1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <drm/i915_drm.h>
7
8 #include "i915_drv.h"
9 #include "intel_breadcrumbs.h"
10 #include "intel_gt.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_irq.h"
13 #include "intel_gt_pm_irq.h"
14 #include "intel_rps.h"
15 #include "intel_sideband.h"
16 #include "../../../platform/x86/intel_ips.h"
17
18 #define BUSY_MAX_EI 20u /* ms */
19
20 /*
21 * Lock protecting IPS related data structures
22 */
23 static DEFINE_SPINLOCK(mchdev_lock);
24
rps_to_gt(struct intel_rps * rps)25 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
26 {
27 return container_of(rps, struct intel_gt, rps);
28 }
29
rps_to_i915(struct intel_rps * rps)30 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
31 {
32 return rps_to_gt(rps)->i915;
33 }
34
rps_to_uncore(struct intel_rps * rps)35 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
36 {
37 return rps_to_gt(rps)->uncore;
38 }
39
rps_to_slpc(struct intel_rps * rps)40 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
41 {
42 struct intel_gt *gt = rps_to_gt(rps);
43
44 return >->uc.guc.slpc;
45 }
46
rps_uses_slpc(struct intel_rps * rps)47 static bool rps_uses_slpc(struct intel_rps *rps)
48 {
49 struct intel_gt *gt = rps_to_gt(rps);
50
51 return intel_uc_uses_guc_slpc(>->uc);
52 }
53
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)54 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
55 {
56 return mask & ~rps->pm_intrmsk_mbz;
57 }
58
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)59 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
60 {
61 intel_uncore_write_fw(uncore, reg, val);
62 }
63
rps_timer(struct timer_list * t)64 static void rps_timer(struct timer_list *t)
65 {
66 struct intel_rps *rps = from_timer(rps, t, timer);
67 struct intel_engine_cs *engine;
68 ktime_t dt, last, timestamp;
69 enum intel_engine_id id;
70 s64 max_busy[3] = {};
71
72 timestamp = 0;
73 for_each_engine(engine, rps_to_gt(rps), id) {
74 s64 busy;
75 int i;
76
77 dt = intel_engine_get_busy_time(engine, ×tamp);
78 last = engine->stats.rps;
79 engine->stats.rps = dt;
80
81 busy = ktime_to_ns(ktime_sub(dt, last));
82 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
83 if (busy > max_busy[i])
84 swap(busy, max_busy[i]);
85 }
86 }
87 last = rps->pm_timestamp;
88 rps->pm_timestamp = timestamp;
89
90 if (intel_rps_is_active(rps)) {
91 s64 busy;
92 int i;
93
94 dt = ktime_sub(timestamp, last);
95
96 /*
97 * Our goal is to evaluate each engine independently, so we run
98 * at the lowest clocks required to sustain the heaviest
99 * workload. However, a task may be split into sequential
100 * dependent operations across a set of engines, such that
101 * the independent contributions do not account for high load,
102 * but overall the task is GPU bound. For example, consider
103 * video decode on vcs followed by colour post-processing
104 * on vecs, followed by general post-processing on rcs.
105 * Since multi-engines being active does imply a single
106 * continuous workload across all engines, we hedge our
107 * bets by only contributing a factor of the distributed
108 * load into our busyness calculation.
109 */
110 busy = max_busy[0];
111 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
112 if (!max_busy[i])
113 break;
114
115 busy += div_u64(max_busy[i], 1 << i);
116 }
117 GT_TRACE(rps_to_gt(rps),
118 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
119 busy, (int)div64_u64(100 * busy, dt),
120 max_busy[0], max_busy[1], max_busy[2],
121 rps->pm_interval);
122
123 if (100 * busy > rps->power.up_threshold * dt &&
124 rps->cur_freq < rps->max_freq_softlimit) {
125 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
126 rps->pm_interval = 1;
127 schedule_work(&rps->work);
128 } else if (100 * busy < rps->power.down_threshold * dt &&
129 rps->cur_freq > rps->min_freq_softlimit) {
130 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
131 rps->pm_interval = 1;
132 schedule_work(&rps->work);
133 } else {
134 rps->last_adj = 0;
135 }
136
137 mod_timer(&rps->timer,
138 jiffies + msecs_to_jiffies(rps->pm_interval));
139 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
140 }
141 }
142
rps_start_timer(struct intel_rps * rps)143 static void rps_start_timer(struct intel_rps *rps)
144 {
145 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
146 rps->pm_interval = 1;
147 mod_timer(&rps->timer, jiffies + 1);
148 }
149
rps_stop_timer(struct intel_rps * rps)150 static void rps_stop_timer(struct intel_rps *rps)
151 {
152 del_timer_sync(&rps->timer);
153 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
154 cancel_work_sync(&rps->work);
155 }
156
rps_pm_mask(struct intel_rps * rps,u8 val)157 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
158 {
159 u32 mask = 0;
160
161 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
162 if (val > rps->min_freq_softlimit)
163 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
164 GEN6_PM_RP_DOWN_THRESHOLD |
165 GEN6_PM_RP_DOWN_TIMEOUT);
166
167 if (val < rps->max_freq_softlimit)
168 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
169
170 mask &= rps->pm_events;
171
172 return rps_pm_sanitize_mask(rps, ~mask);
173 }
174
rps_reset_ei(struct intel_rps * rps)175 static void rps_reset_ei(struct intel_rps *rps)
176 {
177 memset(&rps->ei, 0, sizeof(rps->ei));
178 }
179
rps_enable_interrupts(struct intel_rps * rps)180 static void rps_enable_interrupts(struct intel_rps *rps)
181 {
182 struct intel_gt *gt = rps_to_gt(rps);
183
184 GEM_BUG_ON(rps_uses_slpc(rps));
185
186 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
187 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
188
189 rps_reset_ei(rps);
190
191 spin_lock_irq(>->irq_lock);
192 gen6_gt_pm_enable_irq(gt, rps->pm_events);
193 spin_unlock_irq(>->irq_lock);
194
195 intel_uncore_write(gt->uncore,
196 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
197 }
198
gen6_rps_reset_interrupts(struct intel_rps * rps)199 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
200 {
201 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
202 }
203
gen11_rps_reset_interrupts(struct intel_rps * rps)204 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
205 {
206 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
207 ;
208 }
209
rps_reset_interrupts(struct intel_rps * rps)210 static void rps_reset_interrupts(struct intel_rps *rps)
211 {
212 struct intel_gt *gt = rps_to_gt(rps);
213
214 spin_lock_irq(>->irq_lock);
215 if (GRAPHICS_VER(gt->i915) >= 11)
216 gen11_rps_reset_interrupts(rps);
217 else
218 gen6_rps_reset_interrupts(rps);
219
220 rps->pm_iir = 0;
221 spin_unlock_irq(>->irq_lock);
222 }
223
rps_disable_interrupts(struct intel_rps * rps)224 static void rps_disable_interrupts(struct intel_rps *rps)
225 {
226 struct intel_gt *gt = rps_to_gt(rps);
227
228 intel_uncore_write(gt->uncore,
229 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
230
231 spin_lock_irq(>->irq_lock);
232 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
233 spin_unlock_irq(>->irq_lock);
234
235 intel_synchronize_irq(gt->i915);
236
237 /*
238 * Now that we will not be generating any more work, flush any
239 * outstanding tasks. As we are called on the RPS idle path,
240 * we will reset the GPU to minimum frequencies, so the current
241 * state of the worker can be discarded.
242 */
243 cancel_work_sync(&rps->work);
244
245 rps_reset_interrupts(rps);
246 GT_TRACE(gt, "interrupts:off\n");
247 }
248
249 static const struct cparams {
250 u16 i;
251 u16 t;
252 u16 m;
253 u16 c;
254 } cparams[] = {
255 { 1, 1333, 301, 28664 },
256 { 1, 1066, 294, 24460 },
257 { 1, 800, 294, 25192 },
258 { 0, 1333, 276, 27605 },
259 { 0, 1066, 276, 27605 },
260 { 0, 800, 231, 23784 },
261 };
262
gen5_rps_init(struct intel_rps * rps)263 static void gen5_rps_init(struct intel_rps *rps)
264 {
265 struct drm_i915_private *i915 = rps_to_i915(rps);
266 struct intel_uncore *uncore = rps_to_uncore(rps);
267 u8 fmax, fmin, fstart;
268 u32 rgvmodectl;
269 int c_m, i;
270
271 if (i915->fsb_freq <= 3200)
272 c_m = 0;
273 else if (i915->fsb_freq <= 4800)
274 c_m = 1;
275 else
276 c_m = 2;
277
278 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
279 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
280 rps->ips.m = cparams[i].m;
281 rps->ips.c = cparams[i].c;
282 break;
283 }
284 }
285
286 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
287
288 /* Set up min, max, and cur for interrupt handling */
289 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
290 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
291 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
292 MEMMODE_FSTART_SHIFT;
293 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
294 fmax, fmin, fstart);
295
296 rps->min_freq = fmax;
297 rps->efficient_freq = fstart;
298 rps->max_freq = fmin;
299 }
300
301 static unsigned long
__ips_chipset_val(struct intel_ips * ips)302 __ips_chipset_val(struct intel_ips *ips)
303 {
304 struct intel_uncore *uncore =
305 rps_to_uncore(container_of(ips, struct intel_rps, ips));
306 unsigned long now = jiffies_to_msecs(jiffies), dt;
307 unsigned long result;
308 u64 total, delta;
309
310 lockdep_assert_held(&mchdev_lock);
311
312 /*
313 * Prevent division-by-zero if we are asking too fast.
