• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static const unsigned int input_max_code[EV_CNT] = {
51 	[EV_KEY] = KEY_MAX,
52 	[EV_REL] = REL_MAX,
53 	[EV_ABS] = ABS_MAX,
54 	[EV_MSC] = MSC_MAX,
55 	[EV_SW] = SW_MAX,
56 	[EV_LED] = LED_MAX,
57 	[EV_SND] = SND_MAX,
58 	[EV_FF] = FF_MAX,
59 };
60 
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)61 static inline int is_event_supported(unsigned int code,
62 				     unsigned long *bm, unsigned int max)
63 {
64 	return code <= max && test_bit(code, bm);
65 }
66 
input_defuzz_abs_event(int value,int old_val,int fuzz)67 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
68 {
69 	if (fuzz) {
70 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
71 			return old_val;
72 
73 		if (value > old_val - fuzz && value < old_val + fuzz)
74 			return (old_val * 3 + value) / 4;
75 
76 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
77 			return (old_val + value) / 2;
78 	}
79 
80 	return value;
81 }
82 
input_start_autorepeat(struct input_dev * dev,int code)83 static void input_start_autorepeat(struct input_dev *dev, int code)
84 {
85 	if (test_bit(EV_REP, dev->evbit) &&
86 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 	    dev->timer.function) {
88 		dev->repeat_key = code;
89 		mod_timer(&dev->timer,
90 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
91 	}
92 }
93 
input_stop_autorepeat(struct input_dev * dev)94 static void input_stop_autorepeat(struct input_dev *dev)
95 {
96 	del_timer(&dev->timer);
97 }
98 
99 /*
100  * Pass event first through all filters and then, if event has not been
101  * filtered out, through all open handles. This function is called with
102  * dev->event_lock held and interrupts disabled.
103  */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)104 static unsigned int input_to_handler(struct input_handle *handle,
105 			struct input_value *vals, unsigned int count)
106 {
107 	struct input_handler *handler = handle->handler;
108 	struct input_value *end = vals;
109 	struct input_value *v;
110 
111 	if (handler->filter) {
112 		for (v = vals; v != vals + count; v++) {
113 			if (handler->filter(handle, v->type, v->code, v->value))
114 				continue;
115 			if (end != v)
116 				*end = *v;
117 			end++;
118 		}
119 		count = end - vals;
120 	}
121 
122 	if (!count)
123 		return 0;
124 
125 	if (handler->events)
126 		handler->events(handle, vals, count);
127 	else if (handler->event)
128 		for (v = vals; v != vals + count; v++)
129 			handler->event(handle, v->type, v->code, v->value);
130 
131 	return count;
132 }
133 
134 /*
135  * Pass values first through all filters and then, if event has not been
136  * filtered out, through all open handles. This function is called with
137  * dev->event_lock held and interrupts disabled.
138  */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)139 static void input_pass_values(struct input_dev *dev,
140 			      struct input_value *vals, unsigned int count)
141 {
142 	struct input_handle *handle;
143 	struct input_value *v;
144 
145 	if (!count)
146 		return;
147 
148 	rcu_read_lock();
149 
150 	handle = rcu_dereference(dev->grab);
151 	if (handle) {
152 		count = input_to_handler(handle, vals, count);
153 	} else {
154 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 			if (handle->open) {
156 				count = input_to_handler(handle, vals, count);
157 				if (!count)
158 					break;
159 			}
160 	}
161 
162 	rcu_read_unlock();
163 
164 	/* trigger auto repeat for key events */
165 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
166 		for (v = vals; v != vals + count; v++) {
167 			if (v->type == EV_KEY && v->value != 2) {
168 				if (v->value)
169 					input_start_autorepeat(dev, v->code);
170 				else
171 					input_stop_autorepeat(dev);
172 			}
173 		}
174 	}
175 }
176 
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)177 static void input_pass_event(struct input_dev *dev,
178 			     unsigned int type, unsigned int code, int value)
179 {
180 	struct input_value vals[] = { { type, code, value } };
181 
182 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
183 }
184 
185 /*
186  * Generate software autorepeat event. Note that we take
187  * dev->event_lock here to avoid racing with input_event
188  * which may cause keys get "stuck".
189  */
input_repeat_key(struct timer_list * t)190 static void input_repeat_key(struct timer_list *t)
191 {
192 	struct input_dev *dev = from_timer(dev, t, timer);
193 	unsigned long flags;
194 
195 	spin_lock_irqsave(&dev->event_lock, flags);
196 
197 	if (test_bit(dev->repeat_key, dev->key) &&
198 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
199 		struct input_value vals[] =  {
200 			{ EV_KEY, dev->repeat_key, 2 },
201 			input_value_sync
202 		};
203 
204 		input_set_timestamp(dev, ktime_get());
205 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
206 
207 		if (dev->rep[REP_PERIOD])
208 			mod_timer(&dev->timer, jiffies +
209 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
210 	}
211 
212 	spin_unlock_irqrestore(&dev->event_lock, flags);
213 }
214 
215 #define INPUT_IGNORE_EVENT	0
216 #define INPUT_PASS_TO_HANDLERS	1
217 #define INPUT_PASS_TO_DEVICE	2
218 #define INPUT_SLOT		4
219 #define INPUT_FLUSH		8
220 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
221 
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)222 static int input_handle_abs_event(struct input_dev *dev,
223 				  unsigned int code, int *pval)
224 {
225 	struct input_mt *mt = dev->mt;
226 	bool is_mt_event;
227 	int *pold;
228 
229 	if (code == ABS_MT_SLOT) {
230 		/*
231 		 * "Stage" the event; we'll flush it later, when we
232 		 * get actual touch data.
233 		 */
234 		if (mt && *pval >= 0 && *pval < mt->num_slots)
235 			mt->slot = *pval;
236 
237 		return INPUT_IGNORE_EVENT;
238 	}
239 
240 	is_mt_event = input_is_mt_value(code);
241 
242 	if (!is_mt_event) {
243 		pold = &dev->absinfo[code].value;
244 	} else if (mt) {
245 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
246 	} else {
247 		/*
248 		 * Bypass filtering for multi-touch events when
249 		 * not employing slots.
250 		 */
251 		pold = NULL;
252 	}
253 
254 	if (pold) {
255 		*pval = input_defuzz_abs_event(*pval, *pold,
256 						dev->absinfo[code].fuzz);
257 		if (*pold == *pval)
258 			return INPUT_IGNORE_EVENT;
259 
260 		*pold = *pval;
261 	}
262 
263 	/* Flush pending "slot" event */
264 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
266 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
267 	}
268 
269 	return INPUT_PASS_TO_HANDLERS;
270 }
271 
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)272 static int input_get_disposition(struct input_dev *dev,
273 			  unsigned int type, unsigned int code, int *pval)
274 {
275 	int disposition = INPUT_IGNORE_EVENT;
276 	int value = *pval;
277 
278 	switch (type) {
279 
280 	case EV_SYN:
281 		switch (code) {
282 		case SYN_CONFIG:
283 			disposition = INPUT_PASS_TO_ALL;
284 			break;
285 
286 		case SYN_REPORT:
287 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
288 			break;
289 		case SYN_MT_REPORT:
290 			disposition = INPUT_PASS_TO_HANDLERS;
291 			break;
292 		}
293 		break;
294 
295 	case EV_KEY:
296 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
297 
298 			/* auto-repeat bypasses state updates */
299 			if (value == 2) {
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 				break;
302 			}
303 
304 			if (!!test_bit(code, dev->key) != !!value) {
305 
306 				__change_bit(code, dev->key);
307 				disposition = INPUT_PASS_TO_HANDLERS;
308 			}
309 		}
310 		break;
311 
312 	case EV_SW:
313 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 		    !!test_bit(code, dev->sw) != !!value) {
315 
316 			__change_bit(code, dev->sw);
317 			disposition = INPUT_PASS_TO_HANDLERS;
318 		}
319 		break;
320 
321 	case EV_ABS:
322 		if (is_event_supported(code, dev->absbit, ABS_MAX))
323 			disposition = input_handle_abs_event(dev, code, &value);
324 
325 		break;
326 
327 	case EV_REL:
328 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
329 			disposition = INPUT_PASS_TO_HANDLERS;
330 
331 		break;
332 
333 	case EV_MSC:
334 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
335 			disposition = INPUT_PASS_TO_ALL;
336 
337 		break;
338 
339 	case EV_LED:
340 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 		    !!test_bit(code, dev->led) != !!value) {
342 
343 			__change_bit(code, dev->led);
344 			disposition = INPUT_PASS_TO_ALL;
345 		}
346 		break;
347 
348 	case EV_SND:
349 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
350 
351 			if (!!test_bit(code, dev->snd) != !!value)
352 				__change_bit(code, dev->snd);
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_REP:
358 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 			dev->rep[code] = value;
360 			disposition = INPUT_PASS_TO_ALL;
361 		}
362 		break;
363 
364 	case EV_FF:
365 		if (value >= 0)
366 			disposition = INPUT_PASS_TO_ALL;
367 		break;
368 
369 	case EV_PWR:
370 		disposition = INPUT_PASS_TO_ALL;
371 		break;
372 	}
373 
374 	*pval = value;
375 	return disposition;
376 }
377 
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)378 static void input_handle_event(struct input_dev *dev,
379 			       unsigned int type, unsigned int code, int value)
380 {
381 	int disposition;
382 
383 	/* filter-out events from inhibited devices */
384 	if (dev->inhibited)
385 		return;
386 
387 	disposition = input_get_disposition(dev, type, code, &value);
388 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
389 		add_input_randomness(type, code, value);
390 
391 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
392 		dev->event(dev, type, code, value);
393 
394 	if (!dev->vals)
395 		return;
396 
397 	if (disposition & INPUT_PASS_TO_HANDLERS) {
398 		struct input_value *v;
399 
400 		if (disposition & INPUT_SLOT) {
401 			v = &dev->vals[dev->num_vals++];
402 			v->type = EV_ABS;
403 			v->code = ABS_MT_SLOT;
404 			v->value = dev->mt->slot;
405 		}
406 
407 		v = &dev->vals[dev->num_vals++];
408 		v->type = type;
409 		v->code = code;
410 		v->value = value;
411 	}
412 
413 	if (disposition & INPUT_FLUSH) {
414 		if (dev->num_vals >= 2)
415 			input_pass_values(dev, dev->vals, dev->num_vals);
416 		dev->num_vals = 0;
417 		/*
418 		 * Reset the timestamp on flush so we won't end up
419 		 * with a stale one. Note we only need to reset the
420 		 * monolithic one as we use its presence when deciding
421 		 * whether to generate a synthetic timestamp.
