1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28 #include <trace/events/swiotlb.h>
29 #include <trace/hooks/iommu.h>
30
31 struct iommu_dma_msi_page {
32 struct list_head list;
33 dma_addr_t iova;
34 phys_addr_t phys;
35 };
36
37 enum iommu_dma_cookie_type {
38 IOMMU_DMA_IOVA_COOKIE,
39 IOMMU_DMA_MSI_COOKIE,
40 };
41
42 struct iommu_dma_cookie {
43 enum iommu_dma_cookie_type type;
44 union {
45 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
46 struct iova_domain iovad;
47 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
48 dma_addr_t msi_iova;
49 };
50 struct list_head msi_page_list;
51
52 /* Domain for flush queue callback; NULL if flush queue not in use */
53 struct iommu_domain *fq_domain;
54 };
55
56 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
57 bool iommu_dma_forcedac __read_mostly;
58
iommu_dma_forcedac_setup(char * str)59 static int __init iommu_dma_forcedac_setup(char *str)
60 {
61 int ret = kstrtobool(str, &iommu_dma_forcedac);
62
63 if (!ret && iommu_dma_forcedac)
64 pr_info("Forcing DAC for PCI devices\n");
65 return ret;
66 }
67 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
68
iommu_dma_entry_dtor(unsigned long data)69 static void iommu_dma_entry_dtor(unsigned long data)
70 {
71 struct page *freelist = (struct page *)data;
72
73 while (freelist) {
74 unsigned long p = (unsigned long)page_address(freelist);
75
76 freelist = freelist->freelist;
77 free_page(p);
78 }
79 }
80
cookie_msi_granule(struct iommu_dma_cookie * cookie)81 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
82 {
83 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
84 return cookie->iovad.granule;
85 return PAGE_SIZE;
86 }
87
cookie_alloc(enum iommu_dma_cookie_type type)88 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
89 {
90 struct iommu_dma_cookie *cookie;
91
92 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
93 if (cookie) {
94 INIT_LIST_HEAD(&cookie->msi_page_list);
95 cookie->type = type;
96 }
97 return cookie;
98 }
99
100 /**
101 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
102 * @domain: IOMMU domain to prepare for DMA-API usage
103 *
104 * IOMMU drivers should normally call this from their domain_alloc
105 * callback when domain->type == IOMMU_DOMAIN_DMA.
106 */
iommu_get_dma_cookie(struct iommu_domain * domain)107 int iommu_get_dma_cookie(struct iommu_domain *domain)
108 {
109 if (domain->iova_cookie)
110 return -EEXIST;
111
112 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
113 if (!domain->iova_cookie)
114 return -ENOMEM;
115
116 return 0;
117 }
118 EXPORT_SYMBOL(iommu_get_dma_cookie);
119
120 /**
121 * iommu_get_msi_cookie - Acquire just MSI remapping resources
122 * @domain: IOMMU domain to prepare
123 * @base: Start address of IOVA region for MSI mappings
124 *
125 * Users who manage their own IOVA allocation and do not want DMA API support,
126 * but would still like to take advantage of automatic MSI remapping, can use
127 * this to initialise their own domain appropriately. Users should reserve a
128 * contiguous IOVA region, starting at @base, large enough to accommodate the
129 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
130 * used by the devices attached to @domain.
131 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)132 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
133 {
134 struct iommu_dma_cookie *cookie;
135
136 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
137 return -EINVAL;
138
139 if (domain->iova_cookie)
140 return -EEXIST;
141
142 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
143 if (!cookie)
144 return -ENOMEM;
145
146 cookie->msi_iova = base;
147 domain->iova_cookie = cookie;
148 return 0;
149 }
150 EXPORT_SYMBOL(iommu_get_msi_cookie);
151
152 /**
153 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
154 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
155 * iommu_get_msi_cookie()
156 *
157 * IOMMU drivers should normally call this from their domain_free callback.
158 */
iommu_put_dma_cookie(struct iommu_domain * domain)159 void iommu_put_dma_cookie(struct iommu_domain *domain)
160 {
161 struct iommu_dma_cookie *cookie = domain->iova_cookie;
162 struct iommu_dma_msi_page *msi, *tmp;
163
164 if (!cookie)
165 return;
166
167 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
168 put_iova_domain(&cookie->iovad);
169
170 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
171 list_del(&msi->list);
172 kfree(msi);
173 }
174 kfree(cookie);
175 domain->iova_cookie = NULL;
176 }
177 EXPORT_SYMBOL(iommu_put_dma_cookie);
178
179 /**
180 * iommu_dma_get_resv_regions - Reserved region driver helper
181 * @dev: Device from iommu_get_resv_regions()
182 * @list: Reserved region list from iommu_get_resv_regions()
183 *
184 * IOMMU drivers can use this to implement their .get_resv_regions callback
185 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
186 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
187 * reservation.
