1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12
iwl_mvm_skb_get_hdr(struct sk_buff * skb)13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
14 {
15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
16 u8 *data = skb->data;
17
18 /* Alignment concerns */
19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
23
24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
25 data += sizeof(struct ieee80211_radiotap_he);
26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
27 data += sizeof(struct ieee80211_radiotap_he_mu);
28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
29 data += sizeof(struct ieee80211_radiotap_lsig);
30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
31 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
32
33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
34 }
35
36 return data;
37 }
38
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
40 int queue, struct ieee80211_sta *sta)
41 {
42 struct iwl_mvm_sta *mvmsta;
43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
45 struct iwl_mvm_key_pn *ptk_pn;
46 int res;
47 u8 tid, keyidx;
48 u8 pn[IEEE80211_CCMP_PN_LEN];
49 u8 *extiv;
50
51 /* do PN checking */
52
53 /* multicast and non-data only arrives on default queue */
54 if (!ieee80211_is_data(hdr->frame_control) ||
55 is_multicast_ether_addr(hdr->addr1))
56 return 0;
57
58 /* do not check PN for open AP */
59 if (!(stats->flag & RX_FLAG_DECRYPTED))
60 return 0;
61
62 /*
63 * avoid checking for default queue - we don't want to replicate
64 * all the logic that's necessary for checking the PN on fragmented
65 * frames, leave that to mac80211
66 */
67 if (queue == 0)
68 return 0;
69
70 /* if we are here - this for sure is either CCMP or GCMP */
71 if (IS_ERR_OR_NULL(sta)) {
72 IWL_DEBUG_DROP(mvm,
73 "expected hw-decrypted unicast frame for station\n");
74 return -1;
75 }
76
77 mvmsta = iwl_mvm_sta_from_mac80211(sta);
78
79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
80 keyidx = extiv[3] >> 6;
81
82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
83 if (!ptk_pn)
84 return -1;
85
86 if (ieee80211_is_data_qos(hdr->frame_control))
87 tid = ieee80211_get_tid(hdr);
88 else
89 tid = 0;
90
91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
92 if (tid >= IWL_MAX_TID_COUNT)
93 return -1;
94
95 /* load pn */
96 pn[0] = extiv[7];
97 pn[1] = extiv[6];
98 pn[2] = extiv[5];
99 pn[3] = extiv[4];
100 pn[4] = extiv[1];
101 pn[5] = extiv[0];
102
103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
104 if (res < 0)
105 return -1;
106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
107 return -1;
108
109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
110 stats->flag |= RX_FLAG_PN_VALIDATED;
111
112 return 0;
113 }
114
115 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
118 struct iwl_rx_cmd_buffer *rxb)
119 {
120 struct iwl_rx_packet *pkt = rxb_addr(rxb);
121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
122 unsigned int headlen, fraglen, pad_len = 0;
123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
124 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
125 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
126
127 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
128 len -= 2;
129 pad_len = 2;
130 }
131
132 /*
133 * For non monitor interface strip the bytes the RADA might not have
134 * removed. As monitor interface cannot exist with other interfaces
135 * this removal is safe.
136 */
137 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
138 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
139
140 /*
141 * If RADA was not enabled then decryption was not performed so
142 * the MIC cannot be removed.
143 */
144 if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
145 if (WARN_ON(crypt_len > mic_crc_len))
146 return -EINVAL;
147
148 mic_crc_len -= crypt_len;
149 }
150
151 if (WARN_ON(mic_crc_len > len))
152 return -EINVAL;
153
154 len -= mic_crc_len;
155 }
156
157 /* If frame is small enough to fit in skb->head, pull it completely.
158 * If not, only pull ieee80211_hdr (including crypto if present, and
159 * an additional 8 bytes for SNAP/ethertype, see below) so that
160 * splice() or TCP coalesce are more efficient.
161 *
162 * Since, in addition, ieee80211_data_to_8023() always pull in at
163 * least 8 bytes (possibly more for mesh) we can do the same here
164 * to save the cost of doing it later. That still doesn't pull in
165 * the actual IP header since the typical case has a SNAP header.
166 * If the latter changes (there are efforts in the standards group
167 * to do so) we should revisit this and ieee80211_data_to_8023().
168 */
169 headlen = (len <= skb_tailroom(skb)) ? len :
170 hdrlen + crypt_len + 8;
171
172 /* The firmware may align the packet to DWORD.
173 * The padding is inserted after the IV.
174 * After copying the header + IV skip the padding if
175 * present before copying packet data.
176 */
177 hdrlen += crypt_len;
178
179 if (WARN_ONCE(headlen < hdrlen,
180 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
181 hdrlen, len, crypt_len)) {
182 /*
183 * We warn and trace because we want to be able to see
184 * it in trace-cmd as well.
185 */
186 IWL_DEBUG_RX(mvm,
187 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
188 hdrlen, len, crypt_len);
189 return -EINVAL;
190 }
191
192 skb_put_data(skb, hdr, hdrlen);
193 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
194
195 /*
196 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
197 * certain cases and starts the checksum after the SNAP. Check if
198 * this is the case - it's easier to just bail out to CHECKSUM_NONE
199 * in the cases the hardware didn't handle, since it's rare to see
200 * such packets, even though the hardware did calculate the checksum
201 * in this case, just starting after the MAC header instead.
202 */
203 if (skb->ip_summed == CHECKSUM_COMPLETE) {
204 struct {
205 u8 hdr[6];
206 __be16 type;
207 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
208
209 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
210 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
211 (shdr->type != htons(ETH_P_IP) &&
212 shdr->type != htons(ETH_P_ARP) &&
213 shdr->type != htons(ETH_P_IPV6) &&
214 shdr->type != htons(ETH_P_8021Q) &&
215 shdr->type != htons(ETH_P_PAE) &&
216 shdr->type != htons(ETH_P_TDLS))))
217 skb->ip_summed = CHECKSUM_NONE;
218 else
219 /* mac80211 assumes full CSUM including SNAP header */
220 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
221 }
222
223 fraglen = len - headlen;
224
225 if (fraglen) {
226 int offset = (u8 *)hdr + headlen + pad_len -
227 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
228
229 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
230 fraglen, rxb->truesize);
231 }
232
233 return 0;
234 }
235
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)236 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
237 struct sk_buff *skb)
238 {
239 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
240 struct ieee80211_vendor_radiotap *radiotap;
241 const int size = sizeof(*radiotap) + sizeof(__le16);
242
243 if (!mvm->cur_aid)
244 return;
245
246 /* ensure alignment */
247 BUILD_BUG_ON((size + 2) % 4);
248
249 radiotap = skb_put(skb, size + 2);
250 radiotap->align = 1;
251 /* Intel OUI */
252 radiotap->oui[0] = 0xf6;
253 radiotap->oui[1] = 0x54;
254 radiotap->oui[2] = 0x25;
255 /* radiotap sniffer config sub-namespace */
256 radiotap->subns = 1;
257 radiotap->present = 0x1;
258 radiotap->len = size - sizeof(*radiotap);
259 radiotap->pad = 2;
260
261 /* fill the data now */
262 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
263 /* and clear the padding */
264 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
265
266 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
267 }
268
269 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,bool csi)270 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
271 struct napi_struct *napi,
272 struct sk_buff *skb, int queue,
273 struct ieee80211_sta *sta,
274 bool csi)
275 {
276 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
277 kfree_skb(skb);
278 else
279 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
280 }
281
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)282 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
283 struct ieee80211_rx_status *rx_status,
284 u32 rate_n_flags, int energy_a,
285 int energy_b)
286 {
287 int max_energy;
288 u32 rate_flags = rate_n_flags;
289
290 energy_a = energy_a ? -energy_a : S8_MIN;
291 energy_b = energy_b ? -energy_b : S8_MIN;
292 max_energy = max(energy_a, energy_b);
293
294 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
295 energy_a, energy_b, max_energy);
296
297 rx_status->signal = max_energy;
298 rx_status->chains =
299 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
300 rx_status->chain_signal[0] = energy_a;
301 rx_status->chain_signal[1] = energy_b;
302 rx_status->chain_signal[2] = S8_MIN;
303 }
304
iwl_mvm_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc,u32 status,struct ieee80211_rx_status * stats)305 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
306 struct ieee80211_hdr *hdr,
307 struct iwl_rx_mpdu_desc *desc,
308 u32 status,
309 struct ieee80211_rx_status *stats)
310 {
311 struct iwl_mvm_sta *mvmsta;
312 struct iwl_mvm_vif *mvmvif;
313 u8 keyid;
314 struct ieee80211_key_conf *key;
315 u32 len = le16_to_cpu(desc->mpdu_len);
316 const u8 *frame = (void *)hdr;
317
318 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
319 return 0;
320
321 /*
322 * For non-beacon, we don't really care. But beacons may
323 * be filtered out, and we thus need the firmware's replay
324 * detection, otherwise beacons the firmware previously
325 * filtered could be replayed, or something like that, and
326 * it can filter a lot - though usually only if nothing has
327 * changed.
