• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 
26 /* NVM offsets (in words) definitions */
27 enum nvm_offsets {
28 	/* NVM HW-Section offset (in words) definitions */
29 	SUBSYSTEM_ID = 0x0A,
30 	HW_ADDR = 0x15,
31 
32 	/* NVM SW-Section offset (in words) definitions */
33 	NVM_SW_SECTION = 0x1C0,
34 	NVM_VERSION = 0,
35 	RADIO_CFG = 1,
36 	SKU = 2,
37 	N_HW_ADDRS = 3,
38 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
39 
40 	/* NVM calibration section offset (in words) definitions */
41 	NVM_CALIB_SECTION = 0x2B8,
42 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
43 
44 	/* NVM REGULATORY -Section offset (in words) definitions */
45 	NVM_CHANNELS_SDP = 0,
46 };
47 
48 enum ext_nvm_offsets {
49 	/* NVM HW-Section offset (in words) definitions */
50 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
51 
52 	/* NVM SW-Section offset (in words) definitions */
53 	NVM_VERSION_EXT_NVM = 0,
54 	N_HW_ADDRS_FAMILY_8000 = 3,
55 
56 	/* NVM PHY_SKU-Section offset (in words) definitions */
57 	RADIO_CFG_FAMILY_EXT_NVM = 0,
58 	SKU_FAMILY_8000 = 2,
59 
60 	/* NVM REGULATORY -Section offset (in words) definitions */
61 	NVM_CHANNELS_EXTENDED = 0,
62 	NVM_LAR_OFFSET_OLD = 0x4C7,
63 	NVM_LAR_OFFSET = 0x507,
64 	NVM_LAR_ENABLED = 0x7,
65 };
66 
67 /* SKU Capabilities (actual values from NVM definition) */
68 enum nvm_sku_bits {
69 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
70 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
71 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
72 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
73 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
74 };
75 
76 /*
77  * These are the channel numbers in the order that they are stored in the NVM
78  */
79 static const u16 iwl_nvm_channels[] = {
80 	/* 2.4 GHz */
81 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
82 	/* 5 GHz */
83 	36, 40, 44 , 48, 52, 56, 60, 64,
84 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
85 	149, 153, 157, 161, 165
86 };
87 
88 static const u16 iwl_ext_nvm_channels[] = {
89 	/* 2.4 GHz */
90 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
91 	/* 5 GHz */
92 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
93 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
94 	149, 153, 157, 161, 165, 169, 173, 177, 181
95 };
96 
97 static const u16 iwl_uhb_nvm_channels[] = {
98 	/* 2.4 GHz */
99 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
100 	/* 5 GHz */
101 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
102 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
103 	149, 153, 157, 161, 165, 169, 173, 177, 181,
104 	/* 6-7 GHz */
105 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
106 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
107 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
108 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
109 };
110 
111 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
112 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
114 #define NUM_2GHZ_CHANNELS		14
115 #define NUM_5GHZ_CHANNELS		37
116 #define FIRST_2GHZ_HT_MINUS		5
117 #define LAST_2GHZ_HT_PLUS		9
118 #define N_HW_ADDR_MASK			0xF
119 
120 /* rate data (static) */
121 static struct ieee80211_rate iwl_cfg80211_rates[] = {
122 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
123 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
128 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
129 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
130 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
131 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
132 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
133 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
134 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
135 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
136 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
137 };
138 #define RATES_24_OFFS	0
139 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
140 #define RATES_52_OFFS	4
141 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
142 
143 /**
144  * enum iwl_nvm_channel_flags - channel flags in NVM
145  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
146  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
147  * @NVM_CHANNEL_ACTIVE: active scanning allowed
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  */
159 enum iwl_nvm_channel_flags {
160 	NVM_CHANNEL_VALID		= BIT(0),
161 	NVM_CHANNEL_IBSS		= BIT(1),
162 	NVM_CHANNEL_ACTIVE		= BIT(3),
163 	NVM_CHANNEL_RADAR		= BIT(4),
164 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
165 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
166 	NVM_CHANNEL_UNIFORM		= BIT(7),
167 	NVM_CHANNEL_20MHZ		= BIT(8),
168 	NVM_CHANNEL_40MHZ		= BIT(9),
169 	NVM_CHANNEL_80MHZ		= BIT(10),
170 	NVM_CHANNEL_160MHZ		= BIT(11),
171 	NVM_CHANNEL_DC_HIGH		= BIT(12),
172 };
173 
174 /**
175  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
176  * domain.
177  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
178  *	2.4Ghz band is allowed.
179  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
180  *	5Ghz band is allowed.
181  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
182  *	for this regulatory domain (valid only in 5Ghz).
183  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
184  *	for this regulatory domain (valid only in 5Ghz).
185  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
186  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
187  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
190  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
191  */
192 enum iwl_reg_capa_flags {
193 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
194 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
195 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
196 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
197 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
198 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
199 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
200 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
201 	REG_CAPA_11AX_DISABLED		= BIT(10),
202 };
203 
204 /**
205  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
206  * domain (version 2).
207  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
208  *	disabled.
209  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
210  *	2.4Ghz band is allowed.
211  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
212  *	5Ghz band is allowed.
213  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
214  *	for this regulatory domain (valid only in 5Ghz).
215  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
216  *	for this regulatory domain (valid only in 5Ghz).
217  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
218  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
219  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
220  *	126, 122) are disabled.
221  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
222  *	for this regulatory domain (uvalid only in 5Ghz).
223  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
224  */
225 enum iwl_reg_capa_flags_v2 {
226 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
227 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
228 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
229 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
230 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
231 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
232 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
233 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
234 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
235 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
236 };
237 
238 /*
239 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
240 * MCC update command response.
241 */
242 #define REG_CAPA_V2_RESP_VER	6
243 
244 /**
245  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
246  * handling the different APIs of reg_capa_flags.
247  *
248  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
249  *	for this regulatory domain (valid only in 5Ghz).
250  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
251  *	for this regulatory domain (valid only in 5Ghz).
