1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
27 #include <trace/hooks/timekeeping.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP (1 << 0)
34 #define TK_MIRROR (1 << 1)
35 #define TK_CLOCK_WAS_SET (1 << 2)
36
37 enum timekeeping_adv_mode {
38 /* Update timekeeper when a tick has passed */
39 TK_ADV_TICK,
40
41 /* Update timekeeper on a direct frequency change */
42 TK_ADV_FREQ
43 };
44
45 DEFINE_RAW_SPINLOCK(timekeeper_lock);
46
47 /*
48 * The most important data for readout fits into a single 64 byte
49 * cache line.
50 */
51 static struct {
52 seqcount_raw_spinlock_t seq;
53 struct timekeeper timekeeper;
54 } tk_core ____cacheline_aligned = {
55 .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
56 };
57
58 static struct timekeeper shadow_timekeeper;
59
60 /* flag for if timekeeping is suspended */
61 int __read_mostly timekeeping_suspended;
62
63 /**
64 * struct tk_fast - NMI safe timekeeper
65 * @seq: Sequence counter for protecting updates. The lowest bit
66 * is the index for the tk_read_base array
67 * @base: tk_read_base array. Access is indexed by the lowest bit of
68 * @seq.
69 *
70 * See @update_fast_timekeeper() below.
71 */
72 struct tk_fast {
73 seqcount_latch_t seq;
74 struct tk_read_base base[2];
75 };
76
77 /* Suspend-time cycles value for halted fast timekeeper. */
78 static u64 cycles_at_suspend;
79
dummy_clock_read(struct clocksource * cs)80 static u64 dummy_clock_read(struct clocksource *cs)
81 {
82 if (timekeeping_suspended)
83 return cycles_at_suspend;
84 return local_clock();
85 }
86
87 static struct clocksource dummy_clock = {
88 .read = dummy_clock_read,
89 };
90
91 /*
92 * Boot time initialization which allows local_clock() to be utilized
93 * during early boot when clocksources are not available. local_clock()
94 * returns nanoseconds already so no conversion is required, hence mult=1
95 * and shift=0. When the first proper clocksource is installed then
96 * the fast time keepers are updated with the correct values.
97 */
98 #define FAST_TK_INIT \
99 { \
100 .clock = &dummy_clock, \
101 .mask = CLOCKSOURCE_MASK(64), \
102 .mult = 1, \
103 .shift = 0, \
104 }
105
106 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
107 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
108 .base[0] = FAST_TK_INIT,
109 .base[1] = FAST_TK_INIT,
110 };
111
112 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
113 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
114 .base[0] = FAST_TK_INIT,
115 .base[1] = FAST_TK_INIT,
116 };
117
tk_normalize_xtime(struct timekeeper * tk)118 static inline void tk_normalize_xtime(struct timekeeper *tk)
119 {
120 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
121 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
122 tk->xtime_sec++;
123 }
124 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
125 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
126 tk->raw_sec++;
127 }
128 }
129
tk_xtime(const struct timekeeper * tk)130 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
131 {
132 struct timespec64 ts;
133
134 ts.tv_sec = tk->xtime_sec;
135 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
136 return ts;
137 }
138
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)139 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
140 {
141 tk->xtime_sec = ts->tv_sec;
142 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
143 }
144
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)145 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
146 {
147 tk->xtime_sec += ts->tv_sec;
148 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
149 tk_normalize_xtime(tk);
150 }
151
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)152 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
153 {
154 struct timespec64 tmp;
155
156 /*
157 * Verify consistency of: offset_real = -wall_to_monotonic
158 * before modifying anything
159 */
160 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
161 -tk->wall_to_monotonic.tv_nsec);
162 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
163 tk->wall_to_monotonic = wtm;
164 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
165 tk->offs_real = timespec64_to_ktime(tmp);
166 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
167 }
168
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)169 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
170 {
171 tk->offs_boot = ktime_add(tk->offs_boot, delta);
172 /*
173 * Timespec representation for VDSO update to avoid 64bit division
174 * on every update.
175 */
176 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
177 }
178
179 /*
180 * tk_clock_read - atomic clocksource read() helper
181 *
182 * This helper is necessary to use in the read paths because, while the
183 * seqcount ensures we don't return a bad value while structures are updated,
184 * it doesn't protect from potential crashes. There is the possibility that
185 * the tkr's clocksource may change between the read reference, and the
186 * clock reference passed to the read function. This can cause crashes if
187 * the wrong clocksource is passed to the wrong read function.
