1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_gt_requests.h"
44 #include "gt/shmem_utils.h"
45 #include "gvt.h"
46 #include "i915_pvinfo.h"
47 #include "trace.h"
48
49 #include "gem/i915_gem_context.h"
50 #include "gem/i915_gem_pm.h"
51 #include "gt/intel_context.h"
52
53 #define INVALID_OP (~0U)
54
55 #define OP_LEN_MI 9
56 #define OP_LEN_2D 10
57 #define OP_LEN_3D_MEDIA 16
58 #define OP_LEN_MFX_VC 16
59 #define OP_LEN_VEBOX 16
60
61 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
62
63 struct sub_op_bits {
64 int hi;
65 int low;
66 };
67 struct decode_info {
68 const char *name;
69 int op_len;
70 int nr_sub_op;
71 const struct sub_op_bits *sub_op;
72 };
73
74 #define MAX_CMD_BUDGET 0x7fffffff
75 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
76 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
77 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
78
79 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
80 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
81 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
82
83 /* Render Command Map */
84
85 /* MI_* command Opcode (28:23) */
86 #define OP_MI_NOOP 0x0
87 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
88 #define OP_MI_USER_INTERRUPT 0x2
89 #define OP_MI_WAIT_FOR_EVENT 0x3
90 #define OP_MI_FLUSH 0x4
91 #define OP_MI_ARB_CHECK 0x5
92 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
93 #define OP_MI_REPORT_HEAD 0x7
94 #define OP_MI_ARB_ON_OFF 0x8
95 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
96 #define OP_MI_BATCH_BUFFER_END 0xA
97 #define OP_MI_SUSPEND_FLUSH 0xB
98 #define OP_MI_PREDICATE 0xC /* IVB+ */
99 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
100 #define OP_MI_SET_APPID 0xE /* IVB+ */
101 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
102 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
103 #define OP_MI_DISPLAY_FLIP 0x14
104 #define OP_MI_SEMAPHORE_MBOX 0x16
105 #define OP_MI_SET_CONTEXT 0x18
106 #define OP_MI_MATH 0x1A
107 #define OP_MI_URB_CLEAR 0x19
108 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
109 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
110
111 #define OP_MI_STORE_DATA_IMM 0x20
112 #define OP_MI_STORE_DATA_INDEX 0x21
113 #define OP_MI_LOAD_REGISTER_IMM 0x22
114 #define OP_MI_UPDATE_GTT 0x23
115 #define OP_MI_STORE_REGISTER_MEM 0x24
116 #define OP_MI_FLUSH_DW 0x26
117 #define OP_MI_CLFLUSH 0x27
118 #define OP_MI_REPORT_PERF_COUNT 0x28
119 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
120 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
121 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
122 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
123 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
124 #define OP_MI_2E 0x2E /* BDW+ */
125 #define OP_MI_2F 0x2F /* BDW+ */
126 #define OP_MI_BATCH_BUFFER_START 0x31
127
128 /* Bit definition for dword 0 */
129 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
130
131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
132
133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
135 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
137
138 /* 2D command: Opcode (28:22) */
139 #define OP_2D(x) ((2<<7) | x)
140
141 #define OP_XY_SETUP_BLT OP_2D(0x1)
142 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
144 #define OP_XY_PIXEL_BLT OP_2D(0x24)
145 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
146 #define OP_XY_TEXT_BLT OP_2D(0x26)
147 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
148 #define OP_XY_COLOR_BLT OP_2D(0x50)
149 #define OP_XY_PAT_BLT OP_2D(0x51)
150 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
151 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
152 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
153 #define OP_XY_FULL_BLT OP_2D(0x55)
154 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
155 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
157 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
159 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
160 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
163 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
165
166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
168 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
169
170 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
171
172 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
173 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
174 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
175 #define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03)
176
177 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
178
179 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
180
181 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
182 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
184 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
185 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
186 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
187
188 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
189 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
190 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
191 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
192
193 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
194 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
195 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
196 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
197 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
198 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
199 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
200 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
201 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
202 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
204 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
205 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
206 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
207 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
208 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
209 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
210 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
211 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
212 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
213 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
214 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
215 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
216 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
217 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
218 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
219 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
220 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
223 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
235 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
236 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
237 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
238 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
240 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
259
260 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
261 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
262 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
263 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
264 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
265 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
266 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
267 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
268 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
269 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
270 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
271
272 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
274 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
275 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
278 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
279 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
280 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
282 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
283 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
285 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
286 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
292 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
293 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
295 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
297 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
298 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
299 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
300
301 /* VCCP Command Parser */
302
303 /*
304 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
305 * git://anongit.freedesktop.org/vaapi/intel-driver
306 * src/i965_defines.h
307 *
308 */
309
310 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
311 (3 << 13 | \
312 (pipeline) << 11 | \
313 (op) << 8 | \
314 (sub_opa) << 5 | \
315 (sub_opb))
316
317 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
318 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
319 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
322 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
323 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
324 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
325 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
326 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
327 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
328
329 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
330
331 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
332 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
333 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
334 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
335 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
336 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
338 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
339 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
340 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
341 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
342 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
343
344 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
345 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
346 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
347 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
348 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
349
350 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
351 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
352 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
353 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
354 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
355
356 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
357 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
358 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
359
360 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
361 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
362 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
363
364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
365 (3 << 13 | \
366 (pipeline) << 11 | \
367 (op) << 8 | \
368 (sub_opa) << 5 | \
369 (sub_opb))
370
371 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
372 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
373 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
374
375 struct parser_exec_state;
376
377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
378
379 #define GVT_CMD_HASH_BITS 7
380
381 /* which DWords need address fix */
382 #define ADDR_FIX_1(x1) (1 << (x1))
383 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
384 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
385 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
386 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
387
388 #define DWORD_FIELD(dword, end, start) \
389 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
390
391 #define OP_LENGTH_BIAS 2
392 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
393
gvt_check_valid_cmd_length(int len,int valid_len)394 static int gvt_check_valid_cmd_length(int len, int valid_len)
395 {
396 if (valid_len != len) {
397 gvt_err("len is not valid: len=%u valid_len=%u\n",
398 len, valid_len);
399 return -EFAULT;
400 }
401 return 0;
402 }
403
404 struct cmd_info {
405 const char *name;
406 u32 opcode;
407
408 #define F_LEN_MASK 3U
409 #define F_LEN_CONST 1U
410 #define F_LEN_VAR 0U
411 /* value is const although LEN maybe variable */
412 #define F_LEN_VAR_FIXED (1<<1)
413
414 /*
415 * command has its own ip advance logic
416 * e.g. MI_BATCH_START, MI_BATCH_END
417 */
418 #define F_IP_ADVANCE_CUSTOM (1<<2)
419 u32 flag;
420
421 #define R_RCS BIT(RCS0)
422 #define R_VCS1 BIT(VCS0)
423 #define R_VCS2 BIT(VCS1)
424 #define R_VCS (R_VCS1 | R_VCS2)
425 #define R_BCS BIT(BCS0)
426 #define R_VECS BIT(VECS0)
427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
428 /* rings that support this cmd: BLT/RCS/VCS/VECS */
429 u16 rings;
430
431 /* devices that support this cmd: SNB/IVB/HSW/... */
432 u16 devices;
433
434 /* which DWords are address that need fix up.
435 * bit 0 means a 32-bit non address operand in command
436 * bit 1 means address operand, which could be 32-bit
437 * or 64-bit depending on different architectures.(
438 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
439 * No matter the address length, each address only takes
440 * one bit in the bitmap.
