1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ipmi_si.c
4 *
5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6 * BT).
7 *
8 * Author: MontaVista Software, Inc.
9 * Corey Minyard <minyard@mvista.com>
10 * source@mvista.com
11 *
12 * Copyright 2002 MontaVista Software Inc.
13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 */
15
16 /*
17 * This file holds the "policy" for the interface to the SMI state
18 * machine. It does the configuration, handles timers and interrupts,
19 * and drives the real SMI state machine.
20 */
21
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include "ipmi_si_sm.h"
44 #include <linux/string.h>
45 #include <linux/ctype.h>
46
47 /* Measure times between events in the driver. */
48 #undef DEBUG_TIMING
49
50 /* Call every 10 ms. */
51 #define SI_TIMEOUT_TIME_USEC 10000
52 #define SI_USEC_PER_JIFFY (1000000/HZ)
53 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
54 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
55 short timeout */
56
57 enum si_intf_state {
58 SI_NORMAL,
59 SI_GETTING_FLAGS,
60 SI_GETTING_EVENTS,
61 SI_CLEARING_FLAGS,
62 SI_GETTING_MESSAGES,
63 SI_CHECKING_ENABLES,
64 SI_SETTING_ENABLES
65 /* FIXME - add watchdog stuff. */
66 };
67
68 /* Some BT-specific defines we need here. */
69 #define IPMI_BT_INTMASK_REG 2
70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
72
73 /* 'invalid' to allow a firmware-specified interface to be disabled */
74 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL };
75
76 static bool initialized;
77
78 /*
79 * Indexes into stats[] in smi_info below.
80 */
81 enum si_stat_indexes {
82 /*
83 * Number of times the driver requested a timer while an operation
84 * was in progress.
85 */
86 SI_STAT_short_timeouts = 0,
87
88 /*
89 * Number of times the driver requested a timer while nothing was in
90 * progress.
91 */
92 SI_STAT_long_timeouts,
93
94 /* Number of times the interface was idle while being polled. */
95 SI_STAT_idles,
96
97 /* Number of interrupts the driver handled. */
98 SI_STAT_interrupts,
99
100 /* Number of time the driver got an ATTN from the hardware. */
101 SI_STAT_attentions,
102
103 /* Number of times the driver requested flags from the hardware. */
104 SI_STAT_flag_fetches,
105
106 /* Number of times the hardware didn't follow the state machine. */
107 SI_STAT_hosed_count,
108
109 /* Number of completed messages. */
110 SI_STAT_complete_transactions,
111
112 /* Number of IPMI events received from the hardware. */
113 SI_STAT_events,
114
115 /* Number of watchdog pretimeouts. */
116 SI_STAT_watchdog_pretimeouts,
117
118 /* Number of asynchronous messages received. */
119 SI_STAT_incoming_messages,
120
121
122 /* This *must* remain last, add new values above this. */
123 SI_NUM_STATS
124 };
125
126 struct smi_info {
127 int si_num;
128 struct ipmi_smi *intf;
129 struct si_sm_data *si_sm;
130 const struct si_sm_handlers *handlers;
131 spinlock_t si_lock;
132 struct ipmi_smi_msg *waiting_msg;
133 struct ipmi_smi_msg *curr_msg;
134 enum si_intf_state si_state;
135
136 /*
137 * Used to handle the various types of I/O that can occur with
138 * IPMI
139 */
140 struct si_sm_io io;
141
142 /*
143 * Per-OEM handler, called from handle_flags(). Returns 1
144 * when handle_flags() needs to be re-run or 0 indicating it
145 * set si_state itself.
146 */
147 int (*oem_data_avail_handler)(struct smi_info *smi_info);
148
149 /*
150 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
151 * is set to hold the flags until we are done handling everything
152 * from the flags.
153 */
154 #define RECEIVE_MSG_AVAIL 0x01
155 #define EVENT_MSG_BUFFER_FULL 0x02
156 #define WDT_PRE_TIMEOUT_INT 0x08
157 #define OEM0_DATA_AVAIL 0x20
158 #define OEM1_DATA_AVAIL 0x40
159 #define OEM2_DATA_AVAIL 0x80
160 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
161 OEM1_DATA_AVAIL | \
162 OEM2_DATA_AVAIL)
163 unsigned char msg_flags;
164
165 /* Does the BMC have an event buffer? */
166 bool has_event_buffer;
167
168 /*
169 * If set to true, this will request events the next time the
170 * state machine is idle.
171 */
172 atomic_t req_events;
173
174 /*
175 * If true, run the state machine to completion on every send
176 * call. Generally used after a panic to make sure stuff goes
177 * out.
178 */
179 bool run_to_completion;
180
181 /* The timer for this si. */
182 struct timer_list si_timer;
183
184 /* This flag is set, if the timer can be set */
185 bool timer_can_start;
186
187 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
188 bool timer_running;
189
190 /* The time (in jiffies) the last timeout occurred at. */
191 unsigned long last_timeout_jiffies;
192
193 /* Are we waiting for the events, pretimeouts, received msgs? */
194 atomic_t need_watch;
195
196 /*
197 * The driver will disable interrupts when it gets into a
198 * situation where it cannot handle messages due to lack of
199 * memory. Once that situation clears up, it will re-enable
200 * interrupts.
201 */
202 bool interrupt_disabled;
203
204 /*
205 * Does the BMC support events?
206 */
207 bool supports_event_msg_buff;
208
209 /*
210 * Can we disable interrupts the global enables receive irq
211 * bit? There are currently two forms of brokenness, some
212 * systems cannot disable the bit (which is technically within
213 * the spec but a bad idea) and some systems have the bit
214 * forced to zero even though interrupts work (which is
215 * clearly outside the spec). The next bool tells which form
216 * of brokenness is present.
217 */
218 bool cannot_disable_irq;
219
220 /*
221 * Some systems are broken and cannot set the irq enable
222 * bit, even if they support interrupts.
223 */
224 bool irq_enable_broken;
225
226 /* Is the driver in maintenance mode? */
227 bool in_maintenance_mode;
228
229 /*
230 * Did we get an attention that we did not handle?
231 */
232 bool got_attn;
233
234 /* From the get device id response... */
235 struct ipmi_device_id device_id;
236
237 /* Have we added the device group to the device? */
238 bool dev_group_added;
239
240 /* Counters and things for the proc filesystem. */
241 atomic_t stats[SI_NUM_STATS];
242
243 struct task_struct *thread;
244
245 struct list_head link;
246 };
247
248 #define smi_inc_stat(smi, stat) \
249 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
250 #define smi_get_stat(smi, stat) \
251 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
252
253 #define IPMI_MAX_INTFS 4
254 static int force_kipmid[IPMI_MAX_INTFS];
255 static int num_force_kipmid;
256
257 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
258 static int num_max_busy_us;
259
260 static bool unload_when_empty = true;
261
262 static int try_smi_init(struct smi_info *smi);
263 static void cleanup_one_si(struct smi_info *smi_info);
264 static void cleanup_ipmi_si(void);
265
266 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)267 void debug_timestamp(char *msg)
268 {
269 struct timespec64 t;
270
271 ktime_get_ts64(&t);
272 pr_debug("**%s: %lld.%9.9ld\n", msg, t.tv_sec, t.tv_nsec);
273 }
274 #else
275 #define debug_timestamp(x)
276 #endif
277
278 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)279 static int register_xaction_notifier(struct notifier_block *nb)
280 {
281 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
282 }
283
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)284 static void deliver_recv_msg(struct smi_info *smi_info,
285 struct ipmi_smi_msg *msg)
286 {
287 /* Deliver the message to the upper layer. */
288 ipmi_smi_msg_received(smi_info->intf, msg);
289 }
290
return_hosed_msg(struct smi_info * smi_info,int cCode)291 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
292 {
293 struct ipmi_smi_msg *msg = smi_info->curr_msg;
294
295 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
296 cCode = IPMI_ERR_UNSPECIFIED;
297 /* else use it as is */
298
299 /* Make it a response */
300 msg->rsp[0] = msg->data[0] | 4;
301 msg->rsp[1] = msg->data[1];
302 msg->rsp[2] = cCode;
303 msg->rsp_size = 3;
304
305 smi_info->curr_msg = NULL;
306 deliver_recv_msg(smi_info, msg);
307 }
308
start_next_msg(struct smi_info * smi_info)309 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
310 {
311 int rv;
312
313 if (!smi_info->waiting_msg) {
314 smi_info->curr_msg = NULL;
315 rv = SI_SM_IDLE;
316 } else {
317 int err;
318
319 smi_info->curr_msg = smi_info->waiting_msg;
320 smi_info->waiting_msg = NULL;
321 debug_timestamp("Start2");
322 err = atomic_notifier_call_chain(&xaction_notifier_list,
323 0, smi_info);
324 if (err & NOTIFY_STOP_MASK) {
325 rv = SI_SM_CALL_WITHOUT_DELAY;
326 goto out;
327 }
328 err = smi_info->handlers->start_transaction(
329 smi_info->si_sm,
330 smi_info->curr_msg->data,
331 smi_info->curr_msg->data_size);
332 if (err)
333 return_hosed_msg(smi_info, err);
334
335 rv = SI_SM_CALL_WITHOUT_DELAY;
336 }
337 out:
338 return rv;
339 }
340
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)341 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
342 {
343 if (!smi_info->timer_can_start)
344 return;
345 smi_info->last_timeout_jiffies = jiffies;
346 mod_timer(&smi_info->si_timer, new_val);
347 smi_info->timer_running = true;
348 }
349
350 /*
351 * Start a new message and (re)start the timer and thread.