188 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)189 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
190 {
191
192 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
193 iort_iommu_msi_get_resv_regions(dev, list);
194
195 }
196 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
197
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)198 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
199 phys_addr_t start, phys_addr_t end)
200 {
201 struct iova_domain *iovad = &cookie->iovad;
202 struct iommu_dma_msi_page *msi_page;
203 int i, num_pages;
204
205 start -= iova_offset(iovad, start);
206 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
207
208 for (i = 0; i < num_pages; i++) {
209 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
210 if (!msi_page)
211 return -ENOMEM;
212
213 msi_page->phys = start;
214 msi_page->iova = start;
215 INIT_LIST_HEAD(&msi_page->list);
216 list_add(&msi_page->list, &cookie->msi_page_list);
217 start += iovad->granule;
218 }
219
220 return 0;
221 }
222
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)223 static int iova_reserve_pci_windows(struct pci_dev *dev,
224 struct iova_domain *iovad)
225 {
226 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
227 struct resource_entry *window;
228 unsigned long lo, hi;
229 phys_addr_t start = 0, end;
230
231 resource_list_for_each_entry(window, &bridge->windows) {
232 if (resource_type(window->res) != IORESOURCE_MEM)
233 continue;
234
235 lo = iova_pfn(iovad, window->res->start - window->offset);
236 hi = iova_pfn(iovad, window->res->end - window->offset);
237 reserve_iova(iovad, lo, hi);
238 }
239
240 /* Get reserved DMA windows from host bridge */
241 resource_list_for_each_entry(window, &bridge->dma_ranges) {
242 end = window->res->start - window->offset;
243 resv_iova:
244 if (end > start) {
245 lo = iova_pfn(iovad, start);
246 hi = iova_pfn(iovad, end);
247 reserve_iova(iovad, lo, hi);
248 } else if (end < start) {
249 /* dma_ranges list should be sorted */
250 dev_err(&dev->dev,
251 "Failed to reserve IOVA [%pa-%pa]\n",
252 &start, &end);
253 return -EINVAL;
254 }
255
256 start = window->res->end - window->offset + 1;
257 /* If window is last entry */
258 if (window->node.next == &bridge->dma_ranges &&
259 end != ~(phys_addr_t)0) {
260 end = ~(phys_addr_t)0;
261 goto resv_iova;
262 }
263 }
264
265 return 0;
266 }
267
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)268 static int iova_reserve_iommu_regions(struct device *dev,
269 struct iommu_domain *domain)
270 {
271 struct iommu_dma_cookie *cookie = domain->iova_cookie;
272 struct iova_domain *iovad = &cookie->iovad;
273 struct iommu_resv_region *region;
274 LIST_HEAD(resv_regions);
275 int ret = 0;
276
277 if (dev_is_pci(dev)) {
278 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
279 if (ret)
280 return ret;
281 }
282
283 iommu_get_resv_regions(dev, &resv_regions);
284 list_for_each_entry(region, &resv_regions, list) {
285 unsigned long lo, hi;
286
287 /* We ARE the software that manages these! */
288 if (region->type == IOMMU_RESV_SW_MSI)
289 continue;
290
291 lo = iova_pfn(iovad, region->start);
292 hi = iova_pfn(iovad, region->start + region->length - 1);
293 reserve_iova(iovad, lo, hi);
294
295 if (region->type == IOMMU_RESV_MSI)
296 ret = cookie_init_hw_msi_region(cookie, region->start,
297 region->start + region->length);
298 if (ret)
299 break;
300 }
301 iommu_put_resv_regions(dev, &resv_regions);
302
303 return ret;
304 }
305
iommu_dma_flush_iotlb_all(struct iova_domain * iovad)306 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
307 {
308 struct iommu_dma_cookie *cookie;
309 struct iommu_domain *domain;
310
311 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
312 domain = cookie->fq_domain;
313
314 domain->ops->flush_iotlb_all(domain);
315 }
316
dev_is_untrusted(struct device * dev)317 static bool dev_is_untrusted(struct device *dev)
318 {
319 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
320 }
321
dev_use_swiotlb(struct device * dev)322 static bool dev_use_swiotlb(struct device *dev)
323 {
324 return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
325 }
326
327 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)328 int iommu_dma_init_fq(struct iommu_domain *domain)
329 {
330 struct iommu_dma_cookie *cookie = domain->iova_cookie;
331 int ret;
332
333 if (cookie->fq_domain)
334 return 0;
335
336 ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all,
337 iommu_dma_entry_dtor);
338 if (ret) {
339 pr_warn("iova flush queue initialization failed\n");
340 return ret;
341 }
342 /*
343 * Prevent incomplete iovad->fq being observable. Pairs with path from
344 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
345 */
346 smp_wmb();
347 WRITE_ONCE(cookie->fq_domain, domain);
348 return 0;
349 }
350
351 /**
352 * iommu_dma_init_domain - Initialise a DMA mapping domain
353 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
354 * @base: IOVA at which the mappable address space starts
355 * @limit: Last address of the IOVA space
356 * @dev: Device the domain is being initialised for
357 *
358 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
359 * avoid rounding surprises. If necessary, we reserve the page at address 0
360 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
361 * any change which could make prior IOVAs invalid will fail.
