• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Platform Monitory Technology Telemetry driver
4  *
5  * Copyright (c) 2020, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * Author: "Alexander Duyck" <alexander.h.duyck@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/io-64-nonatomic-lo-hi.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/pci.h>
16 
17 #include "class.h"
18 
19 #define PMT_XA_START		0
20 #define PMT_XA_MAX		INT_MAX
21 #define PMT_XA_LIMIT		XA_LIMIT(PMT_XA_START, PMT_XA_MAX)
22 #define GUID_SPR_PUNIT		0x9956f43f
23 
24 /*
25  * Early implementations of PMT on client platforms have some
26  * differences from the server platforms (which use the Out Of Band
27  * Management Services Module OOBMSM). This list tracks those
28  * platforms as needed to handle those differences. Newer client
29  * platforms are expected to be fully compatible with server.
30  */
31 static const struct pci_device_id pmt_telem_early_client_pci_ids[] = {
32 	{ PCI_VDEVICE(INTEL, 0x467d) }, /* ADL */
33 	{ PCI_VDEVICE(INTEL, 0x490e) }, /* DG1 */
34 	{ PCI_VDEVICE(INTEL, 0x9a0d) }, /* TGL */
35 	{ }
36 };
37 
intel_pmt_is_early_client_hw(struct device * dev)38 bool intel_pmt_is_early_client_hw(struct device *dev)
39 {
40 	struct pci_dev *parent = to_pci_dev(dev->parent);
41 
42 	return !!pci_match_id(pmt_telem_early_client_pci_ids, parent);
43 }
44 EXPORT_SYMBOL_GPL(intel_pmt_is_early_client_hw);
45 
46 static inline int
pmt_memcpy64_fromio(void * to,const u64 __iomem * from,size_t count)47 pmt_memcpy64_fromio(void *to, const u64 __iomem *from, size_t count)
48 {
49 	int i, remain;
50 	u64 *buf = to;
51 
52 	if (!IS_ALIGNED((unsigned long)from, 8))
53 		return -EFAULT;
54 
55 	for (i = 0; i < count/8; i++)
56 		buf[i] = readq(&from[i]);
57 
58 	/* Copy any remaining bytes */
59 	remain = count % 8;
60 	if (remain) {
61 		u64 tmp = readq(&from[i]);
62 
63 		memcpy(&buf[i], &tmp, remain);
64 	}
65 
66 	return count;
67 }
68 
69 /*
70  * sysfs
71  */
72 static ssize_t
intel_pmt_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)73 intel_pmt_read(struct file *filp, struct kobject *kobj,
74 	       struct bin_attribute *attr, char *buf, loff_t off,
75 	       size_t count)
76 {
77 	struct intel_pmt_entry *entry = container_of(attr,
78 						     struct intel_pmt_entry,
79 						     pmt_bin_attr);
80 
81 	if (off < 0)
82 		return -EINVAL;
83 
84 	if (off >= entry->size)
85 		return 0;
86 
87 	if (count > entry->size - off)
88 		count = entry->size - off;
89 
90 	if (entry->guid == GUID_SPR_PUNIT)
91 		/* PUNIT on SPR only supports aligned 64-bit read */
92 		count = pmt_memcpy64_fromio(buf, entry->base + off, count);
93 	else
94 		memcpy_fromio(buf, entry->base + off, count);
95 
96 	return count;
97 }
98 
99 static int
intel_pmt_mmap(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,struct vm_area_struct * vma)100 intel_pmt_mmap(struct file *filp, struct kobject *kobj,
101 		struct bin_attribute *attr, struct vm_area_struct *vma)
102 {
103 	struct intel_pmt_entry *entry = container_of(attr,
104 						     struct intel_pmt_entry,
105 						     pmt_bin_attr);
106 	unsigned long vsize = vma->vm_end - vma->vm_start;
107 	struct device *dev = kobj_to_dev(kobj);
108 	unsigned long phys = entry->base_addr;
109 	unsigned long pfn = PFN_DOWN(phys);
110 	unsigned long psize;
111 
112 	if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE))
113 		return -EROFS;
114 
115 	psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE;
116 	if (vsize > psize) {
117 		dev_err(dev, "Requested mmap size is too large\n");
118 		return -EINVAL;
119 	}
120 
121 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
122 	if (io_remap_pfn_range(vma, vma->vm_start, pfn,
