1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/genhd.h>
11 #include <linux/pfn_t.h>
12 #include <linux/cdev.h>
13 #include <linux/hash.h>
14 #include <linux/slab.h>
15 #include <linux/uio.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include "dax-private.h"
19
20 /**
21 * struct dax_device - anchor object for dax services
22 * @inode: core vfs
23 * @cdev: optional character interface for "device dax"
24 * @host: optional name for lookups where the device path is not available
25 * @private: dax driver private data
26 * @flags: state and boolean properties
27 */
28 struct dax_device {
29 struct hlist_node list;
30 struct inode inode;
31 struct cdev cdev;
32 const char *host;
33 void *private;
34 unsigned long flags;
35 const struct dax_operations *ops;
36 };
37
38 static dev_t dax_devt;
39 DEFINE_STATIC_SRCU(dax_srcu);
40 static struct vfsmount *dax_mnt;
41 static DEFINE_IDA(dax_minor_ida);
42 static struct kmem_cache *dax_cache __read_mostly;
43 static struct super_block *dax_superblock __read_mostly;
44
45 #define DAX_HASH_SIZE (PAGE_SIZE / sizeof(struct hlist_head))
46 static struct hlist_head dax_host_list[DAX_HASH_SIZE];
47 static DEFINE_SPINLOCK(dax_host_lock);
48
dax_read_lock(void)49 int dax_read_lock(void)
50 {
51 return srcu_read_lock(&dax_srcu);
52 }
53 EXPORT_SYMBOL_GPL(dax_read_lock);
54
dax_read_unlock(int id)55 void dax_read_unlock(int id)
56 {
57 srcu_read_unlock(&dax_srcu, id);
58 }
59 EXPORT_SYMBOL_GPL(dax_read_unlock);
60
dax_host_hash(const char * host)61 static int dax_host_hash(const char *host)
62 {
63 return hashlen_hash(hashlen_string("DAX", host)) % DAX_HASH_SIZE;
64 }
65
66 /**
67 * dax_get_by_host() - temporary lookup mechanism for filesystem-dax
68 * @host: alternate name for the device registered by a dax driver
69 */
dax_get_by_host(const char * host)70 static struct dax_device *dax_get_by_host(const char *host)
71 {
72 struct dax_device *dax_dev, *found = NULL;
73 int hash, id;
74
75 if (!host)
76 return NULL;
77
78 hash = dax_host_hash(host);
79
80 id = dax_read_lock();
81 spin_lock(&dax_host_lock);
82 hlist_for_each_entry(dax_dev, &dax_host_list[hash], list) {
83 if (!dax_alive(dax_dev)
84 || strcmp(host, dax_dev->host) != 0)
85 continue;
86
87 if (igrab(&dax_dev->inode))
88 found = dax_dev;
89 break;
90 }
91 spin_unlock(&dax_host_lock);
92 dax_read_unlock(id);
93
94 return found;
95 }
96
97 #ifdef CONFIG_BLOCK
98 #include <linux/blkdev.h>
99
bdev_dax_pgoff(struct block_device * bdev,sector_t sector,size_t size,pgoff_t * pgoff)100 int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
101 pgoff_t *pgoff)
102 {
103 sector_t start_sect = bdev ? get_start_sect(bdev) : 0;
104 phys_addr_t phys_off = (start_sect + sector) * 512;
105
106 if (pgoff)
107 *pgoff = PHYS_PFN(phys_off);
108 if (phys_off % PAGE_SIZE || size % PAGE_SIZE)
109 return -EINVAL;
110 return 0;
111 }
112 EXPORT_SYMBOL(bdev_dax_pgoff);
113
114 #if IS_ENABLED(CONFIG_FS_DAX)
fs_dax_get_by_bdev(struct block_device * bdev)115 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev)
116 {
117 if (!blk_queue_dax(bdev->bd_disk->queue))
118 return NULL;
119 return dax_get_by_host(bdev->bd_disk->disk_name);
120 }
121 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
122
generic_fsdax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t sectors)123 bool generic_fsdax_supported(struct dax_device *dax_dev,
124 struct block_device *bdev, int blocksize, sector_t start,
125 sector_t sectors)
126 {
127 bool dax_enabled = false;