328 */
329 if (!ieee80211_is_beacon(hdr->frame_control))
330 return 0;
331
332 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
333 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
334 return -1;
335
336 /* good cases */
337 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
338 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
339 stats->flag |= RX_FLAG_DECRYPTED;
340 return 0;
341 }
342
343 if (!sta)
344 return -1;
345
346 mvmsta = iwl_mvm_sta_from_mac80211(sta);
347
348 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
349
350 /*
351 * both keys will have the same cipher and MIC length, use
352 * whichever one is available
353 */
354 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
355 if (!key) {
356 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
357 if (!key)
358 return -1;
359 }
360
361 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
362 return -1;
363
364 /* get the real key ID */
365 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
366 /* and if that's the other key, look it up */
367 if (keyid != key->keyidx) {
368 /*
369 * shouldn't happen since firmware checked, but be safe
370 * in case the MIC length is wrong too, for example
371 */
372 if (keyid != 6 && keyid != 7)
373 return -1;
374 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
375 if (!key)
376 return -1;
377 }
378
379 /* Report status to mac80211 */
380 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
381 ieee80211_key_mic_failure(key);
382 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
383 ieee80211_key_replay(key);
384
385 return -1;
386 }
387
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)388 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
389 struct ieee80211_hdr *hdr,
390 struct ieee80211_rx_status *stats, u16 phy_info,
391 struct iwl_rx_mpdu_desc *desc,
392 u32 pkt_flags, int queue, u8 *crypt_len)
393 {
394 u32 status = le32_to_cpu(desc->status);
395
396 /*
397 * Drop UNKNOWN frames in aggregation, unless in monitor mode
398 * (where we don't have the keys).
399 * We limit this to aggregation because in TKIP this is a valid
400 * scenario, since we may not have the (correct) TTAK (phase 1
401 * key) in the firmware.
402 */
403 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
404 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
405 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
406 return -1;
407
408 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
409 !ieee80211_has_protected(hdr->frame_control)))
410 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
411
412 if (!ieee80211_has_protected(hdr->frame_control) ||
413 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
414 IWL_RX_MPDU_STATUS_SEC_NONE)
415 return 0;
416
417 /* TODO: handle packets encrypted with unknown alg */
418
419 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
420 case IWL_RX_MPDU_STATUS_SEC_CCM:
421 case IWL_RX_MPDU_STATUS_SEC_GCM:
422 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
423 /* alg is CCM: check MIC only */
424 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
425 return -1;
426
427 stats->flag |= RX_FLAG_DECRYPTED;
428 if (pkt_flags & FH_RSCSR_RADA_EN)
429 stats->flag |= RX_FLAG_MIC_STRIPPED;
430 *crypt_len = IEEE80211_CCMP_HDR_LEN;
431 return 0;
432 case IWL_RX_MPDU_STATUS_SEC_TKIP:
433 /* Don't drop the frame and decrypt it in SW */
434 if (!fw_has_api(&mvm->fw->ucode_capa,
435 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
436 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
437 return 0;
438
439 if (mvm->trans->trans_cfg->gen2 &&
440 !(status & RX_MPDU_RES_STATUS_MIC_OK))
441 stats->flag |= RX_FLAG_MMIC_ERROR;
442
443 *crypt_len = IEEE80211_TKIP_IV_LEN;
444 fallthrough;
445 case IWL_RX_MPDU_STATUS_SEC_WEP:
446 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
447 return -1;
448
449 stats->flag |= RX_FLAG_DECRYPTED;
450 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
451 IWL_RX_MPDU_STATUS_SEC_WEP)
452 *crypt_len = IEEE80211_WEP_IV_LEN;
453
454 if (pkt_flags & FH_RSCSR_RADA_EN) {
455 stats->flag |= RX_FLAG_ICV_STRIPPED;
456 if (mvm->trans->trans_cfg->gen2)
457 stats->flag |= RX_FLAG_MMIC_STRIPPED;
458 }
459
460 return 0;
461 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
462 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
463 return -1;
464 stats->flag |= RX_FLAG_DECRYPTED;
465 return 0;
466 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
467 break;
468 default:
469 /*
470 * Sometimes we can get frames that were not decrypted
471 * because the firmware didn't have the keys yet. This can
472 * happen after connection where we can get multicast frames
473 * before the GTK is installed.
474 * Silently drop those frames.
475 * Also drop un-decrypted frames in monitor mode.
476 */
477 if (!is_multicast_ether_addr(hdr->addr1) &&
478 !mvm->monitor_on && net_ratelimit())
479 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
480 }
481
482 return 0;
483 }
484
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)485 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
486 struct ieee80211_sta *sta,
487 struct sk_buff *skb,
488 struct iwl_rx_packet *pkt)
489 {
490 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
491
492 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
493 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
494 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
495
496 skb->ip_summed = CHECKSUM_COMPLETE;
497 skb->csum = csum_unfold(~(__force __sum16)hwsum);
498 }
499 } else {
500 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
501 struct iwl_mvm_vif *mvmvif;
502 u16 flags = le16_to_cpu(desc->l3l4_flags);
503 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
504 IWL_RX_L3_PROTO_POS);
505
506 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
507
508 if (mvmvif->features & NETIF_F_RXCSUM &&
509 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
510 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
511 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
512 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
513 skb->ip_summed = CHECKSUM_UNNECESSARY;
514 }
515 }
516
517 /*
518 * returns true if a packet is a duplicate and should be dropped.
519 * Updates AMSDU PN tracking info
520 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)521 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
522 struct ieee80211_rx_status *rx_status,
523 struct ieee80211_hdr *hdr,
524 struct iwl_rx_mpdu_desc *desc)
525 {
526 struct iwl_mvm_sta *mvm_sta;
527 struct iwl_mvm_rxq_dup_data *dup_data;
528 u8 tid, sub_frame_idx;
529
530 if (WARN_ON(IS_ERR_OR_NULL(sta)))
531 return false;
532
533 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
534 dup_data = &mvm_sta->dup_data[queue];
535
536 /*
537 * Drop duplicate 802.11 retransmissions
538 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
539 */
540 if (ieee80211_is_ctl(hdr->frame_control) ||
541 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
542 is_multicast_ether_addr(hdr->addr1)) {
543 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
544 return false;
545 }
546
547 if (ieee80211_is_data_qos(hdr->frame_control))
548 /* frame has qos control */
549 tid = ieee80211_get_tid(hdr);
550 else
551 tid = IWL_MAX_TID_COUNT;
552
553 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
554 sub_frame_idx = desc->amsdu_info &
555 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
556
557 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
558 dup_data->last_seq[tid] == hdr->seq_ctrl &&
559 dup_data->last_sub_frame[tid] >= sub_frame_idx))
560 return true;
561
562 /* Allow same PN as the first subframe for following sub frames */
563 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
564 sub_frame_idx > dup_data->last_sub_frame[tid] &&
565 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
566 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
567
568 dup_data->last_seq[tid] = hdr->seq_ctrl;
569 dup_data->last_sub_frame[tid] = sub_frame_idx;
570
571 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
572
573 return false;
574 }
575
576 /*
577 * Returns true if sn2 - buffer_size < sn1 < sn2.
