• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4  * Copyright (C) 2019-2021 Linaro Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13 
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25 
26 #define atomic_dec_not_zero(v)	atomic_add_unless((v), -1, 0)
27 
28 #define IPA_REPLENISH_BATCH	16
29 
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE	8192	/* PAGE_SIZE > 4096 wastes a LOT */
32 
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35 
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
38 
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
40 #define IPA_AGGR_TIME_LIMIT			500	/* microseconds */
41 
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 	IPA_STATUS_OPCODE_PACKET		= 0x01,
45 	IPA_STATUS_OPCODE_DROPPED_PACKET	= 0x04,
46 	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 0x08,
47 	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 0x40,
48 };
49 
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 	/* 0 means no exception */
53 	IPA_STATUS_EXCEPTION_DEAGGR		= 0x01,
54 };
55 
56 /* Status element provided by hardware */
57 struct ipa_status {
58 	u8 opcode;		/* enum ipa_status_opcode */
59 	u8 exception;		/* enum ipa_status_exception */
60 	__le16 mask;
61 	__le16 pkt_len;
62 	u8 endp_src_idx;
63 	u8 endp_dst_idx;
64 	__le32 metadata;
65 	__le32 flags1;
66 	__le64 flags2;
67 	__le32 flags3;
68 	__le32 flags4;
69 };
70 
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK		GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK		GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK		GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK	GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK		GENMASK_ULL(63, 16)
77 
ipa_endpoint_data_valid_one(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * all_data,const struct ipa_gsi_endpoint_data * data)78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
79 			    const struct ipa_gsi_endpoint_data *all_data,
80 			    const struct ipa_gsi_endpoint_data *data)
81 {
82 	const struct ipa_gsi_endpoint_data *other_data;
83 	struct device *dev = &ipa->pdev->dev;
84 	enum ipa_endpoint_name other_name;
85 
86 	if (ipa_gsi_endpoint_data_empty(data))
87 		return true;
88 
89 	if (!data->toward_ipa) {
90 		if (data->endpoint.filter_support) {
91 			dev_err(dev, "filtering not supported for "
92 					"RX endpoint %u\n",
93 				data->endpoint_id);
94 			return false;
95 		}
96 
97 		return true;	/* Nothing more to check for RX */
98 	}
99 
100 	if (data->endpoint.config.status_enable) {
101 		other_name = data->endpoint.config.tx.status_endpoint;
102 		if (other_name >= count) {
103 			dev_err(dev, "status endpoint name %u out of range "
104 					"for endpoint %u\n",
105 				other_name, data->endpoint_id);
106 			return false;
107 		}
108 
109 		/* Status endpoint must be defined... */
110 		other_data = &all_data[other_name];
111 		if (ipa_gsi_endpoint_data_empty(other_data)) {
112 			dev_err(dev, "DMA endpoint name %u undefined "
113 					"for endpoint %u\n",
114 				other_name, data->endpoint_id);
115 			return false;
116 		}
117 
118 		/* ...and has to be an RX endpoint... */
119 		if (other_data->toward_ipa) {
120 			dev_err(dev,
121 				"status endpoint for endpoint %u not RX\n",
122 				data->endpoint_id);
123 			return false;
124 		}
125 
126 		/* ...and if it's to be an AP endpoint... */
127 		if (other_data->ee_id == GSI_EE_AP) {
128 			/* ...make sure it has status enabled. */
129 			if (!other_data->endpoint.config.status_enable) {
130 				dev_err(dev,
131 					"status not enabled for endpoint %u\n",
132 					other_data->endpoint_id);
133 				return false;
134 			}
135 		}
136 	}
137 
138 	if (data->endpoint.config.dma_mode) {
139 		other_name = data->endpoint.config.dma_endpoint;
140 		if (other_name >= count) {
141 			dev_err(dev, "DMA endpoint name %u out of range "
142 					"for endpoint %u\n",
143 				other_name, data->endpoint_id);
144 			return false;
145 		}
146 
147 		other_data = &all_data[other_name];
148 		if (ipa_gsi_endpoint_data_empty(other_data)) {
149 			dev_err(dev, "DMA endpoint name %u undefined "
150 					"for endpoint %u\n",
151 				other_name, data->endpoint_id);
152 			return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
aggr_byte_limit_max(enum ipa_version version)159 static u32 aggr_byte_limit_max(enum ipa_version version)
160 {
161 	if (version < IPA_VERSION_4_5)
162 		return field_max(aggr_byte_limit_fmask(true));
163 
164 	return field_max(aggr_byte_limit_fmask(false));
165 }
166 
ipa_endpoint_data_valid(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
168 				    const struct ipa_gsi_endpoint_data *data)
169 {
170 	const struct ipa_gsi_endpoint_data *dp = data;
171 	struct device *dev = &ipa->pdev->dev;
172 	enum ipa_endpoint_name name;
173 	u32 limit;
174 
175 	if (count > IPA_ENDPOINT_COUNT) {
176 		dev_err(dev, "too many endpoints specified (%u > %u)\n",
177 			count, IPA_ENDPOINT_COUNT);
178 		return false;
179 	}
180 
181 	/* The aggregation byte limit defines the point at which an
182 	 * aggregation window will close.  It is programmed into the
183 	 * IPA hardware as a number of KB.  We don't use "hard byte
184 	 * limit" aggregation, which means that we need to supply
185 	 * enough space in a receive buffer to hold a complete MTU
186 	 * plus normal skb overhead *after* that aggregation byte
187 	 * limit has been crossed.
188 	 *
189 	 * This check ensures we don't define a receive buffer size
190 	 * that would exceed what we can represent in the field that
191 	 * is used to program its size.
192 	 */
193 	limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
194 	limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
195 	if (limit < IPA_RX_BUFFER_SIZE) {
196 		dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
197 			IPA_RX_BUFFER_SIZE, limit);
198 		return false;
199 	}
200 
201 	/* Make sure needed endpoints have defined data */
202 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
203 		dev_err(dev, "command TX endpoint not defined\n");
204 		return false;
205 	}
206 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
207 		dev_err(dev, "LAN RX endpoint not defined\n");
208 		return false;
209 	}
210 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
211 		dev_err(dev, "AP->modem TX endpoint not defined\n");
212 		return false;
213 	}
214 	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
215 		dev_err(dev, "AP<-modem RX endpoint not defined\n");
216 		return false;
217 	}
218 
219 	for (name = 0; name < count; name++, dp++)
220 		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
221 			return false;
222 
223 	return true;
224 }
225 
226 /* Allocate a transaction to use on a non-command endpoint */
ipa_endpoint_trans_alloc(struct ipa_endpoint * endpoint,u32 tre_count)227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
228 						  u32 tre_count)
229 {
230 	struct gsi *gsi = &endpoint->ipa->gsi;
231 	u32 channel_id = endpoint->channel_id;
232 	enum dma_data_direction direction;
233 
234 	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
235 
236 	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
237 }
238 
239 /* suspend_delay represents suspend for RX, delay for TX endpoints.
240  * Note that suspend is not supported starting with IPA v4.0.
241  */
242 static bool
ipa_endpoint_init_ctrl(struct ipa_endpoint * endpoint,bool suspend_delay)243 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
244 {
245 	u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
246 	struct ipa *ipa = endpoint->ipa;
247 	bool state;
248 	u32 mask;
249 	u32 val;
250 
251 	/* Suspend is not supported for IPA v4.0+.  Delay doesn't work
252 	 * correctly on IPA v4.2.
