1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_slpc.h"
11 #include "intel_guc_ads.h"
12 #include "intel_guc_submission.h"
13 #include "i915_drv.h"
14
15 /**
16 * DOC: GuC
17 *
18 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
19 * designed to offload some of the functionality usually performed by the host
20 * driver; currently the main operations it can take care of are:
21 *
22 * - Authentication of the HuC, which is required to fully enable HuC usage.
23 * - Low latency graphics context scheduling (a.k.a. GuC submission).
24 * - GT Power management.
25 *
26 * The enable_guc module parameter can be used to select which of those
27 * operations to enable within GuC. Note that not all the operations are
28 * supported on all gen9+ platforms.
29 *
30 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
31 * if at least one of the operations is selected. However, not loading the GuC
32 * might result in the loss of some features that do require the GuC (currently
33 * just the HuC, but more are expected to land in the future).
34 */
35
intel_guc_notify(struct intel_guc * guc)36 void intel_guc_notify(struct intel_guc *guc)
37 {
38 struct intel_gt *gt = guc_to_gt(guc);
39
40 /*
41 * On Gen11+, the value written to the register is passes as a payload
42 * to the FW. However, the FW currently treats all values the same way
43 * (H2G interrupt), so we can just write the value that the HW expects
44 * on older gens.
45 */
46 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
47 }
48
guc_send_reg(struct intel_guc * guc,u32 i)49 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
50 {
51 GEM_BUG_ON(!guc->send_regs.base);
52 GEM_BUG_ON(!guc->send_regs.count);
53 GEM_BUG_ON(i >= guc->send_regs.count);
54
55 return _MMIO(guc->send_regs.base + 4 * i);
56 }
57
intel_guc_init_send_regs(struct intel_guc * guc)58 void intel_guc_init_send_regs(struct intel_guc *guc)
59 {
60 struct intel_gt *gt = guc_to_gt(guc);
61 enum forcewake_domains fw_domains = 0;
62 unsigned int i;
63
64 GEM_BUG_ON(!guc->send_regs.base);
65 GEM_BUG_ON(!guc->send_regs.count);
66
67 for (i = 0; i < guc->send_regs.count; i++) {
68 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
69 guc_send_reg(guc, i),
70 FW_REG_READ | FW_REG_WRITE);
71 }
72 guc->send_regs.fw_domains = fw_domains;
73 }
74
gen9_reset_guc_interrupts(struct intel_guc * guc)75 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
76 {
77 struct intel_gt *gt = guc_to_gt(guc);
78
79 assert_rpm_wakelock_held(>->i915->runtime_pm);
80
81 spin_lock_irq(>->irq_lock);
82 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
83 spin_unlock_irq(>->irq_lock);
84 }
85
gen9_enable_guc_interrupts(struct intel_guc * guc)86 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
87 {
88 struct intel_gt *gt = guc_to_gt(guc);
89
90 assert_rpm_wakelock_held(>->i915->runtime_pm);
91
92 spin_lock_irq(>->irq_lock);
93 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
94 gt->pm_guc_events);
95 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
96 spin_unlock_irq(>->irq_lock);
97 }
98
gen9_disable_guc_interrupts(struct intel_guc * guc)99 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
100 {
101 struct intel_gt *gt = guc_to_gt(guc);
102
103 assert_rpm_wakelock_held(>->i915->runtime_pm);
104
105 spin_lock_irq(>->irq_lock);
106
107 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
108
109 spin_unlock_irq(>->irq_lock);
110 intel_synchronize_irq(gt->i915);
111
112 gen9_reset_guc_interrupts(guc);
113 }
114
gen11_reset_guc_interrupts(struct intel_guc * guc)115 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
116 {
117 struct intel_gt *gt = guc_to_gt(guc);
118
119 spin_lock_irq(>->irq_lock);
120 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
121 spin_unlock_irq(>->irq_lock);
122 }
123
gen11_enable_guc_interrupts(struct intel_guc * guc)124 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
125 {
126 struct intel_gt *gt = guc_to_gt(guc);
127 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
128
129 spin_lock_irq(>->irq_lock);
130 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
131 intel_uncore_write(gt->uncore,
132 GEN11_GUC_SG_INTR_ENABLE, events);
133 intel_uncore_write(gt->uncore,
134 GEN11_GUC_SG_INTR_MASK, ~events);
135 spin_unlock_irq(>->irq_lock);
136 }
137
gen11_disable_guc_interrupts(struct intel_guc * guc)138 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
139 {
140 struct intel_gt *gt = guc_to_gt(guc);
141
142 spin_lock_irq(>->irq_lock);
143
144 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
145 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
146
147 spin_unlock_irq(>->irq_lock);