578 * To be used only in order to compare reorder buffer head with NSSN.
579 * We fully trust NSSN unless it is behind us due to reorder timeout.
580 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
581 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)582 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
583 {
584 return ieee80211_sn_less(sn1, sn2) &&
585 !ieee80211_sn_less(sn1, sn2 - buffer_size);
586 }
587
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)588 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
589 {
590 if (IWL_MVM_USE_NSSN_SYNC) {
591 struct iwl_mvm_nssn_sync_data notif = {
592 .baid = baid,
593 .nssn = nssn,
594 };
595
596 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
597 ¬if, sizeof(notif));
598 }
599 }
600
601 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
602
603 enum iwl_mvm_release_flags {
604 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
605 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
606 };
607
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)608 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
609 struct ieee80211_sta *sta,
610 struct napi_struct *napi,
611 struct iwl_mvm_baid_data *baid_data,
612 struct iwl_mvm_reorder_buffer *reorder_buf,
613 u16 nssn, u32 flags)
614 {
615 struct iwl_mvm_reorder_buf_entry *entries =
616 &baid_data->entries[reorder_buf->queue *
617 baid_data->entries_per_queue];
618 u16 ssn = reorder_buf->head_sn;
619
620 lockdep_assert_held(&reorder_buf->lock);
621
622 /*
623 * We keep the NSSN not too far behind, if we are sync'ing it and it
624 * is more than 2048 ahead of us, it must be behind us. Discard it.
625 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
626 * behind and this queue already processed packets. The next if
627 * would have caught cases where this queue would have processed less
628 * than 64 packets, but it may have processed more than 64 packets.
629 */
630 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
631 ieee80211_sn_less(nssn, ssn))
632 goto set_timer;
633
634 /* ignore nssn smaller than head sn - this can happen due to timeout */
635 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
636 goto set_timer;
637
638 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
639 int index = ssn % reorder_buf->buf_size;
640 struct sk_buff_head *skb_list = &entries[index].e.frames;
641 struct sk_buff *skb;
642
643 ssn = ieee80211_sn_inc(ssn);
644 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
645 (ssn == 2048 || ssn == 0))
646 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
647
648 /*
649 * Empty the list. Will have more than one frame for A-MSDU.
650 * Empty list is valid as well since nssn indicates frames were
651 * received.
652 */
653 while ((skb = __skb_dequeue(skb_list))) {
654 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
655 reorder_buf->queue,
656 sta, false);
657 reorder_buf->num_stored--;
658 }
659 }
660 reorder_buf->head_sn = nssn;
661
662 set_timer:
663 if (reorder_buf->num_stored && !reorder_buf->removed) {
664 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
665
666 while (skb_queue_empty(&entries[index].e.frames))
667 index = (index + 1) % reorder_buf->buf_size;
668 /* modify timer to match next frame's expiration time */
669 mod_timer(&reorder_buf->reorder_timer,
670 entries[index].e.reorder_time + 1 +
671 RX_REORDER_BUF_TIMEOUT_MQ);
672 } else {
673 del_timer(&reorder_buf->reorder_timer);
674 }
675 }
676
iwl_mvm_reorder_timer_expired(struct timer_list * t)677 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
678 {
679 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
680 struct iwl_mvm_baid_data *baid_data =
681 iwl_mvm_baid_data_from_reorder_buf(buf);
682 struct iwl_mvm_reorder_buf_entry *entries =
683 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
684 int i;
685 u16 sn = 0, index = 0;
686 bool expired = false;
687 bool cont = false;
688
689 spin_lock(&buf->lock);
690
691 if (!buf->num_stored || buf->removed) {
692 spin_unlock(&buf->lock);
693 return;
694 }
695
696 for (i = 0; i < buf->buf_size ; i++) {
697 index = (buf->head_sn + i) % buf->buf_size;
698
699 if (skb_queue_empty(&entries[index].e.frames)) {
700 /*
701 * If there is a hole and the next frame didn't expire
702 * we want to break and not advance SN
703 */
704 cont = false;
705 continue;
706 }
707 if (!cont &&
708 !time_after(jiffies, entries[index].e.reorder_time +
709 RX_REORDER_BUF_TIMEOUT_MQ))
710 break;
711
712 expired = true;
713 /* continue until next hole after this expired frames */
714 cont = true;
715 sn = ieee80211_sn_add(buf->head_sn, i + 1);
716 }
717
718 if (expired) {
719 struct ieee80211_sta *sta;
720 struct iwl_mvm_sta *mvmsta;
721 u8 sta_id = baid_data->sta_id;
722
723 rcu_read_lock();
724 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
725 mvmsta = iwl_mvm_sta_from_mac80211(sta);
726
727 /* SN is set to the last expired frame + 1 */
728 IWL_DEBUG_HT(buf->mvm,
729 "Releasing expired frames for sta %u, sn %d\n",
730 sta_id, sn);
731 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
732 sta, baid_data->tid);
733 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
734 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
735 rcu_read_unlock();
736 } else {
737 /*
738 * If no frame expired and there are stored frames, index is now
739 * pointing to the first unexpired frame - modify timer
740 * accordingly to this frame.