128 pgoff_t pgoff, pgoff_end;
129 void *kaddr, *end_kaddr;
130 pfn_t pfn, end_pfn;
131 sector_t last_page;
132 long len, len2;
133 int err, id;
134
135 if (blocksize != PAGE_SIZE) {
136 pr_info("%pg: error: unsupported blocksize for dax\n", bdev);
137 return false;
138 }
139
140 if (!dax_dev) {
141 pr_debug("%pg: error: dax unsupported by block device\n", bdev);
142 return false;
143 }
144
145 err = bdev_dax_pgoff(bdev, start, PAGE_SIZE, &pgoff);
146 if (err) {
147 pr_info("%pg: error: unaligned partition for dax\n", bdev);
148 return false;
149 }
150
151 last_page = PFN_DOWN((start + sectors - 1) * 512) * PAGE_SIZE / 512;
152 err = bdev_dax_pgoff(bdev, last_page, PAGE_SIZE, &pgoff_end);
153 if (err) {
154 pr_info("%pg: error: unaligned partition for dax\n", bdev);
155 return false;
156 }
157
158 id = dax_read_lock();
159 len = dax_direct_access(dax_dev, pgoff, 1, &kaddr, &pfn);
160 len2 = dax_direct_access(dax_dev, pgoff_end, 1, &end_kaddr, &end_pfn);
161
162 if (len < 1 || len2 < 1) {
163 pr_info("%pg: error: dax access failed (%ld)\n",
164 bdev, len < 1 ? len : len2);
165 dax_read_unlock(id);
166 return false;
167 }
168
169 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED) && pfn_t_special(pfn)) {
170 /*
171 * An arch that has enabled the pmem api should also
172 * have its drivers support pfn_t_devmap()
173 *
174 * This is a developer warning and should not trigger in
175 * production. dax_flush() will crash since it depends
176 * on being able to do (page_address(pfn_to_page())).
177 */
178 WARN_ON(IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API));
179 dax_enabled = true;
180 } else if (pfn_t_devmap(pfn) && pfn_t_devmap(end_pfn)) {
181 struct dev_pagemap *pgmap, *end_pgmap;
182
183 pgmap = get_dev_pagemap(pfn_t_to_pfn(pfn), NULL);
184 end_pgmap = get_dev_pagemap(pfn_t_to_pfn(end_pfn), NULL);
185 if (pgmap && pgmap == end_pgmap && pgmap->type == MEMORY_DEVICE_FS_DAX
186 && pfn_t_to_page(pfn)->pgmap == pgmap
187 && pfn_t_to_page(end_pfn)->pgmap == pgmap
188 && pfn_t_to_pfn(pfn) == PHYS_PFN(__pa(kaddr))
189 && pfn_t_to_pfn(end_pfn) == PHYS_PFN(__pa(end_kaddr)))
190 dax_enabled = true;
191 put_dev_pagemap(pgmap);
192 put_dev_pagemap(end_pgmap);
193
194 }
195 dax_read_unlock(id);
196
197 if (!dax_enabled) {
198 pr_info("%pg: error: dax support not enabled\n", bdev);
199 return false;
200 }
201 return true;
202 }
203 EXPORT_SYMBOL_GPL(generic_fsdax_supported);
204
dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)205 bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
206 int blocksize, sector_t start, sector_t len)
207 {
208 bool ret = false;
209 int id;
210
211 if (!dax_dev)
212 return false;
213
214 id = dax_read_lock();
215 if (dax_alive(dax_dev) && dax_dev->ops->dax_supported)
216 ret = dax_dev->ops->dax_supported(dax_dev, bdev, blocksize,
217 start, len);
218 dax_read_unlock(id);
219 return ret;
220 }
221 EXPORT_SYMBOL_GPL(dax_supported);
222 #endif /* CONFIG_FS_DAX */
223 #endif /* CONFIG_BLOCK */
224
225 enum dax_device_flags {
226 /* !alive + rcu grace period == no new operations / mappings */
227 DAXDEV_ALIVE,
228 /* gate whether dax_flush() calls the low level flush routine */
229 DAXDEV_WRITE_CACHE,
230 /* flag to check if device supports synchronous flush */
231 DAXDEV_SYNC,
232 };
233
write_cache_show(struct device * dev,struct device_attribute * attr,char * buf)234 static ssize_t write_cache_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
238 ssize_t rc;
239