352 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)353 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
354 unsigned int size)
355 {
356 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
357
358 if (smi_info->thread)
359 wake_up_process(smi_info->thread);
360
361 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
362 }
363
start_check_enables(struct smi_info * smi_info)364 static void start_check_enables(struct smi_info *smi_info)
365 {
366 unsigned char msg[2];
367
368 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
369 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
370
371 start_new_msg(smi_info, msg, 2);
372 smi_info->si_state = SI_CHECKING_ENABLES;
373 }
374
start_clear_flags(struct smi_info * smi_info)375 static void start_clear_flags(struct smi_info *smi_info)
376 {
377 unsigned char msg[3];
378
379 /* Make sure the watchdog pre-timeout flag is not set at startup. */
380 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
381 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
382 msg[2] = WDT_PRE_TIMEOUT_INT;
383
384 start_new_msg(smi_info, msg, 3);
385 smi_info->si_state = SI_CLEARING_FLAGS;
386 }
387
start_getting_msg_queue(struct smi_info * smi_info)388 static void start_getting_msg_queue(struct smi_info *smi_info)
389 {
390 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
391 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
392 smi_info->curr_msg->data_size = 2;
393
394 start_new_msg(smi_info, smi_info->curr_msg->data,
395 smi_info->curr_msg->data_size);
396 smi_info->si_state = SI_GETTING_MESSAGES;
397 }
398
start_getting_events(struct smi_info * smi_info)399 static void start_getting_events(struct smi_info *smi_info)
400 {
401 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
402 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
403 smi_info->curr_msg->data_size = 2;
404
405 start_new_msg(smi_info, smi_info->curr_msg->data,
406 smi_info->curr_msg->data_size);
407 smi_info->si_state = SI_GETTING_EVENTS;
408 }
409
410 /*
411 * When we have a situtaion where we run out of memory and cannot
412 * allocate messages, we just leave them in the BMC and run the system
413 * polled until we can allocate some memory. Once we have some
414 * memory, we will re-enable the interrupt.
415 *
416 * Note that we cannot just use disable_irq(), since the interrupt may
417 * be shared.
418 */
disable_si_irq(struct smi_info * smi_info)419 static inline bool disable_si_irq(struct smi_info *smi_info)
420 {
421 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
422 smi_info->interrupt_disabled = true;
423 start_check_enables(smi_info);
424 return true;
425 }
426 return false;
427 }
428
enable_si_irq(struct smi_info * smi_info)429 static inline bool enable_si_irq(struct smi_info *smi_info)
430 {
431 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
432 smi_info->interrupt_disabled = false;
433 start_check_enables(smi_info);
434 return true;
435 }
436 return false;
437 }
438
439 /*
440 * Allocate a message. If unable to allocate, start the interrupt
441 * disable process and return NULL. If able to allocate but
442 * interrupts are disabled, free the message and return NULL after
443 * starting the interrupt enable process.
444 */
alloc_msg_handle_irq(struct smi_info * smi_info)445 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
446 {
447 struct ipmi_smi_msg *msg;
448
449 msg = ipmi_alloc_smi_msg();
450 if (!msg) {
451 if (!disable_si_irq(smi_info))
452 smi_info->si_state = SI_NORMAL;
453 } else if (enable_si_irq(smi_info)) {
454 ipmi_free_smi_msg(msg);
455 msg = NULL;
456 }
457 return msg;
458 }
459
handle_flags(struct smi_info * smi_info)460 static void handle_flags(struct smi_info *smi_info)
461 {
462 retry:
463 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
464 /* Watchdog pre-timeout */
465 smi_inc_stat(smi_info, watchdog_pretimeouts);
466
467 start_clear_flags(smi_info);
468 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
469 ipmi_smi_watchdog_pretimeout(smi_info->intf);
470 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
471 /* Messages available. */
472 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
473 if (!smi_info->curr_msg)
474 return;
475
476 start_getting_msg_queue(smi_info);
477 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
478 /* Events available. */
479 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
480 if (!smi_info->curr_msg)
481 return;
482
483 start_getting_events(smi_info);
484 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
485 smi_info->oem_data_avail_handler) {
486 if (smi_info->oem_data_avail_handler(smi_info))
487 goto retry;
488 } else
489 smi_info->si_state = SI_NORMAL;
490 }
491
492 /*
493 * Global enables we care about.
494 */
495 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
496 IPMI_BMC_EVT_MSG_INTR)
497
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)498 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
499 bool *irq_on)
500 {
501 u8 enables = 0;
502
503 if (smi_info->supports_event_msg_buff)
504 enables |= IPMI_BMC_EVT_MSG_BUFF;
505
506 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
507 smi_info->cannot_disable_irq) &&
508 !smi_info->irq_enable_broken)
509 enables |= IPMI_BMC_RCV_MSG_INTR;
510
511 if (smi_info->supports_event_msg_buff &&
512 smi_info->io.irq && !smi_info->interrupt_disabled &&
513 !smi_info->irq_enable_broken)
514 enables |= IPMI_BMC_EVT_MSG_INTR;
515
516 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
517
518 return enables;
519 }
520
check_bt_irq(struct smi_info * smi_info,bool irq_on)521 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
522 {
523 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
524
525 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
526
527 if ((bool)irqstate == irq_on)
528 return;
529
530 if (irq_on)
531 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
532 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
533 else
534 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
535 }
536
handle_transaction_done(struct smi_info * smi_info)537 static void handle_transaction_done(struct smi_info *smi_info)
538 {
539 struct ipmi_smi_msg *msg;
540
541 debug_timestamp("Done");
542 switch (smi_info->si_state) {
543 case SI_NORMAL:
544 if (!smi_info->curr_msg)
545 break;
546
547 smi_info->curr_msg->rsp_size
548 = smi_info->handlers->get_result(
549 smi_info->si_sm,
550 smi_info->curr_msg->rsp,
551 IPMI_MAX_MSG_LENGTH);
552
553 /*
554 * Do this here becase deliver_recv_msg() releases the
555 * lock, and a new message can be put in during the
556 * time the lock is released.
557 */
558 msg = smi_info->curr_msg;
559 smi_info->curr_msg = NULL;
560 deliver_recv_msg(smi_info, msg);
561 break;
562
563 case SI_GETTING_FLAGS:
564 {
565 unsigned char msg[4];
566 unsigned int len;
567
568 /* We got the flags from the SMI, now handle them. */
569 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
570 if (msg[2] != 0) {
571 /* Error fetching flags, just give up for now. */
572 smi_info->si_state = SI_NORMAL;
573 } else if (len < 4) {
574 /*
575 * Hmm, no flags. That's technically illegal, but
576 * don't use uninitialized data.
577 */
578 smi_info->si_state = SI_NORMAL;
579 } else {
580 smi_info->msg_flags = msg[3];
581 handle_flags(smi_info);
582 }
583 break;
584 }
585
586 case SI_CLEARING_FLAGS:
587 {
588 unsigned char msg[3];
589
590 /* We cleared the flags. */
591 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
592 if (msg[2] != 0) {
593 /* Error clearing flags */
594 dev_warn_ratelimited(smi_info->io.dev,
595 "Error clearing flags: %2.2x\n", msg[2]);
596 }
597 smi_info->si_state = SI_NORMAL;
598 break;
599 }
600
601 case SI_GETTING_EVENTS:
602 {
603 smi_info->curr_msg->rsp_size
604 = smi_info->handlers->get_result(
605 smi_info->si_sm,
606 smi_info->curr_msg->rsp,
607 IPMI_MAX_MSG_LENGTH);
608
609 /*
610 * Do this here becase deliver_recv_msg() releases the
611 * lock, and a new message can be put in during the
612 * time the lock is released.