188 * This isn't necessary to use when holding the timekeeper_lock or doing
189 * a read of the fast-timekeeper tkrs (which is protected by its own locking
190 * and update logic).
191 */
tk_clock_read(const struct tk_read_base * tkr)192 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
193 {
194 struct clocksource *clock = READ_ONCE(tkr->clock);
195
196 return clock->read(clock);
197 }
198
199 #ifdef CONFIG_DEBUG_TIMEKEEPING
200 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
201
timekeeping_check_update(struct timekeeper * tk,u64 offset)202 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204
205 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
206 const char *name = tk->tkr_mono.clock->name;
207
208 if (offset > max_cycles) {
209 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
210 offset, name, max_cycles);
211 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
212 } else {
213 if (offset > (max_cycles >> 1)) {
214 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
215 offset, name, max_cycles >> 1);
216 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
217 }
218 }
219
220 if (tk->underflow_seen) {
221 if (jiffies - tk->last_warning > WARNING_FREQ) {
222 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
223 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
224 printk_deferred(" Your kernel is probably still fine.\n");
225 tk->last_warning = jiffies;
226 }
227 tk->underflow_seen = 0;
228 }
229
230 if (tk->overflow_seen) {
231 if (jiffies - tk->last_warning > WARNING_FREQ) {
232 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
233 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
234 printk_deferred(" Your kernel is probably still fine.\n");
235 tk->last_warning = jiffies;
236 }
237 tk->overflow_seen = 0;
238 }
239 }
240
timekeeping_get_delta(const struct tk_read_base * tkr)241 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
242 {
243 struct timekeeper *tk = &tk_core.timekeeper;
244 u64 now, last, mask, max, delta;
245 unsigned int seq;
246
247 /*
248 * Since we're called holding a seqcount, the data may shift
249 * under us while we're doing the calculation. This can cause
250 * false positives, since we'd note a problem but throw the
251 * results away. So nest another seqcount here to atomically
252 * grab the points we are checking with.
253 */
254 do {
255 seq = read_seqcount_begin(&tk_core.seq);
256 now = tk_clock_read(tkr);
257 last = tkr->cycle_last;
258 mask = tkr->mask;
259 max = tkr->clock->max_cycles;
260 } while (read_seqcount_retry(&tk_core.seq, seq));
261
262 delta = clocksource_delta(now, last, mask);
263
264 /*
265 * Try to catch underflows by checking if we are seeing small
266 * mask-relative negative values.
267 */
268 if (unlikely((~delta & mask) < (mask >> 3))) {
269 tk->underflow_seen = 1;
270 delta = 0;
271 }
272
273 /* Cap delta value to the max_cycles values to avoid mult overflows */
274 if (unlikely(delta > max)) {
275 tk->overflow_seen = 1;
276 delta = tkr->clock->max_cycles;
277 }
278
279 return delta;
280 }
281 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)282 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
283 {
284 }
timekeeping_get_delta(const struct tk_read_base * tkr)285 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
286 {
287 u64 cycle_now, delta;
288
289 /* read clocksource */
290 cycle_now = tk_clock_read(tkr);
291
292 /* calculate the delta since the last update_wall_time */
293 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
294
295 return delta;
296 }
297 #endif
298
299 /**
300 * tk_setup_internals - Set up internals to use clocksource clock.
301 *
302 * @tk: The target timekeeper to setup.
303 * @clock: Pointer to clocksource.
304 *
305 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
306 * pair and interval request.
307 *
308 * Unless you're the timekeeping code, you should not be using this!
309 */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)310 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
311 {
312 u64 interval;
313 u64 tmp, ntpinterval;
314 struct clocksource *old_clock;
315
316 ++tk->cs_was_changed_seq;
317 old_clock = tk->tkr_mono.clock;
318 tk->tkr_mono.clock = clock;
319 tk->tkr_mono.mask = clock->mask;
320 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
321
322 tk->tkr_raw.clock = clock;
323 tk->tkr_raw.mask = clock->mask;
324 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
325
326 /* Do the ns -> cycle conversion first, using original mult */
327 tmp = NTP_INTERVAL_LENGTH;
328 tmp <<= clock->shift;
329 ntpinterval = tmp;
330 tmp += clock->mult/2;
331 do_div(tmp, clock->mult);
332 if (tmp == 0)
333 tmp = 1;
334
335 interval = (u64) tmp;
336 tk->cycle_interval = interval;
337
338 /* Go back from cycles -> shifted ns */
339 tk->xtime_interval = interval * clock->mult;
340 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
341 tk->raw_interval = interval * clock->mult;
342
343 /* if changing clocks, convert xtime_nsec shift units */
344 if (old_clock) {
345 int shift_change = clock->shift - old_clock->shift;
346 if (shift_change < 0) {
347 tk->tkr_mono.xtime_nsec >>= -shift_change;
348 tk->tkr_raw.xtime_nsec >>= -shift_change;
349 } else {
350 tk->tkr_mono.xtime_nsec <<= shift_change;
351 tk->tkr_raw.xtime_nsec <<= shift_change;
352 }
353 }
354
355 tk->tkr_mono.shift = clock->shift;
356 tk->tkr_raw.shift = clock->shift;
357
358 tk->ntp_error = 0;
359 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
360 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
361
362 /*
363 * The timekeeper keeps its own mult values for the currently
364 * active clocksource. These value will be adjusted via NTP
365 * to counteract clock drifting.