441 */
442 u16 addr_bitmap;
443
444 /* flag == F_LEN_CONST : command length
445 * flag == F_LEN_VAR : length bias bits
446 * Note: length is in DWord
447 */
448 u32 len;
449
450 parser_cmd_handler handler;
451
452 /* valid length in DWord */
453 u32 valid_len;
454 };
455
456 struct cmd_entry {
457 struct hlist_node hlist;
458 const struct cmd_info *info;
459 };
460
461 enum {
462 RING_BUFFER_INSTRUCTION,
463 BATCH_BUFFER_INSTRUCTION,
464 BATCH_BUFFER_2ND_LEVEL,
465 RING_BUFFER_CTX,
466 };
467
468 enum {
469 GTT_BUFFER,
470 PPGTT_BUFFER
471 };
472
473 struct parser_exec_state {
474 struct intel_vgpu *vgpu;
475 const struct intel_engine_cs *engine;
476
477 int buf_type;
478
479 /* batch buffer address type */
480 int buf_addr_type;
481
482 /* graphics memory address of ring buffer start */
483 unsigned long ring_start;
484 unsigned long ring_size;
485 unsigned long ring_head;
486 unsigned long ring_tail;
487
488 /* instruction graphics memory address */
489 unsigned long ip_gma;
490
491 /* mapped va of the instr_gma */
492 void *ip_va;
493 void *rb_va;
494
495 void *ret_bb_va;
496 /* next instruction when return from batch buffer to ring buffer */
497 unsigned long ret_ip_gma_ring;
498
499 /* next instruction when return from 2nd batch buffer to batch buffer */
500 unsigned long ret_ip_gma_bb;
501
502 /* batch buffer address type (GTT or PPGTT)
503 * used when ret from 2nd level batch buffer
504 */
505 int saved_buf_addr_type;
506 bool is_ctx_wa;
507 bool is_init_ctx;
508
509 const struct cmd_info *info;
510
511 struct intel_vgpu_workload *workload;
512 };
513
514 #define gmadr_dw_number(s) \
515 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
516
517 static unsigned long bypass_scan_mask = 0;
518
519 /* ring ALL, type = 0 */
520 static const struct sub_op_bits sub_op_mi[] = {
521 {31, 29},
522 {28, 23},
523 };
524
525 static const struct decode_info decode_info_mi = {
526 "MI",
527 OP_LEN_MI,
528 ARRAY_SIZE(sub_op_mi),
529 sub_op_mi,
530 };
531
532 /* ring RCS, command type 2 */
533 static const struct sub_op_bits sub_op_2d[] = {
534 {31, 29},
535 {28, 22},
536 };
537
538 static const struct decode_info decode_info_2d = {
539 "2D",
540 OP_LEN_2D,
541 ARRAY_SIZE(sub_op_2d),
542 sub_op_2d,
543 };
544
545 /* ring RCS, command type 3 */
546 static const struct sub_op_bits sub_op_3d_media[] = {
547 {31, 29},
548 {28, 27},
549 {26, 24},
550 {23, 16},
551 };
552
553 static const struct decode_info decode_info_3d_media = {
554 "3D_Media",
555 OP_LEN_3D_MEDIA,
556 ARRAY_SIZE(sub_op_3d_media),
557 sub_op_3d_media,
558 };
559
560 /* ring VCS, command type 3 */
561 static const struct sub_op_bits sub_op_mfx_vc[] = {
562 {31, 29},
563 {28, 27},
564 {26, 24},
565 {23, 21},
566 {20, 16},
567 };
568
569 static const struct decode_info decode_info_mfx_vc = {
570 "MFX_VC",
571 OP_LEN_MFX_VC,
572 ARRAY_SIZE(sub_op_mfx_vc),
573 sub_op_mfx_vc,
574 };
575
576 /* ring VECS, command type 3 */
577 static const struct sub_op_bits sub_op_vebox[] = {
578 {31, 29},
579 {28, 27},
580 {26, 24},
581 {23, 21},
582 {20, 16},
583 };
584
585 static const struct decode_info decode_info_vebox = {
586 "VEBOX",
587 OP_LEN_VEBOX,
588 ARRAY_SIZE(sub_op_vebox),
589 sub_op_vebox,
590 };
591
592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
593 [RCS0] = {
594 &decode_info_mi,
595 NULL,
596 NULL,
597 &decode_info_3d_media,
598 NULL,
599 NULL,
600 NULL,
601 NULL,
602 },
603
604 [VCS0] = {
605 &decode_info_mi,
606 NULL,
607 NULL,
608 &decode_info_mfx_vc,
609 NULL,
610 NULL,
611 NULL,
612 NULL,
613 },
614
615 [BCS0] = {
616 &decode_info_mi,
617 NULL,
618 &decode_info_2d,
619 NULL,
620 NULL,
621 NULL,
622 NULL,
623 NULL,
624 },
625
626 [VECS0] = {
627 &decode_info_mi,
628 NULL,
629 NULL,
630 &decode_info_vebox,
631 NULL,
632 NULL,
633 NULL,
634 NULL,
635 },
636
637 [VCS1] = {
638 &decode_info_mi,
639 NULL,
640 NULL,
641 &decode_info_mfx_vc,
642 NULL,
643 NULL,
644 NULL,
645 NULL,
646 },
647 };
648
get_opcode(u32 cmd,const struct intel_engine_cs * engine)649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
650 {
651 const struct decode_info *d_info;
652
653 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
654 if (d_info == NULL)
655 return INVALID_OP;
656
657 return cmd >> (32 - d_info->op_len);
658 }
659
660 static inline const struct cmd_info *
find_cmd_entry(struct intel_gvt * gvt,unsigned int opcode,const struct intel_engine_cs * engine)661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
662 const struct intel_engine_cs *engine)
663 {
664 struct cmd_entry *e;
665
666 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
667 if (opcode == e->info->opcode &&
668 e->info->rings & engine->mask)
669 return e->info;
670 }
671 return NULL;
672 }
673
674 static inline const struct cmd_info *
get_cmd_info(struct intel_gvt * gvt,u32 cmd,const struct intel_engine_cs * engine)675 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
676 const struct intel_engine_cs *engine)
677 {
678 u32 opcode;
679
680 opcode = get_opcode(cmd, engine);
681 if (opcode == INVALID_OP)
682 return NULL;
683
684 return find_cmd_entry(gvt, opcode, engine);
685 }
686
sub_op_val(u32 cmd,u32 hi,u32 low)687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
688 {
689 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
690 }
691
print_opcode(u32 cmd,const struct intel_engine_cs * engine)692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
693 {
694 const struct decode_info *d_info;
695 int i;
696
697 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
698 if (d_info == NULL)
699 return;
700
701 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
702 cmd >> (32 - d_info->op_len), d_info->name);
703
704 for (i = 0; i < d_info->nr_sub_op; i++)
705 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
706 d_info->sub_op[i].low));
707
708 pr_err("\n");
709 }
710
cmd_ptr(struct parser_exec_state * s,int index)711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
712 {
713 return s->ip_va + (index << 2);
714 }
715
cmd_val(struct parser_exec_state * s,int index)716 static inline u32 cmd_val(struct parser_exec_state *s, int index)
717 {
718 return *cmd_ptr(s, index);
719 }
720
is_init_ctx(struct parser_exec_state * s)721 static inline bool is_init_ctx(struct parser_exec_state *s)
722 {
723 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
724 }
725
parser_exec_state_dump(struct parser_exec_state * s)726 static void parser_exec_state_dump(struct parser_exec_state *s)
727 {
728 int cnt = 0;
729 int i;
730
731 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
732 " ring_head(%08lx) ring_tail(%08lx)\n",
733 s->vgpu->id, s->engine->name,
734 s->ring_start, s->ring_start + s->ring_size,
735 s->ring_head, s->ring_tail);
736
737 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
738 s->buf_type == RING_BUFFER_INSTRUCTION ?
739 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
740 "CTX_BUFFER" : "BATCH_BUFFER"),
741 s->buf_addr_type == GTT_BUFFER ?
742 "GTT" : "PPGTT", s->ip_gma);
743
744 if (s->ip_va == NULL) {
745 gvt_dbg_cmd(" ip_va(NULL)");
746 return;
747 }
748
749 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
750 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
751 cmd_val(s, 2), cmd_val(s, 3));
752
753 print_opcode(cmd_val(s, 0), s->engine);
754
755 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
756
757 while (cnt < 1024) {
758 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
759 for (i = 0; i < 8; i++)
760 gvt_dbg_cmd("%08x ", cmd_val(s, i));
761 gvt_dbg_cmd("\n");
762
763 s->ip_va += 8 * sizeof(u32);
764 cnt += 8;
765 }
766 }
767
update_ip_va(struct parser_exec_state * s)768 static inline void update_ip_va(struct parser_exec_state *s)
769 {
770 unsigned long len = 0;
771
772 if (WARN_ON(s->ring_head == s->ring_tail))
773 return;
774
775 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
776 s->buf_type == RING_BUFFER_CTX) {
777 unsigned long ring_top = s->ring_start + s->ring_size;
778
779 if (s->ring_head > s->ring_tail) {
780 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
781 len = (s->ip_gma - s->ring_head);
782 else if (s->ip_gma >= s->ring_start &&
783 s->ip_gma <= s->ring_tail)
784 len = (ring_top - s->ring_head) +
785 (s->ip_gma - s->ring_start);
786 } else
787 len = (s->ip_gma - s->ring_head);
788
789 s->ip_va = s->rb_va + len;
790 } else {/* shadow batch buffer */
791 s->ip_va = s->ret_bb_va;
792 }
793 }
794
ip_gma_set(struct parser_exec_state * s,unsigned long ip_gma)795 static inline int ip_gma_set(struct parser_exec_state *s,
796 unsigned long ip_gma)
797 {
798 WARN_ON(!IS_ALIGNED(ip_gma, 4));
799
800 s->ip_gma = ip_gma;
801 update_ip_va(s);
802 return 0;
803 }
804
ip_gma_advance(struct parser_exec_state * s,unsigned int dw_len)805 static inline int ip_gma_advance(struct parser_exec_state *s,
806 unsigned int dw_len)
807 {
808 s->ip_gma += (dw_len << 2);
809
810 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
811 if (s->ip_gma >= s->ring_start + s->ring_size)
812 s->ip_gma -= s->ring_size;
813 update_ip_va(s);
814 } else {
815 s->ip_va += (dw_len << 2);
816 }
817
818 return 0;
819 }
820
get_cmd_length(const struct cmd_info * info,u32 cmd)821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
822 {
823 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
824 return info->len;
825 else
826 return (cmd & ((1U << info->len) - 1)) + 2;
827 return 0;
828 }
829
cmd_length(struct parser_exec_state * s)830 static inline int cmd_length(struct parser_exec_state *s)
831 {
832 return get_cmd_length(s->info, cmd_val(s, 0));
833 }
834
835 /* do not remove this, some platform may need clflush here */
836 #define patch_value(s, addr, val) do { \
837 *addr = val; \
838 } while (0)
839
is_mocs_mmio(unsigned int offset)840 static inline bool is_mocs_mmio(unsigned int offset)
841 {
842 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
843 ((offset >= 0xb020) && (offset <= 0xb0a0));
844 }
845
is_cmd_update_pdps(unsigned int offset,struct parser_exec_state * s)846 static int is_cmd_update_pdps(unsigned int offset,
847 struct parser_exec_state *s)
848 {
849 u32 base = s->workload->engine->mmio_base;
850 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
851 }
852
cmd_pdp_mmio_update_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index)853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
854 unsigned int offset, unsigned int index)
855 {
856 struct intel_vgpu *vgpu = s->vgpu;
857 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
858 struct intel_vgpu_mm *mm;
859 u64 pdps[GEN8_3LVL_PDPES];
860
861 if (shadow_mm->ppgtt_mm.root_entry_type ==
862 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
863 pdps[0] = (u64)cmd_val(s, 2) << 32;
864 pdps[0] |= cmd_val(s, 4);
865
866 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
867 if (!mm) {
868 gvt_vgpu_err("failed to get the 4-level shadow vm\n");
869 return -EINVAL;
870 }
871 intel_vgpu_mm_get(mm);
872 list_add_tail(&mm->ppgtt_mm.link,
873 &s->workload->lri_shadow_mm);
874 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
