1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
21 /*
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
26 * wakeup path.
27 */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
31
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33
kernfs_active(struct kernfs_node * kn)34 static bool kernfs_active(struct kernfs_node *kn)
35 {
36 lockdep_assert_held(kernfs_rwsem(kernfs_root(kn)));
37 return atomic_read(&kn->active) >= 0;
38 }
39
kernfs_lockdep(struct kernfs_node * kn)40 static bool kernfs_lockdep(struct kernfs_node *kn)
41 {
42 #ifdef CONFIG_DEBUG_LOCK_ALLOC
43 return kn->flags & KERNFS_LOCKDEP;
44 #else
45 return false;
46 #endif
47 }
48
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)49 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
50 {
51 if (!kn)
52 return strlcpy(buf, "(null)", buflen);
53
54 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
55 }
56
57 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)58 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
59 {
60 size_t depth = 0;
61
62 while (to->parent && to != from) {
63 depth++;
64 to = to->parent;
65 }
66 return depth;
67 }
68
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)69 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
70 struct kernfs_node *b)
71 {
72 size_t da, db;
73 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
74
75 if (ra != rb)
76 return NULL;
77
78 da = kernfs_depth(ra->kn, a);
79 db = kernfs_depth(rb->kn, b);
80
81 while (da > db) {
82 a = a->parent;
83 da--;
84 }
85 while (db > da) {
86 b = b->parent;
87 db--;
88 }
89
90 /* worst case b and a will be the same at root */
91 while (b != a) {
92 b = b->parent;
93 a = a->parent;
94 }
95
96 return a;
97 }
98
99 /**
100 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
101 * where kn_from is treated as root of the path.
102 * @kn_from: kernfs node which should be treated as root for the path
103 * @kn_to: kernfs node to which path is needed
104 * @buf: buffer to copy the path into
105 * @buflen: size of @buf
106 *
107 * We need to handle couple of scenarios here:
108 * [1] when @kn_from is an ancestor of @kn_to at some level
109 * kn_from: /n1/n2/n3
110 * kn_to: /n1/n2/n3/n4/n5
111 * result: /n4/n5
112 *
113 * [2] when @kn_from is on a different hierarchy and we need to find common
114 * ancestor between @kn_from and @kn_to.
115 * kn_from: /n1/n2/n3/n4
116 * kn_to: /n1/n2/n5
117 * result: /../../n5
118 * OR
119 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
120 * kn_to: /n1/n2/n3 [depth=3]
121 * result: /../..
122 *
123 * [3] when @kn_to is NULL result will be "(null)"
124 *
125 * Returns the length of the full path. If the full length is equal to or
126 * greater than @buflen, @buf contains the truncated path with the trailing
127 * '\0'. On error, -errno is returned.
128 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)129 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
130 struct kernfs_node *kn_from,
131 char *buf, size_t buflen)
132 {
133 struct kernfs_node *kn, *common;
134 const char parent_str[] = "/..";
135 size_t depth_from, depth_to, len = 0;
136 int i, j;
137
138 if (!kn_to)
139 return strlcpy(buf, "(null)", buflen);
140
141 if (!kn_from)
142 kn_from = kernfs_root(kn_to)->kn;
143
144 if (kn_from == kn_to)
145 return strlcpy(buf, "/", buflen);
146
147 if (!buf)
148 return -EINVAL;
149
150 common = kernfs_common_ancestor(kn_from, kn_to);
151 if (WARN_ON(!common))
152 return -EINVAL;
153
154 depth_to = kernfs_depth(common, kn_to);
155 depth_from = kernfs_depth(common, kn_from);
156
157 buf[0] = '\0';
158
159 for (i = 0; i < depth_from; i++)
160 len += strlcpy(buf + len, parent_str,
161 len < buflen ? buflen - len : 0);
162
163 /* Calculate how many bytes we need for the rest */
164 for (i = depth_to - 1; i >= 0; i--) {
165 for (kn = kn_to, j = 0; j < i; j++)
166 kn = kn->parent;
167 len += strlcpy(buf + len, "/",
168 len < buflen ? buflen - len : 0);
169 len += strlcpy(buf + len, kn->name,
170 len < buflen ? buflen - len : 0);
171 }
172
173 return len;
174 }
175
176 /**
177 * kernfs_name - obtain the name of a given node
178 * @kn: kernfs_node of interest
179 * @buf: buffer to copy @kn's name into
180 * @buflen: size of @buf
181 *
182 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
183 * similar to strlcpy(). It returns the length of @kn's name and if @buf
184 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
185 *
186 * Fills buffer with "(null)" if @kn is NULL.
187 *
188 * This function can be called from any context.
189 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)190 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
191 {
192 unsigned long flags;
193 int ret;
194
195 spin_lock_irqsave(&kernfs_rename_lock, flags);
196 ret = kernfs_name_locked(kn, buf, buflen);
197 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
198 return ret;
199 }
200
201 /**
202 * kernfs_path_from_node - build path of node @to relative to @from.
203 * @from: parent kernfs_node relative to which we need to build the path
204 * @to: kernfs_node of interest
205 * @buf: buffer to copy @to's path into
206 * @buflen: size of @buf
207 *
208 * Builds @to's path relative to @from in @buf. @from and @to must
209 * be on the same kernfs-root. If @from is not parent of @to, then a relative
210 * path (which includes '..'s) as needed to reach from @from to @to is
211 * returned.
212 *
213 * Returns the length of the full path. If the full length is equal to or
214 * greater than @buflen, @buf contains the truncated path with the trailing
215 * '\0'. On error, -errno is returned.
216 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)217 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
218 char *buf, size_t buflen)
219 {
220 unsigned long flags;
221 int ret;
222
223 spin_lock_irqsave(&kernfs_rename_lock, flags);
224 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
225 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
226 return ret;
227 }
228 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
229
230 /**
231 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
232 * @kn: kernfs_node of interest
233 *
234 * This function can be called from any context.
235 */
pr_cont_kernfs_name(struct kernfs_node * kn)236 void pr_cont_kernfs_name(struct kernfs_node *kn)
237 {
238 unsigned long flags;
239
240 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
241
242 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
243 pr_cont("%s", kernfs_pr_cont_buf);
244
245 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
246 }
247
248 /**
249 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
250 * @kn: kernfs_node of interest
251 *
252 * This function can be called from any context.