366 */
367 tk->tkr_mono.mult = clock->mult;
368 tk->tkr_raw.mult = clock->mult;
369 tk->ntp_err_mult = 0;
370 tk->skip_second_overflow = 0;
371 }
372
373 /* Timekeeper helper functions. */
374
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)375 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
376 {
377 u64 nsec;
378
379 nsec = delta * tkr->mult + tkr->xtime_nsec;
380 nsec >>= tkr->shift;
381
382 return nsec;
383 }
384
timekeeping_get_ns(const struct tk_read_base * tkr)385 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
386 {
387 u64 delta;
388
389 delta = timekeeping_get_delta(tkr);
390 return timekeeping_delta_to_ns(tkr, delta);
391 }
392
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)393 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
394 {
395 u64 delta;
396
397 /* calculate the delta since the last update_wall_time */
398 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
399 return timekeeping_delta_to_ns(tkr, delta);
400 }
401
402 /**
403 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
404 * @tkr: Timekeeping readout base from which we take the update
405 * @tkf: Pointer to NMI safe timekeeper
406 *
407 * We want to use this from any context including NMI and tracing /
408 * instrumenting the timekeeping code itself.
409 *
410 * Employ the latch technique; see @raw_write_seqcount_latch.
411 *
412 * So if a NMI hits the update of base[0] then it will use base[1]
413 * which is still consistent. In the worst case this can result is a
414 * slightly wrong timestamp (a few nanoseconds). See
415 * @ktime_get_mono_fast_ns.
416 */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)417 static void update_fast_timekeeper(const struct tk_read_base *tkr,
418 struct tk_fast *tkf)
419 {
420 struct tk_read_base *base = tkf->base;
421
422 /* Force readers off to base[1] */
423 raw_write_seqcount_latch(&tkf->seq);
424
425 /* Update base[0] */
426 memcpy(base, tkr, sizeof(*base));
427
428 /* Force readers back to base[0] */
429 raw_write_seqcount_latch(&tkf->seq);
430
431 /* Update base[1] */
432 memcpy(base + 1, base, sizeof(*base));
433 }
434
__ktime_get_fast_ns(struct tk_fast * tkf)435 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
436 {
437 struct tk_read_base *tkr;
438 unsigned int seq;
439 u64 now;
440
441 do {
442 seq = raw_read_seqcount_latch(&tkf->seq);
443 tkr = tkf->base + (seq & 0x01);
444 now = ktime_to_ns(tkr->base);
445
446 now += timekeeping_delta_to_ns(tkr,
447 clocksource_delta(
448 tk_clock_read(tkr),
449 tkr->cycle_last,
450 tkr->mask));
451 } while (read_seqcount_latch_retry(&tkf->seq, seq));
452
453 return now;
454 }
455
456 /**
457 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
458 *
459 * This timestamp is not guaranteed to be monotonic across an update.
460 * The timestamp is calculated by:
461 *
462 * now = base_mono + clock_delta * slope
463 *
464 * So if the update lowers the slope, readers who are forced to the
465 * not yet updated second array are still using the old steeper slope.
466 *
467 * tmono
468 * ^
469 * | o n
470 * | o n
471 * | u
472 * | o
473 * |o
474 * |12345678---> reader order
475 *
476 * o = old slope
477 * u = update
478 * n = new slope
479 *
480 * So reader 6 will observe time going backwards versus reader 5.
481 *
482 * While other CPUs are likely to be able to observe that, the only way
483 * for a CPU local observation is when an NMI hits in the middle of
484 * the update. Timestamps taken from that NMI context might be ahead
485 * of the following timestamps. Callers need to be aware of that and
486 * deal with it.