362 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,dma_addr_t limit,struct device * dev)363 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
364 dma_addr_t limit, struct device *dev)
365 {
366 struct iommu_dma_cookie *cookie = domain->iova_cookie;
367 unsigned long order, base_pfn;
368 struct iova_domain *iovad;
369
370 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
371 return -EINVAL;
372
373 iovad = &cookie->iovad;
374
375 /* Use the smallest supported page size for IOVA granularity */
376 order = __ffs(domain->pgsize_bitmap);
377 base_pfn = max_t(unsigned long, 1, base >> order);
378
379 /* Check the domain allows at least some access to the device... */
380 if (domain->geometry.force_aperture) {
381 if (base > domain->geometry.aperture_end ||
382 limit < domain->geometry.aperture_start) {
383 pr_warn("specified DMA range outside IOMMU capability\n");
384 return -EFAULT;
385 }
386 /* ...then finally give it a kicking to make sure it fits */
387 base_pfn = max_t(unsigned long, base_pfn,
388 domain->geometry.aperture_start >> order);
389 }
390
391 /* start_pfn is always nonzero for an already-initialised domain */
392 if (iovad->start_pfn) {
393 if (1UL << order != iovad->granule ||
394 base_pfn != iovad->start_pfn) {
395 pr_warn("Incompatible range for DMA domain\n");
396 return -EFAULT;
397 }
398
399 return 0;
400 }
401
402 init_iova_domain(iovad, 1UL << order, base_pfn);
403
404 /* If the FQ fails we can simply fall back to strict mode */
405 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
406 domain->type = IOMMU_DOMAIN_DMA;
407
408 return iova_reserve_iommu_regions(dev, domain);
409 }
410
411 /*
412 * Should be called prior to using dma-apis.
413 */
iommu_dma_enable_best_fit_algo(struct device * dev)414 int iommu_dma_enable_best_fit_algo(struct device *dev)
415 {
416 struct iommu_domain *domain;
417 struct iova_domain *iovad;
418
419 domain = iommu_get_domain_for_dev(dev);
420 if (!domain || !domain->iova_cookie)
421 return -EINVAL;
422
423 iovad = &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
424 iovad->best_fit = true;
425 return 0;
426 }
427 EXPORT_SYMBOL(iommu_dma_enable_best_fit_algo);
428
429 /**
430 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
431 * page flags.
432 * @dir: Direction of DMA transfer
433 * @coherent: Is the DMA master cache-coherent?
434 * @attrs: DMA attributes for the mapping
435 *
436 * Return: corresponding IOMMU API page protection flags
437 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)438 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
439 unsigned long attrs)
440 {
441 int prot = coherent ? IOMMU_CACHE : 0;
442
443 if (attrs & DMA_ATTR_PRIVILEGED)
444 prot |= IOMMU_PRIV;
445 if (attrs & DMA_ATTR_SYS_CACHE_ONLY)
446 prot |= IOMMU_SYS_CACHE;
447 if (attrs & DMA_ATTR_SYS_CACHE_ONLY_NWA)
448 prot |= IOMMU_SYS_CACHE_NWA;
449
450 switch (dir) {
451 case DMA_BIDIRECTIONAL:
452 return prot | IOMMU_READ | IOMMU_WRITE;
453 case DMA_TO_DEVICE:
454 return prot | IOMMU_READ;
455 case DMA_FROM_DEVICE:
456 return prot | IOMMU_WRITE;
457 default:
458 return 0;
459 }
460 }
461
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)462 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
463 size_t size, u64 dma_limit, struct device *dev)
464 {
465 struct iommu_dma_cookie *cookie = domain->iova_cookie;
466 struct iova_domain *iovad = &cookie->iovad;
467 unsigned long shift, iova_len, iova = 0;
468
469 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
470 cookie->msi_iova += size;
471 return cookie->msi_iova - size;
472 }
473
474 shift = iova_shift(iovad);
475 iova_len = size >> shift;
476 /*
477 * Freeing non-power-of-two-sized allocations back into the IOVA caches
478 * will come back to bite us badly, so we have to waste a bit of space
479 * rounding up anything cacheable to make sure that can't happen. The
480 * order of the unadjusted size will still match upon freeing.
481 */
482 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
483 iova_len = roundup_pow_of_two(iova_len);
484
485 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
486
487 if (domain->geometry.force_aperture)
488 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
489
490 /* Try to get PCI devices a SAC address */
491 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
492 iova = alloc_iova_fast(iovad, iova_len,
493 DMA_BIT_MASK(32) >> shift, false);
494
495 if (!iova)
496 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
497 true);
498
499 trace_android_vh_iommu_iovad_alloc_iova(dev, iovad, (dma_addr_t)iova << shift, size);
500
501 return (dma_addr_t)iova << shift;
502 }
503
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)504 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
505 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
506 {
507 struct iova_domain *iovad = &cookie->iovad;
508
509 /* The MSI case is only ever cleaning up its most recent allocation */
510 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
511 cookie->msi_iova -= size;
512 else if (gather && gather->queued)
513 queue_iova(iovad, iova_pfn(iovad, iova),
514 size >> iova_shift(iovad),
515 (unsigned long)gather->freelist);
516 else
517 free_iova_fast(iovad, iova_pfn(iovad, iova),
518 size >> iova_shift(iovad));
519
520 trace_android_vh_iommu_iovad_free_iova(iovad, iova, size);
521 }
522
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)523 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
524 size_t size)
525 {
526 struct iommu_domain *domain = iommu_get_dma_domain(dev);
527 struct iommu_dma_cookie *cookie = domain->iova_cookie;
528 struct iova_domain *iovad = &cookie->iovad;
529 size_t iova_off = iova_offset(iovad, dma_addr);
530 struct iommu_iotlb_gather iotlb_gather;
531 size_t unmapped;
532
533 dma_addr -= iova_off;
534 size = iova_align(iovad, size + iova_off);
535 iommu_iotlb_gather_init(&iotlb_gather);
536 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
537
538 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
539 WARN_ON(unmapped != size);
540
541 if (!iotlb_gather.queued)