253 */
pr_cont_kernfs_path(struct kernfs_node * kn)254 void pr_cont_kernfs_path(struct kernfs_node *kn)
255 {
256 unsigned long flags;
257 int sz;
258
259 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
260
261 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
262 sizeof(kernfs_pr_cont_buf));
263 if (sz < 0) {
264 pr_cont("(error)");
265 goto out;
266 }
267
268 if (sz >= sizeof(kernfs_pr_cont_buf)) {
269 pr_cont("(name too long)");
270 goto out;
271 }
272
273 pr_cont("%s", kernfs_pr_cont_buf);
274
275 out:
276 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
277 }
278
279 /**
280 * kernfs_get_parent - determine the parent node and pin it
281 * @kn: kernfs_node of interest
282 *
283 * Determines @kn's parent, pins and returns it. This function can be
284 * called from any context.
285 */
kernfs_get_parent(struct kernfs_node * kn)286 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
287 {
288 struct kernfs_node *parent;
289 unsigned long flags;
290
291 spin_lock_irqsave(&kernfs_rename_lock, flags);
292 parent = kn->parent;
293 kernfs_get(parent);
294 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
295
296 return parent;
297 }
298
299 /**
300 * kernfs_name_hash
301 * @name: Null terminated string to hash
302 * @ns: Namespace tag to hash
303 *
304 * Returns 31 bit hash of ns + name (so it fits in an off_t )
305 */
kernfs_name_hash(const char * name,const void * ns)306 static unsigned int kernfs_name_hash(const char *name, const void *ns)
307 {
308 unsigned long hash = init_name_hash(ns);
309 unsigned int len = strlen(name);
310 while (len--)
311 hash = partial_name_hash(*name++, hash);
312 hash = end_name_hash(hash);
313 hash &= 0x7fffffffU;
314 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
315 if (hash < 2)
316 hash += 2;
317 if (hash >= INT_MAX)
318 hash = INT_MAX - 1;
319 return hash;
320 }
321
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)322 static int kernfs_name_compare(unsigned int hash, const char *name,
323 const void *ns, const struct kernfs_node *kn)
324 {
325 if (hash < kn->hash)
326 return -1;
327 if (hash > kn->hash)
328 return 1;
329 if (ns < kn->ns)
330 return -1;
331 if (ns > kn->ns)
332 return 1;
333 return strcmp(name, kn->name);
334 }
335
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)336 static int kernfs_sd_compare(const struct kernfs_node *left,
337 const struct kernfs_node *right)
338 {
339 return kernfs_name_compare(left->hash, left->name, left->ns, right);
340 }
341
342 /**
343 * kernfs_link_sibling - link kernfs_node into sibling rbtree
344 * @kn: kernfs_node of interest
345 *
346 * Link @kn into its sibling rbtree which starts from
347 * @kn->parent->dir.children.
348 *
349 * Locking:
350 * kernfs_rwsem held exclusive
351 *
352 * RETURNS:
353 * 0 on susccess -EEXIST on failure.
354 */
kernfs_link_sibling(struct kernfs_node * kn)355 static int kernfs_link_sibling(struct kernfs_node *kn)
356 {
357 struct rb_node **node = &kn->parent->dir.children.rb_node;
358 struct rb_node *parent = NULL;
359
360 while (*node) {
361 struct kernfs_node *pos;
362 int result;
363
364 pos = rb_to_kn(*node);
365 parent = *node;
366 result = kernfs_sd_compare(kn, pos);
367 if (result < 0)
368 node = &pos->rb.rb_left;
369 else if (result > 0)
370 node = &pos->rb.rb_right;
371 else
372 return -EEXIST;
373 }
374
375 /* add new node and rebalance the tree */
376 rb_link_node(&kn->rb, parent, node);
377 rb_insert_color(&kn->rb, &kn->parent->dir.children);
378
379 /* successfully added, account subdir number */
380 if (kernfs_type(kn) == KERNFS_DIR)
381 kn->parent->dir.subdirs++;
382 kernfs_inc_rev(kn->parent);
383
384 return 0;
385 }
386
387 /**
388 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389 * @kn: kernfs_node of interest
390 *
391 * Try to unlink @kn from its sibling rbtree which starts from
392 * kn->parent->dir.children. Returns %true if @kn was actually
393 * removed, %false if @kn wasn't on the rbtree.
394 *
395 * Locking:
396 * kernfs_rwsem held exclusive
397 */
kernfs_unlink_sibling(struct kernfs_node * kn)398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 if (RB_EMPTY_NODE(&kn->rb))
401 return false;
402
403 if (kernfs_type(kn) == KERNFS_DIR)
404 kn->parent->dir.subdirs--;
405 kernfs_inc_rev(kn->parent);
406
407 rb_erase(&kn->rb, &kn->parent->dir.children);
408 RB_CLEAR_NODE(&kn->rb);
409 return true;
410 }
411
412 /**
413 * kernfs_get_active - get an active reference to kernfs_node
414 * @kn: kernfs_node to get an active reference to
415 *
416 * Get an active reference of @kn. This function is noop if @kn
417 * is NULL.
418 *
419 * RETURNS:
420 * Pointer to @kn on success, NULL on failure.
421 */
kernfs_get_active(struct kernfs_node * kn)422 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
423 {
424 if (unlikely(!kn))
425 return NULL;
426
427 if (!atomic_inc_unless_negative(&kn->active))
428 return NULL;
429
430 if (kernfs_lockdep(kn))
431 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
432 return kn;
433 }
434
435 /**
436 * kernfs_put_active - put an active reference to kernfs_node
437 * @kn: kernfs_node to put an active reference to
438 *
439 * Put an active reference to @kn. This function is noop if @kn
440 * is NULL.
441 */
kernfs_put_active(struct kernfs_node * kn)442 void kernfs_put_active(struct kernfs_node *kn)
443 {
444 int v;
445
446 if (unlikely(!kn))
447 return;
448
449 if (kernfs_lockdep(kn))
450 rwsem_release(&kn->dep_map, _RET_IP_);
451 v = atomic_dec_return(&kn->active);
452 if (likely(v != KN_DEACTIVATED_BIAS))
453 return;
454
455 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
456 }
457
458 /**
459 * kernfs_drain - drain kernfs_node
460 * @kn: kernfs_node to drain
461 *
462 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
463 * removers may invoke this function concurrently on @kn and all will
464 * return after draining is complete.
