1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2019, 2021 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
6 */
7 #include <linux/firmware.h>
8 #include <linux/rtnetlink.h>
9 #include "iwl-trans.h"
10 #include "iwl-csr.h"
11 #include "mvm.h"
12 #include "iwl-eeprom-parse.h"
13 #include "iwl-eeprom-read.h"
14 #include "iwl-nvm-parse.h"
15 #include "iwl-prph.h"
16 #include "fw/acpi.h"
17
18 /* Default NVM size to read */
19 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
20
21 #define NVM_WRITE_OPCODE 1
22 #define NVM_READ_OPCODE 0
23
24 /* load nvm chunk response */
25 enum {
26 READ_NVM_CHUNK_SUCCEED = 0,
27 READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
28 };
29
30 /*
31 * prepare the NVM host command w/ the pointers to the nvm buffer
32 * and send it to fw
33 */
iwl_nvm_write_chunk(struct iwl_mvm * mvm,u16 section,u16 offset,u16 length,const u8 * data)34 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
35 u16 offset, u16 length, const u8 *data)
36 {
37 struct iwl_nvm_access_cmd nvm_access_cmd = {
38 .offset = cpu_to_le16(offset),
39 .length = cpu_to_le16(length),
40 .type = cpu_to_le16(section),
41 .op_code = NVM_WRITE_OPCODE,
42 };
43 struct iwl_host_cmd cmd = {
44 .id = NVM_ACCESS_CMD,
45 .len = { sizeof(struct iwl_nvm_access_cmd), length },
46 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
47 .data = { &nvm_access_cmd, data },
48 /* data may come from vmalloc, so use _DUP */
49 .dataflags = { 0, IWL_HCMD_DFL_DUP },
50 };
51 struct iwl_rx_packet *pkt;
52 struct iwl_nvm_access_resp *nvm_resp;
53 int ret;
54
55 ret = iwl_mvm_send_cmd(mvm, &cmd);
56 if (ret)
57 return ret;
58
59 pkt = cmd.resp_pkt;
60 /* Extract & check NVM write response */
61 nvm_resp = (void *)pkt->data;
62 if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
63 IWL_ERR(mvm,
64 "NVM access write command failed for section %u (status = 0x%x)\n",
65 section, le16_to_cpu(nvm_resp->status));
66 ret = -EIO;
67 }
68
69 iwl_free_resp(&cmd);
70 return ret;
71 }
72
iwl_nvm_read_chunk(struct iwl_mvm * mvm,u16 section,u16 offset,u16 length,u8 * data)73 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
74 u16 offset, u16 length, u8 *data)
75 {
76 struct iwl_nvm_access_cmd nvm_access_cmd = {
77 .offset = cpu_to_le16(offset),
78 .length = cpu_to_le16(length),
79 .type = cpu_to_le16(section),
80 .op_code = NVM_READ_OPCODE,
81 };
82 struct iwl_nvm_access_resp *nvm_resp;
83 struct iwl_rx_packet *pkt;
84 struct iwl_host_cmd cmd = {
85 .id = NVM_ACCESS_CMD,
86 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
87 .data = { &nvm_access_cmd, },
88 };
89 int ret, bytes_read, offset_read;
90 u8 *resp_data;
91
92 cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
93
94 ret = iwl_mvm_send_cmd(mvm, &cmd);
95 if (ret)
96 return ret;
97
98 pkt = cmd.resp_pkt;
99
100 /* Extract NVM response */
101 nvm_resp = (void *)pkt->data;
102 ret = le16_to_cpu(nvm_resp->status);
103 bytes_read = le16_to_cpu(nvm_resp->length);
104 offset_read = le16_to_cpu(nvm_resp->offset);
105 resp_data = nvm_resp->data;
106 if (ret) {
107 if ((offset != 0) &&
108 (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
109 /*
110 * meaning of NOT_VALID_ADDRESS:
111 * driver try to read chunk from address that is
112 * multiple of 2K and got an error since addr is empty.
113 * meaning of (offset != 0): driver already
114 * read valid data from another chunk so this case
115 * is not an error.