875 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
876 } else {
877 /* Currently all guests use PML4 table and now can't
878 * have a guest with 3-level table but uses LRI for
879 * PPGTT update. So this is simply un-testable. */
880 GEM_BUG_ON(1);
881 gvt_vgpu_err("invalid shared shadow vm type\n");
882 return -EINVAL;
883 }
884 return 0;
885 }
886
cmd_reg_handler(struct parser_exec_state * s,unsigned int offset,unsigned int index,char * cmd)887 static int cmd_reg_handler(struct parser_exec_state *s,
888 unsigned int offset, unsigned int index, char *cmd)
889 {
890 struct intel_vgpu *vgpu = s->vgpu;
891 struct intel_gvt *gvt = vgpu->gvt;
892 u32 ctx_sr_ctl;
893 u32 *vreg, vreg_old;
894
895 if (offset + 4 > gvt->device_info.mmio_size) {
896 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
897 cmd, offset);
898 return -EFAULT;
899 }
900
901 if (is_init_ctx(s)) {
902 struct intel_gvt_mmio_info *mmio_info;
903
904 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
905 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
906 if (mmio_info && mmio_info->write)
907 intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
908 return 0;
909 }
910
911 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
912 gvt_vgpu_err("%s access to non-render register (%x)\n",
913 cmd, offset);
914 return -EBADRQC;
915 }
916
917 if (!strncmp(cmd, "srm", 3) ||
918 !strncmp(cmd, "lrm", 3)) {
919 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
920 offset == 0x21f0 ||
921 (IS_BROADWELL(gvt->gt->i915) &&
922 offset == i915_mmio_reg_offset(INSTPM)))
923 return 0;
924 else {
925 gvt_vgpu_err("%s access to register (%x)\n",
926 cmd, offset);
927 return -EPERM;
928 }
929 }
930
931 if (!strncmp(cmd, "lrr-src", 7) ||
932 !strncmp(cmd, "lrr-dst", 7)) {
933 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
934 return 0;
935 else {
936 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
937 return -EPERM;
938 }
939 }
940
941 if (!strncmp(cmd, "pipe_ctrl", 9)) {
942 /* TODO: add LRI POST logic here */
943 return 0;
944 }
945
946 if (strncmp(cmd, "lri", 3))
947 return -EPERM;
948
949 /* below are all lri handlers */
950 vreg = &vgpu_vreg(s->vgpu, offset);
951
952 if (is_cmd_update_pdps(offset, s) &&
953 cmd_pdp_mmio_update_handler(s, offset, index))
954 return -EINVAL;
955
956 if (offset == i915_mmio_reg_offset(DERRMR) ||
957 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
958 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
959 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
960 }
961
962 if (is_mocs_mmio(offset))
963 *vreg = cmd_val(s, index + 1);
964
965 vreg_old = *vreg;
966
967 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
968 u32 cmdval_new, cmdval;
969 struct intel_gvt_mmio_info *mmio_info;
970
971 cmdval = cmd_val(s, index + 1);
972
973 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
974 if (!mmio_info) {
975 cmdval_new = cmdval;
976 } else {
977 u64 ro_mask = mmio_info->ro_mask;
978 int ret;
979
980 if (likely(!ro_mask))
981 ret = mmio_info->write(s->vgpu, offset,
982 &cmdval, 4);
983 else {
984 gvt_vgpu_err("try to write RO reg %x\n",
985 offset);
986 ret = -EBADRQC;
987 }
988 if (ret)
989 return ret;
990 cmdval_new = *vreg;
991 }
992 if (cmdval_new != cmdval)
993 patch_value(s, cmd_ptr(s, index+1), cmdval_new);
994 }
995
996 /* only patch cmd. restore vreg value if changed in mmio write handler*/
997 *vreg = vreg_old;
998
999 /* TODO
1000 * In order to let workload with inhibit context to generate
1001 * correct image data into memory, vregs values will be loaded to
1002 * hw via LRIs in the workload with inhibit context. But as
1003 * indirect context is loaded prior to LRIs in workload, we don't
1004 * want reg values specified in indirect context overwritten by
1005 * LRIs in workloads. So, when scanning an indirect context, we
1006 * update reg values in it into vregs, so LRIs in workload with
1007 * inhibit context will restore with correct values
1008 */
1009 if (GRAPHICS_VER(s->engine->i915) == 9 &&
1010 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1011 !strncmp(cmd, "lri", 3)) {
1012 intel_gvt_hypervisor_read_gpa(s->vgpu,
1013 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1014 /* check inhibit context */
1015 if (ctx_sr_ctl & 1) {
1016 u32 data = cmd_val(s, index + 1);
1017
1018 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1019 intel_vgpu_mask_mmio_write(vgpu,
1020 offset, &data, 4);
1021 else
1022 vgpu_vreg(vgpu, offset) = data;
1023 }
1024 }
1025
1026 return 0;
1027 }
1028
1029 #define cmd_reg(s, i) \
1030 (cmd_val(s, i) & GENMASK(22, 2))
1031
1032 #define cmd_reg_inhibit(s, i) \
1033 (cmd_val(s, i) & GENMASK(22, 18))
1034
1035 #define cmd_gma(s, i) \
1036 (cmd_val(s, i) & GENMASK(31, 2))
1037
1038 #define cmd_gma_hi(s, i) \
1039 (cmd_val(s, i) & GENMASK(15, 0))
1040
cmd_handler_lri(struct parser_exec_state * s)1041 static int cmd_handler_lri(struct parser_exec_state *s)
1042 {
1043 int i, ret = 0;
1044 int cmd_len = cmd_length(s);
1045
1046 for (i = 1; i < cmd_len; i += 2) {
1047 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1048 if (s->engine->id == BCS0 &&
1049 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1050 ret |= 0;
1051 else
1052 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1053 }
1054 if (ret)
1055 break;
1056 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1057 if (ret)
1058 break;
1059 }
1060 return ret;
1061 }
1062
cmd_handler_lrr(struct parser_exec_state * s)1063 static int cmd_handler_lrr(struct parser_exec_state *s)
1064 {
1065 int i, ret = 0;
1066 int cmd_len = cmd_length(s);
1067
1068 for (i = 1; i < cmd_len; i += 2) {
1069 if (IS_BROADWELL(s->engine->i915))
1070 ret |= ((cmd_reg_inhibit(s, i) ||
1071 (cmd_reg_inhibit(s, i + 1)))) ?
1072 -EBADRQC : 0;
1073 if (ret)
1074 break;
1075 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1076 if (ret)
1077 break;
1078 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1079 if (ret)
1080 break;
1081 }
1082 return ret;
1083 }
1084
1085 static inline int cmd_address_audit(struct parser_exec_state *s,
1086 unsigned long guest_gma, int op_size, bool index_mode);
1087
cmd_handler_lrm(struct parser_exec_state * s)1088 static int cmd_handler_lrm(struct parser_exec_state *s)
1089 {
1090 struct intel_gvt *gvt = s->vgpu->gvt;
1091 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1092 unsigned long gma;
1093 int i, ret = 0;
1094 int cmd_len = cmd_length(s);
1095
1096 for (i = 1; i < cmd_len;) {
1097 if (IS_BROADWELL(s->engine->i915))
1098 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1099 if (ret)
1100 break;
1101 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1102 if (ret)
1103 break;
1104 if (cmd_val(s, 0) & (1 << 22)) {
1105 gma = cmd_gma(s, i + 1);
1106 if (gmadr_bytes == 8)
1107 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1108 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1109 if (ret)
1110 break;
1111 }
1112 i += gmadr_dw_number(s) + 1;
1113 }
1114 return ret;
1115 }
1116
cmd_handler_srm(struct parser_exec_state * s)1117 static int cmd_handler_srm(struct parser_exec_state *s)
1118 {
1119 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1120 unsigned long gma;
1121 int i, ret = 0;
1122 int cmd_len = cmd_length(s);
1123
1124 for (i = 1; i < cmd_len;) {
1125 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1126 if (ret)
1127 break;
1128 if (cmd_val(s, 0) & (1 << 22)) {
1129 gma = cmd_gma(s, i + 1);
1130 if (gmadr_bytes == 8)
1131 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1132 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1133 if (ret)
1134 break;
1135 }
1136 i += gmadr_dw_number(s) + 1;
1137 }
1138 return ret;
1139 }
1140
1141 struct cmd_interrupt_event {
1142 int pipe_control_notify;
1143 int mi_flush_dw;
1144 int mi_user_interrupt;
1145 };
1146
1147 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1148 [RCS0] = {
1149 .pipe_control_notify = RCS_PIPE_CONTROL,
1150 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1151 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1152 },
1153 [BCS0] = {
1154 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1155 .mi_flush_dw = BCS_MI_FLUSH_DW,
1156 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1157 },
1158 [VCS0] = {
1159 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1160 .mi_flush_dw = VCS_MI_FLUSH_DW,
1161 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1162 },
1163 [VCS1] = {
1164 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1165 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1166 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1167 },
1168 [VECS0] = {
1169 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1170 .mi_flush_dw = VECS_MI_FLUSH_DW,
1171 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1172 },
1173 };
1174
cmd_handler_pipe_control(struct parser_exec_state * s)1175 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1176 {
1177 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1178 unsigned long gma;
1179 bool index_mode = false;
1180 unsigned int post_sync;
1181 int ret = 0;
1182 u32 hws_pga, val;
1183
1184 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1185
1186 /* LRI post sync */
1187 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1188 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1189 /* post sync */
1190 else if (post_sync) {
1191 if (post_sync == 2)
1192 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1193 else if (post_sync == 3)
1194 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1195 else if (post_sync == 1) {
1196 /* check ggtt*/
1197 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1198 gma = cmd_val(s, 2) & GENMASK(31, 3);
1199 if (gmadr_bytes == 8)
1200 gma |= (cmd_gma_hi(s, 3)) << 32;
1201 /* Store Data Index */
1202 if (cmd_val(s, 1) & (1 << 21))
1203 index_mode = true;
1204 ret |= cmd_address_audit(s, gma, sizeof(u64),
1205 index_mode);
1206 if (ret)
1207 return ret;
1208 if (index_mode) {
1209 hws_pga = s->vgpu->hws_pga[s->engine->id];
1210 gma = hws_pga + gma;
1211 patch_value(s, cmd_ptr(s, 2), gma);
1212 val = cmd_val(s, 1) & (~(1 << 21));
1213 patch_value(s, cmd_ptr(s, 1), val);
1214 }
1215 }
1216 }
1217 }
1218
1219 if (ret)
1220 return ret;
1221
1222 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1223 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1224 s->workload->pending_events);
1225 return 0;
1226 }
1227
cmd_handler_mi_user_interrupt(struct parser_exec_state * s)1228 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1229 {
1230 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1231 s->workload->pending_events);
1232 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1233 return 0;
1234 }
1235
cmd_advance_default(struct parser_exec_state * s)1236 static int cmd_advance_default(struct parser_exec_state *s)
1237 {
1238 return ip_gma_advance(s, cmd_length(s));
1239 }
1240
cmd_handler_mi_batch_buffer_end(struct parser_exec_state * s)1241 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1242 {