148 intel_synchronize_irq(gt->i915);
149
150 gen11_reset_guc_interrupts(guc);
151 }
152
intel_guc_init_early(struct intel_guc * guc)153 void intel_guc_init_early(struct intel_guc *guc)
154 {
155 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
156
157 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
158 intel_guc_ct_init_early(&guc->ct);
159 intel_guc_log_init_early(&guc->log);
160 intel_guc_submission_init_early(guc);
161 intel_guc_slpc_init_early(&guc->slpc);
162 intel_guc_rc_init_early(guc);
163
164 mutex_init(&guc->send_mutex);
165 spin_lock_init(&guc->irq_lock);
166 if (GRAPHICS_VER(i915) >= 11) {
167 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
168 guc->interrupts.reset = gen11_reset_guc_interrupts;
169 guc->interrupts.enable = gen11_enable_guc_interrupts;
170 guc->interrupts.disable = gen11_disable_guc_interrupts;
171 guc->send_regs.base =
172 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
173 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
174
175 } else {
176 guc->notify_reg = GUC_SEND_INTERRUPT;
177 guc->interrupts.reset = gen9_reset_guc_interrupts;
178 guc->interrupts.enable = gen9_enable_guc_interrupts;
179 guc->interrupts.disable = gen9_disable_guc_interrupts;
180 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
181 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
182 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
183 }
184 }
185
intel_guc_init_late(struct intel_guc * guc)186 void intel_guc_init_late(struct intel_guc *guc)
187 {
188 intel_guc_ads_init_late(guc);
189 }
190
guc_ctl_debug_flags(struct intel_guc * guc)191 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
192 {
193 u32 level = intel_guc_log_get_level(&guc->log);
194 u32 flags = 0;
195
196 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
197 flags |= GUC_LOG_DISABLED;
198 else
199 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
200 GUC_LOG_VERBOSITY_SHIFT;
201
202 return flags;
203 }
204
guc_ctl_feature_flags(struct intel_guc * guc)205 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
206 {
207 u32 flags = 0;
208
209 if (!intel_guc_submission_is_used(guc))
210 flags |= GUC_CTL_DISABLE_SCHEDULER;
211
212 if (intel_guc_slpc_is_used(guc))
213 flags |= GUC_CTL_ENABLE_SLPC;
214
215 return flags;
216 }
217
guc_ctl_log_params_flags(struct intel_guc * guc)218 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
219 {
220 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
221 u32 flags;
222
223 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
224 #define UNIT SZ_1M
225 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
226 #else
227 #define UNIT SZ_4K
228 #define FLAG 0
229 #endif
230
231 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
232 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
233 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
234 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, UNIT));
235
236 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
237 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
238 BUILD_BUG_ON((DEBUG_BUFFER_SIZE / UNIT - 1) >
239 (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
240
241 flags = GUC_LOG_VALID |
242 GUC_LOG_NOTIFY_ON_HALF_FULL |
243 FLAG |
244 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
245 ((DEBUG_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
246 (offset << GUC_LOG_BUF_ADDR_SHIFT);
247
248 #undef UNIT
249 #undef FLAG
250
251 return flags;
252 }
253
guc_ctl_ads_flags(struct intel_guc * guc)254 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
255 {
256 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
257 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
258
259 return flags;
260 }
261
262 /*
263 * Initialise the GuC parameter block before starting the firmware
264 * transfer. These parameters are read by the firmware on startup
265 * and cannot be changed thereafter.
266 */
guc_init_params(struct intel_guc * guc)267 static void guc_init_params(struct intel_guc *guc)
268 {
269 u32 *params = guc->params;
270 int i;
271
272 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
273
274 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
275 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
276 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
277 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
278
279 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
280 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
281 }
282
283 /*
284 * Initialise the GuC parameter block before starting the firmware
285 * transfer. These parameters are read by the firmware on startup
286 * and cannot be changed thereafter.