741 */
742 mod_timer(&buf->reorder_timer,
743 entries[index].e.reorder_time +
744 1 + RX_REORDER_BUF_TIMEOUT_MQ);
745 }
746 spin_unlock(&buf->lock);
747 }
748
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)749 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
750 struct iwl_mvm_delba_data *data)
751 {
752 struct iwl_mvm_baid_data *ba_data;
753 struct ieee80211_sta *sta;
754 struct iwl_mvm_reorder_buffer *reorder_buf;
755 u8 baid = data->baid;
756
757 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
758 return;
759
760 rcu_read_lock();
761
762 ba_data = rcu_dereference(mvm->baid_map[baid]);
763 if (WARN_ON_ONCE(!ba_data))
764 goto out;
765
766 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
767 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
768 goto out;
769
770 reorder_buf = &ba_data->reorder_buf[queue];
771
772 /* release all frames that are in the reorder buffer to the stack */
773 spin_lock_bh(&reorder_buf->lock);
774 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
775 ieee80211_sn_add(reorder_buf->head_sn,
776 reorder_buf->buf_size),
777 0);
778 spin_unlock_bh(&reorder_buf->lock);
779 del_timer_sync(&reorder_buf->reorder_timer);
780
781 out:
782 rcu_read_unlock();
783 }
784
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)785 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
786 struct napi_struct *napi,
787 u8 baid, u16 nssn, int queue,
788 u32 flags)
789 {
790 struct ieee80211_sta *sta;
791 struct iwl_mvm_reorder_buffer *reorder_buf;
792 struct iwl_mvm_baid_data *ba_data;
793
794 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
795 baid, nssn);
796
797 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
798 baid >= ARRAY_SIZE(mvm->baid_map)))
799 return;
800
801 rcu_read_lock();
802
803 ba_data = rcu_dereference(mvm->baid_map[baid]);
804 if (WARN_ON_ONCE(!ba_data))
805 goto out;
806
807 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
808 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
809 goto out;
810
811 reorder_buf = &ba_data->reorder_buf[queue];
812
813 spin_lock_bh(&reorder_buf->lock);
814 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
815 reorder_buf, nssn, flags);
816 spin_unlock_bh(&reorder_buf->lock);
817
818 out:
819 rcu_read_unlock();
820 }
821
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)822 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
823 struct napi_struct *napi, int queue,
824 const struct iwl_mvm_nssn_sync_data *data)
825 {
826 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
827 data->nssn, queue,
828 IWL_MVM_RELEASE_FROM_RSS_SYNC);
829 }
830
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)831 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
832 struct iwl_rx_cmd_buffer *rxb, int queue)
833 {
834 struct iwl_rx_packet *pkt = rxb_addr(rxb);
835 struct iwl_rxq_sync_notification *notif;
836 struct iwl_mvm_internal_rxq_notif *internal_notif;
837 u32 len = iwl_rx_packet_payload_len(pkt);
838
839 notif = (void *)pkt->data;
840 internal_notif = (void *)notif->payload;
841
842 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
843 "invalid notification size %d (%d)",
844 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
845 return;
846 len -= sizeof(*notif) + sizeof(*internal_notif);
847
848 if (internal_notif->sync &&
849 mvm->queue_sync_cookie != internal_notif->cookie) {
850 WARN_ONCE(1, "Received expired RX queue sync message\n");
851 return;
852 }
853
854 switch (internal_notif->type) {
855 case IWL_MVM_RXQ_EMPTY:
856 WARN_ONCE(len, "invalid empty notification size %d", len);
857 break;
858 case IWL_MVM_RXQ_NOTIF_DEL_BA:
859 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
860 "invalid delba notification size %d (%d)",
861 len, (int)sizeof(struct iwl_mvm_delba_data)))
862 break;
863 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
864 break;
865 case IWL_MVM_RXQ_NSSN_SYNC:
866 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
867 "invalid nssn sync notification size %d (%d)",
868 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
869 break;
870 iwl_mvm_nssn_sync(mvm, napi, queue,
871 (void *)internal_notif->data);
872 break;
873 default:
874 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
875 }
876
877 if (internal_notif->sync) {
878 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
879 "queue sync: queue %d responded a second time!\n",
880 queue);
881 if (READ_ONCE(mvm->queue_sync_state) == 0)
882 wake_up(&mvm->rx_sync_waitq);
883 }
884 }
885
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)886 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
887 struct ieee80211_sta *sta, int tid,
888 struct iwl_mvm_reorder_buffer *buffer,
889 u32 reorder, u32 gp2, int queue)
890 {
891 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
892
893 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
894 /* we have a new (A-)MPDU ... */
895
896 /*
897 * reset counter to 0 if we didn't have any oldsn in
898 * the last A-MPDU (as detected by GP2 being identical)
899 */
900 if (!buffer->consec_oldsn_prev_drop)
901 buffer->consec_oldsn_drops = 0;
902
903 /* either way, update our tracking state */
904 buffer->consec_oldsn_ampdu_gp2 = gp2;
905 } else if (buffer->consec_oldsn_prev_drop) {
906 /*
907 * tracking state didn't change, and we had an old SN
908 * indication before - do nothing in this case, we
909 * already noted this one down and are waiting for the
910 * next A-MPDU (by GP2)
911 */
912 return;
913 }
914
915 /* return unless this MPDU has old SN */
916 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
917 return;
918
919 /* update state */
920 buffer->consec_oldsn_prev_drop = 1;
921 buffer->consec_oldsn_drops++;
922
923 /* if limit is reached, send del BA and reset state */
924 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
925 IWL_WARN(mvm,
926 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
927 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
928 sta->addr, queue, tid);
929 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
930 buffer->consec_oldsn_prev_drop = 0;
931 buffer->consec_oldsn_drops = 0;
932 }
933 }
934
935 /*
936 * Returns true if the MPDU was buffered\dropped, false if it should be passed
937 * to upper layer.
938 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)939 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
940 struct napi_struct *napi,
941 int queue,
942 struct ieee80211_sta *sta,
943 struct sk_buff *skb,
944 struct iwl_rx_mpdu_desc *desc)
945 {
946 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
947 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
948 struct iwl_mvm_sta *mvm_sta;
949 struct iwl_mvm_baid_data *baid_data;
950 struct iwl_mvm_reorder_buffer *buffer;
951 struct sk_buff *tail;
952 u32 reorder = le32_to_cpu(desc->reorder_data);
953 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
954 bool last_subframe =
955 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
956 u8 tid = ieee80211_get_tid(hdr);
957 u8 sub_frame_idx = desc->amsdu_info &
958 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
959 struct iwl_mvm_reorder_buf_entry *entries;
960 int index;
961 u16 nssn, sn;
962 u8 baid;
963
964 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
965 IWL_RX_MPDU_REORDER_BAID_SHIFT;
966
967 /*
968 * This also covers the case of receiving a Block Ack Request
969 * outside a BA session; we'll pass it to mac80211 and that
970 * then sends a delBA action frame.
971 * This also covers pure monitor mode, in which case we won't
972 * have any BA sessions.
973 */
974 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
975 return false;
976
977 /* no sta yet */
978 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
979 "Got valid BAID without a valid station assigned\n"))
980 return false;
981
982 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
983
984 /* not a data packet or a bar */
985 if (!ieee80211_is_back_req(hdr->frame_control) &&
986 (!ieee80211_is_data_qos(hdr->frame_control) ||
987 is_multicast_ether_addr(hdr->addr1)))
988 return false;
989
990 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
991 return false;
992
993 baid_data = rcu_dereference(mvm->baid_map[baid]);
994 if (!baid_data) {
995 IWL_DEBUG_RX(mvm,
996 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
997 baid, reorder);
998 return false;
999 }
1000
1001 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
1002 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
1003 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
1004 tid))
1005 return false;
1006
1007 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1008 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1009 IWL_RX_MPDU_REORDER_SN_SHIFT;
1010
1011 buffer = &baid_data->reorder_buf[queue];
1012 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1013
1014 spin_lock_bh(&buffer->lock);
1015
1016 if (!buffer->valid) {
1017 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1018 spin_unlock_bh(&buffer->lock);
1019 return false;
1020 }
1021 buffer->valid = true;
1022 }
1023
1024 if (ieee80211_is_back_req(hdr->frame_control)) {
1025 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1026 buffer, nssn, 0);
1027 goto drop;
1028 }
1029
1030 /*
1031 * If there was a significant jump in the nssn - adjust.
1032 * If the SN is smaller than the NSSN it might need to first go into
1033 * the reorder buffer, in which case we just release up to it and the
1034 * rest of the function will take care of storing it and releasing up to
1035 * the nssn.
1036 * This should not happen. This queue has been lagging and it should
1037 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1038 * and update the other queues.
1039 */
1040 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1041 buffer->buf_size) ||
1042 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1043 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1044
1045 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1046 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1047 }
1048
1049 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1050 rx_status->device_timestamp, queue);
1051
1052 /* drop any oudated packets */
1053 if (ieee80211_sn_less(sn, buffer->head_sn))
1054 goto drop;
1055
1056 /* release immediately if allowed by nssn and no stored frames */
1057 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1058 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1059 buffer->buf_size) &&
1060 (!amsdu || last_subframe)) {
1061 /*
1062 * If we crossed the 2048 or 0 SN, notify all the
1063 * queues. This is done in order to avoid having a
1064 * head_sn that lags behind for too long. When that
1065 * happens, we can get to a situation where the head_sn
1066 * is within the interval [nssn - buf_size : nssn]
1067 * which will make us think that the nssn is a packet
1068 * that we already freed because of the reordering
1069 * buffer and we will ignore it. So maintain the
1070 * head_sn somewhat updated across all the queues:
1071 * when it crosses 0 and 2048.