116 */
117 IWL_DEBUG_EEPROM(mvm->trans->dev,
118 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
119 offset);
120 ret = 0;
121 } else {
122 IWL_DEBUG_EEPROM(mvm->trans->dev,
123 "NVM access command failed with status %d (device: %s)\n",
124 ret, mvm->trans->name);
125 ret = -ENODATA;
126 }
127 goto exit;
128 }
129
130 if (offset_read != offset) {
131 IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
132 offset_read);
133 ret = -EINVAL;
134 goto exit;
135 }
136
137 /* Write data to NVM */
138 memcpy(data + offset, resp_data, bytes_read);
139 ret = bytes_read;
140
141 exit:
142 iwl_free_resp(&cmd);
143 return ret;
144 }
145
iwl_nvm_write_section(struct iwl_mvm * mvm,u16 section,const u8 * data,u16 length)146 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
147 const u8 *data, u16 length)
148 {
149 int offset = 0;
150
151 /* copy data in chunks of 2k (and remainder if any) */
152
153 while (offset < length) {
154 int chunk_size, ret;
155
156 chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
157 length - offset);
158
159 ret = iwl_nvm_write_chunk(mvm, section, offset,
160 chunk_size, data + offset);
161 if (ret < 0)
162 return ret;
163
164 offset += chunk_size;
165 }
166
167 return 0;
168 }
169
170 /*
171 * Reads an NVM section completely.
172 * NICs prior to 7000 family doesn't have a real NVM, but just read
173 * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
174 * by uCode, we need to manually check in this case that we don't
175 * overflow and try to read more than the EEPROM size.
176 * For 7000 family NICs, we supply the maximal size we can read, and
177 * the uCode fills the response with as much data as we can,
178 * without overflowing, so no check is needed.
179 */
iwl_nvm_read_section(struct iwl_mvm * mvm,u16 section,u8 * data,u32 size_read)180 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
181 u8 *data, u32 size_read)
182 {
183 u16 length, offset = 0;
184 int ret;
185
186 /* Set nvm section read length */
187 length = IWL_NVM_DEFAULT_CHUNK_SIZE;
188
189 ret = length;
190
191 /* Read the NVM until exhausted (reading less than requested) */
192 while (ret == length) {
193 /* Check no memory assumptions fail and cause an overflow */
194 if ((size_read + offset + length) >
195 mvm->trans->trans_cfg->base_params->eeprom_size) {
196 IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
197 return -ENOBUFS;
198 }
199
200 ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
201 if (ret < 0) {
202 IWL_DEBUG_EEPROM(mvm->trans->dev,
203 "Cannot read NVM from section %d offset %d, length %d\n",
204 section, offset, length);
205 return ret;
206 }
207 offset += ret;
208 }
209
210 iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
211
212 IWL_DEBUG_EEPROM(mvm->trans->dev,
213 "NVM section %d read completed\n", section);
214 return offset;
215 }
216
217 static struct iwl_nvm_data *
iwl_parse_nvm_sections(struct iwl_mvm * mvm)218 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
219 {
220 struct iwl_nvm_section *sections = mvm->nvm_sections;
221 const __be16 *hw;
222 const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
223 int regulatory_type;
224
225 /* Checking for required sections */
226 if (mvm->trans->cfg->nvm_type == IWL_NVM) {
227 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
228 !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
229 IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
230 return NULL;
231 }
232 } else {
233 if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
234 regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
235 else
236 regulatory_type = NVM_SECTION_TYPE_REGULATORY;
237
238 /* SW and REGULATORY sections are mandatory */
239 if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
240 !mvm->nvm_sections[regulatory_type].data) {
241 IWL_ERR(mvm,
242 "Can't parse empty family 8000 OTP/NVM sections\n");
243 return NULL;
244 }
245 /* MAC_OVERRIDE or at least HW section must exist */
246 if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
247 !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
248 IWL_ERR(mvm,
249 "Can't parse mac_address, empty sections\n");
250 return NULL;
251 }
252
253 /* PHY_SKU section is mandatory in B0 */
254 if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
255 !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
256 IWL_ERR(mvm,
257 "Can't parse phy_sku in B0, empty sections\n");
258 return NULL;
259 }
260 }
261
262 hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
263 sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
264 calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
265 mac_override =
266 (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
267 phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
268
269 regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
270 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
271 (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
