1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
getname_uflags(const char __user * filename,int uflags)207 getname_uflags(const char __user *filename, int uflags)
208 {
209 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
210
211 return getname_flags(filename, flags, NULL);
212 }
213
214 struct filename *
getname(const char __user * filename)215 getname(const char __user * filename)
216 {
217 return getname_flags(filename, 0, NULL);
218 }
219
220 struct filename *
getname_kernel(const char * filename)221 getname_kernel(const char * filename)
222 {
223 struct filename *result;
224 int len = strlen(filename) + 1;
225
226 result = __getname();
227 if (unlikely(!result))
228 return ERR_PTR(-ENOMEM);
229
230 if (len <= EMBEDDED_NAME_MAX) {
231 result->name = (char *)result->iname;
232 } else if (len <= PATH_MAX) {
233 const size_t size = offsetof(struct filename, iname[1]);
234 struct filename *tmp;
235
236 tmp = kmalloc(size, GFP_KERNEL);
237 if (unlikely(!tmp)) {
238 __putname(result);
239 return ERR_PTR(-ENOMEM);
240 }
241 tmp->name = (char *)result;
242 result = tmp;
243 } else {
244 __putname(result);
245 return ERR_PTR(-ENAMETOOLONG);
246 }
247 memcpy((char *)result->name, filename, len);
248 result->uptr = NULL;
249 result->aname = NULL;
250 result->refcnt = 1;
251 audit_getname(result);
252
253 return result;
254 }
255 EXPORT_SYMBOL(getname_kernel);
256
putname(struct filename * name)257 void putname(struct filename *name)
258 {
259 if (IS_ERR(name))
260 return;
261
262 BUG_ON(name->refcnt <= 0);
263
264 if (--name->refcnt > 0)
265 return;
266
267 if (name->name != name->iname) {
268 __putname(name->name);
269 kfree(name);
270 } else
271 __putname(name);
272 }
273 EXPORT_SYMBOL(putname);
274
275 /**
276 * check_acl - perform ACL permission checking
277 * @mnt_userns: user namespace of the mount the inode was found from
278 * @inode: inode to check permissions on
279 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
280 *
281 * This function performs the ACL permission checking. Since this function
282 * retrieve POSIX acls it needs to know whether it is called from a blocking or
283 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
284 *
285 * If the inode has been found through an idmapped mount the user namespace of
286 * the vfsmount must be passed through @mnt_userns. This function will then take
287 * care to map the inode according to @mnt_userns before checking permissions.
288 * On non-idmapped mounts or if permission checking is to be performed on the
289 * raw inode simply passs init_user_ns.
290 */
check_acl(struct user_namespace * mnt_userns,struct inode * inode,int mask)291 static int check_acl(struct user_namespace *mnt_userns,
292 struct inode *inode, int mask)
293 {
294 #ifdef CONFIG_FS_POSIX_ACL
295 struct posix_acl *acl;
296
297 if (mask & MAY_NOT_BLOCK) {
298 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
299 if (!acl)
300 return -EAGAIN;
301 /* no ->get_acl() calls in RCU mode... */
302 if (is_uncached_acl(acl))
303 return -ECHILD;
304 return posix_acl_permission(mnt_userns, inode, acl, mask);
305 }
306
307 acl = get_acl(inode, ACL_TYPE_ACCESS);
308 if (IS_ERR(acl))
309 return PTR_ERR(acl);
310 if (acl) {
311 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
312 posix_acl_release(acl);
313 return error;
314 }
315 #endif
316
317 return -EAGAIN;
318 }
319
320 /**
321 * acl_permission_check - perform basic UNIX permission checking
322 * @mnt_userns: user namespace of the mount the inode was found from
323 * @inode: inode to check permissions on
324 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
325 *
326 * This function performs the basic UNIX permission checking. Since this
327 * function may retrieve POSIX acls it needs to know whether it is called from a
328 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
329 *
330 * If the inode has been found through an idmapped mount the user namespace of
331 * the vfsmount must be passed through @mnt_userns. This function will then take
332 * care to map the inode according to @mnt_userns before checking permissions.
333 * On non-idmapped mounts or if permission checking is to be performed on the
334 * raw inode simply passs init_user_ns.
335 */
acl_permission_check(struct user_namespace * mnt_userns,struct inode * inode,int mask)336 static int acl_permission_check(struct user_namespace *mnt_userns,
337 struct inode *inode, int mask)
338 {
339 unsigned int mode = inode->i_mode;
340 kuid_t i_uid;
341
342 /* Are we the owner? If so, ACL's don't matter */
343 i_uid = i_uid_into_mnt(mnt_userns, inode);
344 if (likely(uid_eq(current_fsuid(), i_uid))) {
345 mask &= 7;
346 mode >>= 6;
347 return (mask & ~mode) ? -EACCES : 0;
348 }
349
350 /* Do we have ACL's? */
351 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
352 int error = check_acl(mnt_userns, inode, mask);
353 if (error != -EAGAIN)
354 return error;
355 }
356
357 /* Only RWX matters for group/other mode bits */
358 mask &= 7;
359
360 /*
361 * Are the group permissions different from
362 * the other permissions in the bits we care
363 * about? Need to check group ownership if so.
364 */
365 if (mask & (mode ^ (mode >> 3))) {
366 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
367 if (in_group_p(kgid))
368 mode >>= 3;
369 }
370
371 /* Bits in 'mode' clear that we require? */
372 return (mask & ~mode) ? -EACCES : 0;
373 }
374
375 /**
376 * generic_permission - check for access rights on a Posix-like filesystem
377 * @mnt_userns: user namespace of the mount the inode was found from
378 * @inode: inode to check access rights for
379 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
380 * %MAY_NOT_BLOCK ...)
381 *
382 * Used to check for read/write/execute permissions on a file.
383 * We use "fsuid" for this, letting us set arbitrary permissions
384 * for filesystem access without changing the "normal" uids which
385 * are used for other things.
386 *
387 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
388 * request cannot be satisfied (eg. requires blocking or too much complexity).
389 * It would then be called again in ref-walk mode.
390 *
391 * If the inode has been found through an idmapped mount the user namespace of
392 * the vfsmount must be passed through @mnt_userns. This function will then take
393 * care to map the inode according to @mnt_userns before checking permissions.
394 * On non-idmapped mounts or if permission checking is to be performed on the
395 * raw inode simply passs init_user_ns.
396 */
generic_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)397 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
398 int mask)
399 {
400 int ret;
401
402 /*
403 * Do the basic permission checks.
404 */
405 ret = acl_permission_check(mnt_userns, inode, mask);
406 if (ret != -EACCES)
407 return ret;
408
409 if (S_ISDIR(inode->i_mode)) {
410 /* DACs are overridable for directories */
411 if (!(mask & MAY_WRITE))
412 if (capable_wrt_inode_uidgid(mnt_userns, inode,
413 CAP_DAC_READ_SEARCH))
414 return 0;
415 if (capable_wrt_inode_uidgid(mnt_userns, inode,
416 CAP_DAC_OVERRIDE))
417 return 0;
418 return -EACCES;
419 }
420
421 /*
422 * Searching includes executable on directories, else just read.
423 */
424 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
425 if (mask == MAY_READ)
426 if (capable_wrt_inode_uidgid(mnt_userns, inode,
427 CAP_DAC_READ_SEARCH))
428 return 0;
429 /*
430 * Read/write DACs are always overridable.
431 * Executable DACs are overridable when there is
432 * at least one exec bit set.
433 */
434 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
435 if (capable_wrt_inode_uidgid(mnt_userns, inode,
436 CAP_DAC_OVERRIDE))
437 return 0;
438
439 return -EACCES;
440 }
441 EXPORT_SYMBOL(generic_permission);
442
443 /**
444 * do_inode_permission - UNIX permission checking
445 * @mnt_userns: user namespace of the mount the inode was found from
446 * @inode: inode to check permissions on
447 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
448 *
449 * We _really_ want to just do "generic_permission()" without
450 * even looking at the inode->i_op values. So we keep a cache
451 * flag in inode->i_opflags, that says "this has not special
452 * permission function, use the fast case".
453 */
do_inode_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)454 static inline int do_inode_permission(struct user_namespace *mnt_userns,
455 struct inode *inode, int mask)
456 {
457 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
458 if (likely(inode->i_op->permission))
459 return inode->i_op->permission(mnt_userns, inode, mask);
460
461 /* This gets set once for the inode lifetime */
462 spin_lock(&inode->i_lock);
463 inode->i_opflags |= IOP_FASTPERM;
464 spin_unlock(&inode->i_lock);
465 }
466 return generic_permission(mnt_userns, inode, mask);
467 }
468
469 /**
470 * sb_permission - Check superblock-level permissions
471 * @sb: Superblock of inode to check permission on
472 * @inode: Inode to check permission on
473 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
474 *
475 * Separate out file-system wide checks from inode-specific permission checks.
476 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)477 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
478 {
479 if (unlikely(mask & MAY_WRITE)) {
480 umode_t mode = inode->i_mode;
481
482 /* Nobody gets write access to a read-only fs. */
483 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
484 return -EROFS;
485 }
486 return 0;
487 }
488
489 /**
490 * inode_permission - Check for access rights to a given inode
491 * @mnt_userns: User namespace of the mount the inode was found from
492 * @inode: Inode to check permission on
493 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
494 *
495 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
496 * this, letting us set arbitrary permissions for filesystem access without
497 * changing the "normal" UIDs which are used for other things.
498 *
499 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
500 */
inode_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)501 int inode_permission(struct user_namespace *mnt_userns,
502 struct inode *inode, int mask)
503 {
504 int retval;
505
506 retval = sb_permission(inode->i_sb, inode, mask);
507 if (retval)
508 return retval;
509
510 if (unlikely(mask & MAY_WRITE)) {
511 /*
512 * Nobody gets write access to an immutable file.
513 */
514 if (IS_IMMUTABLE(inode))
515 return -EPERM;
516
517 /*
518 * Updating mtime will likely cause i_uid and i_gid to be
519 * written back improperly if their true value is unknown
520 * to the vfs.
521 */
522 if (HAS_UNMAPPED_ID(mnt_userns, inode))
523 return -EACCES;
524 }
525
526 retval = do_inode_permission(mnt_userns, inode, mask);
527 if (retval)
528 return retval;
529
530 retval = devcgroup_inode_permission(inode, mask);
531 if (retval)
532 return retval;
533
534 return security_inode_permission(inode, mask);
535 }
536 EXPORT_SYMBOL(inode_permission);
537
538 /**
539 * path_get - get a reference to a path
540 * @path: path to get the reference to
541 *
542 * Given a path increment the reference count to the dentry and the vfsmount.
543 */
path_get(const struct path * path)544 void path_get(const struct path *path)
545 {
546 mntget(path->mnt);
547 dget(path->dentry);
548 }
549 EXPORT_SYMBOL(path_get);
550
551 /**
552 * path_put - put a reference to a path
553 * @path: path to put the reference to
554 *
555 * Given a path decrement the reference count to the dentry and the vfsmount.
556 */
path_put(const struct path * path)557 void path_put(const struct path *path)
558 {
559 dput(path->dentry);
560 mntput(path->mnt);
561 }
562 EXPORT_SYMBOL(path_put);
563
564 #define EMBEDDED_LEVELS 2
565 struct nameidata {
566 struct path path;
567 struct qstr last;
568 struct path root;
569 struct inode *inode; /* path.dentry.d_inode */
570 unsigned int flags, state;
571 unsigned seq, m_seq, r_seq;
572 int last_type;
573 unsigned depth;
574 int total_link_count;
575 struct saved {
576 struct path link;
577 struct delayed_call done;
578 const char *name;
579 unsigned seq;
580 } *stack, internal[EMBEDDED_LEVELS];
581 struct filename *name;
582 struct nameidata *saved;
583 unsigned root_seq;
584 int dfd;
585 kuid_t dir_uid;
586 umode_t dir_mode;
587 } __randomize_layout;
588
589 #define ND_ROOT_PRESET 1
590 #define ND_ROOT_GRABBED 2
591 #define ND_JUMPED 4
592
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)593 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
594 {
595 struct nameidata *old = current->nameidata;
596 p->stack = p->internal;
597 p->depth = 0;
598 p->dfd = dfd;
599 p->name = name;
600 p->path.mnt = NULL;
601 p->path.dentry = NULL;
602 p->total_link_count = old ? old->total_link_count : 0;
603 p->saved = old;
604 current->nameidata = p;
605 }
606
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)607 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
608 const struct path *root)
609 {
610 __set_nameidata(p, dfd, name);
611 p->state = 0;
612 if (unlikely(root)) {
613 p->state = ND_ROOT_PRESET;
614 p->root = *root;
615 }
616 }
617
restore_nameidata(void)618 static void restore_nameidata(void)
619 {
620 struct nameidata *now = current->nameidata, *old = now->saved;
621
622 current->nameidata = old;
623 if (old)
624 old->total_link_count = now->total_link_count;
625 if (now->stack != now->internal)
626 kfree(now->stack);
627 }
628
nd_alloc_stack(struct nameidata * nd)629 static bool nd_alloc_stack(struct nameidata *nd)
630 {
631 struct saved *p;
632
633 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
634 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
635 if (unlikely(!p))
636 return false;
637 memcpy(p, nd->internal, sizeof(nd->internal));
638 nd->stack = p;
639 return true;
640 }
641
642 /**
643 * path_connected - Verify that a dentry is below mnt.mnt_root
644 *
645 * Rename can sometimes move a file or directory outside of a bind
646 * mount, path_connected allows those cases to be detected.
647 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)648 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
649 {
650 struct super_block *sb = mnt->mnt_sb;
651
652 /* Bind mounts can have disconnected paths */
653 if (mnt->mnt_root == sb->s_root)
654 return true;
655
656 return is_subdir(dentry, mnt->mnt_root);
657 }
658
drop_links(struct nameidata * nd)659 static void drop_links(struct nameidata *nd)
660 {
661 int i = nd->depth;
662 while (i--) {
663 struct saved *last = nd->stack + i;
664 do_delayed_call(&last->done);
665 clear_delayed_call(&last->done);
666 }
667 }
668
terminate_walk(struct nameidata * nd)669 static void terminate_walk(struct nameidata *nd)
670 {
671 drop_links(nd);
672 if (!(nd->flags & LOOKUP_RCU)) {
673 int i;
674 path_put(&nd->path);
675 for (i = 0; i < nd->depth; i++)
676 path_put(&nd->stack[i].link);
677 if (nd->state & ND_ROOT_GRABBED) {
678 path_put(&nd->root);
679 nd->state &= ~ND_ROOT_GRABBED;
680 }
681 } else {
682 nd->flags &= ~LOOKUP_RCU;
683 rcu_read_unlock();
684 }
685 nd->depth = 0;
686 nd->path.mnt = NULL;
687 nd->path.dentry = NULL;
688 }
689
690 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)691 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
692 {
693 int res = __legitimize_mnt(path->mnt, mseq);
694 if (unlikely(res)) {
695 if (res > 0)
696 path->mnt = NULL;
697 path->dentry = NULL;
698 return false;
699 }
700 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
701 path->dentry = NULL;
702 return false;
703 }
704 return !read_seqcount_retry(&path->dentry->d_seq, seq);
705 }
706
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)707 static inline bool legitimize_path(struct nameidata *nd,
708 struct path *path, unsigned seq)
709 {
710 return __legitimize_path(path, seq, nd->m_seq);
711 }
712
legitimize_links(struct nameidata * nd)713 static bool legitimize_links(struct nameidata *nd)
714 {
715 int i;
716 if (unlikely(nd->flags & LOOKUP_CACHED)) {
717 drop_links(nd);
718 nd->depth = 0;
719 return false;
720 }
721 for (i = 0; i < nd->depth; i++) {
722 struct saved *last = nd->stack + i;
723 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
724 drop_links(nd);
725 nd->depth = i + 1;
726 return false;
727 }
728 }
729 return true;
730 }
731
legitimize_root(struct nameidata * nd)732 static bool legitimize_root(struct nameidata *nd)
733 {
734 /*
735 * For scoped-lookups (where nd->root has been zeroed), we need to
736 * restart the whole lookup from scratch -- because set_root() is wrong
737 * for these lookups (nd->dfd is the root, not the filesystem root).
738 */
739 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
740 return false;
741 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
742 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
743 return true;
744 nd->state |= ND_ROOT_GRABBED;
745 return legitimize_path(nd, &nd->root, nd->root_seq);
746 }
747
748 /*
749 * Path walking has 2 modes, rcu-walk and ref-walk (see
750 * Documentation/filesystems/path-lookup.txt). In situations when we can't
751 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
752 * normal reference counts on dentries and vfsmounts to transition to ref-walk
753 * mode. Refcounts are grabbed at the last known good point before rcu-walk
754 * got stuck, so ref-walk may continue from there. If this is not successful
755 * (eg. a seqcount has changed), then failure is returned and it's up to caller
756 * to restart the path walk from the beginning in ref-walk mode.
757 */
758
759 /**
760 * try_to_unlazy - try to switch to ref-walk mode.
761 * @nd: nameidata pathwalk data
762 * Returns: true on success, false on failure
763 *
764 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
765 * for ref-walk mode.
766 * Must be called from rcu-walk context.
767 * Nothing should touch nameidata between try_to_unlazy() failure and
768 * terminate_walk().
769 */
try_to_unlazy(struct nameidata * nd)770 static bool try_to_unlazy(struct nameidata *nd)
771 {
772 struct dentry *parent = nd->path.dentry;
773
774 BUG_ON(!(nd->flags & LOOKUP_RCU));
775
776 nd->flags &= ~LOOKUP_RCU;
777 if (unlikely(!legitimize_links(nd)))
778 goto out1;
779 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
780 goto out;
781 if (unlikely(!legitimize_root(nd)))
782 goto out;
783 rcu_read_unlock();
784 BUG_ON(nd->inode != parent->d_inode);
785 return true;
786
787 out1:
788 nd->path.mnt = NULL;
789 nd->path.dentry = NULL;
790 out:
791 rcu_read_unlock();
792 return false;
793 }
794
795 /**
796 * try_to_unlazy_next - try to switch to ref-walk mode.
797 * @nd: nameidata pathwalk data
798 * @dentry: next dentry to step into
799 * @seq: seq number to check @dentry against
800 * Returns: true on success, false on failure
801 *
802 * Similar to to try_to_unlazy(), but here we have the next dentry already
803 * picked by rcu-walk and want to legitimize that in addition to the current
804 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
805 * Nothing should touch nameidata between try_to_unlazy_next() failure and
806 * terminate_walk().
807 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry,unsigned seq)808 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
809 {
810 BUG_ON(!(nd->flags & LOOKUP_RCU));
811
812 nd->flags &= ~LOOKUP_RCU;
813 if (unlikely(!legitimize_links(nd)))
814 goto out2;
815 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
816 goto out2;
817 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
818 goto out1;
819
820 /*
821 * We need to move both the parent and the dentry from the RCU domain
822 * to be properly refcounted. And the sequence number in the dentry
823 * validates *both* dentry counters, since we checked the sequence
824 * number of the parent after we got the child sequence number. So we
825 * know the parent must still be valid if the child sequence number is
826 */
827 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
828 goto out;
829 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
830 goto out_dput;
831 /*
832 * Sequence counts matched. Now make sure that the root is
833 * still valid and get it if required.