123 		vsize, vma->vm_page_prot))
124 		return -EAGAIN;
125 
126 	return 0;
127 }
128 
129 static ssize_t
guid_show(struct device * dev,struct device_attribute * attr,char * buf)130 guid_show(struct device *dev, struct device_attribute *attr, char *buf)
131 {
132 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
133 
134 	return sprintf(buf, "0x%x\n", entry->guid);
135 }
136 static DEVICE_ATTR_RO(guid);
137 
size_show(struct device * dev,struct device_attribute * attr,char * buf)138 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
139 			 char *buf)
140 {
141 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
142 
143 	return sprintf(buf, "%zu\n", entry->size);
144 }
145 static DEVICE_ATTR_RO(size);
146 
147 static ssize_t
offset_show(struct device * dev,struct device_attribute * attr,char * buf)148 offset_show(struct device *dev, struct device_attribute *attr, char *buf)
149 {
150 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
151 
152 	return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr));
153 }
154 static DEVICE_ATTR_RO(offset);
155 
156 static struct attribute *intel_pmt_attrs[] = {
157 	&dev_attr_guid.attr,
158 	&dev_attr_size.attr,
159 	&dev_attr_offset.attr,
160 	NULL
161 };
162 ATTRIBUTE_GROUPS(intel_pmt);
163 
164 static struct class intel_pmt_class = {
165 	.name = "intel_pmt",
166 	.owner = THIS_MODULE,
167 	.dev_groups = intel_pmt_groups,
168 };
169 
intel_pmt_populate_entry(struct intel_pmt_entry * entry,struct intel_pmt_header * header,struct device * dev,struct resource * disc_res)170 static int intel_pmt_populate_entry(struct intel_pmt_entry *entry,
171 				    struct intel_pmt_header *header,
172 				    struct device *dev,
173 				    struct resource *disc_res)
174 {
175 	struct pci_dev *pci_dev = to_pci_dev(dev->parent);
176 	u8 bir;
177 
178 	/*
179 	 * The base offset should always be 8 byte aligned.
180 	 *
181 	 * For non-local access types the lower 3 bits of base offset
182 	 * contains the index of the base address register where the
183 	 * telemetry can be found.
184 	 */
185 	bir = GET_BIR(header->base_offset);
186 
187 	/* Local access and BARID only for now */
188 	switch (header->access_type) {
189 	case ACCESS_LOCAL:
190 		if (bir) {
191 			dev_err(dev,
192 				"Unsupported BAR index %d for access type %d\n",
193 				bir, header->access_type);
194 			return -EINVAL;
195 		}
196 		/*
197 		 * For access_type LOCAL, the base address is as follows:
198 		 * base address = end of discovery region + base offset
199 		 */
200 		entry->base_addr = disc_res->end + 1 + header->base_offset;
201 
202 		/*
203 		 * Some hardware use a different calculation for the base address
204 		 * when access_type == ACCESS_LOCAL. On the these systems
205 		 * ACCCESS_LOCAL refers to an address in the same BAR as the
206 		 * header but at a fixed offset. But as the header address was
207 		 * supplied to the driver, we don't know which BAR it was in.
208 		 * So search for the bar whose range includes the header address.
209 		 */
210 		if (intel_pmt_is_early_client_hw(dev)) {
211 			int i;
212 
213 			entry->base_addr = 0;
214 			for (i = 0; i < 6; i++)
215 				if (disc_res->start >= pci_resource_start(pci_dev, i) &&
216 				   (disc_res->start <= pci_resource_end(pci_dev, i))) {
217 					entry->base_addr = pci_resource_start(pci_dev, i) +
218 							   header->base_offset;
219 					break;
220 				}
221 			if (!entry->base_addr)
222 				return -EINVAL;
223 		}
224 
225 		break;
226 	case ACCESS_BARID:
227 		/*
228 		 * If another BAR was specified then the base offset
229 		 * represents the offset within that BAR. SO retrieve the
230 		 * address from the parent PCI device and add offset.