252  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
253  *	for this regulatory domain (valid only in 5Ghz).
254  * @disable_11ax: 11ax is forbidden for this regulatory domain.
255  */
256 struct iwl_reg_capa {
257 	u16 allow_40mhz;
258 	u16 allow_80mhz;
259 	u16 allow_160mhz;
260 	u16 disable_11ax;
261 };
262 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)263 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
264 					       int chan, u32 flags)
265 {
266 #define CHECK_AND_PRINT_I(x)	\
267 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
268 
269 	if (!(flags & NVM_CHANNEL_VALID)) {
270 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
271 			      chan, flags);
272 		return;
273 	}
274 
275 	/* Note: already can print up to 101 characters, 110 is the limit! */
276 	IWL_DEBUG_DEV(dev, level,
277 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
278 		      chan, flags,
279 		      CHECK_AND_PRINT_I(VALID),
280 		      CHECK_AND_PRINT_I(IBSS),
281 		      CHECK_AND_PRINT_I(ACTIVE),
282 		      CHECK_AND_PRINT_I(RADAR),
283 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
284 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
285 		      CHECK_AND_PRINT_I(UNIFORM),
286 		      CHECK_AND_PRINT_I(20MHZ),
287 		      CHECK_AND_PRINT_I(40MHZ),
288 		      CHECK_AND_PRINT_I(80MHZ),
289 		      CHECK_AND_PRINT_I(160MHZ),
290 		      CHECK_AND_PRINT_I(DC_HIGH));
291 #undef CHECK_AND_PRINT_I
292 }
293 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)294 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
295 				 u32 nvm_flags, const struct iwl_cfg *cfg)
296 {
297 	u32 flags = IEEE80211_CHAN_NO_HT40;
298 
299 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
300 		if (ch_num <= LAST_2GHZ_HT_PLUS)
301 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
302 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
303 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
304 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
305 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
306 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
307 		else
308 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
309 	}
310 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
311 		flags |= IEEE80211_CHAN_NO_80MHZ;
312 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
313 		flags |= IEEE80211_CHAN_NO_160MHZ;
314 
315 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
316 		flags |= IEEE80211_CHAN_NO_IR;
317 
318 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
319 		flags |= IEEE80211_CHAN_NO_IR;
320 
321 	if (nvm_flags & NVM_CHANNEL_RADAR)
322 		flags |= IEEE80211_CHAN_RADAR;
323 
324 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
325 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
326 
327 	/* Set the GO concurrent flag only in case that NO_IR is set.
328 	 * Otherwise it is meaningless
329 	 */
330 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
331 	    (flags & IEEE80211_CHAN_NO_IR))
332 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
333 
334 	return flags;
335 }
336 
iwl_nl80211_band_from_channel_idx(int ch_idx)337 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
338 {
339 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
340 		return NL80211_BAND_6GHZ;
341 	}
342 
343 	if (ch_idx >= NUM_2GHZ_CHANNELS)
344 		return NL80211_BAND_5GHZ;
345 	return NL80211_BAND_2GHZ;
346 }
347 
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)348 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
349 				struct iwl_nvm_data *data,
350 				const void * const nvm_ch_flags,
351 				u32 sbands_flags, bool v4)
352 {
353 	int ch_idx;
354 	int n_channels = 0;
355 	struct ieee80211_channel *channel;
356 	u32 ch_flags;
357 	int num_of_ch;
358 	const u16 *nvm_chan;
359 
360 	if (cfg->uhb_supported) {
361 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
362 		nvm_chan = iwl_uhb_nvm_channels;
363 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
364 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
365 		nvm_chan = iwl_ext_nvm_channels;
366 	} else {
367 		num_of_ch = IWL_NVM_NUM_CHANNELS;
368 		nvm_chan = iwl_nvm_channels;
369 	}
370 
371 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
372 		enum nl80211_band band =
373 			iwl_nl80211_band_from_channel_idx(ch_idx);
374 
375 		if (v4)
376 			ch_flags =
377 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
378 		else
379 			ch_flags =
380 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
381 
382 		if (band == NL80211_BAND_5GHZ &&
383 		    !data->sku_cap_band_52ghz_enable)
384 			continue;
385 
386 		/* workaround to disable wide channels in 5GHz */
387 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
388 		    band == NL80211_BAND_5GHZ) {
389 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
390 				     NVM_CHANNEL_80MHZ |
391 				     NVM_CHANNEL_160MHZ);
392 		}
393 
394 		if (ch_flags & NVM_CHANNEL_160MHZ)
395 			data->vht160_supported = true;
396 
397 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
398 		    !(ch_flags & NVM_CHANNEL_VALID)) {
399 			/*
400 			 * Channels might become valid later if lar is
401 			 * supported, hence we still want to add them to
402 			 * the list of supported channels to cfg80211.