613 */
614 msg = smi_info->curr_msg;
615 smi_info->curr_msg = NULL;
616 if (msg->rsp[2] != 0) {
617 /* Error getting event, probably done. */
618 msg->done(msg);
619
620 /* Take off the event flag. */
621 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
622 handle_flags(smi_info);
623 } else {
624 smi_inc_stat(smi_info, events);
625
626 /*
627 * Do this before we deliver the message
628 * because delivering the message releases the
629 * lock and something else can mess with the
630 * state.
631 */
632 handle_flags(smi_info);
633
634 deliver_recv_msg(smi_info, msg);
635 }
636 break;
637 }
638
639 case SI_GETTING_MESSAGES:
640 {
641 smi_info->curr_msg->rsp_size
642 = smi_info->handlers->get_result(
643 smi_info->si_sm,
644 smi_info->curr_msg->rsp,
645 IPMI_MAX_MSG_LENGTH);
646
647 /*
648 * Do this here becase deliver_recv_msg() releases the
649 * lock, and a new message can be put in during the
650 * time the lock is released.
651 */
652 msg = smi_info->curr_msg;
653 smi_info->curr_msg = NULL;
654 if (msg->rsp[2] != 0) {
655 /* Error getting event, probably done. */
656 msg->done(msg);
657
658 /* Take off the msg flag. */
659 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
660 handle_flags(smi_info);
661 } else {
662 smi_inc_stat(smi_info, incoming_messages);
663
664 /*
665 * Do this before we deliver the message
666 * because delivering the message releases the
667 * lock and something else can mess with the
668 * state.
669 */
670 handle_flags(smi_info);
671
672 deliver_recv_msg(smi_info, msg);
673 }
674 break;
675 }
676
677 case SI_CHECKING_ENABLES:
678 {
679 unsigned char msg[4];
680 u8 enables;
681 bool irq_on;
682
683 /* We got the flags from the SMI, now handle them. */
684 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
685 if (msg[2] != 0) {
686 dev_warn_ratelimited(smi_info->io.dev,
687 "Couldn't get irq info: %x,\n"
688 "Maybe ok, but ipmi might run very slowly.\n",
689 msg[2]);
690 smi_info->si_state = SI_NORMAL;
691 break;
692 }
693 enables = current_global_enables(smi_info, 0, &irq_on);
694 if (smi_info->io.si_type == SI_BT)
695 /* BT has its own interrupt enable bit. */
696 check_bt_irq(smi_info, irq_on);
697 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
698 /* Enables are not correct, fix them. */
699 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
700 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
701 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
702 smi_info->handlers->start_transaction(
703 smi_info->si_sm, msg, 3);
704 smi_info->si_state = SI_SETTING_ENABLES;
705 } else if (smi_info->supports_event_msg_buff) {
706 smi_info->curr_msg = ipmi_alloc_smi_msg();
707 if (!smi_info->curr_msg) {
708 smi_info->si_state = SI_NORMAL;
709 break;
710 }
711 start_getting_events(smi_info);
712 } else {
713 smi_info->si_state = SI_NORMAL;
714 }
715 break;
716 }
717
718 case SI_SETTING_ENABLES:
719 {
720 unsigned char msg[4];
721
722 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
723 if (msg[2] != 0)
724 dev_warn_ratelimited(smi_info->io.dev,
725 "Could not set the global enables: 0x%x.\n",
726 msg[2]);
727
728 if (smi_info->supports_event_msg_buff) {
729 smi_info->curr_msg = ipmi_alloc_smi_msg();
730 if (!smi_info->curr_msg) {
731 smi_info->si_state = SI_NORMAL;
732 break;
733 }
734 start_getting_events(smi_info);
735 } else {
736 smi_info->si_state = SI_NORMAL;
737 }
738 break;
739 }
740 }
741 }
742
743 /*
744 * Called on timeouts and events. Timeouts should pass the elapsed
745 * time, interrupts should pass in zero. Must be called with
746 * si_lock held and interrupts disabled.
747 */
smi_event_handler(struct smi_info * smi_info,int time)748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749 int time)
750 {
751 enum si_sm_result si_sm_result;
752
753 restart:
754 /*
755 * There used to be a loop here that waited a little while
756 * (around 25us) before giving up. That turned out to be
757 * pointless, the minimum delays I was seeing were in the 300us
758 * range, which is far too long to wait in an interrupt. So
759 * we just run until the state machine tells us something
760 * happened or it needs a delay.
761 */
762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763 time = 0;
764 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766
767 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768 smi_inc_stat(smi_info, complete_transactions);
769
770 handle_transaction_done(smi_info);
771 goto restart;
772 } else if (si_sm_result == SI_SM_HOSED) {
773 smi_inc_stat(smi_info, hosed_count);
774
775 /*
776 * Do the before return_hosed_msg, because that
777 * releases the lock.
778 */
779 smi_info->si_state = SI_NORMAL;
780 if (smi_info->curr_msg != NULL) {
781 /*
782 * If we were handling a user message, format
783 * a response to send to the upper layer to
784 * tell it about the error.
785 */
786 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787 }
788 goto restart;
789 }
790
791 /*
792 * We prefer handling attn over new messages. But don't do
793 * this if there is not yet an upper layer to handle anything.
794 */
795 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
796 unsigned char msg[2];
797
798 if (smi_info->si_state != SI_NORMAL) {
799 /*
800 * We got an ATTN, but we are doing something else.
801 * Handle the ATTN later.
802 */
803 smi_info->got_attn = true;
804 } else {
805 smi_info->got_attn = false;
806 smi_inc_stat(smi_info, attentions);
807
808 /*
809 * Got a attn, send down a get message flags to see
810 * what's causing it. It would be better to handle
811 * this in the upper layer, but due to the way
812 * interrupts work with the SMI, that's not really
813 * possible.
814 */
815 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
816 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
817
818 start_new_msg(smi_info, msg, 2);
819 smi_info->si_state = SI_GETTING_FLAGS;
820 goto restart;
821 }
822 }
823
824 /* If we are currently idle, try to start the next message. */
825 if (si_sm_result == SI_SM_IDLE) {
826 smi_inc_stat(smi_info, idles);
827
828 si_sm_result = start_next_msg(smi_info);
829 if (si_sm_result != SI_SM_IDLE)
830 goto restart;
831 }
832
833 if ((si_sm_result == SI_SM_IDLE)
834 && (atomic_read(&smi_info->req_events))) {
835 /*
836 * We are idle and the upper layer requested that I fetch
837 * events, so do so.
838 */
839 atomic_set(&smi_info->req_events, 0);
840
841 /*
842 * Take this opportunity to check the interrupt and
843 * message enable state for the BMC. The BMC can be
844 * asynchronously reset, and may thus get interrupts
845 * disable and messages disabled.
846 */
847 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
848 start_check_enables(smi_info);
849 } else {
850 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
851 if (!smi_info->curr_msg)
852 goto out;
853
854 start_getting_events(smi_info);
855 }
856 goto restart;
857 }
858
859 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
860 /* Ok it if fails, the timer will just go off. */
861 if (del_timer(&smi_info->si_timer))
862 smi_info->timer_running = false;
863 }
864
865 out:
866 return si_sm_result;
867 }
868
check_start_timer_thread(struct smi_info * smi_info)869 static void check_start_timer_thread(struct smi_info *smi_info)
870 {
871 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
872 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
873
874 if (smi_info->thread)
875 wake_up_process(smi_info->thread);
876
877 start_next_msg(smi_info);
878 smi_event_handler(smi_info, 0);
879 }
880 }
881
flush_messages(void * send_info)882 static void flush_messages(void *send_info)
883 {
884 struct smi_info *smi_info = send_info;
885 enum si_sm_result result;
886
887 /*
888 * Currently, this function is called only in run-to-completion
889 * mode. This means we are single-threaded, no need for locks.
890 */
891 result = smi_event_handler(smi_info, 0);
892 while (result != SI_SM_IDLE) {
893 udelay(SI_SHORT_TIMEOUT_USEC);
894 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
895 }
896 }
897
sender(void * send_info,struct ipmi_smi_msg * msg)898 static void sender(void *send_info,
899 struct ipmi_smi_msg *msg)
900 {
901 struct smi_info *smi_info = send_info;
902 unsigned long flags;
903
904 debug_timestamp("Enqueue");
905
906 if (smi_info->run_to_completion) {
907 /*
908 * If we are running to completion, start it. Upper
909 * layer will call flush_messages to clear it out.
910 */
911 smi_info->waiting_msg = msg;
912 return;
913 }
914
915 spin_lock_irqsave(&smi_info->si_lock, flags);
916 /*
917 * The following two lines don't need to be under the lock for
918 * the lock's sake, but they do need SMP memory barriers to
919 * avoid getting things out of order. We are already claiming
920 * the lock, anyway, so just do it under the lock to avoid the
921 * ordering problem.