487 */
ktime_get_mono_fast_ns(void)488 u64 notrace ktime_get_mono_fast_ns(void)
489 {
490 return __ktime_get_fast_ns(&tk_fast_mono);
491 }
492 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
493
494 /**
495 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
496 *
497 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
498 * conversion factor is not affected by NTP/PTP correction.
499 */
ktime_get_raw_fast_ns(void)500 u64 notrace ktime_get_raw_fast_ns(void)
501 {
502 return __ktime_get_fast_ns(&tk_fast_raw);
503 }
504 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
505
506 /**
507 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
508 *
509 * To keep it NMI safe since we're accessing from tracing, we're not using a
510 * separate timekeeper with updates to monotonic clock and boot offset
511 * protected with seqcounts. This has the following minor side effects:
512 *
513 * (1) Its possible that a timestamp be taken after the boot offset is updated
514 * but before the timekeeper is updated. If this happens, the new boot offset
515 * is added to the old timekeeping making the clock appear to update slightly
516 * earlier:
517 * CPU 0 CPU 1
518 * timekeeping_inject_sleeptime64()
519 * __timekeeping_inject_sleeptime(tk, delta);
520 * timestamp();
521 * timekeeping_update(tk, TK_CLEAR_NTP...);
522 *
523 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
524 * partially updated. Since the tk->offs_boot update is a rare event, this
525 * should be a rare occurrence which postprocessing should be able to handle.
526 *
527 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
528 * apply as well.
529 */
ktime_get_boot_fast_ns(void)530 u64 notrace ktime_get_boot_fast_ns(void)
531 {
532 struct timekeeper *tk = &tk_core.timekeeper;
533
534 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
535 }
536 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
537
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)538 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
539 {
540 struct tk_read_base *tkr;
541 u64 basem, baser, delta;
542 unsigned int seq;
543
544 do {
545 seq = raw_read_seqcount_latch(&tkf->seq);
546 tkr = tkf->base + (seq & 0x01);
547 basem = ktime_to_ns(tkr->base);
548 baser = ktime_to_ns(tkr->base_real);
549
550 delta = timekeeping_delta_to_ns(tkr,
551 clocksource_delta(tk_clock_read(tkr),
552 tkr->cycle_last, tkr->mask));
553 } while (read_seqcount_latch_retry(&tkf->seq, seq));
554
555 if (mono)
556 *mono = basem + delta;
557 return baser + delta;
558 }
559
560 /**
561 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
562 *
563 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
564 */
ktime_get_real_fast_ns(void)565 u64 ktime_get_real_fast_ns(void)
566 {
567 return __ktime_get_real_fast(&tk_fast_mono, NULL);
568 }
569 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
570
571 /**
572 * ktime_get_fast_timestamps: - NMI safe timestamps
573 * @snapshot: Pointer to timestamp storage
574 *
575 * Stores clock monotonic, boottime and realtime timestamps.
576 *
577 * Boot time is a racy access on 32bit systems if the sleep time injection
578 * happens late during resume and not in timekeeping_resume(). That could
579 * be avoided by expanding struct tk_read_base with boot offset for 32bit
580 * and adding more overhead to the update. As this is a hard to observe
581 * once per resume event which can be filtered with reasonable effort using
582 * the accurate mono/real timestamps, it's probably not worth the trouble.
583 *
584 * Aside of that it might be possible on 32 and 64 bit to observe the
585 * following when the sleep time injection happens late:
586 *
587 * CPU 0 CPU 1
588 * timekeeping_resume()
589 * ktime_get_fast_timestamps()
590 * mono, real = __ktime_get_real_fast()
591 * inject_sleep_time()
592 * update boot offset
593 * boot = mono + bootoffset;
594 *
595 * That means that boot time already has the sleep time adjustment, but
596 * real time does not. On the next readout both are in sync again.
597 *
598 * Preventing this for 64bit is not really feasible without destroying the
599 * careful cache layout of the timekeeper because the sequence count and
600 * struct tk_read_base would then need two cache lines instead of one.
601 *
602 * Access to the time keeper clock source is disabled across the innermost
603 * steps of suspend/resume. The accessors still work, but the timestamps
604 * are frozen until time keeping is resumed which happens very early.
605 *
606 * For regular suspend/resume there is no observable difference vs. sched
607 * clock, but it might affect some of the nasty low level debug printks.
608 *
609 * OTOH, access to sched clock is not guaranteed across suspend/resume on
610 * all systems either so it depends on the hardware in use.