465 */
kernfs_drain(struct kernfs_node * kn)466 static void kernfs_drain(struct kernfs_node *kn)
467 __releases(kernfs_rwsem(kernfs_root(kn)))
468 __acquires(kernfs_rwsem(kernfs_root(kn)))
469 {
470 struct kernfs_root *root = kernfs_root(kn);
471
472 lockdep_assert_held_write(kernfs_rwsem(root));
473 WARN_ON_ONCE(kernfs_active(kn));
474
475 up_write(kernfs_rwsem(root));
476
477 if (kernfs_lockdep(kn)) {
478 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
479 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
480 lock_contended(&kn->dep_map, _RET_IP_);
481 }
482
483 /* but everyone should wait for draining */
484 wait_event(root->deactivate_waitq,
485 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
486
487 if (kernfs_lockdep(kn)) {
488 lock_acquired(&kn->dep_map, _RET_IP_);
489 rwsem_release(&kn->dep_map, _RET_IP_);
490 }
491
492 kernfs_drain_open_files(kn);
493
494 down_write(kernfs_rwsem(root));
495 }
496
497 /**
498 * kernfs_get - get a reference count on a kernfs_node
499 * @kn: the target kernfs_node
500 */
kernfs_get(struct kernfs_node * kn)501 void kernfs_get(struct kernfs_node *kn)
502 {
503 if (kn) {
504 WARN_ON(!atomic_read(&kn->count));
505 atomic_inc(&kn->count);
506 }
507 }
508 EXPORT_SYMBOL_GPL(kernfs_get);
509
510 /**
511 * kernfs_put - put a reference count on a kernfs_node
512 * @kn: the target kernfs_node
513 *
514 * Put a reference count of @kn and destroy it if it reached zero.
515 */
kernfs_put(struct kernfs_node * kn)516 void kernfs_put(struct kernfs_node *kn)
517 {
518 struct kernfs_node *parent;
519 struct kernfs_root *root;
520
521 if (!kn || !atomic_dec_and_test(&kn->count))
522 return;
523 root = kernfs_root(kn);
524 repeat:
525 /*
526 * Moving/renaming is always done while holding reference.
527 * kn->parent won't change beneath us.
528 */
529 parent = kn->parent;
530
531 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
532 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
533 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
534
535 if (kernfs_type(kn) == KERNFS_LINK)
536 kernfs_put(kn->symlink.target_kn);
537
538 kfree_const(kn->name);
539
540 if (kn->iattr) {
541 simple_xattrs_free(&kn->iattr->xattrs);
542 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
543 }
544 spin_lock(&kernfs_idr_lock);
545 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
546 spin_unlock(&kernfs_idr_lock);
547 kmem_cache_free(kernfs_node_cache, kn);
548
549 kn = parent;
550 if (kn) {
551 if (atomic_dec_and_test(&kn->count))
552 goto repeat;
553 } else {
554 /* just released the root kn, free @root too */
555 idr_destroy(&root->ino_idr);
556 kfree(root);
557 }
558 }
559 EXPORT_SYMBOL_GPL(kernfs_put);
560
561 /**
562 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
563 * @dentry: the dentry in question
564 *
565 * Return the kernfs_node associated with @dentry. If @dentry is not a
566 * kernfs one, %NULL is returned.
567 *
568 * While the returned kernfs_node will stay accessible as long as @dentry
569 * is accessible, the returned node can be in any state and the caller is
570 * fully responsible for determining what's accessible.
571 */
kernfs_node_from_dentry(struct dentry * dentry)572 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
573 {
574 if (dentry->d_sb->s_op == &kernfs_sops)
575 return kernfs_dentry_node(dentry);
576 return NULL;
577 }
578
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)579 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
580 struct kernfs_node *parent,
581 const char *name, umode_t mode,
582 kuid_t uid, kgid_t gid,
583 unsigned flags)
584 {
585 struct kernfs_node *kn;
586 u32 id_highbits;
587 int ret;
588
589 name = kstrdup_const(name, GFP_KERNEL);
590 if (!name)
591 return NULL;
592
593 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
594 if (!kn)
595 goto err_out1;
596
597 idr_preload(GFP_KERNEL);
598 spin_lock(&kernfs_idr_lock);
599 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
600 if (ret >= 0 && ret < root->last_id_lowbits)
601 root->id_highbits++;
602 id_highbits = root->id_highbits;
603 root->last_id_lowbits = ret;
604 spin_unlock(&kernfs_idr_lock);
605 idr_preload_end();
606 if (ret < 0)
607 goto err_out2;
608
609 kn->id = (u64)id_highbits << 32 | ret;
610
611 atomic_set(&kn->count, 1);
612 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
613 RB_CLEAR_NODE(&kn->rb);
614
615 kn->name = name;
616 kn->mode = mode;
617 kn->flags = flags;
618
619 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
620 struct iattr iattr = {
621 .ia_valid = ATTR_UID | ATTR_GID,
622 .ia_uid = uid,
623 .ia_gid = gid,
624 };
625
626 ret = __kernfs_setattr(kn, &iattr);
627 if (ret < 0)
628 goto err_out3;
629 }
630
631 if (parent) {
632 ret = security_kernfs_init_security(parent, kn);
633 if (ret)
634 goto err_out3;
635 }
636
637 return kn;
638
639 err_out3:
640 spin_lock(&kernfs_idr_lock);
641 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
642 spin_unlock(&kernfs_idr_lock);
643 err_out2:
644 kmem_cache_free(kernfs_node_cache, kn);
645 err_out1:
646 kfree_const(name);
647 return NULL;
648 }
649
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)650 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
651 const char *name, umode_t mode,
652 kuid_t uid, kgid_t gid,
653 unsigned flags)
654 {
655 struct kernfs_node *kn;
656
657 if (parent->mode & S_ISGID) {
658 /* this code block imitates inode_init_owner() for
659 * kernfs
660 */
661
662 if (parent->iattr)
663 gid = parent->iattr->ia_gid;
664
665 if (flags & KERNFS_DIR)
666 mode |= S_ISGID;
667 }
668
669 kn = __kernfs_new_node(kernfs_root(parent), parent,
670 name, mode, uid, gid, flags);
671 if (kn) {
672 kernfs_get(parent);
673 kn->parent = parent;
674 }
675 return kn;
676 }
677
678 /*
679 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
680 * @root: the kernfs root
681 * @id: the target node id
682 *
683 * @id's lower 32bits encode ino and upper gen. If the gen portion is
684 * zero, all generations are matched.
685 *
686 * RETURNS:
687 * NULL on failure. Return a kernfs node with reference counter incremented
688 */
kernfs_find_and_get_node_by_id(struct kernfs_root * root,u64 id)689 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
690 u64 id)
691 {
692 struct kernfs_node *kn;
693 ino_t ino = kernfs_id_ino(id);
694 u32 gen = kernfs_id_gen(id);
695
696 spin_lock(&kernfs_idr_lock);
697
698 kn = idr_find(&root->ino_idr, (u32)ino);
699 if (!kn)
700 goto err_unlock;
701
702 if (sizeof(ino_t) >= sizeof(u64)) {
703 /* we looked up with the low 32bits, compare the whole */
704 if (kernfs_ino(kn) != ino)
705 goto err_unlock;
706 } else {
707 /* 0 matches all generations */
708 if (unlikely(gen && kernfs_gen(kn) != gen))
709 goto err_unlock;
710 }
711
712 /*
713 * ACTIVATED is protected with kernfs_mutex but it was clear when
714 * @kn was added to idr and we just wanna see it set. No need to
715 * grab kernfs_mutex.