542 iommu_iotlb_sync(domain, &iotlb_gather);
543 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
544 }
545
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)546 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
547 size_t size, int prot, u64 dma_mask)
548 {
549 struct iommu_domain *domain = iommu_get_dma_domain(dev);
550 struct iommu_dma_cookie *cookie = domain->iova_cookie;
551 struct iova_domain *iovad = &cookie->iovad;
552 size_t iova_off = iova_offset(iovad, phys);
553 dma_addr_t iova;
554
555 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
556 iommu_deferred_attach(dev, domain))
557 return DMA_MAPPING_ERROR;
558
559 size = iova_align(iovad, size + iova_off);
560
561 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
562 if (!iova)
563 return DMA_MAPPING_ERROR;
564
565 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
566 iommu_dma_free_iova(cookie, iova, size, NULL);
567 return DMA_MAPPING_ERROR;
568 }
569 return iova + iova_off;
570 }
571
__iommu_dma_free_pages(struct page ** pages,int count)572 static void __iommu_dma_free_pages(struct page **pages, int count)
573 {
574 while (count--)
575 __free_page(pages[count]);
576 kvfree(pages);
577 }
578
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)579 static struct page **__iommu_dma_alloc_pages(struct device *dev,
580 unsigned int count, unsigned long order_mask, gfp_t gfp)
581 {
582 struct page **pages;
583 unsigned int i = 0, nid = dev_to_node(dev);
584
585 order_mask &= (2U << MAX_ORDER) - 1;
586 if (!order_mask)
587 return NULL;
588
589 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
590 if (!pages)
591 return NULL;
592
593 /* IOMMU can map any pages, so himem can also be used here */
594 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
595
596 /* It makes no sense to muck about with huge pages */
597 gfp &= ~__GFP_COMP;
598
599 while (count) {
600 struct page *page = NULL;
601 unsigned int order_size;
602
603 /*
604 * Higher-order allocations are a convenience rather
605 * than a necessity, hence using __GFP_NORETRY until
606 * falling back to minimum-order allocations.
607 */
608 for (order_mask &= (2U << __fls(count)) - 1;
609 order_mask; order_mask &= ~order_size) {
610 unsigned int order = __fls(order_mask);
611 gfp_t alloc_flags = gfp;
612
613 order_size = 1U << order;
614 if (order_mask > order_size)
615 alloc_flags |= __GFP_NORETRY;
616 page = alloc_pages_node(nid, alloc_flags, order);
617 if (!page)
618 continue;
619 if (order)
620 split_page(page, order);
621 break;
622 }
623 if (!page) {
624 __iommu_dma_free_pages(pages, i);
625 return NULL;
626 }
627 count -= order_size;
628 while (order_size--)
629 pages[i++] = page++;
630 }
631 return pages;
632 }
633
634 /*
635 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
636 * but an IOMMU which supports smaller pages might not map the whole thing.
637 */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,pgprot_t prot,unsigned long attrs)638 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
639 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
640 unsigned long attrs)
641 {
642 struct iommu_domain *domain = iommu_get_dma_domain(dev);
643 struct iommu_dma_cookie *cookie = domain->iova_cookie;
644 struct iova_domain *iovad = &cookie->iovad;
645 bool coherent = dev_is_dma_coherent(dev);
646 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
647 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
648 struct page **pages;
649 dma_addr_t iova;
650 ssize_t ret;
651
652 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
653 iommu_deferred_attach(dev, domain))
654 return NULL;
655
656 min_size = alloc_sizes & -alloc_sizes;
657 if (min_size < PAGE_SIZE) {
658 min_size = PAGE_SIZE;
659 alloc_sizes |= PAGE_SIZE;
660 } else {
661 size = ALIGN(size, min_size);
662 }
663 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
664 alloc_sizes = min_size;
665
666 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
667 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
668 gfp);
669 if (!pages)
670 return NULL;
671
672 size = iova_align(iovad, size);
673 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
674 if (!iova)
675 goto out_free_pages;
676
677 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
678 goto out_free_iova;
679
680 if (!(ioprot & IOMMU_CACHE)) {
681 struct scatterlist *sg;
682 int i;
683
684 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
685 arch_dma_prep_coherent(sg_page(sg), sg->length);
686 }
687
688 ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
689 if (ret < 0 || ret < size)
690 goto out_free_sg;
691
692 sgt->sgl->dma_address = iova;
693 sgt->sgl->dma_length = size;
694 return pages;
695
696 out_free_sg:
697 sg_free_table(sgt);
698 out_free_iova:
699 iommu_dma_free_iova(cookie, iova, size, NULL);
700 out_free_pages:
701 __iommu_dma_free_pages(pages, count);
702 return NULL;
703 }
704
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)705 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
706 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
707 unsigned long attrs)
708 {
709 struct page **pages;
710 struct sg_table sgt;
711 void *vaddr;
712
713 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
714 attrs);
715 if (!pages)
716 return NULL;
717 *dma_handle = sgt.sgl->dma_address;
718 sg_free_table(&sgt);
719 vaddr = dma_common_pages_remap(pages, size, prot,
720 __builtin_return_address(0));
721 if (!vaddr)
722 goto out_unmap;
723 return vaddr;
724
725 out_unmap:
726 __iommu_dma_unmap(dev, *dma_handle, size);
727 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
728 return NULL;
729 }
730
731 #ifdef CONFIG_DMA_REMAP
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)732 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
733 size_t size, enum dma_data_direction dir, gfp_t gfp,
734 unsigned long attrs)
735 {
736 struct dma_sgt_handle *sh;
737
738 sh = kmalloc(sizeof(*sh), gfp);
739 if (!sh)
740 return NULL;
741
742 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
743 PAGE_KERNEL, attrs);
744 if (!sh->pages) {
745 kfree(sh);
746 return NULL;