611 *
612 * If that turns out to be a real problem then this could be mitigated by
613 * using sched clock in a similar way as during early boot. But it's not as
614 * trivial as on early boot because it needs some careful protection
615 * against the clock monotonic timestamp jumping backwards on resume.
616 */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)617 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
618 {
619 struct timekeeper *tk = &tk_core.timekeeper;
620
621 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
622 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
623 }
624
625 /**
626 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
627 * @tk: Timekeeper to snapshot.
628 *
629 * It generally is unsafe to access the clocksource after timekeeping has been
630 * suspended, so take a snapshot of the readout base of @tk and use it as the
631 * fast timekeeper's readout base while suspended. It will return the same
632 * number of cycles every time until timekeeping is resumed at which time the
633 * proper readout base for the fast timekeeper will be restored automatically.
634 */
halt_fast_timekeeper(const struct timekeeper * tk)635 static void halt_fast_timekeeper(const struct timekeeper *tk)
636 {
637 static struct tk_read_base tkr_dummy;
638 const struct tk_read_base *tkr = &tk->tkr_mono;
639
640 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
641 cycles_at_suspend = tk_clock_read(tkr);
642 tkr_dummy.clock = &dummy_clock;
643 tkr_dummy.base_real = tkr->base + tk->offs_real;
644 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
645
646 tkr = &tk->tkr_raw;
647 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
648 tkr_dummy.clock = &dummy_clock;
649 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
650 }
651
652 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
653
update_pvclock_gtod(struct timekeeper * tk,bool was_set)654 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
655 {
656 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
657 }
658
659 /**
660 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
661 * @nb: Pointer to the notifier block to register
662 */
pvclock_gtod_register_notifier(struct notifier_block * nb)663 int pvclock_gtod_register_notifier(struct notifier_block *nb)
664 {
665 struct timekeeper *tk = &tk_core.timekeeper;
666 unsigned long flags;
667 int ret;
668
669 raw_spin_lock_irqsave(&timekeeper_lock, flags);
670 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
671 update_pvclock_gtod(tk, true);
672 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
673
674 return ret;
675 }
676 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
677
678 /**
679 * pvclock_gtod_unregister_notifier - unregister a pvclock
680 * timedata update listener
681 * @nb: Pointer to the notifier block to unregister
682 */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)683 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
684 {
685 unsigned long flags;
686 int ret;
687
688 raw_spin_lock_irqsave(&timekeeper_lock, flags);
689 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
690 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
691
692 return ret;
693 }
694 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
695
696 /*
697 * tk_update_leap_state - helper to update the next_leap_ktime
698 */
tk_update_leap_state(struct timekeeper * tk)699 static inline void tk_update_leap_state(struct timekeeper *tk)
700 {
701 tk->next_leap_ktime = ntp_get_next_leap();
702 if (tk->next_leap_ktime != KTIME_MAX)
703 /* Convert to monotonic time */
704 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
705 }
706
707 /*
708 * Update the ktime_t based scalar nsec members of the timekeeper
709 */
tk_update_ktime_data(struct timekeeper * tk)710 static inline void tk_update_ktime_data(struct timekeeper *tk)
711 {
712 u64 seconds;
713 u32 nsec;
714
715 /*
716 * The xtime based monotonic readout is:
717 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
718 * The ktime based monotonic readout is:
719 * nsec = base_mono + now();
720 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
721 */
722 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
723 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
724 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
725
726 /*
727 * The sum of the nanoseconds portions of xtime and
728 * wall_to_monotonic can be greater/equal one second. Take
729 * this into account before updating tk->ktime_sec.
730 */
731 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
732 if (nsec >= NSEC_PER_SEC)
733 seconds++;
734 tk->ktime_sec = seconds;
735
736 /* Update the monotonic raw base */
737 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
738 }
739
740 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)741 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
742 {
743 if (action & TK_CLEAR_NTP) {
744 tk->ntp_error = 0;
745 ntp_clear();
746 }
747
748 tk_update_leap_state(tk);
749 tk_update_ktime_data(tk);
750
751 update_vsyscall(tk);
752 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
753
754 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
755 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
756 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
757
758 if (action & TK_CLOCK_WAS_SET)
759 tk->clock_was_set_seq++;
760 /*
761 * The mirroring of the data to the shadow-timekeeper needs
762 * to happen last here to ensure we don't over-write the
763 * timekeeper structure on the next update with stale data
764 */
765 if (action & TK_MIRROR)
766 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
767 sizeof(tk_core.timekeeper));
768 }
769
770 /**
771 * timekeeping_forward_now - update clock to the current time
772 * @tk: Pointer to the timekeeper to update
773 *
774 * Forward the current clock to update its state since the last call to
775 * update_wall_time(). This is useful before significant clock changes,
776 * as it avoids having to deal with this time offset explicitly.