422 		 */
423 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
424 	} else if (dev->num_vals >= dev->max_vals - 2) {
425 		dev->vals[dev->num_vals++] = input_value_sync;
426 		input_pass_values(dev, dev->vals, dev->num_vals);
427 		dev->num_vals = 0;
428 	}
429 
430 }
431 
432 /**
433  * input_event() - report new input event
434  * @dev: device that generated the event
435  * @type: type of the event
436  * @code: event code
437  * @value: value of the event
438  *
439  * This function should be used by drivers implementing various input
440  * devices to report input events. See also input_inject_event().
441  *
442  * NOTE: input_event() may be safely used right after input device was
443  * allocated with input_allocate_device(), even before it is registered
444  * with input_register_device(), but the event will not reach any of the
445  * input handlers. Such early invocation of input_event() may be used
446  * to 'seed' initial state of a switch or initial position of absolute
447  * axis, etc.
448  */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)449 void input_event(struct input_dev *dev,
450 		 unsigned int type, unsigned int code, int value)
451 {
452 	unsigned long flags;
453 
454 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
455 
456 		spin_lock_irqsave(&dev->event_lock, flags);
457 		input_handle_event(dev, type, code, value);
458 		spin_unlock_irqrestore(&dev->event_lock, flags);
459 	}
460 }
461 EXPORT_SYMBOL(input_event);
462 
463 /**
464  * input_inject_event() - send input event from input handler
465  * @handle: input handle to send event through
466  * @type: type of the event
467  * @code: event code
468  * @value: value of the event
469  *
470  * Similar to input_event() but will ignore event if device is
471  * "grabbed" and handle injecting event is not the one that owns
472  * the device.
473  */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)474 void input_inject_event(struct input_handle *handle,
475 			unsigned int type, unsigned int code, int value)
476 {
477 	struct input_dev *dev = handle->dev;
478 	struct input_handle *grab;
479 	unsigned long flags;
480 
481 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
482 		spin_lock_irqsave(&dev->event_lock, flags);
483 
484 		rcu_read_lock();
485 		grab = rcu_dereference(dev->grab);
486 		if (!grab || grab == handle)
487 			input_handle_event(dev, type, code, value);
488 		rcu_read_unlock();
489 
490 		spin_unlock_irqrestore(&dev->event_lock, flags);
491 	}
492 }
493 EXPORT_SYMBOL(input_inject_event);
494 
495 /**
496  * input_alloc_absinfo - allocates array of input_absinfo structs
497  * @dev: the input device emitting absolute events
498  *
499  * If the absinfo struct the caller asked for is already allocated, this
500  * functions will not do anything.
501  */
input_alloc_absinfo(struct input_dev * dev)502 void input_alloc_absinfo(struct input_dev *dev)
503 {
504 	if (dev->absinfo)
505 		return;
506 
507 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
508 	if (!dev->absinfo) {
509 		dev_err(dev->dev.parent ?: &dev->dev,
510 			"%s: unable to allocate memory\n", __func__);
511 		/*
512 		 * We will handle this allocation failure in
513 		 * input_register_device() when we refuse to register input
514 		 * device with ABS bits but without absinfo.
515 		 */
516 	}
517 }
518 EXPORT_SYMBOL(input_alloc_absinfo);
519 
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)520 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
521 			  int min, int max, int fuzz, int flat)
522 {
523 	struct input_absinfo *absinfo;
524 
525 	input_alloc_absinfo(dev);
526 	if (!dev->absinfo)
527 		return;
528 
529 	absinfo = &dev->absinfo[axis];
530 	absinfo->minimum = min;
531 	absinfo->maximum = max;
532 	absinfo->fuzz = fuzz;
533 	absinfo->flat = flat;
534 
535 	__set_bit(EV_ABS, dev->evbit);
536 	__set_bit(axis, dev->absbit);
537 }
538 EXPORT_SYMBOL(input_set_abs_params);
539 
540 
541 /**
542  * input_grab_device - grabs device for exclusive use
543  * @handle: input handle that wants to own the device
544  *
545  * When a device is grabbed by an input handle all events generated by
546  * the device are delivered only to this handle. Also events injected
547  * by other input handles are ignored while device is grabbed.
548  */
input_grab_device(struct input_handle * handle)549 int input_grab_device(struct input_handle *handle)
550 {
551 	struct input_dev *dev = handle->dev;
552 	int retval;
553 
554 	retval = mutex_lock_interruptible(&dev->mutex);
555 	if (retval)
556 		return retval;
557 
558 	if (dev->grab) {
559 		retval = -EBUSY;
560 		goto out;
561 	}
562 
563 	rcu_assign_pointer(dev->grab, handle);
564 
565  out:
566 	mutex_unlock(&dev->mutex);
567 	return retval;
568 }
569 EXPORT_SYMBOL(input_grab_device);
570 
__input_release_device(struct input_handle * handle)571 static void __input_release_device(struct input_handle *handle)
572 {
573 	struct input_dev *dev = handle->dev;
574 	struct input_handle *grabber;
575 
576 	grabber = rcu_dereference_protected(dev->grab,
577 					    lockdep_is_held(&dev->mutex));
578 	if (grabber == handle) {
579 		rcu_assign_pointer(dev->grab, NULL);
580 		/* Make sure input_pass_event() notices that grab is gone */
581 		synchronize_rcu();
582 
583 		list_for_each_entry(handle, &dev->h_list, d_node)
584 			if (handle->open && handle->handler->start)
585 				handle->handler->start(handle);
586 	}
587 }
588 
589 /**
590  * input_release_device - release previously grabbed device
591  * @handle: input handle that owns the device
592  *
593  * Releases previously grabbed device so that other input handles can
594  * start receiving input events. Upon release all handlers attached
595  * to the device have their start() method called so they have a change
596  * to synchronize device state with the rest of the system.
597  */
input_release_device(struct input_handle * handle)598 void input_release_device(struct input_handle *handle)
599 {
600 	struct input_dev *dev = handle->dev;
601 
602 	mutex_lock(&dev->mutex);
603 	__input_release_device(handle);
604 	mutex_unlock(&dev->mutex);
605 }
606 EXPORT_SYMBOL(input_release_device);
607 
608 /**
609  * input_open_device - open input device
610  * @handle: handle through which device is being accessed
611  *
612  * This function should be called by input handlers when they
613  * want to start receive events from given input device.
614  */
input_open_device(struct input_handle * handle)615 int input_open_device(struct input_handle *handle)
616 {
617 	struct input_dev *dev = handle->dev;
618 	int retval;
619 
620 	retval = mutex_lock_interruptible(&dev->mutex);
621 	if (retval)
622 		return retval;
623 
624 	if (dev->going_away) {
625 		retval = -ENODEV;
626 		goto out;
627 	}
628 
629 	handle->open++;
630 
631 	if (dev->users++ || dev->inhibited) {
632 		/*
633 		 * Device is already opened and/or inhibited,
634 		 * so we can exit immediately and report success.
635 		 */
636 		goto out;
637 	}
638 
639 	if (dev->open) {
640 		retval = dev->open(dev);
641 		if (retval) {
642 			dev->users--;
643 			handle->open--;
644 			/*
645 			 * Make sure we are not delivering any more events
646 			 * through this handle
647 			 */
648 			synchronize_rcu();
649 			goto out;
650 		}
651 	}
652 
653 	if (dev->poller)
654 		input_dev_poller_start(dev->poller);
655 
656  out:
657 	mutex_unlock(&dev->mutex);
658 	return retval;
659 }
660 EXPORT_SYMBOL(input_open_device);
661 
input_flush_device(struct input_handle * handle,struct file * file)662 int input_flush_device(struct input_handle *handle, struct file *file)
663 {
664 	struct input_dev *dev = handle->dev;
665 	int retval;
666 
667 	retval = mutex_lock_interruptible(&dev->mutex);
668 	if (retval)
669 		return retval;
670 
671 	if (dev->flush)
672 		retval = dev->flush(dev, file);
673 
674 	mutex_unlock(&dev->mutex);
675 	return retval;
676 }
677 EXPORT_SYMBOL(input_flush_device);
678 
679 /**
680  * input_close_device - close input device
681  * @handle: handle through which device is being accessed
682  *
683  * This function should be called by input handlers when they
684  * want to stop receive events from given input device.
685  */
input_close_device(struct input_handle * handle)686 void input_close_device(struct input_handle *handle)
687 {
688 	struct input_dev *dev = handle->dev;
689 
690 	mutex_lock(&dev->mutex);
691 
692 	__input_release_device(handle);
693 
694 	if (!--dev->users && !dev->inhibited) {
695 		if (dev->poller)
696 			input_dev_poller_stop(dev->poller);
697 		if (dev->close)
698 			dev->close(dev);
699 	}
700 
701 	if (!--handle->open) {
702 		/*
703 		 * synchronize_rcu() makes sure that input_pass_event()
704 		 * completed and that no more input events are delivered
705 		 * through this handle
706 		 */
707 		synchronize_rcu();
708 	}
709 
710 	mutex_unlock(&dev->mutex);
711 }
712 EXPORT_SYMBOL(input_close_device);
713 
714 /*
715  * Simulate keyup events for all keys that are marked as pressed.
716  * The function must be called with dev->event_lock held.