747 }
748 return &sh->sgt;
749 }
750
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)751 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
752 struct sg_table *sgt, enum dma_data_direction dir)
753 {
754 struct dma_sgt_handle *sh = sgt_handle(sgt);
755
756 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
757 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
758 sg_free_table(&sh->sgt);
759 kfree(sh);
760 }
761 #endif /* CONFIG_DMA_REMAP */
762
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)763 static void iommu_dma_sync_single_for_cpu(struct device *dev,
764 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
765 {
766 phys_addr_t phys;
767
768 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
769 return;
770
771 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
772 if (!dev_is_dma_coherent(dev))
773 arch_sync_dma_for_cpu(phys, size, dir);
774
775 if (is_swiotlb_buffer(dev, phys))
776 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
777 }
778
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)779 static void iommu_dma_sync_single_for_device(struct device *dev,
780 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
781 {
782 phys_addr_t phys;
783
784 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
785 return;
786
787 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
788 if (is_swiotlb_buffer(dev, phys))
789 swiotlb_sync_single_for_device(dev, phys, size, dir);
790
791 if (!dev_is_dma_coherent(dev))
792 arch_sync_dma_for_device(phys, size, dir);
793 }
794
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)795 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
796 struct scatterlist *sgl, int nelems,
797 enum dma_data_direction dir)
798 {
799 struct scatterlist *sg;
800 int i;
801
802 if (dev_use_swiotlb(dev))
803 for_each_sg(sgl, sg, nelems, i)
804 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
805 sg->length, dir);
806 else if (!dev_is_dma_coherent(dev))
807 for_each_sg(sgl, sg, nelems, i)
808 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
809 }
810
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)811 static void iommu_dma_sync_sg_for_device(struct device *dev,
812 struct scatterlist *sgl, int nelems,
813 enum dma_data_direction dir)
814 {
815 struct scatterlist *sg;
816 int i;
817
818 if (dev_use_swiotlb(dev))
819 for_each_sg(sgl, sg, nelems, i)
820 iommu_dma_sync_single_for_device(dev,
821 sg_dma_address(sg),
822 sg->length, dir);
823 else if (!dev_is_dma_coherent(dev))
824 for_each_sg(sgl, sg, nelems, i)
825 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
826 }
827
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)828 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
829 unsigned long offset, size_t size, enum dma_data_direction dir,
830 unsigned long attrs)
831 {
832 phys_addr_t phys = page_to_phys(page) + offset;
833 bool coherent = dev_is_dma_coherent(dev);
834 int prot = dma_info_to_prot(dir, coherent, attrs);
835 struct iommu_domain *domain = iommu_get_dma_domain(dev);
836 struct iommu_dma_cookie *cookie = domain->iova_cookie;
837 struct iova_domain *iovad = &cookie->iovad;
838 dma_addr_t iova, dma_mask = dma_get_mask(dev);
839
840 /*
841 * If both the physical buffer start address and size are
842 * page aligned, we don't need to use a bounce page.
843 */
844 if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
845 void *padding_start;
846 size_t padding_size, aligned_size;
847
848 trace_swiotlb_bounced(dev, phys, size, swiotlb_force);
849
850 aligned_size = iova_align(iovad, size);
851 phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
852 iova_mask(iovad), dir, attrs);
853
854 if (phys == DMA_MAPPING_ERROR)
855 return DMA_MAPPING_ERROR;
856
857 /* Cleanup the padding area. */
858 padding_start = phys_to_virt(phys);
859 padding_size = aligned_size;
860
861 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
862 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
863 padding_start += size;
864 padding_size -= size;
865 }
866
867 memset(padding_start, 0, padding_size);
868 }
869
870 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
871 arch_sync_dma_for_device(phys, size, dir);
872
873 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
874 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
875 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
876 return iova;
877 }
878
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)879 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
880 size_t size, enum dma_data_direction dir, unsigned long attrs)
881 {
882 struct iommu_domain *domain = iommu_get_dma_domain(dev);
883 phys_addr_t phys;
884
885 phys = iommu_iova_to_phys(domain, dma_handle);
886 if (WARN_ON(!phys))
887 return;
888
889 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
890 arch_sync_dma_for_cpu(phys, size, dir);
891
892 __iommu_dma_unmap(dev, dma_handle, size);
893
894 if (unlikely(is_swiotlb_buffer(dev, phys)))
895 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
896 }
897
898 /*
899 * Prepare a successfully-mapped scatterlist to give back to the caller.
900 *
901 * At this point the segments are already laid out by iommu_dma_map_sg() to
902 * avoid individually crossing any boundaries, so we merely need to check a
903 * segment's start address to avoid concatenating across one.
904 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)905 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
906 dma_addr_t dma_addr)
907 {
908 struct scatterlist *s, *cur = sg;
909 unsigned long seg_mask = dma_get_seg_boundary(dev);
910 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
911 int i, count = 0;
912
913 for_each_sg(sg, s, nents, i) {
914 /* Restore this segment's original unaligned fields first */
915 unsigned int s_iova_off = sg_dma_address(s);
916 unsigned int s_length = sg_dma_len(s);
917 unsigned int s_iova_len = s->length;
918
919 s->offset += s_iova_off;
920 s->length = s_length;
921 sg_dma_address(s) = DMA_MAPPING_ERROR;
922 sg_dma_len(s) = 0;
923
924 /*
925 * Now fill in the real DMA data. If...