403 			 */
404 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
405 						    nvm_chan[ch_idx], ch_flags);
406 			continue;
407 		}
408 
409 		channel = &data->channels[n_channels];
410 		n_channels++;
411 
412 		channel->hw_value = nvm_chan[ch_idx];
413 		channel->band = band;
414 		channel->center_freq =
415 			ieee80211_channel_to_frequency(
416 				channel->hw_value, channel->band);
417 
418 		/* Initialize regulatory-based run-time data */
419 
420 		/*
421 		 * Default value - highest tx power value.  max_power
422 		 * is not used in mvm, and is used for backwards compatibility
423 		 */
424 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
425 
426 		/* don't put limitations in case we're using LAR */
427 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
428 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
429 							       ch_idx, band,
430 							       ch_flags, cfg);
431 		else
432 			channel->flags = 0;
433 
434 		/* TODO: Don't put limitations on UHB devices as we still don't
435 		 * have NVM for them
436 		 */
437 		if (cfg->uhb_supported)
438 			channel->flags = 0;
439 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 					    channel->hw_value, ch_flags);
441 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
442 				 channel->hw_value, channel->max_power);
443 	}
444 
445 	return n_channels;
446 }
447 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)448 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
449 				  struct iwl_nvm_data *data,
450 				  struct ieee80211_sta_vht_cap *vht_cap,
451 				  u8 tx_chains, u8 rx_chains)
452 {
453 	const struct iwl_cfg *cfg = trans->cfg;
454 	int num_rx_ants = num_of_ant(rx_chains);
455 	int num_tx_ants = num_of_ant(tx_chains);
456 
457 	vht_cap->vht_supported = true;
458 
459 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
460 		       IEEE80211_VHT_CAP_RXSTBC_1 |
461 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
462 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
463 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
464 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
465 
466 	if (data->vht160_supported)
467 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
468 				IEEE80211_VHT_CAP_SHORT_GI_160;
469 
470 	if (cfg->vht_mu_mimo_supported)
471 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
472 
473 	if (cfg->ht_params->ldpc)
474 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
475 
476 	if (data->sku_cap_mimo_disabled) {
477 		num_rx_ants = 1;
478 		num_tx_ants = 1;
479 	}
480 
481 	if (num_tx_ants > 1)
482 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
483 	else
484 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
485 
486 	switch (iwlwifi_mod_params.amsdu_size) {
487 	case IWL_AMSDU_DEF:
488 		if (trans->trans_cfg->mq_rx_supported)
489 			vht_cap->cap |=
490 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
491 		else
492 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
493 		break;
494 	case IWL_AMSDU_2K:
495 		if (trans->trans_cfg->mq_rx_supported)
496 			vht_cap->cap |=
497 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
498 		else
499 			WARN(1, "RB size of 2K is not supported by this device\n");
500 		break;
501 	case IWL_AMSDU_4K:
502 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
503 		break;
504 	case IWL_AMSDU_8K:
505 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
506 		break;
507 	case IWL_AMSDU_12K:
508 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
509 		break;
510 	default:
511 		break;
512 	}
513 
514 	vht_cap->vht_mcs.rx_mcs_map =
515 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
516 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
517 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
518 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
519 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
520 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
521 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
522 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
523 
524 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
525 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
526 		/* this works because NOT_SUPPORTED == 3 */
527 		vht_cap->vht_mcs.rx_mcs_map |=
528 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
529 	}
530 
531 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
532 
533 	vht_cap->vht_mcs.tx_highest |=
534 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
535 }
536 
537 static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
538 	{
539 		.types_mask = BIT(NL80211_IFTYPE_STATION),
540 		.he_cap = {
541 			.has_he = true,
542 			.he_cap_elem = {
543 				.mac_cap_info[0] =
544 					IEEE80211_HE_MAC_CAP0_HTC_HE,
545 				.mac_cap_info[1] =
546 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
547 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
548 				.mac_cap_info[2] =
549 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
550 				.mac_cap_info[3] =
551 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
552 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
553 				.mac_cap_info[4] =
554 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
555 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
556 				.mac_cap_info[5] =
557 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
558 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
559 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
560 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
561 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
562 				.phy_cap_info[0] =
563 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
564 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
565 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
566 				.phy_cap_info[1] =
567 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
568 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
569 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
570 				.phy_cap_info[2] =
571 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
572 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
573 				.phy_cap_info[3] =
574 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
575 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
576 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
577 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
578 				.phy_cap_info[4] =
579 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
580 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
581 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
582 				.phy_cap_info[6] =
583 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
584 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
585 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
586 				.phy_cap_info[7] =
587 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
588 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
589 				.phy_cap_info[8] =
590 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
591 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
592 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
593 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
594 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
595 				.phy_cap_info[9] =
596 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
597 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
598 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
599 				.phy_cap_info[10] =
600 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
601 			},
602 			/*
603 			 * Set default Tx/Rx HE MCS NSS Support field.
604 			 * Indicate support for up to 2 spatial streams and all
605 			 * MCS, without any special cases
606 			 */
607 			.he_mcs_nss_supp = {
608 				.rx_mcs_80 = cpu_to_le16(0xfffa),
609 				.tx_mcs_80 = cpu_to_le16(0xfffa),
610 				.rx_mcs_160 = cpu_to_le16(0xfffa),
611 				.tx_mcs_160 = cpu_to_le16(0xfffa),
612 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
613 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
614 			},
615 			/*
616 			 * Set default PPE thresholds, with PPET16 set to 0,
617 			 * PPET8 set to 7
618 			 */
619 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
620 		},
621 	},
622 	{
623 		.types_mask = BIT(NL80211_IFTYPE_AP),
624 		.he_cap = {
625 			.has_he = true,
626 			.he_cap_elem = {
627 				.mac_cap_info[0] =
628 					IEEE80211_HE_MAC_CAP0_HTC_HE,
629 				.mac_cap_info[1] =
630 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
631 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
632 				.mac_cap_info[3] =
633 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
634 				.phy_cap_info[0] =
635 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
636 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
637 				.phy_cap_info[1] =
638 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
639 				.phy_cap_info[2] =
640 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
641 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
642 				.phy_cap_info[3] =
643 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
644 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
645 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
646 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
647 				.phy_cap_info[6] =
648 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
649 				.phy_cap_info[7] =
650 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
651 				.phy_cap_info[8] =
652 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
653 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
654 				.phy_cap_info[9] =
655 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
656 			},
657 			/*
658 			 * Set default Tx/Rx HE MCS NSS Support field.