717  */
input_dev_release_keys(struct input_dev * dev)718 static void input_dev_release_keys(struct input_dev *dev)
719 {
720 	bool need_sync = false;
721 	int code;
722 
723 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
724 		for_each_set_bit(code, dev->key, KEY_CNT) {
725 			input_pass_event(dev, EV_KEY, code, 0);
726 			need_sync = true;
727 		}
728 
729 		if (need_sync)
730 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
731 
732 		memset(dev->key, 0, sizeof(dev->key));
733 	}
734 }
735 
736 /*
737  * Prepare device for unregistering
738  */
input_disconnect_device(struct input_dev * dev)739 static void input_disconnect_device(struct input_dev *dev)
740 {
741 	struct input_handle *handle;
742 
743 	/*
744 	 * Mark device as going away. Note that we take dev->mutex here
745 	 * not to protect access to dev->going_away but rather to ensure
746 	 * that there are no threads in the middle of input_open_device()
747 	 */
748 	mutex_lock(&dev->mutex);
749 	dev->going_away = true;
750 	mutex_unlock(&dev->mutex);
751 
752 	spin_lock_irq(&dev->event_lock);
753 
754 	/*
755 	 * Simulate keyup events for all pressed keys so that handlers
756 	 * are not left with "stuck" keys. The driver may continue
757 	 * generate events even after we done here but they will not
758 	 * reach any handlers.
759 	 */
760 	input_dev_release_keys(dev);
761 
762 	list_for_each_entry(handle, &dev->h_list, d_node)
763 		handle->open = 0;
764 
765 	spin_unlock_irq(&dev->event_lock);
766 }
767 
768 /**
769  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
770  * @ke: keymap entry containing scancode to be converted.
771  * @scancode: pointer to the location where converted scancode should
772  *	be stored.
773  *
774  * This function is used to convert scancode stored in &struct keymap_entry
775  * into scalar form understood by legacy keymap handling methods. These
776  * methods expect scancodes to be represented as 'unsigned int'.
777  */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)778 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
779 			     unsigned int *scancode)
780 {
781 	switch (ke->len) {
782 	case 1:
783 		*scancode = *((u8 *)ke->scancode);
784 		break;
785 
786 	case 2:
787 		*scancode = *((u16 *)ke->scancode);
788 		break;
789 
790 	case 4:
791 		*scancode = *((u32 *)ke->scancode);
792 		break;
793 
794 	default:
795 		return -EINVAL;
796 	}
797 
798 	return 0;
799 }
800 EXPORT_SYMBOL(input_scancode_to_scalar);
801 
802 /*
803  * Those routines handle the default case where no [gs]etkeycode() is
804  * defined. In this case, an array indexed by the scancode is used.
805  */
806 
input_fetch_keycode(struct input_dev * dev,unsigned int index)807 static unsigned int input_fetch_keycode(struct input_dev *dev,
808 					unsigned int index)
809 {
810 	switch (dev->keycodesize) {
811 	case 1:
812 		return ((u8 *)dev->keycode)[index];
813 
814 	case 2:
815 		return ((u16 *)dev->keycode)[index];
816 
817 	default:
818 		return ((u32 *)dev->keycode)[index];
819 	}
820 }
821 
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)822 static int input_default_getkeycode(struct input_dev *dev,
823 				    struct input_keymap_entry *ke)
824 {
825 	unsigned int index;
826 	int error;
827 
828 	if (!dev->keycodesize)
829 		return -EINVAL;
830 
831 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
832 		index = ke->index;
833 	else {
834 		error = input_scancode_to_scalar(ke, &index);
835 		if (error)
836 			return error;
837 	}
838 
839 	if (index >= dev->keycodemax)
840 		return -EINVAL;
841 
842 	ke->keycode = input_fetch_keycode(dev, index);
843 	ke->index = index;
844 	ke->len = sizeof(index);
845 	memcpy(ke->scancode, &index, sizeof(index));
846 
847 	return 0;
848 }
849 
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)850 static int input_default_setkeycode(struct input_dev *dev,
851 				    const struct input_keymap_entry *ke,
852 				    unsigned int *old_keycode)
853 {
854 	unsigned int index;
855 	int error;
856 	int i;
857 
858 	if (!dev->keycodesize)
859 		return -EINVAL;
860 
861 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
862 		index = ke->index;
863 	} else {
864 		error = input_scancode_to_scalar(ke, &index);
865 		if (error)
866 			return error;
867 	}
868 
869 	if (index >= dev->keycodemax)
870 		return -EINVAL;
871 
872 	if (dev->keycodesize < sizeof(ke->keycode) &&
873 			(ke->keycode >> (dev->keycodesize * 8)))
874 		return -EINVAL;
875 
876 	switch (dev->keycodesize) {
877 		case 1: {
878 			u8 *k = (u8 *)dev->keycode;
879 			*old_keycode = k[index];
880 			k[index] = ke->keycode;
881 			break;
882 		}
883 		case 2: {
884 			u16 *k = (u16 *)dev->keycode;
885 			*old_keycode = k[index];
886 			k[index] = ke->keycode;
887 			break;
888 		}
889 		default: {
890 			u32 *k = (u32 *)dev->keycode;
891 			*old_keycode = k[index];
892 			k[index] = ke->keycode;
893 			break;
894 		}
895 	}
896 
897 	if (*old_keycode <= KEY_MAX) {
898 		__clear_bit(*old_keycode, dev->keybit);
899 		for (i = 0; i < dev->keycodemax; i++) {
900 			if (input_fetch_keycode(dev, i) == *old_keycode) {
901 				__set_bit(*old_keycode, dev->keybit);
902 				/* Setting the bit twice is useless, so break */
903 				break;
904 			}
905 		}
906 	}
907 
908 	__set_bit(ke->keycode, dev->keybit);
909 	return 0;
910 }
911 
912 /**
913  * input_get_keycode - retrieve keycode currently mapped to a given scancode
914  * @dev: input device which keymap is being queried
915  * @ke: keymap entry
916  *
917  * This function should be called by anyone interested in retrieving current
918  * keymap. Presently evdev handlers use it.
919  */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)920 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
921 {
922 	unsigned long flags;
923 	int retval;
924 
925 	spin_lock_irqsave(&dev->event_lock, flags);
926 	retval = dev->getkeycode(dev, ke);
927 	spin_unlock_irqrestore(&dev->event_lock, flags);
928 
929 	return retval;
930 }
931 EXPORT_SYMBOL(input_get_keycode);
932 
933 /**
934  * input_set_keycode - attribute a keycode to a given scancode
935  * @dev: input device which keymap is being updated
936  * @ke: new keymap entry
937  *
938  * This function should be called by anyone needing to update current
939  * keymap. Presently keyboard and evdev handlers use it.
940  */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)941 int input_set_keycode(struct input_dev *dev,
942 		      const struct input_keymap_entry *ke)
943 {
944 	unsigned long flags;
945 	unsigned int old_keycode;
946 	int retval;
947 
948 	if (ke->keycode > KEY_MAX)
949 		return -EINVAL;
950 
951 	spin_lock_irqsave(&dev->event_lock, flags);
952 
953 	retval = dev->setkeycode(dev, ke, &old_keycode);
954 	if (retval)
955 		goto out;
956 
957 	/* Make sure KEY_RESERVED did not get enabled. */
958 	__clear_bit(KEY_RESERVED, dev->keybit);
959 
960 	/*
961 	 * Simulate keyup event if keycode is not present
962 	 * in the keymap anymore
963 	 */
964 	if (old_keycode > KEY_MAX) {
965 		dev_warn(dev->dev.parent ?: &dev->dev,
966 			 "%s: got too big old keycode %#x\n",
967 			 __func__, old_keycode);
968 	} else if (test_bit(EV_KEY, dev->evbit) &&
969 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
970 		   __test_and_clear_bit(old_keycode, dev->key)) {
971 		struct input_value vals[] =  {
972 			{ EV_KEY, old_keycode, 0 },
973 			input_value_sync
974 		};
975 
976 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
977 	}
978 
979  out:
980 	spin_unlock_irqrestore(&dev->event_lock, flags);
981 
982 	return retval;
983 }
984 EXPORT_SYMBOL(input_set_keycode);
985 
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)986 bool input_match_device_id(const struct input_dev *dev,
987 			   const struct input_device_id *id)
988 {
989 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
990 		if (id->bustype != dev->id.bustype)
991 			return false;
992 
993 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
994 		if (id->vendor != dev->id.vendor)
995 			return false;
996 
997 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
998 		if (id->product != dev->id.product)
999 			return false;
1000 
1001 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1002 		if (id->version != dev->id.version)
1003 			return false;
1004 
1005 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1006 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1007 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1008 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1009 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1010 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1011 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1012 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1013 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1014 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1015 		return false;
1016 	}
1017 
1018 	return true;
1019 }
1020 EXPORT_SYMBOL(input_match_device_id);
1021 
input_match_device(struct input_handler * handler,struct input_dev * dev)1022 static const struct input_device_id *input_match_device(struct input_handler *handler,
1023 							struct input_dev *dev)
1024 {
1025 	const struct input_device_id *id;
1026 
1027 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1028 		if (input_match_device_id(dev, id) &&
1029 		    (!handler->match || handler->match(handler, dev))) {
1030 			return id;
1031 		}
1032 	}
1033 
1034 	return NULL;
1035 }
1036 
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1037 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1038 {
1039 	const struct input_device_id *id;
1040 	int error;
1041 
1042 	id = input_match_device(handler, dev);
1043 	if (!id)
1044 		return -ENODEV;
1045 
1046 	error = handler->connect(handler, dev, id);
1047 	if (error && error != -ENODEV)
1048 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1049 		       handler->name, kobject_name(&dev->dev.kobj), error);
1050 
1051 	return error;
1052 }
1053 
1054 #ifdef CONFIG_COMPAT
1055 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1056 static int input_bits_to_string(char *buf, int buf_size,
1057 				unsigned long bits, bool skip_empty)
1058 {
1059 	int len = 0;
1060 
1061 	if (in_compat_syscall()) {
1062 		u32 dword = bits >> 32;
1063 		if (dword || !skip_empty)
1064 			len += snprintf(buf, buf_size, "%x ", dword);
1065 
1066 		dword = bits & 0xffffffffUL;
1067 		if (dword || !skip_empty || len)
1068 			len += snprintf(buf + len, max(buf_size - len, 0),
1069 					"%x", dword);
1070 	} else {
1071 		if (bits || !skip_empty)
1072 			len += snprintf(buf, buf_size, "%lx", bits);
1073 	}
1074 
1075 	return len;
1076 }
1077 
1078 #else /* !CONFIG_COMPAT */
1079 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1080 static int input_bits_to_string(char *buf, int buf_size,
1081 				unsigned long bits, bool skip_empty)
1082 {
1083 	return bits || !skip_empty ?