1243 int ret;
1244
1245 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1246 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1247 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1248 s->buf_addr_type = s->saved_buf_addr_type;
1249 } else if (s->buf_type == RING_BUFFER_CTX) {
1250 ret = ip_gma_set(s, s->ring_tail);
1251 } else {
1252 s->buf_type = RING_BUFFER_INSTRUCTION;
1253 s->buf_addr_type = GTT_BUFFER;
1254 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1255 s->ret_ip_gma_ring -= s->ring_size;
1256 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1257 }
1258 return ret;
1259 }
1260
1261 struct mi_display_flip_command_info {
1262 int pipe;
1263 int plane;
1264 int event;
1265 i915_reg_t stride_reg;
1266 i915_reg_t ctrl_reg;
1267 i915_reg_t surf_reg;
1268 u64 stride_val;
1269 u64 tile_val;
1270 u64 surf_val;
1271 bool async_flip;
1272 };
1273
1274 struct plane_code_mapping {
1275 int pipe;
1276 int plane;
1277 int event;
1278 };
1279
gen8_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1280 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1281 struct mi_display_flip_command_info *info)
1282 {
1283 struct drm_i915_private *dev_priv = s->engine->i915;
1284 struct plane_code_mapping gen8_plane_code[] = {
1285 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1286 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1287 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1288 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1289 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1290 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1291 };
1292 u32 dword0, dword1, dword2;
1293 u32 v;
1294
1295 dword0 = cmd_val(s, 0);
1296 dword1 = cmd_val(s, 1);
1297 dword2 = cmd_val(s, 2);
1298
1299 v = (dword0 & GENMASK(21, 19)) >> 19;
1300 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1301 return -EBADRQC;
1302
1303 info->pipe = gen8_plane_code[v].pipe;
1304 info->plane = gen8_plane_code[v].plane;
1305 info->event = gen8_plane_code[v].event;
1306 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1307 info->tile_val = (dword1 & 0x1);
1308 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1309 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1310
1311 if (info->plane == PLANE_A) {
1312 info->ctrl_reg = DSPCNTR(info->pipe);
1313 info->stride_reg = DSPSTRIDE(info->pipe);
1314 info->surf_reg = DSPSURF(info->pipe);
1315 } else if (info->plane == PLANE_B) {
1316 info->ctrl_reg = SPRCTL(info->pipe);
1317 info->stride_reg = SPRSTRIDE(info->pipe);
1318 info->surf_reg = SPRSURF(info->pipe);
1319 } else {
1320 drm_WARN_ON(&dev_priv->drm, 1);
1321 return -EBADRQC;
1322 }
1323 return 0;
1324 }
1325
skl_decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1326 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1327 struct mi_display_flip_command_info *info)
1328 {
1329 struct drm_i915_private *dev_priv = s->engine->i915;
1330 struct intel_vgpu *vgpu = s->vgpu;
1331 u32 dword0 = cmd_val(s, 0);
1332 u32 dword1 = cmd_val(s, 1);
1333 u32 dword2 = cmd_val(s, 2);
1334 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1335
1336 info->plane = PRIMARY_PLANE;
1337
1338 switch (plane) {
1339 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1340 info->pipe = PIPE_A;
1341 info->event = PRIMARY_A_FLIP_DONE;
1342 break;
1343 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1344 info->pipe = PIPE_B;
1345 info->event = PRIMARY_B_FLIP_DONE;
1346 break;
1347 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1348 info->pipe = PIPE_C;
1349 info->event = PRIMARY_C_FLIP_DONE;
1350 break;
1351
1352 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1353 info->pipe = PIPE_A;
1354 info->event = SPRITE_A_FLIP_DONE;
1355 info->plane = SPRITE_PLANE;
1356 break;
1357 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1358 info->pipe = PIPE_B;
1359 info->event = SPRITE_B_FLIP_DONE;
1360 info->plane = SPRITE_PLANE;
1361 break;
1362 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1363 info->pipe = PIPE_C;
1364 info->event = SPRITE_C_FLIP_DONE;
1365 info->plane = SPRITE_PLANE;
1366 break;
1367
1368 default:
1369 gvt_vgpu_err("unknown plane code %d\n", plane);
1370 return -EBADRQC;
1371 }
1372
1373 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1374 info->tile_val = (dword1 & GENMASK(2, 0));
1375 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1376 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1377
1378 info->ctrl_reg = DSPCNTR(info->pipe);
1379 info->stride_reg = DSPSTRIDE(info->pipe);
1380 info->surf_reg = DSPSURF(info->pipe);
1381
1382 return 0;
1383 }
1384
gen8_check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1385 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1386 struct mi_display_flip_command_info *info)
1387 {
1388 u32 stride, tile;
1389
1390 if (!info->async_flip)
1391 return 0;
1392
1393 if (GRAPHICS_VER(s->engine->i915) >= 9) {
1394 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1395 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1396 GENMASK(12, 10)) >> 10;
1397 } else {
1398 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1399 GENMASK(15, 6)) >> 6;
1400 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1401 }
1402
1403 if (stride != info->stride_val)
1404 gvt_dbg_cmd("cannot change stride during async flip\n");
1405
1406 if (tile != info->tile_val)
1407 gvt_dbg_cmd("cannot change tile during async flip\n");
1408
1409 return 0;
1410 }
1411
gen8_update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1412 static int gen8_update_plane_mmio_from_mi_display_flip(
1413 struct parser_exec_state *s,
1414 struct mi_display_flip_command_info *info)
1415 {
1416 struct drm_i915_private *dev_priv = s->engine->i915;
1417 struct intel_vgpu *vgpu = s->vgpu;
1418
1419 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1420 info->surf_val << 12);
1421 if (GRAPHICS_VER(dev_priv) >= 9) {
1422 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1423 info->stride_val);
1424 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1425 info->tile_val << 10);
1426 } else {
1427 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1428 info->stride_val << 6);
1429 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1430 info->tile_val << 10);
1431 }
1432
1433 if (info->plane == PLANE_PRIMARY)
1434 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1435
1436 if (info->async_flip)
1437 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1438 else
1439 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1440
1441 return 0;
1442 }
1443
decode_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1444 static int decode_mi_display_flip(struct parser_exec_state *s,
1445 struct mi_display_flip_command_info *info)
1446 {
1447 if (IS_BROADWELL(s->engine->i915))
1448 return gen8_decode_mi_display_flip(s, info);
1449 if (GRAPHICS_VER(s->engine->i915) >= 9)
1450 return skl_decode_mi_display_flip(s, info);
1451
1452 return -ENODEV;
1453 }
1454
check_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1455 static int check_mi_display_flip(struct parser_exec_state *s,
1456 struct mi_display_flip_command_info *info)
1457 {
1458 return gen8_check_mi_display_flip(s, info);
1459 }
1460
update_plane_mmio_from_mi_display_flip(struct parser_exec_state * s,struct mi_display_flip_command_info * info)1461 static int update_plane_mmio_from_mi_display_flip(
1462 struct parser_exec_state *s,
1463 struct mi_display_flip_command_info *info)
1464 {
1465 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1466 }
1467
cmd_handler_mi_display_flip(struct parser_exec_state * s)1468 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1469 {
1470 struct mi_display_flip_command_info info;
1471 struct intel_vgpu *vgpu = s->vgpu;
1472 int ret;
1473 int i;
1474 int len = cmd_length(s);
1475 u32 valid_len = CMD_LEN(1);
1476
1477 /* Flip Type == Stereo 3D Flip */
1478 if (DWORD_FIELD(2, 1, 0) == 2)
1479 valid_len++;
1480 ret = gvt_check_valid_cmd_length(cmd_length(s),
1481 valid_len);
1482 if (ret)
1483 return ret;
1484
1485 ret = decode_mi_display_flip(s, &info);
1486 if (ret) {
1487 gvt_vgpu_err("fail to decode MI display flip command\n");
1488 return ret;
1489 }
1490
1491 ret = check_mi_display_flip(s, &info);
1492 if (ret) {
1493 gvt_vgpu_err("invalid MI display flip command\n");
1494 return ret;
1495 }
1496
1497 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1498 if (ret) {
1499 gvt_vgpu_err("fail to update plane mmio\n");
1500 return ret;
1501 }
1502
1503 for (i = 0; i < len; i++)
1504 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1505 return 0;
1506 }
1507
is_wait_for_flip_pending(u32 cmd)1508 static bool is_wait_for_flip_pending(u32 cmd)
1509 {
1510 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1511 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1512 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1513 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1514 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1515 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1516 }
1517
cmd_handler_mi_wait_for_event(struct parser_exec_state * s)1518 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1519 {
1520 u32 cmd = cmd_val(s, 0);
1521
1522 if (!is_wait_for_flip_pending(cmd))
1523 return 0;
1524
1525 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1526 return 0;
1527 }
1528
get_gma_bb_from_cmd(struct parser_exec_state * s,int index)1529 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1530 {
1531 unsigned long addr;
1532 unsigned long gma_high, gma_low;
1533 struct intel_vgpu *vgpu = s->vgpu;
1534 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1535
1536 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1537 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1538 return INTEL_GVT_INVALID_ADDR;
1539 }
1540
1541 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1542 if (gmadr_bytes == 4) {
1543 addr = gma_low;
1544 } else {
1545 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1546 addr = (((unsigned long)gma_high) << 32) | gma_low;
1547 }
1548 return addr;
1549 }
1550
cmd_address_audit(struct parser_exec_state * s,unsigned long guest_gma,int op_size,bool index_mode)1551 static inline int cmd_address_audit(struct parser_exec_state *s,
1552 unsigned long guest_gma, int op_size, bool index_mode)
1553 {
1554 struct intel_vgpu *vgpu = s->vgpu;
1555 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1556 int i;
1557 int ret;
1558
1559 if (op_size > max_surface_size) {
1560 gvt_vgpu_err("command address audit fail name %s\n",
1561 s->info->name);
1562 return -EFAULT;
1563 }
1564
1565 if (index_mode) {
1566 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1567 ret = -EFAULT;
1568 goto err;
1569 }
1570 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1571 ret = -EFAULT;
1572 goto err;
1573 }
1574
1575 return 0;
1576
1577 err:
1578 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1579 s->info->name, guest_gma, op_size);
1580
1581 pr_err("cmd dump: ");