834 */
835 if (unlikely(!legitimize_root(nd)))
836 goto out_dput;
837 rcu_read_unlock();
838 return true;
839
840 out2:
841 nd->path.mnt = NULL;
842 out1:
843 nd->path.dentry = NULL;
844 out:
845 rcu_read_unlock();
846 return false;
847 out_dput:
848 rcu_read_unlock();
849 dput(dentry);
850 return false;
851 }
852
d_revalidate(struct dentry * dentry,unsigned int flags)853 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
854 {
855 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
856 return dentry->d_op->d_revalidate(dentry, flags);
857 else
858 return 1;
859 }
860
861 /**
862 * complete_walk - successful completion of path walk
863 * @nd: pointer nameidata
864 *
865 * If we had been in RCU mode, drop out of it and legitimize nd->path.
866 * Revalidate the final result, unless we'd already done that during
867 * the path walk or the filesystem doesn't ask for it. Return 0 on
868 * success, -error on failure. In case of failure caller does not
869 * need to drop nd->path.
870 */
complete_walk(struct nameidata * nd)871 static int complete_walk(struct nameidata *nd)
872 {
873 struct dentry *dentry = nd->path.dentry;
874 int status;
875
876 if (nd->flags & LOOKUP_RCU) {
877 /*
878 * We don't want to zero nd->root for scoped-lookups or
879 * externally-managed nd->root.
880 */
881 if (!(nd->state & ND_ROOT_PRESET))
882 if (!(nd->flags & LOOKUP_IS_SCOPED))
883 nd->root.mnt = NULL;
884 nd->flags &= ~LOOKUP_CACHED;
885 if (!try_to_unlazy(nd))
886 return -ECHILD;
887 }
888
889 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
890 /*
891 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
892 * ever step outside the root during lookup" and should already
893 * be guaranteed by the rest of namei, we want to avoid a namei
894 * BUG resulting in userspace being given a path that was not
895 * scoped within the root at some point during the lookup.
896 *
897 * So, do a final sanity-check to make sure that in the
898 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
899 * we won't silently return an fd completely outside of the
900 * requested root to userspace.
901 *
902 * Userspace could move the path outside the root after this
903 * check, but as discussed elsewhere this is not a concern (the
904 * resolved file was inside the root at some point).
905 */
906 if (!path_is_under(&nd->path, &nd->root))
907 return -EXDEV;
908 }
909
910 if (likely(!(nd->state & ND_JUMPED)))
911 return 0;
912
913 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
914 return 0;
915
916 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
917 if (status > 0)
918 return 0;
919
920 if (!status)
921 status = -ESTALE;
922
923 return status;
924 }
925
set_root(struct nameidata * nd)926 static int set_root(struct nameidata *nd)
927 {
928 struct fs_struct *fs = current->fs;
929
930 /*
931 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
932 * still have to ensure it doesn't happen because it will cause a breakout
933 * from the dirfd.
934 */
935 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
936 return -ENOTRECOVERABLE;
937
938 if (nd->flags & LOOKUP_RCU) {
939 unsigned seq;
940
941 do {
942 seq = read_seqcount_begin(&fs->seq);
943 nd->root = fs->root;
944 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
945 } while (read_seqcount_retry(&fs->seq, seq));
946 } else {
947 get_fs_root(fs, &nd->root);
948 nd->state |= ND_ROOT_GRABBED;
949 }
950 return 0;
951 }
952
nd_jump_root(struct nameidata * nd)953 static int nd_jump_root(struct nameidata *nd)
954 {
955 if (unlikely(nd->flags & LOOKUP_BENEATH))
956 return -EXDEV;
957 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
958 /* Absolute path arguments to path_init() are allowed. */
959 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
960 return -EXDEV;
961 }
962 if (!nd->root.mnt) {
963 int error = set_root(nd);
964 if (error)
965 return error;
966 }
967 if (nd->flags & LOOKUP_RCU) {
968 struct dentry *d;
969 nd->path = nd->root;
970 d = nd->path.dentry;
971 nd->inode = d->d_inode;
972 nd->seq = nd->root_seq;
973 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
974 return -ECHILD;
975 } else {
976 path_put(&nd->path);
977 nd->path = nd->root;
978 path_get(&nd->path);
979 nd->inode = nd->path.dentry->d_inode;
980 }
981 nd->state |= ND_JUMPED;
982 return 0;
983 }
984
985 /*
986 * Helper to directly jump to a known parsed path from ->get_link,
987 * caller must have taken a reference to path beforehand.
988 */
nd_jump_link(struct path * path)989 int nd_jump_link(struct path *path)
990 {
991 int error = -ELOOP;
992 struct nameidata *nd = current->nameidata;
993
994 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
995 goto err;
996
997 error = -EXDEV;
998 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
999 if (nd->path.mnt != path->mnt)
1000 goto err;
1001 }
1002 /* Not currently safe for scoped-lookups. */
1003 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1004 goto err;
1005
1006 path_put(&nd->path);
1007 nd->path = *path;
1008 nd->inode = nd->path.dentry->d_inode;
1009 nd->state |= ND_JUMPED;
1010 return 0;
1011
1012 err:
1013 path_put(path);
1014 return error;
1015 }
1016
put_link(struct nameidata * nd)1017 static inline void put_link(struct nameidata *nd)
1018 {
1019 struct saved *last = nd->stack + --nd->depth;
1020 do_delayed_call(&last->done);
1021 if (!(nd->flags & LOOKUP_RCU))
1022 path_put(&last->link);
1023 }
1024
1025 int sysctl_protected_symlinks __read_mostly = 0;
1026 int sysctl_protected_hardlinks __read_mostly = 0;
1027 int sysctl_protected_fifos __read_mostly;
1028 int sysctl_protected_regular __read_mostly;
1029
1030 /**
1031 * may_follow_link - Check symlink following for unsafe situations
1032 * @nd: nameidata pathwalk data
1033 *
1034 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1035 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1036 * in a sticky world-writable directory. This is to protect privileged
1037 * processes from failing races against path names that may change out
1038 * from under them by way of other users creating malicious symlinks.
1039 * It will permit symlinks to be followed only when outside a sticky
1040 * world-writable directory, or when the uid of the symlink and follower
1041 * match, or when the directory owner matches the symlink's owner.
1042 *
1043 * Returns 0 if following the symlink is allowed, -ve on error.
1044 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1045 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1046 {
1047 struct user_namespace *mnt_userns;
1048 kuid_t i_uid;
1049
1050 if (!sysctl_protected_symlinks)
1051 return 0;
1052
1053 mnt_userns = mnt_user_ns(nd->path.mnt);
1054 i_uid = i_uid_into_mnt(mnt_userns, inode);
1055 /* Allowed if owner and follower match. */
1056 if (uid_eq(current_cred()->fsuid, i_uid))
1057 return 0;
1058
1059 /* Allowed if parent directory not sticky and world-writable. */
1060 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1061 return 0;
1062
1063 /* Allowed if parent directory and link owner match. */
1064 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1065 return 0;
1066
1067 if (nd->flags & LOOKUP_RCU)
1068 return -ECHILD;
1069
1070 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1071 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1072 return -EACCES;
1073 }
1074
1075 /**
1076 * safe_hardlink_source - Check for safe hardlink conditions
1077 * @mnt_userns: user namespace of the mount the inode was found from
1078 * @inode: the source inode to hardlink from
1079 *
1080 * Return false if at least one of the following conditions:
1081 * - inode is not a regular file
1082 * - inode is setuid
1083 * - inode is setgid and group-exec
1084 * - access failure for read and write
1085 *
1086 * Otherwise returns true.
1087 */
safe_hardlink_source(struct user_namespace * mnt_userns,struct inode * inode)1088 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1089 struct inode *inode)
1090 {
1091 umode_t mode = inode->i_mode;
1092
1093 /* Special files should not get pinned to the filesystem. */
1094 if (!S_ISREG(mode))
1095 return false;
1096
1097 /* Setuid files should not get pinned to the filesystem. */
1098 if (mode & S_ISUID)
1099 return false;
1100
1101 /* Executable setgid files should not get pinned to the filesystem. */
1102 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1103 return false;
1104
1105 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1106 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1107 return false;
1108
1109 return true;
1110 }
1111
1112 /**
1113 * may_linkat - Check permissions for creating a hardlink
1114 * @mnt_userns: user namespace of the mount the inode was found from
1115 * @link: the source to hardlink from
1116 *
1117 * Block hardlink when all of:
1118 * - sysctl_protected_hardlinks enabled
1119 * - fsuid does not match inode
1120 * - hardlink source is unsafe (see safe_hardlink_source() above)
1121 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1122 *
1123 * If the inode has been found through an idmapped mount the user namespace of
1124 * the vfsmount must be passed through @mnt_userns. This function will then take
1125 * care to map the inode according to @mnt_userns before checking permissions.
1126 * On non-idmapped mounts or if permission checking is to be performed on the
1127 * raw inode simply passs init_user_ns.
1128 *
1129 * Returns 0 if successful, -ve on error.
1130 */
may_linkat(struct user_namespace * mnt_userns,struct path * link)1131 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1132 {
1133 struct inode *inode = link->dentry->d_inode;
1134
1135 /* Inode writeback is not safe when the uid or gid are invalid. */
1136 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1137 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1138 return -EOVERFLOW;
1139
1140 if (!sysctl_protected_hardlinks)
1141 return 0;
1142
1143 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1144 * otherwise, it must be a safe source.
1145 */
1146 if (safe_hardlink_source(mnt_userns, inode) ||
1147 inode_owner_or_capable(mnt_userns, inode))
1148 return 0;
1149
1150 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1151 return -EPERM;
1152 }
1153
1154 /**
1155 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1156 * should be allowed, or not, on files that already
1157 * exist.
1158 * @mnt_userns: user namespace of the mount the inode was found from
1159 * @nd: nameidata pathwalk data
1160 * @inode: the inode of the file to open
1161 *
1162 * Block an O_CREAT open of a FIFO (or a regular file) when:
1163 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1164 * - the file already exists
1165 * - we are in a sticky directory
1166 * - we don't own the file
1167 * - the owner of the directory doesn't own the file
1168 * - the directory is world writable
1169 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1170 * the directory doesn't have to be world writable: being group writable will
1171 * be enough.
1172 *
1173 * If the inode has been found through an idmapped mount the user namespace of
1174 * the vfsmount must be passed through @mnt_userns. This function will then take
1175 * care to map the inode according to @mnt_userns before checking permissions.
1176 * On non-idmapped mounts or if permission checking is to be performed on the
1177 * raw inode simply passs init_user_ns.
1178 *
1179 * Returns 0 if the open is allowed, -ve on error.
1180 */
may_create_in_sticky(struct user_namespace * mnt_userns,struct nameidata * nd,struct inode * const inode)1181 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1182 struct nameidata *nd, struct inode *const inode)
1183 {
1184 umode_t dir_mode = nd->dir_mode;
1185 kuid_t dir_uid = nd->dir_uid;
1186
1187 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1188 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1189 likely(!(dir_mode & S_ISVTX)) ||
1190 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1191 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1192 return 0;
1193
1194 if (likely(dir_mode & 0002) ||
1195 (dir_mode & 0020 &&
1196 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1197 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1198 const char *operation = S_ISFIFO(inode->i_mode) ?
1199 "sticky_create_fifo" :
1200 "sticky_create_regular";
1201 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1202 return -EACCES;
1203 }
1204 return 0;
1205 }
1206
1207 /*
1208 * follow_up - Find the mountpoint of path's vfsmount
1209 *
1210 * Given a path, find the mountpoint of its source file system.
1211 * Replace @path with the path of the mountpoint in the parent mount.
1212 * Up is towards /.
1213 *
1214 * Return 1 if we went up a level and 0 if we were already at the
1215 * root.
1216 */
follow_up(struct path * path)1217 int follow_up(struct path *path)
1218 {
1219 struct mount *mnt = real_mount(path->mnt);
1220 struct mount *parent;
1221 struct dentry *mountpoint;
1222
1223 read_seqlock_excl(&mount_lock);
1224 parent = mnt->mnt_parent;
1225 if (parent == mnt) {
1226 read_sequnlock_excl(&mount_lock);
1227 return 0;
1228 }
1229 mntget(&parent->mnt);
1230 mountpoint = dget(mnt->mnt_mountpoint);
1231 read_sequnlock_excl(&mount_lock);
1232 dput(path->dentry);
1233 path->dentry = mountpoint;
1234 mntput(path->mnt);
1235 path->mnt = &parent->mnt;
1236 return 1;
1237 }
1238 EXPORT_SYMBOL(follow_up);
1239
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1240 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1241 struct path *path, unsigned *seqp)
1242 {
1243 while (mnt_has_parent(m)) {
1244 struct dentry *mountpoint = m->mnt_mountpoint;
1245
1246 m = m->mnt_parent;
1247 if (unlikely(root->dentry == mountpoint &&
1248 root->mnt == &m->mnt))
1249 break;
1250 if (mountpoint != m->mnt.mnt_root) {
1251 path->mnt = &m->mnt;
1252 path->dentry = mountpoint;
1253 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1254 return true;
1255 }
1256 }
1257 return false;
1258 }
1259
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1260 static bool choose_mountpoint(struct mount *m, const struct path *root,
1261 struct path *path)
1262 {
1263 bool found;
1264
1265 rcu_read_lock();
1266 while (1) {
1267 unsigned seq, mseq = read_seqbegin(&mount_lock);
1268
1269 found = choose_mountpoint_rcu(m, root, path, &seq);
1270 if (unlikely(!found)) {
1271 if (!read_seqretry(&mount_lock, mseq))
1272 break;
1273 } else {
1274 if (likely(__legitimize_path(path, seq, mseq)))
1275 break;
1276 rcu_read_unlock();
1277 path_put(path);
1278 rcu_read_lock();
1279 }
1280 }
1281 rcu_read_unlock();
1282 return found;
1283 }
1284
1285 /*
1286 * Perform an automount
1287 * - return -EISDIR to tell follow_managed() to stop and return the path we
1288 * were called with.
1289 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1290 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1291 {
1292 struct dentry *dentry = path->dentry;
1293
1294 /* We don't want to mount if someone's just doing a stat -
1295 * unless they're stat'ing a directory and appended a '/' to
1296 * the name.
1297 *
1298 * We do, however, want to mount if someone wants to open or
1299 * create a file of any type under the mountpoint, wants to
1300 * traverse through the mountpoint or wants to open the
1301 * mounted directory. Also, autofs may mark negative dentries
1302 * as being automount points. These will need the attentions
1303 * of the daemon to instantiate them before they can be used.
1304 */
1305 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1306 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1307 dentry->d_inode)
1308 return -EISDIR;
1309
1310 if (count && (*count)++ >= MAXSYMLINKS)
1311 return -ELOOP;
1312
1313 return finish_automount(dentry->d_op->d_automount(path), path);
1314 }
1315
1316 /*
1317 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1318 * dentries are pinned but not locked here, so negative dentry can go
1319 * positive right under us. Use of smp_load_acquire() provides a barrier
1320 * sufficient for ->d_inode and ->d_flags consistency.
1321 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1322 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1323 int *count, unsigned lookup_flags)
1324 {
1325 struct vfsmount *mnt = path->mnt;
1326 bool need_mntput = false;
1327 int ret = 0;
1328
1329 while (flags & DCACHE_MANAGED_DENTRY) {
1330 /* Allow the filesystem to manage the transit without i_mutex
1331 * being held. */
1332 if (flags & DCACHE_MANAGE_TRANSIT) {
1333 ret = path->dentry->d_op->d_manage(path, false);
1334 flags = smp_load_acquire(&path->dentry->d_flags);
1335 if (ret < 0)
1336 break;
1337 }
1338
1339 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1340 struct vfsmount *mounted = lookup_mnt(path);
1341 if (mounted) { // ... in our namespace
1342 dput(path->dentry);
1343 if (need_mntput)
1344 mntput(path->mnt);
1345 path->mnt = mounted;
1346 path->dentry = dget(mounted->mnt_root);
1347 // here we know it's positive
1348 flags = path->dentry->d_flags;
1349 need_mntput = true;
1350 continue;
1351 }
1352 }
1353
1354 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1355 break;
1356
1357 // uncovered automount point
1358 ret = follow_automount(path, count, lookup_flags);
1359 flags = smp_load_acquire(&path->dentry->d_flags);
1360 if (ret < 0)
1361 break;
1362 }
1363
1364 if (ret == -EISDIR)
1365 ret = 0;
1366 // possible if you race with several mount --move
1367 if (need_mntput && path->mnt == mnt)
1368 mntput(path->mnt);
1369 if (!ret && unlikely(d_flags_negative(flags)))
1370 ret = -ENOENT;
1371 *jumped = need_mntput;
1372 return ret;
1373 }
1374
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1375 static inline int traverse_mounts(struct path *path, bool *jumped,
1376 int *count, unsigned lookup_flags)
1377 {
1378 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1379
1380 /* fastpath */
1381 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1382 *jumped = false;
1383 if (unlikely(d_flags_negative(flags)))
1384 return -ENOENT;
1385 return 0;
1386 }
1387 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1388 }
1389
follow_down_one(struct path * path)1390 int follow_down_one(struct path *path)
1391 {
1392 struct vfsmount *mounted;
1393
1394 mounted = lookup_mnt(path);
1395 if (mounted) {
1396 dput(path->dentry);
1397 mntput(path->mnt);
1398 path->mnt = mounted;
1399 path->dentry = dget(mounted->mnt_root);
1400 return 1;
1401 }
1402 return 0;
1403 }
1404 EXPORT_SYMBOL(follow_down_one);
1405
1406 /*
1407 * Follow down to the covering mount currently visible to userspace. At each
1408 * point, the filesystem owning that dentry may be queried as to whether the
1409 * caller is permitted to proceed or not.
1410 */
follow_down(struct path * path)1411 int follow_down(struct path *path)
1412 {
1413 struct vfsmount *mnt = path->mnt;
1414 bool jumped;
1415 int ret = traverse_mounts(path, &jumped, NULL, 0);
1416
1417 if (path->mnt != mnt)
1418 mntput(mnt);
1419 return ret;
1420 }
1421 EXPORT_SYMBOL(follow_down);
1422
1423 /*
1424 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1425 * we meet a managed dentry that would need blocking.
1426 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1427 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1428 struct inode **inode, unsigned *seqp)
1429 {
1430 struct dentry *dentry = path->dentry;
1431 unsigned int flags = dentry->d_flags;
1432
1433 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1434 return true;
1435
1436 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1437 return false;
1438
1439 for (;;) {
1440 /*
1441 * Don't forget we might have a non-mountpoint managed dentry
1442 * that wants to block transit.
1443 */
1444 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1445 int res = dentry->d_op->d_manage(path, true);
1446 if (res)
1447 return res == -EISDIR;
1448 flags = dentry->d_flags;
1449 }
1450
1451 if (flags & DCACHE_MOUNTED) {
1452 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1453 if (mounted) {
1454 path->mnt = &mounted->mnt;
1455 dentry = path->dentry = mounted->mnt.mnt_root;
1456 nd->state |= ND_JUMPED;
1457 *seqp = read_seqcount_begin(&dentry->d_seq);
1458 *inode = dentry->d_inode;
1459 /*
1460 * We don't need to re-check ->d_seq after this
1461 * ->d_inode read - there will be an RCU delay
1462 * between mount hash removal and ->mnt_root
1463 * becoming unpinned.