314 * Also, we don't get interesting results if we are polling
315 * faster than once in 10ms, so just return the saved value
316 * in such cases.
317 */
318 dt = now - ips->last_time1;
319 if (dt <= 10)
320 return ips->chipset_power;
321
322 /* FIXME: handle per-counter overflow */
323 total = intel_uncore_read(uncore, DMIEC);
324 total += intel_uncore_read(uncore, DDREC);
325 total += intel_uncore_read(uncore, CSIEC);
326
327 delta = total - ips->last_count1;
328
329 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
330
331 ips->last_count1 = total;
332 ips->last_time1 = now;
333
334 ips->chipset_power = result;
335
336 return result;
337 }
338
ips_mch_val(struct intel_uncore * uncore)339 static unsigned long ips_mch_val(struct intel_uncore *uncore)
340 {
341 unsigned int m, x, b;
342 u32 tsfs;
343
344 tsfs = intel_uncore_read(uncore, TSFS);
345 x = intel_uncore_read8(uncore, TR1);
346
347 b = tsfs & TSFS_INTR_MASK;
348 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
349
350 return m * x / 127 - b;
351 }
352
_pxvid_to_vd(u8 pxvid)353 static int _pxvid_to_vd(u8 pxvid)
354 {
355 if (pxvid == 0)
356 return 0;
357
358 if (pxvid >= 8 && pxvid < 31)
359 pxvid = 31;
360
361 return (pxvid + 2) * 125;
362 }
363
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)364 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
365 {
366 const int vd = _pxvid_to_vd(pxvid);
367
368 if (INTEL_INFO(i915)->is_mobile)
369 return max(vd - 1125, 0);
370
371 return vd;
372 }
373
__gen5_ips_update(struct intel_ips * ips)374 static void __gen5_ips_update(struct intel_ips *ips)
375 {
376 struct intel_uncore *uncore =
377 rps_to_uncore(container_of(ips, struct intel_rps, ips));
378 u64 now, delta, dt;
379 u32 count;
380
381 lockdep_assert_held(&mchdev_lock);
382
383 now = ktime_get_raw_ns();
384 dt = now - ips->last_time2;
385 do_div(dt, NSEC_PER_MSEC);
386
387 /* Don't divide by 0 */
388 if (dt <= 10)
389 return;
390
391 count = intel_uncore_read(uncore, GFXEC);
392 delta = count - ips->last_count2;
393
394 ips->last_count2 = count;
395 ips->last_time2 = now;
396
397 /* More magic constants... */
398 ips->gfx_power = div_u64(delta * 1181, dt * 10);
399 }
400
gen5_rps_update(struct intel_rps * rps)401 static void gen5_rps_update(struct intel_rps *rps)
402 {
403 spin_lock_irq(&mchdev_lock);
404 __gen5_ips_update(&rps->ips);
405 spin_unlock_irq(&mchdev_lock);
406 }
407
gen5_invert_freq(struct intel_rps * rps,unsigned int val)408 static unsigned int gen5_invert_freq(struct intel_rps *rps,
409 unsigned int val)
410 {
411 /* Invert the frequency bin into an ips delay */
412 val = rps->max_freq - val;
413 val = rps->min_freq + val;
414
415 return val;
416 }
417
__gen5_rps_set(struct intel_rps * rps,u8 val)418 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
419 {
420 struct intel_uncore *uncore = rps_to_uncore(rps);
421 u16 rgvswctl;
422
423 lockdep_assert_held(&mchdev_lock);
424
425 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
426 if (rgvswctl & MEMCTL_CMD_STS) {
427 DRM_DEBUG("gpu busy, RCS change rejected\n");
428 return -EBUSY; /* still busy with another command */
429 }
430
431 /* Invert the frequency bin into an ips delay */
432 val = gen5_invert_freq(rps, val);
433
434 rgvswctl =
435 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
436 (val << MEMCTL_FREQ_SHIFT) |
437 MEMCTL_SFCAVM;
438 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
439 intel_uncore_posting_read16(uncore, MEMSWCTL);
440
441 rgvswctl |= MEMCTL_CMD_STS;
442 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
443
444 return 0;
445 }
446
gen5_rps_set(struct intel_rps * rps,u8 val)447 static int gen5_rps_set(struct intel_rps *rps, u8 val)
448 {
449 int err;
450
451 spin_lock_irq(&mchdev_lock);
452 err = __gen5_rps_set(rps, val);
453 spin_unlock_irq(&mchdev_lock);
454
455 return err;
456 }
457
intel_pxfreq(u32 vidfreq)458 static unsigned long intel_pxfreq(u32 vidfreq)
459 {
460 int div = (vidfreq & 0x3f0000) >> 16;
461 int post = (vidfreq & 0x3000) >> 12;
462 int pre = (vidfreq & 0x7);
463
464 if (!pre)
465 return 0;
466
467 return div * 133333 / (pre << post);
468 }
469
init_emon(struct intel_uncore * uncore)470 static unsigned int init_emon(struct intel_uncore *uncore)
471 {
472 u8 pxw[16];
473 int i;
474
475 /* Disable to program */
476 intel_uncore_write(uncore, ECR, 0);
477 intel_uncore_posting_read(uncore, ECR);
478
479 /* Program energy weights for various events */
480 intel_uncore_write(uncore, SDEW, 0x15040d00);
481 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
482 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
483 intel_uncore_write(uncore, CSIEW2, 0x04000004);
484
485 for (i = 0; i < 5; i++)
486 intel_uncore_write(uncore, PEW(i), 0);
487 for (i = 0; i < 3; i++)
488 intel_uncore_write(uncore, DEW(i), 0);
489
490 /* Program P-state weights to account for frequency power adjustment */
491 for (i = 0; i < 16; i++) {
492 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
493 unsigned int freq = intel_pxfreq(pxvidfreq);
494 unsigned int vid =
495 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
496 unsigned int val;
497
498 val = vid * vid * freq / 1000 * 255;
499 val /= 127 * 127 * 900;
500
501 pxw[i] = val;
502 }
503 /* Render standby states get 0 weight */
504 pxw[14] = 0;
505 pxw[15] = 0;
506
507 for (i = 0; i < 4; i++) {
508 intel_uncore_write(uncore, PXW(i),
509 pxw[i * 4 + 0] << 24 |
510 pxw[i * 4 + 1] << 16 |
511 pxw[i * 4 + 2] << 8 |
512 pxw[i * 4 + 3] << 0);
513 }
514
515 /* Adjust magic regs to magic values (more experimental results) */
516 intel_uncore_write(uncore, OGW0, 0);
517 intel_uncore_write(uncore, OGW1, 0);
518 intel_uncore_write(uncore, EG0, 0x00007f00);
519 intel_uncore_write(uncore, EG1, 0x0000000e);
520 intel_uncore_write(uncore, EG2, 0x000e0000);
521 intel_uncore_write(uncore, EG3, 0x68000300);
522 intel_uncore_write(uncore, EG4, 0x42000000);
523 intel_uncore_write(uncore, EG5, 0x00140031);
524 intel_uncore_write(uncore, EG6, 0);
525 intel_uncore_write(uncore, EG7, 0);
526
527 for (i = 0; i < 8; i++)
528 intel_uncore_write(uncore, PXWL(i), 0);
529
530 /* Enable PMON + select events */
531 intel_uncore_write(uncore, ECR, 0x80000019);
532
533 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
534 }
535
gen5_rps_enable(struct intel_rps * rps)536 static bool gen5_rps_enable(struct intel_rps *rps)
537 {
538 struct drm_i915_private *i915 = rps_to_i915(rps);
539 struct intel_uncore *uncore = rps_to_uncore(rps);
540 u8 fstart, vstart;
541 u32 rgvmodectl;
542
543 spin_lock_irq(&mchdev_lock);
544
545 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
546
547 /* Enable temp reporting */
548 intel_uncore_write16(uncore, PMMISC,
549 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
550 intel_uncore_write16(uncore, TSC1,
551 intel_uncore_read16(uncore, TSC1) | TSE);
552
553 /* 100ms RC evaluation intervals */
554 intel_uncore_write(uncore, RCUPEI, 100000);
555 intel_uncore_write(uncore, RCDNEI, 100000);
556
557 /* Set max/min thresholds to 90ms and 80ms respectively */
558 intel_uncore_write(uncore, RCBMAXAVG, 90000);
559 intel_uncore_write(uncore, RCBMINAVG, 80000);
560
561 intel_uncore_write(uncore, MEMIHYST, 1);
562
563 /* Set up min, max, and cur for interrupt handling */
564 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
565 MEMMODE_FSTART_SHIFT;
566
567 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
568 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
569
570 intel_uncore_write(uncore,
571 MEMINTREN,
572 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
573
574 intel_uncore_write(uncore, VIDSTART, vstart);
575 intel_uncore_posting_read(uncore, VIDSTART);
576
577 rgvmodectl |= MEMMODE_SWMODE_EN;
578 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
579
580 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
581 MEMCTL_CMD_STS) == 0, 10))
582 drm_err(&uncore->i915->drm,
583 "stuck trying to change perf mode\n");
584 mdelay(1);
585
586 __gen5_rps_set(rps, rps->cur_freq);
587
588 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
589 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
590 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
591 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
592
593 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
594 rps->ips.last_time2 = ktime_get_raw_ns();
595
596 spin_lock(&i915->irq_lock);
597 ilk_enable_display_irq(i915, DE_PCU_EVENT);
598 spin_unlock(&i915->irq_lock);
599
600 spin_unlock_irq(&mchdev_lock);
601
602 rps->ips.corr = init_emon(uncore);
603
604 return true;
605 }
606
gen5_rps_disable(struct intel_rps * rps)607 static void gen5_rps_disable(struct intel_rps *rps)
608 {
609 struct drm_i915_private *i915 = rps_to_i915(rps);
610 struct intel_uncore *uncore = rps_to_uncore(rps);
611 u16 rgvswctl;
612
613 spin_lock_irq(&mchdev_lock);
614
615 spin_lock(&i915->irq_lock);
616 ilk_disable_display_irq(i915, DE_PCU_EVENT);
617 spin_unlock(&i915->irq_lock);
618
619 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
620
621 /* Ack interrupts, disable EFC interrupt */
622 intel_uncore_write(uncore, MEMINTREN,
623 intel_uncore_read(uncore, MEMINTREN) &
624 ~MEMINT_EVAL_CHG_EN);
625 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
626
627 /* Go back to the starting frequency */
628 __gen5_rps_set(rps, rps->idle_freq);
629 mdelay(1);
630 rgvswctl |= MEMCTL_CMD_STS;
631 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
632 mdelay(1);
633
634 spin_unlock_irq(&mchdev_lock);
635 }
636
rps_limits(struct intel_rps * rps,u8 val)637 static u32 rps_limits(struct intel_rps *rps, u8 val)
638 {
639 u32 limits;
640
641 /*
642 * Only set the down limit when we've reached the lowest level to avoid
643 * getting more interrupts, otherwise leave this clear. This prevents a
644 * race in the hw when coming out of rc6: There's a tiny window where
645 * the hw runs at the minimal clock before selecting the desired
646 * frequency, if the down threshold expires in that window we will not
647 * receive a down interrupt.