1582 for (i = 0; i < cmd_length(s); i++) {
1583 if (!(i % 4))
1584 pr_err("\n%08x ", cmd_val(s, i));
1585 else
1586 pr_err("%08x ", cmd_val(s, i));
1587 }
1588 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1589 vgpu->id,
1590 vgpu_aperture_gmadr_base(vgpu),
1591 vgpu_aperture_gmadr_end(vgpu),
1592 vgpu_hidden_gmadr_base(vgpu),
1593 vgpu_hidden_gmadr_end(vgpu));
1594 return ret;
1595 }
1596
cmd_handler_mi_store_data_imm(struct parser_exec_state * s)1597 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1598 {
1599 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1600 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1601 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1602 unsigned long gma, gma_low, gma_high;
1603 u32 valid_len = CMD_LEN(2);
1604 int ret = 0;
1605
1606 /* check ppggt */
1607 if (!(cmd_val(s, 0) & (1 << 22)))
1608 return 0;
1609
1610 /* check if QWORD */
1611 if (DWORD_FIELD(0, 21, 21))
1612 valid_len++;
1613 ret = gvt_check_valid_cmd_length(cmd_length(s),
1614 valid_len);
1615 if (ret)
1616 return ret;
1617
1618 gma = cmd_val(s, 2) & GENMASK(31, 2);
1619
1620 if (gmadr_bytes == 8) {
1621 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1622 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1623 gma = (gma_high << 32) | gma_low;
1624 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1625 }
1626 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1627 return ret;
1628 }
1629
unexpected_cmd(struct parser_exec_state * s)1630 static inline int unexpected_cmd(struct parser_exec_state *s)
1631 {
1632 struct intel_vgpu *vgpu = s->vgpu;
1633
1634 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1635
1636 return -EBADRQC;
1637 }
1638
cmd_handler_mi_semaphore_wait(struct parser_exec_state * s)1639 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1640 {
1641 return unexpected_cmd(s);
1642 }
1643
cmd_handler_mi_report_perf_count(struct parser_exec_state * s)1644 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1645 {
1646 return unexpected_cmd(s);
1647 }
1648
cmd_handler_mi_op_2e(struct parser_exec_state * s)1649 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1650 {
1651 return unexpected_cmd(s);
1652 }
1653
cmd_handler_mi_op_2f(struct parser_exec_state * s)1654 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1655 {
1656 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1657 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1658 sizeof(u32);
1659 unsigned long gma, gma_high;
1660 u32 valid_len = CMD_LEN(1);
1661 int ret = 0;
1662
1663 if (!(cmd_val(s, 0) & (1 << 22)))
1664 return ret;
1665
1666 /* check inline data */
1667 if (cmd_val(s, 0) & BIT(18))
1668 valid_len = CMD_LEN(9);
1669 ret = gvt_check_valid_cmd_length(cmd_length(s),
1670 valid_len);
1671 if (ret)
1672 return ret;
1673
1674 gma = cmd_val(s, 1) & GENMASK(31, 2);
1675 if (gmadr_bytes == 8) {
1676 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1677 gma = (gma_high << 32) | gma;
1678 }
1679 ret = cmd_address_audit(s, gma, op_size, false);
1680 return ret;
1681 }
1682
cmd_handler_mi_store_data_index(struct parser_exec_state * s)1683 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1684 {
1685 return unexpected_cmd(s);
1686 }
1687
cmd_handler_mi_clflush(struct parser_exec_state * s)1688 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1689 {
1690 return unexpected_cmd(s);
1691 }
1692
cmd_handler_mi_conditional_batch_buffer_end(struct parser_exec_state * s)1693 static int cmd_handler_mi_conditional_batch_buffer_end(
1694 struct parser_exec_state *s)
1695 {
1696 return unexpected_cmd(s);
1697 }
1698
cmd_handler_mi_update_gtt(struct parser_exec_state * s)1699 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1700 {
1701 return unexpected_cmd(s);
1702 }
1703
cmd_handler_mi_flush_dw(struct parser_exec_state * s)1704 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1705 {
1706 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1707 unsigned long gma;
1708 bool index_mode = false;
1709 int ret = 0;
1710 u32 hws_pga, val;
1711 u32 valid_len = CMD_LEN(2);
1712
1713 ret = gvt_check_valid_cmd_length(cmd_length(s),
1714 valid_len);
1715 if (ret) {
1716 /* Check again for Qword */
1717 ret = gvt_check_valid_cmd_length(cmd_length(s),
1718 ++valid_len);
1719 return ret;
1720 }
1721
1722 /* Check post-sync and ppgtt bit */
1723 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1724 gma = cmd_val(s, 1) & GENMASK(31, 3);
1725 if (gmadr_bytes == 8)
1726 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1727 /* Store Data Index */
1728 if (cmd_val(s, 0) & (1 << 21))
1729 index_mode = true;
1730 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1731 if (ret)
1732 return ret;
1733 if (index_mode) {
1734 hws_pga = s->vgpu->hws_pga[s->engine->id];
1735 gma = hws_pga + gma;
1736 patch_value(s, cmd_ptr(s, 1), gma);
1737 val = cmd_val(s, 0) & (~(1 << 21));
1738 patch_value(s, cmd_ptr(s, 0), val);
1739 }
1740 }
1741 /* Check notify bit */
1742 if ((cmd_val(s, 0) & (1 << 8)))
1743 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1744 s->workload->pending_events);
1745 return ret;
1746 }
1747
addr_type_update_snb(struct parser_exec_state * s)1748 static void addr_type_update_snb(struct parser_exec_state *s)
1749 {
1750 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1751 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1752 s->buf_addr_type = PPGTT_BUFFER;
1753 }
1754 }
1755
1756
copy_gma_to_hva(struct intel_vgpu * vgpu,struct intel_vgpu_mm * mm,unsigned long gma,unsigned long end_gma,void * va)1757 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1758 unsigned long gma, unsigned long end_gma, void *va)
1759 {
1760 unsigned long copy_len, offset;
1761 unsigned long len = 0;
1762 unsigned long gpa;
1763
1764 while (gma != end_gma) {
1765 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1766 if (gpa == INTEL_GVT_INVALID_ADDR) {
1767 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1768 return -EFAULT;
1769 }
1770
1771 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1772
1773 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1774 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1775
1776 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1777
1778 len += copy_len;
1779 gma += copy_len;
1780 }
1781 return len;
1782 }
1783
1784
1785 /*
1786 * Check whether a batch buffer needs to be scanned. Currently
1787 * the only criteria is based on privilege.
1788 */
batch_buffer_needs_scan(struct parser_exec_state * s)1789 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1790 {
1791 /* Decide privilege based on address space */
1792 if (cmd_val(s, 0) & BIT(8) &&
1793 !(s->vgpu->scan_nonprivbb & s->engine->mask))
1794 return 0;
1795
1796 return 1;
1797 }
1798
repr_addr_type(unsigned int type)1799 static const char *repr_addr_type(unsigned int type)
1800 {
1801 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1802 }
1803
find_bb_size(struct parser_exec_state * s,unsigned long * bb_size,unsigned long * bb_end_cmd_offset)1804 static int find_bb_size(struct parser_exec_state *s,
1805 unsigned long *bb_size,
1806 unsigned long *bb_end_cmd_offset)
1807 {
1808 unsigned long gma = 0;
1809 const struct cmd_info *info;
1810 u32 cmd_len = 0;
1811 bool bb_end = false;
1812 struct intel_vgpu *vgpu = s->vgpu;
1813 u32 cmd;
1814 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1815 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1816
1817 *bb_size = 0;
1818 *bb_end_cmd_offset = 0;
1819
1820 /* get the start gm address of the batch buffer */
1821 gma = get_gma_bb_from_cmd(s, 1);
1822 if (gma == INTEL_GVT_INVALID_ADDR)
1823 return -EFAULT;
1824
1825 cmd = cmd_val(s, 0);
1826 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1827 if (info == NULL) {
1828 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1829 cmd, get_opcode(cmd, s->engine),
1830 repr_addr_type(s->buf_addr_type),
1831 s->engine->name, s->workload);
1832 return -EBADRQC;
1833 }
1834 do {
1835 if (copy_gma_to_hva(s->vgpu, mm,
1836 gma, gma + 4, &cmd) < 0)
1837 return -EFAULT;
1838 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1839 if (info == NULL) {
1840 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1841 cmd, get_opcode(cmd, s->engine),
1842 repr_addr_type(s->buf_addr_type),
1843 s->engine->name, s->workload);
1844 return -EBADRQC;
1845 }
1846
1847 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1848 bb_end = true;
1849 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1850 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1851 /* chained batch buffer */
1852 bb_end = true;
1853 }
1854
1855 if (bb_end)
1856 *bb_end_cmd_offset = *bb_size;
1857
1858 cmd_len = get_cmd_length(info, cmd) << 2;
1859 *bb_size += cmd_len;
1860 gma += cmd_len;
1861 } while (!bb_end);
1862
1863 return 0;
1864 }
1865
audit_bb_end(struct parser_exec_state * s,void * va)1866 static int audit_bb_end(struct parser_exec_state *s, void *va)
1867 {
1868 struct intel_vgpu *vgpu = s->vgpu;
1869 u32 cmd = *(u32 *)va;
1870 const struct cmd_info *info;
1871
1872 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1873 if (info == NULL) {
1874 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1875 cmd, get_opcode(cmd, s->engine),
1876 repr_addr_type(s->buf_addr_type),
1877 s->engine->name, s->workload);
1878 return -EBADRQC;
1879 }
1880
1881 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1882 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1883 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1884 return 0;
1885
1886 return -EBADRQC;
1887 }
1888
perform_bb_shadow(struct parser_exec_state * s)1889 static int perform_bb_shadow(struct parser_exec_state *s)
1890 {
1891 struct intel_vgpu *vgpu = s->vgpu;
1892 struct intel_vgpu_shadow_bb *bb;
1893 unsigned long gma = 0;
1894 unsigned long bb_size;
1895 unsigned long bb_end_cmd_offset;
1896 int ret = 0;
1897 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1898 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1899 unsigned long start_offset = 0;
1900
1901 /* get the start gm address of the batch buffer */
1902 gma = get_gma_bb_from_cmd(s, 1);
1903 if (gma == INTEL_GVT_INVALID_ADDR)
1904 return -EFAULT;
1905
1906 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1907 if (ret)
1908 return ret;
1909
1910 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1911 if (!bb)
1912 return -ENOMEM;
1913
1914 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1915
1916 /* the start_offset stores the batch buffer's start gma's
1917 * offset relative to page boundary. so for non-privileged batch
1918 * buffer, the shadowed gem object holds exactly the same page
1919 * layout as original gem object. This is for the convience of
1920 * replacing the whole non-privilged batch buffer page to this
1921 * shadowed one in PPGTT at the same gma address. (this replacing
1922 * action is not implemented yet now, but may be necessary in
1923 * future).
1924 * for prileged batch buffer, we just change start gma address to
1925 * that of shadowed page.