253 	 */
254 	if (endpoint->toward_ipa)
255 		WARN_ON(ipa->version == IPA_VERSION_4_2);
256 	else
257 		WARN_ON(ipa->version >= IPA_VERSION_4_0);
258 
259 	mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
260 
261 	val = ioread32(ipa->reg_virt + offset);
262 	state = !!(val & mask);
263 
264 	/* Don't bother if it's already in the requested state */
265 	if (suspend_delay != state) {
266 		val ^= mask;
267 		iowrite32(val, ipa->reg_virt + offset);
268 	}
269 
270 	return state;
271 }
272 
273 /* We currently don't care what the previous state was for delay mode */
274 static void
ipa_endpoint_program_delay(struct ipa_endpoint * endpoint,bool enable)275 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
276 {
277 	WARN_ON(!endpoint->toward_ipa);
278 
279 	/* Delay mode doesn't work properly for IPA v4.2 */
280 	if (endpoint->ipa->version != IPA_VERSION_4_2)
281 		(void)ipa_endpoint_init_ctrl(endpoint, enable);
282 }
283 
ipa_endpoint_aggr_active(struct ipa_endpoint * endpoint)284 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
285 {
286 	u32 mask = BIT(endpoint->endpoint_id);
287 	struct ipa *ipa = endpoint->ipa;
288 	u32 offset;
289 	u32 val;
290 
291 	WARN_ON(!(mask & ipa->available));
292 
293 	offset = ipa_reg_state_aggr_active_offset(ipa->version);
294 	val = ioread32(ipa->reg_virt + offset);
295 
296 	return !!(val & mask);
297 }
298 
ipa_endpoint_force_close(struct ipa_endpoint * endpoint)299 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
300 {
301 	u32 mask = BIT(endpoint->endpoint_id);
302 	struct ipa *ipa = endpoint->ipa;
303 
304 	WARN_ON(!(mask & ipa->available));
305 
306 	iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
307 }
308 
309 /**
310  * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
311  * @endpoint:	Endpoint on which to emulate a suspend
312  *
313  *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
314  *  with an open aggregation frame.  This is to work around a hardware
315  *  issue in IPA version 3.5.1 where the suspend interrupt will not be
316  *  generated when it should be.
317  */
ipa_endpoint_suspend_aggr(struct ipa_endpoint * endpoint)318 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
319 {
320 	struct ipa *ipa = endpoint->ipa;
321 
322 	if (!endpoint->data->aggregation)
323 		return;
324 
325 	/* Nothing to do if the endpoint doesn't have aggregation open */
326 	if (!ipa_endpoint_aggr_active(endpoint))
327 		return;
328 
329 	/* Force close aggregation */
330 	ipa_endpoint_force_close(endpoint);
331 
332 	ipa_interrupt_simulate_suspend(ipa->interrupt);
333 }
334 
335 /* Returns previous suspend state (true means suspend was enabled) */
336 static bool
ipa_endpoint_program_suspend(struct ipa_endpoint * endpoint,bool enable)337 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
338 {
339 	bool suspended;
340 
341 	if (endpoint->ipa->version >= IPA_VERSION_4_0)
342 		return enable;	/* For IPA v4.0+, no change made */
343 
344 	WARN_ON(endpoint->toward_ipa);
345 
346 	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
347 
348 	/* A client suspended with an open aggregation frame will not
349 	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
350 	 * ipa_endpoint_suspend_aggr() handle this.
351 	 */
352 	if (enable && !suspended)
353 		ipa_endpoint_suspend_aggr(endpoint);
354 
355 	return suspended;
356 }
357 
358 /* Enable or disable delay or suspend mode on all modem endpoints */
ipa_endpoint_modem_pause_all(struct ipa * ipa,bool enable)359 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
360 {
361 	u32 endpoint_id;
362 
363 	/* DELAY mode doesn't work correctly on IPA v4.2 */
364 	if (ipa->version == IPA_VERSION_4_2)
365 		return;
366 
367 	for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
368 		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
369 
370 		if (endpoint->ee_id != GSI_EE_MODEM)
371 			continue;
372 
373 		/* Set TX delay mode or RX suspend mode */
374 		if (endpoint->toward_ipa)
375 			ipa_endpoint_program_delay(endpoint, enable);
376 		else
377 			(void)ipa_endpoint_program_suspend(endpoint, enable);
378 	}
379 }
380 
381 /* Reset all modem endpoints to use the default exception endpoint */
ipa_endpoint_modem_exception_reset_all(struct ipa * ipa)382 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
383 {
384 	u32 initialized = ipa->initialized;
385 	struct gsi_trans *trans;
386 	u32 count;
387 
388 	/* We need one command per modem TX endpoint.  We can get an upper
389 	 * bound on that by assuming all initialized endpoints are modem->IPA.
390 	 * That won't happen, and we could be more precise, but this is fine
391 	 * for now.  End the transaction with commands to clear the pipeline.
392 	 */
393 	count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
394 	trans = ipa_cmd_trans_alloc(ipa, count);
395 	if (!trans) {
396 		dev_err(&ipa->pdev->dev,
397 			"no transaction to reset modem exception endpoints\n");
398 		return -EBUSY;
399 	}
400 
401 	while (initialized) {
402 		u32 endpoint_id = __ffs(initialized);
403 		struct ipa_endpoint *endpoint;
404 		u32 offset;
405 
406 		initialized ^= BIT(endpoint_id);
407 
408 		/* We only reset modem TX endpoints */
409 		endpoint = &ipa->endpoint[endpoint_id];
410 		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
411 			continue;
412 
413 		offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
414 
415 		/* Value written is 0, and all bits are updated.  That
416 		 * means status is disabled on the endpoint, and as a
417 		 * result all other fields in the register are ignored.
418 		 */
419 		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
420 	}
421 
422 	ipa_cmd_pipeline_clear_add(trans);
423 
424 	/* XXX This should have a 1 second timeout */
425 	gsi_trans_commit_wait(trans);
426 
427 	ipa_cmd_pipeline_clear_wait(ipa);
428 
429 	return 0;
430 }
431 
ipa_endpoint_init_cfg(struct ipa_endpoint * endpoint)432 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
433 {
434 	u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
435 	enum ipa_cs_offload_en enabled;
436 	u32 val = 0;
437 
438 	/* FRAG_OFFLOAD_EN is 0 */
439 	if (endpoint->data->checksum) {
440 		enum ipa_version version = endpoint->ipa->version;
441 
442 		if (endpoint->toward_ipa) {
443 			u32 checksum_offset;
444 
445 			/* Checksum header offset is in 4-byte units */
446 			checksum_offset = sizeof(struct rmnet_map_header);
447 			checksum_offset /= sizeof(u32);
448 			val |= u32_encode_bits(checksum_offset,
449 					       CS_METADATA_HDR_OFFSET_FMASK);
450 
451 			enabled = version < IPA_VERSION_4_5
452 					? IPA_CS_OFFLOAD_UL
453 					: IPA_CS_OFFLOAD_INLINE;
454 		} else {
455 			enabled = version < IPA_VERSION_4_5
456 					? IPA_CS_OFFLOAD_DL
457 					: IPA_CS_OFFLOAD_INLINE;
458 		}
459 	} else {
460 		enabled = IPA_CS_OFFLOAD_NONE;
461 	}
462 	val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
463 	/* CS_GEN_QMB_MASTER_SEL is 0 */
464 
465 	iowrite32(val, endpoint->ipa->reg_virt + offset);
466 }
467 
ipa_endpoint_init_nat(struct ipa_endpoint * endpoint)468 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
469 {
470 	u32 offset;
471 	u32 val;
472 
473 	if (!endpoint->toward_ipa)
474 		return;
475 
476 	offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
477 	val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
478 
479 	iowrite32(val, endpoint->ipa->reg_virt + offset);
480 }
481 
482 static u32
ipa_qmap_header_size(enum ipa_version version,struct ipa_endpoint * endpoint)483 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
484 {
485 	u32 header_size = sizeof(struct rmnet_map_header);
486 
487 	/* Without checksum offload, we just have the MAP header */
488 	if (!endpoint->data->checksum)
489 		return header_size;
490 
491 	if (version < IPA_VERSION_4_5) {
492 		/* Checksum header inserted for AP TX endpoints only */
493 		if (endpoint->toward_ipa)
494 			header_size += sizeof(struct rmnet_map_ul_csum_header);
495 	} else {
496 		/* Checksum header is used in both directions */
497 		header_size += sizeof(struct rmnet_map_v5_csum_header);
498 	}
499 
500 	return header_size;
501 }
502 
503 /**
504  * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
505  * @endpoint:	Endpoint pointer
506  *
507  * We program QMAP endpoints so each packet received is preceded by a QMAP
508  * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
509  * packet size field, and we have the IPA hardware populate both for each
510  * received packet.  The header is configured (in the HDR_EXT register)
511  * to use big endian format.