1072 */
1073 if (sn == 2048 || sn == 0)
1074 iwl_mvm_sync_nssn(mvm, baid, sn);
1075 buffer->head_sn = nssn;
1076 }
1077 /* No need to update AMSDU last SN - we are moving the head */
1078 spin_unlock_bh(&buffer->lock);
1079 return false;
1080 }
1081
1082 /*
1083 * release immediately if there are no stored frames, and the sn is
1084 * equal to the head.
1085 * This can happen due to reorder timer, where NSSN is behind head_sn.
1086 * When we released everything, and we got the next frame in the
1087 * sequence, according to the NSSN we can't release immediately,
1088 * while technically there is no hole and we can move forward.
1089 */
1090 if (!buffer->num_stored && sn == buffer->head_sn) {
1091 if (!amsdu || last_subframe) {
1092 if (sn == 2048 || sn == 0)
1093 iwl_mvm_sync_nssn(mvm, baid, sn);
1094 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1095 }
1096 /* No need to update AMSDU last SN - we are moving the head */
1097 spin_unlock_bh(&buffer->lock);
1098 return false;
1099 }
1100
1101 index = sn % buffer->buf_size;
1102
1103 /*
1104 * Check if we already stored this frame
1105 * As AMSDU is either received or not as whole, logic is simple:
1106 * If we have frames in that position in the buffer and the last frame
1107 * originated from AMSDU had a different SN then it is a retransmission.
1108 * If it is the same SN then if the subframe index is incrementing it
1109 * is the same AMSDU - otherwise it is a retransmission.
1110 */
1111 tail = skb_peek_tail(&entries[index].e.frames);
1112 if (tail && !amsdu)
1113 goto drop;
1114 else if (tail && (sn != buffer->last_amsdu ||
1115 buffer->last_sub_index >= sub_frame_idx))
1116 goto drop;
1117
1118 /* put in reorder buffer */
1119 __skb_queue_tail(&entries[index].e.frames, skb);
1120 buffer->num_stored++;
1121 entries[index].e.reorder_time = jiffies;
1122
1123 if (amsdu) {
1124 buffer->last_amsdu = sn;
1125 buffer->last_sub_index = sub_frame_idx;
1126 }
1127
1128 /*
1129 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1130 * The reason is that NSSN advances on the first sub-frame, and may
1131 * cause the reorder buffer to advance before all the sub-frames arrive.
1132 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1133 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1134 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1135 * already ahead and it will be dropped.
1136 * If the last sub-frame is not on this queue - we will get frame
1137 * release notification with up to date NSSN.
1138 */
1139 if (!amsdu || last_subframe)
1140 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1141 buffer, nssn,
1142 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1143
1144 spin_unlock_bh(&buffer->lock);
1145 return true;
1146
1147 drop:
1148 kfree_skb(skb);
1149 spin_unlock_bh(&buffer->lock);
1150 return true;
1151 }
1152
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1153 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1154 u32 reorder_data, u8 baid)
1155 {
1156 unsigned long now = jiffies;
1157 unsigned long timeout;
1158 struct iwl_mvm_baid_data *data;
1159
1160 rcu_read_lock();
1161
1162 data = rcu_dereference(mvm->baid_map[baid]);
1163 if (!data) {
1164 IWL_DEBUG_RX(mvm,
1165 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1166 baid, reorder_data);
1167 goto out;
1168 }
1169
1170 if (!data->timeout)
1171 goto out;
1172
1173 timeout = data->timeout;
1174 /*
1175 * Do not update last rx all the time to avoid cache bouncing
1176 * between the rx queues.
1177 * Update it every timeout. Worst case is the session will
1178 * expire after ~ 2 * timeout, which doesn't matter that much.
1179 */
1180 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1181 /* Update is atomic */
1182 data->last_rx = now;
1183
1184 out:
1185 rcu_read_unlock();
1186 }
1187
iwl_mvm_flip_address(u8 * addr)1188 static void iwl_mvm_flip_address(u8 *addr)
1189 {
1190 int i;
1191 u8 mac_addr[ETH_ALEN];
1192
1193 for (i = 0; i < ETH_ALEN; i++)
1194 mac_addr[i] = addr[ETH_ALEN - i - 1];
1195 ether_addr_copy(addr, mac_addr);
1196 }
1197
1198 struct iwl_mvm_rx_phy_data {
1199 enum iwl_rx_phy_info_type info_type;
1200 __le32 d0, d1, d2, d3;
1201 __le16 d4;
1202 };
1203
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he_mu * he_mu)1204 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1205 struct iwl_mvm_rx_phy_data *phy_data,
1206 u32 rate_n_flags,
1207 struct ieee80211_radiotap_he_mu *he_mu)
1208 {
1209 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1210 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1211 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1212
1213 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1214 he_mu->flags1 |=
1215 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1216 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1217
1218 he_mu->flags1 |=
1219 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1220 phy_data4),
1221 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1222
1223 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1224 phy_data2);
1225 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1226 phy_data3);
1227 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1228 phy_data2);
1229 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1230 phy_data3);
1231 }
1232
1233 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1234 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1235 he_mu->flags1 |=
1236 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1237 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1238
1239 he_mu->flags2 |=
1240 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1241 phy_data4),
1242 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1243
1244 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1245 phy_data2);
1246 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1247 phy_data3);
1248 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1249 phy_data2);
1250 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1251 phy_data3);
1252 }
1253 }
1254
1255 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1256 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1257 u32 rate_n_flags,
1258 struct ieee80211_radiotap_he *he,
1259 struct ieee80211_radiotap_he_mu *he_mu,
1260 struct ieee80211_rx_status *rx_status)
1261 {
1262 /*
1263 * Unfortunately, we have to leave the mac80211 data
1264 * incorrect for the case that we receive an HE-MU
1265 * transmission and *don't* have the HE phy data (due
1266 * to the bits being used for TSF). This shouldn't
1267 * happen though as management frames where we need
1268 * the TSF/timers are not be transmitted in HE-MU.