922 */
923 BUG_ON(smi_info->waiting_msg);
924 smi_info->waiting_msg = msg;
925 check_start_timer_thread(smi_info);
926 spin_unlock_irqrestore(&smi_info->si_lock, flags);
927 }
928
set_run_to_completion(void * send_info,bool i_run_to_completion)929 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
930 {
931 struct smi_info *smi_info = send_info;
932
933 smi_info->run_to_completion = i_run_to_completion;
934 if (i_run_to_completion)
935 flush_messages(smi_info);
936 }
937
938 /*
939 * Use -1 as a special constant to tell that we are spinning in kipmid
940 * looking for something and not delaying between checks
941 */
942 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull)
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,ktime_t * busy_until)943 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result,
944 const struct smi_info *smi_info,
945 ktime_t *busy_until)
946 {
947 unsigned int max_busy_us = 0;
948
949 if (smi_info->si_num < num_max_busy_us)
950 max_busy_us = kipmid_max_busy_us[smi_info->si_num];
951 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
952 *busy_until = IPMI_TIME_NOT_BUSY;
953 else if (*busy_until == IPMI_TIME_NOT_BUSY) {
954 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC;
955 } else {
956 if (unlikely(ktime_get() > *busy_until)) {
957 *busy_until = IPMI_TIME_NOT_BUSY;
958 return false;
959 }
960 }
961 return true;
962 }
963
964
965 /*
966 * A busy-waiting loop for speeding up IPMI operation.
967 *
968 * Lousy hardware makes this hard. This is only enabled for systems
969 * that are not BT and do not have interrupts. It starts spinning
970 * when an operation is complete or until max_busy tells it to stop
971 * (if that is enabled). See the paragraph on kimid_max_busy_us in
972 * Documentation/driver-api/ipmi.rst for details.
973 */
ipmi_thread(void * data)974 static int ipmi_thread(void *data)
975 {
976 struct smi_info *smi_info = data;
977 unsigned long flags;
978 enum si_sm_result smi_result;
979 ktime_t busy_until = IPMI_TIME_NOT_BUSY;
980
981 set_user_nice(current, MAX_NICE);
982 while (!kthread_should_stop()) {
983 int busy_wait;
984
985 spin_lock_irqsave(&(smi_info->si_lock), flags);
986 smi_result = smi_event_handler(smi_info, 0);
987
988 /*
989 * If the driver is doing something, there is a possible
990 * race with the timer. If the timer handler see idle,
991 * and the thread here sees something else, the timer
992 * handler won't restart the timer even though it is
993 * required. So start it here if necessary.
994 */
995 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
996 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
997
998 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1000 &busy_until);
1001 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1002 ; /* do nothing */
1003 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1004 /*
1005 * In maintenance mode we run as fast as
1006 * possible to allow firmware updates to
1007 * complete as fast as possible, but normally
1008 * don't bang on the scheduler.
1009 */
1010 if (smi_info->in_maintenance_mode)
1011 schedule();
1012 else
1013 usleep_range(100, 200);
1014 } else if (smi_result == SI_SM_IDLE) {
1015 if (atomic_read(&smi_info->need_watch)) {
1016 schedule_timeout_interruptible(100);
1017 } else {
1018 /* Wait to be woken up when we are needed. */
1019 __set_current_state(TASK_INTERRUPTIBLE);
1020 schedule();
1021 }
1022 } else {
1023 schedule_timeout_interruptible(1);
1024 }
1025 }
1026 return 0;
1027 }
1028
1029
poll(void * send_info)1030 static void poll(void *send_info)
1031 {
1032 struct smi_info *smi_info = send_info;
1033 unsigned long flags = 0;
1034 bool run_to_completion = smi_info->run_to_completion;
1035
1036 /*
1037 * Make sure there is some delay in the poll loop so we can
1038 * drive time forward and timeout things.
1039 */
1040 udelay(10);
1041 if (!run_to_completion)
1042 spin_lock_irqsave(&smi_info->si_lock, flags);
1043 smi_event_handler(smi_info, 10);
1044 if (!run_to_completion)
1045 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1046 }
1047
request_events(void * send_info)1048 static void request_events(void *send_info)
1049 {
1050 struct smi_info *smi_info = send_info;
1051
1052 if (!smi_info->has_event_buffer)
1053 return;
1054
1055 atomic_set(&smi_info->req_events, 1);
1056 }
1057
set_need_watch(void * send_info,unsigned int watch_mask)1058 static void set_need_watch(void *send_info, unsigned int watch_mask)
1059 {
1060 struct smi_info *smi_info = send_info;
1061 unsigned long flags;
1062 int enable;
1063
1064 enable = !!watch_mask;
1065
1066 atomic_set(&smi_info->need_watch, enable);
1067 spin_lock_irqsave(&smi_info->si_lock, flags);
1068 check_start_timer_thread(smi_info);
1069 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1070 }
1071
smi_timeout(struct timer_list * t)1072 static void smi_timeout(struct timer_list *t)
1073 {
1074 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1075 enum si_sm_result smi_result;
1076 unsigned long flags;
1077 unsigned long jiffies_now;
1078 long time_diff;
1079 long timeout;
1080
1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 debug_timestamp("Timer");
1083
1084 jiffies_now = jiffies;
1085 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1086 * SI_USEC_PER_JIFFY);
1087 smi_result = smi_event_handler(smi_info, time_diff);
1088
1089 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1090 /* Running with interrupts, only do long timeouts. */
1091 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1092 smi_inc_stat(smi_info, long_timeouts);
1093 goto do_mod_timer;
1094 }
1095
1096 /*
1097 * If the state machine asks for a short delay, then shorten
1098 * the timer timeout.
1099 */
1100 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1101 smi_inc_stat(smi_info, short_timeouts);
1102 timeout = jiffies + 1;
1103 } else {
1104 smi_inc_stat(smi_info, long_timeouts);
1105 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1106 }
1107
1108 do_mod_timer:
1109 if (smi_result != SI_SM_IDLE)
1110 smi_mod_timer(smi_info, timeout);
1111 else
1112 smi_info->timer_running = false;
1113 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1114 }
1115
ipmi_si_irq_handler(int irq,void * data)1116 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1117 {
1118 struct smi_info *smi_info = data;
1119 unsigned long flags;
1120
1121 if (smi_info->io.si_type == SI_BT)
1122 /* We need to clear the IRQ flag for the BT interface. */
1123 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1124 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1125 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1126
1127 spin_lock_irqsave(&(smi_info->si_lock), flags);
1128
1129 smi_inc_stat(smi_info, interrupts);
1130
1131 debug_timestamp("Interrupt");
1132
1133 smi_event_handler(smi_info, 0);
1134 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1135 return IRQ_HANDLED;
1136 }
1137
smi_start_processing(void * send_info,struct ipmi_smi * intf)1138 static int smi_start_processing(void *send_info,
1139 struct ipmi_smi *intf)
1140 {
1141 struct smi_info *new_smi = send_info;
1142 int enable = 0;
1143
1144 new_smi->intf = intf;
1145
1146 /* Set up the timer that drives the interface. */
1147 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1148 new_smi->timer_can_start = true;
1149 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1150
1151 /* Try to claim any interrupts. */
1152 if (new_smi->io.irq_setup) {
1153 new_smi->io.irq_handler_data = new_smi;
1154 new_smi->io.irq_setup(&new_smi->io);
1155 }
1156
1157 /*
1158 * Check if the user forcefully enabled the daemon.
1159 */
1160 if (new_smi->si_num < num_force_kipmid)
1161 enable = force_kipmid[new_smi->si_num];
1162 /*
1163 * The BT interface is efficient enough to not need a thread,
1164 * and there is no need for a thread if we have interrupts.