287 */
intel_guc_write_params(struct intel_guc * guc)288 void intel_guc_write_params(struct intel_guc *guc)
289 {
290 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
291 int i;
292
293 /*
294 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
295 * they are power context saved so it's ok to release forcewake
296 * when we are done here and take it again at xfer time.
297 */
298 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
299
300 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
301
302 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
303 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
304
305 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
306 }
307
intel_guc_init(struct intel_guc * guc)308 int intel_guc_init(struct intel_guc *guc)
309 {
310 struct intel_gt *gt = guc_to_gt(guc);
311 int ret;
312
313 ret = intel_uc_fw_init(&guc->fw);
314 if (ret)
315 goto out;
316
317 ret = intel_guc_log_create(&guc->log);
318 if (ret)
319 goto err_fw;
320
321 ret = intel_guc_ads_create(guc);
322 if (ret)
323 goto err_log;
324 GEM_BUG_ON(!guc->ads_vma);
325
326 ret = intel_guc_ct_init(&guc->ct);
327 if (ret)
328 goto err_ads;
329
330 if (intel_guc_submission_is_used(guc)) {
331 /*
332 * This is stuff we need to have available at fw load time
333 * if we are planning to enable submission later
334 */
335 ret = intel_guc_submission_init(guc);
336 if (ret)
337 goto err_ct;
338 }
339
340 if (intel_guc_slpc_is_used(guc)) {
341 ret = intel_guc_slpc_init(&guc->slpc);
342 if (ret)
343 goto err_submission;
344 }
345
346 /* now that everything is perma-pinned, initialize the parameters */
347 guc_init_params(guc);
348
349 /* We need to notify the guc whenever we change the GGTT */
350 i915_ggtt_enable_guc(gt->ggtt);
351
352 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
353
354 return 0;
355
356 err_submission:
357 intel_guc_submission_fini(guc);
358 err_ct:
359 intel_guc_ct_fini(&guc->ct);
360 err_ads:
361 intel_guc_ads_destroy(guc);
362 err_log:
363 intel_guc_log_destroy(&guc->log);
364 err_fw:
365 intel_uc_fw_fini(&guc->fw);
366 out:
367 i915_probe_error(gt->i915, "failed with %d\n", ret);
368 return ret;
369 }
370
intel_guc_fini(struct intel_guc * guc)371 void intel_guc_fini(struct intel_guc *guc)
372 {
373 struct intel_gt *gt = guc_to_gt(guc);
374
375 if (!intel_uc_fw_is_loadable(&guc->fw))
376 return;
377
378 i915_ggtt_disable_guc(gt->ggtt);
379
380 if (intel_guc_slpc_is_used(guc))
381 intel_guc_slpc_fini(&guc->slpc);
382
383 if (intel_guc_submission_is_used(guc))
384 intel_guc_submission_fini(guc);
385
386 intel_guc_ct_fini(&guc->ct);
387
388 intel_guc_ads_destroy(guc);
389 intel_guc_log_destroy(&guc->log);
390 intel_uc_fw_fini(&guc->fw);
391 }
392
393 /*
394 * This function implements the MMIO based host to GuC interface.
395 */
intel_guc_send_mmio(struct intel_guc * guc,const u32 * request,u32 len,u32 * response_buf,u32 response_buf_size)396 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
397 u32 *response_buf, u32 response_buf_size)
398 {
399 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
400 struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
401 u32 header;
402 int i;
403 int ret;
404
405 GEM_BUG_ON(!len);
406 GEM_BUG_ON(len > guc->send_regs.count);
407
408 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
409 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
410
411 mutex_lock(&guc->send_mutex);
412 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
413
414 retry:
415 for (i = 0; i < len; i++)
416 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
417
418 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
419
420 intel_guc_notify(guc);
421
422 /*
423 * No GuC command should ever take longer than 10ms.
424 * Fast commands should still complete in 10us.