1269 */
1270 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1271 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1272 u8 offs = 0;
1273
1274 rx_status->bw = RATE_INFO_BW_HE_RU;
1275
1276 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1277
1278 switch (ru) {
1279 case 0 ... 36:
1280 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1281 offs = ru;
1282 break;
1283 case 37 ... 52:
1284 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1285 offs = ru - 37;
1286 break;
1287 case 53 ... 60:
1288 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1289 offs = ru - 53;
1290 break;
1291 case 61 ... 64:
1292 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1293 offs = ru - 61;
1294 break;
1295 case 65 ... 66:
1296 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1297 offs = ru - 65;
1298 break;
1299 case 67:
1300 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1301 break;
1302 case 68:
1303 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1304 break;
1305 }
1306 he->data2 |= le16_encode_bits(offs,
1307 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1308 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1309 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1310 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1311 he->data2 |=
1312 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1313
1314 #define CHECK_BW(bw) \
1315 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1316 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1317 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1318 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1319 CHECK_BW(20);
1320 CHECK_BW(40);
1321 CHECK_BW(80);
1322 CHECK_BW(160);
1323
1324 if (he_mu)
1325 he_mu->flags2 |=
1326 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1327 rate_n_flags),
1328 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1329 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1330 he->data6 |=
1331 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1332 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1333 rate_n_flags),
1334 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1335 }
1336
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int queue)1337 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1338 struct iwl_mvm_rx_phy_data *phy_data,
1339 struct ieee80211_radiotap_he *he,
1340 struct ieee80211_radiotap_he_mu *he_mu,
1341 struct ieee80211_rx_status *rx_status,
1342 u32 rate_n_flags, int queue)
1343 {
1344 switch (phy_data->info_type) {
1345 case IWL_RX_PHY_INFO_TYPE_NONE:
1346 case IWL_RX_PHY_INFO_TYPE_CCK:
1347 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1348 case IWL_RX_PHY_INFO_TYPE_HT:
1349 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1350 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1351 return;
1352 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1353 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1354 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1355 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1356 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1357 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1358 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1359 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1360 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1361 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1362 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1363 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1364 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1365 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1366 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1367 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1368 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1369 fallthrough;
1370 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1371 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1372 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1373 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1374 /* HE common */
1375 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1376 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1377 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1378 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1379 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1380 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1381 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1382 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1383 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1384 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1385 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1386 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1387 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1388 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1389 IWL_RX_PHY_DATA0_HE_UPLINK),
1390 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1391 }
1392 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1393 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1394 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1395 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1396 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1397 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1398 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1399 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1400 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1401 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1402 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1403 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1404 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1405 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1406 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1407 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1408 IWL_RX_PHY_DATA0_HE_DOPPLER),
1409 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1410 break;
1411 }
1412
1413 switch (phy_data->info_type) {
1414 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1415 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1416 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1417 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1418 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1419 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1420 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1421 break;
1422 default:
1423 /* nothing here */
1424 break;
1425 }
1426
1427 switch (phy_data->info_type) {
1428 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1429 he_mu->flags1 |=
1430 le16_encode_bits(le16_get_bits(phy_data->d4,
1431 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1432 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1433 he_mu->flags1 |=
1434 le16_encode_bits(le16_get_bits(phy_data->d4,
1435 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1436 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1437 he_mu->flags2 |=
1438 le16_encode_bits(le16_get_bits(phy_data->d4,
1439 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1440 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1441 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1442 fallthrough;
1443 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1444 he_mu->flags2 |=
1445 le16_encode_bits(le32_get_bits(phy_data->d1,
1446 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1447 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1448 he_mu->flags2 |=
1449 le16_encode_bits(le32_get_bits(phy_data->d1,
1450 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1451 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1452 fallthrough;
1453 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1454 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1455 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1456 he, he_mu, rx_status);
1457 break;
1458 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1459 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1460 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1461 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1462 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1463 break;
1464 default:
1465 /* nothing */
1466 break;
1467 }
1468 }
1469
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,u16 phy_info,int queue)1470 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1471 struct iwl_mvm_rx_phy_data *phy_data,
1472 u32 rate_n_flags, u16 phy_info, int queue)
1473 {
1474 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1475 struct ieee80211_radiotap_he *he = NULL;
1476 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1477 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1478 u8 stbc, ltf;
1479 static const struct ieee80211_radiotap_he known = {
1480 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1481 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1482 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1483 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1484 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1485 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1486 };
1487 static const struct ieee80211_radiotap_he_mu mu_known = {
1488 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1489 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1490 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1491 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1492 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1493 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1494 };
1495
1496 he = skb_put_data(skb, &known, sizeof(known));
1497 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1498
1499 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1500 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1501 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1502 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1503 }
1504
1505 /* report the AMPDU-EOF bit on single frames */
1506 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1507 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1508 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1509 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1510 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1511 }
1512
1513 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1514 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1515 rate_n_flags, queue);
1516
1517 /* update aggregation data for monitor sake on default queue */
1518 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1519 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1520 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1521
1522 /* toggle is switched whenever new aggregation starts */
1523 if (toggle_bit != mvm->ampdu_toggle) {
1524 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1525 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1526 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1527 }
1528 }
1529
1530 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1531 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1532 rx_status->bw = RATE_INFO_BW_HE_RU;
1533 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1534 }
1535
1536 /* actually data is filled in mac80211 */
1537 if (he_type == RATE_MCS_HE_TYPE_SU ||
1538 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1539 he->data1 |=
1540 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1541
1542 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1543 rx_status->nss =
1544 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1545 RATE_VHT_MCS_NSS_POS) + 1;
1546 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1547 rx_status->encoding = RX_ENC_HE;
1548 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1549 if (rate_n_flags & RATE_MCS_BF_MSK)
1550 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1551
1552 rx_status->he_dcm =
1553 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1554
1555 #define CHECK_TYPE(F) \
1556 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1557 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1558
1559 CHECK_TYPE(SU);
1560 CHECK_TYPE(EXT_SU);
1561 CHECK_TYPE(MU);
1562 CHECK_TYPE(TRIG);
1563
1564 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1565
1566 if (rate_n_flags & RATE_MCS_BF_MSK)
1567 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1568
1569 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1570 RATE_MCS_HE_GI_LTF_POS) {
1571 case 0:
1572 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1573 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1574 else
1575 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1576 if (he_type == RATE_MCS_HE_TYPE_MU)
1577 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1578 else
1579 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1580 break;
1581 case 1:
1582 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1583 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1584 else
1585 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1586 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1587 break;
1588 case 2:
1589 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1590 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1591 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1592 } else {
1593 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1594 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1595 }
1596 break;
1597 case 3:
1598 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1599 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1600 rate_n_flags & RATE_MCS_SGI_MSK)
1601 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1602 else
1603 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1604 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1605 break;
1606 }
1607
1608 he->data5 |= le16_encode_bits(ltf,
1609 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1610 }
1611
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1612 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1613 struct iwl_mvm_rx_phy_data *phy_data)
1614 {
1615 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1616 struct ieee80211_radiotap_lsig *lsig;
1617
1618 switch (phy_data->info_type) {
1619 case IWL_RX_PHY_INFO_TYPE_HT:
1620 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1621 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1622 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1623 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1624 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1625 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1626 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1627 lsig = skb_put(skb, sizeof(*lsig));
1628 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1629 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1630 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1631 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1632 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1633 break;
1634 default:
1635 break;
1636 }
1637 }
1638
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)1639 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1640 {
1641 switch (phy_band) {
1642 case PHY_BAND_24:
1643 return NL80211_BAND_2GHZ;
1644 case PHY_BAND_5:
1645 return NL80211_BAND_5GHZ;
1646 case PHY_BAND_6:
1647 return NL80211_BAND_6GHZ;
1648 default:
1649 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1650 return NL80211_BAND_5GHZ;
1651 }
1652 }
1653
1654 struct iwl_rx_sta_csa {
1655 bool all_sta_unblocked;
1656 struct ieee80211_vif *vif;
1657 };
1658
iwl_mvm_rx_get_sta_block_tx(void * data,struct ieee80211_sta * sta)1659 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1660 {
1661 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1662 struct iwl_rx_sta_csa *rx_sta_csa = data;
1663
1664 if (mvmsta->vif != rx_sta_csa->vif)
1665 return;
1666
1667 if (mvmsta->disable_tx)
1668 rx_sta_csa->all_sta_unblocked = false;
1669 }
1670
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1671 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1672 struct iwl_rx_cmd_buffer *rxb, int queue)
1673 {
1674 struct ieee80211_rx_status *rx_status;
1675 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1676 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1677 struct ieee80211_hdr *hdr;
1678 u32 len;
1679 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1680 u32 rate_n_flags, gp2_on_air_rise;
1681 u16 phy_info;
1682 struct ieee80211_sta *sta = NULL;
1683 struct sk_buff *skb;
1684 u8 crypt_len = 0, channel, energy_a, energy_b;
1685 size_t desc_size;
1686 struct iwl_mvm_rx_phy_data phy_data = {
1687 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1688 };
1689 bool csi = false;
1690
1691 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1692 return;
1693
1694 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1695 desc_size = sizeof(*desc);
1696 else
1697 desc_size = IWL_RX_DESC_SIZE_V1;
1698
1699 if (unlikely(pkt_len < desc_size)) {
1700 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1701 return;
1702 }
1703
1704 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1705 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1706 channel = desc->v3.channel;
1707 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1708 energy_a = desc->v3.energy_a;
1709 energy_b = desc->v3.energy_b;
1710
1711 phy_data.d0 = desc->v3.phy_data0;
1712 phy_data.d1 = desc->v3.phy_data1;
1713 phy_data.d2 = desc->v3.phy_data2;
1714 phy_data.d3 = desc->v3.phy_data3;
1715 } else {
1716 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1717 channel = desc->v1.channel;
1718 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1719 energy_a = desc->v1.energy_a;
1720 energy_b = desc->v1.energy_b;
1721
1722 phy_data.d0 = desc->v1.phy_data0;
1723 phy_data.d1 = desc->v1.phy_data1;
1724 phy_data.d2 = desc->v1.phy_data2;
1725 phy_data.d3 = desc->v1.phy_data3;
1726 }
1727
1728 len = le16_to_cpu(desc->mpdu_len);
1729
1730 if (unlikely(len + desc_size > pkt_len)) {
1731 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1732 return;
1733 }
1734
1735 phy_info = le16_to_cpu(desc->phy_info);
1736 phy_data.d4 = desc->phy_data4;
1737
1738 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1739 phy_data.info_type =
1740 le32_get_bits(phy_data.d1,
1741 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1742
1743 hdr = (void *)(pkt->data + desc_size);
1744 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1745 * ieee80211_hdr pulled.
