon1->ofdm_ht_single_stream_basic_rates ==
1290 	    rxon2->ofdm_ht_single_stream_basic_rates &&
1291 	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1292 	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1293 	    rxon1->rx_chain == rxon2->rx_chain &&
1294 	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1295 		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1296 		return 0;
1297 	}
1298 
1299 	rxon_assoc.flags = il->staging.flags;
1300 	rxon_assoc.filter_flags = il->staging.filter_flags;
1301 	rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1302 	rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1303 	rxon_assoc.reserved = 0;
1304 	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1305 	    il->staging.ofdm_ht_single_stream_basic_rates;
1306 	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1307 	    il->staging.ofdm_ht_dual_stream_basic_rates;
1308 	rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1309 
1310 	ret =
1311 	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1312 				  &rxon_assoc, NULL);
1313 
1314 	return ret;
1315 }
1316 
1317 static int
il4965_commit_rxon(struct il_priv * il)1318 il4965_commit_rxon(struct il_priv *il)
1319 {
1320 	/* cast away the const for active_rxon in this function */
1321 	struct il_rxon_cmd *active_rxon = (void *)&il->active;
1322 	int ret;
1323 	bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1324 
1325 	if (!il_is_alive(il))
1326 		return -EBUSY;
1327 
1328 	/* always get timestamp with Rx frame */
1329 	il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1330 
1331 	ret = il_check_rxon_cmd(il);
1332 	if (ret) {
1333 		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1334 		return -EINVAL;
1335 	}
1336 
1337 	/*
1338 	 * receive commit_rxon request
1339 	 * abort any previous channel switch if still in process
1340 	 */
1341 	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1342 	    il->switch_channel != il->staging.channel) {
1343 		D_11H("abort channel switch on %d\n",
1344 		      le16_to_cpu(il->switch_channel));
1345 		il_chswitch_done(il, false);
1346 	}
1347 
1348 	/* If we don't need to send a full RXON, we can use
1349 	 * il_rxon_assoc_cmd which is used to reconfigure filter
1350 	 * and other flags for the current radio configuration. */
1351 	if (!il_full_rxon_required(il)) {
1352 		ret = il_send_rxon_assoc(il);
1353 		if (ret) {
1354 			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1355 			return ret;
1356 		}
1357 
1358 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1359 		il_print_rx_config_cmd(il);
1360 		/*
1361 		 * We do not commit tx power settings while channel changing,
1362 		 * do it now if tx power changed.
1363 		 */
1364 		il_set_tx_power(il, il->tx_power_next, false);
1365 		return 0;
1366 	}
1367 
1368 	/* If we are currently associated and the new config requires
1369 	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1370 	 * we must clear the associated from the active configuration
1371 	 * before we apply the new config */
1372 	if (il_is_associated(il) && new_assoc) {
1373 		D_INFO("Toggling associated bit on current RXON\n");
1374 		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1375 
1376 		ret =
1377 		    il_send_cmd_pdu(il, C_RXON,
1378 				    sizeof(struct il_rxon_cmd), active_rxon);
1379 
1380 		/* If the mask clearing failed then we set
1381 		 * active_rxon back to what it was previously */
1382 		if (ret) {
1383 			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1384 			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1385 			return ret;
1386 		}
1387 		il_clear_ucode_stations(il);
1388 		il_restore_stations(il);
1389 		ret = il4965_restore_default_wep_keys(il);
1390 		if (ret) {
1391 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1392 			return ret;
1393 		}
1394 	}
1395 
1396 	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1397 	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1398 	       le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1399 
1400 	il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1401 
1402 	/* Apply the new configuration
1403 	 * RXON unassoc clears the station table in uCode so restoration of
1404 	 * stations is needed after it (the RXON command) completes
1405 	 */
1406 	if (!new_assoc) {
1407 		ret =
1408 		    il_send_cmd_pdu(il, C_RXON,
1409 				    sizeof(struct il_rxon_cmd), &il->staging);
1410 		if (ret) {
1411 			IL_ERR("Error setting new RXON (%d)\n", ret);
1412 			return ret;
1413 		}
1414 		D_INFO("Return from !new_assoc RXON.\n");
1415 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1416 		il_clear_ucode_stations(il);
1417 		il_restore_stations(il);
1418 		ret = il4965_restore_default_wep_keys(il);
1419 		if (ret) {
1420 			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1421 			return ret;
1422 		}
1423 	}
1424 	if (new_assoc) {
1425 		il->start_calib = 0;
1426 		/* Apply the new configuration
1427 		 * RXON assoc doesn't clear the station table in uCode,
1428 		 */
1429 		ret =
1430 		    il_send_cmd_pdu(il, C_RXON,
1431 				    sizeof(struct il_rxon_cmd), &il->staging);
1432 		if (ret) {
1433 			IL_ERR("Error setting new RXON (%d)\n", ret);
1434 			return ret;