659 			 * Indicate support for up to 2 spatial streams and all
660 			 * MCS, without any special cases
661 			 */
662 			.he_mcs_nss_supp = {
663 				.rx_mcs_80 = cpu_to_le16(0xfffa),
664 				.tx_mcs_80 = cpu_to_le16(0xfffa),
665 				.rx_mcs_160 = cpu_to_le16(0xfffa),
666 				.tx_mcs_160 = cpu_to_le16(0xfffa),
667 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
668 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
669 			},
670 			/*
671 			 * Set default PPE thresholds, with PPET16 set to 0,
672 			 * PPET8 set to 7
673 			 */
674 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
675 		},
676 	},
677 };
678 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)679 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
680 				  struct iwl_nvm_data *data,
681 				  struct ieee80211_supported_band *sband,
682 				  u8 tx_chains, u8 rx_chains)
683 {
684 	struct ieee80211_sta_ht_cap ht_cap;
685 	struct ieee80211_sta_vht_cap vht_cap = {};
686 	struct ieee80211_sband_iftype_data *iftype_data;
687 	u16 he_6ghz_capa = 0;
688 	u32 exp;
689 	int i;
690 
691 	if (sband->band != NL80211_BAND_6GHZ)
692 		return;
693 
694 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
695 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
696 			     tx_chains, rx_chains);
697 	WARN_ON(!ht_cap.ht_supported);
698 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
699 	WARN_ON(!vht_cap.vht_supported);
700 
701 	he_6ghz_capa |=
702 		u16_encode_bits(ht_cap.ampdu_density,
703 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
704 	exp = u32_get_bits(vht_cap.cap,
705 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
706 	he_6ghz_capa |=
707 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
708 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
709 	he_6ghz_capa |=
710 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
711 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
712 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
713 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
714 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
715 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
716 
717 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
718 
719 	/* we know it's writable - we set it before ourselves */
720 	iftype_data = (void *)sband->iftype_data;
721 	for (i = 0; i < sband->n_iftype_data; i++)
722 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
723 }
724 
725 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)726 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
727 			 struct ieee80211_supported_band *sband,
728 			 struct ieee80211_sband_iftype_data *iftype_data,
729 			 u8 tx_chains, u8 rx_chains,
730 			 const struct iwl_fw *fw)
731 {
732 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
733 
734 	/* Advertise an A-MPDU exponent extension based on
735 	 * operating band
736 	 */
737 	if (sband->band != NL80211_BAND_2GHZ)
738 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
739 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
740 	else
741 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
742 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
743 
744 	if (is_ap && iwlwifi_mod_params.nvm_file)
745 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
746 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
747 
748 	if ((tx_chains & rx_chains) == ANT_AB) {
749 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
750 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
751 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
752 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
753 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
754 		if (!is_ap)
755 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
756 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
757 	} else if (!is_ap) {
758 		/* If not 2x2, we need to indicate 1x1 in the
759 		 * Midamble RX Max NSTS - but not for AP mode
760 		 */
761 		iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
762 			~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
763 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
764 			~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
765 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
766 			IEEE80211_HE_PHY_CAP7_MAX_NC_1;
767 	}
768 
769 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
770 	case IWL_CFG_RF_TYPE_GF:
771 	case IWL_CFG_RF_TYPE_MR:
772 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
773 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
774 		if (!is_ap)
775 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
776 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
777 		break;
778 	}
779 
780 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
781 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
782 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
783 }
784 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)785 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
786 				 struct iwl_nvm_data *data,
787 				 struct ieee80211_supported_band *sband,
788 				 u8 tx_chains, u8 rx_chains,
789 				 const struct iwl_fw *fw)
790 {
791 	struct ieee80211_sband_iftype_data *iftype_data;
792 	int i;
793 
794 	/* should only initialize once */
795 	if (WARN_ON(sband->iftype_data))
796 		return;
797 
798 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
799 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
800 
801 	switch (sband->band) {
802 	case NL80211_BAND_2GHZ:
803 		iftype_data = data->iftd.low;
804 		break;
805 	case NL80211_BAND_5GHZ:
806 	case NL80211_BAND_6GHZ:
807 		iftype_data = data->iftd.high;
808 		break;
809 	default:
810 		WARN_ON(1);
811 		return;
812 	}
813 
814 	memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
815 
816 	sband->iftype_data = iftype_data;
817 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
818 
819 	for (i = 0; i < sband->n_iftype_data; i++)
820 		iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
821 					 tx_chains, rx_chains, fw);
822 
823 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
824 }
825 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)826 static void iwl_init_sbands(struct iwl_trans *trans,
827 			    struct iwl_nvm_data *data,
828 			    const void *nvm_ch_flags, u8 tx_chains,
829 			    u8 rx_chains, u32 sbands_flags, bool v4,
830 			    const struct iwl_fw *fw)
831 {
832 	struct device *dev = trans->dev;
833 	const struct iwl_cfg *cfg = trans->cfg;
834 	int n_channels;
835 	int n_used = 0;
836 	struct ieee80211_supported_band *sband;
837 
838 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
839 					  sbands_flags, v4);
840 	sband = &data->bands[NL80211_BAND_2GHZ];
841 	sband->band = NL80211_BAND_2GHZ;
842 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
843 	sband->n_bitrates = N_RATES_24;
844 	n_used += iwl_init_sband_channels(data, sband, n_channels,
845 					  NL80211_BAND_2GHZ);
846 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
847 			     tx_chains, rx_chains);
848 
849 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
850 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
851 				     fw);
852 
853 	sband = &data->bands[NL80211_BAND_5GHZ];
854 	sband->band = NL80211_BAND_5GHZ;
855 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
856 	sband->n_bitrates = N_RATES_52;
857 	n_used += iwl_init_sband_channels(data, sband, n_channels,
858 					  NL80211_BAND_5GHZ);
859 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
860 			     tx_chains, rx_chains);
861 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