512  *
513  * The packet size is written into the QMAP header's pkt_len field.  That
514  * location is defined here using the HDR_OFST_PKT_SIZE field.
515  *
516  * The mux_id comes from a 4-byte metadata value supplied with each packet
517  * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
518  * value that we want, in its low-order byte.  A bitmask defined in the
519  * endpoint's METADATA_MASK register defines which byte within the modem
520  * metadata contains the mux_id.  And the OFST_METADATA field programmed
521  * here indicates where the extracted byte should be placed within the QMAP
522  * header.
523  */
ipa_endpoint_init_hdr(struct ipa_endpoint * endpoint)524 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
525 {
526 	u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
527 	struct ipa *ipa = endpoint->ipa;
528 	u32 val = 0;
529 
530 	if (endpoint->data->qmap) {
531 		enum ipa_version version = ipa->version;
532 		size_t header_size;
533 
534 		header_size = ipa_qmap_header_size(version, endpoint);
535 		val = ipa_header_size_encoded(version, header_size);
536 
537 		/* Define how to fill fields in a received QMAP header */
538 		if (!endpoint->toward_ipa) {
539 			u32 offset;	/* Field offset within header */
540 
541 			/* Where IPA will write the metadata value */
542 			offset = offsetof(struct rmnet_map_header, mux_id);
543 			val |= ipa_metadata_offset_encoded(version, offset);
544 
545 			/* Where IPA will write the length */
546 			offset = offsetof(struct rmnet_map_header, pkt_len);
547 			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
548 			if (version >= IPA_VERSION_4_5)
549 				offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
550 
551 			val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
552 			val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
553 		}
554 		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
555 		val |= HDR_OFST_METADATA_VALID_FMASK;
556 
557 		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
558 		/* HDR_A5_MUX is 0 */
559 		/* HDR_LEN_INC_DEAGG_HDR is 0 */
560 		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
561 	}
562 
563 	iowrite32(val, ipa->reg_virt + offset);
564 }
565 
ipa_endpoint_init_hdr_ext(struct ipa_endpoint * endpoint)566 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
567 {
568 	u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
569 	u32 pad_align = endpoint->data->rx.pad_align;
570 	struct ipa *ipa = endpoint->ipa;
571 	u32 val = 0;
572 
573 	if (endpoint->data->qmap) {
574 		/* We have a header, so we must specify its endianness */
575 		val |= HDR_ENDIANNESS_FMASK;	/* big endian */
576 
577 		/* A QMAP header contains a 6 bit pad field at offset 0.
578 		 * The RMNet driver assumes this field is meaningful in
579 		 * packets it receives, and assumes the header's payload
580 		 * length includes that padding.  The RMNet driver does
581 		 * *not* pad packets it sends, however, so the pad field
582 		 * (although 0) should be ignored.
583 		 */
584 		if (!endpoint->toward_ipa) {
585 			val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
586 			/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
587 			val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
588 			/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
589 		}
590 	}
591 
592 	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
593 	if (!endpoint->toward_ipa)
594 		val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
595 
596 	/* IPA v4.5 adds some most-significant bits to a few fields,
597 	 * two of which are defined in the HDR (not HDR_EXT) register.
598 	 */
599 	if (ipa->version >= IPA_VERSION_4_5) {
600 		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
601 		if (endpoint->data->qmap && !endpoint->toward_ipa) {
602 			u32 offset;
603 
604 			offset = offsetof(struct rmnet_map_header, pkt_len);
605 			offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
606 			val |= u32_encode_bits(offset,
607 					       HDR_OFST_PKT_SIZE_MSB_FMASK);
608 			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
609 		}
610 	}
611 	iowrite32(val, ipa->reg_virt + offset);
612 }
613 
ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint * endpoint)614 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
615 {
616 	u32 endpoint_id = endpoint->endpoint_id;
617 	u32 val = 0;
618 	u32 offset;
619 
620 	if (endpoint->toward_ipa)
621 		return;		/* Register not valid for TX endpoints */
622 
623 	offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
624 
625 	/* Note that HDR_ENDIANNESS indicates big endian header fields */
626 	if (endpoint->data->qmap)
627 		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
628 
629 	iowrite32(val, endpoint->ipa->reg_virt + offset);
630 }
631 
ipa_endpoint_init_mode(struct ipa_endpoint * endpoint)632 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
633 {
634 	u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
635 	u32 val;
636 
637 	if (!endpoint->toward_ipa)
638 		return;		/* Register not valid for RX endpoints */
639 
640 	if (endpoint->data->dma_mode) {
641 		enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
642 		u32 dma_endpoint_id;
643 
644 		dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
645 
646 		val = u32_encode_bits(IPA_DMA, MODE_FMASK);
647 		val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
648 	} else {
649 		val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
650 	}
651 	/* All other bits unspecified (and 0) */
652 
653 	iowrite32(val, endpoint->ipa->reg_virt + offset);
654 }
655 
656 /* Compute the aggregation size value to use for a given buffer size */
ipa_aggr_size_kb(u32 rx_buffer_size)657 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
658 {
659 	/* We don't use "hard byte limit" aggregation, so we define the
660 	 * aggregation limit such that our buffer has enough space *after*
661 	 * that limit to receive a full MTU of data, plus overhead.
662 	 */
663 	rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
664 
665 	return rx_buffer_size / SZ_1K;
666 }
667 
668 /* Encoded values for AGGR endpoint register fields */
aggr_byte_limit_encoded(enum ipa_version version,u32 limit)669 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
670 {
671 	if (version < IPA_VERSION_4_5)
672 		return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
673 
674 	return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
675 }
676 
677 /* Encode the aggregation timer limit (microseconds) based on IPA version */
aggr_time_limit_encoded(enum ipa_version version,u32 limit)678 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
679 {
680 	u32 gran_sel;
681 	u32 fmask;
682 	u32 val;
683 
684 	if (version < IPA_VERSION_4_5) {
685 		/* We set aggregation granularity in ipa_hardware_config() */
686 		limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
687 
688 		return u32_encode_bits(limit, aggr_time_limit_fmask(true));
689 	}
690 
691 	/* IPA v4.5 expresses the time limit using Qtime.  The AP has
692 	 * pulse generators 0 and 1 available, which were configured
693 	 * in ipa_qtime_config() to have granularity 100 usec and
694 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
695 	 * otherwise fall back to pulse generator 1.
696 	 */
697 	fmask = aggr_time_limit_fmask(false);
698 	val = DIV_ROUND_CLOSEST(limit, 100);
699 	if (val > field_max(fmask)) {
700 		/* Have to use pulse generator 1 (millisecond granularity) */
701 		gran_sel = AGGR_GRAN_SEL_FMASK;
702 		val = DIV_ROUND_CLOSEST(limit, 1000);
703 	} else {
704 		/* We can use pulse generator 0 (100 usec granularity) */
705 		gran_sel = 0;
706 	}
707 
708 	return gran_sel | u32_encode_bits(val, fmask);
709 }
710 
aggr_sw_eof_active_encoded(enum ipa_version version,bool enabled)711 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
712 {
713 	u32 val = enabled ? 1 : 0;
714 
715 	if (version < IPA_VERSION_4_5)
716 		return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
717 
718 	return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
719 }
720 
ipa_endpoint_init_aggr(struct ipa_endpoint * endpoint)721 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
722 {
723 	u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
724 	enum ipa_version version = endpoint->ipa->version;
725 	u32 val = 0;
726 
727 	if (endpoint->data->aggregation) {
728 		if (!endpoint->toward_ipa) {
729 			u32 buffer_size;
730 			bool close_eof;
731 			u32 limit;
732 
733 			val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
734 			val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
735 
736 			buffer_size = IPA_RX_BUFFER_SIZE - NET_SKB_PAD;
737 			limit = ipa_aggr_size_kb(buffer_size);
738 			val |= aggr_byte_limit_encoded(version, limit);
739 
740 			limit = IPA_AGGR_TIME_LIMIT;
741 			val |= aggr_time_limit_encoded(version, limit);
742 
743 			/* AGGR_PKT_LIMIT is 0 (unlimited) */
744 
745 			close_eof = endpoint->data->rx.aggr_close_eof;
746 			val |= aggr_sw_eof_active_encoded(version, close_eof);
747 		} else {
748 			val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
749 					       AGGR_EN_FMASK);
750 			val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
751 			/* other fields ignored */
752 		}
753 		/* AGGR_FORCE_CLOSE is 0 */
754 		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
755 	} else {
756 		val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
757 		/* other fields ignored */
758 	}
759 
760 	iowrite32(val, endpoint->ipa->reg_virt + offset);
761 }
762 
763 /* Return the Qtime-based head-of-line blocking timer value that
764  * represents the given number of microseconds.  The result
765  * includes both the timer value and the selected timer granularity.