1435 		}
1436 		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1437 	}
1438 	il_print_rx_config_cmd(il);
1439 
1440 	il4965_init_sensitivity(il);
1441 
1442 	/* If we issue a new RXON command which required a tune then we must
1443 	 * send a new TXPOWER command or we won't be able to Tx any frames */
1444 	ret = il_set_tx_power(il, il->tx_power_next, true);
1445 	if (ret) {
1446 		IL_ERR("Error sending TX power (%d)\n", ret);
1447 		return ret;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static int
il4965_hw_channel_switch(struct il_priv * il,struct ieee80211_channel_switch * ch_switch)1454 il4965_hw_channel_switch(struct il_priv *il,
1455 			 struct ieee80211_channel_switch *ch_switch)
1456 {
1457 	int rc;
1458 	u8 band = 0;
1459 	bool is_ht40 = false;
1460 	u8 ctrl_chan_high = 0;
1461 	struct il4965_channel_switch_cmd cmd;
1462 	const struct il_channel_info *ch_info;
1463 	u32 switch_time_in_usec, ucode_switch_time;
1464 	u16 ch;
1465 	u32 tsf_low;
1466 	u8 switch_count;
1467 	u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1468 	struct ieee80211_vif *vif = il->vif;
1469 	band = (il->band == NL80211_BAND_2GHZ);
1470 
1471 	if (WARN_ON_ONCE(vif == NULL))
1472 		return -EIO;
1473 
1474 	is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1475 
1476 	if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1477 		ctrl_chan_high = 1;
1478 
1479 	cmd.band = band;
1480 	cmd.expect_beacon = 0;
1481 	ch = ch_switch->chandef.chan->hw_value;
1482 	cmd.channel = cpu_to_le16(ch);
1483 	cmd.rxon_flags = il->staging.flags;
1484 	cmd.rxon_filter_flags = il->staging.filter_flags;
1485 	switch_count = ch_switch->count;
1486 	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1487 	/*
1488 	 * calculate the ucode channel switch time
1489 	 * adding TSF as one of the factor for when to switch
1490 	 */
1491 	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1492 		if (switch_count >
1493 		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1494 			switch_count -=
1495 			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1496 		} else
1497 			switch_count = 0;
1498 	}
1499 	if (switch_count <= 1)
1500 		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1501 	else {
1502 		switch_time_in_usec =
1503 		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1504 		ucode_switch_time =
1505 		    il_usecs_to_beacons(il, switch_time_in_usec,
1506 					beacon_interval);
1507 		cmd.switch_time =
1508 		    il_add_beacon_time(il, il->ucode_beacon_time,
1509 				       ucode_switch_time, beacon_interval);
1510 	}
1511 	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1512 	ch_info = il_get_channel_info(il, il->band, ch);
1513 	if (ch_info)
1514 		cmd.expect_beacon = il_is_channel_radar(ch_info);
1515 	else {
1516 		IL_ERR("invalid channel switch from %u to %u\n",
1517 		       il->active.channel, ch);
1518 		return -EFAULT;
1519 	}
1520 
1521 	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1522 				     &cmd.tx_power);
1523 	if (rc) {
1524 		D_11H("error:%d  fill txpower_tbl\n", rc);
1525 		return rc;
1526 	}
1527 
1528 	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1529 }
1530 
1531 /*
1532  * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1533  */
1534 static void
il4965_txq_update_byte_cnt_tbl(struct il_priv * il,struct il_tx_queue * txq,u16 byte_cnt)1535 il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1536 			       u16 byte_cnt)
1537 {
1538 	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1539 	int txq_id = txq->q.id;
1540 	int write_ptr = txq->q.write_ptr;
1541 	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1542 	__le16 bc_ent;
1543 
1544 	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1545 
1546 	bc_ent = cpu_to_le16(len & 0xFFF);
1547 	/* Set up byte count within first 256 entries */
1548 	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1549 
1550 	/* If within first 64 entries, duplicate at end */
1551 	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1552 		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1553 		    bc_ent;
1554 }
1555 
1556 /*
1557  * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1558  *
1559  * A return of <0 indicates bogus data in the stats
1560  */
1561 static int
il4965_hw_get_temperature(struct il_priv * il)1562 il4965_hw_get_temperature(struct il_priv *il)
1563 {
1564 	s32 temperature;
1565 	s32 vt;
1566 	s32 R1, R2, R3;
1567 	u32 R4;
1568 
1569 	if (test_bit(S_TEMPERATURE, &il->status) &&
1570 	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1571 		D_TEMP("Running HT40 temperature calibration\n");
1572 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1573 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1574 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1575 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1576 	} else {
1577 		D_TEMP("Running temperature calibration\n");
1578 		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1579 		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1580 		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1581 		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1582 	}
1583 
1584 	/*
1585 	 * Temperature is only 23 bits, so sign extend out to 32.