1464 */
1465 flags = dentry->d_flags;
1466 if (read_seqretry(&mount_lock, nd->m_seq))
1467 return false;
1468 continue;
1469 }
1470 if (read_seqretry(&mount_lock, nd->m_seq))
1471 return false;
1472 }
1473 return !(flags & DCACHE_NEED_AUTOMOUNT);
1474 }
1475 }
1476
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path,struct inode ** inode,unsigned int * seqp)1477 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1478 struct path *path, struct inode **inode,
1479 unsigned int *seqp)
1480 {
1481 bool jumped;
1482 int ret;
1483
1484 path->mnt = nd->path.mnt;
1485 path->dentry = dentry;
1486 if (nd->flags & LOOKUP_RCU) {
1487 unsigned int seq = *seqp;
1488 if (unlikely(!*inode))
1489 return -ENOENT;
1490 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1491 return 0;
1492 if (!try_to_unlazy_next(nd, dentry, seq))
1493 return -ECHILD;
1494 // *path might've been clobbered by __follow_mount_rcu()
1495 path->mnt = nd->path.mnt;
1496 path->dentry = dentry;
1497 }
1498 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1499 if (jumped) {
1500 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1501 ret = -EXDEV;
1502 else
1503 nd->state |= ND_JUMPED;
1504 }
1505 if (unlikely(ret)) {
1506 dput(path->dentry);
1507 if (path->mnt != nd->path.mnt)
1508 mntput(path->mnt);
1509 } else {
1510 *inode = d_backing_inode(path->dentry);
1511 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1512 }
1513 return ret;
1514 }
1515
1516 /*
1517 * This looks up the name in dcache and possibly revalidates the found dentry.
1518 * NULL is returned if the dentry does not exist in the cache.
1519 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1520 static struct dentry *lookup_dcache(const struct qstr *name,
1521 struct dentry *dir,
1522 unsigned int flags)
1523 {
1524 struct dentry *dentry = d_lookup(dir, name);
1525 if (dentry) {
1526 int error = d_revalidate(dentry, flags);
1527 if (unlikely(error <= 0)) {
1528 if (!error)
1529 d_invalidate(dentry);
1530 dput(dentry);
1531 return ERR_PTR(error);
1532 }
1533 }
1534 return dentry;
1535 }
1536
1537 /*
1538 * Parent directory has inode locked exclusive. This is one
1539 * and only case when ->lookup() gets called on non in-lookup
1540 * dentries - as the matter of fact, this only gets called
1541 * when directory is guaranteed to have no in-lookup children
1542 * at all.
1543 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1544 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1545 struct dentry *base,
1546 unsigned int flags)
1547 {
1548 struct dentry *dentry = lookup_dcache(name, base, flags);
1549 struct dentry *old;
1550 struct inode *dir = base->d_inode;
1551
1552 if (dentry)
1553 return dentry;
1554
1555 /* Don't create child dentry for a dead directory. */
1556 if (unlikely(IS_DEADDIR(dir)))
1557 return ERR_PTR(-ENOENT);
1558
1559 dentry = d_alloc(base, name);
1560 if (unlikely(!dentry))
1561 return ERR_PTR(-ENOMEM);
1562
1563 old = dir->i_op->lookup(dir, dentry, flags);
1564 if (unlikely(old)) {
1565 dput(dentry);
1566 dentry = old;
1567 }
1568 return dentry;
1569 }
1570 EXPORT_SYMBOL(lookup_one_qstr_excl);
1571
lookup_fast(struct nameidata * nd,struct inode ** inode,unsigned * seqp)1572 static struct dentry *lookup_fast(struct nameidata *nd,
1573 struct inode **inode,
1574 unsigned *seqp)
1575 {
1576 struct dentry *dentry, *parent = nd->path.dentry;
1577 int status = 1;
1578
1579 /*
1580 * Rename seqlock is not required here because in the off chance
1581 * of a false negative due to a concurrent rename, the caller is
1582 * going to fall back to non-racy lookup.
1583 */
1584 if (nd->flags & LOOKUP_RCU) {
1585 unsigned seq;
1586 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1587 if (unlikely(!dentry)) {
1588 if (!try_to_unlazy(nd))
1589 return ERR_PTR(-ECHILD);
1590 return NULL;
1591 }
1592
1593 /*
1594 * This sequence count validates that the inode matches
1595 * the dentry name information from lookup.
1596 */
1597 *inode = d_backing_inode(dentry);
1598 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1599 return ERR_PTR(-ECHILD);
1600
1601 /*
1602 * This sequence count validates that the parent had no
1603 * changes while we did the lookup of the dentry above.
1604 *
1605 * The memory barrier in read_seqcount_begin of child is
1606 * enough, we can use __read_seqcount_retry here.
1607 */
1608 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1609 return ERR_PTR(-ECHILD);
1610
1611 *seqp = seq;
1612 status = d_revalidate(dentry, nd->flags);
1613 if (likely(status > 0))
1614 return dentry;
1615 if (!try_to_unlazy_next(nd, dentry, seq))
1616 return ERR_PTR(-ECHILD);
1617 if (status == -ECHILD)
1618 /* we'd been told to redo it in non-rcu mode */
1619 status = d_revalidate(dentry, nd->flags);
1620 } else {
1621 dentry = __d_lookup(parent, &nd->last);
1622 if (unlikely(!dentry))
1623 return NULL;
1624 status = d_revalidate(dentry, nd->flags);
1625 }
1626 if (unlikely(status <= 0)) {
1627 if (!status)
1628 d_invalidate(dentry);
1629 dput(dentry);
1630 return ERR_PTR(status);
1631 }
1632 return dentry;
1633 }
1634
1635 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1636 static struct dentry *__lookup_slow(const struct qstr *name,
1637 struct dentry *dir,
1638 unsigned int flags)
1639 {
1640 struct dentry *dentry, *old;
1641 struct inode *inode = dir->d_inode;
1642 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1643
1644 /* Don't go there if it's already dead */
1645 if (unlikely(IS_DEADDIR(inode)))
1646 return ERR_PTR(-ENOENT);
1647 again:
1648 dentry = d_alloc_parallel(dir, name, &wq);
1649 if (IS_ERR(dentry))
1650 return dentry;
1651 if (unlikely(!d_in_lookup(dentry))) {
1652 int error = d_revalidate(dentry, flags);
1653 if (unlikely(error <= 0)) {
1654 if (!error) {
1655 d_invalidate(dentry);
1656 dput(dentry);
1657 goto again;
1658 }
1659 dput(dentry);
1660 dentry = ERR_PTR(error);
1661 }
1662 } else {
1663 old = inode->i_op->lookup(inode, dentry, flags);
1664 d_lookup_done(dentry);
1665 if (unlikely(old)) {
1666 dput(dentry);
1667 dentry = old;
1668 }
1669 }
1670 return dentry;
1671 }
1672
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1673 static struct dentry *lookup_slow(const struct qstr *name,
1674 struct dentry *dir,
1675 unsigned int flags)
1676 {
1677 struct inode *inode = dir->d_inode;
1678 struct dentry *res;
1679 inode_lock_shared(inode);
1680 res = __lookup_slow(name, dir, flags);
1681 inode_unlock_shared(inode);
1682 return res;
1683 }
1684
may_lookup(struct user_namespace * mnt_userns,struct nameidata * nd)1685 static inline int may_lookup(struct user_namespace *mnt_userns,
1686 struct nameidata *nd)
1687 {
1688 if (nd->flags & LOOKUP_RCU) {
1689 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1690 if (err != -ECHILD || !try_to_unlazy(nd))
1691 return err;
1692 }
1693 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1694 }
1695
reserve_stack(struct nameidata * nd,struct path * link,unsigned seq)1696 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1697 {
1698 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1699 return -ELOOP;
1700
1701 if (likely(nd->depth != EMBEDDED_LEVELS))
1702 return 0;
1703 if (likely(nd->stack != nd->internal))
1704 return 0;
1705 if (likely(nd_alloc_stack(nd)))
1706 return 0;
1707
1708 if (nd->flags & LOOKUP_RCU) {
1709 // we need to grab link before we do unlazy. And we can't skip
1710 // unlazy even if we fail to grab the link - cleanup needs it
1711 bool grabbed_link = legitimize_path(nd, link, seq);
1712
1713 if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1714 return -ECHILD;
1715
1716 if (nd_alloc_stack(nd))
1717 return 0;
1718 }
1719 return -ENOMEM;
1720 }
1721
1722 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1723
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq,int flags)1724 static const char *pick_link(struct nameidata *nd, struct path *link,
1725 struct inode *inode, unsigned seq, int flags)
1726 {
1727 struct saved *last;
1728 const char *res;
1729 int error = reserve_stack(nd, link, seq);
1730
1731 if (unlikely(error)) {
1732 if (!(nd->flags & LOOKUP_RCU))
1733 path_put(link);
1734 return ERR_PTR(error);
1735 }
1736 last = nd->stack + nd->depth++;
1737 last->link = *link;
1738 clear_delayed_call(&last->done);
1739 last->seq = seq;
1740
1741 if (flags & WALK_TRAILING) {
1742 error = may_follow_link(nd, inode);
1743 if (unlikely(error))
1744 return ERR_PTR(error);
1745 }
1746
1747 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1748 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1749 return ERR_PTR(-ELOOP);
1750
1751 if (!(nd->flags & LOOKUP_RCU)) {
1752 touch_atime(&last->link);
1753 cond_resched();
1754 } else if (atime_needs_update(&last->link, inode)) {
1755 if (!try_to_unlazy(nd))
1756 return ERR_PTR(-ECHILD);
1757 touch_atime(&last->link);
1758 }
1759
1760 error = security_inode_follow_link(link->dentry, inode,
1761 nd->flags & LOOKUP_RCU);
1762 if (unlikely(error))
1763 return ERR_PTR(error);
1764
1765 res = READ_ONCE(inode->i_link);
1766 if (!res) {
1767 const char * (*get)(struct dentry *, struct inode *,
1768 struct delayed_call *);
1769 get = inode->i_op->get_link;
1770 if (nd->flags & LOOKUP_RCU) {
1771 res = get(NULL, inode, &last->done);
1772 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1773 res = get(link->dentry, inode, &last->done);
1774 } else {
1775 res = get(link->dentry, inode, &last->done);
1776 }
1777 if (!res)
1778 goto all_done;
1779 if (IS_ERR(res))
1780 return res;
1781 }
1782 if (*res == '/') {
1783 error = nd_jump_root(nd);
1784 if (unlikely(error))
1785 return ERR_PTR(error);
1786 while (unlikely(*++res == '/'))
1787 ;
1788 }
1789 if (*res)
1790 return res;
1791 all_done: // pure jump
1792 put_link(nd);
1793 return NULL;
1794 }
1795
1796 /*
1797 * Do we need to follow links? We _really_ want to be able
1798 * to do this check without having to look at inode->i_op,
1799 * so we keep a cache of "no, this doesn't need follow_link"
1800 * for the common case.
1801 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry,struct inode * inode,unsigned seq)1802 static const char *step_into(struct nameidata *nd, int flags,
1803 struct dentry *dentry, struct inode *inode, unsigned seq)
1804 {
1805 struct path path;
1806 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1807
1808 if (err < 0)
1809 return ERR_PTR(err);
1810 if (likely(!d_is_symlink(path.dentry)) ||
1811 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1812 (flags & WALK_NOFOLLOW)) {
1813 /* not a symlink or should not follow */
1814 if (!(nd->flags & LOOKUP_RCU)) {
1815 dput(nd->path.dentry);
1816 if (nd->path.mnt != path.mnt)
1817 mntput(nd->path.mnt);
1818 }
1819 nd->path = path;
1820 nd->inode = inode;
1821 nd->seq = seq;
1822 return NULL;
1823 }
1824 if (nd->flags & LOOKUP_RCU) {
1825 /* make sure that d_is_symlink above matches inode */
1826 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1827 return ERR_PTR(-ECHILD);
1828 } else {
1829 if (path.mnt == nd->path.mnt)
1830 mntget(path.mnt);
1831 }
1832 return pick_link(nd, &path, inode, seq, flags);
1833 }
1834
follow_dotdot_rcu(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1835 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1836 struct inode **inodep,
1837 unsigned *seqp)
1838 {
1839 struct dentry *parent, *old;
1840
1841 if (path_equal(&nd->path, &nd->root))
1842 goto in_root;
1843 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1844 struct path path;
1845 unsigned seq;
1846 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1847 &nd->root, &path, &seq))
1848 goto in_root;
1849 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1850 return ERR_PTR(-ECHILD);
1851 nd->path = path;
1852 nd->inode = path.dentry->d_inode;
1853 nd->seq = seq;
1854 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1855 return ERR_PTR(-ECHILD);
1856 /* we know that mountpoint was pinned */
1857 }
1858 old = nd->path.dentry;
1859 parent = old->d_parent;
1860 *inodep = parent->d_inode;
1861 *seqp = read_seqcount_begin(&parent->d_seq);
1862 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1863 return ERR_PTR(-ECHILD);
1864 if (unlikely(!path_connected(nd->path.mnt, parent)))
1865 return ERR_PTR(-ECHILD);
1866 return parent;
1867 in_root:
1868 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1869 return ERR_PTR(-ECHILD);
1870 if (unlikely(nd->flags & LOOKUP_BENEATH))
1871 return ERR_PTR(-ECHILD);
1872 return NULL;
1873 }
1874
follow_dotdot(struct nameidata * nd,struct inode ** inodep,unsigned * seqp)1875 static struct dentry *follow_dotdot(struct nameidata *nd,
1876 struct inode **inodep,
1877 unsigned *seqp)
1878 {
1879 struct dentry *parent;
1880
1881 if (path_equal(&nd->path, &nd->root))
1882 goto in_root;
1883 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1884 struct path path;
1885
1886 if (!choose_mountpoint(real_mount(nd->path.mnt),
1887 &nd->root, &path))
1888 goto in_root;
1889 path_put(&nd->path);
1890 nd->path = path;
1891 nd->inode = path.dentry->d_inode;
1892 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1893 return ERR_PTR(-EXDEV);
1894 }
1895 /* rare case of legitimate dget_parent()... */
1896 parent = dget_parent(nd->path.dentry);
1897 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1898 dput(parent);
1899 return ERR_PTR(-ENOENT);
1900 }
1901 *seqp = 0;
1902 *inodep = parent->d_inode;
1903 return parent;
1904
1905 in_root:
1906 if (unlikely(nd->flags & LOOKUP_BENEATH))
1907 return ERR_PTR(-EXDEV);
1908 dget(nd->path.dentry);
1909 return NULL;
1910 }
1911
handle_dots(struct nameidata * nd,int type)1912 static const char *handle_dots(struct nameidata *nd, int type)
1913 {
1914 if (type == LAST_DOTDOT) {
1915 const char *error = NULL;
1916 struct dentry *parent;
1917 struct inode *inode;
1918 unsigned seq;
1919
1920 if (!nd->root.mnt) {
1921 error = ERR_PTR(set_root(nd));
1922 if (error)
1923 return error;
1924 }
1925 if (nd->flags & LOOKUP_RCU)
1926 parent = follow_dotdot_rcu(nd, &inode, &seq);
1927 else
1928 parent = follow_dotdot(nd, &inode, &seq);
1929 if (IS_ERR(parent))
1930 return ERR_CAST(parent);
1931 if (unlikely(!parent))
1932 error = step_into(nd, WALK_NOFOLLOW,
1933 nd->path.dentry, nd->inode, nd->seq);
1934 else
1935 error = step_into(nd, WALK_NOFOLLOW,
1936 parent, inode, seq);
1937 if (unlikely(error))
1938 return error;
1939
1940 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1941 /*
1942 * If there was a racing rename or mount along our
1943 * path, then we can't be sure that ".." hasn't jumped
1944 * above nd->root (and so userspace should retry or use
1945 * some fallback).
1946 */
1947 smp_rmb();
1948 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1949 return ERR_PTR(-EAGAIN);
1950 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1951 return ERR_PTR(-EAGAIN);
1952 }
1953 }
1954 return NULL;
1955 }
1956
walk_component(struct nameidata * nd,int flags)1957 static const char *walk_component(struct nameidata *nd, int flags)
1958 {
1959 struct dentry *dentry;
1960 struct inode *inode;
1961 unsigned seq;
1962 /*
1963 * "." and ".." are special - ".." especially so because it has
1964 * to be able to know about the current root directory and
1965 * parent relationships.
1966 */
1967 if (unlikely(nd->last_type != LAST_NORM)) {
1968 if (!(flags & WALK_MORE) && nd->depth)
1969 put_link(nd);
1970 return handle_dots(nd, nd->last_type);
1971 }
1972 dentry = lookup_fast(nd, &inode, &seq);
1973 if (IS_ERR(dentry))
1974 return ERR_CAST(dentry);
1975 if (unlikely(!dentry)) {
1976 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1977 if (IS_ERR(dentry))
1978 return ERR_CAST(dentry);
1979 }
1980 if (!(flags & WALK_MORE) && nd->depth)
1981 put_link(nd);
1982 return step_into(nd, flags, dentry, inode, seq);
1983 }
1984
1985 /*
1986 * We can do the critical dentry name comparison and hashing
1987 * operations one word at a time, but we are limited to:
1988 *
1989 * - Architectures with fast unaligned word accesses. We could
1990 * do a "get_unaligned()" if this helps and is sufficiently
1991 * fast.
1992 *
1993 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1994 * do not trap on the (extremely unlikely) case of a page
1995 * crossing operation.
1996 *
1997 * - Furthermore, we need an efficient 64-bit compile for the
1998 * 64-bit case in order to generate the "number of bytes in
1999 * the final mask". Again, that could be replaced with a
2000 * efficient population count instruction or similar.
2001 */
2002 #ifdef CONFIG_DCACHE_WORD_ACCESS
2003
2004 #include <asm/word-at-a-time.h>
2005
2006 #ifdef HASH_MIX
2007
2008 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2009
2010 #elif defined(CONFIG_64BIT)
2011 /*
2012 * Register pressure in the mixing function is an issue, particularly
2013 * on 32-bit x86, but almost any function requires one state value and
2014 * one temporary. Instead, use a function designed for two state values
2015 * and no temporaries.
2016 *
2017 * This function cannot create a collision in only two iterations, so
2018 * we have two iterations to achieve avalanche. In those two iterations,
2019 * we have six layers of mixing, which is enough to spread one bit's
2020 * influence out to 2^6 = 64 state bits.
2021 *
2022 * Rotate constants are scored by considering either 64 one-bit input
2023 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2024 * probability of that delta causing a change to each of the 128 output
2025 * bits, using a sample of random initial states.
2026 *
2027 * The Shannon entropy of the computed probabilities is then summed
2028 * to produce a score. Ideally, any input change has a 50% chance of
2029 * toggling any given output bit.
2030 *
2031 * Mixing scores (in bits) for (12,45):
2032 * Input delta: 1-bit 2-bit
2033 * 1 round: 713.3 42542.6
2034 * 2 rounds: 2753.7 140389.8
2035 * 3 rounds: 5954.1 233458.2
2036 * 4 rounds: 7862.6 256672.2
2037 * Perfect: 8192 258048
2038 * (64*128) (64*63/2 * 128)
2039 */
2040 #define HASH_MIX(x, y, a) \
2041 ( x ^= (a), \
2042 y ^= x, x = rol64(x,12),\
2043 x += y, y = rol64(y,45),\
2044 y *= 9 )
2045
2046 /*
2047 * Fold two longs into one 32-bit hash value. This must be fast, but
2048 * latency isn't quite as critical, as there is a fair bit of additional
2049 * work done before the hash value is used.