1165 */
1166 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1167 enable = 1;
1168
1169 if (enable) {
1170 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1171 "kipmi%d", new_smi->si_num);
1172 if (IS_ERR(new_smi->thread)) {
1173 dev_notice(new_smi->io.dev,
1174 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n",
1175 PTR_ERR(new_smi->thread));
1176 new_smi->thread = NULL;
1177 }
1178 }
1179
1180 return 0;
1181 }
1182
get_smi_info(void * send_info,struct ipmi_smi_info * data)1183 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1184 {
1185 struct smi_info *smi = send_info;
1186
1187 data->addr_src = smi->io.addr_source;
1188 data->dev = smi->io.dev;
1189 data->addr_info = smi->io.addr_info;
1190 get_device(smi->io.dev);
1191
1192 return 0;
1193 }
1194
set_maintenance_mode(void * send_info,bool enable)1195 static void set_maintenance_mode(void *send_info, bool enable)
1196 {
1197 struct smi_info *smi_info = send_info;
1198
1199 if (!enable)
1200 atomic_set(&smi_info->req_events, 0);
1201 smi_info->in_maintenance_mode = enable;
1202 }
1203
1204 static void shutdown_smi(void *send_info);
1205 static const struct ipmi_smi_handlers handlers = {
1206 .owner = THIS_MODULE,
1207 .start_processing = smi_start_processing,
1208 .shutdown = shutdown_smi,
1209 .get_smi_info = get_smi_info,
1210 .sender = sender,
1211 .request_events = request_events,
1212 .set_need_watch = set_need_watch,
1213 .set_maintenance_mode = set_maintenance_mode,
1214 .set_run_to_completion = set_run_to_completion,
1215 .flush_messages = flush_messages,
1216 .poll = poll,
1217 };
1218
1219 static LIST_HEAD(smi_infos);
1220 static DEFINE_MUTEX(smi_infos_lock);
1221 static int smi_num; /* Used to sequence the SMIs */
1222
1223 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1224
1225 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1226 MODULE_PARM_DESC(force_kipmid,
1227 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm.");
1228 module_param(unload_when_empty, bool, 0);
1229 MODULE_PARM_DESC(unload_when_empty,
1230 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod.");
1231 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1232 MODULE_PARM_DESC(kipmid_max_busy_us,
1233 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time.");
1234
ipmi_irq_finish_setup(struct si_sm_io * io)1235 void ipmi_irq_finish_setup(struct si_sm_io *io)
1236 {
1237 if (io->si_type == SI_BT)
1238 /* Enable the interrupt in the BT interface. */
1239 io->outputb(io, IPMI_BT_INTMASK_REG,
1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 }
1242
ipmi_irq_start_cleanup(struct si_sm_io * io)1243 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1244 {
1245 if (io->si_type == SI_BT)
1246 /* Disable the interrupt in the BT interface. */
1247 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1248 }
1249
std_irq_cleanup(struct si_sm_io * io)1250 static void std_irq_cleanup(struct si_sm_io *io)
1251 {
1252 ipmi_irq_start_cleanup(io);
1253 free_irq(io->irq, io->irq_handler_data);
1254 }
1255
ipmi_std_irq_setup(struct si_sm_io * io)1256 int ipmi_std_irq_setup(struct si_sm_io *io)
1257 {
1258 int rv;
1259
1260 if (!io->irq)
1261 return 0;
1262
1263 rv = request_irq(io->irq,
1264 ipmi_si_irq_handler,
1265 IRQF_SHARED,
1266 SI_DEVICE_NAME,
1267 io->irq_handler_data);
1268 if (rv) {
1269 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n",
1270 SI_DEVICE_NAME, io->irq);
1271 io->irq = 0;
1272 } else {
1273 io->irq_cleanup = std_irq_cleanup;
1274 ipmi_irq_finish_setup(io);
1275 dev_info(io->dev, "Using irq %d\n", io->irq);
1276 }
1277
1278 return rv;
1279 }
1280
wait_for_msg_done(struct smi_info * smi_info)1281 static int wait_for_msg_done(struct smi_info *smi_info)
1282 {
1283 enum si_sm_result smi_result;
1284
1285 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1286 for (;;) {
1287 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1288 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1289 schedule_timeout_uninterruptible(1);
1290 smi_result = smi_info->handlers->event(
1291 smi_info->si_sm, jiffies_to_usecs(1));
1292 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1293 smi_result = smi_info->handlers->event(
1294 smi_info->si_sm, 0);
1295 } else
1296 break;
1297 }
1298 if (smi_result == SI_SM_HOSED)
1299 /*
1300 * We couldn't get the state machine to run, so whatever's at
1301 * the port is probably not an IPMI SMI interface.
1302 */
1303 return -ENODEV;
1304
1305 return 0;
1306 }
1307
try_get_dev_id(struct smi_info * smi_info)1308 static int try_get_dev_id(struct smi_info *smi_info)
1309 {
1310 unsigned char msg[2];
1311 unsigned char *resp;
1312 unsigned long resp_len;
1313 int rv = 0;
1314 unsigned int retry_count = 0;
1315
1316 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1317 if (!resp)
1318 return -ENOMEM;
1319
1320 /*
1321 * Do a Get Device ID command, since it comes back with some
1322 * useful info.
1323 */
1324 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1325 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1326
1327 retry:
1328 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1329
1330 rv = wait_for_msg_done(smi_info);
1331 if (rv)
1332 goto out;
1333
1334 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1335 resp, IPMI_MAX_MSG_LENGTH);
1336
1337 /* Check and record info from the get device id, in case we need it. */
1338 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1339 resp + 2, resp_len - 2, &smi_info->device_id);
1340 if (rv) {
1341 /* record completion code */
1342 unsigned char cc = *(resp + 2);
1343
1344 if (cc != IPMI_CC_NO_ERROR &&
1345 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
1346 dev_warn_ratelimited(smi_info->io.dev,
1347 "BMC returned 0x%2.2x, retry get bmc device id\n",
1348 cc);
1349 goto retry;
1350 }
1351 }
1352
1353 out:
1354 kfree(resp);
1355 return rv;
1356 }
1357
get_global_enables(struct smi_info * smi_info,u8 * enables)1358 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1359 {
1360 unsigned char msg[3];
1361 unsigned char *resp;
1362 unsigned long resp_len;
1363 int rv;
1364
1365 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1366 if (!resp)
1367 return -ENOMEM;
1368
1369 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1371 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1372
1373 rv = wait_for_msg_done(smi_info);
1374 if (rv) {
1375 dev_warn(smi_info->io.dev,
1376 "Error getting response from get global enables command: %d\n",
1377 rv);
1378 goto out;
1379 }
1380
1381 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1382 resp, IPMI_MAX_MSG_LENGTH);
1383
1384 if (resp_len < 4 ||
1385 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1386 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1387 resp[2] != 0) {
1388 dev_warn(smi_info->io.dev,
1389 "Invalid return from get global enables command: %ld %x %x %x\n",
1390 resp_len, resp[0], resp[1], resp[2]);
1391 rv = -EINVAL;
1392 goto out;
1393 } else {
1394 *enables = resp[3];
1395 }
1396
1397 out:
1398 kfree(resp);
1399 return rv;
1400 }
1401
1402 /*
1403 * Returns 1 if it gets an error from the command.
1404 */
set_global_enables(struct smi_info * smi_info,u8 enables)1405 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1406 {
1407 unsigned char msg[3];
1408 unsigned char *resp;
1409 unsigned long resp_len;
1410 int rv;
1411
1412 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1413 if (!resp)
1414 return -ENOMEM;
1415
1416 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1417 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1418 msg[2] = enables;
1419 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1420
1421 rv = wait_for_msg_done(smi_info);
1422 if (rv) {
1423 dev_warn(smi_info->io.dev,
1424 "Error getting response from set global enables command: %d\n",
1425 rv);
1426 goto out;
1427 }
1428
1429 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1430 resp, IPMI_MAX_MSG_LENGTH);
1431
1432 if (resp_len < 3 ||
1433 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1434 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1435 dev_warn(smi_info->io.dev,
1436 "Invalid return from set global enables command: %ld %x %x\n",
1437 resp_len, resp[0], resp[1]);
1438 rv = -EINVAL;
1439 goto out;
1440 }
1441
1442 if (resp[2] != 0)
1443 rv = 1;
1444
1445 out:
1446 kfree(resp);
1447 return rv;
1448 }
1449
1450 /*
1451 * Some BMCs do not support clearing the receive irq bit in the global
1452 * enables (even if they don't support interrupts on the BMC). Check
1453 * for this and handle it properly.
1454 */
check_clr_rcv_irq(struct smi_info * smi_info)1455 static void check_clr_rcv_irq(struct smi_info *smi_info)
1456 {
1457 u8 enables = 0;
1458 int rv;
1459
1460 rv = get_global_enables(smi_info, &enables);
1461 if (!rv) {
1462 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1463 /* Already clear, should work ok. */
1464 return;
1465
1466 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1467 rv = set_global_enables(smi_info, enables);
1468 }
1469
1470 if (rv < 0) {
1471 dev_err(smi_info->io.dev,
1472 "Cannot check clearing the rcv irq: %d\n", rv);
1473 return;
1474 }
1475
1476 if (rv) {
1477 /*
1478 * An error when setting the event buffer bit means
1479 * clearing the bit is not supported.
1480 */
1481 dev_warn(smi_info->io.dev,
1482 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1483 smi_info->cannot_disable_irq = true;
1484 }
1485 }
1486
1487 /*
1488 * Some BMCs do not support setting the interrupt bits in the global
1489 * enables even if they support interrupts. Clearly bad, but we can
1490 * compensate.