648 */
649 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
650 limits = rps->max_freq_softlimit << 23;
651 if (val <= rps->min_freq_softlimit)
652 limits |= rps->min_freq_softlimit << 14;
653 } else {
654 limits = rps->max_freq_softlimit << 24;
655 if (val <= rps->min_freq_softlimit)
656 limits |= rps->min_freq_softlimit << 16;
657 }
658
659 return limits;
660 }
661
rps_set_power(struct intel_rps * rps,int new_power)662 static void rps_set_power(struct intel_rps *rps, int new_power)
663 {
664 struct intel_gt *gt = rps_to_gt(rps);
665 struct intel_uncore *uncore = gt->uncore;
666 u32 threshold_up = 0, threshold_down = 0; /* in % */
667 u32 ei_up = 0, ei_down = 0;
668
669 lockdep_assert_held(&rps->power.mutex);
670
671 if (new_power == rps->power.mode)
672 return;
673
674 threshold_up = 95;
675 threshold_down = 85;
676
677 /* Note the units here are not exactly 1us, but 1280ns. */
678 switch (new_power) {
679 case LOW_POWER:
680 ei_up = 16000;
681 ei_down = 32000;
682 break;
683
684 case BETWEEN:
685 ei_up = 13000;
686 ei_down = 32000;
687 break;
688
689 case HIGH_POWER:
690 ei_up = 10000;
691 ei_down = 32000;
692 break;
693 }
694
695 /* When byt can survive without system hang with dynamic
696 * sw freq adjustments, this restriction can be lifted.
697 */
698 if (IS_VALLEYVIEW(gt->i915))
699 goto skip_hw_write;
700
701 GT_TRACE(gt,
702 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
703 new_power, threshold_up, ei_up, threshold_down, ei_down);
704
705 set(uncore, GEN6_RP_UP_EI,
706 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
707 set(uncore, GEN6_RP_UP_THRESHOLD,
708 intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
709
710 set(uncore, GEN6_RP_DOWN_EI,
711 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
712 set(uncore, GEN6_RP_DOWN_THRESHOLD,
713 intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
714
715 set(uncore, GEN6_RP_CONTROL,
716 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
717 GEN6_RP_MEDIA_HW_NORMAL_MODE |
718 GEN6_RP_MEDIA_IS_GFX |
719 GEN6_RP_ENABLE |
720 GEN6_RP_UP_BUSY_AVG |
721 GEN6_RP_DOWN_IDLE_AVG);
722
723 skip_hw_write:
724 rps->power.mode = new_power;
725 rps->power.up_threshold = threshold_up;
726 rps->power.down_threshold = threshold_down;
727 }
728
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)729 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
730 {
731 int new_power;
732
733 new_power = rps->power.mode;
734 switch (rps->power.mode) {
735 case LOW_POWER:
736 if (val > rps->efficient_freq + 1 &&
737 val > rps->cur_freq)
738 new_power = BETWEEN;
739 break;
740
741 case BETWEEN:
742 if (val <= rps->efficient_freq &&
743 val < rps->cur_freq)
744 new_power = LOW_POWER;
745 else if (val >= rps->rp0_freq &&
746 val > rps->cur_freq)
747 new_power = HIGH_POWER;
748 break;
749
750 case HIGH_POWER:
751 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
752 val < rps->cur_freq)
753 new_power = BETWEEN;
754 break;
755 }
756 /* Max/min bins are special */
757 if (val <= rps->min_freq_softlimit)
758 new_power = LOW_POWER;
759 if (val >= rps->max_freq_softlimit)
760 new_power = HIGH_POWER;
761
762 mutex_lock(&rps->power.mutex);
763 if (rps->power.interactive)
764 new_power = HIGH_POWER;
765 rps_set_power(rps, new_power);
766 mutex_unlock(&rps->power.mutex);
767 }
768
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)769 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
770 {
771 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
772
773 mutex_lock(&rps->power.mutex);
774 if (interactive) {
775 if (!rps->power.interactive++ && intel_rps_is_active(rps))
776 rps_set_power(rps, HIGH_POWER);
777 } else {
778 GEM_BUG_ON(!rps->power.interactive);
779 rps->power.interactive--;
780 }
781 mutex_unlock(&rps->power.mutex);
782 }
783
gen6_rps_set(struct intel_rps * rps,u8 val)784 static int gen6_rps_set(struct intel_rps *rps, u8 val)
785 {
786 struct intel_uncore *uncore = rps_to_uncore(rps);
787 struct drm_i915_private *i915 = rps_to_i915(rps);
788 u32 swreq;
789
790 GEM_BUG_ON(rps_uses_slpc(rps));
791
792 if (GRAPHICS_VER(i915) >= 9)
793 swreq = GEN9_FREQUENCY(val);
794 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
795 swreq = HSW_FREQUENCY(val);
796 else
797 swreq = (GEN6_FREQUENCY(val) |
798 GEN6_OFFSET(0) |
799 GEN6_AGGRESSIVE_TURBO);
800 set(uncore, GEN6_RPNSWREQ, swreq);
801
802 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
803 val, intel_gpu_freq(rps, val), swreq);
804
805 return 0;
806 }
807
vlv_rps_set(struct intel_rps * rps,u8 val)808 static int vlv_rps_set(struct intel_rps *rps, u8 val)
809 {
810 struct drm_i915_private *i915 = rps_to_i915(rps);
811 int err;
812
813 vlv_punit_get(i915);
814 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
815 vlv_punit_put(i915);
816
817 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
818 val, intel_gpu_freq(rps, val));
819
820 return err;
821 }
822
rps_set(struct intel_rps * rps,u8 val,bool update)823 static int rps_set(struct intel_rps *rps, u8 val, bool update)
824 {
825 struct drm_i915_private *i915 = rps_to_i915(rps);
826 int err;
827
828 if (val == rps->last_freq)
829 return 0;
830
831 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
832 err = vlv_rps_set(rps, val);
833 else if (GRAPHICS_VER(i915) >= 6)
834 err = gen6_rps_set(rps, val);
835 else
836 err = gen5_rps_set(rps, val);
837 if (err)
838 return err;
839
840 if (update && GRAPHICS_VER(i915) >= 6)
841 gen6_rps_set_thresholds(rps, val);
842 rps->last_freq = val;
843
844 return 0;
845 }
846
intel_rps_unpark(struct intel_rps * rps)847 void intel_rps_unpark(struct intel_rps *rps)
848 {
849 if (!intel_rps_is_enabled(rps))
850 return;
851
852 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
853
854 /*
855 * Use the user's desired frequency as a guide, but for better
856 * performance, jump directly to RPe as our starting frequency.