2050 */
fold_hash(unsigned long x,unsigned long y)2051 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2052 {
2053 y ^= x * GOLDEN_RATIO_64;
2054 y *= GOLDEN_RATIO_64;
2055 return y >> 32;
2056 }
2057
2058 #else /* 32-bit case */
2059
2060 /*
2061 * Mixing scores (in bits) for (7,20):
2062 * Input delta: 1-bit 2-bit
2063 * 1 round: 330.3 9201.6
2064 * 2 rounds: 1246.4 25475.4
2065 * 3 rounds: 1907.1 31295.1
2066 * 4 rounds: 2042.3 31718.6
2067 * Perfect: 2048 31744
2068 * (32*64) (32*31/2 * 64)
2069 */
2070 #define HASH_MIX(x, y, a) \
2071 ( x ^= (a), \
2072 y ^= x, x = rol32(x, 7),\
2073 x += y, y = rol32(y,20),\
2074 y *= 9 )
2075
fold_hash(unsigned long x,unsigned long y)2076 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2077 {
2078 /* Use arch-optimized multiply if one exists */
2079 return __hash_32(y ^ __hash_32(x));
2080 }
2081
2082 #endif
2083
2084 /*
2085 * Return the hash of a string of known length. This is carfully
2086 * designed to match hash_name(), which is the more critical function.
2087 * In particular, we must end by hashing a final word containing 0..7
2088 * payload bytes, to match the way that hash_name() iterates until it
2089 * finds the delimiter after the name.
2090 */
full_name_hash(const void * salt,const char * name,unsigned int len)2091 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2092 {
2093 unsigned long a, x = 0, y = (unsigned long)salt;
2094
2095 for (;;) {
2096 if (!len)
2097 goto done;
2098 a = load_unaligned_zeropad(name);
2099 if (len < sizeof(unsigned long))
2100 break;
2101 HASH_MIX(x, y, a);
2102 name += sizeof(unsigned long);
2103 len -= sizeof(unsigned long);
2104 }
2105 x ^= a & bytemask_from_count(len);
2106 done:
2107 return fold_hash(x, y);
2108 }
2109 EXPORT_SYMBOL(full_name_hash);
2110
2111 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2112 u64 hashlen_string(const void *salt, const char *name)
2113 {
2114 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2115 unsigned long adata, mask, len;
2116 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2117
2118 len = 0;
2119 goto inside;
2120
2121 do {
2122 HASH_MIX(x, y, a);
2123 len += sizeof(unsigned long);
2124 inside:
2125 a = load_unaligned_zeropad(name+len);
2126 } while (!has_zero(a, &adata, &constants));
2127
2128 adata = prep_zero_mask(a, adata, &constants);
2129 mask = create_zero_mask(adata);
2130 x ^= a & zero_bytemask(mask);
2131
2132 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2133 }
2134 EXPORT_SYMBOL(hashlen_string);
2135
2136 /*
2137 * Calculate the length and hash of the path component, and
2138 * return the "hash_len" as the result.
2139 */
hash_name(const void * salt,const char * name)2140 static inline u64 hash_name(const void *salt, const char *name)
2141 {
2142 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2143 unsigned long adata, bdata, mask, len;
2144 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2145
2146 len = 0;
2147 goto inside;
2148
2149 do {
2150 HASH_MIX(x, y, a);
2151 len += sizeof(unsigned long);
2152 inside:
2153 a = load_unaligned_zeropad(name+len);
2154 b = a ^ REPEAT_BYTE('/');
2155 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2156
2157 adata = prep_zero_mask(a, adata, &constants);
2158 bdata = prep_zero_mask(b, bdata, &constants);
2159 mask = create_zero_mask(adata | bdata);
2160 x ^= a & zero_bytemask(mask);
2161
2162 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2163 }
2164
2165 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2166
2167 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2168 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2169 {
2170 unsigned long hash = init_name_hash(salt);
2171 while (len--)
2172 hash = partial_name_hash((unsigned char)*name++, hash);
2173 return end_name_hash(hash);
2174 }
2175 EXPORT_SYMBOL(full_name_hash);
2176
2177 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2178 u64 hashlen_string(const void *salt, const char *name)
2179 {
2180 unsigned long hash = init_name_hash(salt);
2181 unsigned long len = 0, c;
2182
2183 c = (unsigned char)*name;
2184 while (c) {
2185 len++;
2186 hash = partial_name_hash(c, hash);
2187 c = (unsigned char)name[len];
2188 }
2189 return hashlen_create(end_name_hash(hash), len);
2190 }
2191 EXPORT_SYMBOL(hashlen_string);
2192
2193 /*
2194 * We know there's a real path component here of at least
2195 * one character.
2196 */
hash_name(const void * salt,const char * name)2197 static inline u64 hash_name(const void *salt, const char *name)
2198 {
2199 unsigned long hash = init_name_hash(salt);
2200 unsigned long len = 0, c;
2201
2202 c = (unsigned char)*name;
2203 do {
2204 len++;
2205 hash = partial_name_hash(c, hash);
2206 c = (unsigned char)name[len];
2207 } while (c && c != '/');
2208 return hashlen_create(end_name_hash(hash), len);
2209 }
2210
2211 #endif
2212
2213 /*
2214 * Name resolution.
2215 * This is the basic name resolution function, turning a pathname into
2216 * the final dentry. We expect 'base' to be positive and a directory.
2217 *
2218 * Returns 0 and nd will have valid dentry and mnt on success.
2219 * Returns error and drops reference to input namei data on failure.
2220 */
link_path_walk(const char * name,struct nameidata * nd)2221 static int link_path_walk(const char *name, struct nameidata *nd)
2222 {
2223 int depth = 0; // depth <= nd->depth
2224 int err;
2225
2226 nd->last_type = LAST_ROOT;
2227 nd->flags |= LOOKUP_PARENT;
2228 if (IS_ERR(name))
2229 return PTR_ERR(name);
2230 while (*name=='/')
2231 name++;
2232 if (!*name) {
2233 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2234 return 0;
2235 }
2236
2237 /* At this point we know we have a real path component. */
2238 for(;;) {
2239 struct user_namespace *mnt_userns;
2240 const char *link;
2241 u64 hash_len;
2242 int type;
2243
2244 mnt_userns = mnt_user_ns(nd->path.mnt);
2245 err = may_lookup(mnt_userns, nd);
2246 if (err)
2247 return err;
2248
2249 hash_len = hash_name(nd->path.dentry, name);
2250
2251 type = LAST_NORM;
2252 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2253 case 2:
2254 if (name[1] == '.') {
2255 type = LAST_DOTDOT;
2256 nd->state |= ND_JUMPED;
2257 }
2258 break;
2259 case 1:
2260 type = LAST_DOT;
2261 }
2262 if (likely(type == LAST_NORM)) {
2263 struct dentry *parent = nd->path.dentry;
2264 nd->state &= ~ND_JUMPED;
2265 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2266 struct qstr this = { { .hash_len = hash_len }, .name = name };
2267 err = parent->d_op->d_hash(parent, &this);
2268 if (err < 0)
2269 return err;
2270 hash_len = this.hash_len;
2271 name = this.name;
2272 }
2273 }
2274
2275 nd->last.hash_len = hash_len;
2276 nd->last.name = name;
2277 nd->last_type = type;
2278
2279 name += hashlen_len(hash_len);
2280 if (!*name)
2281 goto OK;
2282 /*
2283 * If it wasn't NUL, we know it was '/'. Skip that
2284 * slash, and continue until no more slashes.
2285 */
2286 do {
2287 name++;
2288 } while (unlikely(*name == '/'));
2289 if (unlikely(!*name)) {
2290 OK:
2291 /* pathname or trailing symlink, done */
2292 if (!depth) {
2293 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2294 nd->dir_mode = nd->inode->i_mode;
2295 nd->flags &= ~LOOKUP_PARENT;
2296 return 0;
2297 }
2298 /* last component of nested symlink */
2299 name = nd->stack[--depth].name;
2300 link = walk_component(nd, 0);
2301 } else {
2302 /* not the last component */
2303 link = walk_component(nd, WALK_MORE);
2304 }
2305 if (unlikely(link)) {
2306 if (IS_ERR(link))
2307 return PTR_ERR(link);
2308 /* a symlink to follow */
2309 nd->stack[depth++].name = name;
2310 name = link;
2311 continue;
2312 }
2313 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2314 if (nd->flags & LOOKUP_RCU) {
2315 if (!try_to_unlazy(nd))
2316 return -ECHILD;
2317 }
2318 return -ENOTDIR;
2319 }
2320 }
2321 }
2322
2323 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2324 static const char *path_init(struct nameidata *nd, unsigned flags)
2325 {
2326 int error;
2327 const char *s = nd->name->name;
2328
2329 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2330 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2331 return ERR_PTR(-EAGAIN);
2332
2333 if (!*s)
2334 flags &= ~LOOKUP_RCU;
2335 if (flags & LOOKUP_RCU)
2336 rcu_read_lock();
2337
2338 nd->flags = flags;
2339 nd->state |= ND_JUMPED;
2340
2341 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2342 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2343 smp_rmb();
2344
2345 if (nd->state & ND_ROOT_PRESET) {
2346 struct dentry *root = nd->root.dentry;
2347 struct inode *inode = root->d_inode;
2348 if (*s && unlikely(!d_can_lookup(root)))
2349 return ERR_PTR(-ENOTDIR);
2350 nd->path = nd->root;
2351 nd->inode = inode;
2352 if (flags & LOOKUP_RCU) {
2353 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2354 nd->root_seq = nd->seq;
2355 } else {
2356 path_get(&nd->path);
2357 }
2358 return s;
2359 }
2360
2361 nd->root.mnt = NULL;
2362
2363 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2364 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2365 error = nd_jump_root(nd);
2366 if (unlikely(error))
2367 return ERR_PTR(error);
2368 return s;
2369 }
2370
2371 /* Relative pathname -- get the starting-point it is relative to. */
2372 if (nd->dfd == AT_FDCWD) {
2373 if (flags & LOOKUP_RCU) {
2374 struct fs_struct *fs = current->fs;
2375 unsigned seq;
2376
2377 do {
2378 seq = read_seqcount_begin(&fs->seq);
2379 nd->path = fs->pwd;
2380 nd->inode = nd->path.dentry->d_inode;
2381 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2382 } while (read_seqcount_retry(&fs->seq, seq));
2383 } else {
2384 get_fs_pwd(current->fs, &nd->path);
2385 nd->inode = nd->path.dentry->d_inode;
2386 }
2387 } else {
2388 /* Caller must check execute permissions on the starting path component */
2389 struct fd f = fdget_raw(nd->dfd);
2390 struct dentry *dentry;
2391
2392 if (!f.file)
2393 return ERR_PTR(-EBADF);
2394
2395 dentry = f.file->f_path.dentry;
2396
2397 if (*s && unlikely(!d_can_lookup(dentry))) {
2398 fdput(f);
2399 return ERR_PTR(-ENOTDIR);
2400 }
2401
2402 nd->path = f.file->f_path;
2403 if (flags & LOOKUP_RCU) {
2404 nd->inode = nd->path.dentry->d_inode;
2405 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2406 } else {
2407 path_get(&nd->path);
2408 nd->inode = nd->path.dentry->d_inode;
2409 }
2410 fdput(f);
2411 }
2412
2413 /* For scoped-lookups we need to set the root to the dirfd as well. */
2414 if (flags & LOOKUP_IS_SCOPED) {
2415 nd->root = nd->path;
2416 if (flags & LOOKUP_RCU) {
2417 nd->root_seq = nd->seq;
2418 } else {
2419 path_get(&nd->root);
2420 nd->state |= ND_ROOT_GRABBED;
2421 }
2422 }
2423 return s;
2424 }
2425
lookup_last(struct nameidata * nd)2426 static inline const char *lookup_last(struct nameidata *nd)
2427 {
2428 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2429 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2430
2431 return walk_component(nd, WALK_TRAILING);
2432 }
2433
handle_lookup_down(struct nameidata * nd)2434 static int handle_lookup_down(struct nameidata *nd)
2435 {
2436 if (!(nd->flags & LOOKUP_RCU))
2437 dget(nd->path.dentry);
2438 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2439 nd->path.dentry, nd->inode, nd->seq));
2440 }
2441
2442 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2443 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2444 {
2445 const char *s = path_init(nd, flags);
2446 int err;
2447
2448 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2449 err = handle_lookup_down(nd);
2450 if (unlikely(err < 0))
2451 s = ERR_PTR(err);
2452 }
2453
2454 while (!(err = link_path_walk(s, nd)) &&
2455 (s = lookup_last(nd)) != NULL)
2456 ;
2457 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2458 err = handle_lookup_down(nd);
2459 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2460 }
2461 if (!err)
2462 err = complete_walk(nd);
2463
2464 if (!err && nd->flags & LOOKUP_DIRECTORY)
2465 if (!d_can_lookup(nd->path.dentry))
2466 err = -ENOTDIR;
2467 if (!err) {
2468 *path = nd->path;
2469 nd->path.mnt = NULL;
2470 nd->path.dentry = NULL;
2471 }
2472 terminate_walk(nd);
2473 return err;
2474 }
2475
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2476 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2477 struct path *path, struct path *root)
2478 {
2479 int retval;
2480 struct nameidata nd;
2481 if (IS_ERR(name))
2482 return PTR_ERR(name);
2483 set_nameidata(&nd, dfd, name, root);
2484 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2485 if (unlikely(retval == -ECHILD))
2486 retval = path_lookupat(&nd, flags, path);
2487 if (unlikely(retval == -ESTALE))
2488 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2489
2490 if (likely(!retval))
2491 audit_inode(name, path->dentry,
2492 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2493 restore_nameidata();
2494 return retval;
2495 }
2496
2497 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2498 static int path_parentat(struct nameidata *nd, unsigned flags,
2499 struct path *parent)
2500 {
2501 const char *s = path_init(nd, flags);
2502 int err = link_path_walk(s, nd);
2503 if (!err)
2504 err = complete_walk(nd);
2505 if (!err) {
2506 *parent = nd->path;
2507 nd->path.mnt = NULL;
2508 nd->path.dentry = NULL;
2509 }
2510 terminate_walk(nd);
2511 return err;
2512 }
2513
2514 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2515 static int __filename_parentat(int dfd, struct filename *name,
2516 unsigned int flags, struct path *parent,
2517 struct qstr *last, int *type,
2518 const struct path *root)
2519 {
2520 int retval;
2521 struct nameidata nd;
2522
2523 if (IS_ERR(name))
2524 return PTR_ERR(name);
2525 set_nameidata(&nd, dfd, name, root);
2526 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2527 if (unlikely(retval == -ECHILD))
2528 retval = path_parentat(&nd, flags, parent);
2529 if (unlikely(retval == -ESTALE))
2530 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2531 if (likely(!retval)) {
2532 *last = nd.last;
2533 *type = nd.last_type;
2534 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2535 }
2536 restore_nameidata();
2537 return retval;
2538 }
2539
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2540 static int filename_parentat(int dfd, struct filename *name,
2541 unsigned int flags, struct path *parent,
2542 struct qstr *last, int *type)
2543 {
2544 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2545 }
2546
2547 /* does lookup, returns the object with parent locked */
__kern_path_locked(struct filename * name,struct path * path)2548 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2549 {
2550 struct dentry *d;
2551 struct qstr last;
2552 int type, error;
2553
2554 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2555 if (error)
2556 return ERR_PTR(error);
2557 if (unlikely(type != LAST_NORM)) {
2558 path_put(path);
2559 return ERR_PTR(-EINVAL);
2560 }
2561 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2562 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2563 if (IS_ERR(d)) {
2564 inode_unlock(path->dentry->d_inode);
2565 path_put(path);
2566 }
2567 return d;
2568 }
2569
kern_path_locked(const char * name,struct path * path)2570 struct dentry *kern_path_locked(const char *name, struct path *path)
2571 {
2572 struct filename *filename = getname_kernel(name);
2573 struct dentry *res = __kern_path_locked(filename, path);
2574
2575 putname(filename);
2576 return res;
2577 }
2578
kern_path(const char * name,unsigned int flags,struct path * path)2579 int kern_path(const char *name, unsigned int flags, struct path *path)
2580 {
2581 struct filename *filename = getname_kernel(name);
2582 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2583
2584 putname(filename);
2585 return ret;
2586
2587 }
2588 EXPORT_SYMBOL_NS(kern_path, ANDROID_GKI_VFS_EXPORT_ONLY);
2589
2590 /**
2591 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2592 * @filename: filename structure
2593 * @flags: lookup flags
2594 * @parent: pointer to struct path to fill
2595 * @last: last component
2596 * @type: type of the last component
2597 * @root: pointer to struct path of the base directory
2598 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2599 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2600 struct path *parent, struct qstr *last, int *type,
2601 const struct path *root)
2602 {
2603 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2604 type, root);
2605 }
2606 EXPORT_SYMBOL(vfs_path_parent_lookup);
2607
2608 /**
2609 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2610 * @dentry: pointer to dentry of the base directory
2611 * @mnt: pointer to vfs mount of the base directory
2612 * @name: pointer to file name
2613 * @flags: lookup flags
2614 * @path: pointer to struct path to fill
2615 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2616 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2617 const char *name, unsigned int flags,
2618 struct path *path)
2619 {
2620 struct filename *filename;
2621 struct path root = {.mnt = mnt, .dentry = dentry};
2622 int ret;
2623
2624 filename = getname_kernel(name);
2625 /* the first argument of filename_lookup() is ignored with root */
2626 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2627 putname(filename);
2628 return ret;
2629 }
2630 EXPORT_SYMBOL(vfs_path_lookup);
2631
lookup_one_common(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len,struct qstr * this)2632 static int lookup_one_common(struct user_namespace *mnt_userns,
2633 const char *name, struct dentry *base, int len,
2634 struct qstr *this)
2635 {
2636 this->name = name;
2637 this->len = len;
2638 this->hash = full_name_hash(base, name, len);
2639 if (!len)
2640 return -EACCES;
2641
2642 if (unlikely(name[0] == '.')) {
2643 if (len < 2 || (len == 2 && name[1] == '.'))
2644 return -EACCES;
2645 }
2646
2647 while (len--) {
2648 unsigned int c = *(const unsigned char *)name++;
2649 if (c == '/' || c == '\0')
2650 return -EACCES;
2651 }
2652 /*
2653 * See if the low-level filesystem might want
2654 * to use its own hash..
2655 */
2656 if (base->d_flags & DCACHE_OP_HASH) {
2657 int err = base->d_op->d_hash(base, this);
2658 if (err < 0)
2659 return err;
2660 }
2661
2662 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2663 }
2664
2665 /**
2666 * try_lookup_one_len - filesystem helper to lookup single pathname component
2667 * @name: pathname component to lookup
2668 * @base: base directory to lookup from
2669 * @len: maximum length @len should be interpreted to
2670 *
2671 * Look up a dentry by name in the dcache, returning NULL if it does not
2672 * currently exist. The function does not try to create a dentry.
2673 *
2674 * Note that this routine is purely a helper for filesystem usage and should
2675 * not be called by generic code.
2676 *
2677 * The caller must hold base->i_mutex.
2678 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2679 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2680 {
2681 struct qstr this;
2682 int err;
2683
2684 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2685
2686 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2687 if (err)
2688 return ERR_PTR(err);
2689
2690 return lookup_dcache(&this, base, 0);
2691 }
2692 EXPORT_SYMBOL(try_lookup_one_len);
2693
2694 /**
2695 * lookup_one_len - filesystem helper to lookup single pathname component
2696 * @name: pathname component to lookup
2697 * @base: base directory to lookup from
2698 * @len: maximum length @len should be interpreted to
2699 *
2700 * Note that this routine is purely a helper for filesystem usage and should
2701 * not be called by generic code.