862 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
863 				      tx_chains, rx_chains);
864 
865 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
866 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
867 				     fw);
868 
869 	/* 6GHz band. */
870 	sband = &data->bands[NL80211_BAND_6GHZ];
871 	sband->band = NL80211_BAND_6GHZ;
872 	/* use the same rates as 5GHz band */
873 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
874 	sband->n_bitrates = N_RATES_52;
875 	n_used += iwl_init_sband_channels(data, sband, n_channels,
876 					  NL80211_BAND_6GHZ);
877 
878 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
879 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
880 				     fw);
881 	else
882 		sband->n_channels = 0;
883 	if (n_channels != n_used)
884 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
885 			    n_used, n_channels);
886 }
887 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)888 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
889 		       const __le16 *phy_sku)
890 {
891 	if (cfg->nvm_type != IWL_NVM_EXT)
892 		return le16_to_cpup(nvm_sw + SKU);
893 
894 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
895 }
896 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)897 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
898 {
899 	if (cfg->nvm_type != IWL_NVM_EXT)
900 		return le16_to_cpup(nvm_sw + NVM_VERSION);
901 	else
902 		return le32_to_cpup((__le32 *)(nvm_sw +
903 					       NVM_VERSION_EXT_NVM));
904 }
905 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)906 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
907 			     const __le16 *phy_sku)
908 {
909 	if (cfg->nvm_type != IWL_NVM_EXT)
910 		return le16_to_cpup(nvm_sw + RADIO_CFG);
911 
912 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
913 
914 }
915 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)916 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
917 {
918 	int n_hw_addr;
919 
920 	if (cfg->nvm_type != IWL_NVM_EXT)
921 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
922 
923 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
924 
925 	return n_hw_addr & N_HW_ADDR_MASK;
926 }
927 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)928 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
929 			      struct iwl_nvm_data *data,
930 			      u32 radio_cfg)
931 {
932 	if (cfg->nvm_type != IWL_NVM_EXT) {
933 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
934 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
935 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
936 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
937 		return;
938 	}
939 
940 	/* set the radio configuration for family 8000 */
941 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
942 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
943 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
944 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
945 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
946 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
947 }
948 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)949 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
950 {
951 	const u8 *hw_addr;
952 
953 	hw_addr = (const u8 *)&mac_addr0;
954 	dest[0] = hw_addr[3];
955 	dest[1] = hw_addr[2];
956 	dest[2] = hw_addr[1];
957 	dest[3] = hw_addr[0];
958 
959 	hw_addr = (const u8 *)&mac_addr1;
960 	dest[4] = hw_addr[1];
961 	dest[5] = hw_addr[0];
962 }
963 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)964 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
965 					struct iwl_nvm_data *data)
966 {
967 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
968 						  CSR_MAC_ADDR0_STRAP(trans)));
969 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
970 						  CSR_MAC_ADDR1_STRAP(trans)));
971 
972 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
973 	/*
974 	 * If the OEM fused a valid address, use it instead of the one in the
975 	 * OTP
976 	 */
977 	if (is_valid_ether_addr(data->hw_addr))
978 		return;
979 
980 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
981 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
982 
983 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
984 }
985 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)986 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
987 					   const struct iwl_cfg *cfg,
988 					   struct iwl_nvm_data *data,
989 					   const __le16 *mac_override,
990 					   const __be16 *nvm_hw)
991 {
992 	const u8 *hw_addr;
993 
994 	if (mac_override) {
995 		static const u8 reserved_mac[] = {
996 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
997 		};
998 
999 		hw_addr = (const u8 *)(mac_override +
1000 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1001 
1002 		/*
1003 		 * Store the MAC address from MAO section.
1004 		 * No byte swapping is required in MAO section
1005 		 */
1006 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1007 
1008 		/*
1009 		 * Force the use of the OTP MAC address in case of reserved MAC
1010 		 * address in the NVM, or if address is given but invalid.
1011 		 */
1012 		if (is_valid_ether_addr(data->hw_addr) &&
1013 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1014 			return;
1015 
1016 		IWL_ERR(trans,
1017 			"mac address from nvm override section is not valid\n");
1018 	}
1019 
1020 	if (nvm_hw) {
1021 		/* read the mac address from WFMP registers */
1022 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1023 						WFMP_MAC_ADDR_0));
1024 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1025 						WFMP_MAC_ADDR_1));
1026 
1027 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1028 
1029 		return;
1030 	}
1031 
1032 	IWL_ERR(trans, "mac address is not found\n");
1033 }
1034 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1035 static int iwl_set_hw_address(struct iwl_trans *trans,
1036 			      const struct iwl_cfg *cfg,
1037 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1038 			      const __le16 *mac_override)
1039 {
1040 	if (cfg->mac_addr_from_csr) {
1041 		iwl_set_hw_address_from_csr(trans, data);
1042 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1043 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1044 
1045 		/* The byte order is little endian 16 bit, meaning 214365 */
1046 		data->hw_addr[0] = hw_addr[1];
1047 		data->hw_addr[1] = hw_addr[0];
1048 		data->hw_addr[2] = hw_addr[3];
1049 		data->hw_addr[3] = hw_addr[2];
1050 		data->hw_addr[4] = hw_addr[5];
1051 		data->hw_addr[5] = hw_addr[4];
1052 	} else {
1053 		iwl_set_hw_address_family_8000(trans, cfg, data,
1054 					       mac_override, nvm_hw);
1055 	}
1056 
1057 	if (!is_valid_ether_addr(data->hw_addr)) {
1058 		IWL_ERR(trans, "no valid mac address was found\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
1063 
1064 	return 0;
1065 }
1066 
1067 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1068 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1069 			const __be16 *nvm_hw)
1070 {
1071 	/*
1072 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1073 	 * some 7000-family OTPs erroneously allow wide channels in
1074 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1075 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1076 	 * 9.  In those cases, we need to force-disable wide channels
1077 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1078 	 * to use them.
1079 	 */
1080 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1081 		/*
1082 		 * Unlike the other sections in the NVM, the hw
1083 		 * section uses big-endian.