1586 	 *
1587 	 * NOTE If we haven't received a stats notification yet
1588 	 * with an updated temperature, use R4 provided to us in the
1589 	 * "initialize" ALIVE response.
1590 	 */
1591 	if (!test_bit(S_TEMPERATURE, &il->status))
1592 		vt = sign_extend32(R4, 23);
1593 	else
1594 		vt = sign_extend32(le32_to_cpu
1595 				   (il->_4965.stats.general.common.temperature),
1596 				   23);
1597 
1598 	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1599 
1600 	if (R3 == R1) {
1601 		IL_ERR("Calibration conflict R1 == R3\n");
1602 		return -1;
1603 	}
1604 
1605 	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1606 	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1607 	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1608 	temperature /= (R3 - R1);
1609 	temperature =
1610 	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1611 
1612 	D_TEMP("Calibrated temperature: %dK, %ldC\n", temperature,
1613 	       kelvin_to_celsius(temperature));
1614 
1615 	return temperature;
1616 }
1617 
1618 /* Adjust Txpower only if temperature variance is greater than threshold. */
1619 #define IL_TEMPERATURE_THRESHOLD   3
1620 
1621 /*
1622  * il4965_is_temp_calib_needed - determines if new calibration is needed
1623  *
1624  * If the temperature changed has changed sufficiently, then a recalibration
1625  * is needed.
1626  *
1627  * Assumes caller will replace il->last_temperature once calibration
1628  * executed.
1629  */
1630 static int
il4965_is_temp_calib_needed(struct il_priv * il)1631 il4965_is_temp_calib_needed(struct il_priv *il)
1632 {
1633 	int temp_diff;
1634 
1635 	if (!test_bit(S_STATS, &il->status)) {
1636 		D_TEMP("Temperature not updated -- no stats.\n");
1637 		return 0;
1638 	}
1639 
1640 	temp_diff = il->temperature - il->last_temperature;
1641 
1642 	/* get absolute value */
1643 	if (temp_diff < 0) {
1644 		D_POWER("Getting cooler, delta %d\n", temp_diff);
1645 		temp_diff = -temp_diff;
1646 	} else if (temp_diff == 0)
1647 		D_POWER("Temperature unchanged\n");
1648 	else
1649 		D_POWER("Getting warmer, delta %d\n", temp_diff);
1650 
1651 	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1652 		D_POWER(" => thermal txpower calib not needed\n");
1653 		return 0;
1654 	}
1655 
1656 	D_POWER(" => thermal txpower calib needed\n");
1657 
1658 	return 1;
1659 }
1660 
1661 void
il4965_temperature_calib(struct il_priv * il)1662 il4965_temperature_calib(struct il_priv *il)
1663 {
1664 	s32 temp;
1665 
1666 	temp = il4965_hw_get_temperature(il);
1667 	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1668 		return;
1669 
1670 	if (il->temperature != temp) {
1671 		if (il->temperature)
1672 			D_TEMP("Temperature changed " "from %ldC to %ldC\n",
1673 			       kelvin_to_celsius(il->temperature),
1674 			       kelvin_to_celsius(temp));
1675 		else
1676 			D_TEMP("Temperature " "initialized to %ldC\n",
1677 			       kelvin_to_celsius(temp));
1678 	}
1679 
1680 	il->temperature = temp;
1681 	set_bit(S_TEMPERATURE, &il->status);
1682 
1683 	if (!il->disable_tx_power_cal &&
1684 	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1685 	    il4965_is_temp_calib_needed(il))
1686 		queue_work(il->workqueue, &il->txpower_work);
1687 }
1688 
1689 static u16
il4965_get_hcmd_size(u8 cmd_id,u16 len)1690 il4965_get_hcmd_size(u8 cmd_id, u16 len)
1691 {
1692 	switch (cmd_id) {
1693 	case C_RXON:
1694 		return (u16) sizeof(struct il4965_rxon_cmd);
1695 	default:
1696 		return len;
1697 	}
1698 }
1699 
1700 static u16
il4965_build_addsta_hcmd(const struct il_addsta_cmd * cmd,u8 * data)1701 il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1702 {
1703 	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1704 	addsta->mode = cmd->mode;
1705 	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1706 	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1707 	addsta->station_flags = cmd->station_flags;