2702 *
2703 * The caller must hold base->i_mutex.
2704 */
lookup_one_len(const char * name,struct dentry * base,int len)2705 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2706 {
2707 struct dentry *dentry;
2708 struct qstr this;
2709 int err;
2710
2711 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2712
2713 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2714 if (err)
2715 return ERR_PTR(err);
2716
2717 dentry = lookup_dcache(&this, base, 0);
2718 return dentry ? dentry : __lookup_slow(&this, base, 0);
2719 }
2720 EXPORT_SYMBOL(lookup_one_len);
2721
2722 /**
2723 * lookup_one - filesystem helper to lookup single pathname component
2724 * @mnt_userns: user namespace of the mount the lookup is performed from
2725 * @name: pathname component to lookup
2726 * @base: base directory to lookup from
2727 * @len: maximum length @len should be interpreted to
2728 *
2729 * Note that this routine is purely a helper for filesystem usage and should
2730 * not be called by generic code.
2731 *
2732 * The caller must hold base->i_mutex.
2733 */
lookup_one(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2734 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2735 struct dentry *base, int len)
2736 {
2737 struct dentry *dentry;
2738 struct qstr this;
2739 int err;
2740
2741 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2742
2743 err = lookup_one_common(mnt_userns, name, base, len, &this);
2744 if (err)
2745 return ERR_PTR(err);
2746
2747 dentry = lookup_dcache(&this, base, 0);
2748 return dentry ? dentry : __lookup_slow(&this, base, 0);
2749 }
2750 EXPORT_SYMBOL(lookup_one);
2751
2752 /**
2753 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2754 * @mnt_userns: idmapping of the mount the lookup is performed from
2755 * @name: pathname component to lookup
2756 * @base: base directory to lookup from
2757 * @len: maximum length @len should be interpreted to
2758 *
2759 * Note that this routine is purely a helper for filesystem usage and should
2760 * not be called by generic code.
2761 *
2762 * Unlike lookup_one_len, it should be called without the parent
2763 * i_mutex held, and will take the i_mutex itself if necessary.
2764 */
lookup_one_unlocked(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2765 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2766 const char *name, struct dentry *base,
2767 int len)
2768 {
2769 struct qstr this;
2770 int err;
2771 struct dentry *ret;
2772
2773 err = lookup_one_common(mnt_userns, name, base, len, &this);
2774 if (err)
2775 return ERR_PTR(err);
2776
2777 ret = lookup_dcache(&this, base, 0);
2778 if (!ret)
2779 ret = lookup_slow(&this, base, 0);
2780 return ret;
2781 }
2782 EXPORT_SYMBOL(lookup_one_unlocked);
2783
2784 /**
2785 * lookup_one_positive_unlocked - filesystem helper to lookup single
2786 * pathname component
2787 * @mnt_userns: idmapping of the mount the lookup is performed from
2788 * @name: pathname component to lookup
2789 * @base: base directory to lookup from
2790 * @len: maximum length @len should be interpreted to
2791 *
2792 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2793 * known positive or ERR_PTR(). This is what most of the users want.
2794 *
2795 * Note that pinned negative with unlocked parent _can_ become positive at any
2796 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2797 * positives have >d_inode stable, so this one avoids such problems.
2798 *
2799 * Note that this routine is purely a helper for filesystem usage and should
2800 * not be called by generic code.
2801 *
2802 * The helper should be called without i_mutex held.
2803 */
lookup_one_positive_unlocked(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2804 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2805 const char *name,
2806 struct dentry *base, int len)
2807 {
2808 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2809
2810 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2811 dput(ret);
2812 ret = ERR_PTR(-ENOENT);
2813 }
2814 return ret;
2815 }
2816 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2817
2818 /**
2819 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2820 * @name: pathname component to lookup
2821 * @base: base directory to lookup from
2822 * @len: maximum length @len should be interpreted to
2823 *
2824 * Note that this routine is purely a helper for filesystem usage and should
2825 * not be called by generic code.
2826 *
2827 * Unlike lookup_one_len, it should be called without the parent
2828 * i_mutex held, and will take the i_mutex itself if necessary.
2829 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2830 struct dentry *lookup_one_len_unlocked(const char *name,
2831 struct dentry *base, int len)
2832 {
2833 return lookup_one_unlocked(&init_user_ns, name, base, len);
2834 }
2835 EXPORT_SYMBOL(lookup_one_len_unlocked);
2836
2837 /*
2838 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2839 * on negatives. Returns known positive or ERR_PTR(); that's what
2840 * most of the users want. Note that pinned negative with unlocked parent
2841 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2842 * need to be very careful; pinned positives have ->d_inode stable, so
2843 * this one avoids such problems.
2844 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2845 struct dentry *lookup_positive_unlocked(const char *name,
2846 struct dentry *base, int len)
2847 {
2848 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2849 }
2850 EXPORT_SYMBOL(lookup_positive_unlocked);
2851
2852 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2853 int path_pts(struct path *path)
2854 {
2855 /* Find something mounted on "pts" in the same directory as
2856 * the input path.
2857 */
2858 struct dentry *parent = dget_parent(path->dentry);
2859 struct dentry *child;
2860 struct qstr this = QSTR_INIT("pts", 3);
2861
2862 if (unlikely(!path_connected(path->mnt, parent))) {
2863 dput(parent);
2864 return -ENOENT;
2865 }
2866 dput(path->dentry);
2867 path->dentry = parent;
2868 child = d_hash_and_lookup(parent, &this);
2869 if (IS_ERR_OR_NULL(child))
2870 return -ENOENT;
2871
2872 path->dentry = child;
2873 dput(parent);
2874 follow_down(path);
2875 return 0;
2876 }
2877 #endif
2878
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2879 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2880 struct path *path, int *empty)
2881 {
2882 struct filename *filename = getname_flags(name, flags, empty);
2883 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2884
2885 putname(filename);
2886 return ret;
2887 }
2888 EXPORT_SYMBOL(user_path_at_empty);
2889
__check_sticky(struct user_namespace * mnt_userns,struct inode * dir,struct inode * inode)2890 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2891 struct inode *inode)
2892 {
2893 kuid_t fsuid = current_fsuid();
2894
2895 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2896 return 0;
2897 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2898 return 0;
2899 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2900 }
2901 EXPORT_SYMBOL(__check_sticky);
2902
2903 /*
2904 * Check whether we can remove a link victim from directory dir, check
2905 * whether the type of victim is right.
2906 * 1. We can't do it if dir is read-only (done in permission())
2907 * 2. We should have write and exec permissions on dir
2908 * 3. We can't remove anything from append-only dir
2909 * 4. We can't do anything with immutable dir (done in permission())
2910 * 5. If the sticky bit on dir is set we should either
2911 * a. be owner of dir, or
2912 * b. be owner of victim, or
2913 * c. have CAP_FOWNER capability
2914 * 6. If the victim is append-only or immutable we can't do antyhing with
2915 * links pointing to it.
2916 * 7. If the victim has an unknown uid or gid we can't change the inode.
2917 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2918 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2919 * 10. We can't remove a root or mountpoint.
2920 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2921 * nfs_async_unlink().
2922 */
may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,bool isdir)2923 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2924 struct dentry *victim, bool isdir)
2925 {
2926 struct inode *inode = d_backing_inode(victim);
2927 int error;
2928
2929 if (d_is_negative(victim))
2930 return -ENOENT;
2931 BUG_ON(!inode);
2932
2933 BUG_ON(victim->d_parent->d_inode != dir);
2934
2935 /* Inode writeback is not safe when the uid or gid are invalid. */
2936 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2937 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2938 return -EOVERFLOW;
2939
2940 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2941
2942 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2943 if (error)
2944 return error;
2945 if (IS_APPEND(dir))
2946 return -EPERM;
2947
2948 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2949 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2950 HAS_UNMAPPED_ID(mnt_userns, inode))
2951 return -EPERM;
2952 if (isdir) {
2953 if (!d_is_dir(victim))
2954 return -ENOTDIR;
2955 if (IS_ROOT(victim))
2956 return -EBUSY;
2957 } else if (d_is_dir(victim))
2958 return -EISDIR;
2959 if (IS_DEADDIR(dir))
2960 return -ENOENT;
2961 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2962 return -EBUSY;
2963 return 0;
2964 }
2965
2966 /* Check whether we can create an object with dentry child in directory
2967 * dir.
2968 * 1. We can't do it if child already exists (open has special treatment for
2969 * this case, but since we are inlined it's OK)
2970 * 2. We can't do it if dir is read-only (done in permission())
2971 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2972 * 4. We should have write and exec permissions on dir
2973 * 5. We can't do it if dir is immutable (done in permission())
2974 */
may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)2975 static inline int may_create(struct user_namespace *mnt_userns,
2976 struct inode *dir, struct dentry *child)
2977 {
2978 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2979 if (child->d_inode)
2980 return -EEXIST;
2981 if (IS_DEADDIR(dir))
2982 return -ENOENT;
2983 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2984 return -EOVERFLOW;
2985
2986 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2987 }
2988
lock_two_directories(struct dentry * p1,struct dentry * p2)2989 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
2990 {
2991 struct dentry *p;
2992
2993 p = d_ancestor(p2, p1);
2994 if (p) {
2995 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2996 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
2997 return p;
2998 }
2999
3000 p = d_ancestor(p1, p2);
3001 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3002 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3003 return p;
3004 }
3005
3006 /*
3007 * p1 and p2 should be directories on the same fs.
3008 */
lock_rename(struct dentry * p1,struct dentry * p2)3009 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3010 {
3011 if (p1 == p2) {
3012 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3013 return NULL;
3014 }
3015
3016 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3017 return lock_two_directories(p1, p2);
3018 }
3019 EXPORT_SYMBOL(lock_rename);
3020
3021 /*
3022 * c1 and p2 should be on the same fs.
3023 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3024 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3025 {
3026 if (READ_ONCE(c1->d_parent) == p2) {
3027 /*
3028 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3029 */
3030 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3031 /*
3032 * now that p2 is locked, nobody can move in or out of it,
3033 * so the test below is safe.
3034 */
3035 if (likely(c1->d_parent == p2))
3036 return NULL;
3037
3038 /*
3039 * c1 got moved out of p2 while we'd been taking locks;
3040 * unlock and fall back to slow case.
3041 */
3042 inode_unlock(p2->d_inode);
3043 }
3044
3045 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3046 /*
3047 * nobody can move out of any directories on this fs.
3048 */
3049 if (likely(c1->d_parent != p2))
3050 return lock_two_directories(c1->d_parent, p2);
3051
3052 /*
3053 * c1 got moved into p2 while we were taking locks;
3054 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3055 * for consistency with lock_rename().
3056 */
3057 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3058 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3059 return NULL;
3060 }
3061 EXPORT_SYMBOL(lock_rename_child);
3062
unlock_rename(struct dentry * p1,struct dentry * p2)3063 void unlock_rename(struct dentry *p1, struct dentry *p2)
3064 {
3065 inode_unlock(p1->d_inode);
3066 if (p1 != p2) {
3067 inode_unlock(p2->d_inode);
3068 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3069 }
3070 }
3071 EXPORT_SYMBOL(unlock_rename);
3072
3073 /**
3074 * mode_strip_umask - handle vfs umask stripping
3075 * @dir: parent directory of the new inode
3076 * @mode: mode of the new inode to be created in @dir
3077 *
3078 * Umask stripping depends on whether or not the filesystem supports POSIX
3079 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3080 * in here. If the filesystem does support POSIX ACLs umask stripping is
3081 * deferred until the filesystem calls posix_acl_create().
3082 *
3083 * Returns: mode
3084 */
mode_strip_umask(const struct inode * dir,umode_t mode)3085 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3086 {
3087 if (!IS_POSIXACL(dir))
3088 mode &= ~current_umask();
3089 return mode;
3090 }
3091
3092 /**
3093 * vfs_prepare_mode - prepare the mode to be used for a new inode
3094 * @mnt_userns: user namespace of the mount the inode was found from
3095 * @dir: parent directory of the new inode
3096 * @mode: mode of the new inode
3097 * @mask_perms: allowed permission by the vfs
3098 * @type: type of file to be created
3099 *
3100 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3101 * object to be created.
3102 *
3103 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3104 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3105 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3106 * POSIX ACL supporting filesystems.
3107 *
3108 * Note that it's currently valid for @type to be 0 if a directory is created.
3109 * Filesystems raise that flag individually and we need to check whether each
3110 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3111 * non-zero type.
3112 *
3113 * Returns: mode to be passed to the filesystem
3114 */
vfs_prepare_mode(struct user_namespace * mnt_userns,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3115 static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns,
3116 const struct inode *dir, umode_t mode,
3117 umode_t mask_perms, umode_t type)
3118 {
3119 mode = mode_strip_sgid(mnt_userns, dir, mode);
3120 mode = mode_strip_umask(dir, mode);
3121
3122 /*
3123 * Apply the vfs mandated allowed permission mask and set the type of
3124 * file to be created before we call into the filesystem.
3125 */
3126 mode &= (mask_perms & ~S_IFMT);
3127 mode |= (type & S_IFMT);
3128
3129 return mode;
3130 }
3131
3132 /**
3133 * vfs_create - create new file
3134 * @mnt_userns: user namespace of the mount the inode was found from
3135 * @dir: inode of @dentry
3136 * @dentry: pointer to dentry of the base directory
3137 * @mode: mode of the new file
3138 * @want_excl: whether the file must not yet exist
3139 *
3140 * Create a new file.
3141 *
3142 * If the inode has been found through an idmapped mount the user namespace of
3143 * the vfsmount must be passed through @mnt_userns. This function will then take
3144 * care to map the inode according to @mnt_userns before checking permissions.
3145 * On non-idmapped mounts or if permission checking is to be performed on the
3146 * raw inode simply passs init_user_ns.
3147 */
vfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3148 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3149 struct dentry *dentry, umode_t mode, bool want_excl)
3150 {
3151 int error = may_create(mnt_userns, dir, dentry);
3152 if (error)
3153 return error;
3154
3155 if (!dir->i_op->create)
3156 return -EACCES; /* shouldn't it be ENOSYS? */
3157
3158 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG);
3159 error = security_inode_create(dir, dentry, mode);
3160 if (error)
3161 return error;
3162 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3163 if (!error)
3164 fsnotify_create(dir, dentry);
3165 return error;
3166 }
3167 EXPORT_SYMBOL_NS(vfs_create, ANDROID_GKI_VFS_EXPORT_ONLY);
3168
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3169 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3170 int (*f)(struct dentry *, umode_t, void *),
3171 void *arg)
3172 {
3173 struct inode *dir = dentry->d_parent->d_inode;
3174 int error = may_create(&init_user_ns, dir, dentry);
3175 if (error)
3176 return error;
3177
3178 mode &= S_IALLUGO;
3179 mode |= S_IFREG;
3180 error = security_inode_create(dir, dentry, mode);
3181 if (error)
3182 return error;
3183 error = f(dentry, mode, arg);
3184 if (!error)
3185 fsnotify_create(dir, dentry);
3186 return error;
3187 }
3188 EXPORT_SYMBOL(vfs_mkobj);
3189
may_open_dev(const struct path * path)3190 bool may_open_dev(const struct path *path)
3191 {
3192 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3193 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3194 }
3195
may_open(struct user_namespace * mnt_userns,const struct path * path,int acc_mode,int flag)3196 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3197 int acc_mode, int flag)
3198 {
3199 struct dentry *dentry = path->dentry;
3200 struct inode *inode = dentry->d_inode;
3201 int error;
3202
3203 if (!inode)
3204 return -ENOENT;
3205
3206 switch (inode->i_mode & S_IFMT) {
3207 case S_IFLNK:
3208 return -ELOOP;
3209 case S_IFDIR:
3210 if (acc_mode & MAY_WRITE)
3211 return -EISDIR;
3212 if (acc_mode & MAY_EXEC)
3213 return -EACCES;
3214 break;
3215 case S_IFBLK:
3216 case S_IFCHR:
3217 if (!may_open_dev(path))
3218 return -EACCES;
3219 fallthrough;
3220 case S_IFIFO:
3221 case S_IFSOCK:
3222 if (acc_mode & MAY_EXEC)
3223 return -EACCES;
3224 flag &= ~O_TRUNC;
3225 break;
3226 case S_IFREG:
3227 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3228 return -EACCES;
3229 break;
3230 }
3231
3232 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3233 if (error)
3234 return error;
3235
3236 /*
3237 * An append-only file must be opened in append mode for writing.
3238 */
3239 if (IS_APPEND(inode)) {
3240 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3241 return -EPERM;
3242 if (flag & O_TRUNC)
3243 return -EPERM;
3244 }
3245
3246 /* O_NOATIME can only be set by the owner or superuser */
3247 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3248 return -EPERM;
3249
3250 return 0;
3251 }
3252
handle_truncate(struct user_namespace * mnt_userns,struct file * filp)3253 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3254 {
3255 const struct path *path = &filp->f_path;
3256 struct inode *inode = path->dentry->d_inode;
3257 int error = get_write_access(inode);
3258 if (error)
3259 return error;
3260 /*
3261 * Refuse to truncate files with mandatory locks held on them.
3262 */
3263 error = security_path_truncate(path);
3264 if (!error) {
3265 error = do_truncate(mnt_userns, path->dentry, 0,
3266 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3267 filp);
3268 }
3269 put_write_access(inode);
3270 return error;
3271 }
3272
open_to_namei_flags(int flag)3273 static inline int open_to_namei_flags(int flag)
3274 {
3275 if ((flag & O_ACCMODE) == 3)
3276 flag--;
3277 return flag;
3278 }
3279
may_o_create(struct user_namespace * mnt_userns,const struct path * dir,struct dentry * dentry,umode_t mode)3280 static int may_o_create(struct user_namespace *mnt_userns,
3281 const struct path *dir, struct dentry *dentry,
3282 umode_t mode)
3283 {
3284 int error = security_path_mknod(dir, dentry, mode, 0);
3285 if (error)
3286 return error;
3287
3288 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3289 return -EOVERFLOW;
3290
3291 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3292 MAY_WRITE | MAY_EXEC);
3293 if (error)
3294 return error;
3295
3296 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3297 }
3298
3299 /*
3300 * Attempt to atomically look up, create and open a file from a negative
3301 * dentry.
3302 *
3303 * Returns 0 if successful. The file will have been created and attached to
3304 * @file by the filesystem calling finish_open().
3305 *
3306 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3307 * be set. The caller will need to perform the open themselves. @path will
3308 * have been updated to point to the new dentry. This may be negative.
3309 *
3310 * Returns an error code otherwise.
3311 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3312 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3313 struct file *file,
3314 int open_flag, umode_t mode)
3315 {
3316 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3317 struct inode *dir = nd->path.dentry->d_inode;
3318 int error;
3319
3320 if (nd->flags & LOOKUP_DIRECTORY)
3321 open_flag |= O_DIRECTORY;
3322
3323 file->f_path.dentry = DENTRY_NOT_SET;
3324 file->f_path.mnt = nd->path.mnt;
3325 error = dir->i_op->atomic_open(dir, dentry, file,
3326 open_to_namei_flags(open_flag), mode);
3327 d_lookup_done(dentry);
3328 if (!error) {
3329 if (file->f_mode & FMODE_OPENED) {
3330 if (unlikely(dentry != file->f_path.dentry)) {
3331 dput(dentry);
3332 dentry = dget(file->f_path.dentry);
3333 }
3334 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3335 error = -EIO;
3336 } else {
3337 if (file->f_path.dentry) {
3338 dput(dentry);
3339 dentry = file->f_path.dentry;
3340 }
3341 if (unlikely(d_is_negative(dentry)))
3342 error = -ENOENT;
3343 }
3344 }
3345 if (error) {
3346 dput(dentry);
3347 dentry = ERR_PTR(error);
3348 }
3349 return dentry;
3350 }
3351
3352 /*
3353 * Look up and maybe create and open the last component.