716 */
717 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
718 !atomic_inc_not_zero(&kn->count)))
719 goto err_unlock;
720
721 spin_unlock(&kernfs_idr_lock);
722 return kn;
723 err_unlock:
724 spin_unlock(&kernfs_idr_lock);
725 return NULL;
726 }
727
728 /**
729 * kernfs_add_one - add kernfs_node to parent without warning
730 * @kn: kernfs_node to be added
731 *
732 * The caller must already have initialized @kn->parent. This
733 * function increments nlink of the parent's inode if @kn is a
734 * directory and link into the children list of the parent.
735 *
736 * RETURNS:
737 * 0 on success, -EEXIST if entry with the given name already
738 * exists.
739 */
kernfs_add_one(struct kernfs_node * kn)740 int kernfs_add_one(struct kernfs_node *kn)
741 {
742 struct kernfs_node *parent = kn->parent;
743 struct kernfs_root *root = kernfs_root(parent);
744 struct kernfs_iattrs *ps_iattr;
745 bool has_ns;
746 int ret;
747
748 down_write(kernfs_rwsem(root));
749
750 ret = -EINVAL;
751 has_ns = kernfs_ns_enabled(parent);
752 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
753 has_ns ? "required" : "invalid", parent->name, kn->name))
754 goto out_unlock;
755
756 if (kernfs_type(parent) != KERNFS_DIR)
757 goto out_unlock;
758
759 ret = -ENOENT;
760 if (parent->flags & KERNFS_EMPTY_DIR)
761 goto out_unlock;
762
763 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
764 goto out_unlock;
765
766 kn->hash = kernfs_name_hash(kn->name, kn->ns);
767
768 ret = kernfs_link_sibling(kn);
769 if (ret)
770 goto out_unlock;
771
772 /* Update timestamps on the parent */
773 ps_iattr = parent->iattr;
774 if (ps_iattr) {
775 ktime_get_real_ts64(&ps_iattr->ia_ctime);
776 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
777 }
778
779 up_write(kernfs_rwsem(root));
780
781 /*
782 * Activate the new node unless CREATE_DEACTIVATED is requested.
783 * If not activated here, the kernfs user is responsible for
784 * activating the node with kernfs_activate(). A node which hasn't
785 * been activated is not visible to userland and its removal won't
786 * trigger deactivation.
787 */
788 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
789 kernfs_activate(kn);
790 return 0;
791
792 out_unlock:
793 up_write(kernfs_rwsem(root));
794 return ret;
795 }
796
797 /**
798 * kernfs_find_ns - find kernfs_node with the given name
799 * @parent: kernfs_node to search under
800 * @name: name to look for
801 * @ns: the namespace tag to use
802 *
803 * Look for kernfs_node with name @name under @parent. Returns pointer to
804 * the found kernfs_node on success, %NULL on failure.
805 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)806 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
807 const unsigned char *name,
808 const void *ns)
809 {
810 struct rb_node *node = parent->dir.children.rb_node;
811 bool has_ns = kernfs_ns_enabled(parent);
812 unsigned int hash;
813
814 lockdep_assert_held(kernfs_rwsem(kernfs_root(parent)));
815
816 if (has_ns != (bool)ns) {
817 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
818 has_ns ? "required" : "invalid", parent->name, name);
819 return NULL;
820 }
821
822 hash = kernfs_name_hash(name, ns);
823 while (node) {
824 struct kernfs_node *kn;
825 int result;
826
827 kn = rb_to_kn(node);
828 result = kernfs_name_compare(hash, name, ns, kn);
829 if (result < 0)
830 node = node->rb_left;
831 else if (result > 0)
832 node = node->rb_right;
833 else
834 return kn;
835 }
836 return NULL;
837 }
838
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)839 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
840 const unsigned char *path,
841 const void *ns)
842 {
843 size_t len;
844 char *p, *name;
845
846 lockdep_assert_held_read(kernfs_rwsem(kernfs_root(parent)));
847
848 spin_lock_irq(&kernfs_pr_cont_lock);
849
850 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
851
852 if (len >= sizeof(kernfs_pr_cont_buf)) {
853 spin_unlock_irq(&kernfs_pr_cont_lock);
854 return NULL;
855 }
856
857 p = kernfs_pr_cont_buf;
858
859 while ((name = strsep(&p, "/")) && parent) {
860 if (*name == '\0')
861 continue;
862 parent = kernfs_find_ns(parent, name, ns);
863 }
864
865 spin_unlock_irq(&kernfs_pr_cont_lock);
866
867 return parent;
868 }
869
870 /**
871 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
872 * @parent: kernfs_node to search under
873 * @name: name to look for
874 * @ns: the namespace tag to use
875 *
876 * Look for kernfs_node with name @name under @parent and get a reference
877 * if found. This function may sleep and returns pointer to the found
878 * kernfs_node on success, %NULL on failure.
879 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)880 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
881 const char *name, const void *ns)
882 {
883 struct kernfs_node *kn;
884 struct kernfs_root *root = kernfs_root(parent);
885
886 down_read(kernfs_rwsem(root));
887 kn = kernfs_find_ns(parent, name, ns);
888 kernfs_get(kn);
889 up_read(kernfs_rwsem(root));
890
891 return kn;
892 }
893 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
894
895 /**
896 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
897 * @parent: kernfs_node to search under
898 * @path: path to look for
899 * @ns: the namespace tag to use
900 *
901 * Look for kernfs_node with path @path under @parent and get a reference
902 * if found. This function may sleep and returns pointer to the found
903 * kernfs_node on success, %NULL on failure.
904 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)905 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
906 const char *path, const void *ns)
907 {
908 struct kernfs_node *kn;
909 struct kernfs_root *root = kernfs_root(parent);
910
911 down_read(kernfs_rwsem(root));
912 kn = kernfs_walk_ns(parent, path, ns);
913 kernfs_get(kn);
914 up_read(kernfs_rwsem(root));
915
916 return kn;
917 }
918
919 /**
920 * kernfs_create_root - create a new kernfs hierarchy
921 * @scops: optional syscall operations for the hierarchy
922 * @flags: KERNFS_ROOT_* flags
923 * @priv: opaque data associated with the new directory
924 *
925 * Returns the root of the new hierarchy on success, ERR_PTR() value on
926 * failure.