240 WARN_ON_ONCE(!dax_dev);
241 if (!dax_dev)
242 return -ENXIO;
243
244 rc = sprintf(buf, "%d\n", !!dax_write_cache_enabled(dax_dev));
245 put_dax(dax_dev);
246 return rc;
247 }
248
write_cache_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)249 static ssize_t write_cache_store(struct device *dev,
250 struct device_attribute *attr, const char *buf, size_t len)
251 {
252 bool write_cache;
253 int rc = strtobool(buf, &write_cache);
254 struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
255
256 WARN_ON_ONCE(!dax_dev);
257 if (!dax_dev)
258 return -ENXIO;
259
260 if (rc)
261 len = rc;
262 else
263 dax_write_cache(dax_dev, write_cache);
264
265 put_dax(dax_dev);
266 return len;
267 }
268 static DEVICE_ATTR_RW(write_cache);
269
dax_visible(struct kobject * kobj,struct attribute * a,int n)270 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
271 {
272 struct device *dev = container_of(kobj, typeof(*dev), kobj);
273 struct dax_device *dax_dev = dax_get_by_host(dev_name(dev));
274
275 WARN_ON_ONCE(!dax_dev);
276 if (!dax_dev)
277 return 0;
278
279 #ifndef CONFIG_ARCH_HAS_PMEM_API
280 if (a == &dev_attr_write_cache.attr)
281 return 0;
282 #endif
283 return a->mode;
284 }
285
286 static struct attribute *dax_attributes[] = {
287 &dev_attr_write_cache.attr,
288 NULL,
289 };
290
291 struct attribute_group dax_attribute_group = {
292 .name = "dax",
293 .attrs = dax_attributes,
294 .is_visible = dax_visible,
295 };
296 EXPORT_SYMBOL_GPL(dax_attribute_group);
297
298 /**
299 * dax_direct_access() - translate a device pgoff to an absolute pfn
300 * @dax_dev: a dax_device instance representing the logical memory range
301 * @pgoff: offset in pages from the start of the device to translate
302 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
303 * @kaddr: output parameter that returns a virtual address mapping of pfn
304 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
305 *
306 * Return: negative errno if an error occurs, otherwise the number of
307 * pages accessible at the device relative @pgoff.
308 */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)309 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
310 void **kaddr, pfn_t *pfn)
311 {
312 long avail;
313
314 if (!dax_dev)
315 return -EOPNOTSUPP;
316
317 if (!dax_alive(dax_dev))
318 return -ENXIO;
319
320 if (nr_pages < 0)
321 return -EINVAL;
322
323 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
324 kaddr, pfn);
325 if (!avail)
326 return -ERANGE;
327 return min(avail, nr_pages);
328 }
329 EXPORT_SYMBOL_GPL(dax_direct_access);
330
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)331 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
332 size_t bytes, struct iov_iter *i)
333 {
334 if (!dax_alive(dax_dev))
335 return 0;
336
337 return dax_dev->ops->copy_from_iter(dax_dev, pgoff, addr, bytes, i);
338 }
339 EXPORT_SYMBOL_GPL(dax_copy_from_iter);
340
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)341 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
342 size_t bytes, struct iov_iter *i)
343 {
344 if (!dax_alive(dax_dev))
345 return 0;
346
347 return dax_dev->ops->copy_to_iter(dax_dev, pgoff, addr, bytes, i);
348 }
349 EXPORT_SYMBOL_GPL(dax_copy_to_iter);
350
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)351 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
352 size_t nr_pages)
353 {
354 if (!dax_alive(dax_dev))
355 return -ENXIO;
356 /*
357 * There are no callers that want to zero more than one page as of now.