1491 */
check_set_rcv_irq(struct smi_info * smi_info)1492 static void check_set_rcv_irq(struct smi_info *smi_info)
1493 {
1494 u8 enables = 0;
1495 int rv;
1496
1497 if (!smi_info->io.irq)
1498 return;
1499
1500 rv = get_global_enables(smi_info, &enables);
1501 if (!rv) {
1502 enables |= IPMI_BMC_RCV_MSG_INTR;
1503 rv = set_global_enables(smi_info, enables);
1504 }
1505
1506 if (rv < 0) {
1507 dev_err(smi_info->io.dev,
1508 "Cannot check setting the rcv irq: %d\n", rv);
1509 return;
1510 }
1511
1512 if (rv) {
1513 /*
1514 * An error when setting the event buffer bit means
1515 * setting the bit is not supported.
1516 */
1517 dev_warn(smi_info->io.dev,
1518 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1519 smi_info->cannot_disable_irq = true;
1520 smi_info->irq_enable_broken = true;
1521 }
1522 }
1523
try_enable_event_buffer(struct smi_info * smi_info)1524 static int try_enable_event_buffer(struct smi_info *smi_info)
1525 {
1526 unsigned char msg[3];
1527 unsigned char *resp;
1528 unsigned long resp_len;
1529 int rv = 0;
1530
1531 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1532 if (!resp)
1533 return -ENOMEM;
1534
1535 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1536 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1537 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1538
1539 rv = wait_for_msg_done(smi_info);
1540 if (rv) {
1541 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1542 goto out;
1543 }
1544
1545 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1546 resp, IPMI_MAX_MSG_LENGTH);
1547
1548 if (resp_len < 4 ||
1549 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1550 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1551 resp[2] != 0) {
1552 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1553 rv = -EINVAL;
1554 goto out;
1555 }
1556
1557 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1558 /* buffer is already enabled, nothing to do. */
1559 smi_info->supports_event_msg_buff = true;
1560 goto out;
1561 }
1562
1563 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1564 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1565 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1566 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1567
1568 rv = wait_for_msg_done(smi_info);
1569 if (rv) {
1570 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1571 goto out;
1572 }
1573
1574 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1575 resp, IPMI_MAX_MSG_LENGTH);
1576
1577 if (resp_len < 3 ||
1578 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1579 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1580 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1581 rv = -EINVAL;
1582 goto out;
1583 }
1584
1585 if (resp[2] != 0)
1586 /*
1587 * An error when setting the event buffer bit means
1588 * that the event buffer is not supported.
1589 */
1590 rv = -ENOENT;
1591 else
1592 smi_info->supports_event_msg_buff = true;
1593
1594 out:
1595 kfree(resp);
1596 return rv;
1597 }
1598
1599 #define IPMI_SI_ATTR(name) \
1600 static ssize_t name##_show(struct device *dev, \
1601 struct device_attribute *attr, \
1602 char *buf) \
1603 { \
1604 struct smi_info *smi_info = dev_get_drvdata(dev); \
1605 \
1606 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1607 } \
1608 static DEVICE_ATTR_RO(name)
1609
type_show(struct device * dev,struct device_attribute * attr,char * buf)1610 static ssize_t type_show(struct device *dev,
1611 struct device_attribute *attr,
1612 char *buf)
1613 {
1614 struct smi_info *smi_info = dev_get_drvdata(dev);
1615
1616 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1617 }
1618 static DEVICE_ATTR_RO(type);
1619
interrupts_enabled_show(struct device * dev,struct device_attribute * attr,char * buf)1620 static ssize_t interrupts_enabled_show(struct device *dev,
1621 struct device_attribute *attr,
1622 char *buf)
1623 {
1624 struct smi_info *smi_info = dev_get_drvdata(dev);
1625 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1626
1627 return snprintf(buf, 10, "%d\n", enabled);
1628 }
1629 static DEVICE_ATTR_RO(interrupts_enabled);
1630
1631 IPMI_SI_ATTR(short_timeouts);
1632 IPMI_SI_ATTR(long_timeouts);
1633 IPMI_SI_ATTR(idles);
1634 IPMI_SI_ATTR(interrupts);
1635 IPMI_SI_ATTR(attentions);
1636 IPMI_SI_ATTR(flag_fetches);
1637 IPMI_SI_ATTR(hosed_count);
1638 IPMI_SI_ATTR(complete_transactions);
1639 IPMI_SI_ATTR(events);
1640 IPMI_SI_ATTR(watchdog_pretimeouts);
1641 IPMI_SI_ATTR(incoming_messages);
1642
params_show(struct device * dev,struct device_attribute * attr,char * buf)1643 static ssize_t params_show(struct device *dev,
1644 struct device_attribute *attr,
1645 char *buf)
1646 {
1647 struct smi_info *smi_info = dev_get_drvdata(dev);
1648
1649 return snprintf(buf, 200,
1650 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1651 si_to_str[smi_info->io.si_type],
1652 addr_space_to_str[smi_info->io.addr_space],
1653 smi_info->io.addr_data,
1654 smi_info->io.regspacing,
1655 smi_info->io.regsize,
1656 smi_info->io.regshift,
1657 smi_info->io.irq,
1658 smi_info->io.slave_addr);
1659 }
1660 static DEVICE_ATTR_RO(params);
1661
1662 static struct attribute *ipmi_si_dev_attrs[] = {
1663 &dev_attr_type.attr,
1664 &dev_attr_interrupts_enabled.attr,
1665 &dev_attr_short_timeouts.attr,
1666 &dev_attr_long_timeouts.attr,
1667 &dev_attr_idles.attr,
1668 &dev_attr_interrupts.attr,
1669 &dev_attr_attentions.attr,
1670 &dev_attr_flag_fetches.attr,
1671 &dev_attr_hosed_count.attr,
1672 &dev_attr_complete_transactions.attr,
1673 &dev_attr_events.attr,
1674 &dev_attr_watchdog_pretimeouts.attr,
1675 &dev_attr_incoming_messages.attr,
1676 &dev_attr_params.attr,
1677 NULL
1678 };
1679
1680 static const struct attribute_group ipmi_si_dev_attr_group = {
1681 .attrs = ipmi_si_dev_attrs,
1682 };
1683
1684 /*
1685 * oem_data_avail_to_receive_msg_avail
1686 * @info - smi_info structure with msg_flags set
1687 *
1688 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1689 * Returns 1 indicating need to re-run handle_flags().
1690 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)1691 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1692 {
1693 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1694 RECEIVE_MSG_AVAIL);
1695 return 1;
1696 }
1697
1698 /*
1699 * setup_dell_poweredge_oem_data_handler
1700 * @info - smi_info.device_id must be populated
1701 *
1702 * Systems that match, but have firmware version < 1.40 may assert
1703 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1704 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1705 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1706 * as RECEIVE_MSG_AVAIL instead.
1707 *
1708 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1709 * assert the OEM[012] bits, and if it did, the driver would have to
1710 * change to handle that properly, we don't actually check for the
1711 * firmware version.
1712 * Device ID = 0x20 BMC on PowerEdge 8G servers
1713 * Device Revision = 0x80
1714 * Firmware Revision1 = 0x01 BMC version 1.40
1715 * Firmware Revision2 = 0x40 BCD encoded
1716 * IPMI Version = 0x51 IPMI 1.5
1717 * Manufacturer ID = A2 02 00 Dell IANA
1718 *
1719 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1720 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1721 *
1722 */
1723 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1724 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1725 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1726 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)1727 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1728 {
1729 struct ipmi_device_id *id = &smi_info->device_id;
1730 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1731 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1732 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1733 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1734 smi_info->oem_data_avail_handler =
1735 oem_data_avail_to_receive_msg_avail;
1736 } else if (ipmi_version_major(id) < 1 ||
1737 (ipmi_version_major(id) == 1 &&
1738 ipmi_version_minor(id) < 5)) {
1739 smi_info->oem_data_avail_handler =
1740 oem_data_avail_to_receive_msg_avail;
1741 }
1742 }
1743 }
1744
1745 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)1746 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1747 {
1748 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1749
1750 /* Make it a response */
1751 msg->rsp[0] = msg->data[0] | 4;
1752 msg->rsp[1] = msg->data[1];
1753 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1754 msg->rsp_size = 3;
1755 smi_info->curr_msg = NULL;
1756 deliver_recv_msg(smi_info, msg);
1757 }
1758
1759 /*
1760 * dell_poweredge_bt_xaction_handler
1761 * @info - smi_info.device_id must be populated
1762 *
1763 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1764 * not respond to a Get SDR command if the length of the data
1765 * requested is exactly 0x3A, which leads to command timeouts and no
1766 * data returned. This intercepts such commands, and causes userspace
1767 * callers to try again with a different-sized buffer, which succeeds.