1708 	addsta->station_flags_msk = cmd->station_flags_msk;
1709 	addsta->tid_disable_tx = cmd->tid_disable_tx;
1710 	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1711 	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1712 	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1713 	addsta->sleep_tx_count = cmd->sleep_tx_count;
1714 	addsta->reserved1 = cpu_to_le16(0);
1715 	addsta->reserved2 = cpu_to_le16(0);
1716 
1717 	return (u16) sizeof(struct il4965_addsta_cmd);
1718 }
1719 
1720 static void
il4965_post_scan(struct il_priv * il)1721 il4965_post_scan(struct il_priv *il)
1722 {
1723 	/*
1724 	 * Since setting the RXON may have been deferred while
1725 	 * performing the scan, fire one off if needed
1726 	 */
1727 	if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1728 		il_commit_rxon(il);
1729 }
1730 
1731 static void
il4965_post_associate(struct il_priv * il)1732 il4965_post_associate(struct il_priv *il)
1733 {
1734 	struct ieee80211_vif *vif = il->vif;
1735 	int ret = 0;
1736 
1737 	if (!vif || !il->is_open)
1738 		return;
1739 
1740 	if (test_bit(S_EXIT_PENDING, &il->status))
1741 		return;
1742 
1743 	il_scan_cancel_timeout(il, 200);
1744 
1745 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1746 	il_commit_rxon(il);
1747 
1748 	ret = il_send_rxon_timing(il);
1749 	if (ret)
1750 		IL_WARN("RXON timing - " "Attempting to continue.\n");
1751 
1752 	il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1753 
1754 	il_set_rxon_ht(il, &il->current_ht_config);
1755 
1756 	if (il->ops->set_rxon_chain)
1757 		il->ops->set_rxon_chain(il);
1758 
1759 	il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1760 
1761 	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1762 		vif->bss_conf.beacon_int);
1763 
1764 	if (vif->bss_conf.use_short_preamble)
1765 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1766 	else
1767 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1768 
1769 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1770 		if (vif->bss_conf.use_short_slot)
1771 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1772 		else
1773 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1774 	}
1775 
1776 	il_commit_rxon(il);
1777 
1778 	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1779 		il->active.bssid_addr);
1780 
1781 	switch (vif->type) {
1782 	case NL80211_IFTYPE_STATION:
1783 		break;
1784 	case NL80211_IFTYPE_ADHOC:
1785 		il4965_send_beacon_cmd(il);
1786 		break;
1787 	default:
1788 		IL_ERR("%s Should not be called in %d mode\n", __func__,
1789 		       vif->type);
1790 		break;
1791 	}
1792 
1793 	/* the chain noise calibration will enabled PM upon completion
1794 	 * If chain noise has already been run, then we need to enable
1795 	 * power management here */
1796 	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1797 		il_power_update_mode(il, false);
1798 
1799 	/* Enable Rx differential gain and sensitivity calibrations */
1800 	il4965_chain_noise_reset(il);
1801 	il->start_calib = 1;
1802 }
1803 
1804 static void
il4965_config_ap(struct il_priv * il)1805 il4965_config_ap(struct il_priv *il)
1806 {
1807 	struct ieee80211_vif *vif = il->vif;
1808 	int ret = 0;
1809 
1810 	lockdep_assert_held(&il->mutex);
1811 
1812 	if (test_bit(S_EXIT_PENDING, &il->status))
1813 		return;
1814 
1815 	/* The following should be done only at AP bring up */
1816 	if (!il_is_associated(il)) {
1817 
1818 		/* RXON - unassoc (to set timing command) */
1819 		il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1820 		il_commit_rxon(il);
1821 
1822 		/* RXON Timing */
1823 		ret = il_send_rxon_timing(il);
1824 		if (ret)
1825 			IL_WARN("RXON timing failed - "
1826 				"Attempting to continue.\n");
1827 
1828 		/* AP has all antennas */
1829 		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1830 		il_set_rxon_ht(il, &il->current_ht_config);
1831 		if (il->ops->set_rxon_chain)