766  */
hol_block_timer_qtime_val(struct ipa * ipa,u32 microseconds)767 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
768 {
769 	u32 gran_sel;
770 	u32 val;
771 
772 	/* IPA v4.5 expresses time limits using Qtime.  The AP has
773 	 * pulse generators 0 and 1 available, which were configured
774 	 * in ipa_qtime_config() to have granularity 100 usec and
775 	 * 1 msec, respectively.  Use pulse generator 0 if possible,
776 	 * otherwise fall back to pulse generator 1.
777 	 */
778 	val = DIV_ROUND_CLOSEST(microseconds, 100);
779 	if (val > field_max(TIME_LIMIT_FMASK)) {
780 		/* Have to use pulse generator 1 (millisecond granularity) */
781 		gran_sel = GRAN_SEL_FMASK;
782 		val = DIV_ROUND_CLOSEST(microseconds, 1000);
783 	} else {
784 		/* We can use pulse generator 0 (100 usec granularity) */
785 		gran_sel = 0;
786 	}
787 
788 	return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
789 }
790 
791 /* The head-of-line blocking timer is defined as a tick count.  For
792  * IPA version 4.5 the tick count is based on the Qtimer, which is
793  * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
794  * each tick represents 128 cycles of the IPA core clock.
795  *
796  * Return the encoded value that should be written to that register
797  * that represents the timeout period provided.  For IPA v4.2 this
798  * encodes a base and scale value, while for earlier versions the
799  * value is a simple tick count.
800  */
hol_block_timer_val(struct ipa * ipa,u32 microseconds)801 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
802 {
803 	u32 width;
804 	u32 scale;
805 	u64 ticks;
806 	u64 rate;
807 	u32 high;
808 	u32 val;
809 
810 	if (!microseconds)
811 		return 0;	/* Nothing to compute if timer period is 0 */
812 
813 	if (ipa->version >= IPA_VERSION_4_5)
814 		return hol_block_timer_qtime_val(ipa, microseconds);
815 
816 	/* Use 64 bit arithmetic to avoid overflow... */
817 	rate = ipa_core_clock_rate(ipa);
818 	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
819 	/* ...but we still need to fit into a 32-bit register */
820 	WARN_ON(ticks > U32_MAX);
821 
822 	/* IPA v3.5.1 through v4.1 just record the tick count */
823 	if (ipa->version < IPA_VERSION_4_2)
824 		return (u32)ticks;
825 
826 	/* For IPA v4.2, the tick count is represented by base and
827 	 * scale fields within the 32-bit timer register, where:
828 	 *     ticks = base << scale;
829 	 * The best precision is achieved when the base value is as
830 	 * large as possible.  Find the highest set bit in the tick
831 	 * count, and extract the number of bits in the base field
832 	 * such that high bit is included.
833 	 */
834 	high = fls(ticks);		/* 1..32 */
835 	width = HWEIGHT32(BASE_VALUE_FMASK);
836 	scale = high > width ? high - width : 0;
837 	if (scale) {
838 		/* If we're scaling, round up to get a closer result */
839 		ticks += 1 << (scale - 1);
840 		/* High bit was set, so rounding might have affected it */
841 		if (fls(ticks) != high)
842 			scale++;
843 	}
844 
845 	val = u32_encode_bits(scale, SCALE_FMASK);
846 	val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
847 
848 	return val;
849 }
850 
851 /* If microseconds is 0, timeout is immediate */
ipa_endpoint_init_hol_block_timer(struct ipa_endpoint * endpoint,u32 microseconds)852 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
853 					      u32 microseconds)
854 {
855 	u32 endpoint_id = endpoint->endpoint_id;
856 	struct ipa *ipa = endpoint->ipa;
857 	u32 offset;
858 	u32 val;
859 
860 	/* This should only be changed when HOL_BLOCK_EN is disabled */
861 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
862 	val = hol_block_timer_val(ipa, microseconds);
863 	iowrite32(val, ipa->reg_virt + offset);
864 }
865 
866 static void
ipa_endpoint_init_hol_block_enable(struct ipa_endpoint * endpoint,bool enable)867 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
868 {
869 	u32 endpoint_id = endpoint->endpoint_id;
870 	u32 offset;
871 	u32 val;
872 
873 	val = enable ? HOL_BLOCK_EN_FMASK : 0;
874 	offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
875 	iowrite32(val, endpoint->ipa->reg_virt + offset);
876 	/* When enabling, the register must be written twice for IPA v4.5+ */
877 	if (enable && endpoint->ipa->version >= IPA_VERSION_4_5)
878 		iowrite32(val, endpoint->ipa->reg_virt + offset);
879 }
880 
ipa_endpoint_modem_hol_block_clear_all(struct ipa * ipa)881 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
882 {
883 	u32 i;
884 
885 	for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
886 		struct ipa_endpoint *endpoint = &ipa->endpoint[i];
887 
888 		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
889 			continue;
890 
891 		ipa_endpoint_init_hol_block_enable(endpoint, false);
892 		ipa_endpoint_init_hol_block_timer(endpoint, 0);
893 		ipa_endpoint_init_hol_block_enable(endpoint, true);
894 	}
895 }
896 
ipa_endpoint_init_deaggr(struct ipa_endpoint * endpoint)897 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
898 {
899 	u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
900 	u32 val = 0;
901 
902 	if (!endpoint->toward_ipa)
903 		return;		/* Register not valid for RX endpoints */
904 
905 	/* DEAGGR_HDR_LEN is 0 */
906 	/* PACKET_OFFSET_VALID is 0 */
907 	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
908 	/* MAX_PACKET_LEN is 0 (not enforced) */
909 
910 	iowrite32(val, endpoint->ipa->reg_virt + offset);
911 }
912 
ipa_endpoint_init_rsrc_grp(struct ipa_endpoint * endpoint)913 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
914 {
915 	u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
916 	struct ipa *ipa = endpoint->ipa;
917 	u32 val;
918 
919 	val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
920 	iowrite32(val, ipa->reg_virt + offset);
921 }
922 
ipa_endpoint_init_seq(struct ipa_endpoint * endpoint)923 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
924 {
925 	u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
926 	u32 val = 0;
927 
928 	if (!endpoint->toward_ipa)
929 		return;		/* Register not valid for RX endpoints */
930 
931 	/* Low-order byte configures primary packet processing */
932 	val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
933 
934 	/* Second byte configures replicated packet processing */
935 	val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
936 			       SEQ_REP_TYPE_FMASK);
937 
938 	iowrite32(val, endpoint->ipa->reg_virt + offset);
939 }
940 
941 /**
942  * ipa_endpoint_skb_tx() - Transmit a socket buffer
943  * @endpoint:	Endpoint pointer
944  * @skb:	Socket buffer to send
945  *
946  * Returns:	0 if successful, or a negative error code
947  */
ipa_endpoint_skb_tx(struct ipa_endpoint * endpoint,struct sk_buff * skb)948 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
949 {
950 	struct gsi_trans *trans;
951 	u32 nr_frags;
952 	int ret;
953 
954 	/* Make sure source endpoint's TLV FIFO has enough entries to
955 	 * hold the linear portion of the skb and all its fragments.
956 	 * If not, see if we can linearize it before giving up.