1084 		snprintf(buf, buf_size, "%lx", bits) : 0;
1085 }
1086 
1087 #endif
1088 
1089 #ifdef CONFIG_PROC_FS
1090 
1091 static struct proc_dir_entry *proc_bus_input_dir;
1092 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1093 static int input_devices_state;
1094 
input_wakeup_procfs_readers(void)1095 static inline void input_wakeup_procfs_readers(void)
1096 {
1097 	input_devices_state++;
1098 	wake_up(&input_devices_poll_wait);
1099 }
1100 
input_proc_devices_poll(struct file * file,poll_table * wait)1101 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1102 {
1103 	poll_wait(file, &input_devices_poll_wait, wait);
1104 	if (file->f_version != input_devices_state) {
1105 		file->f_version = input_devices_state;
1106 		return EPOLLIN | EPOLLRDNORM;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 union input_seq_state {
1113 	struct {
1114 		unsigned short pos;
1115 		bool mutex_acquired;
1116 	};
1117 	void *p;
1118 };
1119 
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1120 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1121 {
1122 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1123 	int error;
1124 
1125 	/* We need to fit into seq->private pointer */
1126 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1127 
1128 	error = mutex_lock_interruptible(&input_mutex);
1129 	if (error) {
1130 		state->mutex_acquired = false;
1131 		return ERR_PTR(error);
1132 	}
1133 
1134 	state->mutex_acquired = true;
1135 
1136 	return seq_list_start(&input_dev_list, *pos);
1137 }
1138 
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1139 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1140 {
1141 	return seq_list_next(v, &input_dev_list, pos);
1142 }
1143 
input_seq_stop(struct seq_file * seq,void * v)1144 static void input_seq_stop(struct seq_file *seq, void *v)
1145 {
1146 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1147 
1148 	if (state->mutex_acquired)
1149 		mutex_unlock(&input_mutex);
1150 }
1151 
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1152 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1153 				   unsigned long *bitmap, int max)
1154 {
1155 	int i;
1156 	bool skip_empty = true;
1157 	char buf[18];
1158 
1159 	seq_printf(seq, "B: %s=", name);
1160 
1161 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1162 		if (input_bits_to_string(buf, sizeof(buf),
1163 					 bitmap[i], skip_empty)) {
1164 			skip_empty = false;
1165 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * If no output was produced print a single 0.
1171 	 */
1172 	if (skip_empty)
1173 		seq_putc(seq, '0');
1174 
1175 	seq_putc(seq, '\n');
1176 }
1177 
input_devices_seq_show(struct seq_file * seq,void * v)1178 static int input_devices_seq_show(struct seq_file *seq, void *v)
1179 {
1180 	struct input_dev *dev = container_of(v, struct input_dev, node);
1181 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1182 	struct input_handle *handle;
1183 
1184 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1185 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1186 
1187 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1188 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1189 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1190 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1191 	seq_puts(seq, "H: Handlers=");
1192 
1193 	list_for_each_entry(handle, &dev->h_list, d_node)
1194 		seq_printf(seq, "%s ", handle->name);
1195 	seq_putc(seq, '\n');
1196 
1197 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1198 
1199 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1200 	if (test_bit(EV_KEY, dev->evbit))
1201 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1202 	if (test_bit(EV_REL, dev->evbit))
1203 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1204 	if (test_bit(EV_ABS, dev->evbit))
1205 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1206 	if (test_bit(EV_MSC, dev->evbit))
1207 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1208 	if (test_bit(EV_LED, dev->evbit))
1209 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1210 	if (test_bit(EV_SND, dev->evbit))
1211 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1212 	if (test_bit(EV_FF, dev->evbit))
1213 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1214 	if (test_bit(EV_SW, dev->evbit))
1215 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1216 
1217 	seq_putc(seq, '\n');
1218 
1219 	kfree(path);
1220 	return 0;
1221 }
1222 
1223 static const struct seq_operations input_devices_seq_ops = {
1224 	.start	= input_devices_seq_start,
1225 	.next	= input_devices_seq_next,
1226 	.stop	= input_seq_stop,
1227 	.show	= input_devices_seq_show,
1228 };
1229 
input_proc_devices_open(struct inode * inode,struct file * file)1230 static int input_proc_devices_open(struct inode *inode, struct file *file)
1231 {
1232 	return seq_open(file, &input_devices_seq_ops);
1233 }
1234 
1235 static const struct proc_ops input_devices_proc_ops = {
1236 	.proc_open	= input_proc_devices_open,
1237 	.proc_poll	= input_proc_devices_poll,
1238 	.proc_read	= seq_read,
1239 	.proc_lseek	= seq_lseek,
1240 	.proc_release	= seq_release,
1241 };
1242 
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1243 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1244 {
1245 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1246 	int error;
1247 
1248 	/* We need to fit into seq->private pointer */
1249 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1250 
1251 	error = mutex_lock_interruptible(&input_mutex);
1252 	if (error) {
1253 		state->mutex_acquired = false;
1254 		return ERR_PTR(error);
1255 	}
1256 
1257 	state->mutex_acquired = true;
1258 	state->pos = *pos;
1259 
1260 	return seq_list_start(&input_handler_list, *pos);
1261 }
1262 
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1263 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1264 {
1265 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1266 
1267 	state->pos = *pos + 1;
1268 	return seq_list_next(v, &input_handler_list, pos);
1269 }
1270 
input_handlers_seq_show(struct seq_file * seq,void * v)1271 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1272 {
1273 	struct input_handler *handler = container_of(v, struct input_handler, node);
1274 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1275 
1276 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1277 	if (handler->filter)
1278 		seq_puts(seq, " (filter)");
1279 	if (handler->legacy_minors)
1280 		seq_printf(seq, " Minor=%d", handler->minor);
1281 	seq_putc(seq, '\n');
1282 
1283 	return 0;
1284 }
1285 
1286 static const struct seq_operations input_handlers_seq_ops = {
1287 	.start	= input_handlers_seq_start,
1288 	.next	= input_handlers_seq_next,
1289 	.stop	= input_seq_stop,
1290 	.show	= input_handlers_seq_show,
1291 };
1292 
input_proc_handlers_open(struct inode * inode,struct file * file)1293 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1294 {
1295 	return seq_open(file, &input_handlers_seq_ops);
1296 }
1297 
1298 static const struct proc_ops input_handlers_proc_ops = {
1299 	.proc_open	= input_proc_handlers_open,
1300 	.proc_read	= seq_read,
1301 	.proc_lseek	= seq_lseek,
1302 	.proc_release	= seq_release,
1303 };
1304 
input_proc_init(void)1305 static int __init input_proc_init(void)
1306 {
1307 	struct proc_dir_entry *entry;
1308 
1309 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1310 	if (!proc_bus_input_dir)
1311 		return -ENOMEM;
1312 
1313 	entry = proc_create("devices", 0, proc_bus_input_dir,
1314 			    &input_devices_proc_ops);
1315 	if (!entry)
1316 		goto fail1;
1317 
1318 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1319 			    &input_handlers_proc_ops);
1320 	if (!entry)
1321 		goto fail2;
1322 
1323 	return 0;
1324 
1325  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1326  fail1: remove_proc_entry("bus/input", NULL);
1327 	return -ENOMEM;
1328 }
1329 
input_proc_exit(void)1330 static void input_proc_exit(void)
1331 {
1332 	remove_proc_entry("devices", proc_bus_input_dir);
1333 	remove_proc_entry("handlers", proc_bus_input_dir);
1334 	remove_proc_entry("bus/input", NULL);
1335 }
1336 
1337 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1338 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1339 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1340 static inline void input_proc_exit(void) { }
1341 #endif
1342 
1343 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1344 static ssize_t input_dev_show_##name(struct device *dev,		\
1345 				     struct device_attribute *attr,	\
1346 				     char *buf)				\
1347 {									\
1348 	struct input_dev *input_dev = to_input_dev(dev);		\
1349 									\
1350 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1351 			 input_dev->name ? input_dev->name : "");	\
1352 }									\
1353 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1354 
1355 INPUT_DEV_STRING_ATTR_SHOW(name);
1356 INPUT_DEV_STRING_ATTR_SHOW(phys);
1357 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1358 
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1359 static int input_print_modalias_bits(char *buf, int size,
1360 				     char name, unsigned long *bm,
1361 				     unsigned int min_bit, unsigned int max_bit)
1362 {
1363 	int len = 0, i;
1364 
1365 	len += snprintf(buf, max(size, 0), "%c", name);
1366 	for (i = min_bit; i < max_bit; i++)
1367 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1368 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1369 	return len;
1370 }
1371 
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1372 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1373 				int add_cr)
1374 {
1375 	int len;
1376 
1377 	len = snprintf(buf, max(size, 0),
1378 		       "input:b%04Xv%04Xp%04Xe%04X-",
1379 		       id->id.bustype, id->id.vendor,
1380 		       id->id.product, id->id.version);
1381 
1382 	len += input_print_modalias_bits(buf + len, size - len,
1383 				'e', id->evbit, 0, EV_MAX);
1384 	len += input_print_modalias_bits(buf + len, size - len,
1385 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1386 	len += input_print_modalias_bits(buf + len, size - len,
1387 				'r', id->relbit, 0, REL_MAX);
1388 	len += input_print_modalias_bits(buf + len, size - len,
1389 				'a', id->absbit, 0, ABS_MAX);
1390 	len += input_print_modalias_bits(buf + len, size - len,
1391 				'm', id->mscbit, 0, MSC_MAX);
1392 	len += input_print_modalias_bits(buf + len, size - len,
1393 				'l', id->ledbit, 0, LED_MAX);
1394 	len += input_print_modalias_bits(buf + len, size - len,
1395 				's', id->sndbit, 0, SND_MAX);
1396 	len += input_print_modalias_bits(buf + len, size - len,
1397 				'f', id->ffbit, 0, FF_MAX);
1398 	len += input_print_modalias_bits(buf + len, size - len,
1399 				'w', id->swbit, 0, SW_MAX);