927 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)928 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
929 unsigned int flags, void *priv)
930 {
931 struct kernfs_root_ext *root_ext;
932 struct kernfs_root *root;
933 struct kernfs_node *kn;
934
935 root_ext = kzalloc(sizeof(*root_ext), GFP_KERNEL);
936 if (!root_ext)
937 return ERR_PTR(-ENOMEM);
938
939 init_rwsem(&root_ext->kernfs_rwsem);
940 root = &root_ext->root;
941 idr_init(&root->ino_idr);
942 INIT_LIST_HEAD(&root->supers);
943
944 /*
945 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
946 * High bits generation. The starting value for both ino and
947 * genenration is 1. Initialize upper 32bit allocation
948 * accordingly.
949 */
950 if (sizeof(ino_t) >= sizeof(u64))
951 root->id_highbits = 0;
952 else
953 root->id_highbits = 1;
954
955 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
956 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
957 KERNFS_DIR);
958 if (!kn) {
959 idr_destroy(&root->ino_idr);
960 kfree(root);
961 return ERR_PTR(-ENOMEM);
962 }
963
964 kn->priv = priv;
965 kn->dir.root = root;
966
967 root->syscall_ops = scops;
968 root->flags = flags;
969 root->kn = kn;
970 init_waitqueue_head(&root->deactivate_waitq);
971
972 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
973 kernfs_activate(kn);
974
975 return root;
976 }
977
978 /**
979 * kernfs_destroy_root - destroy a kernfs hierarchy
980 * @root: root of the hierarchy to destroy
981 *
982 * Destroy the hierarchy anchored at @root by removing all existing
983 * directories and destroying @root.
984 */
kernfs_destroy_root(struct kernfs_root * root)985 void kernfs_destroy_root(struct kernfs_root *root)
986 {
987 /*
988 * kernfs_remove holds kernfs_rwsem from the root so the root
989 * shouldn't be freed during the operation.
990 */
991 kernfs_get(root->kn);
992 kernfs_remove(root->kn);
993 kernfs_put(root->kn); /* will also free @root */
994 }
995
996 /**
997 * kernfs_create_dir_ns - create a directory
998 * @parent: parent in which to create a new directory
999 * @name: name of the new directory
1000 * @mode: mode of the new directory
1001 * @uid: uid of the new directory
1002 * @gid: gid of the new directory
1003 * @priv: opaque data associated with the new directory
1004 * @ns: optional namespace tag of the directory
1005 *
1006 * Returns the created node on success, ERR_PTR() value on failure.
1007 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1008 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1009 const char *name, umode_t mode,
1010 kuid_t uid, kgid_t gid,
1011 void *priv, const void *ns)
1012 {
1013 struct kernfs_node *kn;
1014 int rc;
1015
1016 /* allocate */
1017 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1018 uid, gid, KERNFS_DIR);
1019 if (!kn)
1020 return ERR_PTR(-ENOMEM);
1021
1022 kn->dir.root = parent->dir.root;
1023 kn->ns = ns;
1024 kn->priv = priv;
1025
1026 /* link in */
1027 rc = kernfs_add_one(kn);
1028 if (!rc)
1029 return kn;
1030
1031 kernfs_put(kn);
1032 return ERR_PTR(rc);
1033 }
1034
1035 /**
1036 * kernfs_create_empty_dir - create an always empty directory
1037 * @parent: parent in which to create a new directory
1038 * @name: name of the new directory
1039 *
1040 * Returns the created node on success, ERR_PTR() value on failure.
1041 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1042 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1043 const char *name)
1044 {
1045 struct kernfs_node *kn;
1046 int rc;
1047
1048 /* allocate */
1049 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1050 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1051 if (!kn)
1052 return ERR_PTR(-ENOMEM);
1053
1054 kn->flags |= KERNFS_EMPTY_DIR;
1055 kn->dir.root = parent->dir.root;
1056 kn->ns = NULL;
1057 kn->priv = NULL;
1058
1059 /* link in */
1060 rc = kernfs_add_one(kn);
1061 if (!rc)
1062 return kn;
1063
1064 kernfs_put(kn);
1065 return ERR_PTR(rc);
1066 }
1067
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)1068 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1069 {
1070 struct kernfs_node *kn;
1071 struct kernfs_root *root;
1072
1073 if (flags & LOOKUP_RCU)
1074 return -ECHILD;
1075
1076 /* Negative hashed dentry? */
1077 if (d_really_is_negative(dentry)) {
1078 struct kernfs_node *parent;
1079
1080 /* If the kernfs parent node has changed discard and
1081 * proceed to ->lookup.
1082 */
1083 spin_lock(&dentry->d_lock);
1084 parent = kernfs_dentry_node(dentry->d_parent);
1085 if (parent) {
1086 spin_unlock(&dentry->d_lock);
1087 root = kernfs_root(parent);
1088 down_read(kernfs_rwsem(root));
1089 if (kernfs_dir_changed(parent, dentry)) {
1090 up_read(kernfs_rwsem(root));
1091 return 0;
1092 }
1093 up_read(kernfs_rwsem(root));
1094 } else
1095 spin_unlock(&dentry->d_lock);
1096
1097 /* The kernfs parent node hasn't changed, leave the
1098 * dentry negative and return success.
1099 */
1100 return 1;
1101 }
1102
1103 kn = kernfs_dentry_node(dentry);
1104 root = kernfs_root(kn);
1105 down_read(kernfs_rwsem(root));
1106
1107 /* The kernfs node has been deactivated */
1108 if (!kernfs_active(kn))
1109 goto out_bad;
1110
1111 /* The kernfs node has been moved? */
1112 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1113 goto out_bad;
1114
1115 /* The kernfs node has been renamed */
1116 if (strcmp(dentry->d_name.name, kn->name) != 0)
1117 goto out_bad;
1118
1119 /* The kernfs node has been moved to a different namespace */
1120 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1121 kernfs_info(dentry->d_sb)->ns != kn->ns)
1122 goto out_bad;
1123
1124 up_read(kernfs_rwsem(root));
1125 return 1;
1126 out_bad:
1127 up_read(kernfs_rwsem(root));
1128 return 0;
1129 }
1130
1131 const struct dentry_operations kernfs_dops = {
1132 .d_revalidate = kernfs_dop_revalidate,
1133 };
1134
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1135 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1136 struct dentry *dentry,
1137 unsigned int flags)
1138 {
1139 struct kernfs_node *parent = dir->i_private;
1140 struct kernfs_node *kn;
1141 struct kernfs_root *root;
1142 struct inode *inode = NULL;
1143 const void *ns = NULL;
1144
1145 root = kernfs_root(parent);
1146 down_read(kernfs_rwsem(root));
1147 if (kernfs_ns_enabled(parent))
1148 ns = kernfs_info(dir->i_sb)->ns;
1149
1150 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1151 /* attach dentry and inode */
1152 if (kn) {
1153 /* Inactive nodes are invisible to the VFS so don't
1154 * create a negative.