1084 		 */
1085 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1086 		u8 sku = (subsystem_id & 0x1e) >> 1;
1087 
1088 		if (sku == 5 || sku == 9) {
1089 			IWL_DEBUG_EEPROM(trans->dev,
1090 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1091 					 subsystem_id, sku);
1092 			return true;
1093 		}
1094 	}
1095 
1096 	return false;
1097 }
1098 
1099 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1100 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1101 		   const struct iwl_fw *fw,
1102 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1103 		   const __le16 *nvm_calib, const __le16 *regulatory,
1104 		   const __le16 *mac_override, const __le16 *phy_sku,
1105 		   u8 tx_chains, u8 rx_chains)
1106 {
1107 	struct iwl_nvm_data *data;
1108 	bool lar_enabled;
1109 	u32 sku, radio_cfg;
1110 	u32 sbands_flags = 0;
1111 	u16 lar_config;
1112 	const __le16 *ch_section;
1113 
1114 	if (cfg->uhb_supported)
1115 		data = kzalloc(struct_size(data, channels,
1116 					   IWL_NVM_NUM_CHANNELS_UHB),
1117 					   GFP_KERNEL);
1118 	else if (cfg->nvm_type != IWL_NVM_EXT)
1119 		data = kzalloc(struct_size(data, channels,
1120 					   IWL_NVM_NUM_CHANNELS),
1121 					   GFP_KERNEL);
1122 	else
1123 		data = kzalloc(struct_size(data, channels,
1124 					   IWL_NVM_NUM_CHANNELS_EXT),
1125 					   GFP_KERNEL);
1126 	if (!data)
1127 		return NULL;
1128 
1129 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1130 
1131 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1132 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1133 	if (data->valid_tx_ant)
1134 		tx_chains &= data->valid_tx_ant;
1135 	if (data->valid_rx_ant)
1136 		rx_chains &= data->valid_rx_ant;
1137 
1138 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1139 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1140 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1141 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1142 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1143 		data->sku_cap_11n_enable = false;
1144 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1145 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1146 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1147 
1148 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1149 
1150 	if (cfg->nvm_type != IWL_NVM_EXT) {
1151 		/* Checking for required sections */
1152 		if (!nvm_calib) {
1153 			IWL_ERR(trans,
1154 				"Can't parse empty Calib NVM sections\n");
1155 			kfree(data);
1156 			return NULL;
1157 		}
1158 
1159 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1160 			     &regulatory[NVM_CHANNELS_SDP] :
1161 			     &nvm_sw[NVM_CHANNELS];
1162 
1163 		/* in family 8000 Xtal calibration values moved to OTP */
1164 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1165 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1166 		lar_enabled = true;
1167 	} else {
1168 		u16 lar_offset = data->nvm_version < 0xE39 ?
1169 				 NVM_LAR_OFFSET_OLD :
1170 				 NVM_LAR_OFFSET;
1171 
1172 		lar_config = le16_to_cpup(regulatory + lar_offset);
1173 		data->lar_enabled = !!(lar_config &
1174 				       NVM_LAR_ENABLED);
1175 		lar_enabled = data->lar_enabled;
1176 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1177 	}
1178 
1179 	/* If no valid mac address was found - bail out */
1180 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1181 		kfree(data);
1182 		return NULL;
1183 	}
1184 
1185 	if (lar_enabled &&
1186 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1187 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1188 
1189 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1190 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1191 
1192 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1193 			sbands_flags, false, fw);
1194 	data->calib_version = 255;
1195 
1196 	return data;
1197 }
1198 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1199 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1200 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1201 				       int ch_idx, u16 nvm_flags,
1202 				       struct iwl_reg_capa reg_capa,
1203 				       const struct iwl_cfg *cfg)
1204 {
1205 	u32 flags = NL80211_RRF_NO_HT40;
1206 
1207 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1208 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1209 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1210 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1211 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1212 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1213 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1214 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1215 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1216 		else
1217 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1218 	}
1219 
1220 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1221 		flags |= NL80211_RRF_NO_80MHZ;
1222 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1223 		flags |= NL80211_RRF_NO_160MHZ;
1224 
1225 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1226 		flags |= NL80211_RRF_NO_IR;
1227 
1228 	if (nvm_flags & NVM_CHANNEL_RADAR)
1229 		flags |= NL80211_RRF_DFS;
1230 
1231 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1232 		flags |= NL80211_RRF_NO_OUTDOOR;
1233 
1234 	/* Set the GO concurrent flag only in case that NO_IR is set.
1235 	 * Otherwise it is meaningless
1236 	 */
1237 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1238 	    (flags & NL80211_RRF_NO_IR))
1239 		flags |= NL80211_RRF_GO_CONCURRENT;
1240 
1241 	/*
1242 	 * reg_capa is per regulatory domain so apply it for every channel
1243 	 */
1244 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1245 		if (!reg_capa.allow_40mhz)
1246 			flags |= NL80211_RRF_NO_HT40;
1247 
1248 		if (!reg_capa.allow_80mhz)
1249 			flags |= NL80211_RRF_NO_80MHZ;
1250 
1251 		if (!reg_capa.allow_160mhz)
1252 			flags |= NL80211_RRF_NO_160MHZ;
1253 	}
1254 	if (reg_capa.disable_11ax)
1255 		flags |= NL80211_RRF_NO_HE;
1256 
1257 	return flags;
1258 }
1259 
iwl_get_reg_capa(u16 flags,u8 resp_ver)1260 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1261 {
1262 	struct iwl_reg_capa reg_capa;
1263 
1264 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1265 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1266 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1267 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1268 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1269 	} else {
1270 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1271 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1272 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1273 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1274 	}
1275 	return reg_capa;
1276 }
1277 
1278 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u16 cap,u8 resp_ver)1279 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1280 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1281 		       u16 geo_info, u16 cap, u8 resp_ver)
1282 {
1283 	int ch_idx;
1284 	u16 ch_flags;
1285 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1286 	const u16 *nvm_chan;
1287 	struct ieee80211_regdomain *regd, *copy_rd;
1288 	struct ieee80211_reg_rule *rule;
1289 	enum nl80211_band band;
1290 	int center_freq, prev_center_freq = 0;
1291 	int valid_rules = 0;
1292 	bool new_rule;
1293 	int max_num_ch;
1294 	struct iwl_reg_capa reg_capa;
1295 
1296 	if (cfg->uhb_supported) {
1297 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1298 		nvm_chan = iwl_uhb_nvm_channels;