1400 
1401 	if (add_cr)
1402 		len += snprintf(buf + len, max(size - len, 0), "\n");
1403 
1404 	return len;
1405 }
1406 
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1407 static ssize_t input_dev_show_modalias(struct device *dev,
1408 				       struct device_attribute *attr,
1409 				       char *buf)
1410 {
1411 	struct input_dev *id = to_input_dev(dev);
1412 	ssize_t len;
1413 
1414 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1415 
1416 	return min_t(int, len, PAGE_SIZE);
1417 }
1418 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1419 
1420 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1421 			      int max, int add_cr);
1422 
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1423 static ssize_t input_dev_show_properties(struct device *dev,
1424 					 struct device_attribute *attr,
1425 					 char *buf)
1426 {
1427 	struct input_dev *input_dev = to_input_dev(dev);
1428 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1429 				     INPUT_PROP_MAX, true);
1430 	return min_t(int, len, PAGE_SIZE);
1431 }
1432 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1433 
1434 static int input_inhibit_device(struct input_dev *dev);
1435 static int input_uninhibit_device(struct input_dev *dev);
1436 
inhibited_show(struct device * dev,struct device_attribute * attr,char * buf)1437 static ssize_t inhibited_show(struct device *dev,
1438 			      struct device_attribute *attr,
1439 			      char *buf)
1440 {
1441 	struct input_dev *input_dev = to_input_dev(dev);
1442 
1443 	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1444 }
1445 
inhibited_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1446 static ssize_t inhibited_store(struct device *dev,
1447 			       struct device_attribute *attr, const char *buf,
1448 			       size_t len)
1449 {
1450 	struct input_dev *input_dev = to_input_dev(dev);
1451 	ssize_t rv;
1452 	bool inhibited;
1453 
1454 	if (strtobool(buf, &inhibited))
1455 		return -EINVAL;
1456 
1457 	if (inhibited)
1458 		rv = input_inhibit_device(input_dev);
1459 	else
1460 		rv = input_uninhibit_device(input_dev);
1461 
1462 	if (rv != 0)
1463 		return rv;
1464 
1465 	return len;
1466 }
1467 
1468 static DEVICE_ATTR_RW(inhibited);
1469 
1470 static struct attribute *input_dev_attrs[] = {
1471 	&dev_attr_name.attr,
1472 	&dev_attr_phys.attr,
1473 	&dev_attr_uniq.attr,
1474 	&dev_attr_modalias.attr,
1475 	&dev_attr_properties.attr,
1476 	&dev_attr_inhibited.attr,
1477 	NULL
1478 };
1479 
1480 static const struct attribute_group input_dev_attr_group = {
1481 	.attrs	= input_dev_attrs,
1482 };
1483 
1484 #define INPUT_DEV_ID_ATTR(name)						\
1485 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1486 					struct device_attribute *attr,	\
1487 					char *buf)			\
1488 {									\
1489 	struct input_dev *input_dev = to_input_dev(dev);		\
1490 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1491 }									\
1492 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1493 
1494 INPUT_DEV_ID_ATTR(bustype);
1495 INPUT_DEV_ID_ATTR(vendor);
1496 INPUT_DEV_ID_ATTR(product);
1497 INPUT_DEV_ID_ATTR(version);
1498 
1499 static struct attribute *input_dev_id_attrs[] = {
1500 	&dev_attr_bustype.attr,
1501 	&dev_attr_vendor.attr,
1502 	&dev_attr_product.attr,
1503 	&dev_attr_version.attr,
1504 	NULL
1505 };
1506 
1507 static const struct attribute_group input_dev_id_attr_group = {
1508 	.name	= "id",
1509 	.attrs	= input_dev_id_attrs,
1510 };
1511 
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1512 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1513 			      int max, int add_cr)
1514 {
1515 	int i;
1516 	int len = 0;
1517 	bool skip_empty = true;
1518 
1519 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1520 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1521 					    bitmap[i], skip_empty);
1522 		if (len) {
1523 			skip_empty = false;
1524 			if (i > 0)
1525 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1526 		}
1527 	}
1528 
1529 	/*
1530 	 * If no output was produced print a single 0.
1531 	 */
1532 	if (len == 0)
1533 		len = snprintf(buf, buf_size, "%d", 0);
1534 
1535 	if (add_cr)
1536 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1537 
1538 	return len;
1539 }
1540 
1541 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1542 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1543 				       struct device_attribute *attr,	\
1544 				       char *buf)			\
1545 {									\
1546 	struct input_dev *input_dev = to_input_dev(dev);		\
1547 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1548 				     input_dev->bm##bit, ev##_MAX,	\
1549 				     true);				\
1550 	return min_t(int, len, PAGE_SIZE);				\
1551 }									\
1552 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1553 
1554 INPUT_DEV_CAP_ATTR(EV, ev);
1555 INPUT_DEV_CAP_ATTR(KEY, key);
1556 INPUT_DEV_CAP_ATTR(REL, rel);
1557 INPUT_DEV_CAP_ATTR(ABS, abs);
1558 INPUT_DEV_CAP_ATTR(MSC, msc);
1559 INPUT_DEV_CAP_ATTR(LED, led);
1560 INPUT_DEV_CAP_ATTR(SND, snd);
1561 INPUT_DEV_CAP_ATTR(FF, ff);
1562 INPUT_DEV_CAP_ATTR(SW, sw);
1563 
1564 static struct attribute *input_dev_caps_attrs[] = {
1565 	&dev_attr_ev.attr,
1566 	&dev_attr_key.attr,
1567 	&dev_attr_rel.attr,
1568 	&dev_attr_abs.attr,
1569 	&dev_attr_msc.attr,
1570 	&dev_attr_led.attr,
1571 	&dev_attr_snd.attr,
1572 	&dev_attr_ff.attr,
1573 	&dev_attr_sw.attr,
1574 	NULL
1575 };
1576 
1577 static const struct attribute_group input_dev_caps_attr_group = {
1578 	.name	= "capabilities",
1579 	.attrs	= input_dev_caps_attrs,
1580 };
1581 
1582 static const struct attribute_group *input_dev_attr_groups[] = {
1583 	&input_dev_attr_group,
1584 	&input_dev_id_attr_group,
1585 	&input_dev_caps_attr_group,
1586 	&input_poller_attribute_group,
1587 	NULL
1588 };
1589 
input_dev_release(struct device * device)1590 static void input_dev_release(struct device *device)
1591 {
1592 	struct input_dev *dev = to_input_dev(device);
1593 
1594 	input_ff_destroy(dev);
1595 	input_mt_destroy_slots(dev);
1596 	kfree(dev->poller);
1597 	kfree(dev->absinfo);
1598 	kfree(dev->vals);
1599 	kfree(dev);
1600 
1601 	module_put(THIS_MODULE);
1602 }
1603 
1604 /*
1605  * Input uevent interface - loading event handlers based on
1606  * device bitfields.
1607  */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1608 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1609 				   const char *name, unsigned long *bitmap, int max)
1610 {
1611 	int len;
1612 
1613 	if (add_uevent_var(env, "%s", name))
1614 		return -ENOMEM;
1615 
1616 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1617 				 sizeof(env->buf) - env->buflen,
1618 				 bitmap, max, false);
1619 	if (len >= (sizeof(env->buf) - env->buflen))
1620 		return -ENOMEM;
1621 
1622 	env->buflen += len;
1623 	return 0;
1624 }
1625 
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1626 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1627 					 struct input_dev *dev)
1628 {
1629 	int len;
1630 
1631 	if (add_uevent_var(env, "MODALIAS="))
1632 		return -ENOMEM;
1633 
1634 	len = input_print_modalias(&env->buf[env->buflen - 1],
1635 				   sizeof(env->buf) - env->buflen,
1636 				   dev, 0);
1637 	if (len >= (sizeof(env->buf) - env->buflen))
1638 		return -ENOMEM;
1639 
1640 	env->buflen += len;
1641 	return 0;
1642 }
1643 
1644 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1645 	do {								\
1646 		int err = add_uevent_var(env, fmt, val);		\
1647 		if (err)						\
1648 			return err;					\
1649 	} while (0)
1650 
1651 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1652 	do {								\
1653 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1654 		if (err)						\
1655 			return err;					\
1656 	} while (0)
1657 
1658 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1659 	do {								\
1660 		int err = input_add_uevent_modalias_var(env, dev);	\
1661 		if (err)						\
1662 			return err;					\
1663 	} while (0)
1664 
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1665 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1666 {
1667 	struct input_dev *dev = to_input_dev(device);
1668 
1669 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1670 				dev->id.bustype, dev->id.vendor,
1671 				dev->id.product, dev->id.version);
1672 	if (dev->name)
1673 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1674 	if (dev->phys)
1675 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1676 	if (dev->uniq)
1677 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1678 
1679 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1680 
1681 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1682 	if (test_bit(EV_KEY, dev->evbit))
1683 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1684 	if (test_bit(EV_REL, dev->evbit))
1685 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1686 	if (test_bit(EV_ABS, dev->evbit))
1687 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1688 	if (test_bit(EV_MSC, dev->evbit))
1689 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1690 	if (test_bit(EV_LED, dev->evbit))
1691 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1692 	if (test_bit(EV_SND, dev->evbit))
1693 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1694 	if (test_bit(EV_FF, dev->evbit))
1695 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1696 	if (test_bit(EV_SW, dev->evbit))
1697 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1698 
1699 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1700 
1701 	return 0;
1702 }
1703 
1704 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1705 	do {								\
1706 		int i;							\
1707 		bool active;						\
1708 									\
1709 		if (!test_bit(EV_##type, dev->evbit))			\
1710 			break;						\
1711 									\
1712 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1713 			active = test_bit(i, dev->bits);		\
1714 			if (!active && !on)				\
1715 				continue;				\
1716 									\
1717 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1718 		}							\
1719 	} while (0)
1720 
input_dev_toggle(struct input_dev * dev,bool activate)1721 static void input_dev_toggle(struct input_dev *dev, bool activate)
1722 {
1723 	if (!dev->event)
1724 		return;
1725 
1726 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1727 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1728 
1729 	if (activate && test_bit(EV_REP, dev->evbit)) {
1730 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1731 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1732 	}
1733 }
1734 
1735 /**
1736  * input_reset_device() - reset/restore the state of input device
1737  * @dev: input device whose state needs to be reset
1738  *
1739  * This function tries to reset the state of an opened input device and
1740  * bring internal state and state if the hardware in sync with each other.