777 */
timekeeping_forward_now(struct timekeeper * tk)778 static void timekeeping_forward_now(struct timekeeper *tk)
779 {
780 u64 cycle_now, delta;
781
782 cycle_now = tk_clock_read(&tk->tkr_mono);
783 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
784 tk->tkr_mono.cycle_last = cycle_now;
785 tk->tkr_raw.cycle_last = cycle_now;
786
787 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
788 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
789
790 tk_normalize_xtime(tk);
791 }
792
793 /**
794 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
795 * @ts: pointer to the timespec to be set
796 *
797 * Returns the time of day in a timespec64 (WARN if suspended).
798 */
ktime_get_real_ts64(struct timespec64 * ts)799 void ktime_get_real_ts64(struct timespec64 *ts)
800 {
801 struct timekeeper *tk = &tk_core.timekeeper;
802 unsigned int seq;
803 u64 nsecs;
804
805 WARN_ON(timekeeping_suspended);
806
807 do {
808 seq = read_seqcount_begin(&tk_core.seq);
809
810 ts->tv_sec = tk->xtime_sec;
811 nsecs = timekeeping_get_ns(&tk->tkr_mono);
812
813 } while (read_seqcount_retry(&tk_core.seq, seq));
814
815 ts->tv_nsec = 0;
816 timespec64_add_ns(ts, nsecs);
817 }
818 EXPORT_SYMBOL(ktime_get_real_ts64);
819
ktime_get(void)820 ktime_t ktime_get(void)
821 {
822 struct timekeeper *tk = &tk_core.timekeeper;
823 unsigned int seq;
824 ktime_t base;
825 u64 nsecs;
826
827 WARN_ON(timekeeping_suspended);
828
829 do {
830 seq = read_seqcount_begin(&tk_core.seq);
831 base = tk->tkr_mono.base;
832 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833
834 } while (read_seqcount_retry(&tk_core.seq, seq));
835
836 return ktime_add_ns(base, nsecs);
837 }
838 EXPORT_SYMBOL_GPL(ktime_get);
839
ktime_get_resolution_ns(void)840 u32 ktime_get_resolution_ns(void)
841 {
842 struct timekeeper *tk = &tk_core.timekeeper;
843 unsigned int seq;
844 u32 nsecs;
845
846 WARN_ON(timekeeping_suspended);
847
848 do {
849 seq = read_seqcount_begin(&tk_core.seq);
850 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
851 } while (read_seqcount_retry(&tk_core.seq, seq));
852
853 return nsecs;
854 }
855 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
856
857 static ktime_t *offsets[TK_OFFS_MAX] = {
858 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
859 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
860 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
861 };
862
ktime_get_with_offset(enum tk_offsets offs)863 ktime_t ktime_get_with_offset(enum tk_offsets offs)
864 {
865 struct timekeeper *tk = &tk_core.timekeeper;
866 unsigned int seq;
867 ktime_t base, *offset = offsets[offs];
868 u64 nsecs;
869
870 WARN_ON(timekeeping_suspended);
871
872 do {
873 seq = read_seqcount_begin(&tk_core.seq);
874 base = ktime_add(tk->tkr_mono.base, *offset);
875 nsecs = timekeeping_get_ns(&tk->tkr_mono);
876
877 } while (read_seqcount_retry(&tk_core.seq, seq));
878
879 return ktime_add_ns(base, nsecs);
880
881 }
882 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
883
ktime_get_coarse_with_offset(enum tk_offsets offs)884 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
885 {
886 struct timekeeper *tk = &tk_core.timekeeper;
887 unsigned int seq;
888 ktime_t base, *offset = offsets[offs];
889 u64 nsecs;
890
891 WARN_ON(timekeeping_suspended);
892
893 do {
894 seq = read_seqcount_begin(&tk_core.seq);
895 base = ktime_add(tk->tkr_mono.base, *offset);
896 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
897
898 } while (read_seqcount_retry(&tk_core.seq, seq));
899
900 return ktime_add_ns(base, nsecs);
901 }
902 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
903
904 /**
905 * ktime_mono_to_any() - convert monotonic time to any other time
906 * @tmono: time to convert.