425 */
426 ret = __intel_wait_for_register_fw(uncore,
427 guc_send_reg(guc, 0),
428 GUC_HXG_MSG_0_ORIGIN,
429 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
430 GUC_HXG_ORIGIN_GUC),
431 10, 10, &header);
432 if (unlikely(ret)) {
433 timeout:
434 drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
435 request[0], header);
436 goto out;
437 }
438
439 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
440 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
441 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
442 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
443
444 ret = wait_for(done, 1000);
445 if (unlikely(ret))
446 goto timeout;
447 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
448 GUC_HXG_ORIGIN_GUC))
449 goto proto;
450 #undef done
451 }
452
453 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
454 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
455
456 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
457 request[0], reason);
458 goto retry;
459 }
460
461 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
462 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
463 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
464
465 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
466 request[0], error, hint);
467 ret = -ENXIO;
468 goto out;
469 }
470
471 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
472 proto:
473 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
474 request[0], header);
475 ret = -EPROTO;
476 goto out;
477 }
478
479 if (response_buf) {
480 int count = min(response_buf_size, guc->send_regs.count);
481
482 GEM_BUG_ON(!count);
483
484 response_buf[0] = header;
485
486 for (i = 1; i < count; i++)
487 response_buf[i] = intel_uncore_read(uncore,
488 guc_send_reg(guc, i));
489
490 /* Use number of copied dwords as our return value */
491 ret = count;
492 } else {
493 /* Use data from the GuC response as our return value */
494 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
495 }
496
497 out:
498 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
499 mutex_unlock(&guc->send_mutex);
500
501 return ret;
502 }
503
intel_guc_to_host_process_recv_msg(struct intel_guc * guc,const u32 * payload,u32 len)504 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
505 const u32 *payload, u32 len)
506 {
507 u32 msg;
508
509 if (unlikely(!len))
510 return -EPROTO;
511
512 /* Make sure to handle only enabled messages */
513 msg = payload[0] & guc->msg_enabled_mask;
514
515 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
516 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
517 intel_guc_log_handle_flush_event(&guc->log);
518
519 return 0;
520 }
521
522 /**
523 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
524 * @guc: intel_guc structure
525 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
526 *
527 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
528 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
529 * intel_huc_auth().
530 *
531 * Return: non-zero code on error
532 */
intel_guc_auth_huc(struct intel_guc * guc,u32 rsa_offset)533 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
534 {
535 u32 action[] = {
536 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
537 rsa_offset
538 };
539
540 return intel_guc_send(guc, action, ARRAY_SIZE(action));
541 }
542
543 /**
544 * intel_guc_suspend() - notify GuC entering suspend state
545 * @guc: the guc
546 */
intel_guc_suspend(struct intel_guc * guc)547 int intel_guc_suspend(struct intel_guc *guc)
548 {
549 int ret;
550 u32 action[] = {
551 INTEL_GUC_ACTION_RESET_CLIENT,
552 };
553
554 if (!intel_guc_is_ready(guc))
555 return 0;
556
557 if (intel_guc_submission_is_used(guc)) {
558 /*
559 * This H2G MMIO command tears down the GuC in two steps. First it will
560 * generate a G2H CTB for every active context indicating a reset. In
561 * practice the i915 shouldn't ever get a G2H as suspend should only be
562 * called when the GPU is idle. Next, it tears down the CTBs and this
563 * H2G MMIO command completes.
564 *
565 * Don't abort on a failure code from the GuC. Keep going and do the
566 * clean up in santize() and re-initialisation on resume and hopefully
567 * the error here won't be problematic.
568 */
569 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
570 if (ret)
571 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
572 }
573
574 /* Signal that the GuC isn't running. */
575 intel_guc_sanitize(guc);
576
577 return 0;
578 }
579
580 /**
581 * intel_guc_resume() - notify GuC resuming from suspend state
582 * @guc: the guc
583 */
intel_guc_resume(struct intel_guc * guc)584 int intel_guc_resume(struct intel_guc *guc)
585 {
586 /*
587 * NB: This function can still be called even if GuC submission is
588 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
589 * if any code is later added here, it must be support doing nothing
590 * if submission is disabled (as per intel_guc_suspend).