1155 */
1156 if (!kernfs_active(kn)) {
1157 up_read(kernfs_rwsem(root));
1158 return NULL;
1159 }
1160 inode = kernfs_get_inode(dir->i_sb, kn);
1161 if (!inode)
1162 inode = ERR_PTR(-ENOMEM);
1163 }
1164 /*
1165 * Needed for negative dentry validation.
1166 * The negative dentry can be created in kernfs_iop_lookup()
1167 * or transforms from positive dentry in dentry_unlink_inode()
1168 * called from vfs_rmdir().
1169 */
1170 if (!IS_ERR(inode))
1171 kernfs_set_rev(parent, dentry);
1172 up_read(kernfs_rwsem(root));
1173
1174 /* instantiate and hash (possibly negative) dentry */
1175 return d_splice_alias(inode, dentry);
1176 }
1177
kernfs_iop_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)1178 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1179 struct inode *dir, struct dentry *dentry,
1180 umode_t mode)
1181 {
1182 struct kernfs_node *parent = dir->i_private;
1183 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1184 int ret;
1185
1186 if (!scops || !scops->mkdir)
1187 return -EPERM;
1188
1189 if (!kernfs_get_active(parent))
1190 return -ENODEV;
1191
1192 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1193
1194 kernfs_put_active(parent);
1195 return ret;
1196 }
1197
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1198 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1199 {
1200 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1201 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1202 int ret;
1203
1204 if (!scops || !scops->rmdir)
1205 return -EPERM;
1206
1207 if (!kernfs_get_active(kn))
1208 return -ENODEV;
1209
1210 ret = scops->rmdir(kn);
1211
1212 kernfs_put_active(kn);
1213 return ret;
1214 }
1215
kernfs_iop_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1216 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1217 struct inode *old_dir, struct dentry *old_dentry,
1218 struct inode *new_dir, struct dentry *new_dentry,
1219 unsigned int flags)
1220 {
1221 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1222 struct kernfs_node *new_parent = new_dir->i_private;
1223 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1224 int ret;
1225
1226 if (flags)
1227 return -EINVAL;
1228
1229 if (!scops || !scops->rename)
1230 return -EPERM;
1231
1232 if (!kernfs_get_active(kn))
1233 return -ENODEV;
1234
1235 if (!kernfs_get_active(new_parent)) {
1236 kernfs_put_active(kn);
1237 return -ENODEV;
1238 }
1239
1240 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1241
1242 kernfs_put_active(new_parent);
1243 kernfs_put_active(kn);
1244 return ret;
1245 }
1246
1247 const struct inode_operations kernfs_dir_iops = {
1248 .lookup = kernfs_iop_lookup,
1249 .permission = kernfs_iop_permission,
1250 .setattr = kernfs_iop_setattr,
1251 .getattr = kernfs_iop_getattr,
1252 .listxattr = kernfs_iop_listxattr,
1253
1254 .mkdir = kernfs_iop_mkdir,
1255 .rmdir = kernfs_iop_rmdir,
1256 .rename = kernfs_iop_rename,
1257 };
1258
kernfs_leftmost_descendant(struct kernfs_node * pos)1259 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1260 {
1261 struct kernfs_node *last;
1262
1263 while (true) {
1264 struct rb_node *rbn;
1265
1266 last = pos;
1267
1268 if (kernfs_type(pos) != KERNFS_DIR)
1269 break;
1270
1271 rbn = rb_first(&pos->dir.children);
1272 if (!rbn)
1273 break;
1274
1275 pos = rb_to_kn(rbn);
1276 }
1277
1278 return last;
1279 }
1280
1281 /**
1282 * kernfs_next_descendant_post - find the next descendant for post-order walk
1283 * @pos: the current position (%NULL to initiate traversal)
1284 * @root: kernfs_node whose descendants to walk
1285 *
1286 * Find the next descendant to visit for post-order traversal of @root's
1287 * descendants. @root is included in the iteration and the last node to be
1288 * visited.
1289 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1290 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1291 struct kernfs_node *root)
1292 {
1293 struct rb_node *rbn;
1294
1295 lockdep_assert_held_write(kernfs_rwsem(kernfs_root(root)));
1296
1297 /* if first iteration, visit leftmost descendant which may be root */
1298 if (!pos)
1299 return kernfs_leftmost_descendant(root);
1300
1301 /* if we visited @root, we're done */
1302 if (pos == root)
1303 return NULL;
1304
1305 /* if there's an unvisited sibling, visit its leftmost descendant */
1306 rbn = rb_next(&pos->rb);
1307 if (rbn)
1308 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1309
1310 /* no sibling left, visit parent */
1311 return pos->parent;
1312 }
1313
1314 /**
1315 * kernfs_activate - activate a node which started deactivated
1316 * @kn: kernfs_node whose subtree is to be activated
1317 *
1318 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1319 * needs to be explicitly activated. A node which hasn't been activated
1320 * isn't visible to userland and deactivation is skipped during its
1321 * removal. This is useful to construct atomic init sequences where
1322 * creation of multiple nodes should either succeed or fail atomically.
1323 *
1324 * The caller is responsible for ensuring that this function is not called
1325 * after kernfs_remove*() is invoked on @kn.
1326 */
kernfs_activate(struct kernfs_node * kn)1327 void kernfs_activate(struct kernfs_node *kn)
1328 {
1329 struct kernfs_node *pos;
1330 struct kernfs_root *root = kernfs_root(kn);
1331
1332 down_write(kernfs_rwsem(root));
1333
1334 pos = NULL;
1335 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1336 if (pos->flags & KERNFS_ACTIVATED)
1337 continue;
1338
1339 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1340 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1341
1342 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1343 pos->flags |= KERNFS_ACTIVATED;
1344 }
1345
1346 up_write(kernfs_rwsem(root));
1347 }
1348
__kernfs_remove(struct kernfs_node * kn)1349 static void __kernfs_remove(struct kernfs_node *kn)
1350 {
1351 struct kernfs_node *pos;
1352
1353 lockdep_assert_held_write(kernfs_rwsem(kernfs_root(kn)));
1354
1355 /*
1356 * Short-circuit if non-root @kn has already finished removal.
1357 * This is for kernfs_remove_self() which plays with active ref
1358 * after removal.
1359 */
1360 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1361 return;
1362
1363 pr_debug("kernfs %s: removing\n", kn->name);
1364
1365 /* prevent any new usage under @kn by deactivating all nodes */
1366 pos = NULL;
1367 while ((pos = kernfs_next_descendant_post(pos, kn)))
1368 if (kernfs_active(pos))
1369 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1370
1371 /* deactivate and unlink the subtree node-by-node */
1372 do {
1373 pos = kernfs_leftmost_descendant(kn);
1374
1375 /*
1376 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
1377 * base ref could have been put by someone else by the time
1378 * the function returns. Make sure it doesn't go away
1379 * underneath us.