3354 *
3355 * Must be called with parent locked (exclusive in O_CREAT case).
3356 *
3357 * Returns 0 on success, that is, if
3358 * the file was successfully atomically created (if necessary) and opened, or
3359 * the file was not completely opened at this time, though lookups and
3360 * creations were performed.
3361 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3362 * In the latter case dentry returned in @path might be negative if O_CREAT
3363 * hadn't been specified.
3364 *
3365 * An error code is returned on failure.
3366 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3367 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3368 const struct open_flags *op,
3369 bool got_write)
3370 {
3371 struct user_namespace *mnt_userns;
3372 struct dentry *dir = nd->path.dentry;
3373 struct inode *dir_inode = dir->d_inode;
3374 int open_flag = op->open_flag;
3375 struct dentry *dentry;
3376 int error, create_error = 0;
3377 umode_t mode = op->mode;
3378 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3379
3380 if (unlikely(IS_DEADDIR(dir_inode)))
3381 return ERR_PTR(-ENOENT);
3382
3383 file->f_mode &= ~FMODE_CREATED;
3384 dentry = d_lookup(dir, &nd->last);
3385 for (;;) {
3386 if (!dentry) {
3387 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3388 if (IS_ERR(dentry))
3389 return dentry;
3390 }
3391 if (d_in_lookup(dentry))
3392 break;
3393
3394 error = d_revalidate(dentry, nd->flags);
3395 if (likely(error > 0))
3396 break;
3397 if (error)
3398 goto out_dput;
3399 d_invalidate(dentry);
3400 dput(dentry);
3401 dentry = NULL;
3402 }
3403 if (dentry->d_inode) {
3404 /* Cached positive dentry: will open in f_op->open */
3405 return dentry;
3406 }
3407
3408 /*
3409 * Checking write permission is tricky, bacuse we don't know if we are
3410 * going to actually need it: O_CREAT opens should work as long as the
3411 * file exists. But checking existence breaks atomicity. The trick is
3412 * to check access and if not granted clear O_CREAT from the flags.
3413 *
3414 * Another problem is returing the "right" error value (e.g. for an
3415 * O_EXCL open we want to return EEXIST not EROFS).
3416 */
3417 if (unlikely(!got_write))
3418 open_flag &= ~O_TRUNC;
3419 mnt_userns = mnt_user_ns(nd->path.mnt);
3420 if (open_flag & O_CREAT) {
3421 if (open_flag & O_EXCL)
3422 open_flag &= ~O_TRUNC;
3423 mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode);
3424 if (likely(got_write))
3425 create_error = may_o_create(mnt_userns, &nd->path,
3426 dentry, mode);
3427 else
3428 create_error = -EROFS;
3429 }
3430 if (create_error)
3431 open_flag &= ~O_CREAT;
3432 if (dir_inode->i_op->atomic_open) {
3433 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3434 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3435 dentry = ERR_PTR(create_error);
3436 return dentry;
3437 }
3438
3439 if (d_in_lookup(dentry)) {
3440 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3441 nd->flags);
3442 d_lookup_done(dentry);
3443 if (unlikely(res)) {
3444 if (IS_ERR(res)) {
3445 error = PTR_ERR(res);
3446 goto out_dput;
3447 }
3448 dput(dentry);
3449 dentry = res;
3450 }
3451 }
3452
3453 /* Negative dentry, just create the file */
3454 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3455 file->f_mode |= FMODE_CREATED;
3456 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3457 if (!dir_inode->i_op->create) {
3458 error = -EACCES;
3459 goto out_dput;
3460 }
3461
3462 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3463 mode, open_flag & O_EXCL);
3464 if (error)
3465 goto out_dput;
3466 }
3467 if (unlikely(create_error) && !dentry->d_inode) {
3468 error = create_error;
3469 goto out_dput;
3470 }
3471 return dentry;
3472
3473 out_dput:
3474 dput(dentry);
3475 return ERR_PTR(error);
3476 }
3477
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3478 static const char *open_last_lookups(struct nameidata *nd,
3479 struct file *file, const struct open_flags *op)
3480 {
3481 struct dentry *dir = nd->path.dentry;
3482 int open_flag = op->open_flag;
3483 bool got_write = false;
3484 unsigned seq;
3485 struct inode *inode;
3486 struct dentry *dentry;
3487 const char *res;
3488
3489 nd->flags |= op->intent;
3490
3491 if (nd->last_type != LAST_NORM) {
3492 if (nd->depth)
3493 put_link(nd);
3494 return handle_dots(nd, nd->last_type);
3495 }
3496
3497 if (!(open_flag & O_CREAT)) {
3498 if (nd->last.name[nd->last.len])
3499 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3500 /* we _can_ be in RCU mode here */
3501 dentry = lookup_fast(nd, &inode, &seq);
3502 if (IS_ERR(dentry))
3503 return ERR_CAST(dentry);
3504 if (likely(dentry))
3505 goto finish_lookup;
3506
3507 BUG_ON(nd->flags & LOOKUP_RCU);
3508 } else {
3509 /* create side of things */
3510 if (nd->flags & LOOKUP_RCU) {
3511 if (!try_to_unlazy(nd))
3512 return ERR_PTR(-ECHILD);
3513 }
3514 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3515 /* trailing slashes? */
3516 if (unlikely(nd->last.name[nd->last.len]))
3517 return ERR_PTR(-EISDIR);
3518 }
3519
3520 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3521 got_write = !mnt_want_write(nd->path.mnt);
3522 /*
3523 * do _not_ fail yet - we might not need that or fail with
3524 * a different error; let lookup_open() decide; we'll be
3525 * dropping this one anyway.
3526 */
3527 }
3528 if (open_flag & O_CREAT)
3529 inode_lock(dir->d_inode);
3530 else
3531 inode_lock_shared(dir->d_inode);
3532 dentry = lookup_open(nd, file, op, got_write);
3533 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3534 fsnotify_create(dir->d_inode, dentry);
3535 if (open_flag & O_CREAT)
3536 inode_unlock(dir->d_inode);
3537 else
3538 inode_unlock_shared(dir->d_inode);
3539
3540 if (got_write)
3541 mnt_drop_write(nd->path.mnt);
3542
3543 if (IS_ERR(dentry))
3544 return ERR_CAST(dentry);
3545
3546 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3547 dput(nd->path.dentry);
3548 nd->path.dentry = dentry;
3549 return NULL;
3550 }
3551
3552 finish_lookup:
3553 if (nd->depth)
3554 put_link(nd);
3555 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3556 if (unlikely(res))
3557 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3558 return res;
3559 }
3560
3561 /*
3562 * Handle the last step of open()
3563 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3564 static int do_open(struct nameidata *nd,
3565 struct file *file, const struct open_flags *op)
3566 {
3567 struct user_namespace *mnt_userns;
3568 int open_flag = op->open_flag;
3569 bool do_truncate;
3570 int acc_mode;
3571 int error;
3572
3573 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3574 error = complete_walk(nd);
3575 if (error)
3576 return error;
3577 }
3578 if (!(file->f_mode & FMODE_CREATED))
3579 audit_inode(nd->name, nd->path.dentry, 0);
3580 mnt_userns = mnt_user_ns(nd->path.mnt);
3581 if (open_flag & O_CREAT) {
3582 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3583 return -EEXIST;
3584 if (d_is_dir(nd->path.dentry))
3585 return -EISDIR;
3586 error = may_create_in_sticky(mnt_userns, nd,
3587 d_backing_inode(nd->path.dentry));
3588 if (unlikely(error))
3589 return error;
3590 }
3591 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3592 return -ENOTDIR;
3593
3594 do_truncate = false;
3595 acc_mode = op->acc_mode;
3596 if (file->f_mode & FMODE_CREATED) {
3597 /* Don't check for write permission, don't truncate */
3598 open_flag &= ~O_TRUNC;
3599 acc_mode = 0;
3600 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3601 error = mnt_want_write(nd->path.mnt);
3602 if (error)
3603 return error;
3604 do_truncate = true;
3605 }
3606 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3607 if (!error && !(file->f_mode & FMODE_OPENED))
3608 error = vfs_open(&nd->path, file);
3609 if (!error)
3610 error = ima_file_check(file, op->acc_mode);
3611 if (!error && do_truncate)
3612 error = handle_truncate(mnt_userns, file);
3613 if (unlikely(error > 0)) {
3614 WARN_ON(1);
3615 error = -EINVAL;
3616 }
3617 if (do_truncate)
3618 mnt_drop_write(nd->path.mnt);
3619 return error;
3620 }
3621
3622 /**
3623 * vfs_tmpfile - create tmpfile
3624 * @mnt_userns: user namespace of the mount the inode was found from
3625 * @dentry: pointer to dentry of the base directory
3626 * @mode: mode of the new tmpfile
3627 * @open_flag: flags
3628 *
3629 * Create a temporary file.
3630 *
3631 * If the inode has been found through an idmapped mount the user namespace of
3632 * the vfsmount must be passed through @mnt_userns. This function will then take
3633 * care to map the inode according to @mnt_userns before checking permissions.
3634 * On non-idmapped mounts or if permission checking is to be performed on the
3635 * raw inode simply passs init_user_ns.
3636 */
vfs_tmpfile(struct user_namespace * mnt_userns,struct dentry * dentry,umode_t mode,int open_flag)3637 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3638 struct dentry *dentry, umode_t mode, int open_flag)
3639 {
3640 struct dentry *child = NULL;
3641 struct inode *dir = dentry->d_inode;
3642 struct inode *inode;
3643 int error;
3644
3645 /* we want directory to be writable */
3646 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3647 if (error)
3648 goto out_err;
3649 error = -EOPNOTSUPP;
3650 if (!dir->i_op->tmpfile)
3651 goto out_err;
3652 error = -ENOMEM;
3653 child = d_alloc(dentry, &slash_name);
3654 if (unlikely(!child))
3655 goto out_err;
3656 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3657 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3658 if (error)
3659 goto out_err;
3660 error = -ENOENT;
3661 inode = child->d_inode;
3662 if (unlikely(!inode))
3663 goto out_err;
3664 if (!(open_flag & O_EXCL)) {
3665 spin_lock(&inode->i_lock);
3666 inode->i_state |= I_LINKABLE;
3667 spin_unlock(&inode->i_lock);
3668 }
3669 ima_post_create_tmpfile(mnt_userns, inode);
3670 return child;
3671
3672 out_err:
3673 dput(child);
3674 return ERR_PTR(error);
3675 }
3676 EXPORT_SYMBOL(vfs_tmpfile);
3677
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3678 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3679 const struct open_flags *op,
3680 struct file *file)
3681 {
3682 struct user_namespace *mnt_userns;
3683 struct dentry *child;
3684 struct path path;
3685 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3686 if (unlikely(error))
3687 return error;
3688 error = mnt_want_write(path.mnt);
3689 if (unlikely(error))
3690 goto out;
3691 mnt_userns = mnt_user_ns(path.mnt);
3692 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3693 error = PTR_ERR(child);
3694 if (IS_ERR(child))
3695 goto out2;
3696 dput(path.dentry);
3697 path.dentry = child;
3698 audit_inode(nd->name, child, 0);
3699 /* Don't check for other permissions, the inode was just created */
3700 error = may_open(mnt_userns, &path, 0, op->open_flag);
3701 if (!error)
3702 error = vfs_open(&path, file);
3703 out2:
3704 mnt_drop_write(path.mnt);
3705 out:
3706 path_put(&path);
3707 return error;
3708 }
3709
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3710 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3711 {
3712 struct path path;
3713 int error = path_lookupat(nd, flags, &path);
3714 if (!error) {
3715 audit_inode(nd->name, path.dentry, 0);
3716 error = vfs_open(&path, file);
3717 path_put(&path);
3718 }
3719 return error;
3720 }
3721
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3722 static struct file *path_openat(struct nameidata *nd,
3723 const struct open_flags *op, unsigned flags)
3724 {
3725 struct file *file;
3726 int error;
3727
3728 file = alloc_empty_file(op->open_flag, current_cred());
3729 if (IS_ERR(file))
3730 return file;
3731
3732 if (unlikely(file->f_flags & __O_TMPFILE)) {
3733 error = do_tmpfile(nd, flags, op, file);
3734 } else if (unlikely(file->f_flags & O_PATH)) {
3735 error = do_o_path(nd, flags, file);
3736 } else {
3737 const char *s = path_init(nd, flags);
3738 while (!(error = link_path_walk(s, nd)) &&
3739 (s = open_last_lookups(nd, file, op)) != NULL)
3740 ;
3741 if (!error)
3742 error = do_open(nd, file, op);
3743 terminate_walk(nd);
3744 }
3745 if (likely(!error)) {
3746 if (likely(file->f_mode & FMODE_OPENED))
3747 return file;
3748 WARN_ON(1);
3749 error = -EINVAL;
3750 }
3751 fput(file);
3752 if (error == -EOPENSTALE) {
3753 if (flags & LOOKUP_RCU)
3754 error = -ECHILD;
3755 else
3756 error = -ESTALE;
3757 }
3758 return ERR_PTR(error);
3759 }
3760
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3761 struct file *do_filp_open(int dfd, struct filename *pathname,
3762 const struct open_flags *op)
3763 {
3764 struct nameidata nd;
3765 int flags = op->lookup_flags;
3766 struct file *filp;
3767
3768 set_nameidata(&nd, dfd, pathname, NULL);
3769 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3770 if (unlikely(filp == ERR_PTR(-ECHILD)))
3771 filp = path_openat(&nd, op, flags);
3772 if (unlikely(filp == ERR_PTR(-ESTALE)))
3773 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3774 restore_nameidata();
3775 return filp;
3776 }
3777
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3778 struct file *do_file_open_root(const struct path *root,
3779 const char *name, const struct open_flags *op)
3780 {
3781 struct nameidata nd;
3782 struct file *file;
3783 struct filename *filename;
3784 int flags = op->lookup_flags;
3785
3786 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3787 return ERR_PTR(-ELOOP);
3788
3789 filename = getname_kernel(name);
3790 if (IS_ERR(filename))
3791 return ERR_CAST(filename);
3792
3793 set_nameidata(&nd, -1, filename, root);
3794 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3795 if (unlikely(file == ERR_PTR(-ECHILD)))
3796 file = path_openat(&nd, op, flags);
3797 if (unlikely(file == ERR_PTR(-ESTALE)))
3798 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3799 restore_nameidata();
3800 putname(filename);
3801 return file;
3802 }
3803
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3804 static struct dentry *filename_create(int dfd, struct filename *name,
3805 struct path *path, unsigned int lookup_flags)
3806 {
3807 struct dentry *dentry = ERR_PTR(-EEXIST);
3808 struct qstr last;
3809 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3810 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3811 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3812 int type;
3813 int err2;
3814 int error;
3815
3816 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3817 if (error)
3818 return ERR_PTR(error);
3819
3820 /*
3821 * Yucky last component or no last component at all?
3822 * (foo/., foo/.., /////)
3823 */
3824 if (unlikely(type != LAST_NORM))
3825 goto out;
3826
3827 /* don't fail immediately if it's r/o, at least try to report other errors */
3828 err2 = mnt_want_write(path->mnt);
3829 /*
3830 * Do the final lookup. Suppress 'create' if there is a trailing
3831 * '/', and a directory wasn't requested.
3832 */
3833 if (last.name[last.len] && !want_dir)
3834 create_flags = 0;
3835 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3836 dentry = lookup_one_qstr_excl(&last, path->dentry,
3837 reval_flag | create_flags);
3838 if (IS_ERR(dentry))
3839 goto unlock;
3840
3841 error = -EEXIST;
3842 if (d_is_positive(dentry))
3843 goto fail;
3844
3845 /*
3846 * Special case - lookup gave negative, but... we had foo/bar/
3847 * From the vfs_mknod() POV we just have a negative dentry -
3848 * all is fine. Let's be bastards - you had / on the end, you've
3849 * been asking for (non-existent) directory. -ENOENT for you.
3850 */
3851 if (unlikely(!create_flags)) {
3852 error = -ENOENT;
3853 goto fail;
3854 }
3855 if (unlikely(err2)) {
3856 error = err2;
3857 goto fail;
3858 }
3859 return dentry;
3860 fail:
3861 dput(dentry);
3862 dentry = ERR_PTR(error);
3863 unlock:
3864 inode_unlock(path->dentry->d_inode);
3865 if (!err2)
3866 mnt_drop_write(path->mnt);
3867 out:
3868 path_put(path);
3869 return dentry;
3870 }
3871
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3872 struct dentry *kern_path_create(int dfd, const char *pathname,
3873 struct path *path, unsigned int lookup_flags)
3874 {
3875 struct filename *filename = getname_kernel(pathname);
3876 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3877
3878 putname(filename);
3879 return res;
3880 }
3881 EXPORT_SYMBOL(kern_path_create);
3882
done_path_create(struct path * path,struct dentry * dentry)3883 void done_path_create(struct path *path, struct dentry *dentry)
3884 {
3885 dput(dentry);
3886 inode_unlock(path->dentry->d_inode);
3887 mnt_drop_write(path->mnt);
3888 path_put(path);
3889 }
3890 EXPORT_SYMBOL(done_path_create);
3891
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3892 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3893 struct path *path, unsigned int lookup_flags)
3894 {
3895 struct filename *filename = getname(pathname);
3896 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3897
3898 putname(filename);
3899 return res;
3900 }
3901 EXPORT_SYMBOL(user_path_create);
3902
3903 /**
3904 * vfs_mknod - create device node or file
3905 * @mnt_userns: user namespace of the mount the inode was found from
3906 * @dir: inode of @dentry
3907 * @dentry: pointer to dentry of the base directory
3908 * @mode: mode of the new device node or file
3909 * @dev: device number of device to create
3910 *
3911 * Create a device node or file.
3912 *
3913 * If the inode has been found through an idmapped mount the user namespace of
3914 * the vfsmount must be passed through @mnt_userns. This function will then take
3915 * care to map the inode according to @mnt_userns before checking permissions.
3916 * On non-idmapped mounts or if permission checking is to be performed on the
3917 * raw inode simply passs init_user_ns.