1926 */
1927 if (bb->ppgtt)
1928 start_offset = gma & ~I915_GTT_PAGE_MASK;
1929
1930 bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1931 round_up(bb_size + start_offset,
1932 PAGE_SIZE));
1933 if (IS_ERR(bb->obj)) {
1934 ret = PTR_ERR(bb->obj);
1935 goto err_free_bb;
1936 }
1937
1938 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1939 if (IS_ERR(bb->va)) {
1940 ret = PTR_ERR(bb->va);
1941 goto err_free_obj;
1942 }
1943
1944 ret = copy_gma_to_hva(s->vgpu, mm,
1945 gma, gma + bb_size,
1946 bb->va + start_offset);
1947 if (ret < 0) {
1948 gvt_vgpu_err("fail to copy guest ring buffer\n");
1949 ret = -EFAULT;
1950 goto err_unmap;
1951 }
1952
1953 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1954 if (ret)
1955 goto err_unmap;
1956
1957 i915_gem_object_unlock(bb->obj);
1958 INIT_LIST_HEAD(&bb->list);
1959 list_add(&bb->list, &s->workload->shadow_bb);
1960
1961 bb->bb_start_cmd_va = s->ip_va;
1962
1963 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1964 bb->bb_offset = s->ip_va - s->rb_va;
1965 else
1966 bb->bb_offset = 0;
1967
1968 /*
1969 * ip_va saves the virtual address of the shadow batch buffer, while
1970 * ip_gma saves the graphics address of the original batch buffer.
1971 * As the shadow batch buffer is just a copy from the originial one,
1972 * it should be right to use shadow batch buffer'va and original batch
1973 * buffer's gma in pair. After all, we don't want to pin the shadow
1974 * buffer here (too early).
1975 */
1976 s->ip_va = bb->va + start_offset;
1977 s->ip_gma = gma;
1978 return 0;
1979 err_unmap:
1980 i915_gem_object_unpin_map(bb->obj);
1981 err_free_obj:
1982 i915_gem_object_put(bb->obj);
1983 err_free_bb:
1984 kfree(bb);
1985 return ret;
1986 }
1987
cmd_handler_mi_batch_buffer_start(struct parser_exec_state * s)1988 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1989 {
1990 bool second_level;
1991 int ret = 0;
1992 struct intel_vgpu *vgpu = s->vgpu;
1993
1994 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1995 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1996 return -EFAULT;
1997 }
1998
1999 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2000 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2001 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2002 return -EFAULT;
2003 }
2004
2005 s->saved_buf_addr_type = s->buf_addr_type;
2006 addr_type_update_snb(s);
2007 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2008 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2009 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2010 } else if (second_level) {
2011 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2012 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2013 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2014 }
2015
2016 if (batch_buffer_needs_scan(s)) {
2017 ret = perform_bb_shadow(s);
2018 if (ret < 0)
2019 gvt_vgpu_err("invalid shadow batch buffer\n");
2020 } else {
2021 /* emulate a batch buffer end to do return right */
2022 ret = cmd_handler_mi_batch_buffer_end(s);
2023 if (ret < 0)
2024 return ret;
2025 }
2026 return ret;
2027 }
2028
2029 static int mi_noop_index;
2030
2031 static const struct cmd_info cmd_info[] = {
2032 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2033
2034 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2035 0, 1, NULL},
2036
2037 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2038 0, 1, cmd_handler_mi_user_interrupt},
2039
2040 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2041 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2042
2043 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2044
2045 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2046 NULL},
2047
2048 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2049 NULL},
2050
2051 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2052 NULL},
2053
2054 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2055 NULL},
2056
2057 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2058 D_ALL, 0, 1, NULL},
2059
2060 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2061 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2062 cmd_handler_mi_batch_buffer_end},
2063
2064 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2065 0, 1, NULL},
2066
2067 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2068 NULL},
2069
2070 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2071 D_ALL, 0, 1, NULL},
2072
2073 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2074 NULL},
2075
2076 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2077 NULL},
2078
2079 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2080 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2081
2082 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2083 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2084
2085 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2086
2087 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2088 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2089
2090 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2091 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2092 NULL, CMD_LEN(0)},
2093
2094 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2095 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2096 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2097
2098 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2099 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2100
2101 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2102 0, 8, cmd_handler_mi_store_data_index},
2103
2104 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2105 D_ALL, 0, 8, cmd_handler_lri},
2106
2107 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2108 cmd_handler_mi_update_gtt},
2109
2110 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2111 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2112 cmd_handler_srm, CMD_LEN(2)},
2113
2114 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2115 cmd_handler_mi_flush_dw},
2116
2117 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2118 10, cmd_handler_mi_clflush},
2119
2120 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2121 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2122 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2123
2124 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2125 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2126 cmd_handler_lrm, CMD_LEN(2)},
2127
2128 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2129 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2130 cmd_handler_lrr, CMD_LEN(1)},
2131
2132 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2133 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2134 8, NULL, CMD_LEN(2)},
2135
2136 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2137 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2138
2139 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2140 ADDR_FIX_1(2), 8, NULL},
2141
2142 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2143 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2144
2145 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2146 8, cmd_handler_mi_op_2f},
2147
2148 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2149 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2150 cmd_handler_mi_batch_buffer_start},
2151
2152 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2153 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2154 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2155
2156 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2157 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2158
2159 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2160 ADDR_FIX_2(4, 7), 8, NULL},
2161
2162 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2163 0, 8, NULL},
2164
2165 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2166 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2167
2168 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2169
2170 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171 0, 8, NULL},
2172
2173 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2174 ADDR_FIX_1(3), 8, NULL},
2175
2176 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2177 D_ALL, 0, 8, NULL},
2178
2179 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2180 ADDR_FIX_1(4), 8, NULL},
2181
2182 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2183 ADDR_FIX_2(4, 5), 8, NULL},
2184
2185 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2186 ADDR_FIX_1(4), 8, NULL},
2187
2188 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2189 ADDR_FIX_2(4, 7), 8, NULL},
2190
2191 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2192 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2193
2194 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2195
2196 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2197 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2198
2199 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2200 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2201
2202 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2203 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2204 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2205
2206 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2207 D_ALL, ADDR_FIX_1(4), 8, NULL},
2208
2209 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2210 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2211
2212 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2213 D_ALL, ADDR_FIX_1(4), 8, NULL},
2214
2215 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2216 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2217
2218 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2219 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2220
2221 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2222 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2223 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2224
2225 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2226 ADDR_FIX_2(4, 5), 8, NULL},
2227
2228 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2229 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2230
2231 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2232 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2233 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234
2235 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2236 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2237 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238
2239 {"3DSTATE_BLEND_STATE_POINTERS",
2240 OP_3DSTATE_BLEND_STATE_POINTERS,
2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2244 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2245 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246
2247 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2248 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2249 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250
2251 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2252 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2256 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2257 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2260 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2261 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262
2263 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2264 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266
2267 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2268 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2269 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270
2271 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2272 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2273 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2276 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278
2279 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2280 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2281 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282
2283 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2284 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2285 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286
2287 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2288 0, 8, NULL},
2289
2290 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2291 0, 8, NULL},
2292
2293 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2294 0, 8, NULL},
2295
2296 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2297 0, 8, NULL},
2298
2299 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2300 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301
2302 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307
2308 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2312 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2315 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2316
2317 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2318 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2319
2320 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2321 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322
2323 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2324 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325
2326 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2327 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328
2329 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2330 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331
2332 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2333 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334
2335 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2336 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337
2338 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2339 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340
2341 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2342 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343