1299 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1300 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1301 		nvm_chan = iwl_ext_nvm_channels;
1302 	} else {
1303 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1304 		nvm_chan = iwl_nvm_channels;
1305 	}
1306 
1307 	if (WARN_ON(num_of_ch > max_num_ch))
1308 		num_of_ch = max_num_ch;
1309 
1310 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1311 		return ERR_PTR(-EINVAL);
1312 
1313 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1314 		      num_of_ch);
1315 
1316 	/* build a regdomain rule for every valid channel */
1317 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1318 	if (!regd)
1319 		return ERR_PTR(-ENOMEM);
1320 
1321 	/* set alpha2 from FW. */
1322 	regd->alpha2[0] = fw_mcc >> 8;
1323 	regd->alpha2[1] = fw_mcc & 0xff;
1324 
1325 	/* parse regulatory capability flags */
1326 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1327 
1328 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1329 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1330 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1331 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1332 							     band);
1333 		new_rule = false;
1334 
1335 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1336 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1337 						    nvm_chan[ch_idx], ch_flags);
1338 			continue;
1339 		}
1340 
1341 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1342 							     ch_flags, reg_capa,
1343 							     cfg);
1344 
1345 		/* we can't continue the same rule */
1346 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1347 		    center_freq - prev_center_freq > 20) {
1348 			valid_rules++;
1349 			new_rule = true;
1350 		}
1351 
1352 		rule = &regd->reg_rules[valid_rules - 1];
1353 
1354 		if (new_rule)
1355 			rule->freq_range.start_freq_khz =
1356 						MHZ_TO_KHZ(center_freq - 10);
1357 
1358 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1359 
1360 		/* this doesn't matter - not used by FW */
1361 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1362 		rule->power_rule.max_eirp =
1363 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1364 
1365 		rule->flags = reg_rule_flags;
1366 
1367 		/* rely on auto-calculation to merge BW of contiguous chans */
1368 		rule->flags |= NL80211_RRF_AUTO_BW;
1369 		rule->freq_range.max_bandwidth_khz = 0;
1370 
1371 		prev_center_freq = center_freq;
1372 		prev_reg_rule_flags = reg_rule_flags;
1373 
1374 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1375 					    nvm_chan[ch_idx], ch_flags);
1376 
1377 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1378 		    band == NL80211_BAND_2GHZ)
1379 			continue;
1380 
1381 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1382 	}
1383 
1384 	/*
1385 	 * Certain firmware versions might report no valid channels
1386 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1387 	 * running. We'll get out of this situation later when the
1388 	 * rfkill is removed and we update the regdomain again, but
1389 	 * since cfg80211 doesn't accept an empty regdomain, add a
1390 	 * dummy (unusable) rule here in this case so we can init.
1391 	 */
1392 	if (!valid_rules) {
1393 		valid_rules = 1;
1394 		rule = &regd->reg_rules[valid_rules - 1];
1395 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1396 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1397 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1398 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1399 		rule->power_rule.max_eirp =
1400 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1401 	}
1402 
1403 	regd->n_reg_rules = valid_rules;
1404 
1405 	/*
1406 	 * Narrow down regdom for unused regulatory rules to prevent hole
1407 	 * between reg rules to wmm rules.
1408 	 */
1409 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1410 			  GFP_KERNEL);
1411 	if (!copy_rd)
1412 		copy_rd = ERR_PTR(-ENOMEM);
1413 
1414 	kfree(regd);
1415 	return copy_rd;
1416 }
1417 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1418 
1419 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1420 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1421 #define MAX_NVM_FILE_LEN	16384
1422 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1423 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1424 		    unsigned int len)
1425 {
1426 #define IWL_4165_DEVICE_ID	0x5501
1427 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1428 
1429 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1430 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1431 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1432 		/* OTP 0x52 bug work around: it's a 1x1 device */
1433 		data[3] = ANT_B | (ANT_B << 4);
1434 }
1435 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1436 
1437 /*
1438  * Reads external NVM from a file into mvm->nvm_sections
1439  *
1440  * HOW TO CREATE THE NVM FILE FORMAT:
1441  * ------------------------------
1442  * 1. create hex file, format:
1443  *      3800 -> header
1444  *      0000 -> header
1445  *      5a40 -> data
1446  *
1447  *   rev - 6 bit (word1)
1448  *   len - 10 bit (word1)
1449  *   id - 4 bit (word2)
1450  *   rsv - 12 bit (word2)
1451  *
1452  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1453  *
1454  * 3. create binary file from the hex file
1455  *
1456  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1457  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1458 int iwl_read_external_nvm(struct iwl_trans *trans,
1459 			  const char *nvm_file_name,
1460 			  struct iwl_nvm_section *nvm_sections)
1461 {
1462 	int ret, section_size;
1463 	u16 section_id;
1464 	const struct firmware *fw_entry;
1465 	const struct {
1466 		__le16 word1;
1467 		__le16 word2;
1468 		u8 data[];
1469 	} *file_sec;
1470 	const u8 *eof;
1471 	u8 *temp;
1472 	int max_section_size;
1473 	const __le32 *dword_buff;
1474 
1475 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1476 #define NVM_WORD2_ID(x) (x >> 12)
1477 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1478 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1479 #define NVM_HEADER_0	(0x2A504C54)
1480 #define NVM_HEADER_1	(0x4E564D2A)
1481 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1482 
1483 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1484 
1485 	/* Maximal size depends on NVM version */
1486 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1487 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1488 	else
1489 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1490 
1491 	/*
1492 	 * Obtain NVM image via request_firmware. Since we already used
1493 	 * request_firmware_nowait() for the firmware binary load and only
1494 	 * get here after that we assume the NVM request can be satisfied
1495 	 * synchronously.
1496 	 */
1497 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1498 	if (ret) {
1499 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1500 			nvm_file_name, ret);
1501 		return ret;
1502 	}
1503 
1504 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1505 		 nvm_file_name, fw_entry->size);
1506 
1507 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1508 		IWL_ERR(trans, "NVM file too large\n");
1509 		ret = -EINVAL;
1510 		goto out;
1511 	}
1512 
1513 	eof = fw_entry->data + fw_entry->size;
1514 	dword_buff = (__le32 *)fw_entry->data;
1515 
1516 	/* some NVM file will contain a header.
1517 	 * The header is identified by 2 dwords header as follow:
1518 	 * dword[0] = 0x2A504C54
1519 	 * dword[1] = 0x4E564D2A
1520 	 *
1521 	 * This header must be skipped when providing the NVM data to the FW.