1380 */
1381 kernfs_get(pos);
1382
1383 /*
1384 * Drain iff @kn was activated. This avoids draining and
1385 * its lockdep annotations for nodes which have never been
1386 * activated and allows embedding kernfs_remove() in create
1387 * error paths without worrying about draining.
1388 */
1389 if (kn->flags & KERNFS_ACTIVATED)
1390 kernfs_drain(pos);
1391 else
1392 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1393
1394 /*
1395 * kernfs_unlink_sibling() succeeds once per node. Use it
1396 * to decide who's responsible for cleanups.
1397 */
1398 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1399 struct kernfs_iattrs *ps_iattr =
1400 pos->parent ? pos->parent->iattr : NULL;
1401
1402 /* update timestamps on the parent */
1403 if (ps_iattr) {
1404 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1405 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1406 }
1407
1408 kernfs_put(pos);
1409 }
1410
1411 kernfs_put(pos);
1412 } while (pos != kn);
1413 }
1414
1415 /**
1416 * kernfs_remove - remove a kernfs_node recursively
1417 * @kn: the kernfs_node to remove
1418 *
1419 * Remove @kn along with all its subdirectories and files.
1420 */
kernfs_remove(struct kernfs_node * kn)1421 void kernfs_remove(struct kernfs_node *kn)
1422 {
1423 struct kernfs_root *root;
1424
1425 if (!kn)
1426 return;
1427
1428 root = kernfs_root(kn);
1429
1430 down_write(kernfs_rwsem(root));
1431 __kernfs_remove(kn);
1432 up_write(kernfs_rwsem(root));
1433 }
1434
1435 /**
1436 * kernfs_break_active_protection - break out of active protection
1437 * @kn: the self kernfs_node
1438 *
1439 * The caller must be running off of a kernfs operation which is invoked
1440 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1441 * this function must also be matched with an invocation of
1442 * kernfs_unbreak_active_protection().
1443 *
1444 * This function releases the active reference of @kn the caller is
1445 * holding. Once this function is called, @kn may be removed at any point
1446 * and the caller is solely responsible for ensuring that the objects it
1447 * dereferences are accessible.
1448 */
kernfs_break_active_protection(struct kernfs_node * kn)1449 void kernfs_break_active_protection(struct kernfs_node *kn)
1450 {
1451 /*
1452 * Take out ourself out of the active ref dependency chain. If
1453 * we're called without an active ref, lockdep will complain.
1454 */
1455 kernfs_put_active(kn);
1456 }
1457
1458 /**
1459 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1460 * @kn: the self kernfs_node
1461 *
1462 * If kernfs_break_active_protection() was called, this function must be
1463 * invoked before finishing the kernfs operation. Note that while this
1464 * function restores the active reference, it doesn't and can't actually
1465 * restore the active protection - @kn may already or be in the process of
1466 * being removed. Once kernfs_break_active_protection() is invoked, that
1467 * protection is irreversibly gone for the kernfs operation instance.
1468 *
1469 * While this function may be called at any point after
1470 * kernfs_break_active_protection() is invoked, its most useful location
1471 * would be right before the enclosing kernfs operation returns.
1472 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1473 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1474 {
1475 /*
1476 * @kn->active could be in any state; however, the increment we do
1477 * here will be undone as soon as the enclosing kernfs operation
1478 * finishes and this temporary bump can't break anything. If @kn
1479 * is alive, nothing changes. If @kn is being deactivated, the
1480 * soon-to-follow put will either finish deactivation or restore
1481 * deactivated state. If @kn is already removed, the temporary
1482 * bump is guaranteed to be gone before @kn is released.
1483 */
1484 atomic_inc(&kn->active);
1485 if (kernfs_lockdep(kn))
1486 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1487 }
1488
1489 /**
1490 * kernfs_remove_self - remove a kernfs_node from its own method
1491 * @kn: the self kernfs_node to remove
1492 *
1493 * The caller must be running off of a kernfs operation which is invoked
1494 * with an active reference - e.g. one of kernfs_ops. This can be used to
1495 * implement a file operation which deletes itself.
1496 *
1497 * For example, the "delete" file for a sysfs device directory can be
1498 * implemented by invoking kernfs_remove_self() on the "delete" file
1499 * itself. This function breaks the circular dependency of trying to
1500 * deactivate self while holding an active ref itself. It isn't necessary
1501 * to modify the usual removal path to use kernfs_remove_self(). The
1502 * "delete" implementation can simply invoke kernfs_remove_self() on self
1503 * before proceeding with the usual removal path. kernfs will ignore later
1504 * kernfs_remove() on self.
1505 *
1506 * kernfs_remove_self() can be called multiple times concurrently on the
1507 * same kernfs_node. Only the first one actually performs removal and
1508 * returns %true. All others will wait until the kernfs operation which
1509 * won self-removal finishes and return %false. Note that the losers wait
1510 * for the completion of not only the winning kernfs_remove_self() but also
1511 * the whole kernfs_ops which won the arbitration. This can be used to
1512 * guarantee, for example, all concurrent writes to a "delete" file to
1513 * finish only after the whole operation is complete.
1514 */
kernfs_remove_self(struct kernfs_node * kn)1515 bool kernfs_remove_self(struct kernfs_node *kn)
1516 {
1517 bool ret;
1518 struct kernfs_root *root = kernfs_root(kn);
1519
1520 down_write(kernfs_rwsem(root));
1521 kernfs_break_active_protection(kn);
1522
1523 /*
1524 * SUICIDAL is used to arbitrate among competing invocations. Only
1525 * the first one will actually perform removal. When the removal
1526 * is complete, SUICIDED is set and the active ref is restored
1527 * while kernfs_rwsem for held exclusive. The ones which lost
1528 * arbitration waits for SUICIDED && drained which can happen only
1529 * after the enclosing kernfs operation which executed the winning
1530 * instance of kernfs_remove_self() finished.
1531 */
1532 if (!(kn->flags & KERNFS_SUICIDAL)) {
1533 kn->flags |= KERNFS_SUICIDAL;
1534 __kernfs_remove(kn);
1535 kn->flags |= KERNFS_SUICIDED;
1536 ret = true;
1537 } else {
1538 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1539 DEFINE_WAIT(wait);
1540
1541 while (true) {
1542 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1543
1544 if ((kn->flags & KERNFS_SUICIDED) &&
1545 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1546 break;
1547
1548 up_write(kernfs_rwsem(root));
1549 schedule();
1550 down_write(kernfs_rwsem(root));
1551 }
1552 finish_wait(waitq, &wait);
1553 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1554 ret = false;
1555 }
1556
1557 /*
1558 * This must be done while kernfs_rwsem held exclusive; otherwise,
1559 * waiting for SUICIDED && deactivated could finish prematurely.