857 */
858 mutex_lock(&rps->lock);
859
860 intel_rps_set_active(rps);
861 intel_rps_set(rps,
862 clamp(rps->cur_freq,
863 rps->min_freq_softlimit,
864 rps->max_freq_softlimit));
865
866 mutex_unlock(&rps->lock);
867
868 rps->pm_iir = 0;
869 if (intel_rps_has_interrupts(rps))
870 rps_enable_interrupts(rps);
871 if (intel_rps_uses_timer(rps))
872 rps_start_timer(rps);
873
874 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
875 gen5_rps_update(rps);
876 }
877
intel_rps_park(struct intel_rps * rps)878 void intel_rps_park(struct intel_rps *rps)
879 {
880 int adj;
881
882 if (!intel_rps_is_enabled(rps))
883 return;
884
885 if (!intel_rps_clear_active(rps))
886 return;
887
888 if (intel_rps_uses_timer(rps))
889 rps_stop_timer(rps);
890 if (intel_rps_has_interrupts(rps))
891 rps_disable_interrupts(rps);
892
893 if (rps->last_freq <= rps->idle_freq)
894 return;
895
896 /*
897 * The punit delays the write of the frequency and voltage until it
898 * determines the GPU is awake. During normal usage we don't want to
899 * waste power changing the frequency if the GPU is sleeping (rc6).
900 * However, the GPU and driver is now idle and we do not want to delay
901 * switching to minimum voltage (reducing power whilst idle) as we do
902 * not expect to be woken in the near future and so must flush the
903 * change by waking the device.
904 *
905 * We choose to take the media powerwell (either would do to trick the
906 * punit into committing the voltage change) as that takes a lot less
907 * power than the render powerwell.
908 */
909 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
910 rps_set(rps, rps->idle_freq, false);
911 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
912
913 /*
914 * Since we will try and restart from the previously requested
915 * frequency on unparking, treat this idle point as a downclock
916 * interrupt and reduce the frequency for resume. If we park/unpark
917 * more frequently than the rps worker can run, we will not respond
918 * to any EI and never see a change in frequency.
919 *
920 * (Note we accommodate Cherryview's limitation of only using an
921 * even bin by applying it to all.)
922 */
923 adj = rps->last_adj;
924 if (adj < 0)
925 adj *= 2;
926 else /* CHV needs even encode values */
927 adj = -2;
928 rps->last_adj = adj;
929 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
930 if (rps->cur_freq < rps->efficient_freq) {
931 rps->cur_freq = rps->efficient_freq;
932 rps->last_adj = 0;
933 }
934
935 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
936 }
937
intel_rps_boost(struct i915_request * rq)938 void intel_rps_boost(struct i915_request *rq)
939 {
940 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
941 return;
942
943 /* Serializes with i915_request_retire() */
944 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
945 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
946
947 if (atomic_fetch_inc(&rps->num_waiters))
948 return;
949
950 if (!intel_rps_is_active(rps))
951 return;
952
953 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
954 rq->fence.context, rq->fence.seqno);
955
956 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
957 schedule_work(&rps->work);
958
959 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
960 }
961 }
962
intel_rps_set(struct intel_rps * rps,u8 val)963 int intel_rps_set(struct intel_rps *rps, u8 val)
964 {
965 int err;
966
967 lockdep_assert_held(&rps->lock);
968 GEM_BUG_ON(val > rps->max_freq);
969 GEM_BUG_ON(val < rps->min_freq);
970
971 if (intel_rps_is_active(rps)) {
972 err = rps_set(rps, val, true);
973 if (err)
974 return err;
975
976 /*
977 * Make sure we continue to get interrupts
978 * until we hit the minimum or maximum frequencies.
979 */
980 if (intel_rps_has_interrupts(rps)) {
981 struct intel_uncore *uncore = rps_to_uncore(rps);
982
983 set(uncore,
984 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
985
986 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
987 }
988 }
989
990 rps->cur_freq = val;
991 return 0;
992 }
993
gen6_rps_init(struct intel_rps * rps)994 static void gen6_rps_init(struct intel_rps *rps)
995 {
996 struct drm_i915_private *i915 = rps_to_i915(rps);
997 struct intel_uncore *uncore = rps_to_uncore(rps);
998
999 /* All of these values are in units of 50MHz */
1000
1001 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1002 if (IS_GEN9_LP(i915)) {
1003 u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1004
1005 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1006 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1007 rps->min_freq = (rp_state_cap >> 0) & 0xff;
1008 } else {
1009 u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1010
1011 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1012 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1013 rps->min_freq = (rp_state_cap >> 16) & 0xff;
1014 }
1015
1016 /* hw_max = RP0 until we check for overclocking */
1017 rps->max_freq = rps->rp0_freq;
1018
1019 rps->efficient_freq = rps->rp1_freq;
1020 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1021 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1022 u32 ddcc_status = 0;
1023
1024 if (sandybridge_pcode_read(i915,
1025 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1026 &ddcc_status, NULL) == 0)
1027 rps->efficient_freq =
1028 clamp_t(u8,
1029 (ddcc_status >> 8) & 0xff,
1030 rps->min_freq,
1031 rps->max_freq);
1032 }
1033
1034 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1035 /* Store the frequency values in 16.66 MHZ units, which is
1036 * the natural hardware unit for SKL
1037 */
1038 rps->rp0_freq *= GEN9_FREQ_SCALER;
1039 rps->rp1_freq *= GEN9_FREQ_SCALER;
1040 rps->min_freq *= GEN9_FREQ_SCALER;
1041 rps->max_freq *= GEN9_FREQ_SCALER;
1042 rps->efficient_freq *= GEN9_FREQ_SCALER;
1043 }
1044 }
1045
rps_reset(struct intel_rps * rps)1046 static bool rps_reset(struct intel_rps *rps)
1047 {
1048 struct drm_i915_private *i915 = rps_to_i915(rps);
1049
1050 /* force a reset */
1051 rps->power.mode = -1;
1052 rps->last_freq = -1;
1053
1054 if (rps_set(rps, rps->min_freq, true)) {
1055 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1056 return false;
1057 }
1058
1059 rps->cur_freq = rps->min_freq;
1060 return true;
1061 }
1062
1063 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1064 static bool gen9_rps_enable(struct intel_rps *rps)
1065 {
1066 struct intel_gt *gt = rps_to_gt(rps);
1067 struct intel_uncore *uncore = gt->uncore;
1068
1069 /* Program defaults and thresholds for RPS */
1070 if (GRAPHICS_VER(gt->i915) == 9)
1071 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1072 GEN9_FREQUENCY(rps->rp1_freq));
1073
1074 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1075
1076 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1077
1078 return rps_reset(rps);
1079 }
1080
gen8_rps_enable(struct intel_rps * rps)1081 static bool gen8_rps_enable(struct intel_rps *rps)
1082 {
1083 struct intel_uncore *uncore = rps_to_uncore(rps);
1084
1085 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1086 HSW_FREQUENCY(rps->rp1_freq));
1087
1088 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1089
1090 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1091
1092 return rps_reset(rps);
1093 }
1094
gen6_rps_enable(struct intel_rps * rps)1095 static bool gen6_rps_enable(struct intel_rps *rps)
1096 {
1097 struct intel_uncore *uncore = rps_to_uncore(rps);
1098
1099 /* Power down if completely idle for over 50ms */
1100 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1101 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1102
1103 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1104 GEN6_PM_RP_DOWN_THRESHOLD |
1105 GEN6_PM_RP_DOWN_TIMEOUT);
1106
1107 return rps_reset(rps);
1108 }
1109
chv_rps_max_freq(struct intel_rps * rps)1110 static int chv_rps_max_freq(struct intel_rps *rps)
1111 {
1112 struct drm_i915_private *i915 = rps_to_i915(rps);
1113 struct intel_gt *gt = rps_to_gt(rps);
1114 u32 val;
1115
1116 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1117
1118 switch (gt->info.sseu.eu_total) {
1119 case 8:
1120 /* (2 * 4) config */
1121 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1122 break;
1123 case 12:
1124 /* (2 * 6) config */
1125 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1126 break;
1127 case 16:
1128 /* (2 * 8) config */
1129 default:
1130 /* Setting (2 * 8) Min RP0 for any other combination */
1131 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1132 break;
1133 }
1134
1135 return val & FB_GFX_FREQ_FUSE_MASK;
1136 }
1137
chv_rps_rpe_freq(struct intel_rps * rps)1138 static int chv_rps_rpe_freq(struct intel_rps *rps)
1139 {
1140 struct drm_i915_private *i915 = rps_to_i915(rps);
1141 u32 val;
1142
1143 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1144 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1145
1146 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1147 }
1148
chv_rps_guar_freq(struct intel_rps * rps)1149 static int chv_rps_guar_freq(struct intel_rps *rps)
1150 {
1151 struct drm_i915_private *i915 = rps_to_i915(rps);
1152 u32 val;
1153
1154 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1155
1156 return val & FB_GFX_FREQ_FUSE_MASK;
1157 }
1158
chv_rps_min_freq(struct intel_rps * rps)1159 static u32 chv_rps_min_freq(struct intel_rps *rps)
1160 {
1161 struct drm_i915_private *i915 = rps_to_i915(rps);
1162 u32 val;
1163
1164 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1165 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1166
1167 return val & FB_GFX_FREQ_FUSE_MASK;
1168 }
1169
chv_rps_enable(struct intel_rps * rps)1170 static bool chv_rps_enable(struct intel_rps *rps)
1171 {
1172 struct intel_uncore *uncore = rps_to_uncore(rps);
1173 struct drm_i915_private *i915 = rps_to_i915(rps);
1174 u32 val;
1175
1176 /* 1: Program defaults and thresholds for RPS*/
1177 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1178 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1179 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1180 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1181 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1182
1183 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1184
1185 /* 2: Enable RPS */
1186 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1187 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1188 GEN6_RP_MEDIA_IS_GFX |
1189 GEN6_RP_ENABLE |
1190 GEN6_RP_UP_BUSY_AVG |
1191 GEN6_RP_DOWN_IDLE_AVG);
1192
1193 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1194 GEN6_PM_RP_DOWN_THRESHOLD |
1195 GEN6_PM_RP_DOWN_TIMEOUT);
1196
1197 /* Setting Fixed Bias */
1198 vlv_punit_get(i915);
1199
1200 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1201 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1202
1203 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1204
1205 vlv_punit_put(i915);
1206
1207 /* RPS code assumes GPLL is used */
1208 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1209 "GPLL not enabled\n");
1210
1211 drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1212 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1213
1214 return rps_reset(rps);
1215 }
1216
vlv_rps_guar_freq(struct intel_rps * rps)1217 static int vlv_rps_guar_freq(struct intel_rps *rps)
1218 {
1219 struct drm_i915_private *i915 = rps_to_i915(rps);
1220 u32 val, rp1;
1221
1222 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1223
1224 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1225 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1226
1227 return rp1;
1228 }
1229
vlv_rps_max_freq(struct intel_rps * rps)1230 static int vlv_rps_max_freq(struct intel_rps *rps)
1231 {
1232 struct drm_i915_private *i915 = rps_to_i915(rps);
1233 u32 val, rp0;
1234
1235 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1236
1237 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1238 /* Clamp to max */
1239 rp0 = min_t(u32, rp0, 0xea);
1240
1241 return rp0;
1242 }
1243
vlv_rps_rpe_freq(struct intel_rps * rps)1244 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1245 {
1246 struct drm_i915_private *i915 = rps_to_i915(rps);
1247 u32 val, rpe;
1248
1249 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1250 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1251 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1252 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1253
1254 return rpe;
1255 }
1256
vlv_rps_min_freq(struct intel_rps * rps)1257 static int vlv_rps_min_freq(struct intel_rps *rps)
1258 {
1259 struct drm_i915_private *i915 = rps_to_i915(rps);
1260 u32 val;
1261
1262 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1263 /*
1264 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1265 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1266 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1267 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1268 * to make sure it matches what Punit accepts.