1741  * We mark all keys as released, restore LED state, repeat rate, etc.
1742  */
input_reset_device(struct input_dev * dev)1743 void input_reset_device(struct input_dev *dev)
1744 {
1745 	unsigned long flags;
1746 
1747 	mutex_lock(&dev->mutex);
1748 	spin_lock_irqsave(&dev->event_lock, flags);
1749 
1750 	input_dev_toggle(dev, true);
1751 	input_dev_release_keys(dev);
1752 
1753 	spin_unlock_irqrestore(&dev->event_lock, flags);
1754 	mutex_unlock(&dev->mutex);
1755 }
1756 EXPORT_SYMBOL(input_reset_device);
1757 
input_inhibit_device(struct input_dev * dev)1758 static int input_inhibit_device(struct input_dev *dev)
1759 {
1760 	int ret = 0;
1761 
1762 	mutex_lock(&dev->mutex);
1763 
1764 	if (dev->inhibited)
1765 		goto out;
1766 
1767 	if (dev->users) {
1768 		if (dev->close)
1769 			dev->close(dev);
1770 		if (dev->poller)
1771 			input_dev_poller_stop(dev->poller);
1772 	}
1773 
1774 	spin_lock_irq(&dev->event_lock);
1775 	input_dev_release_keys(dev);
1776 	input_dev_toggle(dev, false);
1777 	spin_unlock_irq(&dev->event_lock);
1778 
1779 	dev->inhibited = true;
1780 
1781 out:
1782 	mutex_unlock(&dev->mutex);
1783 	return ret;
1784 }
1785 
input_uninhibit_device(struct input_dev * dev)1786 static int input_uninhibit_device(struct input_dev *dev)
1787 {
1788 	int ret = 0;
1789 
1790 	mutex_lock(&dev->mutex);
1791 
1792 	if (!dev->inhibited)
1793 		goto out;
1794 
1795 	if (dev->users) {
1796 		if (dev->open) {
1797 			ret = dev->open(dev);
1798 			if (ret)
1799 				goto out;
1800 		}
1801 		if (dev->poller)
1802 			input_dev_poller_start(dev->poller);
1803 	}
1804 
1805 	dev->inhibited = false;
1806 	spin_lock_irq(&dev->event_lock);
1807 	input_dev_toggle(dev, true);
1808 	spin_unlock_irq(&dev->event_lock);
1809 
1810 out:
1811 	mutex_unlock(&dev->mutex);
1812 	return ret;
1813 }
1814 
1815 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1816 static int input_dev_suspend(struct device *dev)
1817 {
1818 	struct input_dev *input_dev = to_input_dev(dev);
1819 
1820 	spin_lock_irq(&input_dev->event_lock);
1821 
1822 	/*
1823 	 * Keys that are pressed now are unlikely to be
1824 	 * still pressed when we resume.
1825 	 */
1826 	input_dev_release_keys(input_dev);
1827 
1828 	/* Turn off LEDs and sounds, if any are active. */
1829 	input_dev_toggle(input_dev, false);
1830 
1831 	spin_unlock_irq(&input_dev->event_lock);
1832 
1833 	return 0;
1834 }
1835 
input_dev_resume(struct device * dev)1836 static int input_dev_resume(struct device *dev)
1837 {
1838 	struct input_dev *input_dev = to_input_dev(dev);
1839 
1840 	spin_lock_irq(&input_dev->event_lock);
1841 
1842 	/* Restore state of LEDs and sounds, if any were active. */
1843 	input_dev_toggle(input_dev, true);
1844 
1845 	spin_unlock_irq(&input_dev->event_lock);
1846 
1847 	return 0;
1848 }
1849 
input_dev_freeze(struct device * dev)1850 static int input_dev_freeze(struct device *dev)
1851 {
1852 	struct input_dev *input_dev = to_input_dev(dev);
1853 
1854 	spin_lock_irq(&input_dev->event_lock);
1855 
1856 	/*
1857 	 * Keys that are pressed now are unlikely to be
1858 	 * still pressed when we resume.
1859 	 */
1860 	input_dev_release_keys(input_dev);
1861 
1862 	spin_unlock_irq(&input_dev->event_lock);
1863 
1864 	return 0;
1865 }
1866 
input_dev_poweroff(struct device * dev)1867 static int input_dev_poweroff(struct device *dev)
1868 {
1869 	struct input_dev *input_dev = to_input_dev(dev);
1870 
1871 	spin_lock_irq(&input_dev->event_lock);
1872 
1873 	/* Turn off LEDs and sounds, if any are active. */
1874 	input_dev_toggle(input_dev, false);
1875 
1876 	spin_unlock_irq(&input_dev->event_lock);
1877 
1878 	return 0;
1879 }
1880 
1881 static const struct dev_pm_ops input_dev_pm_ops = {
1882 	.suspend	= input_dev_suspend,
1883 	.resume		= input_dev_resume,
1884 	.freeze		= input_dev_freeze,
1885 	.poweroff	= input_dev_poweroff,
1886 	.restore	= input_dev_resume,
1887 };
1888 #endif /* CONFIG_PM */
1889 
1890 static const struct device_type input_dev_type = {
1891 	.groups		= input_dev_attr_groups,
1892 	.release	= input_dev_release,
1893 	.uevent		= input_dev_uevent,
1894 #ifdef CONFIG_PM_SLEEP
1895 	.pm		= &input_dev_pm_ops,
1896 #endif
1897 };
1898 
input_devnode(struct device * dev,umode_t * mode)1899 static char *input_devnode(struct device *dev, umode_t *mode)
1900 {
1901 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1902 }
1903 
1904 struct class input_class = {
1905 	.name		= "input",
1906 	.devnode	= input_devnode,
1907 };
1908 EXPORT_SYMBOL_GPL(input_class);
1909 
1910 /**
1911  * input_allocate_device - allocate memory for new input device
1912  *
1913  * Returns prepared struct input_dev or %NULL.
1914  *
1915  * NOTE: Use input_free_device() to free devices that have not been
1916  * registered; input_unregister_device() should be used for already
1917  * registered devices.
1918  */
input_allocate_device(void)1919 struct input_dev *input_allocate_device(void)
1920 {
1921 	static atomic_t input_no = ATOMIC_INIT(-1);
1922 	struct input_dev *dev;
1923 
1924 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1925 	if (dev) {
1926 		dev->dev.type = &input_dev_type;
1927 		dev->dev.class = &input_class;
1928 		device_initialize(&dev->dev);
1929 		mutex_init(&dev->mutex);
1930 		spin_lock_init(&dev->event_lock);
1931 		timer_setup(&dev->timer, NULL, 0);
1932 		INIT_LIST_HEAD(&dev->h_list);
1933 		INIT_LIST_HEAD(&dev->node);
1934 
1935 		dev_set_name(&dev->dev, "input%lu",
1936 			     (unsigned long)atomic_inc_return(&input_no));
1937 
1938 		__module_get(THIS_MODULE);
1939 	}
1940 
1941 	return dev;
1942 }
1943 EXPORT_SYMBOL(input_allocate_device);
1944 
1945 struct input_devres {
1946 	struct input_dev *input;
1947 };
1948 
devm_input_device_match(struct device * dev,void * res,void * data)1949 static int devm_input_device_match(struct device *dev, void *res, void *data)
1950 {
1951 	struct input_devres *devres = res;
1952 
1953 	return devres->input == data;
1954 }
1955 
devm_input_device_release(struct device * dev,void * res)1956 static void devm_input_device_release(struct device *dev, void *res)
1957 {
1958 	struct input_devres *devres = res;
1959 	struct input_dev *input = devres->input;
1960 
1961 	dev_dbg(dev, "%s: dropping reference to %s\n",
1962 		__func__, dev_name(&input->dev));
1963 	input_put_device(input);
1964 }
1965 
1966 /**
1967  * devm_input_allocate_device - allocate managed input device
1968  * @dev: device owning the input device being created
1969  *
1970  * Returns prepared struct input_dev or %NULL.
1971  *
1972  * Managed input devices do not need to be explicitly unregistered or
1973  * freed as it will be done automatically when owner device unbinds from
1974  * its driver (or binding fails). Once managed input device is allocated,
1975  * it is ready to be set up and registered in the same fashion as regular
1976  * input device. There are no special devm_input_device_[un]register()
1977  * variants, regular ones work with both managed and unmanaged devices,
1978  * should you need them. In most cases however, managed input device need
1979  * not be explicitly unregistered or freed.
1980  *
1981  * NOTE: the owner device is set up as parent of input device and users
1982  * should not override it.
1983  */
devm_input_allocate_device(struct device * dev)1984 struct input_dev *devm_input_allocate_device(struct device *dev)
1985 {
1986 	struct input_dev *input;
1987 	struct input_devres *devres;
1988 
1989 	devres = devres_alloc(devm_input_device_release,
1990 			      sizeof(*devres), GFP_KERNEL);
1991 	if (!devres)
1992 		return NULL;
1993 
1994 	input = input_allocate_device();
1995 	if (!input) {
1996 		devres_free(devres);
1997 		return NULL;
1998 	}
1999 
2000 	input->dev.parent = dev;
2001 	input->devres_managed = true;
2002 
2003 	devres->input = input;
2004 	devres_add(dev, devres);
2005 
2006 	return input;
2007 }
2008 EXPORT_SYMBOL(devm_input_allocate_device);
2009 
2010 /**
2011  * input_free_device - free memory occupied by input_dev structure
2012  * @dev: input device to free
2013  *
2014  * This function should only be used if input_register_device()
2015  * was not called yet or if it failed. Once device was registered
2016  * use input_unregister_device() and memory will be freed once last
2017  * reference to the device is dropped.
2018  *
2019  * Device should be allocated by input_allocate_device().
2020  *
2021  * NOTE: If there are references to the input device then memory
2022  * will not be freed until last reference is dropped.