957 	 */
958 	nr_frags = skb_shinfo(skb)->nr_frags;
959 	if (1 + nr_frags > endpoint->trans_tre_max) {
960 		if (skb_linearize(skb))
961 			return -E2BIG;
962 		nr_frags = 0;
963 	}
964 
965 	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
966 	if (!trans)
967 		return -EBUSY;
968 
969 	ret = gsi_trans_skb_add(trans, skb);
970 	if (ret)
971 		goto err_trans_free;
972 	trans->data = skb;	/* transaction owns skb now */
973 
974 	gsi_trans_commit(trans, !netdev_xmit_more());
975 
976 	return 0;
977 
978 err_trans_free:
979 	gsi_trans_free(trans);
980 
981 	return -ENOMEM;
982 }
983 
ipa_endpoint_status(struct ipa_endpoint * endpoint)984 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
985 {
986 	u32 endpoint_id = endpoint->endpoint_id;
987 	struct ipa *ipa = endpoint->ipa;
988 	u32 val = 0;
989 	u32 offset;
990 
991 	offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
992 
993 	if (endpoint->data->status_enable) {
994 		val |= STATUS_EN_FMASK;
995 		if (endpoint->toward_ipa) {
996 			enum ipa_endpoint_name name;
997 			u32 status_endpoint_id;
998 
999 			name = endpoint->data->tx.status_endpoint;
1000 			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1001 
1002 			val |= u32_encode_bits(status_endpoint_id,
1003 					       STATUS_ENDP_FMASK);
1004 		}
1005 		/* STATUS_LOCATION is 0, meaning status element precedes
1006 		 * packet (not present for IPA v4.5)
1007 		 */
1008 		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1009 	}
1010 
1011 	iowrite32(val, ipa->reg_virt + offset);
1012 }
1013 
ipa_endpoint_replenish_one(struct ipa_endpoint * endpoint)1014 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1015 {
1016 	struct gsi_trans *trans;
1017 	bool doorbell = false;
1018 	struct page *page;
1019 	u32 offset;
1020 	u32 len;
1021 	int ret;
1022 
1023 	page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1024 	if (!page)
1025 		return -ENOMEM;
1026 
1027 	trans = ipa_endpoint_trans_alloc(endpoint, 1);
1028 	if (!trans)
1029 		goto err_free_pages;
1030 
1031 	/* Offset the buffer to make space for skb headroom */
1032 	offset = NET_SKB_PAD;
1033 	len = IPA_RX_BUFFER_SIZE - offset;
1034 
1035 	ret = gsi_trans_page_add(trans, page, len, offset);
1036 	if (ret)
1037 		goto err_trans_free;
1038 	trans->data = page;	/* transaction owns page now */
1039 
1040 	if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1041 		doorbell = true;
1042 		endpoint->replenish_ready = 0;
1043 	}
1044 
1045 	gsi_trans_commit(trans, doorbell);
1046 
1047 	return 0;
1048 
1049 err_trans_free:
1050 	gsi_trans_free(trans);
1051 err_free_pages:
1052 	put_page(page);
1053 
1054 	return -ENOMEM;
1055 }
1056 
1057 /**
1058  * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1059  * @endpoint:	Endpoint to be replenished
1060  * @add_one:	Whether this is replacing a just-consumed buffer
1061  *
1062  * The IPA hardware can hold a fixed number of receive buffers for an RX
1063  * endpoint, based on the number of entries in the underlying channel ring
1064  * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1065  * more receive buffers can be supplied to the hardware.  Replenishing for
1066  * an endpoint can be disabled, in which case requests to replenish a
1067  * buffer are "saved", and transferred to the backlog once it is re-enabled
1068  * again.
1069  */
ipa_endpoint_replenish(struct ipa_endpoint * endpoint,bool add_one)1070 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1071 {
1072 	struct gsi *gsi;
1073 	u32 backlog;
1074 	int delta;
1075 
1076 	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) {
1077 		if (add_one)
1078 			atomic_inc(&endpoint->replenish_saved);
1079 		return;
1080 	}
1081 
1082 	/* If already active, just update the backlog */
1083 	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags)) {
1084 		if (add_one)
1085 			atomic_inc(&endpoint->replenish_backlog);
1086 		return;
1087 	}
1088 
1089 	while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1090 		if (ipa_endpoint_replenish_one(endpoint))
1091 			goto try_again_later;
1092 
1093 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1094 
1095 	if (add_one)
1096 		atomic_inc(&endpoint->replenish_backlog);
1097 
1098 	return;
1099 
1100 try_again_later:
1101 	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1102 
1103 	/* The last one didn't succeed, so fix the backlog */
1104 	delta = add_one ? 2 : 1;
1105 	backlog = atomic_add_return(delta, &endpoint->replenish_backlog);
1106 
1107 	/* Whenever a receive buffer transaction completes we'll try to
1108 	 * replenish again.  It's unlikely, but if we fail to supply even
1109 	 * one buffer, nothing will trigger another replenish attempt.
1110 	 * Receive buffer transactions use one TRE, so schedule work to
1111 	 * try replenishing again if our backlog is *all* available TREs.
1112 	 */
1113 	gsi = &endpoint->ipa->gsi;
1114 	if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1115 		schedule_delayed_work(&endpoint->replenish_work,
1116 				      msecs_to_jiffies(1));
1117 }
1118 
ipa_endpoint_replenish_enable(struct ipa_endpoint * endpoint)1119 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1120 {
1121 	struct gsi *gsi = &endpoint->ipa->gsi;
1122 	u32 max_backlog;
1123 	u32 saved;
1124 
1125 	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1126 	while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1127 		atomic_add(saved, &endpoint->replenish_backlog);
1128 
1129 	/* Start replenishing if hardware currently has no buffers */
1130 	max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1131 	if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1132 		ipa_endpoint_replenish(endpoint, false);
1133 }
1134 
ipa_endpoint_replenish_disable(struct ipa_endpoint * endpoint)1135 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1136 {
1137 	u32 backlog;
1138 
1139 	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1140 	while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1141 		atomic_add(backlog, &endpoint->replenish_saved);
1142 }
1143 
ipa_endpoint_replenish_work(struct work_struct * work)1144 static void ipa_endpoint_replenish_work(struct work_struct *work)
1145 {
1146 	struct delayed_work *dwork = to_delayed_work(work);
1147 	struct ipa_endpoint *endpoint;
1148 
1149 	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1150 
1151 	ipa_endpoint_replenish(endpoint, false);
1152 }
1153 
ipa_endpoint_skb_copy(struct ipa_endpoint * endpoint,void * data,u32 len,u32 extra)1154 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1155 				  void *data, u32 len, u32 extra)
1156 {
1157 	struct sk_buff *skb;
1158 
1159 	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1160 	if (skb) {
1161 		skb_put(skb, len);
1162 		memcpy(skb->data, data, len);
1163 		skb->truesize += extra;
1164 	}
1165 
1166 	/* Now receive it, or drop it if there's no netdev */
1167 	if (endpoint->netdev)
1168 		ipa_modem_skb_rx(endpoint->netdev, skb);
1169 	else if (skb)
1170 		dev_kfree_skb_any(skb);
1171 }
1172 
ipa_endpoint_skb_build(struct ipa_endpoint * endpoint,struct page * page,u32 len)1173 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1174 				   struct page *page, u32 len)
1175 {
1176 	struct sk_buff *skb;
1177 
1178 	/* Nothing to do if there's no netdev */
1179 	if (!endpoint->netdev)
1180 		return false;
1181 
1182 	WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD));
1183 
1184 	skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1185 	if (skb) {
1186 		/* Reserve the headroom and account for the data */
1187 		skb_reserve(skb, NET_SKB_PAD);
1188 		skb_put(skb, len);
1189 	}
1190 
1191 	/* Receive the buffer (or record drop if unable to build it) */
1192 	ipa_modem_skb_rx(endpoint->netdev, skb);
1193 
1194 	return skb != NULL;
1195 }
1196 
1197 /* The format of a packet status element is the same for several status
1198  * types (opcodes).  Other types aren't currently supported.