1269 */
1270 return max_t(u32, val, 0xc0);
1271 }
1272
vlv_rps_enable(struct intel_rps * rps)1273 static bool vlv_rps_enable(struct intel_rps *rps)
1274 {
1275 struct intel_uncore *uncore = rps_to_uncore(rps);
1276 struct drm_i915_private *i915 = rps_to_i915(rps);
1277 u32 val;
1278
1279 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1280 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1281 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1282 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1283 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1284
1285 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1286
1287 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1288 GEN6_RP_MEDIA_TURBO |
1289 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1290 GEN6_RP_MEDIA_IS_GFX |
1291 GEN6_RP_ENABLE |
1292 GEN6_RP_UP_BUSY_AVG |
1293 GEN6_RP_DOWN_IDLE_CONT);
1294
1295 /* WaGsvRC0ResidencyMethod:vlv */
1296 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1297
1298 vlv_punit_get(i915);
1299
1300 /* Setting Fixed Bias */
1301 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1302 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1303
1304 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1305
1306 vlv_punit_put(i915);
1307
1308 /* RPS code assumes GPLL is used */
1309 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1310 "GPLL not enabled\n");
1311
1312 drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
1313 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1314
1315 return rps_reset(rps);
1316 }
1317
__ips_gfx_val(struct intel_ips * ips)1318 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1319 {
1320 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1321 struct intel_uncore *uncore = rps_to_uncore(rps);
1322 unsigned int t, state1, state2;
1323 u32 pxvid, ext_v;
1324 u64 corr, corr2;
1325
1326 lockdep_assert_held(&mchdev_lock);
1327
1328 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1329 pxvid = (pxvid >> 24) & 0x7f;
1330 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1331
1332 state1 = ext_v;
1333
1334 /* Revel in the empirically derived constants */
1335
1336 /* Correction factor in 1/100000 units */
1337 t = ips_mch_val(uncore);
1338 if (t > 80)
1339 corr = t * 2349 + 135940;
1340 else if (t >= 50)
1341 corr = t * 964 + 29317;
1342 else /* < 50 */
1343 corr = t * 301 + 1004;
1344
1345 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1346 corr2 = div_u64(corr, 100000) * ips->corr;
1347
1348 state2 = div_u64(corr2 * state1, 10000);
1349 state2 /= 100; /* convert to mW */
1350
1351 __gen5_ips_update(ips);
1352
1353 return ips->gfx_power + state2;
1354 }
1355
has_busy_stats(struct intel_rps * rps)1356 static bool has_busy_stats(struct intel_rps *rps)
1357 {
1358 struct intel_engine_cs *engine;
1359 enum intel_engine_id id;
1360
1361 for_each_engine(engine, rps_to_gt(rps), id) {
1362 if (!intel_engine_supports_stats(engine))
1363 return false;
1364 }
1365
1366 return true;
1367 }
1368
intel_rps_enable(struct intel_rps * rps)1369 void intel_rps_enable(struct intel_rps *rps)
1370 {
1371 struct drm_i915_private *i915 = rps_to_i915(rps);
1372 struct intel_uncore *uncore = rps_to_uncore(rps);
1373 bool enabled = false;
1374
1375 if (!HAS_RPS(i915))
1376 return;
1377
1378 if (rps_uses_slpc(rps))
1379 return;
1380
1381 intel_gt_check_clock_frequency(rps_to_gt(rps));
1382
1383 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1384 if (rps->max_freq <= rps->min_freq)
1385 /* leave disabled, no room for dynamic reclocking */;
1386 else if (IS_CHERRYVIEW(i915))
1387 enabled = chv_rps_enable(rps);
1388 else if (IS_VALLEYVIEW(i915))
1389 enabled = vlv_rps_enable(rps);
1390 else if (GRAPHICS_VER(i915) >= 9)
1391 enabled = gen9_rps_enable(rps);
1392 else if (GRAPHICS_VER(i915) >= 8)
1393 enabled = gen8_rps_enable(rps);
1394 else if (GRAPHICS_VER(i915) >= 6)
1395 enabled = gen6_rps_enable(rps);
1396 else if (IS_IRONLAKE_M(i915))
1397 enabled = gen5_rps_enable(rps);
1398 else
1399 MISSING_CASE(GRAPHICS_VER(i915));
1400 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1401 if (!enabled)
1402 return;
1403
1404 GT_TRACE(rps_to_gt(rps),
1405 "min:%x, max:%x, freq:[%d, %d]\n",
1406 rps->min_freq, rps->max_freq,
1407 intel_gpu_freq(rps, rps->min_freq),
1408 intel_gpu_freq(rps, rps->max_freq));
1409
1410 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1411 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1412
1413 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1414 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1415
1416 if (has_busy_stats(rps))
1417 intel_rps_set_timer(rps);
1418 else if (GRAPHICS_VER(i915) >= 6)
1419 intel_rps_set_interrupts(rps);
1420 else
1421 /* Ironlake currently uses intel_ips.ko */ {}
1422
1423 intel_rps_set_enabled(rps);
1424 }
1425
gen6_rps_disable(struct intel_rps * rps)1426 static void gen6_rps_disable(struct intel_rps *rps)
1427 {
1428 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1429 }
1430
intel_rps_disable(struct intel_rps * rps)1431 void intel_rps_disable(struct intel_rps *rps)
1432 {
1433 struct drm_i915_private *i915 = rps_to_i915(rps);
1434
1435 intel_rps_clear_enabled(rps);
1436 intel_rps_clear_interrupts(rps);
1437 intel_rps_clear_timer(rps);
1438
1439 if (GRAPHICS_VER(i915) >= 6)
1440 gen6_rps_disable(rps);
1441 else if (IS_IRONLAKE_M(i915))
1442 gen5_rps_disable(rps);
1443 }
1444
byt_gpu_freq(struct intel_rps * rps,int val)1445 static int byt_gpu_freq(struct intel_rps *rps, int val)
1446 {
1447 /*
1448 * N = val - 0xb7
1449 * Slow = Fast = GPLL ref * N
1450 */
1451 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1452 }
1453
byt_freq_opcode(struct intel_rps * rps,int val)1454 static int byt_freq_opcode(struct intel_rps *rps, int val)
1455 {
1456 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1457 }
1458
chv_gpu_freq(struct intel_rps * rps,int val)1459 static int chv_gpu_freq(struct intel_rps *rps, int val)
1460 {
1461 /*
1462 * N = val / 2
1463 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1464 */
1465 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1466 }
1467
chv_freq_opcode(struct intel_rps * rps,int val)1468 static int chv_freq_opcode(struct intel_rps *rps, int val)
1469 {
1470 /* CHV needs even values */
1471 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1472 }
1473
intel_gpu_freq(struct intel_rps * rps,int val)1474 int intel_gpu_freq(struct intel_rps *rps, int val)
1475 {
1476 struct drm_i915_private *i915 = rps_to_i915(rps);
1477
1478 if (GRAPHICS_VER(i915) >= 9)
1479 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1480 GEN9_FREQ_SCALER);
1481 else if (IS_CHERRYVIEW(i915))
1482 return chv_gpu_freq(rps, val);
1483 else if (IS_VALLEYVIEW(i915))
1484 return byt_gpu_freq(rps, val);
1485 else if (GRAPHICS_VER(i915) >= 6)
1486 return val * GT_FREQUENCY_MULTIPLIER;
1487 else
1488 return val;
1489 }
1490
intel_freq_opcode(struct intel_rps * rps,int val)1491 int intel_freq_opcode(struct intel_rps *rps, int val)
1492 {
1493 struct drm_i915_private *i915 = rps_to_i915(rps);
1494
1495 if (GRAPHICS_VER(i915) >= 9)
1496 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1497 GT_FREQUENCY_MULTIPLIER);
1498 else if (IS_CHERRYVIEW(i915))
1499 return chv_freq_opcode(rps, val);
1500 else if (IS_VALLEYVIEW(i915))
1501 return byt_freq_opcode(rps, val);
1502 else if (GRAPHICS_VER(i915) >= 6)
1503 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1504 else
1505 return val;
1506 }
1507
vlv_init_gpll_ref_freq(struct intel_rps * rps)1508 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1509 {
1510 struct drm_i915_private *i915 = rps_to_i915(rps);
1511
1512 rps->gpll_ref_freq =
1513 vlv_get_cck_clock(i915, "GPLL ref",
1514 CCK_GPLL_CLOCK_CONTROL,
1515 i915->czclk_freq);
1516
1517 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1518 rps->gpll_ref_freq);
1519 }
1520
vlv_rps_init(struct intel_rps * rps)1521 static void vlv_rps_init(struct intel_rps *rps)
1522 {
1523 struct drm_i915_private *i915 = rps_to_i915(rps);
1524 u32 val;
1525
1526 vlv_iosf_sb_get(i915,
1527 BIT(VLV_IOSF_SB_PUNIT) |
1528 BIT(VLV_IOSF_SB_NC) |
1529 BIT(VLV_IOSF_SB_CCK));
1530
1531 vlv_init_gpll_ref_freq(rps);
1532
1533 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1534 switch ((val >> 6) & 3) {
1535 case 0:
1536 case 1:
1537 i915->mem_freq = 800;
1538 break;
1539 case 2:
1540 i915->mem_freq = 1066;
1541 break;
1542 case 3:
1543 i915->mem_freq = 1333;
1544 break;
1545 }
1546 drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1547
1548 rps->max_freq = vlv_rps_max_freq(rps);
1549 rps->rp0_freq = rps->max_freq;
1550 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1551 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1552
1553 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1554 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1555 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1556
1557 rps->rp1_freq = vlv_rps_guar_freq(rps);
1558 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1559 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1560
1561 rps->min_freq = vlv_rps_min_freq(rps);
1562 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1563 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1564
1565 vlv_iosf_sb_put(i915,
1566 BIT(VLV_IOSF_SB_PUNIT) |
1567 BIT(VLV_IOSF_SB_NC) |
1568 BIT(VLV_IOSF_SB_CCK));
1569 }
1570
chv_rps_init(struct intel_rps * rps)1571 static void chv_rps_init(struct intel_rps *rps)
1572 {
1573 struct drm_i915_private *i915 = rps_to_i915(rps);
1574 u32 val;
1575
1576 vlv_iosf_sb_get(i915,
1577 BIT(VLV_IOSF_SB_PUNIT) |
1578 BIT(VLV_IOSF_SB_NC) |
1579 BIT(VLV_IOSF_SB_CCK));
1580
1581 vlv_init_gpll_ref_freq(rps);
1582
1583 val = vlv_cck_read(i915, CCK_FUSE_REG);
1584
1585 switch ((val >> 2) & 0x7) {
1586 case 3:
1587 i915->mem_freq = 2000;
1588 break;
1589 default:
1590 i915->mem_freq = 1600;
1591 break;
1592 }
1593 drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1594
1595 rps->max_freq = chv_rps_max_freq(rps);
1596 rps->rp0_freq = rps->max_freq;
1597 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1598 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1599
1600 rps->efficient_freq = chv_rps_rpe_freq(rps);
1601 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1602 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1603
1604 rps->rp1_freq = chv_rps_guar_freq(rps);
1605 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1606 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1607
1608 rps->min_freq = chv_rps_min_freq(rps);
1609 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1610 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1611
1612 vlv_iosf_sb_put(i915,
1613 BIT(VLV_IOSF_SB_PUNIT) |
1614 BIT(VLV_IOSF_SB_NC) |
1615 BIT(VLV_IOSF_SB_CCK));
1616
1617 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1618 rps->rp1_freq | rps->min_freq) & 1,
1619 "Odd GPU freq values\n");
1620 }
1621
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1622 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1623 {
1624 ei->ktime = ktime_get_raw();
1625 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1626 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1627 }
1628
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1629 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1630 {
1631 struct intel_uncore *uncore = rps_to_uncore(rps);
1632 const struct intel_rps_ei *prev = &rps->ei;
1633 struct intel_rps_ei now;
1634 u32 events = 0;
1635
1636 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1637 return 0;
1638
1639 vlv_c0_read(uncore, &now);
1640
1641 if (prev->ktime) {
1642 u64 time, c0;
1643 u32 render, media;
1644
1645 time = ktime_us_delta(now.ktime, prev->ktime);
1646
1647 time *= rps_to_i915(rps)->czclk_freq;
1648
1649 /* Workload can be split between render + media,
1650 * e.g. SwapBuffers being blitted in X after being rendered in
1651 * mesa. To account for this we need to combine both engines
1652 * into our activity counter.
1653 */
1654 render = now.render_c0 - prev->render_c0;
1655 media = now.media_c0 - prev->media_c0;
1656 c0 = max(render, media);
1657 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1658
1659 if (c0 > time * rps->power.up_threshold)
1660 events = GEN6_PM_RP_UP_THRESHOLD;
1661 else if (c0 < time * rps->power.down_threshold)
1662 events = GEN6_PM_RP_DOWN_THRESHOLD;
1663 }
1664
1665 rps->ei = now;
1666 return events;
1667 }
1668
rps_work(struct work_struct * work)1669 static void rps_work(struct work_struct *work)
1670 {
1671 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1672 struct intel_gt *gt = rps_to_gt(rps);
1673 struct drm_i915_private *i915 = rps_to_i915(rps);
1674 bool client_boost = false;
1675 int new_freq, adj, min, max;
1676 u32 pm_iir = 0;
1677
1678 spin_lock_irq(>->irq_lock);
1679 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1680 client_boost = atomic_read(&rps->num_waiters);
1681 spin_unlock_irq(>->irq_lock);
1682
1683 /* Make sure we didn't queue anything we're not going to process. */
1684 if (!pm_iir && !client_boost)
1685 goto out;
1686
1687 mutex_lock(&rps->lock);
1688 if (!intel_rps_is_active(rps)) {
1689 mutex_unlock(&rps->lock);
1690 return;
1691 }
1692
1693 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1694
1695 adj = rps->last_adj;
1696 new_freq = rps->cur_freq;
1697 min = rps->min_freq_softlimit;
1698 max = rps->max_freq_softlimit;
1699 if (client_boost)
1700 max = rps->max_freq;
1701
1702 GT_TRACE(gt,
1703 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1704 pm_iir, yesno(client_boost),
1705 adj, new_freq, min, max);
1706
1707 if (client_boost && new_freq < rps->boost_freq) {
1708 new_freq = rps->boost_freq;
1709 adj = 0;
1710 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1711 if (adj > 0)
1712 adj *= 2;
1713 else /* CHV needs even encode values */
1714 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1715
1716 if (new_freq >= rps->max_freq_softlimit)
1717 adj = 0;
1718 } else if (client_boost) {
1719 adj = 0;
1720 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1721 if (rps->cur_freq > rps->efficient_freq)
1722 new_freq = rps->efficient_freq;
1723 else if (rps->cur_freq > rps->min_freq_softlimit)
1724 new_freq = rps->min_freq_softlimit;
1725 adj = 0;
1726 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1727 if (adj < 0)
1728 adj *= 2;
1729 else /* CHV needs even encode values */
1730 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1731
1732 if (new_freq <= rps->min_freq_softlimit)
1733 adj = 0;
1734 } else { /* unknown event */
1735 adj = 0;
1736 }
1737
1738 /*
1739 * sysfs frequency limits may have snuck in while
1740 * servicing the interrupt
1741 */
1742 new_freq += adj;
1743 new_freq = clamp_t(int, new_freq, min, max);
1744
1745 if (intel_rps_set(rps, new_freq)) {
1746 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1747 adj = 0;
1748 }
1749 rps->last_adj = adj;
1750
1751 mutex_unlock(&rps->lock);
1752
1753 out:
1754 spin_lock_irq(>->irq_lock);
1755 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1756 spin_unlock_irq(>->irq_lock);
1757 }
1758
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1759 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1760 {
1761 struct intel_gt *gt = rps_to_gt(rps);
1762 const u32 events = rps->pm_events & pm_iir;
1763
1764 lockdep_assert_held(>->irq_lock);
1765
1766 if (unlikely(!events))
1767 return;
1768
1769 GT_TRACE(gt, "irq events:%x\n", events);
1770
1771 gen6_gt_pm_mask_irq(gt, events);
1772
1773 rps->pm_iir |= events;
1774 schedule_work(&rps->work);
1775 }
1776
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1777 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1778 {
1779 struct intel_gt *gt = rps_to_gt(rps);
1780 u32 events;
1781
1782 events = pm_iir & rps->pm_events;
1783 if (events) {
1784 spin_lock(>->irq_lock);
1785
1786 GT_TRACE(gt, "irq events:%x\n", events);
1787
1788 gen6_gt_pm_mask_irq(gt, events);
1789 rps->pm_iir |= events;
1790
1791 schedule_work(&rps->work);
1792 spin_unlock(>->irq_lock);
1793 }
1794
1795 if (GRAPHICS_VER(gt->i915) >= 8)
1796 return;
1797
1798 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1799 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1800
1801 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1802 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1803 }
1804
gen5_rps_irq_handler(struct intel_rps * rps)1805 void gen5_rps_irq_handler(struct intel_rps *rps)
1806 {
1807 struct intel_uncore *uncore = rps_to_uncore(rps);
1808 u32 busy_up, busy_down, max_avg, min_avg;
1809 u8 new_freq;
1810
1811 spin_lock(&mchdev_lock);