272
273 return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
274 regulatory, mac_override, phy_sku,
275 mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant);
276 }
277
278 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
iwl_mvm_load_nvm_to_nic(struct iwl_mvm * mvm)279 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
280 {
281 int i, ret = 0;
282 struct iwl_nvm_section *sections = mvm->nvm_sections;
283
284 IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
285
286 for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
287 if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
288 continue;
289 ret = iwl_nvm_write_section(mvm, i, sections[i].data,
290 sections[i].length);
291 if (ret < 0) {
292 IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
293 break;
294 }
295 }
296 return ret;
297 }
298
iwl_nvm_init(struct iwl_mvm * mvm)299 int iwl_nvm_init(struct iwl_mvm *mvm)
300 {
301 int ret, section;
302 u32 size_read = 0;
303 u8 *nvm_buffer, *temp;
304 const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
305
306 if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
307 return -EINVAL;
308
309 /* load NVM values from nic */
310 /* Read From FW NVM */
311 IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
312
313 nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
314 GFP_KERNEL);
315 if (!nvm_buffer)
316 return -ENOMEM;
317 for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
318 /* we override the constness for initial read */
319 ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
320 size_read);
321 if (ret == -ENODATA) {
322 ret = 0;
323 continue;
324 }
325 if (ret < 0)
326 break;
327 size_read += ret;
328 temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
329 if (!temp) {
330 ret = -ENOMEM;
331 break;
332 }
333
334 iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
335
336 mvm->nvm_sections[section].data = temp;
337 mvm->nvm_sections[section].length = ret;
338
339 #ifdef CONFIG_IWLWIFI_DEBUGFS
340 switch (section) {
341 case NVM_SECTION_TYPE_SW:
342 mvm->nvm_sw_blob.data = temp;
343 mvm->nvm_sw_blob.size = ret;
344 break;
345 case NVM_SECTION_TYPE_CALIBRATION:
346 mvm->nvm_calib_blob.data = temp;
347 mvm->nvm_calib_blob.size = ret;
348 break;
349 case NVM_SECTION_TYPE_PRODUCTION:
350 mvm->nvm_prod_blob.data = temp;
351 mvm->nvm_prod_blob.size = ret;
352 break;
353 case NVM_SECTION_TYPE_PHY_SKU:
354 mvm->nvm_phy_sku_blob.data = temp;
355 mvm->nvm_phy_sku_blob.size = ret;
356 break;
357 case NVM_SECTION_TYPE_REGULATORY_SDP:
358 case NVM_SECTION_TYPE_REGULATORY:
359 mvm->nvm_reg_blob.data = temp;
360 mvm->nvm_reg_blob.size = ret;
361 break;
362 default:
363 if (section == mvm->cfg->nvm_hw_section_num) {
364 mvm->nvm_hw_blob.data = temp;
365 mvm->nvm_hw_blob.size = ret;
366 break;
367 }
368 }
369 #endif
370 }
371 if (!size_read)
372 IWL_ERR(mvm, "OTP is blank\n");
373 kfree(nvm_buffer);
374
375 /* Only if PNVM selected in the mod param - load external NVM */
376 if (mvm->nvm_file_name) {
377 /* read External NVM file from the mod param */
378 ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
379 mvm->nvm_sections);
380 if (ret) {
381 mvm->nvm_file_name = nvm_file_C;
382
383 if ((ret == -EFAULT || ret == -ENOENT) &&
384 mvm->nvm_file_name) {
385 /* in case nvm file was failed try again */
386 ret = iwl_read_external_nvm(mvm->trans,
387 mvm->nvm_file_name,
388 mvm->nvm_sections);
389 if (ret)
390 return ret;
391 } else {
392 return ret;
393 }
394 }
395 }
396
397 /* parse the relevant nvm sections */
398 mvm->nvm_data = iwl_parse_nvm_sections(mvm);
399 if (!mvm->nvm_data)
400 return -ENODATA;
401 IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
402 mvm->nvm_data->nvm_version);
403
404 return ret < 0 ? ret : 0;
405 }
406
407 struct iwl_mcc_update_resp *
iwl_mvm_update_mcc(struct iwl_mvm * mvm,const char * alpha2,enum iwl_mcc_source src_id)408 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
409 enum iwl_mcc_source src_id)
410 {
411 struct iwl_mcc_update_cmd mcc_update_cmd = {
412 .mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
413 .source_id = (u8)src_id,
414 };
415 struct iwl_mcc_update_resp *resp_cp;
416 struct iwl_rx_packet *pkt;
417 struct iwl_host_cmd cmd = {
418 .id = MCC_UPDATE_CMD,
419 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
420 .data = { &mcc_update_cmd },
421 };
422
423 int ret;
424 u32 status;
425 int resp_len, n_channels;
426 u16 mcc;
427
428 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
429 return ERR_PTR(-EOPNOTSUPP);
430
431 cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
432
433 IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
434 alpha2[0], alpha2[1], src_id);
435
436 ret = iwl_mvm_send_cmd(mvm, &cmd);
437 if (ret)
438 return ERR_PTR(ret);
439
440 pkt = cmd.resp_pkt;
441
442 /* Extract MCC response */
443 if (fw_has_capa(&mvm->fw->ucode_capa,