231 		 */
232 		entry->base_addr = pci_resource_start(pci_dev, bir) +
233 				   GET_ADDRESS(header->base_offset);
234 		break;
235 	default:
236 		dev_err(dev, "Unsupported access type %d\n",
237 			header->access_type);
238 		return -EINVAL;
239 	}
240 
241 	entry->guid = header->guid;
242 	entry->size = header->size;
243 
244 	return 0;
245 }
246 
intel_pmt_dev_register(struct intel_pmt_entry * entry,struct intel_pmt_namespace * ns,struct device * parent)247 static int intel_pmt_dev_register(struct intel_pmt_entry *entry,
248 				  struct intel_pmt_namespace *ns,
249 				  struct device *parent)
250 {
251 	struct resource res = {0};
252 	struct device *dev;
253 	int ret;
254 
255 	ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL);
256 	if (ret)
257 		return ret;
258 
259 	dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry,
260 			    "%s%d", ns->name, entry->devid);
261 
262 	if (IS_ERR(dev)) {
263 		dev_err(parent, "Could not create %s%d device node\n",
264 			ns->name, entry->devid);
265 		ret = PTR_ERR(dev);
266 		goto fail_dev_create;
267 	}
268 
269 	entry->kobj = &dev->kobj;
270 
271 	if (ns->attr_grp) {
272 		ret = sysfs_create_group(entry->kobj, ns->attr_grp);
273 		if (ret)
274 			goto fail_sysfs;
275 	}
276 
277 	/* if size is 0 assume no data buffer, so no file needed */
278 	if (!entry->size)
279 		return 0;
280 
281 	res.start = entry->base_addr;
282 	res.end = res.start + entry->size - 1;
283 	res.flags = IORESOURCE_MEM;
284 
285 	entry->base = devm_ioremap_resource(dev, &res);
286 	if (IS_ERR(entry->base)) {
287 		ret = PTR_ERR(entry->base);
288 		goto fail_ioremap;
289 	}
290 
291 	sysfs_bin_attr_init(&entry->pmt_bin_attr);
292 	entry->pmt_bin_attr.attr.name = ns->name;
293 	entry->pmt_bin_attr.attr.mode = 0440;
294 	entry->pmt_bin_attr.mmap = intel_pmt_mmap;
295 	entry->pmt_bin_attr.read = intel_pmt_read;
296 	entry->pmt_bin_attr.size = entry->size;
297 
298 	ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr);
299 	if (!ret)
300 		return 0;
301 
302 fail_ioremap:
303 	if (ns->attr_grp)
304 		sysfs_remove_group(entry->kobj, ns->attr_grp);
305 fail_sysfs:
306 	device_unregister(dev);
307 fail_dev_create:
308 	xa_erase(ns->xa, entry->devid);
309 
310 	return ret;
311 }
312 
intel_pmt_dev_create(struct intel_pmt_entry * entry,struct intel_pmt_namespace * ns,struct platform_device * pdev,int idx)313 int intel_pmt_dev_create(struct intel_pmt_entry *entry,
314 			 struct intel_pmt_namespace *ns,
315 			 struct platform_device *pdev, int idx)
316 {
317 	struct intel_pmt_header header;
318 	struct resource	*disc_res;
319 	int ret = -ENODEV;
320 
321 	disc_res = platform_get_resource(pdev, IORESOURCE_MEM, idx);
322 	if (!disc_res)
323 		return ret;
324 
325 	entry->disc_table = devm_platform_ioremap_resource(pdev, idx);
326 	if (IS_ERR(entry->disc_table))
327 		return PTR_ERR(entry->disc_table);
328 
329 	ret = ns->pmt_header_decode(entry, &header, &pdev->dev);
330 	if (ret)
331 		return ret;
332 
333 	ret = intel_pmt_populate_entry(entry, &header, &pdev->dev, disc_res);
334 	if (ret)
335 		return ret;
336 
337 	return intel_pmt_dev_register(entry, ns, &pdev->dev);
338 
339 }
340 EXPORT_SYMBOL_GPL(intel_pmt_dev_create);
341 
intel_pmt_dev_destroy(struct intel_pmt_entry * entry,struct intel_pmt_namespace * ns)342 void intel_pmt_dev_destroy(struct intel_pmt_entry *entry,
343 			   struct intel_pmt_namespace *ns)
344 {
345 	struct device *dev = kobj_to_dev(entry->kobj);
346 
347 	if (entry->size)
348 		sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr);
349 
350 	if (ns->attr_grp)
351 		sysfs_remove_group(entry->kobj, ns->attr_grp);
352 
353 	device_unregister(dev);
354 	xa_erase(ns->xa, entry->devid);
355 }
356 EXPORT_SYMBOL_GPL(intel_pmt_dev_destroy);
357 
pmt_class_init(void)358 static int __init pmt_class_init(void)
359 {
360 	return class_register(&intel_pmt_class);
361 }
362 
pmt_class_exit(void)363 static void __exit pmt_class_exit(void)
364 {
365 	class_unregister(&intel_pmt_class);
366 }
367 
368 module_init(pmt_class_init);
369 module_exit(pmt_class_exit);
370 
371 MODULE_AUTHOR("Alexander Duyck <alexander.h.duyck@linux.intel.com>");
372 MODULE_DESCRIPTION("Intel PMT Class driver");
373 MODULE_LICENSE("GPL v2");
374