358 * Once users are there, this check can be removed after the
359 * device mapper code has been updated to split ranges across targets.
360 */
361 if (nr_pages != 1)
362 return -EIO;
363
364 return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
365 }
366 EXPORT_SYMBOL_GPL(dax_zero_page_range);
367
368 #ifdef CONFIG_ARCH_HAS_PMEM_API
369 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)370 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
371 {
372 if (unlikely(!dax_write_cache_enabled(dax_dev)))
373 return;
374
375 arch_wb_cache_pmem(addr, size);
376 }
377 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)378 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
379 {
380 }
381 #endif
382 EXPORT_SYMBOL_GPL(dax_flush);
383
dax_write_cache(struct dax_device * dax_dev,bool wc)384 void dax_write_cache(struct dax_device *dax_dev, bool wc)
385 {
386 if (wc)
387 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
388 else
389 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
390 }
391 EXPORT_SYMBOL_GPL(dax_write_cache);
392
dax_write_cache_enabled(struct dax_device * dax_dev)393 bool dax_write_cache_enabled(struct dax_device *dax_dev)
394 {
395 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
396 }
397 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
398
__dax_synchronous(struct dax_device * dax_dev)399 bool __dax_synchronous(struct dax_device *dax_dev)
400 {
401 return test_bit(DAXDEV_SYNC, &dax_dev->flags);
402 }
403 EXPORT_SYMBOL_GPL(__dax_synchronous);
404
__set_dax_synchronous(struct dax_device * dax_dev)405 void __set_dax_synchronous(struct dax_device *dax_dev)
406 {
407 set_bit(DAXDEV_SYNC, &dax_dev->flags);
408 }
409 EXPORT_SYMBOL_GPL(__set_dax_synchronous);
410
dax_alive(struct dax_device * dax_dev)411 bool dax_alive(struct dax_device *dax_dev)
412 {
413 lockdep_assert_held(&dax_srcu);
414 return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
415 }
416 EXPORT_SYMBOL_GPL(dax_alive);
417
418 /*
419 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
420 * that any fault handlers or operations that might have seen
421 * dax_alive(), have completed. Any operations that start after
422 * synchronize_srcu() has run will abort upon seeing !dax_alive().
423 */
kill_dax(struct dax_device * dax_dev)424 void kill_dax(struct dax_device *dax_dev)
425 {
426 if (!dax_dev)
427 return;
428
429 clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
430
431 synchronize_srcu(&dax_srcu);
432
433 spin_lock(&dax_host_lock);
434 hlist_del_init(&dax_dev->list);
435 spin_unlock(&dax_host_lock);
436 }
437 EXPORT_SYMBOL_GPL(kill_dax);
438
run_dax(struct dax_device * dax_dev)439 void run_dax(struct dax_device *dax_dev)
440 {
441 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
442 }
443 EXPORT_SYMBOL_GPL(run_dax);
444
dax_alloc_inode(struct super_block * sb)445 static struct inode *dax_alloc_inode(struct super_block *sb)
446 {
447 struct dax_device *dax_dev;
448 struct inode *inode;
449
450 dax_dev = kmem_cache_alloc(dax_cache, GFP_KERNEL);
451 if (!dax_dev)
452 return NULL;
453
454 inode = &dax_dev->inode;
455 inode->i_rdev = 0;
456 return inode;
457 }
458
to_dax_dev(struct inode * inode)459 static struct dax_device *to_dax_dev(struct inode *inode)
460 {
461 return container_of(inode, struct dax_device, inode);
462 }
463
dax_free_inode(struct inode * inode)464 static void dax_free_inode(struct inode *inode)
465 {
466 struct dax_device *dax_dev = to_dax_dev(inode);
467 kfree(dax_dev->host);
468 dax_dev->host = NULL;
469 if (inode->i_rdev)
470 ida_simple_remove(&dax_minor_ida, iminor(inode));
471 kmem_cache_free(dax_cache, dax_dev);
472 }
473
dax_destroy_inode(struct inode * inode)474 static void dax_destroy_inode(struct inode *inode)
475 {
476 struct dax_device *dax_dev = to_dax_dev(inode);
477 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