1746 */
1747 skb = alloc_skb(128, GFP_ATOMIC);
1748 if (!skb) {
1749 IWL_ERR(mvm, "alloc_skb failed\n");
1750 return;
1751 }
1752
1753 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1754 /*
1755 * If the device inserted padding it means that (it thought)
1756 * the 802.11 header wasn't a multiple of 4 bytes long. In
1757 * this case, reserve two bytes at the start of the SKB to
1758 * align the payload properly in case we end up copying it.
1759 */
1760 skb_reserve(skb, 2);
1761 }
1762
1763 rx_status = IEEE80211_SKB_RXCB(skb);
1764
1765 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1766 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1767 case RATE_MCS_CHAN_WIDTH_20:
1768 break;
1769 case RATE_MCS_CHAN_WIDTH_40:
1770 rx_status->bw = RATE_INFO_BW_40;
1771 break;
1772 case RATE_MCS_CHAN_WIDTH_80:
1773 rx_status->bw = RATE_INFO_BW_80;
1774 break;
1775 case RATE_MCS_CHAN_WIDTH_160:
1776 rx_status->bw = RATE_INFO_BW_160;
1777 break;
1778 }
1779
1780 if (rate_n_flags & RATE_MCS_HE_MSK)
1781 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1782 phy_info, queue);
1783
1784 iwl_mvm_decode_lsig(skb, &phy_data);
1785
1786 /*
1787 * Keep packets with CRC errors (and with overrun) for monitor mode
1788 * (otherwise the firmware discards them) but mark them as bad.
1789 */
1790 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1791 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1792 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1793 le32_to_cpu(desc->status));
1794 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1795 }
1796 /* set the preamble flag if appropriate */
1797 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1798 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1799 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1800
1801 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1802 u64 tsf_on_air_rise;
1803
1804 if (mvm->trans->trans_cfg->device_family >=
1805 IWL_DEVICE_FAMILY_AX210)
1806 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1807 else
1808 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1809
1810 rx_status->mactime = tsf_on_air_rise;
1811 /* TSF as indicated by the firmware is at INA time */
1812 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1813 }
1814
1815 rx_status->device_timestamp = gp2_on_air_rise;
1816 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1817 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1818
1819 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1820 } else {
1821 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1822 NL80211_BAND_2GHZ;
1823 }
1824 rx_status->freq = ieee80211_channel_to_frequency(channel,
1825 rx_status->band);
1826 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1827 energy_b);
1828
1829 /* update aggregation data for monitor sake on default queue */
1830 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1831 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1832
1833 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1834 /*
1835 * Toggle is switched whenever new aggregation starts. Make
1836 * sure ampdu_reference is never 0 so we can later use it to
1837 * see if the frame was really part of an A-MPDU or not.
1838 */
1839 if (toggle_bit != mvm->ampdu_toggle) {
1840 mvm->ampdu_ref++;
1841 if (mvm->ampdu_ref == 0)
1842 mvm->ampdu_ref++;
1843 mvm->ampdu_toggle = toggle_bit;
1844 }
1845 rx_status->ampdu_reference = mvm->ampdu_ref;
1846 }
1847
1848 if (unlikely(mvm->monitor_on))
1849 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1850
1851 rcu_read_lock();
1852
1853 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1854 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1855
1856 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1857 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1858 if (IS_ERR(sta))
1859 sta = NULL;
1860 }
1861 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1862 /*
1863 * This is fine since we prevent two stations with the same
1864 * address from being added.
1865 */
1866 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1867 }
1868
1869 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc,
1870 le32_to_cpu(pkt->len_n_flags), queue,
1871 &crypt_len)) {
1872 kfree_skb(skb);
1873 goto out;
1874 }
1875
1876 if (sta) {
1877 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1878 struct ieee80211_vif *tx_blocked_vif =
1879 rcu_dereference(mvm->csa_tx_blocked_vif);
1880 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1881 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1882 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1883 struct iwl_fw_dbg_trigger_tlv *trig;
1884 struct ieee80211_vif *vif = mvmsta->vif;
1885
1886 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1887 !is_multicast_ether_addr(hdr->addr1) &&
1888 ieee80211_is_data(hdr->frame_control) &&
1889 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1890 schedule_delayed_work(&mvm->tcm.work, 0);
1891
1892 /*
1893 * We have tx blocked stations (with CS bit). If we heard
1894 * frames from a blocked station on a new channel we can
1895 * TX to it again.
1896 */
1897 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1898 struct iwl_mvm_vif *mvmvif =
1899 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1900 struct iwl_rx_sta_csa rx_sta_csa = {
1901 .all_sta_unblocked = true,
1902 .vif = tx_blocked_vif,
1903 };
1904
1905 if (mvmvif->csa_target_freq == rx_status->freq)
1906 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1907 false);
1908 ieee80211_iterate_stations_atomic(mvm->hw,
1909 iwl_mvm_rx_get_sta_block_tx,
1910 &rx_sta_csa);
1911
1912 if (rx_sta_csa.all_sta_unblocked) {
1913 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1914 /* Unblock BCAST / MCAST station */
1915 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1916 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
1917 }
1918 }
1919
1920 rs_update_last_rssi(mvm, mvmsta, rx_status);
1921
1922 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1923 ieee80211_vif_to_wdev(vif),
1924 FW_DBG_TRIGGER_RSSI);
1925
1926 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1927 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1928 s32 rssi;
1929
1930 rssi_trig = (void *)trig->data;
1931 rssi = le32_to_cpu(rssi_trig->rssi);
1932
1933 if (rx_status->signal < rssi)
1934 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1935 NULL);
1936 }
1937
1938 if (ieee80211_is_data(hdr->frame_control))
1939 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1940
1941 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1942 kfree_skb(skb);
1943 goto out;
1944 }
1945
1946 /*
1947 * Our hardware de-aggregates AMSDUs but copies the mac header
1948 * as it to the de-aggregated MPDUs. We need to turn off the
1949 * AMSDU bit in the QoS control ourselves.
1950 * In addition, HW reverses addr3 and addr4 - reverse it back.