444 IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
445 struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
446
447 n_channels = __le32_to_cpu(mcc_resp->n_channels);
448 if (iwl_rx_packet_payload_len(pkt) !=
449 struct_size(mcc_resp, channels, n_channels)) {
450 resp_cp = ERR_PTR(-EINVAL);
451 goto exit;
452 }
453 resp_len = sizeof(struct iwl_mcc_update_resp) +
454 n_channels * sizeof(__le32);
455 resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
456 if (!resp_cp) {
457 resp_cp = ERR_PTR(-ENOMEM);
458 goto exit;
459 }
460 } else {
461 struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
462
463 n_channels = __le32_to_cpu(mcc_resp_v3->n_channels);
464 if (iwl_rx_packet_payload_len(pkt) !=
465 struct_size(mcc_resp_v3, channels, n_channels)) {
466 resp_cp = ERR_PTR(-EINVAL);
467 goto exit;
468 }
469 resp_len = sizeof(struct iwl_mcc_update_resp) +
470 n_channels * sizeof(__le32);
471 resp_cp = kzalloc(resp_len, GFP_KERNEL);
472 if (!resp_cp) {
473 resp_cp = ERR_PTR(-ENOMEM);
474 goto exit;
475 }
476
477 resp_cp->status = mcc_resp_v3->status;
478 resp_cp->mcc = mcc_resp_v3->mcc;
479 resp_cp->cap = cpu_to_le16(mcc_resp_v3->cap);
480 resp_cp->source_id = mcc_resp_v3->source_id;
481 resp_cp->time = mcc_resp_v3->time;
482 resp_cp->geo_info = mcc_resp_v3->geo_info;
483 resp_cp->n_channels = mcc_resp_v3->n_channels;
484 memcpy(resp_cp->channels, mcc_resp_v3->channels,
485 n_channels * sizeof(__le32));
486 }
487
488 status = le32_to_cpu(resp_cp->status);
489
490 mcc = le16_to_cpu(resp_cp->mcc);
491
492 /* W/A for a FW/NVM issue - returns 0x00 for the world domain */
493 if (mcc == 0) {
494 mcc = 0x3030; /* "00" - world */
495 resp_cp->mcc = cpu_to_le16(mcc);
496 }
497
498 IWL_DEBUG_LAR(mvm,
499 "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
500 status, mcc, mcc >> 8, mcc & 0xff, n_channels);
501
502 exit:
503 iwl_free_resp(&cmd);
504 return resp_cp;
505 }
506
iwl_mvm_init_mcc(struct iwl_mvm * mvm)507 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
508 {
509 bool tlv_lar;
510 bool nvm_lar;
511 int retval;
512 struct ieee80211_regdomain *regd;
513 char mcc[3];
514
515 if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
516 tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
517 IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
518 nvm_lar = mvm->nvm_data->lar_enabled;
519 if (tlv_lar != nvm_lar)
520 IWL_INFO(mvm,
521 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
522 tlv_lar ? "enabled" : "disabled",
523 nvm_lar ? "enabled" : "disabled");
524 }
525
526 if (!iwl_mvm_is_lar_supported(mvm))
527 return 0;
528
529 /*
530 * try to replay the last set MCC to FW. If it doesn't exist,
531 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
532 */
533 retval = iwl_mvm_init_fw_regd(mvm);
534 if (retval != -ENOENT)
535 return retval;
536
537 /*
538 * Driver regulatory hint for initial update, this also informs the
539 * firmware we support wifi location updates.
540 * Disallow scans that might crash the FW while the LAR regdomain
541 * is not set.
542 */
543 mvm->lar_regdom_set = false;
544
545 regd = iwl_mvm_get_current_regdomain(mvm, NULL);
546 if (IS_ERR_OR_NULL(regd))
547 return -EIO;
548
549 if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
550 !iwl_acpi_get_mcc(mvm->dev, mcc)) {
551 kfree(regd);
552 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
553 MCC_SOURCE_BIOS, NULL);
554 if (IS_ERR_OR_NULL(regd))
555 return -EIO;
556 }
557
558 retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
559 kfree(regd);
560 return retval;
561 }
562
iwl_mvm_rx_chub_update_mcc(struct iwl_mvm * mvm,struct iwl_rx_cmd_buffer * rxb)563 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
564 struct iwl_rx_cmd_buffer *rxb)
565 {
566 struct iwl_rx_packet *pkt = rxb_addr(rxb);
567 struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
568 enum iwl_mcc_source src;
569 char mcc[3];
570 struct ieee80211_regdomain *regd;
571 int wgds_tbl_idx;
572
573 lockdep_assert_held(&mvm->mutex);
574
575 if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
576 IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
577 return;
578 }
579
580 if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
581 return;
582
583 mcc[0] = le16_to_cpu(notif->mcc) >> 8;
584 mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
585 mcc[2] = '\0';
586 src = notif->source_id;
587
588 IWL_DEBUG_LAR(mvm,
589 "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
590 mcc, src);
591 regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
592 if (IS_ERR_OR_NULL(regd))
593 return;
594
595 wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
596 if (wgds_tbl_idx < 0)
597 IWL_DEBUG_INFO(mvm, "SAR WGDS is disabled (%d)\n",
598 wgds_tbl_idx);
599 else
600 IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
601 wgds_tbl_idx);
602
603 regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
604 kfree(regd);
605 }
606