2023  */
input_free_device(struct input_dev * dev)2024 void input_free_device(struct input_dev *dev)
2025 {
2026 	if (dev) {
2027 		if (dev->devres_managed)
2028 			WARN_ON(devres_destroy(dev->dev.parent,
2029 						devm_input_device_release,
2030 						devm_input_device_match,
2031 						dev));
2032 		input_put_device(dev);
2033 	}
2034 }
2035 EXPORT_SYMBOL(input_free_device);
2036 
2037 /**
2038  * input_set_timestamp - set timestamp for input events
2039  * @dev: input device to set timestamp for
2040  * @timestamp: the time at which the event has occurred
2041  *   in CLOCK_MONOTONIC
2042  *
2043  * This function is intended to provide to the input system a more
2044  * accurate time of when an event actually occurred. The driver should
2045  * call this function as soon as a timestamp is acquired ensuring
2046  * clock conversions in input_set_timestamp are done correctly.
2047  *
2048  * The system entering suspend state between timestamp acquisition and
2049  * calling input_set_timestamp can result in inaccurate conversions.
2050  */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)2051 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2052 {
2053 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2054 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2055 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2056 							   TK_OFFS_BOOT);
2057 }
2058 EXPORT_SYMBOL(input_set_timestamp);
2059 
2060 /**
2061  * input_get_timestamp - get timestamp for input events
2062  * @dev: input device to get timestamp from
2063  *
2064  * A valid timestamp is a timestamp of non-zero value.
2065  */
input_get_timestamp(struct input_dev * dev)2066 ktime_t *input_get_timestamp(struct input_dev *dev)
2067 {
2068 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2069 
2070 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2071 		input_set_timestamp(dev, ktime_get());
2072 
2073 	return dev->timestamp;
2074 }
2075 EXPORT_SYMBOL(input_get_timestamp);
2076 
2077 /**
2078  * input_set_capability - mark device as capable of a certain event
2079  * @dev: device that is capable of emitting or accepting event
2080  * @type: type of the event (EV_KEY, EV_REL, etc...)
2081  * @code: event code
2082  *
2083  * In addition to setting up corresponding bit in appropriate capability
2084  * bitmap the function also adjusts dev->evbit.
2085  */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)2086 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2087 {
2088 	if (type < EV_CNT && input_max_code[type] &&
2089 	    code > input_max_code[type]) {
2090 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2091 		       type);
2092 		dump_stack();
2093 		return;
2094 	}
2095 
2096 	switch (type) {
2097 	case EV_KEY:
2098 		__set_bit(code, dev->keybit);
2099 		break;
2100 
2101 	case EV_REL:
2102 		__set_bit(code, dev->relbit);
2103 		break;
2104 
2105 	case EV_ABS:
2106 		input_alloc_absinfo(dev);
2107 		if (!dev->absinfo)
2108 			return;
2109 
2110 		__set_bit(code, dev->absbit);
2111 		break;
2112 
2113 	case EV_MSC:
2114 		__set_bit(code, dev->mscbit);
2115 		break;
2116 
2117 	case EV_SW:
2118 		__set_bit(code, dev->swbit);
2119 		break;
2120 
2121 	case EV_LED:
2122 		__set_bit(code, dev->ledbit);
2123 		break;
2124 
2125 	case EV_SND:
2126 		__set_bit(code, dev->sndbit);
2127 		break;
2128 
2129 	case EV_FF:
2130 		__set_bit(code, dev->ffbit);
2131 		break;
2132 
2133 	case EV_PWR:
2134 		/* do nothing */
2135 		break;
2136 
2137 	default:
2138 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2139 		dump_stack();
2140 		return;
2141 	}
2142 
2143 	__set_bit(type, dev->evbit);
2144 }
2145 EXPORT_SYMBOL(input_set_capability);
2146 
input_estimate_events_per_packet(struct input_dev * dev)2147 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2148 {
2149 	int mt_slots;
2150 	int i;
2151 	unsigned int events;
2152 
2153 	if (dev->mt) {
2154 		mt_slots = dev->mt->num_slots;
2155 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2156 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2157 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2158 		mt_slots = clamp(mt_slots, 2, 32);
2159 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2160 		mt_slots = 2;
2161 	} else {
2162 		mt_slots = 0;
2163 	}
2164 
2165 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2166 
2167 	if (test_bit(EV_ABS, dev->evbit))
2168 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2169 			events += input_is_mt_axis(i) ? mt_slots : 1;
2170 
2171 	if (test_bit(EV_REL, dev->evbit))
2172 		events += bitmap_weight(dev->relbit, REL_CNT);
2173 
2174 	/* Make room for KEY and MSC events */
2175 	events += 7;
2176 
2177 	return events;
2178 }
2179 
2180 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2181 	do {								\
2182 		if (!test_bit(EV_##type, dev->evbit))			\
2183 			memset(dev->bits##bit, 0,			\
2184 				sizeof(dev->bits##bit));		\
2185 	} while (0)
2186 
input_cleanse_bitmasks(struct input_dev * dev)2187 static void input_cleanse_bitmasks(struct input_dev *dev)
2188 {
2189 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2190 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2191 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2192 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2193 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2194 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2195 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2196 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2197 }
2198 
__input_unregister_device(struct input_dev * dev)2199 static void __input_unregister_device(struct input_dev *dev)
2200 {
2201 	struct input_handle *handle, *next;
2202 
2203 	input_disconnect_device(dev);
2204 
2205 	mutex_lock(&input_mutex);
2206 
2207 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2208 		handle->handler->disconnect(handle);
2209 	WARN_ON(!list_empty(&dev->h_list));
2210 
2211 	del_timer_sync(&dev->timer);
2212 	list_del_init(&dev->node);
2213 
2214 	input_wakeup_procfs_readers();
2215 
2216 	mutex_unlock(&input_mutex);
2217 
2218 	device_del(&dev->dev);
2219 }
2220 
devm_input_device_unregister(struct device * dev,void * res)2221 static void devm_input_device_unregister(struct device *dev, void *res)
2222 {
2223 	struct input_devres *devres = res;
2224 	struct input_dev *input = devres->input;
2225 
2226 	dev_dbg(dev, "%s: unregistering device %s\n",
2227 		__func__, dev_name(&input->dev));
2228 	__input_unregister_device(input);
2229 }
2230 
2231 /**
2232  * input_enable_softrepeat - enable software autorepeat
2233  * @dev: input device
2234  * @delay: repeat delay
2235  * @period: repeat period
2236  *
2237  * Enable software autorepeat on the input device.
2238  */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2239 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2240 {
2241 	dev->timer.function = input_repeat_key;
2242 	dev->rep[REP_DELAY] = delay;
2243 	dev->rep[REP_PERIOD] = period;
2244 }
2245 EXPORT_SYMBOL(input_enable_softrepeat);
2246 
input_device_enabled(struct input_dev * dev)2247 bool input_device_enabled(struct input_dev *dev)
2248 {
2249 	lockdep_assert_held(&dev->mutex);
2250 
2251 	return !dev->inhibited && dev->users > 0;
2252 }
2253 EXPORT_SYMBOL_GPL(input_device_enabled);
2254 
2255 /**
2256  * input_register_device - register device with input core
2257  * @dev: device to be registered
2258  *
2259  * This function registers device with input core. The device must be
2260  * allocated with input_allocate_device() and all it's capabilities
2261  * set up before registering.
2262  * If function fails the device must be freed with input_free_device().
2263  * Once device has been successfully registered it can be unregistered
2264  * with input_unregister_device(); input_free_device() should not be
2265  * called in this case.
2266  *
2267  * Note that this function is also used to register managed input devices
2268  * (ones allocated with devm_input_allocate_device()). Such managed input
2269  * devices need not be explicitly unregistered or freed, their tear down
2270  * is controlled by the devres infrastructure. It is also worth noting
2271  * that tear down of managed input devices is internally a 2-step process:
2272  * registered managed input device is first unregistered, but stays in
2273  * memory and can still handle input_event() calls (although events will
2274  * not be delivered anywhere). The freeing of managed input device will
2275  * happen later, when devres stack is unwound to the point where device
2276  * allocation was made.
2277  */
input_register_device(struct input_dev * dev)2278 int input_register_device(struct input_dev *dev)
2279 {
2280 	struct input_devres *devres = NULL;
2281 	struct input_handler *handler;
2282 	unsigned int packet_size;
2283 	const char *path;
2284 	int error;
2285 
2286 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2287 		dev_err(&dev->dev,
2288 			"Absolute device without dev->absinfo, refusing to register\n");
2289 		return -EINVAL;
2290 	}
2291 
2292 	if (dev->devres_managed) {
2293 		devres = devres_alloc(devm_input_device_unregister,
2294 				      sizeof(*devres), GFP_KERNEL);
2295 		if (!devres)
2296 			return -ENOMEM;
2297 
2298 		devres->input = dev;
2299 	}
2300 
2301 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2302 	__set_bit(EV_SYN, dev->evbit);
2303 
2304 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2305 	__clear_bit(KEY_RESERVED, dev->keybit);
2306 
2307 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2308 	input_cleanse_bitmasks(dev);
2309 
2310 	packet_size = input_estimate_events_per_packet(dev);
2311 	if (dev->hint_events_per_packet < packet_size)
2312 		dev->hint_events_per_packet = packet_size;
2313 
2314 	dev->max_vals = dev->hint_events_per_packet + 2;
2315 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2316 	if (!dev->vals) {
2317 		error = -ENOMEM;
2318 		goto err_devres_free;
2319 	}
2320 
2321 	/*
2322 	 * If delay and period are pre-set by the driver, then autorepeating
2323 	 * is handled by the driver itself and we don't do it in input.c.