1522 	 */
1523 	if (fw_entry->size > NVM_HEADER_SIZE &&
1524 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1525 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1526 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1527 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1528 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1529 			 le32_to_cpu(dword_buff[3]));
1530 
1531 		/* nvm file validation, dword_buff[2] holds the file version */
1532 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1533 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1534 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1535 			ret = -EFAULT;
1536 			goto out;
1537 		}
1538 	} else {
1539 		file_sec = (void *)fw_entry->data;
1540 	}
1541 
1542 	while (true) {
1543 		if (file_sec->data > eof) {
1544 			IWL_ERR(trans,
1545 				"ERROR - NVM file too short for section header\n");
1546 			ret = -EINVAL;
1547 			break;
1548 		}
1549 
1550 		/* check for EOF marker */
1551 		if (!file_sec->word1 && !file_sec->word2) {
1552 			ret = 0;
1553 			break;
1554 		}
1555 
1556 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1557 			section_size =
1558 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1559 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1560 		} else {
1561 			section_size = 2 * EXT_NVM_WORD2_LEN(
1562 						le16_to_cpu(file_sec->word2));
1563 			section_id = EXT_NVM_WORD1_ID(
1564 						le16_to_cpu(file_sec->word1));
1565 		}
1566 
1567 		if (section_size > max_section_size) {
1568 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1569 				section_size);
1570 			ret = -EINVAL;
1571 			break;
1572 		}
1573 
1574 		if (!section_size) {
1575 			IWL_ERR(trans, "ERROR - section empty\n");
1576 			ret = -EINVAL;
1577 			break;
1578 		}
1579 
1580 		if (file_sec->data + section_size > eof) {
1581 			IWL_ERR(trans,
1582 				"ERROR - NVM file too short for section (%d bytes)\n",
1583 				section_size);
1584 			ret = -EINVAL;
1585 			break;
1586 		}
1587 
1588 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1589 			 "Invalid NVM section ID %d\n", section_id)) {
1590 			ret = -EINVAL;
1591 			break;
1592 		}
1593 
1594 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1595 		if (!temp) {
1596 			ret = -ENOMEM;
1597 			break;
1598 		}
1599 
1600 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1601 
1602 		kfree(nvm_sections[section_id].data);
1603 		nvm_sections[section_id].data = temp;
1604 		nvm_sections[section_id].length = section_size;
1605 
1606 		/* advance to the next section */
1607 		file_sec = (void *)(file_sec->data + section_size);
1608 	}
1609 out:
1610 	release_firmware(fw_entry);
1611 	return ret;
1612 }
1613 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1614 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw)1615 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1616 				 const struct iwl_fw *fw)
1617 {
1618 	struct iwl_nvm_get_info cmd = {};
1619 	struct iwl_nvm_data *nvm;
1620 	struct iwl_host_cmd hcmd = {
1621 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1622 		.data = { &cmd, },
1623 		.len = { sizeof(cmd) },
1624 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1625 	};
1626 	int  ret;
1627 	bool empty_otp;
1628 	u32 mac_flags;
1629 	u32 sbands_flags = 0;
1630 	/*
1631 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1632 	 * in v3, except for the channel profile part of the
1633 	 * regulatory.  So we can just access the new struct, with the
1634 	 * exception of the latter.
1635 	 */
1636 	struct iwl_nvm_get_info_rsp *rsp;
1637 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1638 	bool v4 = fw_has_api(&fw->ucode_capa,
1639 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1640 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1641 	void *channel_profile;
1642 
1643 	ret = iwl_trans_send_cmd(trans, &hcmd);
1644 	if (ret)
1645 		return ERR_PTR(ret);
1646 
1647 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1648 		 "Invalid payload len in NVM response from FW %d",
1649 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1650 		ret = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	rsp = (void *)hcmd.resp_pkt->data;
1655 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1656 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1657 	if (empty_otp)
1658 		IWL_INFO(trans, "OTP is empty\n");
1659 
1660 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1661 	if (!nvm) {
1662 		ret = -ENOMEM;
1663 		goto out;
1664 	}
1665 
1666 	iwl_set_hw_address_from_csr(trans, nvm);
1667 	/* TODO: if platform NVM has MAC address - override it here */
1668 
1669 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1670 		IWL_ERR(trans, "no valid mac address was found\n");
1671 		ret = -EINVAL;
1672 		goto err_free;
1673 	}
1674 
1675 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1676 
1677 	/* Initialize general data */
1678 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1679 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1680 	if (nvm->n_hw_addrs == 0)
1681 		IWL_WARN(trans,
1682 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1683 			 empty_otp);
1684 
1685 	/* Initialize MAC sku data */
1686 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1687 	nvm->sku_cap_11ac_enable =
1688 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1689 	nvm->sku_cap_11n_enable =
1690 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1691 	nvm->sku_cap_11ax_enable =
1692 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1693 	nvm->sku_cap_band_24ghz_enable =
1694 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1695 	nvm->sku_cap_band_52ghz_enable =
1696 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1697 	nvm->sku_cap_mimo_disabled =
1698 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1699 
1700 	/* Initialize PHY sku data */
1701 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1702 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1703 
1704 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1705 	    fw_has_capa(&fw->ucode_capa,
1706 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1707 		nvm->lar_enabled = true;
1708 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1709 	}
1710 
1711 	rsp_v3 = (void *)rsp;
1712 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1713 			  (void *)rsp_v3->regulatory.channel_profile;
1714 
1715 	iwl_init_sbands(trans, nvm,
1716 			channel_profile,
1717 			nvm->valid_tx_ant & fw->valid_tx_ant,
1718 			nvm->valid_rx_ant & fw->valid_rx_ant,
1719 			sbands_flags, v4, fw);
1720 
1721 	iwl_free_resp(&hcmd);
1722 	return nvm;
1723 
1724 err_free:
1725 	kfree(nvm);
1726 out:
1727 	iwl_free_resp(&hcmd);
1728 	return ERR_PTR(ret);
1729 }
1730 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1731