1199  */
ipa_status_format_packet(enum ipa_status_opcode opcode)1200 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1201 {
1202 	switch (opcode) {
1203 	case IPA_STATUS_OPCODE_PACKET:
1204 	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1205 	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1206 	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1207 		return true;
1208 	default:
1209 		return false;
1210 	}
1211 }
1212 
ipa_endpoint_status_skip(struct ipa_endpoint * endpoint,const struct ipa_status * status)1213 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1214 				     const struct ipa_status *status)
1215 {
1216 	u32 endpoint_id;
1217 
1218 	if (!ipa_status_format_packet(status->opcode))
1219 		return true;
1220 	if (!status->pkt_len)
1221 		return true;
1222 	endpoint_id = u8_get_bits(status->endp_dst_idx,
1223 				  IPA_STATUS_DST_IDX_FMASK);
1224 	if (endpoint_id != endpoint->endpoint_id)
1225 		return true;
1226 
1227 	return false;	/* Don't skip this packet, process it */
1228 }
1229 
ipa_endpoint_status_tag(struct ipa_endpoint * endpoint,const struct ipa_status * status)1230 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1231 				    const struct ipa_status *status)
1232 {
1233 	struct ipa_endpoint *command_endpoint;
1234 	struct ipa *ipa = endpoint->ipa;
1235 	u32 endpoint_id;
1236 
1237 	if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1238 		return false;	/* No valid tag */
1239 
1240 	/* The status contains a valid tag.  We know the packet was sent to
1241 	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1242 	 * If the packet came from the AP->command TX endpoint we know
1243 	 * this packet was sent as part of the pipeline clear process.
1244 	 */
1245 	endpoint_id = u8_get_bits(status->endp_src_idx,
1246 				  IPA_STATUS_SRC_IDX_FMASK);
1247 	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1248 	if (endpoint_id == command_endpoint->endpoint_id) {
1249 		complete(&ipa->completion);
1250 	} else {
1251 		dev_err(&ipa->pdev->dev,
1252 			"unexpected tagged packet from endpoint %u\n",
1253 			endpoint_id);
1254 	}
1255 
1256 	return true;
1257 }
1258 
1259 /* Return whether the status indicates the packet should be dropped */
ipa_endpoint_status_drop(struct ipa_endpoint * endpoint,const struct ipa_status * status)1260 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1261 				     const struct ipa_status *status)
1262 {
1263 	u32 val;
1264 
1265 	/* If the status indicates a tagged transfer, we'll drop the packet */
1266 	if (ipa_endpoint_status_tag(endpoint, status))
1267 		return true;
1268 
1269 	/* Deaggregation exceptions we drop; all other types we consume */
1270 	if (status->exception)
1271 		return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1272 
1273 	/* Drop the packet if it fails to match a routing rule; otherwise no */
1274 	val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1275 
1276 	return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1277 }
1278 
ipa_endpoint_status_parse(struct ipa_endpoint * endpoint,struct page * page,u32 total_len)1279 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1280 				      struct page *page, u32 total_len)
1281 {
1282 	void *data = page_address(page) + NET_SKB_PAD;
1283 	u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1284 	u32 resid = total_len;
1285 
1286 	while (resid) {
1287 		const struct ipa_status *status = data;
1288 		u32 align;
1289 		u32 len;
1290 
1291 		if (resid < sizeof(*status)) {
1292 			dev_err(&endpoint->ipa->pdev->dev,
1293 				"short message (%u bytes < %zu byte status)\n",
1294 				resid, sizeof(*status));
1295 			break;
1296 		}
1297 
1298 		/* Skip over status packets that lack packet data */
1299 		if (ipa_endpoint_status_skip(endpoint, status)) {
1300 			data += sizeof(*status);
1301 			resid -= sizeof(*status);
1302 			continue;
1303 		}
1304 
1305 		/* Compute the amount of buffer space consumed by the packet,
1306 		 * including the status element.  If the hardware is configured
1307 		 * to pad packet data to an aligned boundary, account for that.
1308 		 * And if checksum offload is enabled a trailer containing
1309 		 * computed checksum information will be appended.
1310 		 */
1311 		align = endpoint->data->rx.pad_align ? : 1;
1312 		len = le16_to_cpu(status->pkt_len);
1313 		len = sizeof(*status) + ALIGN(len, align);
1314 		if (endpoint->data->checksum)
1315 			len += sizeof(struct rmnet_map_dl_csum_trailer);
1316 
1317 		if (!ipa_endpoint_status_drop(endpoint, status)) {
1318 			void *data2;
1319 			u32 extra;
1320 			u32 len2;
1321 
1322 			/* Client receives only packet data (no status) */
1323 			data2 = data + sizeof(*status);
1324 			len2 = le16_to_cpu(status->pkt_len);
1325 
1326 			/* Have the true size reflect the extra unused space in
1327 			 * the original receive buffer.  Distribute the "cost"
1328 			 * proportionately across all aggregated packets in the
1329 			 * buffer.
1330 			 */
1331 			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1332 			ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1333 		}
1334 
1335 		/* Consume status and the full packet it describes */
1336 		data += len;
1337 		resid -= len;
1338 	}
1339 }
1340 
1341 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
ipa_endpoint_tx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1342 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1343 				     struct gsi_trans *trans)
1344 {
1345 }
1346 
1347 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
ipa_endpoint_rx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1348 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1349 				     struct gsi_trans *trans)
1350 {
1351 	struct page *page;
1352 
1353 	ipa_endpoint_replenish(endpoint, true);
1354 
1355 	if (trans->cancelled)
1356 		return;
1357 
1358 	/* Parse or build a socket buffer using the actual received length */
1359 	page = trans->data;
1360 	if (endpoint->data->status_enable)
1361 		ipa_endpoint_status_parse(endpoint, page, trans->len);
1362 	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1363 		trans->data = NULL;	/* Pages have been consumed */
1364 }
1365 
ipa_endpoint_trans_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1366 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1367 				 struct gsi_trans *trans)
1368 {
1369 	if (endpoint->toward_ipa)
1370 		ipa_endpoint_tx_complete(endpoint, trans);
1371 	else
1372 		ipa_endpoint_rx_complete(endpoint, trans);
1373 }
1374 
ipa_endpoint_trans_release(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1375 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1376 				struct gsi_trans *trans)
1377 {
1378 	if (endpoint->toward_ipa) {
1379 		struct ipa *ipa = endpoint->ipa;
1380 
1381 		/* Nothing to do for command transactions */
1382 		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1383 			struct sk_buff *skb = trans->data;
1384 
1385 			if (skb)
1386 				dev_kfree_skb_any(skb);
1387 		}
1388 	} else {
1389 		struct page *page = trans->data;
1390 
1391 		if (page)
1392 			put_page(page);
1393 	}
1394 }
1395 
ipa_endpoint_default_route_set(struct ipa * ipa,u32 endpoint_id)1396 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1397 {
1398 	u32 val;
1399 
1400 	/* ROUTE_DIS is 0 */
1401 	val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1402 	val |= ROUTE_DEF_HDR_TABLE_FMASK;
1403 	val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1404 	val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1405 	val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1406 
1407 	iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1408 }
1409 
ipa_endpoint_default_route_clear(struct ipa * ipa)1410 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1411 {
1412 	ipa_endpoint_default_route_set(ipa, 0);
1413 }
1414 
1415 /**
1416  * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1417  * @endpoint:	Endpoint to be reset
1418  *
1419  * If aggregation is active on an RX endpoint when a reset is performed
1420  * on its underlying GSI channel, a special sequence of actions must be
1421  * taken to ensure the IPA pipeline is properly cleared.
1422  *
1423  * Return:	0 if successful, or a negative error code
1424  */
ipa_endpoint_reset_rx_aggr(struct ipa_endpoint * endpoint)1425 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1426 {
1427 	struct device *dev = &endpoint->ipa->pdev->dev;
1428 	struct ipa *ipa = endpoint->ipa;
1429 	struct gsi *gsi = &ipa->gsi;
1430 	bool suspended = false;
1431 	dma_addr_t addr;
1432 	u32 retries;
1433 	u32 len = 1;
1434 	void *virt;
1435 	int ret;
1436 
1437 	virt = kzalloc(len, GFP_KERNEL);
1438 	if (!virt)
1439 		return -ENOMEM;
1440 
1441 	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1442 	if (dma_mapping_error(dev, addr)) {
1443 		ret = -ENOMEM;
1444 		goto out_kfree;
1445 	}
1446 
1447 	/* Force close aggregation before issuing the reset */
1448 	ipa_endpoint_force_close(endpoint);
1449 
1450 	/* Reset and reconfigure the channel with the doorbell engine
1451 	 * disabled.  Then poll until we know aggregation is no longer
1452 	 * active.  We'll re-enable the doorbell (if appropriate) when
1453 	 * we reset again below.