591 */
592 return 0;
593 }
594
595 /**
596 * DOC: GuC Memory Management
597 *
598 * GuC can't allocate any memory for its own usage, so all the allocations must
599 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
600 * exception of the top and bottom parts of the 4GB address space, which are
601 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
602 * or other parts of the HW. The driver must take care not to place objects that
603 * the GuC is going to access in these reserved ranges. The layout of the GuC
604 * address space is shown below:
605 *
606 * ::
607 *
608 * +===========> +====================+ <== FFFF_FFFF
609 * ^ | Reserved |
610 * | +====================+ <== GUC_GGTT_TOP
611 * | | |
612 * | | DRAM |
613 * GuC | |
614 * Address +===> +====================+ <== GuC ggtt_pin_bias
615 * Space ^ | |
616 * | | | |
617 * | GuC | GuC |
618 * | WOPCM | WOPCM |
619 * | Size | |
620 * | | | |
621 * v v | |
622 * +=======+===> +====================+ <== 0000_0000
623 *
624 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
625 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
626 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
627 */
628
629 /**
630 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
631 * @guc: the guc
632 * @size: size of area to allocate (both virtual space and memory)
633 *
634 * This is a wrapper to create an object for use with the GuC. In order to
635 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
636 * both some backing storage and a range inside the Global GTT. We must pin
637 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
638 * range is reserved inside GuC.
639 *
640 * Return: A i915_vma if successful, otherwise an ERR_PTR.
641 */
intel_guc_allocate_vma(struct intel_guc * guc,u32 size)642 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
643 {
644 struct intel_gt *gt = guc_to_gt(guc);
645 struct drm_i915_gem_object *obj;
646 struct i915_vma *vma;
647 u64 flags;
648 int ret;
649
650 obj = i915_gem_object_create_shmem(gt->i915, size);
651 if (IS_ERR(obj))
652 return ERR_CAST(obj);
653
654 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
655 if (IS_ERR(vma))
656 goto err;
657
658 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
659 ret = i915_ggtt_pin(vma, NULL, 0, flags);
660 if (ret) {
661 vma = ERR_PTR(ret);
662 goto err;
663 }
664
665 return i915_vma_make_unshrinkable(vma);
666
667 err:
668 i915_gem_object_put(obj);
669 return vma;
670 }
671
672 /**
673 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
674 * @guc: the guc
675 * @size: size of area to allocate (both virtual space and memory)
676 * @out_vma: return variable for the allocated vma pointer
677 * @out_vaddr: return variable for the obj mapping
678 *
679 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
680 * object with I915_MAP_WB.
681 *
682 * Return: 0 if successful, a negative errno code otherwise.
683 */
intel_guc_allocate_and_map_vma(struct intel_guc * guc,u32 size,struct i915_vma ** out_vma,void ** out_vaddr)684 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
685 struct i915_vma **out_vma, void **out_vaddr)
686 {
687 struct i915_vma *vma;
688 void *vaddr;
689
690 vma = intel_guc_allocate_vma(guc, size);
691 if (IS_ERR(vma))
692 return PTR_ERR(vma);
693
694 vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
695 i915_coherent_map_type(guc_to_gt(guc)->i915,
696 vma->obj, true));
697 if (IS_ERR(vaddr)) {
698 i915_vma_unpin_and_release(&vma, 0);
699 return PTR_ERR(vaddr);
700 }
701
702 *out_vma = vma;
703 *out_vaddr = vaddr;
704
705 return 0;
706 }
707
708 /**
709 * intel_guc_load_status - dump information about GuC load status
710 * @guc: the GuC
711 * @p: the &drm_printer
712 *
713 * Pretty printer for GuC load status.
714 */
intel_guc_load_status(struct intel_guc * guc,struct drm_printer * p)715 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
716 {
717 struct intel_gt *gt = guc_to_gt(guc);
718 struct intel_uncore *uncore = gt->uncore;
719 intel_wakeref_t wakeref;
720
721 if (!intel_guc_is_supported(guc)) {
722 drm_printf(p, "GuC not supported\n");
723 return;
724 }
725
726 if (!intel_guc_is_wanted(guc)) {
727 drm_printf(p, "GuC disabled\n");
728 return;
729 }
730
731 intel_uc_fw_dump(&guc->fw, p);
732
733 with_intel_runtime_pm(uncore->rpm, wakeref) {
734 u32 status = intel_uncore_read(uncore, GUC_STATUS);
735 u32 i;
736
737 drm_printf(p, "\nGuC status 0x%08x:\n", status);
738 drm_printf(p, "\tBootrom status = 0x%x\n",
739 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
740 drm_printf(p, "\tuKernel status = 0x%x\n",
741 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
742 drm_printf(p, "\tMIA Core status = 0x%x\n",
743 (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
744 drm_puts(p, "\nScratch registers:\n");
745 for (i = 0; i < 16; i++) {
746 drm_printf(p, "\t%2d: \t0x%x\n",
747 i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
748 }
749 }
750 }
751