926 * - there is a valid output segment to append to
927 * - and this segment starts on an IOVA page boundary
928 * - but doesn't fall at a segment boundary
929 * - and wouldn't make the resulting output segment too long
930 */
931 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
932 (max_len - cur_len >= s_length)) {
933 /* ...then concatenate it with the previous one */
934 cur_len += s_length;
935 } else {
936 /* Otherwise start the next output segment */
937 if (i > 0)
938 cur = sg_next(cur);
939 cur_len = s_length;
940 count++;
941
942 sg_dma_address(cur) = dma_addr + s_iova_off;
943 }
944
945 sg_dma_len(cur) = cur_len;
946 dma_addr += s_iova_len;
947
948 if (s_length + s_iova_off < s_iova_len)
949 cur_len = 0;
950 }
951 return count;
952 }
953
954 /*
955 * If mapping failed, then just restore the original list,
956 * but making sure the DMA fields are invalidated.
957 */
__invalidate_sg(struct scatterlist * sg,int nents)958 static void __invalidate_sg(struct scatterlist *sg, int nents)
959 {
960 struct scatterlist *s;
961 int i;
962
963 for_each_sg(sg, s, nents, i) {
964 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
965 s->offset += sg_dma_address(s);
966 if (sg_dma_len(s))
967 s->length = sg_dma_len(s);
968 sg_dma_address(s) = DMA_MAPPING_ERROR;
969 sg_dma_len(s) = 0;
970 }
971 }
972
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)973 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
974 int nents, enum dma_data_direction dir, unsigned long attrs)
975 {
976 struct scatterlist *s;
977 int i;
978
979 for_each_sg(sg, s, nents, i)
980 iommu_dma_unmap_page(dev, sg_dma_address(s),
981 sg_dma_len(s), dir, attrs);
982 }
983
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)984 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
985 int nents, enum dma_data_direction dir, unsigned long attrs)
986 {
987 struct scatterlist *s;
988 int i;
989
990 for_each_sg(sg, s, nents, i) {
991 sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
992 s->offset, s->length, dir, attrs);
993 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
994 goto out_unmap;
995 sg_dma_len(s) = s->length;
996 }
997
998 return nents;
999
1000 out_unmap:
1001 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1002 return -EIO;
1003 }
1004
1005 /*
1006 * The DMA API client is passing in a scatterlist which could describe
1007 * any old buffer layout, but the IOMMU API requires everything to be
1008 * aligned to IOMMU pages. Hence the need for this complicated bit of
1009 * impedance-matching, to be able to hand off a suitably-aligned list,
1010 * but still preserve the original offsets and sizes for the caller.
1011 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1012 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1013 int nents, enum dma_data_direction dir, unsigned long attrs)
1014 {
1015 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1016 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1017 struct iova_domain *iovad = &cookie->iovad;
1018 struct scatterlist *s, *prev = NULL;
1019 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1020 dma_addr_t iova;
1021 size_t iova_len = 0;
1022 unsigned long mask = dma_get_seg_boundary(dev);
1023 ssize_t ret;
1024 int i;
1025
1026 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1027 ret = iommu_deferred_attach(dev, domain);
1028 if (ret)
1029 goto out;
1030 }
1031
1032 if (dev_use_swiotlb(dev))
1033 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1034
1035 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1036 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1037
1038 /*
1039 * Work out how much IOVA space we need, and align the segments to
1040 * IOVA granules for the IOMMU driver to handle. With some clever
1041 * trickery we can modify the list in-place, but reversibly, by
1042 * stashing the unaligned parts in the as-yet-unused DMA fields.
1043 */
1044 for_each_sg(sg, s, nents, i) {
1045 size_t s_iova_off = iova_offset(iovad, s->offset);
1046 size_t s_length = s->length;
1047 size_t pad_len = (mask - iova_len + 1) & mask;
1048
1049 sg_dma_address(s) = s_iova_off;
1050 sg_dma_len(s) = s_length;
1051 s->offset -= s_iova_off;
1052 s_length = iova_align(iovad, s_length + s_iova_off);
1053 s->length = s_length;
1054
1055 /*
1056 * Due to the alignment of our single IOVA allocation, we can
1057 * depend on these assumptions about the segment boundary mask:
1058 * - If mask size >= IOVA size, then the IOVA range cannot
1059 * possibly fall across a boundary, so we don't care.
1060 * - If mask size < IOVA size, then the IOVA range must start
1061 * exactly on a boundary, therefore we can lay things out
1062 * based purely on segment lengths without needing to know
1063 * the actual addresses beforehand.
1064 * - The mask must be a power of 2, so pad_len == 0 if
1065 * iova_len == 0, thus we cannot dereference prev the first
1066 * time through here (i.e. before it has a meaningful value).
1067 */
1068 if (pad_len && pad_len < s_length - 1) {
1069 prev->length += pad_len;
1070 iova_len += pad_len;
1071 }
1072
1073 iova_len += s_length;
1074 prev = s;
1075 }
1076
1077 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1078 if (!iova) {
1079 ret = -ENOMEM;
1080 goto out_restore_sg;
1081 }
1082
1083 /*
1084 * We'll leave any physical concatenation to the IOMMU driver's
1085 * implementation - it knows better than we do.