1454 	 */
1455 	gsi_channel_reset(gsi, endpoint->channel_id, false);
1456 
1457 	/* Make sure the channel isn't suspended */
1458 	suspended = ipa_endpoint_program_suspend(endpoint, false);
1459 
1460 	/* Start channel and do a 1 byte read */
1461 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1462 	if (ret)
1463 		goto out_suspend_again;
1464 
1465 	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1466 	if (ret)
1467 		goto err_endpoint_stop;
1468 
1469 	/* Wait for aggregation to be closed on the channel */
1470 	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1471 	do {
1472 		if (!ipa_endpoint_aggr_active(endpoint))
1473 			break;
1474 		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1475 	} while (retries--);
1476 
1477 	/* Check one last time */
1478 	if (ipa_endpoint_aggr_active(endpoint))
1479 		dev_err(dev, "endpoint %u still active during reset\n",
1480 			endpoint->endpoint_id);
1481 
1482 	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1483 
1484 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1485 	if (ret)
1486 		goto out_suspend_again;
1487 
1488 	/* Finally, reset and reconfigure the channel again (re-enabling
1489 	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1490 	 * complete the channel reset sequence.  Finish by suspending the
1491 	 * channel again (if necessary).
1492 	 */
1493 	gsi_channel_reset(gsi, endpoint->channel_id, true);
1494 
1495 	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1496 
1497 	goto out_suspend_again;
1498 
1499 err_endpoint_stop:
1500 	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1501 out_suspend_again:
1502 	if (suspended)
1503 		(void)ipa_endpoint_program_suspend(endpoint, true);
1504 	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1505 out_kfree:
1506 	kfree(virt);
1507 
1508 	return ret;
1509 }
1510 
ipa_endpoint_reset(struct ipa_endpoint * endpoint)1511 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1512 {
1513 	u32 channel_id = endpoint->channel_id;
1514 	struct ipa *ipa = endpoint->ipa;
1515 	bool special;
1516 	int ret = 0;
1517 
1518 	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1519 	 * is active, we need to handle things specially to recover.
1520 	 * All other cases just need to reset the underlying GSI channel.
1521 	 */
1522 	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1523 			endpoint->data->aggregation;
1524 	if (special && ipa_endpoint_aggr_active(endpoint))
1525 		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1526 	else
1527 		gsi_channel_reset(&ipa->gsi, channel_id, true);
1528 
1529 	if (ret)
1530 		dev_err(&ipa->pdev->dev,
1531 			"error %d resetting channel %u for endpoint %u\n",
1532 			ret, endpoint->channel_id, endpoint->endpoint_id);
1533 }
1534 
ipa_endpoint_program(struct ipa_endpoint * endpoint)1535 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1536 {
1537 	if (endpoint->toward_ipa)
1538 		ipa_endpoint_program_delay(endpoint, false);
1539 	else
1540 		(void)ipa_endpoint_program_suspend(endpoint, false);
1541 	ipa_endpoint_init_cfg(endpoint);
1542 	ipa_endpoint_init_nat(endpoint);
1543 	ipa_endpoint_init_hdr(endpoint);
1544 	ipa_endpoint_init_hdr_ext(endpoint);
1545 	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1546 	ipa_endpoint_init_mode(endpoint);
1547 	ipa_endpoint_init_aggr(endpoint);
1548 	ipa_endpoint_init_deaggr(endpoint);
1549 	ipa_endpoint_init_rsrc_grp(endpoint);
1550 	ipa_endpoint_init_seq(endpoint);
1551 	ipa_endpoint_status(endpoint);
1552 }
1553 
ipa_endpoint_enable_one(struct ipa_endpoint * endpoint)1554 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1555 {
1556 	struct ipa *ipa = endpoint->ipa;
1557 	struct gsi *gsi = &ipa->gsi;
1558 	int ret;
1559 
1560 	ret = gsi_channel_start(gsi, endpoint->channel_id);
1561 	if (ret) {
1562 		dev_err(&ipa->pdev->dev,
1563 			"error %d starting %cX channel %u for endpoint %u\n",
1564 			ret, endpoint->toward_ipa ? 'T' : 'R',
1565 			endpoint->channel_id, endpoint->endpoint_id);
1566 		return ret;
1567 	}
1568 
1569 	if (!endpoint->toward_ipa) {
1570 		ipa_interrupt_suspend_enable(ipa->interrupt,
1571 					     endpoint->endpoint_id);
1572 		ipa_endpoint_replenish_enable(endpoint);
1573 	}
1574 
1575 	ipa->enabled |= BIT(endpoint->endpoint_id);
1576 
1577 	return 0;
1578 }
1579 
ipa_endpoint_disable_one(struct ipa_endpoint * endpoint)1580 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1581 {
1582 	u32 mask = BIT(endpoint->endpoint_id);
1583 	struct ipa *ipa = endpoint->ipa;
1584 	struct gsi *gsi = &ipa->gsi;
1585 	int ret;
1586 
1587 	if (!(ipa->enabled & mask))
1588 		return;
1589 
1590 	ipa->enabled ^= mask;
1591 
1592 	if (!endpoint->toward_ipa) {
1593 		ipa_endpoint_replenish_disable(endpoint);
1594 		ipa_interrupt_suspend_disable(ipa->interrupt,
1595 					      endpoint->endpoint_id);
1596 	}
1597 
1598 	/* Note that if stop fails, the channel's state is not well-defined */
1599 	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1600 	if (ret)
1601 		dev_err(&ipa->pdev->dev,
1602 			"error %d attempting to stop endpoint %u\n", ret,
1603 			endpoint->endpoint_id);
1604 }
1605 
ipa_endpoint_suspend_one(struct ipa_endpoint * endpoint)1606 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1607 {
1608 	struct device *dev = &endpoint->ipa->pdev->dev;
1609 	struct gsi *gsi = &endpoint->ipa->gsi;
1610 	int ret;
1611 
1612 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1613 		return;
1614 
1615 	if (!endpoint->toward_ipa) {
1616 		ipa_endpoint_replenish_disable(endpoint);
1617 		(void)ipa_endpoint_program_suspend(endpoint, true);
1618 	}
1619 
1620 	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1621 	if (ret)
1622 		dev_err(dev, "error %d suspending channel %u\n", ret,
1623 			endpoint->channel_id);
1624 }
1625 
ipa_endpoint_resume_one(struct ipa_endpoint * endpoint)1626 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1627 {
1628 	struct device *dev = &endpoint->ipa->pdev->dev;
1629 	struct gsi *gsi = &endpoint->ipa->gsi;
1630 	int ret;
1631 
1632 	if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1633 		return;
1634 
1635 	if (!endpoint->toward_ipa)
1636 		(void)ipa_endpoint_program_suspend(endpoint, false);
1637 
1638 	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1639 	if (ret)
1640 		dev_err(dev, "error %d resuming channel %u\n", ret,
1641 			endpoint->channel_id);
1642 	else if (!endpoint->toward_ipa)
1643 		ipa_endpoint_replenish_enable(endpoint);
1644 }
1645 
ipa_endpoint_suspend(struct ipa * ipa)1646 void ipa_endpoint_suspend(struct ipa *ipa)
1647 {
1648 	if (!ipa->setup_complete)
1649 		return;
1650 
1651 	if (ipa->modem_netdev)
1652 		ipa_modem_suspend(ipa->modem_netdev);
1653 
1654 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1655 	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1656 }
1657 
ipa_endpoint_resume(struct ipa * ipa)1658 void ipa_endpoint_resume(struct ipa *ipa)
1659 {
1660 	if (!ipa->setup_complete)
1661 		return;
1662 
1663 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1664 	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1665 
1666 	if (ipa->modem_netdev)
1667 		ipa_modem_resume(ipa->modem_netdev);
1668 }
1669 
ipa_endpoint_setup_one(struct ipa_endpoint * endpoint)1670 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1671 {
1672 	struct gsi *gsi = &endpoint->ipa->gsi;
1673 	u32 channel_id = endpoint->channel_id;
1674 
1675 	/* Only AP endpoints get set up */
1676 	if (endpoint->ee_id != GSI_EE_AP)
1677 		return;
1678 
1679 	endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1680 	if (!endpoint->toward_ipa) {
1681 		/* RX transactions require a single TRE, so the maximum
1682 		 * backlog is the same as the maximum outstanding TREs.