1768 */
1769
1770 #define STORAGE_NETFN 0x0A
1771 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)1772 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1773 unsigned long unused,
1774 void *in)
1775 {
1776 struct smi_info *smi_info = in;
1777 unsigned char *data = smi_info->curr_msg->data;
1778 unsigned int size = smi_info->curr_msg->data_size;
1779 if (size >= 8 &&
1780 (data[0]>>2) == STORAGE_NETFN &&
1781 data[1] == STORAGE_CMD_GET_SDR &&
1782 data[7] == 0x3A) {
1783 return_hosed_msg_badsize(smi_info);
1784 return NOTIFY_STOP;
1785 }
1786 return NOTIFY_DONE;
1787 }
1788
1789 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1790 .notifier_call = dell_poweredge_bt_xaction_handler,
1791 };
1792
1793 /*
1794 * setup_dell_poweredge_bt_xaction_handler
1795 * @info - smi_info.device_id must be filled in already
1796 *
1797 * Fills in smi_info.device_id.start_transaction_pre_hook
1798 * when we know what function to use there.
1799 */
1800 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)1801 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1802 {
1803 struct ipmi_device_id *id = &smi_info->device_id;
1804 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1805 smi_info->io.si_type == SI_BT)
1806 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1807 }
1808
1809 /*
1810 * setup_oem_data_handler
1811 * @info - smi_info.device_id must be filled in already
1812 *
1813 * Fills in smi_info.device_id.oem_data_available_handler
1814 * when we know what function to use there.
1815 */
1816
setup_oem_data_handler(struct smi_info * smi_info)1817 static void setup_oem_data_handler(struct smi_info *smi_info)
1818 {
1819 setup_dell_poweredge_oem_data_handler(smi_info);
1820 }
1821
setup_xaction_handlers(struct smi_info * smi_info)1822 static void setup_xaction_handlers(struct smi_info *smi_info)
1823 {
1824 setup_dell_poweredge_bt_xaction_handler(smi_info);
1825 }
1826
check_for_broken_irqs(struct smi_info * smi_info)1827 static void check_for_broken_irqs(struct smi_info *smi_info)
1828 {
1829 check_clr_rcv_irq(smi_info);
1830 check_set_rcv_irq(smi_info);
1831 }
1832
stop_timer_and_thread(struct smi_info * smi_info)1833 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1834 {
1835 if (smi_info->thread != NULL) {
1836 kthread_stop(smi_info->thread);
1837 smi_info->thread = NULL;
1838 }
1839
1840 smi_info->timer_can_start = false;
1841 del_timer_sync(&smi_info->si_timer);
1842 }
1843
find_dup_si(struct smi_info * info)1844 static struct smi_info *find_dup_si(struct smi_info *info)
1845 {
1846 struct smi_info *e;
1847
1848 list_for_each_entry(e, &smi_infos, link) {
1849 if (e->io.addr_space != info->io.addr_space)
1850 continue;
1851 if (e->io.addr_data == info->io.addr_data) {
1852 /*
1853 * This is a cheap hack, ACPI doesn't have a defined
1854 * slave address but SMBIOS does. Pick it up from
1855 * any source that has it available.
1856 */
1857 if (info->io.slave_addr && !e->io.slave_addr)
1858 e->io.slave_addr = info->io.slave_addr;
1859 return e;
1860 }
1861 }
1862
1863 return NULL;
1864 }
1865
ipmi_si_add_smi(struct si_sm_io * io)1866 int ipmi_si_add_smi(struct si_sm_io *io)
1867 {
1868 int rv = 0;
1869 struct smi_info *new_smi, *dup;
1870
1871 /*
1872 * If the user gave us a hard-coded device at the same
1873 * address, they presumably want us to use it and not what is
1874 * in the firmware.
1875 */
1876 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1877 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1878 dev_info(io->dev,
1879 "Hard-coded device at this address already exists");
1880 return -ENODEV;
1881 }
1882
1883 if (!io->io_setup) {
1884 if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1885 io->io_setup = ipmi_si_port_setup;
1886 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1887 io->io_setup = ipmi_si_mem_setup;
1888 } else {
1889 return -EINVAL;
1890 }
1891 }
1892
1893 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1894 if (!new_smi)
1895 return -ENOMEM;
1896 spin_lock_init(&new_smi->si_lock);
1897
1898 new_smi->io = *io;
1899
1900 mutex_lock(&smi_infos_lock);
1901 dup = find_dup_si(new_smi);
1902 if (dup) {
1903 if (new_smi->io.addr_source == SI_ACPI &&
1904 dup->io.addr_source == SI_SMBIOS) {
1905 /* We prefer ACPI over SMBIOS. */
1906 dev_info(dup->io.dev,
1907 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1908 si_to_str[new_smi->io.si_type]);
1909 cleanup_one_si(dup);
1910 } else {
1911 dev_info(new_smi->io.dev,
1912 "%s-specified %s state machine: duplicate\n",
1913 ipmi_addr_src_to_str(new_smi->io.addr_source),
1914 si_to_str[new_smi->io.si_type]);
1915 rv = -EBUSY;
1916 kfree(new_smi);
1917 goto out_err;
1918 }
1919 }
1920
1921 pr_info("Adding %s-specified %s state machine\n",
1922 ipmi_addr_src_to_str(new_smi->io.addr_source),
1923 si_to_str[new_smi->io.si_type]);
1924
1925 list_add_tail(&new_smi->link, &smi_infos);
1926
1927 if (initialized)
1928 rv = try_smi_init(new_smi);
1929 out_err:
1930 mutex_unlock(&smi_infos_lock);
1931 return rv;
1932 }
1933
1934 /*
1935 * Try to start up an interface. Must be called with smi_infos_lock
1936 * held, primarily to keep smi_num consistent, we only one to do these
1937 * one at a time.
1938 */
try_smi_init(struct smi_info * new_smi)1939 static int try_smi_init(struct smi_info *new_smi)
1940 {
1941 int rv = 0;
1942 int i;
1943
1944 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1945 ipmi_addr_src_to_str(new_smi->io.addr_source),
1946 si_to_str[new_smi->io.si_type],
1947 addr_space_to_str[new_smi->io.addr_space],
1948 new_smi->io.addr_data,
1949 new_smi->io.slave_addr, new_smi->io.irq);
1950
1951 switch (new_smi->io.si_type) {
1952 case SI_KCS:
1953 new_smi->handlers = &kcs_smi_handlers;
1954 break;
1955
1956 case SI_SMIC:
1957 new_smi->handlers = &smic_smi_handlers;
1958 break;
1959
1960 case SI_BT:
1961 new_smi->handlers = &bt_smi_handlers;
1962 break;
1963
1964 default:
1965 /* No support for anything else yet. */
1966 rv = -EIO;
1967 goto out_err;
1968 }
1969
1970 new_smi->si_num = smi_num;
1971
1972 /* Do this early so it's available for logs. */
1973 if (!new_smi->io.dev) {
1974 pr_err("IPMI interface added with no device\n");
1975 rv = -EIO;
1976 goto out_err;
1977 }
1978
1979 /* Allocate the state machine's data and initialize it. */
1980 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1981 if (!new_smi->si_sm) {
1982 rv = -ENOMEM;
1983 goto out_err;
1984 }
1985 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1986 &new_smi->io);
1987
1988 /* Now that we know the I/O size, we can set up the I/O. */
1989 rv = new_smi->io.io_setup(&new_smi->io);
1990 if (rv) {
1991 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1992 goto out_err;
1993 }
1994
1995 /* Do low-level detection first. */
1996 if (new_smi->handlers->detect(new_smi->si_sm)) {
1997 if (new_smi->io.addr_source)
1998 dev_err(new_smi->io.dev,
1999 "Interface detection failed\n");
2000 rv = -ENODEV;
2001 goto out_err;
2002 }
2003
2004 /*
2005 * Attempt a get device id command. If it fails, we probably
2006 * don't have a BMC here.
2007 */
2008 rv = try_get_dev_id(new_smi);
2009 if (rv) {
2010 if (new_smi->io.addr_source)
2011 dev_err(new_smi->io.dev,
2012 "There appears to be no BMC at this location\n");
2013 goto out_err;
2014 }
2015
2016 setup_oem_data_handler(new_smi);
2017 setup_xaction_handlers(new_smi);
2018 check_for_broken_irqs(new_smi);
2019
2020 new_smi->waiting_msg = NULL;
2021 new_smi->curr_msg = NULL;
2022 atomic_set(&new_smi->req_events, 0);
2023 new_smi->run_to_completion = false;
2024 for (i = 0; i < SI_NUM_STATS; i++)
2025 atomic_set(&new_smi->stats[i], 0);
2026
2027 new_smi->interrupt_disabled = true;
2028 atomic_set(&new_smi->need_watch, 0);
2029
2030 rv = try_enable_event_buffer(new_smi);
2031 if (rv == 0)
2032 new_smi->has_event_buffer = true;
2033
2034 /*
2035 * Start clearing the flags before we enable interrupts or the
2036 * timer to avoid racing with the timer.