1086 */
1087 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1088 if (ret < 0 || ret < iova_len)
1089 goto out_free_iova;
1090
1091 return __finalise_sg(dev, sg, nents, iova);
1092
1093 out_free_iova:
1094 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1095 out_restore_sg:
1096 __invalidate_sg(sg, nents);
1097 out:
1098 if (ret != -ENOMEM)
1099 return -EINVAL;
1100 return ret;
1101 }
1102
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1103 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1104 int nents, enum dma_data_direction dir, unsigned long attrs)
1105 {
1106 dma_addr_t start, end;
1107 struct scatterlist *tmp;
1108 int i;
1109
1110 if (dev_use_swiotlb(dev)) {
1111 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1112 return;
1113 }
1114
1115 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1116 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1117
1118 /*
1119 * The scatterlist segments are mapped into a single
1120 * contiguous IOVA allocation, so this is incredibly easy.
1121 */
1122 start = sg_dma_address(sg);
1123 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1124 if (sg_dma_len(tmp) == 0)
1125 break;
1126 sg = tmp;
1127 }
1128 end = sg_dma_address(sg) + sg_dma_len(sg);
1129 __iommu_dma_unmap(dev, start, end - start);
1130 }
1131
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1132 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1133 size_t size, enum dma_data_direction dir, unsigned long attrs)
1134 {
1135 return __iommu_dma_map(dev, phys, size,
1136 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1137 dma_get_mask(dev));
1138 }
1139
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1140 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1141 size_t size, enum dma_data_direction dir, unsigned long attrs)
1142 {
1143 __iommu_dma_unmap(dev, handle, size);
1144 }
1145
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1146 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1147 {
1148 size_t alloc_size = PAGE_ALIGN(size);
1149 int count = alloc_size >> PAGE_SHIFT;
1150 struct page *page = NULL, **pages = NULL;
1151
1152 /* Non-coherent atomic allocation? Easy */
1153 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1154 dma_free_from_pool(dev, cpu_addr, alloc_size))
1155 return;
1156
1157 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1158 /*
1159 * If it the address is remapped, then it's either non-coherent
1160 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1161 */
1162 pages = dma_common_find_pages(cpu_addr);
1163 if (!pages)
1164 page = vmalloc_to_page(cpu_addr);
1165 dma_common_free_remap(cpu_addr, alloc_size);
1166 } else {
1167 /* Lowmem means a coherent atomic or CMA allocation */
1168 page = virt_to_page(cpu_addr);
1169 }
1170
1171 if (pages)
1172 __iommu_dma_free_pages(pages, count);
1173 if (page)
1174 dma_free_contiguous(dev, page, alloc_size);
1175 }
1176
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1177 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1178 dma_addr_t handle, unsigned long attrs)
1179 {
1180 __iommu_dma_unmap(dev, handle, size);
1181 __iommu_dma_free(dev, size, cpu_addr);
1182 }
1183
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1184 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1185 struct page **pagep, gfp_t gfp, unsigned long attrs)
1186 {
1187 bool coherent = dev_is_dma_coherent(dev);
1188 size_t alloc_size = PAGE_ALIGN(size);
1189 int node = dev_to_node(dev);
1190 struct page *page = NULL;
1191 void *cpu_addr;
1192
1193 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1194 if (!page)
1195 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1196 if (!page)
1197 return NULL;
1198
1199 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1200 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1201
1202 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1203 prot, __builtin_return_address(0));
1204 if (!cpu_addr)
1205 goto out_free_pages;
1206
1207 if (!coherent)
1208 arch_dma_prep_coherent(page, size);
1209 } else {
1210 cpu_addr = page_address(page);
1211 }
1212
1213 *pagep = page;
1214 memset(cpu_addr, 0, alloc_size);
1215 return cpu_addr;
1216 out_free_pages:
1217 dma_free_contiguous(dev, page, alloc_size);
1218 return NULL;
1219 }
1220
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1221 static void *iommu_dma_alloc(struct device *dev, size_t size,
1222 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1223 {
1224 bool coherent = dev_is_dma_coherent(dev);
1225 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1226 struct page *page = NULL;
1227 void *cpu_addr;
1228
1229 gfp |= __GFP_ZERO;
1230
1231 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1232 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1233 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1234 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1235 }
1236
1237 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1238 !gfpflags_allow_blocking(gfp) && !coherent)
1239 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1240 gfp, NULL);
1241 else
1242 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1243 if (!cpu_addr)
1244 return NULL;
1245
1246 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1247 dev->coherent_dma_mask);
1248 if (*handle == DMA_MAPPING_ERROR) {
1249 __iommu_dma_free(dev, size, cpu_addr);
1250 return NULL;
1251 }
1252
1253 return cpu_addr;
1254 }
1255
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1256 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1257 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1258 unsigned long attrs)
1259 {
1260 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1261 unsigned long pfn, off = vma->vm_pgoff;
1262 int ret;
1263
1264 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1265
1266 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1267 return ret;
1268
1269 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1270 return -ENXIO;
1271
1272 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1273 struct page **pages = dma_common_find_pages(cpu_addr);
1274
1275 if (pages)