1683 		 */
1684 		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1685 		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1686 		atomic_set(&endpoint->replenish_saved,
1687 			   gsi_channel_tre_max(gsi, endpoint->channel_id));
1688 		atomic_set(&endpoint->replenish_backlog, 0);
1689 		INIT_DELAYED_WORK(&endpoint->replenish_work,
1690 				  ipa_endpoint_replenish_work);
1691 	}
1692 
1693 	ipa_endpoint_program(endpoint);
1694 
1695 	endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1696 }
1697 
ipa_endpoint_teardown_one(struct ipa_endpoint * endpoint)1698 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1699 {
1700 	endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1701 
1702 	if (!endpoint->toward_ipa)
1703 		cancel_delayed_work_sync(&endpoint->replenish_work);
1704 
1705 	ipa_endpoint_reset(endpoint);
1706 }
1707 
ipa_endpoint_setup(struct ipa * ipa)1708 void ipa_endpoint_setup(struct ipa *ipa)
1709 {
1710 	u32 initialized = ipa->initialized;
1711 
1712 	ipa->set_up = 0;
1713 	while (initialized) {
1714 		u32 endpoint_id = __ffs(initialized);
1715 
1716 		initialized ^= BIT(endpoint_id);
1717 
1718 		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1719 	}
1720 }
1721 
ipa_endpoint_teardown(struct ipa * ipa)1722 void ipa_endpoint_teardown(struct ipa *ipa)
1723 {
1724 	u32 set_up = ipa->set_up;
1725 
1726 	while (set_up) {
1727 		u32 endpoint_id = __fls(set_up);
1728 
1729 		set_up ^= BIT(endpoint_id);
1730 
1731 		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1732 	}
1733 	ipa->set_up = 0;
1734 }
1735 
ipa_endpoint_config(struct ipa * ipa)1736 int ipa_endpoint_config(struct ipa *ipa)
1737 {
1738 	struct device *dev = &ipa->pdev->dev;
1739 	u32 initialized;
1740 	u32 rx_base;
1741 	u32 rx_mask;
1742 	u32 tx_mask;
1743 	int ret = 0;
1744 	u32 max;
1745 	u32 val;
1746 
1747 	/* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1748 	 * Furthermore, the endpoints were not grouped such that TX
1749 	 * endpoint numbers started with 0 and RX endpoints had numbers
1750 	 * higher than all TX endpoints, so we can't do the simple
1751 	 * direction check used for newer hardware below.
1752 	 *
1753 	 * For hardware that doesn't support the FLAVOR_0 register,
1754 	 * just set the available mask to support any endpoint, and
1755 	 * assume the configuration is valid.
1756 	 */
1757 	if (ipa->version < IPA_VERSION_3_5) {
1758 		ipa->available = ~0;
1759 		return 0;
1760 	}
1761 
1762 	/* Find out about the endpoints supplied by the hardware, and ensure
1763 	 * the highest one doesn't exceed the number we support.
1764 	 */
1765 	val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1766 
1767 	/* Our RX is an IPA producer */
1768 	rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1769 	max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1770 	if (max > IPA_ENDPOINT_MAX) {
1771 		dev_err(dev, "too many endpoints (%u > %u)\n",
1772 			max, IPA_ENDPOINT_MAX);
1773 		return -EINVAL;
1774 	}
1775 	rx_mask = GENMASK(max - 1, rx_base);
1776 
1777 	/* Our TX is an IPA consumer */
1778 	max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1779 	tx_mask = GENMASK(max - 1, 0);
1780 
1781 	ipa->available = rx_mask | tx_mask;
1782 
1783 	/* Check for initialized endpoints not supported by the hardware */
1784 	if (ipa->initialized & ~ipa->available) {
1785 		dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1786 			ipa->initialized & ~ipa->available);
1787 		ret = -EINVAL;		/* Report other errors too */
1788 	}
1789 
1790 	initialized = ipa->initialized;
1791 	while (initialized) {
1792 		u32 endpoint_id = __ffs(initialized);
1793 		struct ipa_endpoint *endpoint;
1794 
1795 		initialized ^= BIT(endpoint_id);
1796 
1797 		/* Make sure it's pointing in the right direction */
1798 		endpoint = &ipa->endpoint[endpoint_id];
1799 		if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1800 			dev_err(dev, "endpoint id %u wrong direction\n",
1801 				endpoint_id);
1802 			ret = -EINVAL;
1803 		}
1804 	}
1805 
1806 	return ret;
1807 }
1808 
ipa_endpoint_deconfig(struct ipa * ipa)1809 void ipa_endpoint_deconfig(struct ipa *ipa)
1810 {
1811 	ipa->available = 0;	/* Nothing more to do */
1812 }
1813 
ipa_endpoint_init_one(struct ipa * ipa,enum ipa_endpoint_name name,const struct ipa_gsi_endpoint_data * data)1814 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1815 				  const struct ipa_gsi_endpoint_data *data)
1816 {
1817 	struct ipa_endpoint *endpoint;
1818 
1819 	endpoint = &ipa->endpoint[data->endpoint_id];
1820 
1821 	if (data->ee_id == GSI_EE_AP)
1822 		ipa->channel_map[data->channel_id] = endpoint;
1823 	ipa->name_map[name] = endpoint;
1824 
1825 	endpoint->ipa = ipa;
1826 	endpoint->ee_id = data->ee_id;
1827 	endpoint->channel_id = data->channel_id;
1828 	endpoint->endpoint_id = data->endpoint_id;
1829 	endpoint->toward_ipa = data->toward_ipa;
1830 	endpoint->data = &data->endpoint.config;
1831 
1832 	ipa->initialized |= BIT(endpoint->endpoint_id);
1833 }
1834 
ipa_endpoint_exit_one(struct ipa_endpoint * endpoint)1835 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1836 {
1837 	endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1838 
1839 	memset(endpoint, 0, sizeof(*endpoint));
1840 }
1841 
ipa_endpoint_exit(struct ipa * ipa)1842 void ipa_endpoint_exit(struct ipa *ipa)
1843 {
1844 	u32 initialized = ipa->initialized;
1845 
1846 	while (initialized) {
1847 		u32 endpoint_id = __fls(initialized);
1848 
1849 		initialized ^= BIT(endpoint_id);
1850 
1851 		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1852 	}
1853 	memset(ipa->name_map, 0, sizeof(ipa->name_map));
1854 	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1855 }
1856 
1857 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
ipa_endpoint_init(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)1858 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1859 		      const struct ipa_gsi_endpoint_data *data)
1860 {
1861 	enum ipa_endpoint_name name;
1862 	u32 filter_map;
1863 
1864 	if (!ipa_endpoint_data_valid(ipa, count, data))
1865 		return 0;	/* Error */
1866 
1867 	ipa->initialized = 0;
1868 
1869 	filter_map = 0;
1870 	for (name = 0; name < count; name++, data++) {
1871 		if (ipa_gsi_endpoint_data_empty(data))
1872 			continue;	/* Skip over empty slots */
1873 
1874 		ipa_endpoint_init_one(ipa, name, data);
1875 
1876 		if (data->endpoint.filter_support)
1877 			filter_map |= BIT(data->endpoint_id);
1878 	}
1879 
1880 	if (!ipa_filter_map_valid(ipa, filter_map))
1881 		goto err_endpoint_exit;
1882 
1883 	return filter_map;	/* Non-zero bitmask */
1884 
1885 err_endpoint_exit:
1886 	ipa_endpoint_exit(ipa);
1887 
1888 	return 0;	/* Error */
1889 }
1890