907 * @offs: which offset to use
908 */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)909 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
910 {
911 ktime_t *offset = offsets[offs];
912 unsigned int seq;
913 ktime_t tconv;
914
915 do {
916 seq = read_seqcount_begin(&tk_core.seq);
917 tconv = ktime_add(tmono, *offset);
918 } while (read_seqcount_retry(&tk_core.seq, seq));
919
920 return tconv;
921 }
922 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
923
924 /**
925 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
926 */
ktime_get_raw(void)927 ktime_t ktime_get_raw(void)
928 {
929 struct timekeeper *tk = &tk_core.timekeeper;
930 unsigned int seq;
931 ktime_t base;
932 u64 nsecs;
933
934 do {
935 seq = read_seqcount_begin(&tk_core.seq);
936 base = tk->tkr_raw.base;
937 nsecs = timekeeping_get_ns(&tk->tkr_raw);
938
939 } while (read_seqcount_retry(&tk_core.seq, seq));
940
941 return ktime_add_ns(base, nsecs);
942 }
943 EXPORT_SYMBOL_GPL(ktime_get_raw);
944
945 /**
946 * ktime_get_ts64 - get the monotonic clock in timespec64 format
947 * @ts: pointer to timespec variable
948 *
949 * The function calculates the monotonic clock from the realtime
950 * clock and the wall_to_monotonic offset and stores the result
951 * in normalized timespec64 format in the variable pointed to by @ts.
952 */
ktime_get_ts64(struct timespec64 * ts)953 void ktime_get_ts64(struct timespec64 *ts)
954 {
955 struct timekeeper *tk = &tk_core.timekeeper;
956 struct timespec64 tomono;
957 unsigned int seq;
958 u64 nsec;
959
960 WARN_ON(timekeeping_suspended);
961
962 do {
963 seq = read_seqcount_begin(&tk_core.seq);
964 ts->tv_sec = tk->xtime_sec;
965 nsec = timekeeping_get_ns(&tk->tkr_mono);
966 tomono = tk->wall_to_monotonic;
967
968 } while (read_seqcount_retry(&tk_core.seq, seq));
969
970 ts->tv_sec += tomono.tv_sec;
971 ts->tv_nsec = 0;
972 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
973 }
974 EXPORT_SYMBOL_GPL(ktime_get_ts64);
975
976 /**
977 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
978 *
979 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
980 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
981 * works on both 32 and 64 bit systems. On 32 bit systems the readout
982 * covers ~136 years of uptime which should be enough to prevent
983 * premature wrap arounds.
984 */
ktime_get_seconds(void)985 time64_t ktime_get_seconds(void)
986 {
987 struct timekeeper *tk = &tk_core.timekeeper;
988
989 WARN_ON(timekeeping_suspended);
990 return tk->ktime_sec;
991 }
992 EXPORT_SYMBOL_GPL(ktime_get_seconds);
993
994 /**
995 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
996 *
997 * Returns the wall clock seconds since 1970.
998 *
999 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1000 * 32bit systems the access must be protected with the sequence
1001 * counter to provide "atomic" access to the 64bit tk->xtime_sec
1002 * value.
1003 */
ktime_get_real_seconds(void)1004 time64_t ktime_get_real_seconds(void)
1005 {
1006 struct timekeeper *tk = &tk_core.timekeeper;
1007 time64_t seconds;
1008 unsigned int seq;
1009
1010 if (IS_ENABLED(CONFIG_64BIT))
1011 return tk->xtime_sec;
1012
1013 do {
1014 seq = read_seqcount_begin(&tk_core.seq);
1015 seconds = tk->xtime_sec;
1016
1017 } while (read_seqcount_retry(&tk_core.seq, seq));
1018
1019 return seconds;
1020 }
1021 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1022
1023 /**
1024 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1025 * but without the sequence counter protect. This internal function
1026 * is called just when timekeeping lock is already held.