1812
1813 intel_uncore_write16(uncore,
1814 MEMINTRSTS,
1815 intel_uncore_read(uncore, MEMINTRSTS));
1816
1817 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1818 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1819 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1820 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1821 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1822
1823 /* Handle RCS change request from hw */
1824 new_freq = rps->cur_freq;
1825 if (busy_up > max_avg)
1826 new_freq++;
1827 else if (busy_down < min_avg)
1828 new_freq--;
1829 new_freq = clamp(new_freq,
1830 rps->min_freq_softlimit,
1831 rps->max_freq_softlimit);
1832
1833 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1834 rps->cur_freq = new_freq;
1835
1836 spin_unlock(&mchdev_lock);
1837 }
1838
intel_rps_init_early(struct intel_rps * rps)1839 void intel_rps_init_early(struct intel_rps *rps)
1840 {
1841 mutex_init(&rps->lock);
1842 mutex_init(&rps->power.mutex);
1843
1844 INIT_WORK(&rps->work, rps_work);
1845 timer_setup(&rps->timer, rps_timer, 0);
1846
1847 atomic_set(&rps->num_waiters, 0);
1848 }
1849
intel_rps_init(struct intel_rps * rps)1850 void intel_rps_init(struct intel_rps *rps)
1851 {
1852 struct drm_i915_private *i915 = rps_to_i915(rps);
1853
1854 if (rps_uses_slpc(rps))
1855 return;
1856
1857 if (IS_CHERRYVIEW(i915))
1858 chv_rps_init(rps);
1859 else if (IS_VALLEYVIEW(i915))
1860 vlv_rps_init(rps);
1861 else if (GRAPHICS_VER(i915) >= 6)
1862 gen6_rps_init(rps);
1863 else if (IS_IRONLAKE_M(i915))
1864 gen5_rps_init(rps);
1865
1866 /* Derive initial user preferences/limits from the hardware limits */
1867 rps->max_freq_softlimit = rps->max_freq;
1868 rps->min_freq_softlimit = rps->min_freq;
1869
1870 /* After setting max-softlimit, find the overclock max freq */
1871 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1872 u32 params = 0;
1873
1874 sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
1875 ¶ms, NULL);
1876 if (params & BIT(31)) { /* OC supported */
1877 drm_dbg(&i915->drm,
1878 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1879 (rps->max_freq & 0xff) * 50,
1880 (params & 0xff) * 50);
1881 rps->max_freq = params & 0xff;
1882 }
1883 }
1884
1885 /* Finally allow us to boost to max by default */
1886 rps->boost_freq = rps->max_freq;
1887 rps->idle_freq = rps->min_freq;
1888
1889 /* Start in the middle, from here we will autotune based on workload */
1890 rps->cur_freq = rps->efficient_freq;
1891
1892 rps->pm_intrmsk_mbz = 0;
1893
1894 /*
1895 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
1896 * if GEN6_PM_UP_EI_EXPIRED is masked.
1897 *
1898 * TODO: verify if this can be reproduced on VLV,CHV.
1899 */
1900 if (GRAPHICS_VER(i915) <= 7)
1901 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
1902
1903 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
1904 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1905
1906 /* GuC needs ARAT expired interrupt unmasked */
1907 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
1908 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1909 }
1910
intel_rps_sanitize(struct intel_rps * rps)1911 void intel_rps_sanitize(struct intel_rps *rps)
1912 {
1913 if (rps_uses_slpc(rps))
1914 return;
1915
1916 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
1917 rps_disable_interrupts(rps);
1918 }
1919
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)1920 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
1921 {
1922 struct drm_i915_private *i915 = rps_to_i915(rps);
1923 u32 cagf;
1924
1925 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
1926 cagf = (rpstat >> 8) & 0xff;
1927 else if (GRAPHICS_VER(i915) >= 9)
1928 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1929 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
1930 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1931 else if (GRAPHICS_VER(i915) >= 6)
1932 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1933 else
1934 cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
1935 MEMSTAT_PSTATE_SHIFT);
1936
1937 return cagf;
1938 }
1939
read_cagf(struct intel_rps * rps)1940 static u32 read_cagf(struct intel_rps *rps)
1941 {
1942 struct drm_i915_private *i915 = rps_to_i915(rps);
1943 struct intel_uncore *uncore = rps_to_uncore(rps);
1944 u32 freq;
1945
1946 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
1947 vlv_punit_get(i915);
1948 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1949 vlv_punit_put(i915);
1950 } else if (GRAPHICS_VER(i915) >= 6) {
1951 freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
1952 } else {
1953 freq = intel_uncore_read(uncore, MEMSTAT_ILK);
1954 }
1955
1956 return intel_rps_get_cagf(rps, freq);
1957 }
1958
intel_rps_read_actual_frequency(struct intel_rps * rps)1959 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
1960 {
1961 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1962 intel_wakeref_t wakeref;
1963 u32 freq = 0;
1964
1965 with_intel_runtime_pm_if_in_use(rpm, wakeref)
1966 freq = intel_gpu_freq(rps, read_cagf(rps));
1967
1968 return freq;
1969 }
1970
intel_rps_read_punit_req(struct intel_rps * rps)1971 u32 intel_rps_read_punit_req(struct intel_rps *rps)
1972 {
1973 struct intel_uncore *uncore = rps_to_uncore(rps);
1974 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
1975 intel_wakeref_t wakeref;
1976 u32 freq = 0;
1977
1978 with_intel_runtime_pm_if_in_use(rpm, wakeref)
1979 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
1980
1981 return freq;
1982 }
1983
intel_rps_get_req(u32 pureq)1984 static u32 intel_rps_get_req(u32 pureq)
1985 {
1986 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
1987
1988 return req;
1989 }
1990
intel_rps_read_punit_req_frequency(struct intel_rps * rps)1991 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
1992 {
1993 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
1994
1995 return intel_gpu_freq(rps, freq);
1996 }
1997
intel_rps_get_requested_frequency(struct intel_rps * rps)1998 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
1999 {
2000 if (rps_uses_slpc(rps))
2001 return intel_rps_read_punit_req_frequency(rps);
2002 else
2003 return intel_gpu_freq(rps, rps->cur_freq);
2004 }
2005
intel_rps_get_max_frequency(struct intel_rps * rps)2006 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2007 {
2008 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2009
2010 if (rps_uses_slpc(rps))
2011 return slpc->max_freq_softlimit;
2012 else
2013 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2014 }
2015
intel_rps_get_rp0_frequency(struct intel_rps * rps)2016 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2017 {
2018 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2019
2020 if (rps_uses_slpc(rps))
2021 return slpc->rp0_freq;
2022 else
2023 return intel_gpu_freq(rps, rps->rp0_freq);
2024 }
2025
intel_rps_get_rp1_frequency(struct intel_rps * rps)2026 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2027 {
2028 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2029
2030 if (rps_uses_slpc(rps))
2031 return slpc->rp1_freq;
2032 else
2033 return intel_gpu_freq(rps, rps->rp1_freq);
2034 }
2035
intel_rps_get_rpn_frequency(struct intel_rps * rps)2036 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2037 {
2038 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2039
2040 if (rps_uses_slpc(rps))
2041 return slpc->min_freq;
2042 else
2043 return intel_gpu_freq(rps, rps->min_freq);
2044 }
2045
set_max_freq(struct intel_rps * rps,u32 val)2046 static int set_max_freq(struct intel_rps *rps, u32 val)
2047 {
2048 struct drm_i915_private *i915 = rps_to_i915(rps);
2049 int ret = 0;
2050
2051 mutex_lock(&rps->lock);
2052
2053 val = intel_freq_opcode(rps, val);
2054 if (val < rps->min_freq ||
2055 val > rps->max_freq ||
2056 val < rps->min_freq_softlimit) {
2057 ret = -EINVAL;
2058 goto unlock;
2059 }
2060
2061 if (val > rps->rp0_freq)
2062 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2063 intel_gpu_freq(rps, val));
2064
2065 rps->max_freq_softlimit = val;
2066
2067 val = clamp_t(int, rps->cur_freq,
2068 rps->min_freq_softlimit,
2069 rps->max_freq_softlimit);
2070
2071 /*
2072 * We still need *_set_rps to process the new max_delay and
2073 * update the interrupt limits and PMINTRMSK even though
2074 * frequency request may be unchanged.