1560 */
1561 kernfs_unbreak_active_protection(kn);
1562
1563 up_write(kernfs_rwsem(root));
1564 return ret;
1565 }
1566
1567 /**
1568 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1569 * @parent: parent of the target
1570 * @name: name of the kernfs_node to remove
1571 * @ns: namespace tag of the kernfs_node to remove
1572 *
1573 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1574 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1575 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1576 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1577 const void *ns)
1578 {
1579 struct kernfs_node *kn;
1580 struct kernfs_root *root;
1581
1582 if (!parent) {
1583 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1584 name);
1585 return -ENOENT;
1586 }
1587
1588 root = kernfs_root(parent);
1589 down_write(kernfs_rwsem(root));
1590
1591 kn = kernfs_find_ns(parent, name, ns);
1592 if (kn) {
1593 kernfs_get(kn);
1594 __kernfs_remove(kn);
1595 kernfs_put(kn);
1596 }
1597
1598 up_write(kernfs_rwsem(root));
1599
1600 if (kn)
1601 return 0;
1602 else
1603 return -ENOENT;
1604 }
1605
1606 /**
1607 * kernfs_rename_ns - move and rename a kernfs_node
1608 * @kn: target node
1609 * @new_parent: new parent to put @sd under
1610 * @new_name: new name
1611 * @new_ns: new namespace tag
1612 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1613 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1614 const char *new_name, const void *new_ns)
1615 {
1616 struct kernfs_node *old_parent;
1617 struct kernfs_root *root;
1618 const char *old_name = NULL;
1619 int error;
1620
1621 /* can't move or rename root */
1622 if (!kn->parent)
1623 return -EINVAL;
1624
1625 root = kernfs_root(kn);
1626 down_write(kernfs_rwsem(root));
1627
1628 error = -ENOENT;
1629 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1630 (new_parent->flags & KERNFS_EMPTY_DIR))
1631 goto out;
1632
1633 error = 0;
1634 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1635 (strcmp(kn->name, new_name) == 0))
1636 goto out; /* nothing to rename */
1637
1638 error = -EEXIST;
1639 if (kernfs_find_ns(new_parent, new_name, new_ns))
1640 goto out;
1641
1642 /* rename kernfs_node */
1643 if (strcmp(kn->name, new_name) != 0) {
1644 error = -ENOMEM;
1645 new_name = kstrdup_const(new_name, GFP_KERNEL);
1646 if (!new_name)
1647 goto out;
1648 } else {
1649 new_name = NULL;
1650 }
1651
1652 /*
1653 * Move to the appropriate place in the appropriate directories rbtree.
1654 */
1655 kernfs_unlink_sibling(kn);
1656 kernfs_get(new_parent);
1657
1658 /* rename_lock protects ->parent and ->name accessors */
1659 spin_lock_irq(&kernfs_rename_lock);
1660
1661 old_parent = kn->parent;
1662 kn->parent = new_parent;
1663
1664 kn->ns = new_ns;
1665 if (new_name) {
1666 old_name = kn->name;
1667 kn->name = new_name;
1668 }
1669
1670 spin_unlock_irq(&kernfs_rename_lock);
1671
1672 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1673 kernfs_link_sibling(kn);
1674
1675 kernfs_put(old_parent);
1676 kfree_const(old_name);
1677
1678 error = 0;
1679 out:
1680 up_write(kernfs_rwsem(root));
1681 return error;
1682 }
1683
1684 /* Relationship between mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1685 static inline unsigned char dt_type(struct kernfs_node *kn)
1686 {
1687 return (kn->mode >> 12) & 15;
1688 }
1689
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1690 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1691 {
1692 kernfs_put(filp->private_data);
1693 return 0;
1694 }
1695
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1696 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1697 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1698 {
1699 if (pos) {
1700 int valid = kernfs_active(pos) &&
1701 pos->parent == parent && hash == pos->hash;
1702 kernfs_put(pos);
1703 if (!valid)
1704 pos = NULL;
1705 }
1706 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1707 struct rb_node *node = parent->dir.children.rb_node;
1708 while (node) {
1709 pos = rb_to_kn(node);
1710
1711 if (hash < pos->hash)
1712 node = node->rb_left;
1713 else if (hash > pos->hash)
1714 node = node->rb_right;
1715 else
1716 break;
1717 }
1718 }
1719 /* Skip over entries which are dying/dead or in the wrong namespace */
1720 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1721 struct rb_node *node = rb_next(&pos->rb);
1722 if (!node)
1723 pos = NULL;
1724 else
1725 pos = rb_to_kn(node);
1726 }
1727 return pos;
1728 }
1729
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1730 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1731 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1732 {
1733 pos = kernfs_dir_pos(ns, parent, ino, pos);
1734 if (pos) {
1735 do {
1736 struct rb_node *node = rb_next(&pos->rb);
1737 if (!node)
1738 pos = NULL;
1739 else
1740 pos = rb_to_kn(node);
1741 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1742 }
1743 return pos;
1744 }
1745
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1746 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1747 {
1748 struct dentry *dentry = file->f_path.dentry;
1749 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1750 struct kernfs_node *pos = file->private_data;
1751 struct kernfs_root *root;
1752 const void *ns = NULL;
1753
1754 if (!dir_emit_dots(file, ctx))
1755 return 0;
1756
1757 root = kernfs_root(parent);
1758 down_read(kernfs_rwsem(root));
1759
1760 if (kernfs_ns_enabled(parent))
1761 ns = kernfs_info(dentry->d_sb)->ns;
1762
1763 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1764 pos;
1765 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1766 const char *name = pos->name;
1767 unsigned int type = dt_type(pos);
1768 int len = strlen(name);
1769 ino_t ino = kernfs_ino(pos);
1770
1771 ctx->pos = pos->hash;
1772 file->private_data = pos;
1773 kernfs_get(pos);
1774
1775 up_read(kernfs_rwsem(root));
1776 if (!dir_emit(ctx, name, len, ino, type))
1777 return 0;
1778 down_read(kernfs_rwsem(root));
1779 }
1780 up_read(kernfs_rwsem(root));
1781 file->private_data = NULL;
1782 ctx->pos = INT_MAX;
1783 return 0;
1784 }
1785
1786 const struct file_operations kernfs_dir_fops = {
1787 .read = generic_read_dir,
1788 .iterate_shared = kernfs_fop_readdir,
1789 .release = kernfs_dir_fop_release,
1790 .llseek = generic_file_llseek,
1791 };
1792