2037 */
2038 start_clear_flags(new_smi);
2039
2040 /*
2041 * IRQ is defined to be set when non-zero. req_events will
2042 * cause a global flags check that will enable interrupts.
2043 */
2044 if (new_smi->io.irq) {
2045 new_smi->interrupt_disabled = false;
2046 atomic_set(&new_smi->req_events, 1);
2047 }
2048
2049 dev_set_drvdata(new_smi->io.dev, new_smi);
2050 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2051 if (rv) {
2052 dev_err(new_smi->io.dev,
2053 "Unable to add device attributes: error %d\n",
2054 rv);
2055 goto out_err;
2056 }
2057 new_smi->dev_group_added = true;
2058
2059 rv = ipmi_register_smi(&handlers,
2060 new_smi,
2061 new_smi->io.dev,
2062 new_smi->io.slave_addr);
2063 if (rv) {
2064 dev_err(new_smi->io.dev,
2065 "Unable to register device: error %d\n",
2066 rv);
2067 goto out_err;
2068 }
2069
2070 /* Don't increment till we know we have succeeded. */
2071 smi_num++;
2072
2073 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2074 si_to_str[new_smi->io.si_type]);
2075
2076 WARN_ON(new_smi->io.dev->init_name != NULL);
2077
2078 out_err:
2079 if (rv && new_smi->io.io_cleanup) {
2080 new_smi->io.io_cleanup(&new_smi->io);
2081 new_smi->io.io_cleanup = NULL;
2082 }
2083
2084 if (rv && new_smi->si_sm) {
2085 kfree(new_smi->si_sm);
2086 new_smi->si_sm = NULL;
2087 }
2088
2089 return rv;
2090 }
2091
init_ipmi_si(void)2092 static int __init init_ipmi_si(void)
2093 {
2094 struct smi_info *e;
2095 enum ipmi_addr_src type = SI_INVALID;
2096
2097 if (initialized)
2098 return 0;
2099
2100 ipmi_hardcode_init();
2101
2102 pr_info("IPMI System Interface driver\n");
2103
2104 ipmi_si_platform_init();
2105
2106 ipmi_si_pci_init();
2107
2108 ipmi_si_parisc_init();
2109
2110 /* We prefer devices with interrupts, but in the case of a machine
2111 with multiple BMCs we assume that there will be several instances
2112 of a given type so if we succeed in registering a type then also
2113 try to register everything else of the same type */
2114 mutex_lock(&smi_infos_lock);
2115 list_for_each_entry(e, &smi_infos, link) {
2116 /* Try to register a device if it has an IRQ and we either
2117 haven't successfully registered a device yet or this
2118 device has the same type as one we successfully registered */
2119 if (e->io.irq && (!type || e->io.addr_source == type)) {
2120 if (!try_smi_init(e)) {
2121 type = e->io.addr_source;
2122 }
2123 }
2124 }
2125
2126 /* type will only have been set if we successfully registered an si */
2127 if (type)
2128 goto skip_fallback_noirq;
2129
2130 /* Fall back to the preferred device */
2131
2132 list_for_each_entry(e, &smi_infos, link) {
2133 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2134 if (!try_smi_init(e)) {
2135 type = e->io.addr_source;
2136 }
2137 }
2138 }
2139
2140 skip_fallback_noirq:
2141 initialized = true;
2142 mutex_unlock(&smi_infos_lock);
2143
2144 if (type)
2145 return 0;
2146
2147 mutex_lock(&smi_infos_lock);
2148 if (unload_when_empty && list_empty(&smi_infos)) {
2149 mutex_unlock(&smi_infos_lock);
2150 cleanup_ipmi_si();
2151 pr_warn("Unable to find any System Interface(s)\n");
2152 return -ENODEV;
2153 } else {
2154 mutex_unlock(&smi_infos_lock);
2155 return 0;
2156 }
2157 }
2158 module_init(init_ipmi_si);
2159
wait_msg_processed(struct smi_info * smi_info)2160 static void wait_msg_processed(struct smi_info *smi_info)
2161 {
2162 unsigned long jiffies_now;
2163 long time_diff;
2164
2165 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2166 jiffies_now = jiffies;
2167 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
2168 * SI_USEC_PER_JIFFY);
2169 smi_event_handler(smi_info, time_diff);
2170 schedule_timeout_uninterruptible(1);
2171 }
2172 }
2173
shutdown_smi(void * send_info)2174 static void shutdown_smi(void *send_info)
2175 {
2176 struct smi_info *smi_info = send_info;
2177
2178 if (smi_info->dev_group_added) {
2179 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2180 smi_info->dev_group_added = false;
2181 }
2182 if (smi_info->io.dev)
2183 dev_set_drvdata(smi_info->io.dev, NULL);
2184
2185 /*
2186 * Make sure that interrupts, the timer and the thread are
2187 * stopped and will not run again.
2188 */
2189 smi_info->interrupt_disabled = true;
2190 if (smi_info->io.irq_cleanup) {
2191 smi_info->io.irq_cleanup(&smi_info->io);
2192 smi_info->io.irq_cleanup = NULL;
2193 }
2194 stop_timer_and_thread(smi_info);
2195
2196 /*
2197 * Wait until we know that we are out of any interrupt
2198 * handlers might have been running before we freed the
2199 * interrupt.
2200 */
2201 synchronize_rcu();
2202
2203 /*
2204 * Timeouts are stopped, now make sure the interrupts are off
2205 * in the BMC. Note that timers and CPU interrupts are off,
2206 * so no need for locks.
2207 */
2208 wait_msg_processed(smi_info);
2209
2210 if (smi_info->handlers)
2211 disable_si_irq(smi_info);
2212
2213 wait_msg_processed(smi_info);
2214
2215 if (smi_info->handlers)
2216 smi_info->handlers->cleanup(smi_info->si_sm);
2217
2218 if (smi_info->io.io_cleanup) {
2219 smi_info->io.io_cleanup(&smi_info->io);
2220 smi_info->io.io_cleanup = NULL;
2221 }
2222
2223 kfree(smi_info->si_sm);
2224 smi_info->si_sm = NULL;
2225
2226 smi_info->intf = NULL;
2227 }
2228
2229 /*
2230 * Must be called with smi_infos_lock held, to serialize the
2231 * smi_info->intf check.
2232 */
cleanup_one_si(struct smi_info * smi_info)2233 static void cleanup_one_si(struct smi_info *smi_info)
2234 {
2235 if (!smi_info)
2236 return;
2237
2238 list_del(&smi_info->link);
2239
2240 if (smi_info->intf)
2241 ipmi_unregister_smi(smi_info->intf);
2242
2243 kfree(smi_info);
2244 }
2245
ipmi_si_remove_by_dev(struct device * dev)2246 void ipmi_si_remove_by_dev(struct device *dev)
2247 {
2248 struct smi_info *e;
2249
2250 mutex_lock(&smi_infos_lock);
2251 list_for_each_entry(e, &smi_infos, link) {
2252 if (e->io.dev == dev) {
2253 cleanup_one_si(e);
2254 break;
2255 }
2256 }
2257 mutex_unlock(&smi_infos_lock);
2258 }
2259
ipmi_si_remove_by_data(int addr_space,enum si_type si_type,unsigned long addr)2260 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2261 unsigned long addr)
2262 {
2263 /* remove */
2264 struct smi_info *e, *tmp_e;
2265 struct device *dev = NULL;
2266
2267 mutex_lock(&smi_infos_lock);
2268 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2269 if (e->io.addr_space != addr_space)
2270 continue;
2271 if (e->io.si_type != si_type)
2272 continue;
2273 if (e->io.addr_data == addr) {
2274 dev = get_device(e->io.dev);
2275 cleanup_one_si(e);
2276 }
2277 }
2278 mutex_unlock(&smi_infos_lock);
2279
2280 return dev;
2281 }
2282
cleanup_ipmi_si(void)2283 static void cleanup_ipmi_si(void)
2284 {
2285 struct smi_info *e, *tmp_e;
2286
2287 if (!initialized)
2288 return;
2289
2290 ipmi_si_pci_shutdown();
2291
2292 ipmi_si_parisc_shutdown();
2293
2294 ipmi_si_platform_shutdown();
2295
2296 mutex_lock(&smi_infos_lock);
2297 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2298 cleanup_one_si(e);
2299 mutex_unlock(&smi_infos_lock);
2300
2301 ipmi_si_hardcode_exit();
2302 ipmi_si_hotmod_exit();
2303 }
2304 module_exit(cleanup_ipmi_si);
2305
2306 MODULE_ALIAS("platform:dmi-ipmi-si");
2307 MODULE_LICENSE("GPL");
2308 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2309 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
2310