2344 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2345 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2346
2347 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2348 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2349
2350 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2351 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2352
2353 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2354 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2355
2356 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2357 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2358
2359 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2360 D_BDW_PLUS, 0, 8, NULL},
2361
2362 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2363 NULL},
2364
2365 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2366 D_BDW_PLUS, 0, 8, NULL},
2367
2368 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2369 D_BDW_PLUS, 0, 8, NULL},
2370
2371 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2372 8, NULL},
2373
2374 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2375 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2376
2377 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2378 8, NULL},
2379
2380 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2381 NULL},
2382
2383 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2384 NULL},
2385
2386 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2387 NULL},
2388
2389 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2390 D_BDW_PLUS, 0, 8, NULL},
2391
2392 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2393 R_RCS, D_ALL, 0, 8, NULL},
2394
2395 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2396 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2397
2398 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2399 R_RCS, D_ALL, 0, 1, NULL},
2400
2401 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2402
2403 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2404 R_RCS, D_ALL, 0, 8, NULL},
2405
2406 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2407 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2408
2409 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410
2411 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2416 D_BDW_PLUS, 0, 8, NULL},
2417
2418 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2419 D_BDW_PLUS, 0, 8, NULL},
2420
2421 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2422 D_ALL, 0, 8, NULL},
2423
2424 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2425 D_BDW_PLUS, 0, 8, NULL},
2426
2427 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2428 D_BDW_PLUS, 0, 8, NULL},
2429
2430 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2431
2432 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2437 D_ALL, 0, 8, NULL},
2438
2439 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440
2441 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442
2443 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2444 R_RCS, D_ALL, 0, 8, NULL},
2445
2446 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2447 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2448
2449 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2450 0, 8, NULL},
2451
2452 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2453 D_ALL, ADDR_FIX_1(2), 8, NULL},
2454
2455 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2456 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457
2458 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2459 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460
2461 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2462 D_ALL, 0, 8, NULL},
2463
2464 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2465 D_ALL, 0, 8, NULL},
2466
2467 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2468 D_ALL, 0, 8, NULL},
2469
2470 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2471 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2472
2473 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2474 D_BDW_PLUS, 0, 8, NULL},
2475
2476 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2477 D_ALL, ADDR_FIX_1(2), 8, NULL},
2478
2479 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2480 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2481
2482 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2483 R_RCS, D_ALL, 0, 8, NULL},
2484
2485 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2486 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2487
2488 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2489 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2490
2491 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2492 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2493
2494 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2495 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2496
2497 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2498 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2499
2500 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2501 R_RCS, D_ALL, 0, 8, NULL},
2502
2503 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2504 D_ALL, 0, 9, NULL},
2505
2506 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2507 ADDR_FIX_2(2, 4), 8, NULL},
2508
2509 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2510 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2511 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2512
2513 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2514 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2515
2516 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2517 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2518 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2519
2520 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2521 D_BDW_PLUS, 0, 8, NULL},
2522
2523 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2524 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2525
2526 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2527
2528 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2529 1, NULL},
2530
2531 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2532 ADDR_FIX_1(1), 8, NULL},
2533
2534 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2535
2536 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2537 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2538
2539 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2540 ADDR_FIX_1(1), 8, NULL},
2541
2542 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2543 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2544
2545 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2546
2547 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2548
2549 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2550 0, 8, NULL},
2551
2552 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2553 D_SKL_PLUS, 0, 8, NULL},
2554
2555 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2556 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2557
2558 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2559 0, 16, NULL},
2560
2561 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2562 0, 16, NULL},
2563
2564 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2565 0, 16, NULL},
2566
2567 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2568
2569 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2570 0, 16, NULL},
2571
2572 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2573 0, 16, NULL},
2574
2575 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2576 0, 16, NULL},
2577
2578 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2579 0, 8, NULL},
2580
2581 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2582 NULL},
2583
2584 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2585 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2586
2587 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2588 R_VCS, D_ALL, 0, 12, NULL},
2589
2590 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2591 R_VCS, D_ALL, 0, 12, NULL},
2592
2593 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2594 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2595
2596 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2597 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2598
2599 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2600 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2601
2602 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2603
2604 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2605 R_VCS, D_ALL, 0, 12, NULL},
2606
2607 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2608 R_VCS, D_ALL, 0, 12, NULL},
2609
2610 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2611 R_VCS, D_ALL, 0, 12, NULL},
2612
2613 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2614 R_VCS, D_ALL, 0, 12, NULL},
2615
2616 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2617 R_VCS, D_ALL, 0, 12, NULL},
2618
2619 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2620 R_VCS, D_ALL, 0, 12, NULL},
2621
2622 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2623 R_VCS, D_ALL, 0, 6, NULL},
2624
2625 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2626 R_VCS, D_ALL, 0, 12, NULL},
2627
2628 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2629 R_VCS, D_ALL, 0, 12, NULL},
2630
2631 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2632 R_VCS, D_ALL, 0, 12, NULL},
2633
2634 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2635 R_VCS, D_ALL, 0, 12, NULL},
2636
2637 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2638 R_VCS, D_ALL, 0, 12, NULL},
2639
2640 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2641 R_VCS, D_ALL, 0, 12, NULL},
2642
2643 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2644 R_VCS, D_ALL, 0, 12, NULL},
2645 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2646 R_VCS, D_ALL, 0, 12, NULL},
2647
2648 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2649 R_VCS, D_ALL, 0, 12, NULL},
2650
2651 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2652 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2653
2654 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2655 R_VCS, D_ALL, 0, 12, NULL},
2656
2657 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2658 R_VCS, D_ALL, 0, 12, NULL},
2659
2660 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2661 R_VCS, D_ALL, 0, 12, NULL},
2662
2663 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2664 R_VCS, D_ALL, 0, 12, NULL},
2665
2666 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2667 R_VCS, D_ALL, 0, 12, NULL},
2668
2669 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2670 R_VCS, D_ALL, 0, 12, NULL},
2671
2672 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2673 R_VCS, D_ALL, 0, 12, NULL},
2674
2675 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2676 R_VCS, D_ALL, 0, 12, NULL},
2677
2678 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2679 R_VCS, D_ALL, 0, 12, NULL},
2680
2681 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2682 R_VCS, D_ALL, 0, 12, NULL},
2683
2684 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2685 R_VCS, D_ALL, 0, 12, NULL},
2686
2687 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2688 0, 16, NULL},
2689
2690 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2691
2692 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2693
2694 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2695 R_VCS, D_ALL, 0, 12, NULL},
2696
2697 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2698 R_VCS, D_ALL, 0, 12, NULL},
2699
2700 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2701 R_VCS, D_ALL, 0, 12, NULL},
2702
2703 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2704
2705 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2706 0, 12, NULL},
2707
2708 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2709 0, 12, NULL},
2710 };
2711
add_cmd_entry(struct intel_gvt * gvt,struct cmd_entry * e)2712 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2713 {
2714 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2715 }
2716
2717 /* call the cmd handler, and advance ip */
cmd_parser_exec(struct parser_exec_state * s)2718 static int cmd_parser_exec(struct parser_exec_state *s)
2719 {
2720 struct intel_vgpu *vgpu = s->vgpu;
2721 const struct cmd_info *info;
2722 u32 cmd;
2723 int ret = 0;
2724
2725 cmd = cmd_val(s, 0);
2726
2727 /* fastpath for MI_NOOP */
2728 if (cmd == MI_NOOP)
2729 info = &cmd_info[mi_noop_index];
2730 else
2731 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2732
2733 if (info == NULL) {
2734 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2735 cmd, get_opcode(cmd, s->engine),
2736 repr_addr_type(s->buf_addr_type),
2737 s->engine->name, s->workload);
2738 return -EBADRQC;
2739 }
2740
2741 s->info = info;
2742
2743 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2744 cmd_length(s), s->buf_type, s->buf_addr_type,
2745 s->workload, info->name);
2746
2747 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2748 ret = gvt_check_valid_cmd_length(cmd_length(s),
2749 info->valid_len);
2750 if (ret)
2751 return ret;
2752 }
2753
2754 if (info->handler) {
2755 ret = info->handler(s);
2756 if (ret < 0) {
2757 gvt_vgpu_err("%s handler error\n", info->name);
2758 return ret;
2759 }
2760 }
2761
2762 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2763 ret = cmd_advance_default(s);
2764 if (ret) {
2765 gvt_vgpu_err("%s IP advance error\n", info->name);
2766 return ret;
2767 }
2768 }
2769 return 0;
2770 }
2771
gma_out_of_range(unsigned long gma,unsigned long gma_head,unsigned int gma_tail)2772 static inline bool gma_out_of_range(unsigned long gma,
2773 unsigned long gma_head, unsigned int gma_tail)
2774 {
2775 if (gma_tail >= gma_head)
2776 return (gma < gma_head) || (gma > gma_tail);
2777 else
2778 return (gma > gma_tail) && (gma < gma_head);
2779 }
2780
2781 /* Keep the consistent return type, e.g EBADRQC for unknown
2782 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2783 * works as the input of VM healthy status.
2784 */