1276 return vm_map_pages(vma, pages, nr_pages);
1277 pfn = vmalloc_to_pfn(cpu_addr);
1278 } else {
1279 pfn = page_to_pfn(virt_to_page(cpu_addr));
1280 }
1281
1282 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1283 vma->vm_end - vma->vm_start,
1284 vma->vm_page_prot);
1285 }
1286
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1287 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1288 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1289 unsigned long attrs)
1290 {
1291 struct page *page;
1292 int ret;
1293
1294 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1295 struct page **pages = dma_common_find_pages(cpu_addr);
1296
1297 if (pages) {
1298 return sg_alloc_table_from_pages(sgt, pages,
1299 PAGE_ALIGN(size) >> PAGE_SHIFT,
1300 0, size, GFP_KERNEL);
1301 }
1302
1303 page = vmalloc_to_page(cpu_addr);
1304 } else {
1305 page = virt_to_page(cpu_addr);
1306 }
1307
1308 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1309 if (!ret)
1310 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1311 return ret;
1312 }
1313
iommu_dma_get_merge_boundary(struct device * dev)1314 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1315 {
1316 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1317
1318 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1319 }
1320
1321 static const struct dma_map_ops iommu_dma_ops = {
1322 .alloc = iommu_dma_alloc,
1323 .free = iommu_dma_free,
1324 .alloc_pages = dma_common_alloc_pages,
1325 .free_pages = dma_common_free_pages,
1326 #ifdef CONFIG_DMA_REMAP
1327 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1328 .free_noncontiguous = iommu_dma_free_noncontiguous,
1329 #endif
1330 .mmap = iommu_dma_mmap,
1331 .get_sgtable = iommu_dma_get_sgtable,
1332 .map_page = iommu_dma_map_page,
1333 .unmap_page = iommu_dma_unmap_page,
1334 .map_sg = iommu_dma_map_sg,
1335 .unmap_sg = iommu_dma_unmap_sg,
1336 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1337 .sync_single_for_device = iommu_dma_sync_single_for_device,
1338 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1339 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1340 .map_resource = iommu_dma_map_resource,
1341 .unmap_resource = iommu_dma_unmap_resource,
1342 .get_merge_boundary = iommu_dma_get_merge_boundary,
1343 };
1344
1345 /*
1346 * The IOMMU core code allocates the default DMA domain, which the underlying
1347 * IOMMU driver needs to support via the dma-iommu layer.
1348 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 dma_limit)1349 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1350 {
1351 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1352
1353 if (!domain)
1354 goto out_err;
1355
1356 /*
1357 * The IOMMU core code allocates the default DMA domain, which the
1358 * underlying IOMMU driver needs to support via the dma-iommu layer.
1359 */
1360 if (iommu_is_dma_domain(domain)) {
1361 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1362 goto out_err;
1363 dev->dma_ops = &iommu_dma_ops;
1364 }
1365
1366 return;
1367 out_err:
1368 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1369 dev_name(dev));
1370 }
1371 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1372
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1373 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1374 phys_addr_t msi_addr, struct iommu_domain *domain)
1375 {
1376 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1377 struct iommu_dma_msi_page *msi_page;
1378 dma_addr_t iova;
1379 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1380 size_t size = cookie_msi_granule(cookie);
1381
1382 msi_addr &= ~(phys_addr_t)(size - 1);
1383 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1384 if (msi_page->phys == msi_addr)
1385 return msi_page;
1386
1387 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1388 if (!msi_page)
1389 return NULL;
1390
1391 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1392 if (!iova)
1393 goto out_free_page;
1394
1395 if (iommu_map(domain, iova, msi_addr, size, prot))
1396 goto out_free_iova;
1397
1398 INIT_LIST_HEAD(&msi_page->list);
1399 msi_page->phys = msi_addr;
1400 msi_page->iova = iova;
1401 list_add(&msi_page->list, &cookie->msi_page_list);
1402 return msi_page;
1403
1404 out_free_iova:
1405 iommu_dma_free_iova(cookie, iova, size, NULL);
1406 out_free_page:
1407 kfree(msi_page);
1408 return NULL;
1409 }
1410
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1411 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1412 {
1413 struct device *dev = msi_desc_to_dev(desc);
1414 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1415 struct iommu_dma_msi_page *msi_page;
1416 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1417
1418 if (!domain || !domain->iova_cookie) {
1419 desc->iommu_cookie = NULL;
1420 return 0;
1421 }
1422
1423 /*
1424 * In fact the whole prepare operation should already be serialised by
1425 * irq_domain_mutex further up the callchain, but that's pretty subtle
1426 * on its own, so consider this locking as failsafe documentation...
1427 */
1428 mutex_lock(&msi_prepare_lock);
1429 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1430 mutex_unlock(&msi_prepare_lock);
1431
1432 msi_desc_set_iommu_cookie(desc, msi_page);
1433
1434 if (!msi_page)
1435 return -ENOMEM;
1436 return 0;
1437 }
1438
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1439 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1440 struct msi_msg *msg)
1441 {
1442 struct device *dev = msi_desc_to_dev(desc);
1443 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1444 const struct iommu_dma_msi_page *msi_page;
1445
1446 msi_page = msi_desc_get_iommu_cookie(desc);
1447
1448 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1449 return;
1450
1451 msg->address_hi = upper_32_bits(msi_page->iova);
1452 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1453 msg->address_lo += lower_32_bits(msi_page->iova);
1454 }
1455
iommu_dma_init(void)1456 static int iommu_dma_init(void)
1457 {
1458 if (is_kdump_kernel())
1459 static_branch_enable(&iommu_deferred_attach_enabled);
1460
1461 return iova_cache_get();
1462 }
1463 arch_initcall(iommu_dma_init);
1464