1951 */
1952 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1953 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1954 u8 *qc = ieee80211_get_qos_ctl(hdr);
1955
1956 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1957
1958 if (mvm->trans->trans_cfg->device_family ==
1959 IWL_DEVICE_FAMILY_9000) {
1960 iwl_mvm_flip_address(hdr->addr3);
1961
1962 if (ieee80211_has_a4(hdr->frame_control))
1963 iwl_mvm_flip_address(hdr->addr4);
1964 }
1965 }
1966 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1967 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1968
1969 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1970 }
1971 }
1972
1973 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1974 rate_n_flags & RATE_MCS_SGI_MSK)
1975 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1976 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1977 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1978 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1979 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1980 if (rate_n_flags & RATE_MCS_HT_MSK) {
1981 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1982 RATE_MCS_STBC_POS;
1983 rx_status->encoding = RX_ENC_HT;
1984 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1985 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1986 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1987 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1988 RATE_MCS_STBC_POS;
1989 rx_status->nss =
1990 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1991 RATE_VHT_MCS_NSS_POS) + 1;
1992 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1993 rx_status->encoding = RX_ENC_VHT;
1994 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1995 if (rate_n_flags & RATE_MCS_BF_MSK)
1996 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1997 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1998 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1999 rx_status->band);
2000
2001 if (WARN(rate < 0 || rate > 0xFF,
2002 "Invalid rate flags 0x%x, band %d,\n",
2003 rate_n_flags, rx_status->band)) {
2004 kfree_skb(skb);
2005 goto out;
2006 }
2007 rx_status->rate_idx = rate;
2008 }
2009
2010 /* management stuff on default queue */
2011 if (!queue) {
2012 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2013 ieee80211_is_probe_resp(hdr->frame_control)) &&
2014 mvm->sched_scan_pass_all ==
2015 SCHED_SCAN_PASS_ALL_ENABLED))
2016 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2017
2018 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2019 ieee80211_is_probe_resp(hdr->frame_control)))
2020 rx_status->boottime_ns = ktime_get_boottime_ns();
2021 }
2022
2023 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2024 kfree_skb(skb);
2025 goto out;
2026 }
2027
2028 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
2029 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
2030 sta, csi);
2031 out:
2032 rcu_read_unlock();
2033 }
2034
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2035 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2036 struct iwl_rx_cmd_buffer *rxb, int queue)
2037 {
2038 struct ieee80211_rx_status *rx_status;
2039 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2040 struct iwl_rx_no_data *desc = (void *)pkt->data;
2041 u32 rate_n_flags = le32_to_cpu(desc->rate);
2042 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2043 u32 rssi = le32_to_cpu(desc->rssi);
2044 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2045 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2046 struct ieee80211_sta *sta = NULL;
2047 struct sk_buff *skb;
2048 u8 channel, energy_a, energy_b;
2049 struct iwl_mvm_rx_phy_data phy_data = {
2050 .info_type = le32_get_bits(desc->phy_info[1],
2051 IWL_RX_PHY_DATA1_INFO_TYPE_MASK),
2052 .d0 = desc->phy_info[0],
2053 .d1 = desc->phy_info[1],
2054 };
2055
2056 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
2057 return;
2058
2059 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2060 return;
2061
2062 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
2063 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
2064 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
2065
2066 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2067 * ieee80211_hdr pulled.
2068 */
2069 skb = alloc_skb(128, GFP_ATOMIC);
2070 if (!skb) {
2071 IWL_ERR(mvm, "alloc_skb failed\n");
2072 return;
2073 }
2074
2075 rx_status = IEEE80211_SKB_RXCB(skb);
2076
2077 /* 0-length PSDU */
2078 rx_status->flag |= RX_FLAG_NO_PSDU;
2079
2080 switch (info_type) {
2081 case RX_NO_DATA_INFO_TYPE_NDP:
2082 rx_status->zero_length_psdu_type =
2083 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2084 break;
2085 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2086 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2087 rx_status->zero_length_psdu_type =
2088 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2089 break;
2090 default:
2091 rx_status->zero_length_psdu_type =
2092 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2093 break;
2094 }
2095
2096 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2097 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2098 case RATE_MCS_CHAN_WIDTH_20:
2099 break;
2100 case RATE_MCS_CHAN_WIDTH_40:
2101 rx_status->bw = RATE_INFO_BW_40;
2102 break;
2103 case RATE_MCS_CHAN_WIDTH_80:
2104 rx_status->bw = RATE_INFO_BW_80;
2105 break;
2106 case RATE_MCS_CHAN_WIDTH_160:
2107 rx_status->bw = RATE_INFO_BW_160;
2108 break;
2109 }
2110
2111 if (rate_n_flags & RATE_MCS_HE_MSK)
2112 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2113 phy_info, queue);
2114
2115 iwl_mvm_decode_lsig(skb, &phy_data);
2116
2117 rx_status->device_timestamp = gp2_on_air_rise;
2118 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2119 NL80211_BAND_2GHZ;
2120 rx_status->freq = ieee80211_channel_to_frequency(channel,
2121 rx_status->band);
2122 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2123 energy_b);
2124
2125 rcu_read_lock();
2126
2127 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2128 rate_n_flags & RATE_MCS_SGI_MSK)
2129 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2130 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2131 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2132 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2133 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2134 if (rate_n_flags & RATE_MCS_HT_MSK) {
2135 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2136 RATE_MCS_STBC_POS;
2137 rx_status->encoding = RX_ENC_HT;
2138 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2139 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2140 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2141 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2142 RATE_MCS_STBC_POS;
2143 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2144 rx_status->encoding = RX_ENC_VHT;
2145 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2146 if (rate_n_flags & RATE_MCS_BF_MSK)
2147 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2148 /*
2149 * take the nss from the rx_vec since the rate_n_flags has
2150 * only 2 bits for the nss which gives a max of 4 ss but
2151 * there may be up to 8 spatial streams
2152 */
2153 rx_status->nss =
2154 le32_get_bits(desc->rx_vec[0],
2155 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2156 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2157 rx_status->nss =
2158 le32_get_bits(desc->rx_vec[0],
2159 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2160 } else {
2161 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2162 rx_status->band);
2163
2164 if (WARN(rate < 0 || rate > 0xFF,
2165 "Invalid rate flags 0x%x, band %d,\n",
2166 rate_n_flags, rx_status->band)) {
2167 kfree_skb(skb);
2168 goto out;
2169 }
2170 rx_status->rate_idx = rate;
2171 }
2172
2173 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2174 out:
2175 rcu_read_unlock();
2176 }
2177
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2178 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2179 struct iwl_rx_cmd_buffer *rxb, int queue)
2180 {
2181 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2182 struct iwl_frame_release *release = (void *)pkt->data;
2183
2184 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2185 return;
2186
2187 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2188 le16_to_cpu(release->nssn),
2189 queue, 0);
2190 }
2191
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2192 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2193 struct iwl_rx_cmd_buffer *rxb, int queue)
2194 {
2195 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2196 struct iwl_bar_frame_release *release = (void *)pkt->data;
2197 unsigned int baid = le32_get_bits(release->ba_info,
2198 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2199 unsigned int nssn = le32_get_bits(release->ba_info,
2200 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2201 unsigned int sta_id = le32_get_bits(release->sta_tid,
2202 IWL_BAR_FRAME_RELEASE_STA_MASK);
2203 unsigned int tid = le32_get_bits(release->sta_tid,
2204 IWL_BAR_FRAME_RELEASE_TID_MASK);
2205 struct iwl_mvm_baid_data *baid_data;
2206
2207 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2208 return;
2209
2210 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2211 baid >= ARRAY_SIZE(mvm->baid_map)))
2212 return;
2213
2214 rcu_read_lock();
2215 baid_data = rcu_dereference(mvm->baid_map[baid]);
2216 if (!baid_data) {
2217 IWL_DEBUG_RX(mvm,
2218 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2219 baid);
2220 goto out;
2221 }
2222
2223 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2224 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2225 baid, baid_data->sta_id, baid_data->tid, sta_id,
2226 tid))
2227 goto out;
2228
2229 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2230 out:
2231 rcu_read_unlock();
2232 }
2233