2075 */
2076 intel_rps_set(rps, val);
2077
2078 unlock:
2079 mutex_unlock(&rps->lock);
2080
2081 return ret;
2082 }
2083
intel_rps_set_max_frequency(struct intel_rps * rps,u32 val)2084 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2085 {
2086 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2087
2088 if (rps_uses_slpc(rps))
2089 return intel_guc_slpc_set_max_freq(slpc, val);
2090 else
2091 return set_max_freq(rps, val);
2092 }
2093
intel_rps_get_min_frequency(struct intel_rps * rps)2094 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2095 {
2096 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2097
2098 if (rps_uses_slpc(rps))
2099 return slpc->min_freq_softlimit;
2100 else
2101 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2102 }
2103
set_min_freq(struct intel_rps * rps,u32 val)2104 static int set_min_freq(struct intel_rps *rps, u32 val)
2105 {
2106 int ret = 0;
2107
2108 mutex_lock(&rps->lock);
2109
2110 val = intel_freq_opcode(rps, val);
2111 if (val < rps->min_freq ||
2112 val > rps->max_freq ||
2113 val > rps->max_freq_softlimit) {
2114 ret = -EINVAL;
2115 goto unlock;
2116 }
2117
2118 rps->min_freq_softlimit = val;
2119
2120 val = clamp_t(int, rps->cur_freq,
2121 rps->min_freq_softlimit,
2122 rps->max_freq_softlimit);
2123
2124 /*
2125 * We still need *_set_rps to process the new min_delay and
2126 * update the interrupt limits and PMINTRMSK even though
2127 * frequency request may be unchanged.
2128 */
2129 intel_rps_set(rps, val);
2130
2131 unlock:
2132 mutex_unlock(&rps->lock);
2133
2134 return ret;
2135 }
2136
intel_rps_set_min_frequency(struct intel_rps * rps,u32 val)2137 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2138 {
2139 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2140
2141 if (rps_uses_slpc(rps))
2142 return intel_guc_slpc_set_min_freq(slpc, val);
2143 else
2144 return set_min_freq(rps, val);
2145 }
2146
2147 /* External interface for intel_ips.ko */
2148
2149 static struct drm_i915_private __rcu *ips_mchdev;
2150
2151 /**
2152 * Tells the intel_ips driver that the i915 driver is now loaded, if
2153 * IPS got loaded first.
2154 *
2155 * This awkward dance is so that neither module has to depend on the
2156 * other in order for IPS to do the appropriate communication of
2157 * GPU turbo limits to i915.
2158 */
2159 static void
ips_ping_for_i915_load(void)2160 ips_ping_for_i915_load(void)
2161 {
2162 void (*link)(void);
2163
2164 link = symbol_get(ips_link_to_i915_driver);
2165 if (link) {
2166 link();
2167 symbol_put(ips_link_to_i915_driver);
2168 }
2169 }
2170
intel_rps_driver_register(struct intel_rps * rps)2171 void intel_rps_driver_register(struct intel_rps *rps)
2172 {
2173 struct intel_gt *gt = rps_to_gt(rps);
2174
2175 /*
2176 * We only register the i915 ips part with intel-ips once everything is
2177 * set up, to avoid intel-ips sneaking in and reading bogus values.
2178 */
2179 if (GRAPHICS_VER(gt->i915) == 5) {
2180 GEM_BUG_ON(ips_mchdev);
2181 rcu_assign_pointer(ips_mchdev, gt->i915);
2182 ips_ping_for_i915_load();
2183 }
2184 }
2185
intel_rps_driver_unregister(struct intel_rps * rps)2186 void intel_rps_driver_unregister(struct intel_rps *rps)
2187 {
2188 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2189 rcu_assign_pointer(ips_mchdev, NULL);
2190 }
2191
mchdev_get(void)2192 static struct drm_i915_private *mchdev_get(void)
2193 {
2194 struct drm_i915_private *i915;
2195
2196 rcu_read_lock();
2197 i915 = rcu_dereference(ips_mchdev);
2198 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2199 i915 = NULL;
2200 rcu_read_unlock();
2201
2202 return i915;
2203 }
2204
2205 /**
2206 * i915_read_mch_val - return value for IPS use
2207 *
2208 * Calculate and return a value for the IPS driver to use when deciding whether
2209 * we have thermal and power headroom to increase CPU or GPU power budget.
2210 */
i915_read_mch_val(void)2211 unsigned long i915_read_mch_val(void)
2212 {
2213 struct drm_i915_private *i915;
2214 unsigned long chipset_val = 0;
2215 unsigned long graphics_val = 0;
2216 intel_wakeref_t wakeref;
2217
2218 i915 = mchdev_get();
2219 if (!i915)
2220 return 0;
2221
2222 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2223 struct intel_ips *ips = &i915->gt.rps.ips;
2224
2225 spin_lock_irq(&mchdev_lock);
2226 chipset_val = __ips_chipset_val(ips);
2227 graphics_val = __ips_gfx_val(ips);
2228 spin_unlock_irq(&mchdev_lock);
2229 }
2230
2231 drm_dev_put(&i915->drm);
2232 return chipset_val + graphics_val;
2233 }
2234 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2235
2236 /**
2237 * i915_gpu_raise - raise GPU frequency limit
2238 *
2239 * Raise the limit; IPS indicates we have thermal headroom.
2240 */
i915_gpu_raise(void)2241 bool i915_gpu_raise(void)
2242 {
2243 struct drm_i915_private *i915;
2244 struct intel_rps *rps;
2245
2246 i915 = mchdev_get();
2247 if (!i915)
2248 return false;
2249
2250 rps = &i915->gt.rps;
2251
2252 spin_lock_irq(&mchdev_lock);
2253 if (rps->max_freq_softlimit < rps->max_freq)
2254 rps->max_freq_softlimit++;
2255 spin_unlock_irq(&mchdev_lock);
2256
2257 drm_dev_put(&i915->drm);
2258 return true;
2259 }
2260 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2261
2262 /**
2263 * i915_gpu_lower - lower GPU frequency limit
2264 *
2265 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2266 * frequency maximum.
2267 */
i915_gpu_lower(void)2268 bool i915_gpu_lower(void)
2269 {
2270 struct drm_i915_private *i915;
2271 struct intel_rps *rps;
2272
2273 i915 = mchdev_get();
2274 if (!i915)
2275 return false;
2276
2277 rps = &i915->gt.rps;
2278
2279 spin_lock_irq(&mchdev_lock);
2280 if (rps->max_freq_softlimit > rps->min_freq)
2281 rps->max_freq_softlimit--;
2282 spin_unlock_irq(&mchdev_lock);
2283
2284 drm_dev_put(&i915->drm);
2285 return true;
2286 }
2287 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2288
2289 /**
2290 * i915_gpu_busy - indicate GPU business to IPS
2291 *
2292 * Tell the IPS driver whether or not the GPU is busy.
2293 */
i915_gpu_busy(void)2294 bool i915_gpu_busy(void)
2295 {
2296 struct drm_i915_private *i915;
2297 bool ret;
2298
2299 i915 = mchdev_get();
2300 if (!i915)
2301 return false;
2302
2303 ret = i915->gt.awake;
2304
2305 drm_dev_put(&i915->drm);
2306 return ret;
2307 }
2308 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2309
2310 /**
2311 * i915_gpu_turbo_disable - disable graphics turbo
2312 *
2313 * Disable graphics turbo by resetting the max frequency and setting the
2314 * current frequency to the default.
2315 */
i915_gpu_turbo_disable(void)2316 bool i915_gpu_turbo_disable(void)
2317 {
2318 struct drm_i915_private *i915;
2319 struct intel_rps *rps;
2320 bool ret;
2321
2322 i915 = mchdev_get();
2323 if (!i915)
2324 return false;
2325
2326 rps = &i915->gt.rps;
2327
2328 spin_lock_irq(&mchdev_lock);
2329 rps->max_freq_softlimit = rps->min_freq;
2330 ret = !__gen5_rps_set(&i915->gt.rps, rps->min_freq);
2331 spin_unlock_irq(&mchdev_lock);
2332
2333 drm_dev_put(&i915->drm);
2334 return ret;
2335 }
2336 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2337
2338 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2339 #include "selftest_rps.c"
2340 #include "selftest_slpc.c"
2341 #endif
2342