command_scan(struct parser_exec_state * s,unsigned long rb_head,unsigned long rb_tail,unsigned long rb_start,unsigned long rb_len)2785 static int command_scan(struct parser_exec_state *s,
2786 unsigned long rb_head, unsigned long rb_tail,
2787 unsigned long rb_start, unsigned long rb_len)
2788 {
2789
2790 unsigned long gma_head, gma_tail, gma_bottom;
2791 int ret = 0;
2792 struct intel_vgpu *vgpu = s->vgpu;
2793
2794 gma_head = rb_start + rb_head;
2795 gma_tail = rb_start + rb_tail;
2796 gma_bottom = rb_start + rb_len;
2797
2798 while (s->ip_gma != gma_tail) {
2799 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2800 s->buf_type == RING_BUFFER_CTX) {
2801 if (!(s->ip_gma >= rb_start) ||
2802 !(s->ip_gma < gma_bottom)) {
2803 gvt_vgpu_err("ip_gma %lx out of ring scope."
2804 "(base:0x%lx, bottom: 0x%lx)\n",
2805 s->ip_gma, rb_start,
2806 gma_bottom);
2807 parser_exec_state_dump(s);
2808 return -EFAULT;
2809 }
2810 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2811 gvt_vgpu_err("ip_gma %lx out of range."
2812 "base 0x%lx head 0x%lx tail 0x%lx\n",
2813 s->ip_gma, rb_start,
2814 rb_head, rb_tail);
2815 parser_exec_state_dump(s);
2816 break;
2817 }
2818 }
2819 ret = cmd_parser_exec(s);
2820 if (ret) {
2821 gvt_vgpu_err("cmd parser error\n");
2822 parser_exec_state_dump(s);
2823 break;
2824 }
2825 }
2826
2827 return ret;
2828 }
2829
scan_workload(struct intel_vgpu_workload * workload)2830 static int scan_workload(struct intel_vgpu_workload *workload)
2831 {
2832 unsigned long gma_head, gma_tail, gma_bottom;
2833 struct parser_exec_state s;
2834 int ret = 0;
2835
2836 /* ring base is page aligned */
2837 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2838 return -EINVAL;
2839
2840 gma_head = workload->rb_start + workload->rb_head;
2841 gma_tail = workload->rb_start + workload->rb_tail;
2842 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2843
2844 s.buf_type = RING_BUFFER_INSTRUCTION;
2845 s.buf_addr_type = GTT_BUFFER;
2846 s.vgpu = workload->vgpu;
2847 s.engine = workload->engine;
2848 s.ring_start = workload->rb_start;
2849 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2850 s.ring_head = gma_head;
2851 s.ring_tail = gma_tail;
2852 s.rb_va = workload->shadow_ring_buffer_va;
2853 s.workload = workload;
2854 s.is_ctx_wa = false;
2855
2856 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2857 return 0;
2858
2859 ret = ip_gma_set(&s, gma_head);
2860 if (ret)
2861 goto out;
2862
2863 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2864 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2865
2866 out:
2867 return ret;
2868 }
2869
scan_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)2870 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2871 {
2872
2873 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2874 struct parser_exec_state s;
2875 int ret = 0;
2876 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2877 struct intel_vgpu_workload,
2878 wa_ctx);
2879
2880 /* ring base is page aligned */
2881 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2882 I915_GTT_PAGE_SIZE)))
2883 return -EINVAL;
2884
2885 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2886 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2887 PAGE_SIZE);
2888 gma_head = wa_ctx->indirect_ctx.guest_gma;
2889 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2890 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2891
2892 s.buf_type = RING_BUFFER_INSTRUCTION;
2893 s.buf_addr_type = GTT_BUFFER;
2894 s.vgpu = workload->vgpu;
2895 s.engine = workload->engine;
2896 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2897 s.ring_size = ring_size;
2898 s.ring_head = gma_head;
2899 s.ring_tail = gma_tail;
2900 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2901 s.workload = workload;
2902 s.is_ctx_wa = true;
2903
2904 ret = ip_gma_set(&s, gma_head);
2905 if (ret)
2906 goto out;
2907
2908 ret = command_scan(&s, 0, ring_tail,
2909 wa_ctx->indirect_ctx.guest_gma, ring_size);
2910 out:
2911 return ret;
2912 }
2913
shadow_workload_ring_buffer(struct intel_vgpu_workload * workload)2914 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2915 {
2916 struct intel_vgpu *vgpu = workload->vgpu;
2917 struct intel_vgpu_submission *s = &vgpu->submission;
2918 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2919 void *shadow_ring_buffer_va;
2920 int ret;
2921
2922 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2923
2924 /* calculate workload ring buffer size */
2925 workload->rb_len = (workload->rb_tail + guest_rb_size -
2926 workload->rb_head) % guest_rb_size;
2927
2928 gma_head = workload->rb_start + workload->rb_head;
2929 gma_tail = workload->rb_start + workload->rb_tail;
2930 gma_top = workload->rb_start + guest_rb_size;
2931
2932 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2933 void *p;
2934
2935 /* realloc the new ring buffer if needed */
2936 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2937 workload->rb_len, GFP_KERNEL);
2938 if (!p) {
2939 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2940 return -ENOMEM;
2941 }
2942 s->ring_scan_buffer[workload->engine->id] = p;
2943 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2944 }
2945
2946 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2947
2948 /* get shadow ring buffer va */
2949 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2950
2951 /* head > tail --> copy head <-> top */
2952 if (gma_head > gma_tail) {
2953 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2954 gma_head, gma_top, shadow_ring_buffer_va);
2955 if (ret < 0) {
2956 gvt_vgpu_err("fail to copy guest ring buffer\n");
2957 return ret;
2958 }
2959 shadow_ring_buffer_va += ret;
2960 gma_head = workload->rb_start;
2961 }
2962
2963 /* copy head or start <-> tail */
2964 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2965 shadow_ring_buffer_va);
2966 if (ret < 0) {
2967 gvt_vgpu_err("fail to copy guest ring buffer\n");
2968 return ret;
2969 }
2970 return 0;
2971 }
2972
intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload * workload)2973 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2974 {
2975 int ret;
2976 struct intel_vgpu *vgpu = workload->vgpu;
2977
2978 ret = shadow_workload_ring_buffer(workload);
2979 if (ret) {
2980 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2981 return ret;
2982 }
2983
2984 ret = scan_workload(workload);
2985 if (ret) {
2986 gvt_vgpu_err("scan workload error\n");
2987 return ret;
2988 }
2989 return 0;
2990 }
2991
shadow_indirect_ctx(struct intel_shadow_wa_ctx * wa_ctx)2992 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2993 {
2994 int ctx_size = wa_ctx->indirect_ctx.size;
2995 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2996 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2997 struct intel_vgpu_workload,
2998 wa_ctx);
2999 struct intel_vgpu *vgpu = workload->vgpu;
3000 struct drm_i915_gem_object *obj;
3001 int ret = 0;
3002 void *map;
3003
3004 obj = i915_gem_object_create_shmem(workload->engine->i915,
3005 roundup(ctx_size + CACHELINE_BYTES,
3006 PAGE_SIZE));
3007 if (IS_ERR(obj))
3008 return PTR_ERR(obj);
3009
3010 /* get the va of the shadow batch buffer */
3011 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3012 if (IS_ERR(map)) {
3013 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3014 ret = PTR_ERR(map);
3015 goto put_obj;
3016 }
3017
3018 i915_gem_object_lock(obj, NULL);
3019 ret = i915_gem_object_set_to_cpu_domain(obj, false);
3020 i915_gem_object_unlock(obj);
3021 if (ret) {
3022 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3023 goto unmap_src;
3024 }
3025
3026 ret = copy_gma_to_hva(workload->vgpu,
3027 workload->vgpu->gtt.ggtt_mm,
3028 guest_gma, guest_gma + ctx_size,
3029 map);
3030 if (ret < 0) {
3031 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3032 goto unmap_src;
3033 }
3034
3035 wa_ctx->indirect_ctx.obj = obj;
3036 wa_ctx->indirect_ctx.shadow_va = map;
3037 return 0;
3038
3039 unmap_src:
3040 i915_gem_object_unpin_map(obj);
3041 put_obj:
3042 i915_gem_object_put(obj);
3043 return ret;
3044 }
3045
combine_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3046 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3047 {
3048 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3049 unsigned char *bb_start_sva;
3050
3051 if (!wa_ctx->per_ctx.valid)
3052 return 0;
3053
3054 per_ctx_start[0] = 0x18800001;
3055 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3056
3057 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3058 wa_ctx->indirect_ctx.size;
3059
3060 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3061
3062 return 0;
3063 }
3064
intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx * wa_ctx)3065 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3066 {
3067 int ret;
3068 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3069 struct intel_vgpu_workload,
3070 wa_ctx);
3071 struct intel_vgpu *vgpu = workload->vgpu;
3072
3073 if (wa_ctx->indirect_ctx.size == 0)
3074 return 0;
3075
3076 ret = shadow_indirect_ctx(wa_ctx);
3077 if (ret) {
3078 gvt_vgpu_err("fail to shadow indirect ctx\n");
3079 return ret;
3080 }
3081
3082 combine_wa_ctx(wa_ctx);
3083
3084 ret = scan_wa_ctx(wa_ctx);
3085 if (ret) {
3086 gvt_vgpu_err("scan wa ctx error\n");
3087 return ret;
3088 }
3089
3090 return 0;
3091 }
3092
3093 /* generate dummy contexts by sending empty requests to HW, and let
3094 * the HW to fill Engine Contexts. This dummy contexts are used for
3095 * initialization purpose (update reg whitelist), so referred to as
3096 * init context here
3097 */
intel_gvt_update_reg_whitelist(struct intel_vgpu * vgpu)3098 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3099 {
3100 const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3101 struct intel_gvt *gvt = vgpu->gvt;
3102 struct intel_engine_cs *engine;
3103 enum intel_engine_id id;
3104
3105 if (gvt->is_reg_whitelist_updated)
3106 return;
3107
3108 /* scan init ctx to update cmd accessible list */
3109 for_each_engine(engine, gvt->gt, id) {
3110 struct parser_exec_state s;
3111 void *vaddr;
3112 int ret;
3113
3114 if (!engine->default_state)
3115 continue;
3116
3117 vaddr = shmem_pin_map(engine->default_state);
3118 if (!vaddr) {
3119 gvt_err("failed to map %s->default state\n",
3120 engine->name);
3121 return;
3122 }
3123
3124 s.buf_type = RING_BUFFER_CTX;
3125 s.buf_addr_type = GTT_BUFFER;
3126 s.vgpu = vgpu;
3127 s.engine = engine;
3128 s.ring_start = 0;
3129 s.ring_size = engine->context_size - start;
3130 s.ring_head = 0;
3131 s.ring_tail = s.ring_size;
3132 s.rb_va = vaddr + start;
3133 s.workload = NULL;
3134 s.is_ctx_wa = false;
3135 s.is_init_ctx = true;
3136
3137 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3138 ret = ip_gma_set(&s, RING_CTX_SIZE);
3139 if (ret == 0) {
3140 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3141 if (ret)
3142 gvt_err("Scan init ctx error\n");
3143 }
3144
3145 shmem_unpin_map(engine->default_state, vaddr);
3146 if (ret)
3147 return;
3148 }
3149
3150 gvt->is_reg_whitelist_updated = true;
3151 }
3152
intel_gvt_scan_engine_context(struct intel_vgpu_workload * workload)3153 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3154 {
3155 struct intel_vgpu *vgpu = workload->vgpu;
3156 unsigned long gma_head, gma_tail, gma_start, ctx_size;
3157 struct parser_exec_state s;
3158 int ring_id = workload->engine->id;
3159 struct intel_context *ce = vgpu->submission.shadow[ring_id];
3160 int ret;
3161
3162 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3163
3164 ctx_size = workload->engine->context_size - PAGE_SIZE;
3165
3166 /* Only ring contxt is loaded to HW for inhibit context, no need to
3167 * scan engine context
3168 */
3169 if (is_inhibit_context(ce))
3170 return 0;
3171
3172 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3173 gma_head = 0;
3174 gma_tail = ctx_size;
3175
3176 s.buf_type = RING_BUFFER_CTX;
3177 s.buf_addr_type = GTT_BUFFER;
3178 s.vgpu = workload->vgpu;
3179 s.engine = workload->engine;
3180 s.ring_start = gma_start;
3181 s.ring_size = ctx_size;
3182 s.ring_head = gma_start + gma_head;
3183 s.ring_tail = gma_start + gma_tail;
3184 s.rb_va = ce->lrc_reg_state;
3185 s.workload = workload;
3186 s.is_ctx_wa = false;
3187 s.is_init_ctx = false;
3188
3189 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3190 * context
3191 */
3192 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3193 if (ret)
3194 goto out;
3195
3196 ret = command_scan(&s, gma_head, gma_tail,
3197 gma_start, ctx_size);
3198 out:
3199 if (ret)
3200 gvt_vgpu_err("scan shadow ctx error\n");
3201
3202 return ret;
3203 }
3204
init_cmd_table(struct intel_gvt * gvt)3205 static int init_cmd_table(struct intel_gvt *gvt)
3206 {
3207 unsigned int gen_type = intel_gvt_get_device_type(gvt);
3208 int i;
3209
3210 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3211 struct cmd_entry *e;
3212
3213 if (!(cmd_info[i].devices & gen_type))
3214 continue;
3215
3216 e = kzalloc(sizeof(*e), GFP_KERNEL);
3217 if (!e)
3218 return -ENOMEM;
3219
3220 e->info = &cmd_info[i];
3221 if (cmd_info[i].opcode == OP_MI_NOOP)
3222 mi_noop_index = i;
3223
3224 INIT_HLIST_NODE(&e->hlist);
3225 add_cmd_entry(gvt, e);
3226 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3227 e->info->name, e->info->opcode, e->info->flag,
3228 e->info->devices, e->info->rings);
3229 }
3230
3231 return 0;
3232 }
3233
clean_cmd_table(struct intel_gvt * gvt)3234 static void clean_cmd_table(struct intel_gvt *gvt)
3235 {
3236 struct hlist_node *tmp;
3237 struct cmd_entry *e;
3238 int i;
3239
3240 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3241 kfree(e);
3242
3243 hash_init(gvt->cmd_table);
3244 }
3245
intel_gvt_clean_cmd_parser(struct intel_gvt * gvt)3246 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3247 {
3248 clean_cmd_table(gvt);
3249 }
3250
intel_gvt_init_cmd_parser(struct intel_gvt * gvt)3251 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3252 {
3253 int ret;
3254
3255 ret = init_cmd_table(gvt);
3256 if (ret) {
3257 intel_gvt_clean_cmd_parser(gvt);
3258 return ret;
3259 }
3260 return 0;
3261 }
3262