2324 	 */
2325 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2326 		input_enable_softrepeat(dev, 250, 33);
2327 
2328 	if (!dev->getkeycode)
2329 		dev->getkeycode = input_default_getkeycode;
2330 
2331 	if (!dev->setkeycode)
2332 		dev->setkeycode = input_default_setkeycode;
2333 
2334 	if (dev->poller)
2335 		input_dev_poller_finalize(dev->poller);
2336 
2337 	error = device_add(&dev->dev);
2338 	if (error)
2339 		goto err_free_vals;
2340 
2341 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2342 	pr_info("%s as %s\n",
2343 		dev->name ? dev->name : "Unspecified device",
2344 		path ? path : "N/A");
2345 	kfree(path);
2346 
2347 	error = mutex_lock_interruptible(&input_mutex);
2348 	if (error)
2349 		goto err_device_del;
2350 
2351 	list_add_tail(&dev->node, &input_dev_list);
2352 
2353 	list_for_each_entry(handler, &input_handler_list, node)
2354 		input_attach_handler(dev, handler);
2355 
2356 	input_wakeup_procfs_readers();
2357 
2358 	mutex_unlock(&input_mutex);
2359 
2360 	if (dev->devres_managed) {
2361 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2362 			__func__, dev_name(&dev->dev));
2363 		devres_add(dev->dev.parent, devres);
2364 	}
2365 	return 0;
2366 
2367 err_device_del:
2368 	device_del(&dev->dev);
2369 err_free_vals:
2370 	kfree(dev->vals);
2371 	dev->vals = NULL;
2372 err_devres_free:
2373 	devres_free(devres);
2374 	return error;
2375 }
2376 EXPORT_SYMBOL(input_register_device);
2377 
2378 /**
2379  * input_unregister_device - unregister previously registered device
2380  * @dev: device to be unregistered
2381  *
2382  * This function unregisters an input device. Once device is unregistered
2383  * the caller should not try to access it as it may get freed at any moment.
2384  */
input_unregister_device(struct input_dev * dev)2385 void input_unregister_device(struct input_dev *dev)
2386 {
2387 	if (dev->devres_managed) {
2388 		WARN_ON(devres_destroy(dev->dev.parent,
2389 					devm_input_device_unregister,
2390 					devm_input_device_match,
2391 					dev));
2392 		__input_unregister_device(dev);
2393 		/*
2394 		 * We do not do input_put_device() here because it will be done
2395 		 * when 2nd devres fires up.
2396 		 */
2397 	} else {
2398 		__input_unregister_device(dev);
2399 		input_put_device(dev);
2400 	}
2401 }
2402 EXPORT_SYMBOL(input_unregister_device);
2403 
2404 /**
2405  * input_register_handler - register a new input handler
2406  * @handler: handler to be registered
2407  *
2408  * This function registers a new input handler (interface) for input
2409  * devices in the system and attaches it to all input devices that
2410  * are compatible with the handler.
2411  */
input_register_handler(struct input_handler * handler)2412 int input_register_handler(struct input_handler *handler)
2413 {
2414 	struct input_dev *dev;
2415 	int error;
2416 
2417 	error = mutex_lock_interruptible(&input_mutex);
2418 	if (error)
2419 		return error;
2420 
2421 	INIT_LIST_HEAD(&handler->h_list);
2422 
2423 	list_add_tail(&handler->node, &input_handler_list);
2424 
2425 	list_for_each_entry(dev, &input_dev_list, node)
2426 		input_attach_handler(dev, handler);
2427 
2428 	input_wakeup_procfs_readers();
2429 
2430 	mutex_unlock(&input_mutex);
2431 	return 0;
2432 }
2433 EXPORT_SYMBOL(input_register_handler);
2434 
2435 /**
2436  * input_unregister_handler - unregisters an input handler
2437  * @handler: handler to be unregistered
2438  *
2439  * This function disconnects a handler from its input devices and
2440  * removes it from lists of known handlers.
2441  */
input_unregister_handler(struct input_handler * handler)2442 void input_unregister_handler(struct input_handler *handler)
2443 {
2444 	struct input_handle *handle, *next;
2445 
2446 	mutex_lock(&input_mutex);
2447 
2448 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2449 		handler->disconnect(handle);
2450 	WARN_ON(!list_empty(&handler->h_list));
2451 
2452 	list_del_init(&handler->node);
2453 
2454 	input_wakeup_procfs_readers();
2455 
2456 	mutex_unlock(&input_mutex);
2457 }
2458 EXPORT_SYMBOL(input_unregister_handler);
2459 
2460 /**
2461  * input_handler_for_each_handle - handle iterator
2462  * @handler: input handler to iterate
2463  * @data: data for the callback
2464  * @fn: function to be called for each handle
2465  *
2466  * Iterate over @bus's list of devices, and call @fn for each, passing
2467  * it @data and stop when @fn returns a non-zero value. The function is
2468  * using RCU to traverse the list and therefore may be using in atomic
2469  * contexts. The @fn callback is invoked from RCU critical section and
2470  * thus must not sleep.
2471  */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2472 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2473 				  int (*fn)(struct input_handle *, void *))
2474 {
2475 	struct input_handle *handle;
2476 	int retval = 0;
2477 
2478 	rcu_read_lock();
2479 
2480 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2481 		retval = fn(handle, data);
2482 		if (retval)
2483 			break;
2484 	}
2485 
2486 	rcu_read_unlock();
2487 
2488 	return retval;
2489 }
2490 EXPORT_SYMBOL(input_handler_for_each_handle);
2491 
2492 /**
2493  * input_register_handle - register a new input handle
2494  * @handle: handle to register
2495  *
2496  * This function puts a new input handle onto device's
2497  * and handler's lists so that events can flow through
2498  * it once it is opened using input_open_device().
2499  *
2500  * This function is supposed to be called from handler's
2501  * connect() method.
2502  */
input_register_handle(struct input_handle * handle)2503 int input_register_handle(struct input_handle *handle)
2504 {
2505 	struct input_handler *handler = handle->handler;
2506 	struct input_dev *dev = handle->dev;
2507 	int error;
2508 
2509 	/*
2510 	 * We take dev->mutex here to prevent race with
2511 	 * input_release_device().
2512 	 */
2513 	error = mutex_lock_interruptible(&dev->mutex);
2514 	if (error)
2515 		return error;
2516 
2517 	/*
2518 	 * Filters go to the head of the list, normal handlers
2519 	 * to the tail.
2520 	 */
2521 	if (handler->filter)
2522 		list_add_rcu(&handle->d_node, &dev->h_list);
2523 	else
2524 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2525 
2526 	mutex_unlock(&dev->mutex);
2527 
2528 	/*
2529 	 * Since we are supposed to be called from ->connect()
2530 	 * which is mutually exclusive with ->disconnect()
2531 	 * we can't be racing with input_unregister_handle()
2532 	 * and so separate lock is not needed here.
2533 	 */
2534 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2535 
2536 	if (handler->start)
2537 		handler->start(handle);
2538 
2539 	return 0;
2540 }
2541 EXPORT_SYMBOL(input_register_handle);
2542 
2543 /**
2544  * input_unregister_handle - unregister an input handle
2545  * @handle: handle to unregister
2546  *
2547  * This function removes input handle from device's
2548  * and handler's lists.
2549  *
2550  * This function is supposed to be called from handler's
2551  * disconnect() method.
2552  */
input_unregister_handle(struct input_handle * handle)2553 void input_unregister_handle(struct input_handle *handle)
2554 {
2555 	struct input_dev *dev = handle->dev;
2556 
2557 	list_del_rcu(&handle->h_node);
2558 
2559 	/*
2560 	 * Take dev->mutex to prevent race with input_release_device().
2561 	 */
2562 	mutex_lock(&dev->mutex);
2563 	list_del_rcu(&handle->d_node);
2564 	mutex_unlock(&dev->mutex);
2565 
2566 	synchronize_rcu();
2567 }
2568 EXPORT_SYMBOL(input_unregister_handle);
2569 
2570 /**
2571  * input_get_new_minor - allocates a new input minor number
2572  * @legacy_base: beginning or the legacy range to be searched
2573  * @legacy_num: size of legacy range
2574  * @allow_dynamic: whether we can also take ID from the dynamic range
2575  *
2576  * This function allocates a new device minor for from input major namespace.
2577  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2578  * parameters and whether ID can be allocated from dynamic range if there are
2579  * no free IDs in legacy range.
2580  */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2581 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2582 			bool allow_dynamic)
2583 {
2584 	/*
2585 	 * This function should be called from input handler's ->connect()
2586 	 * methods, which are serialized with input_mutex, so no additional
2587 	 * locking is needed here.
2588 	 */
2589 	if (legacy_base >= 0) {
2590 		int minor = ida_simple_get(&input_ida,
2591 					   legacy_base,
2592 					   legacy_base + legacy_num,
2593 					   GFP_KERNEL);
2594 		if (minor >= 0 || !allow_dynamic)
2595 			return minor;
2596 	}
2597 
2598 	return ida_simple_get(&input_ida,
2599 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2600 			      GFP_KERNEL);
2601 }
2602 EXPORT_SYMBOL(input_get_new_minor);
2603 
2604 /**
2605  * input_free_minor - release previously allocated minor
2606  * @minor: minor to be released
2607  *
2608  * This function releases previously allocated input minor so that it can be
2609  * reused later.
2610  */
input_free_minor(unsigned int minor)2611 void input_free_minor(unsigned int minor)
2612 {
2613 	ida_simple_remove(&input_ida, minor);
2614 }
2615 EXPORT_SYMBOL(input_free_minor);
2616 
input_init(void)2617 static int __init input_init(void)
2618 {
2619 	int err;
2620 
2621 	err = class_register(&input_class);
2622 	if (err) {
2623 		pr_err("unable to register input_dev class\n");
2624 		return err;
2625 	}
2626 
2627 	err = input_proc_init();
2628 	if (err)
2629 		goto fail1;
2630 
2631 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2632 				     INPUT_MAX_CHAR_DEVICES, "input");
2633 	if (err) {
2634 		pr_err("unable to register char major %d", INPUT_MAJOR);
2635 		goto fail2;
2636 	}
2637 
2638 	return 0;
2639 
2640  fail2:	input_proc_exit();
2641  fail1:	class_unregister(&input_class);
2642 	return err;
2643 }
2644 
input_exit(void)2645 static void __exit input_exit(void)
2646 {
2647 	input_proc_exit();
2648 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2649 				 INPUT_MAX_CHAR_DEVICES);
2650 	class_unregister(&input_class);
2651 }
2652 
2653 subsys_initcall(input_init);
2654 module_exit(input_exit);
2655