1832 			il->ops->set_rxon_chain(il);
1833 
1834 		il->staging.assoc_id = 0;
1835 
1836 		if (vif->bss_conf.use_short_preamble)
1837 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1838 		else
1839 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1840 
1841 		if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1842 			if (vif->bss_conf.use_short_slot)
1843 				il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1844 			else
1845 				il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1846 		}
1847 		/* need to send beacon cmd before committing assoc RXON! */
1848 		il4965_send_beacon_cmd(il);
1849 		/* restore RXON assoc */
1850 		il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1851 		il_commit_rxon(il);
1852 	}
1853 	il4965_send_beacon_cmd(il);
1854 }
1855 
1856 const struct il_ops il4965_ops = {
1857 	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1858 	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1859 	.txq_free_tfd = il4965_hw_txq_free_tfd,
1860 	.txq_init = il4965_hw_tx_queue_init,
1861 	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1862 	.init_alive_start = il4965_init_alive_start,
1863 	.load_ucode = il4965_load_bsm,
1864 	.dump_nic_error_log = il4965_dump_nic_error_log,
1865 	.dump_fh = il4965_dump_fh,
1866 	.set_channel_switch = il4965_hw_channel_switch,
1867 	.apm_init = il_apm_init,
1868 	.send_tx_power = il4965_send_tx_power,
1869 	.update_chain_flags = il4965_update_chain_flags,
1870 	.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1871 	.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1872 
1873 	.rxon_assoc = il4965_send_rxon_assoc,
1874 	.commit_rxon = il4965_commit_rxon,
1875 	.set_rxon_chain = il4965_set_rxon_chain,
1876 
1877 	.get_hcmd_size = il4965_get_hcmd_size,
1878 	.build_addsta_hcmd = il4965_build_addsta_hcmd,
1879 	.request_scan = il4965_request_scan,
1880 	.post_scan = il4965_post_scan,
1881 
1882 	.post_associate = il4965_post_associate,
1883 	.config_ap = il4965_config_ap,
1884 	.manage_ibss_station = il4965_manage_ibss_station,
1885 	.update_bcast_stations = il4965_update_bcast_stations,
1886 
1887 	.send_led_cmd = il4965_send_led_cmd,
1888 };
1889 
1890 struct il_cfg il4965_cfg = {
1891 	.name = "Intel(R) Wireless WiFi Link 4965AGN",
1892 	.fw_name_pre = IL4965_FW_PRE,
1893 	.ucode_api_max = IL4965_UCODE_API_MAX,
1894 	.ucode_api_min = IL4965_UCODE_API_MIN,
1895 	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1896 	.valid_tx_ant = ANT_AB,
1897 	.valid_rx_ant = ANT_ABC,
1898 	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1899 	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1900 	.mod_params = &il4965_mod_params,
1901 	.led_mode = IL_LED_BLINK,
1902 	/*
1903 	 * Force use of chains B and C for scan RX on 5 GHz band
1904 	 * because the device has off-channel reception on chain A.
1905 	 */
1906 	.scan_rx_antennas[NL80211_BAND_5GHZ] = ANT_BC,
1907 
1908 	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
1909 	.num_of_queues = IL49_NUM_QUEUES,
1910 	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1911 	.pll_cfg_val = 0,
1912 	.set_l0s = true,
1913 	.use_bsm = true,
1914 	.led_compensation = 61,
1915 	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1916 	.wd_timeout = IL_DEF_WD_TIMEOUT,
1917 	.temperature_kelvin = true,
1918 	.ucode_tracing = true,
1919 	.sensitivity_calib_by_driver = true,
1920 	.chain_noise_calib_by_driver = true,
1921 
1922 	.regulatory_bands = {
1923 		EEPROM_REGULATORY_BAND_1_CHANNELS,
1924 		EEPROM_REGULATORY_BAND_2_CHANNELS,
1925 		EEPROM_REGULATORY_BAND_3_CHANNELS,
1926 		EEPROM_REGULATORY_BAND_4_CHANNELS,
1927 		EEPROM_REGULATORY_BAND_5_CHANNELS,
1928 		EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1929 		EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1930 	},
1931 
1932 };
1933 
1934 /* Module firmware */
1935 MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
1936