478 "kill_dax() must be called before final iput()\n");
479 }
480
481 static const struct super_operations dax_sops = {
482 .statfs = simple_statfs,
483 .alloc_inode = dax_alloc_inode,
484 .destroy_inode = dax_destroy_inode,
485 .free_inode = dax_free_inode,
486 .drop_inode = generic_delete_inode,
487 };
488
dax_init_fs_context(struct fs_context * fc)489 static int dax_init_fs_context(struct fs_context *fc)
490 {
491 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
492 if (!ctx)
493 return -ENOMEM;
494 ctx->ops = &dax_sops;
495 return 0;
496 }
497
498 static struct file_system_type dax_fs_type = {
499 .name = "dax",
500 .init_fs_context = dax_init_fs_context,
501 .kill_sb = kill_anon_super,
502 };
503
dax_test(struct inode * inode,void * data)504 static int dax_test(struct inode *inode, void *data)
505 {
506 dev_t devt = *(dev_t *) data;
507
508 return inode->i_rdev == devt;
509 }
510
dax_set(struct inode * inode,void * data)511 static int dax_set(struct inode *inode, void *data)
512 {
513 dev_t devt = *(dev_t *) data;
514
515 inode->i_rdev = devt;
516 return 0;
517 }
518
dax_dev_get(dev_t devt)519 static struct dax_device *dax_dev_get(dev_t devt)
520 {
521 struct dax_device *dax_dev;
522 struct inode *inode;
523
524 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
525 dax_test, dax_set, &devt);
526
527 if (!inode)
528 return NULL;
529
530 dax_dev = to_dax_dev(inode);
531 if (inode->i_state & I_NEW) {
532 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
533 inode->i_cdev = &dax_dev->cdev;
534 inode->i_mode = S_IFCHR;
535 inode->i_flags = S_DAX;
536 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
537 unlock_new_inode(inode);
538 }
539
540 return dax_dev;
541 }
542
dax_add_host(struct dax_device * dax_dev,const char * host)543 static void dax_add_host(struct dax_device *dax_dev, const char *host)
544 {
545 int hash;
546
547 /*
548 * Unconditionally init dax_dev since it's coming from a
549 * non-zeroed slab cache
550 */
551 INIT_HLIST_NODE(&dax_dev->list);
552 dax_dev->host = host;
553 if (!host)
554 return;
555
556 hash = dax_host_hash(host);
557 spin_lock(&dax_host_lock);
558 hlist_add_head(&dax_dev->list, &dax_host_list[hash]);
559 spin_unlock(&dax_host_lock);
560 }
561
alloc_dax(void * private,const char * __host,const struct dax_operations * ops,unsigned long flags)562 struct dax_device *alloc_dax(void *private, const char *__host,
563 const struct dax_operations *ops, unsigned long flags)
564 {
565 struct dax_device *dax_dev;
566 const char *host;
567 dev_t devt;
568 int minor;
569
570 if (ops && !ops->zero_page_range) {
571 pr_debug("%s: error: device does not provide dax"
572 " operation zero_page_range()\n",
573 __host ? __host : "Unknown");
574 return ERR_PTR(-EINVAL);
575 }
576
577 host = kstrdup(__host, GFP_KERNEL);
578 if (__host && !host)
579 return ERR_PTR(-ENOMEM);
580
581 minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL);
582 if (minor < 0)
583 goto err_minor;
584
585 devt = MKDEV(MAJOR(dax_devt), minor);
586 dax_dev = dax_dev_get(devt);
587 if (!dax_dev)
588 goto err_dev;
589
590 dax_add_host(dax_dev, host);
591 dax_dev->ops = ops;
592 dax_dev->private = private;
593 if (flags & DAXDEV_F_SYNC)
594 set_dax_synchronous(dax_dev);
595
596 return dax_dev;
597
598 err_dev:
599 ida_simple_remove(&dax_minor_ida, minor);
600 err_minor:
601 kfree(host);
602 return ERR_PTR(-ENOMEM);
603 }
604 EXPORT_SYMBOL_GPL(alloc_dax);
605
put_dax(struct dax_device * dax_dev)606 void put_dax(struct dax_device *dax_dev)
607 {
608 if (!dax_dev)
609 return;
610 iput(&dax_dev->inode);
611 }
612 EXPORT_SYMBOL_GPL(put_dax);
613
614 /**
615 * inode_dax: convert a public inode into its dax_dev
616 * @inode: An inode with i_cdev pointing to a dax_dev
617 *
618 * Note this is not equivalent to to_dax_dev() which is for private
619 * internal use where we know the inode filesystem type == dax_fs_type.