3918 */
vfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3919 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3920 struct dentry *dentry, umode_t mode, dev_t dev)
3921 {
3922 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3923 int error = may_create(mnt_userns, dir, dentry);
3924
3925 if (error)
3926 return error;
3927
3928 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3929 !capable(CAP_MKNOD))
3930 return -EPERM;
3931
3932 if (!dir->i_op->mknod)
3933 return -EPERM;
3934
3935 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3936 error = devcgroup_inode_mknod(mode, dev);
3937 if (error)
3938 return error;
3939
3940 error = security_inode_mknod(dir, dentry, mode, dev);
3941 if (error)
3942 return error;
3943
3944 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3945 if (!error)
3946 fsnotify_create(dir, dentry);
3947 return error;
3948 }
3949 EXPORT_SYMBOL(vfs_mknod);
3950
may_mknod(umode_t mode)3951 static int may_mknod(umode_t mode)
3952 {
3953 switch (mode & S_IFMT) {
3954 case S_IFREG:
3955 case S_IFCHR:
3956 case S_IFBLK:
3957 case S_IFIFO:
3958 case S_IFSOCK:
3959 case 0: /* zero mode translates to S_IFREG */
3960 return 0;
3961 case S_IFDIR:
3962 return -EPERM;
3963 default:
3964 return -EINVAL;
3965 }
3966 }
3967
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)3968 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3969 unsigned int dev)
3970 {
3971 struct user_namespace *mnt_userns;
3972 struct dentry *dentry;
3973 struct path path;
3974 int error;
3975 unsigned int lookup_flags = 0;
3976
3977 error = may_mknod(mode);
3978 if (error)
3979 goto out1;
3980 retry:
3981 dentry = filename_create(dfd, name, &path, lookup_flags);
3982 error = PTR_ERR(dentry);
3983 if (IS_ERR(dentry))
3984 goto out1;
3985
3986 error = security_path_mknod(&path, dentry,
3987 mode_strip_umask(path.dentry->d_inode, mode), dev);
3988 if (error)
3989 goto out2;
3990
3991 mnt_userns = mnt_user_ns(path.mnt);
3992 switch (mode & S_IFMT) {
3993 case 0: case S_IFREG:
3994 error = vfs_create(mnt_userns, path.dentry->d_inode,
3995 dentry, mode, true);
3996 if (!error)
3997 ima_post_path_mknod(mnt_userns, dentry);
3998 break;
3999 case S_IFCHR: case S_IFBLK:
4000 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
4001 dentry, mode, new_decode_dev(dev));
4002 break;
4003 case S_IFIFO: case S_IFSOCK:
4004 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
4005 dentry, mode, 0);
4006 break;
4007 }
4008 out2:
4009 done_path_create(&path, dentry);
4010 if (retry_estale(error, lookup_flags)) {
4011 lookup_flags |= LOOKUP_REVAL;
4012 goto retry;
4013 }
4014 out1:
4015 putname(name);
4016 return error;
4017 }
4018
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4019 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4020 unsigned int, dev)
4021 {
4022 return do_mknodat(dfd, getname(filename), mode, dev);
4023 }
4024
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4025 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4026 {
4027 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4028 }
4029
4030 /**
4031 * vfs_mkdir - create directory
4032 * @mnt_userns: user namespace of the mount the inode was found from
4033 * @dir: inode of @dentry
4034 * @dentry: pointer to dentry of the base directory
4035 * @mode: mode of the new directory
4036 *
4037 * Create a directory.
4038 *
4039 * If the inode has been found through an idmapped mount the user namespace of
4040 * the vfsmount must be passed through @mnt_userns. This function will then take
4041 * care to map the inode according to @mnt_userns before checking permissions.
4042 * On non-idmapped mounts or if permission checking is to be performed on the
4043 * raw inode simply passs init_user_ns.
4044 */
vfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)4045 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
4046 struct dentry *dentry, umode_t mode)
4047 {
4048 int error = may_create(mnt_userns, dir, dentry);
4049 unsigned max_links = dir->i_sb->s_max_links;
4050
4051 if (error)
4052 return error;
4053
4054 if (!dir->i_op->mkdir)
4055 return -EPERM;
4056
4057 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4058 error = security_inode_mkdir(dir, dentry, mode);
4059 if (error)
4060 return error;
4061
4062 if (max_links && dir->i_nlink >= max_links)
4063 return -EMLINK;
4064
4065 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
4066 if (!error)
4067 fsnotify_mkdir(dir, dentry);
4068 return error;
4069 }
4070 EXPORT_SYMBOL_NS(vfs_mkdir, ANDROID_GKI_VFS_EXPORT_ONLY);
4071
do_mkdirat(int dfd,struct filename * name,umode_t mode)4072 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4073 {
4074 struct dentry *dentry;
4075 struct path path;
4076 int error;
4077 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4078
4079 retry:
4080 dentry = filename_create(dfd, name, &path, lookup_flags);
4081 error = PTR_ERR(dentry);
4082 if (IS_ERR(dentry))
4083 goto out_putname;
4084
4085 error = security_path_mkdir(&path, dentry,
4086 mode_strip_umask(path.dentry->d_inode, mode));
4087 if (!error) {
4088 struct user_namespace *mnt_userns;
4089 mnt_userns = mnt_user_ns(path.mnt);
4090 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4091 mode);
4092 }
4093 done_path_create(&path, dentry);
4094 if (retry_estale(error, lookup_flags)) {
4095 lookup_flags |= LOOKUP_REVAL;
4096 goto retry;
4097 }
4098 out_putname:
4099 putname(name);
4100 return error;
4101 }
4102
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4103 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4104 {
4105 return do_mkdirat(dfd, getname(pathname), mode);
4106 }
4107
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4108 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4109 {
4110 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4111 }
4112
4113 /**
4114 * vfs_rmdir - remove directory
4115 * @mnt_userns: user namespace of the mount the inode was found from
4116 * @dir: inode of @dentry
4117 * @dentry: pointer to dentry of the base directory
4118 *
4119 * Remove a directory.
4120 *
4121 * If the inode has been found through an idmapped mount the user namespace of
4122 * the vfsmount must be passed through @mnt_userns. This function will then take
4123 * care to map the inode according to @mnt_userns before checking permissions.
4124 * On non-idmapped mounts or if permission checking is to be performed on the
4125 * raw inode simply passs init_user_ns.
4126 */
vfs_rmdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry)4127 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4128 struct dentry *dentry)
4129 {
4130 int error = may_delete(mnt_userns, dir, dentry, 1);
4131
4132 if (error)
4133 return error;
4134
4135 if (!dir->i_op->rmdir)
4136 return -EPERM;
4137
4138 dget(dentry);
4139 inode_lock(dentry->d_inode);
4140
4141 error = -EBUSY;
4142 if (is_local_mountpoint(dentry))
4143 goto out;
4144
4145 error = security_inode_rmdir(dir, dentry);
4146 if (error)
4147 goto out;
4148
4149 error = dir->i_op->rmdir(dir, dentry);
4150 if (error)
4151 goto out;
4152
4153 shrink_dcache_parent(dentry);
4154 dentry->d_inode->i_flags |= S_DEAD;
4155 dont_mount(dentry);
4156 detach_mounts(dentry);
4157
4158 out:
4159 inode_unlock(dentry->d_inode);
4160 dput(dentry);
4161 if (!error)
4162 d_delete_notify(dir, dentry);
4163 return error;
4164 }
4165 EXPORT_SYMBOL_NS(vfs_rmdir, ANDROID_GKI_VFS_EXPORT_ONLY);
4166
do_rmdir(int dfd,struct filename * name)4167 int do_rmdir(int dfd, struct filename *name)
4168 {
4169 struct user_namespace *mnt_userns;
4170 int error;
4171 struct dentry *dentry;
4172 struct path path;
4173 struct qstr last;
4174 int type;
4175 unsigned int lookup_flags = 0;
4176 retry:
4177 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4178 if (error)
4179 goto exit1;
4180
4181 switch (type) {
4182 case LAST_DOTDOT:
4183 error = -ENOTEMPTY;
4184 goto exit2;
4185 case LAST_DOT:
4186 error = -EINVAL;
4187 goto exit2;
4188 case LAST_ROOT:
4189 error = -EBUSY;
4190 goto exit2;
4191 }
4192
4193 error = mnt_want_write(path.mnt);
4194 if (error)
4195 goto exit2;
4196
4197 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4198 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4199 error = PTR_ERR(dentry);
4200 if (IS_ERR(dentry))
4201 goto exit3;
4202 if (!dentry->d_inode) {
4203 error = -ENOENT;
4204 goto exit4;
4205 }
4206 error = security_path_rmdir(&path, dentry);
4207 if (error)
4208 goto exit4;
4209 mnt_userns = mnt_user_ns(path.mnt);
4210 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4211 exit4:
4212 dput(dentry);
4213 exit3:
4214 inode_unlock(path.dentry->d_inode);
4215 mnt_drop_write(path.mnt);
4216 exit2:
4217 path_put(&path);
4218 if (retry_estale(error, lookup_flags)) {
4219 lookup_flags |= LOOKUP_REVAL;
4220 goto retry;
4221 }
4222 exit1:
4223 putname(name);
4224 return error;
4225 }
4226
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4227 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4228 {
4229 return do_rmdir(AT_FDCWD, getname(pathname));
4230 }
4231
4232 /**
4233 * vfs_unlink - unlink a filesystem object
4234 * @mnt_userns: user namespace of the mount the inode was found from
4235 * @dir: parent directory
4236 * @dentry: victim
4237 * @delegated_inode: returns victim inode, if the inode is delegated.
4238 *
4239 * The caller must hold dir->i_mutex.
4240 *
4241 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4242 * return a reference to the inode in delegated_inode. The caller
4243 * should then break the delegation on that inode and retry. Because
4244 * breaking a delegation may take a long time, the caller should drop
4245 * dir->i_mutex before doing so.
4246 *
4247 * Alternatively, a caller may pass NULL for delegated_inode. This may
4248 * be appropriate for callers that expect the underlying filesystem not
4249 * to be NFS exported.
4250 *
4251 * If the inode has been found through an idmapped mount the user namespace of
4252 * the vfsmount must be passed through @mnt_userns. This function will then take
4253 * care to map the inode according to @mnt_userns before checking permissions.
4254 * On non-idmapped mounts or if permission checking is to be performed on the
4255 * raw inode simply passs init_user_ns.
4256 */
vfs_unlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4257 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4258 struct dentry *dentry, struct inode **delegated_inode)
4259 {
4260 struct inode *target = dentry->d_inode;
4261 int error = may_delete(mnt_userns, dir, dentry, 0);
4262
4263 if (error)
4264 return error;
4265
4266 if (!dir->i_op->unlink)
4267 return -EPERM;
4268
4269 inode_lock(target);
4270 if (IS_SWAPFILE(target))
4271 error = -EPERM;
4272 else if (is_local_mountpoint(dentry))
4273 error = -EBUSY;
4274 else {
4275 error = security_inode_unlink(dir, dentry);
4276 if (!error) {
4277 error = try_break_deleg(target, delegated_inode);
4278 if (error)
4279 goto out;
4280 error = dir->i_op->unlink(dir, dentry);
4281 if (!error) {
4282 dont_mount(dentry);
4283 detach_mounts(dentry);
4284 }
4285 }
4286 }
4287 out:
4288 inode_unlock(target);
4289
4290 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4291 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4292 fsnotify_unlink(dir, dentry);
4293 } else if (!error) {
4294 fsnotify_link_count(target);
4295 d_delete_notify(dir, dentry);
4296 }
4297
4298 return error;
4299 }
4300 EXPORT_SYMBOL_NS(vfs_unlink, ANDROID_GKI_VFS_EXPORT_ONLY);
4301
4302 /*
4303 * Make sure that the actual truncation of the file will occur outside its
4304 * directory's i_mutex. Truncate can take a long time if there is a lot of
4305 * writeout happening, and we don't want to prevent access to the directory
4306 * while waiting on the I/O.
4307 */
do_unlinkat(int dfd,struct filename * name)4308 int do_unlinkat(int dfd, struct filename *name)
4309 {
4310 int error;
4311 struct dentry *dentry;
4312 struct path path;
4313 struct qstr last;
4314 int type;
4315 struct inode *inode = NULL;
4316 struct inode *delegated_inode = NULL;
4317 unsigned int lookup_flags = 0;
4318 retry:
4319 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4320 if (error)
4321 goto exit1;
4322
4323 error = -EISDIR;
4324 if (type != LAST_NORM)
4325 goto exit2;
4326
4327 error = mnt_want_write(path.mnt);
4328 if (error)
4329 goto exit2;
4330 retry_deleg:
4331 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4332 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4333 error = PTR_ERR(dentry);
4334 if (!IS_ERR(dentry)) {
4335 struct user_namespace *mnt_userns;
4336
4337 /* Why not before? Because we want correct error value */
4338 if (last.name[last.len])
4339 goto slashes;
4340 inode = dentry->d_inode;
4341 if (d_is_negative(dentry))
4342 goto slashes;
4343 ihold(inode);
4344 error = security_path_unlink(&path, dentry);
4345 if (error)
4346 goto exit3;
4347 mnt_userns = mnt_user_ns(path.mnt);
4348 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4349 &delegated_inode);
4350 exit3:
4351 dput(dentry);
4352 }
4353 inode_unlock(path.dentry->d_inode);
4354 if (inode)
4355 iput(inode); /* truncate the inode here */
4356 inode = NULL;
4357 if (delegated_inode) {
4358 error = break_deleg_wait(&delegated_inode);
4359 if (!error)
4360 goto retry_deleg;
4361 }
4362 mnt_drop_write(path.mnt);
4363 exit2:
4364 path_put(&path);
4365 if (retry_estale(error, lookup_flags)) {
4366 lookup_flags |= LOOKUP_REVAL;
4367 inode = NULL;
4368 goto retry;
4369 }
4370 exit1:
4371 putname(name);
4372 return error;
4373
4374 slashes:
4375 if (d_is_negative(dentry))
4376 error = -ENOENT;
4377 else if (d_is_dir(dentry))
4378 error = -EISDIR;
4379 else
4380 error = -ENOTDIR;
4381 goto exit3;
4382 }
4383
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4384 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4385 {
4386 if ((flag & ~AT_REMOVEDIR) != 0)
4387 return -EINVAL;
4388
4389 if (flag & AT_REMOVEDIR)
4390 return do_rmdir(dfd, getname(pathname));
4391 return do_unlinkat(dfd, getname(pathname));
4392 }
4393
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4394 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4395 {
4396 return do_unlinkat(AT_FDCWD, getname(pathname));
4397 }
4398
4399 /**
4400 * vfs_symlink - create symlink
4401 * @mnt_userns: user namespace of the mount the inode was found from
4402 * @dir: inode of @dentry
4403 * @dentry: pointer to dentry of the base directory
4404 * @oldname: name of the file to link to
4405 *
4406 * Create a symlink.
4407 *
4408 * If the inode has been found through an idmapped mount the user namespace of
4409 * the vfsmount must be passed through @mnt_userns. This function will then take
4410 * care to map the inode according to @mnt_userns before checking permissions.
4411 * On non-idmapped mounts or if permission checking is to be performed on the
4412 * raw inode simply passs init_user_ns.
4413 */
vfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * oldname)4414 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4415 struct dentry *dentry, const char *oldname)
4416 {
4417 int error = may_create(mnt_userns, dir, dentry);
4418
4419 if (error)
4420 return error;
4421
4422 if (!dir->i_op->symlink)
4423 return -EPERM;
4424
4425 error = security_inode_symlink(dir, dentry, oldname);
4426 if (error)
4427 return error;
4428
4429 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4430 if (!error)
4431 fsnotify_create(dir, dentry);
4432 return error;
4433 }
4434 EXPORT_SYMBOL(vfs_symlink);
4435
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4436 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4437 {
4438 int error;
4439 struct dentry *dentry;
4440 struct path path;
4441 unsigned int lookup_flags = 0;
4442
4443 if (IS_ERR(from)) {
4444 error = PTR_ERR(from);
4445 goto out_putnames;
4446 }
4447 retry:
4448 dentry = filename_create(newdfd, to, &path, lookup_flags);
4449 error = PTR_ERR(dentry);
4450 if (IS_ERR(dentry))
4451 goto out_putnames;
4452
4453 error = security_path_symlink(&path, dentry, from->name);
4454 if (!error) {
4455 struct user_namespace *mnt_userns;
4456
4457 mnt_userns = mnt_user_ns(path.mnt);
4458 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4459 from->name);
4460 }
4461 done_path_create(&path, dentry);
4462 if (retry_estale(error, lookup_flags)) {
4463 lookup_flags |= LOOKUP_REVAL;
4464 goto retry;
4465 }
4466 out_putnames:
4467 putname(to);
4468 putname(from);
4469 return error;
4470 }
4471
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4472 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4473 int, newdfd, const char __user *, newname)
4474 {
4475 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4476 }
4477
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4478 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4479 {
4480 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4481 }
4482
4483 /**
4484 * vfs_link - create a new link
4485 * @old_dentry: object to be linked
4486 * @mnt_userns: the user namespace of the mount
4487 * @dir: new parent
4488 * @new_dentry: where to create the new link
4489 * @delegated_inode: returns inode needing a delegation break
4490 *
4491 * The caller must hold dir->i_mutex
4492 *
4493 * If vfs_link discovers a delegation on the to-be-linked file in need
4494 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4495 * inode in delegated_inode. The caller should then break the delegation
4496 * and retry. Because breaking a delegation may take a long time, the
4497 * caller should drop the i_mutex before doing so.
4498 *
4499 * Alternatively, a caller may pass NULL for delegated_inode. This may
4500 * be appropriate for callers that expect the underlying filesystem not
4501 * to be NFS exported.
4502 *
4503 * If the inode has been found through an idmapped mount the user namespace of
4504 * the vfsmount must be passed through @mnt_userns. This function will then take
4505 * care to map the inode according to @mnt_userns before checking permissions.
4506 * On non-idmapped mounts or if permission checking is to be performed on the
4507 * raw inode simply passs init_user_ns.
4508 */
vfs_link(struct dentry * old_dentry,struct user_namespace * mnt_userns,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4509 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4510 struct inode *dir, struct dentry *new_dentry,
4511 struct inode **delegated_inode)
4512 {
4513 struct inode *inode = old_dentry->d_inode;
4514 unsigned max_links = dir->i_sb->s_max_links;
4515 int error;
4516
4517 if (!inode)
4518 return -ENOENT;
4519
4520 error = may_create(mnt_userns, dir, new_dentry);
4521 if (error)
4522 return error;
4523
4524 if (dir->i_sb != inode->i_sb)
4525 return -EXDEV;
4526
4527 /*
4528 * A link to an append-only or immutable file cannot be created.
4529 */
4530 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4531 return -EPERM;
4532 /*
4533 * Updating the link count will likely cause i_uid and i_gid to
4534 * be writen back improperly if their true value is unknown to
4535 * the vfs.
4536 */
4537 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4538 return -EPERM;
4539 if (!dir->i_op->link)
4540 return -EPERM;
4541 if (S_ISDIR(inode->i_mode))
4542 return -EPERM;
4543
4544 error = security_inode_link(old_dentry, dir, new_dentry);
4545 if (error)
4546 return error;
4547
4548 inode_lock(inode);
4549 /* Make sure we don't allow creating hardlink to an unlinked file */
4550 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4551 error = -ENOENT;
4552 else if (max_links && inode->i_nlink >= max_links)
4553 error = -EMLINK;
4554 else {
4555 error = try_break_deleg(inode, delegated_inode);
4556 if (!error)
4557 error = dir->i_op->link(old_dentry, dir, new_dentry);
4558 }
4559
4560 if (!error && (inode->i_state & I_LINKABLE)) {
4561 spin_lock(&inode->i_lock);
4562 inode->i_state &= ~I_LINKABLE;
4563 spin_unlock(&inode->i_lock);
4564 }
4565 inode_unlock(inode);
4566 if (!error)
4567 fsnotify_link(dir, inode, new_dentry);
4568 return error;
4569 }
4570 EXPORT_SYMBOL_NS(vfs_link, ANDROID_GKI_VFS_EXPORT_ONLY);
4571
4572 /*
4573 * Hardlinks are often used in delicate situations. We avoid
4574 * security-related surprises by not following symlinks on the
4575 * newname. --KAB
4576 *
4577 * We don't follow them on the oldname either to be compatible
4578 * with linux 2.0, and to avoid hard-linking to directories
4579 * and other special files. --ADM
4580 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4581 int do_linkat(int olddfd, struct filename *old, int newdfd,
4582 struct filename *new, int flags)
4583 {
4584 struct user_namespace *mnt_userns;
4585 struct dentry *new_dentry;
4586 struct path old_path, new_path;
4587 struct inode *delegated_inode = NULL;
4588 int how = 0;
4589 int error;
4590
4591 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4592 error = -EINVAL;
4593 goto out_putnames;
4594 }
4595 /*
4596 * To use null names we require CAP_DAC_READ_SEARCH
4597 * This ensures that not everyone will be able to create
4598 * handlink using the passed filedescriptor.