620 */
inode_dax(struct inode * inode)621 struct dax_device *inode_dax(struct inode *inode)
622 {
623 struct cdev *cdev = inode->i_cdev;
624
625 return container_of(cdev, struct dax_device, cdev);
626 }
627 EXPORT_SYMBOL_GPL(inode_dax);
628
dax_inode(struct dax_device * dax_dev)629 struct inode *dax_inode(struct dax_device *dax_dev)
630 {
631 return &dax_dev->inode;
632 }
633 EXPORT_SYMBOL_GPL(dax_inode);
634
dax_get_private(struct dax_device * dax_dev)635 void *dax_get_private(struct dax_device *dax_dev)
636 {
637 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
638 return NULL;
639 return dax_dev->private;
640 }
641 EXPORT_SYMBOL_GPL(dax_get_private);
642
init_once(void * _dax_dev)643 static void init_once(void *_dax_dev)
644 {
645 struct dax_device *dax_dev = _dax_dev;
646 struct inode *inode = &dax_dev->inode;
647
648 memset(dax_dev, 0, sizeof(*dax_dev));
649 inode_init_once(inode);
650 }
651
dax_fs_init(void)652 static int dax_fs_init(void)
653 {
654 int rc;
655
656 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
657 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
658 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
659 init_once);
660 if (!dax_cache)
661 return -ENOMEM;
662
663 dax_mnt = kern_mount(&dax_fs_type);
664 if (IS_ERR(dax_mnt)) {
665 rc = PTR_ERR(dax_mnt);
666 goto err_mount;
667 }
668 dax_superblock = dax_mnt->mnt_sb;
669
670 return 0;
671
672 err_mount:
673 kmem_cache_destroy(dax_cache);
674
675 return rc;
676 }
677
dax_fs_exit(void)678 static void dax_fs_exit(void)
679 {
680 kern_unmount(dax_mnt);
681 rcu_barrier();
682 kmem_cache_destroy(dax_cache);
683 }
684
dax_core_init(void)685 static int __init dax_core_init(void)
686 {
687 int rc;
688
689 rc = dax_fs_init();
690 if (rc)
691 return rc;
692
693 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
694 if (rc)
695 goto err_chrdev;
696
697 rc = dax_bus_init();
698 if (rc)
699 goto err_bus;
700 return 0;
701
702 err_bus:
703 unregister_chrdev_region(dax_devt, MINORMASK+1);
704 err_chrdev:
705 dax_fs_exit();
706 return 0;
707 }
708
dax_core_exit(void)709 static void __exit dax_core_exit(void)
710 {
711 dax_bus_exit();
712 unregister_chrdev_region(dax_devt, MINORMASK+1);
713 ida_destroy(&dax_minor_ida);
714 dax_fs_exit();
715 }
716
717 MODULE_AUTHOR("Intel Corporation");
718 MODULE_LICENSE("GPL v2");
719 subsys_initcall(dax_core_init);
720 module_exit(dax_core_exit);
721