4599 */
4600 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4601 error = -ENOENT;
4602 goto out_putnames;
4603 }
4604
4605 if (flags & AT_SYMLINK_FOLLOW)
4606 how |= LOOKUP_FOLLOW;
4607 retry:
4608 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4609 if (error)
4610 goto out_putnames;
4611
4612 new_dentry = filename_create(newdfd, new, &new_path,
4613 (how & LOOKUP_REVAL));
4614 error = PTR_ERR(new_dentry);
4615 if (IS_ERR(new_dentry))
4616 goto out_putpath;
4617
4618 error = -EXDEV;
4619 if (old_path.mnt != new_path.mnt)
4620 goto out_dput;
4621 mnt_userns = mnt_user_ns(new_path.mnt);
4622 error = may_linkat(mnt_userns, &old_path);
4623 if (unlikely(error))
4624 goto out_dput;
4625 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4626 if (error)
4627 goto out_dput;
4628 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4629 new_dentry, &delegated_inode);
4630 out_dput:
4631 done_path_create(&new_path, new_dentry);
4632 if (delegated_inode) {
4633 error = break_deleg_wait(&delegated_inode);
4634 if (!error) {
4635 path_put(&old_path);
4636 goto retry;
4637 }
4638 }
4639 if (retry_estale(error, how)) {
4640 path_put(&old_path);
4641 how |= LOOKUP_REVAL;
4642 goto retry;
4643 }
4644 out_putpath:
4645 path_put(&old_path);
4646 out_putnames:
4647 putname(old);
4648 putname(new);
4649
4650 return error;
4651 }
4652
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4653 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4654 int, newdfd, const char __user *, newname, int, flags)
4655 {
4656 return do_linkat(olddfd, getname_uflags(oldname, flags),
4657 newdfd, getname(newname), flags);
4658 }
4659
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4660 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4661 {
4662 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4663 }
4664
4665 /**
4666 * vfs_rename - rename a filesystem object
4667 * @rd: pointer to &struct renamedata info
4668 *
4669 * The caller must hold multiple mutexes--see lock_rename()).
4670 *
4671 * If vfs_rename discovers a delegation in need of breaking at either
4672 * the source or destination, it will return -EWOULDBLOCK and return a
4673 * reference to the inode in delegated_inode. The caller should then
4674 * break the delegation and retry. Because breaking a delegation may
4675 * take a long time, the caller should drop all locks before doing
4676 * so.
4677 *
4678 * Alternatively, a caller may pass NULL for delegated_inode. This may
4679 * be appropriate for callers that expect the underlying filesystem not
4680 * to be NFS exported.
4681 *
4682 * The worst of all namespace operations - renaming directory. "Perverted"
4683 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4684 * Problems:
4685 *
4686 * a) we can get into loop creation.
4687 * b) race potential - two innocent renames can create a loop together.
4688 * That's where 4.4BSD screws up. Current fix: serialization on
4689 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4690 * story.
4691 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4692 * and source (if it's a non-directory or a subdirectory that moves to
4693 * different parent).
4694 * And that - after we got ->i_mutex on parents (until then we don't know
4695 * whether the target exists). Solution: try to be smart with locking
4696 * order for inodes. We rely on the fact that tree topology may change
4697 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4698 * move will be locked. Thus we can rank directories by the tree
4699 * (ancestors first) and rank all non-directories after them.
4700 * That works since everybody except rename does "lock parent, lookup,
4701 * lock child" and rename is under ->s_vfs_rename_mutex.
4702 * HOWEVER, it relies on the assumption that any object with ->lookup()
4703 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4704 * we'd better make sure that there's no link(2) for them.
4705 * d) conversion from fhandle to dentry may come in the wrong moment - when
4706 * we are removing the target. Solution: we will have to grab ->i_mutex
4707 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4708 * ->i_mutex on parents, which works but leads to some truly excessive
4709 * locking].
4710 */
vfs_rename(struct renamedata * rd)4711 int vfs_rename(struct renamedata *rd)
4712 {
4713 int error;
4714 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4715 struct dentry *old_dentry = rd->old_dentry;
4716 struct dentry *new_dentry = rd->new_dentry;
4717 struct inode **delegated_inode = rd->delegated_inode;
4718 unsigned int flags = rd->flags;
4719 bool is_dir = d_is_dir(old_dentry);
4720 struct inode *source = old_dentry->d_inode;
4721 struct inode *target = new_dentry->d_inode;
4722 bool new_is_dir = false;
4723 unsigned max_links = new_dir->i_sb->s_max_links;
4724 struct name_snapshot old_name;
4725 bool lock_old_subdir, lock_new_subdir;
4726
4727 if (source == target)
4728 return 0;
4729
4730 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4731 if (error)
4732 return error;
4733
4734 if (!target) {
4735 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4736 } else {
4737 new_is_dir = d_is_dir(new_dentry);
4738
4739 if (!(flags & RENAME_EXCHANGE))
4740 error = may_delete(rd->new_mnt_userns, new_dir,
4741 new_dentry, is_dir);
4742 else
4743 error = may_delete(rd->new_mnt_userns, new_dir,
4744 new_dentry, new_is_dir);
4745 }
4746 if (error)
4747 return error;
4748
4749 if (!old_dir->i_op->rename)
4750 return -EPERM;
4751
4752 /*
4753 * If we are going to change the parent - check write permissions,
4754 * we'll need to flip '..'.
4755 */
4756 if (new_dir != old_dir) {
4757 if (is_dir) {
4758 error = inode_permission(rd->old_mnt_userns, source,
4759 MAY_WRITE);
4760 if (error)
4761 return error;
4762 }
4763 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4764 error = inode_permission(rd->new_mnt_userns, target,
4765 MAY_WRITE);
4766 if (error)
4767 return error;
4768 }
4769 }
4770
4771 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4772 flags);
4773 if (error)
4774 return error;
4775
4776 take_dentry_name_snapshot(&old_name, old_dentry);
4777 dget(new_dentry);
4778 /*
4779 * Lock children.
4780 * The source subdirectory needs to be locked on cross-directory
4781 * rename or cross-directory exchange since its parent changes.
4782 * The target subdirectory needs to be locked on cross-directory
4783 * exchange due to parent change and on any rename due to becoming
4784 * a victim.
4785 * Non-directories need locking in all cases (for NFS reasons);
4786 * they get locked after any subdirectories (in inode address order).
4787 *
4788 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4789 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4790 */
4791 lock_old_subdir = new_dir != old_dir;
4792 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4793 if (is_dir) {
4794 if (lock_old_subdir)
4795 inode_lock_nested(source, I_MUTEX_CHILD);
4796 if (target && (!new_is_dir || lock_new_subdir))
4797 inode_lock(target);
4798 } else if (new_is_dir) {
4799 if (lock_new_subdir)
4800 inode_lock_nested(target, I_MUTEX_CHILD);
4801 inode_lock(source);
4802 } else {
4803 lock_two_nondirectories(source, target);
4804 }
4805
4806 error = -EPERM;
4807 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4808 goto out;
4809
4810 error = -EBUSY;
4811 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4812 goto out;
4813
4814 if (max_links && new_dir != old_dir) {
4815 error = -EMLINK;
4816 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4817 goto out;
4818 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4819 old_dir->i_nlink >= max_links)
4820 goto out;
4821 }
4822 if (!is_dir) {
4823 error = try_break_deleg(source, delegated_inode);
4824 if (error)
4825 goto out;
4826 }
4827 if (target && !new_is_dir) {
4828 error = try_break_deleg(target, delegated_inode);
4829 if (error)
4830 goto out;
4831 }
4832 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4833 new_dir, new_dentry, flags);
4834 if (error)
4835 goto out;
4836
4837 if (!(flags & RENAME_EXCHANGE) && target) {
4838 if (is_dir) {
4839 shrink_dcache_parent(new_dentry);
4840 target->i_flags |= S_DEAD;
4841 }
4842 dont_mount(new_dentry);
4843 detach_mounts(new_dentry);
4844 }
4845 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4846 if (!(flags & RENAME_EXCHANGE))
4847 d_move(old_dentry, new_dentry);
4848 else
4849 d_exchange(old_dentry, new_dentry);
4850 }
4851 out:
4852 if (!is_dir || lock_old_subdir)
4853 inode_unlock(source);
4854 if (target && (!new_is_dir || lock_new_subdir))
4855 inode_unlock(target);
4856 dput(new_dentry);
4857 if (!error) {
4858 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4859 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4860 if (flags & RENAME_EXCHANGE) {
4861 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4862 new_is_dir, NULL, new_dentry);
4863 }
4864 }
4865 release_dentry_name_snapshot(&old_name);
4866
4867 return error;
4868 }
4869 EXPORT_SYMBOL_NS(vfs_rename, ANDROID_GKI_VFS_EXPORT_ONLY);
4870
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)4871 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4872 struct filename *to, unsigned int flags)
4873 {
4874 struct renamedata rd;
4875 struct dentry *old_dentry, *new_dentry;
4876 struct dentry *trap;
4877 struct path old_path, new_path;
4878 struct qstr old_last, new_last;
4879 int old_type, new_type;
4880 struct inode *delegated_inode = NULL;
4881 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4882 bool should_retry = false;
4883 int error = -EINVAL;
4884
4885 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4886 goto put_names;
4887
4888 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4889 (flags & RENAME_EXCHANGE))
4890 goto put_names;
4891
4892 if (flags & RENAME_EXCHANGE)
4893 target_flags = 0;
4894
4895 retry:
4896 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4897 &old_last, &old_type);
4898 if (error)
4899 goto put_names;
4900
4901 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4902 &new_type);
4903 if (error)
4904 goto exit1;
4905
4906 error = -EXDEV;
4907 if (old_path.mnt != new_path.mnt)
4908 goto exit2;
4909
4910 error = -EBUSY;
4911 if (old_type != LAST_NORM)
4912 goto exit2;
4913
4914 if (flags & RENAME_NOREPLACE)
4915 error = -EEXIST;
4916 if (new_type != LAST_NORM)
4917 goto exit2;
4918
4919 error = mnt_want_write(old_path.mnt);
4920 if (error)
4921 goto exit2;
4922
4923 retry_deleg:
4924 trap = lock_rename(new_path.dentry, old_path.dentry);
4925
4926 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4927 lookup_flags);
4928 error = PTR_ERR(old_dentry);
4929 if (IS_ERR(old_dentry))
4930 goto exit3;
4931 /* source must exist */
4932 error = -ENOENT;
4933 if (d_is_negative(old_dentry))
4934 goto exit4;
4935 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4936 lookup_flags | target_flags);
4937 error = PTR_ERR(new_dentry);
4938 if (IS_ERR(new_dentry))
4939 goto exit4;
4940 error = -EEXIST;
4941 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4942 goto exit5;
4943 if (flags & RENAME_EXCHANGE) {
4944 error = -ENOENT;
4945 if (d_is_negative(new_dentry))
4946 goto exit5;
4947
4948 if (!d_is_dir(new_dentry)) {
4949 error = -ENOTDIR;
4950 if (new_last.name[new_last.len])
4951 goto exit5;
4952 }
4953 }
4954 /* unless the source is a directory trailing slashes give -ENOTDIR */
4955 if (!d_is_dir(old_dentry)) {
4956 error = -ENOTDIR;
4957 if (old_last.name[old_last.len])
4958 goto exit5;
4959 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4960 goto exit5;
4961 }
4962 /* source should not be ancestor of target */
4963 error = -EINVAL;
4964 if (old_dentry == trap)
4965 goto exit5;
4966 /* target should not be an ancestor of source */
4967 if (!(flags & RENAME_EXCHANGE))
4968 error = -ENOTEMPTY;
4969 if (new_dentry == trap)
4970 goto exit5;
4971
4972 error = security_path_rename(&old_path, old_dentry,
4973 &new_path, new_dentry, flags);
4974 if (error)
4975 goto exit5;
4976
4977 rd.old_dir = old_path.dentry->d_inode;
4978 rd.old_dentry = old_dentry;
4979 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4980 rd.new_dir = new_path.dentry->d_inode;
4981 rd.new_dentry = new_dentry;
4982 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4983 rd.delegated_inode = &delegated_inode;
4984 rd.flags = flags;
4985 error = vfs_rename(&rd);
4986 exit5:
4987 dput(new_dentry);
4988 exit4:
4989 dput(old_dentry);
4990 exit3:
4991 unlock_rename(new_path.dentry, old_path.dentry);
4992 if (delegated_inode) {
4993 error = break_deleg_wait(&delegated_inode);
4994 if (!error)
4995 goto retry_deleg;
4996 }
4997 mnt_drop_write(old_path.mnt);
4998 exit2:
4999 if (retry_estale(error, lookup_flags))
5000 should_retry = true;
5001 path_put(&new_path);
5002 exit1:
5003 path_put(&old_path);
5004 if (should_retry) {
5005 should_retry = false;
5006 lookup_flags |= LOOKUP_REVAL;
5007 goto retry;
5008 }
5009 put_names:
5010 putname(from);
5011 putname(to);
5012 return error;
5013 }
5014
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5015 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5016 int, newdfd, const char __user *, newname, unsigned int, flags)
5017 {
5018 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5019 flags);
5020 }
5021
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5022 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5023 int, newdfd, const char __user *, newname)
5024 {
5025 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5026 0);
5027 }
5028
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5029 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5030 {
5031 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5032 getname(newname), 0);
5033 }
5034
readlink_copy(char __user * buffer,int buflen,const char * link)5035 int readlink_copy(char __user *buffer, int buflen, const char *link)
5036 {
5037 int len = PTR_ERR(link);
5038 if (IS_ERR(link))
5039 goto out;
5040
5041 len = strlen(link);
5042 if (len > (unsigned) buflen)
5043 len = buflen;
5044 if (copy_to_user(buffer, link, len))
5045 len = -EFAULT;
5046 out:
5047 return len;
5048 }
5049
5050 /**
5051 * vfs_readlink - copy symlink body into userspace buffer
5052 * @dentry: dentry on which to get symbolic link
5053 * @buffer: user memory pointer
5054 * @buflen: size of buffer
5055 *
5056 * Does not touch atime. That's up to the caller if necessary
5057 *
5058 * Does not call security hook.
5059 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5060 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5061 {
5062 struct inode *inode = d_inode(dentry);
5063 DEFINE_DELAYED_CALL(done);
5064 const char *link;
5065 int res;
5066
5067 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5068 if (unlikely(inode->i_op->readlink))
5069 return inode->i_op->readlink(dentry, buffer, buflen);
5070
5071 if (!d_is_symlink(dentry))
5072 return -EINVAL;
5073
5074 spin_lock(&inode->i_lock);
5075 inode->i_opflags |= IOP_DEFAULT_READLINK;
5076 spin_unlock(&inode->i_lock);
5077 }
5078
5079 link = READ_ONCE(inode->i_link);
5080 if (!link) {
5081 link = inode->i_op->get_link(dentry, inode, &done);
5082 if (IS_ERR(link))
5083 return PTR_ERR(link);
5084 }
5085 res = readlink_copy(buffer, buflen, link);
5086 do_delayed_call(&done);
5087 return res;
5088 }
5089 EXPORT_SYMBOL(vfs_readlink);
5090
5091 /**
5092 * vfs_get_link - get symlink body
5093 * @dentry: dentry on which to get symbolic link
5094 * @done: caller needs to free returned data with this
5095 *
5096 * Calls security hook and i_op->get_link() on the supplied inode.
5097 *
5098 * It does not touch atime. That's up to the caller if necessary.
5099 *
5100 * Does not work on "special" symlinks like /proc/$$/fd/N
5101 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5102 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5103 {
5104 const char *res = ERR_PTR(-EINVAL);
5105 struct inode *inode = d_inode(dentry);
5106
5107 if (d_is_symlink(dentry)) {
5108 res = ERR_PTR(security_inode_readlink(dentry));
5109 if (!res)
5110 res = inode->i_op->get_link(dentry, inode, done);
5111 }
5112 return res;
5113 }
5114 EXPORT_SYMBOL(vfs_get_link);
5115
5116 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5117 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5118 struct delayed_call *callback)
5119 {
5120 char *kaddr;
5121 struct page *page;
5122 struct address_space *mapping = inode->i_mapping;
5123
5124 if (!dentry) {
5125 page = find_get_page(mapping, 0);
5126 if (!page)
5127 return ERR_PTR(-ECHILD);
5128 if (!PageUptodate(page)) {
5129 put_page(page);
5130 return ERR_PTR(-ECHILD);
5131 }
5132 } else {
5133 page = read_mapping_page(mapping, 0, NULL);
5134 if (IS_ERR(page))
5135 return (char*)page;
5136 }
5137 set_delayed_call(callback, page_put_link, page);
5138 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5139 kaddr = page_address(page);
5140 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5141 return kaddr;
5142 }
5143
5144 EXPORT_SYMBOL(page_get_link);
5145
page_put_link(void * arg)5146 void page_put_link(void *arg)
5147 {
5148 put_page(arg);
5149 }
5150 EXPORT_SYMBOL(page_put_link);
5151
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5152 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5153 {
5154 DEFINE_DELAYED_CALL(done);
5155 int res = readlink_copy(buffer, buflen,
5156 page_get_link(dentry, d_inode(dentry),
5157 &done));
5158 do_delayed_call(&done);
5159 return res;
5160 }
5161 EXPORT_SYMBOL(page_readlink);
5162
5163 /*
5164 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
5165 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)5166 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
5167 {
5168 struct address_space *mapping = inode->i_mapping;
5169 struct page *page;
5170 void *fsdata = NULL;
5171 int err;
5172 unsigned int flags = 0;
5173 if (nofs)
5174 flags |= AOP_FLAG_NOFS;
5175
5176 retry:
5177 err = pagecache_write_begin(NULL, mapping, 0, len-1,
5178 flags, &page, &fsdata);
5179 if (err)
5180 goto fail;
5181
5182 memcpy(page_address(page), symname, len-1);
5183
5184 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
5185 page, fsdata);
5186 if (err < 0)
5187 goto fail;
5188 if (err < len-1)
5189 goto retry;
5190
5191 mark_inode_dirty(inode);
5192 return 0;
5193 fail:
5194 return err;
5195 }
5196 EXPORT_SYMBOL(__page_symlink);
5197
page_symlink(struct inode * inode,const char * symname,int len)5198 int page_symlink(struct inode *inode, const char *symname, int len)
5199 {
5200 return __page_symlink(inode, symname, len,
5201 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
5202 }
5203 EXPORT_SYMBOL(page_symlink);
5204
5205 const struct inode_operations page_symlink_inode_operations = {
5206 .get_link = page_get_link,
5207 };
5208 EXPORT_SYMBOL(page_symlink_inode_operations);
5209