1027 */
__ktime_get_real_seconds(void)1028 noinstr time64_t __ktime_get_real_seconds(void)
1029 {
1030 struct timekeeper *tk = &tk_core.timekeeper;
1031
1032 return tk->xtime_sec;
1033 }
1034
1035 /**
1036 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1037 * @systime_snapshot: pointer to struct receiving the system time snapshot
1038 */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1039 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1040 {
1041 struct timekeeper *tk = &tk_core.timekeeper;
1042 u32 mono_mult, mono_shift;
1043 unsigned int seq;
1044 ktime_t base_raw;
1045 ktime_t base_real;
1046 ktime_t base_boot;
1047 u64 nsec_raw;
1048 u64 nsec_real;
1049 u64 now;
1050
1051 WARN_ON_ONCE(timekeeping_suspended);
1052
1053 do {
1054 seq = read_seqcount_begin(&tk_core.seq);
1055 now = tk_clock_read(&tk->tkr_mono);
1056 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1057 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1058 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1059 base_real = ktime_add(tk->tkr_mono.base,
1060 tk_core.timekeeper.offs_real);
1061 base_boot = ktime_add(tk->tkr_mono.base,
1062 tk_core.timekeeper.offs_boot);
1063 base_raw = tk->tkr_raw.base;
1064 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1065 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1066 mono_mult = tk->tkr_mono.mult;
1067 mono_shift = tk->tkr_mono.shift;
1068 } while (read_seqcount_retry(&tk_core.seq, seq));
1069
1070 systime_snapshot->cycles = now;
1071 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1072 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1073 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1074 systime_snapshot->mono_shift = mono_shift;
1075 systime_snapshot->mono_mult = mono_mult;
1076 }
1077 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1078
1079 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1080 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1081 {
1082 u64 tmp, rem;
1083
1084 tmp = div64_u64_rem(*base, div, &rem);
1085
1086 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1087 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1088 return -EOVERFLOW;
1089 tmp *= mult;
1090
1091 rem = div64_u64(rem * mult, div);
1092 *base = tmp + rem;
1093 return 0;
1094 }
1095
1096 /**
1097 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1098 * @history: Snapshot representing start of history
1099 * @partial_history_cycles: Cycle offset into history (fractional part)
1100 * @total_history_cycles: Total history length in cycles
1101 * @discontinuity: True indicates clock was set on history period
1102 * @ts: Cross timestamp that should be adjusted using
1103 * partial/total ratio
1104 *
1105 * Helper function used by get_device_system_crosststamp() to correct the
1106 * crosstimestamp corresponding to the start of the current interval to the
1107 * system counter value (timestamp point) provided by the driver. The
1108 * total_history_* quantities are the total history starting at the provided
1109 * reference point and ending at the start of the current interval. The cycle
1110 * count between the driver timestamp point and the start of the current
1111 * interval is partial_history_cycles.
1112 */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1113 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1114 u64 partial_history_cycles,
1115 u64 total_history_cycles,
1116 bool discontinuity,
1117 struct system_device_crosststamp *ts)
1118 {
1119 struct timekeeper *tk = &tk_core.timekeeper;
1120 u64 corr_raw, corr_real;
1121 bool interp_forward;
1122 int ret;
1123
1124 if (total_history_cycles == 0 || partial_history_cycles == 0)
1125 return 0;
1126
1127 /* Interpolate shortest distance from beginning or end of history */
1128 interp_forward = partial_history_cycles > total_history_cycles / 2;
1129 partial_history_cycles = interp_forward ?
1130 total_history_cycles - partial_history_cycles :
1131 partial_history_cycles;
1132
1133 /*
1134 * Scale the monotonic raw time delta by:
1135 * partial_history_cycles / total_history_cycles
1136 */
1137 corr_raw = (u64)ktime_to_ns(
1138 ktime_sub(ts->sys_monoraw, history->raw));
1139 ret = scale64_check_overflow(partial_history_cycles,
1140 total_history_cycles, &corr_raw);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * If there is a discontinuity in the history, scale monotonic raw
1146 * correction by:
1147 * mult(real)/mult(raw) yielding the realtime correction
1148 * Otherwise, calculate the realtime correction similar to monotonic
1149 * raw calculation
1150 */
1151 if (discontinuity) {
1152 corr_real = mul_u64_u32_div
1153 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1154 } else {
1155 corr_real = (u64)ktime_to_ns(
1156 ktime_sub(ts->sys_realtime, history->real));
1157 ret = scale64_check_overflow(partial_history_cycles,
1158 total_history_cycles, &corr_real);
1159 if (ret)
1160 return ret;
1161 }
1162
1163 /* Fixup monotonic raw and real time time values */
1164 if (interp_forward) {
1165 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1166 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1167 } else {
1168 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1169 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1170 }
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * cycle_between - true if test occurs chronologically between before and after
1177 */
cycle_between(u64 before,u64 test,u64 after)1178 static bool cycle_between(u64 before, u64 test, u64 after)
1179 {
1180 if (test > before && test < after)
1181 return true;
1182 if (test < before && before > after)
1183 return true;
1184 return false;
1185 }
1186
1187 /**
1188 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1189 * @get_time_fn: Callback to get simultaneous device time and
1190 * system counter from the device driver
1191 * @ctx: Context passed to get_time_fn()
1192 * @history_begin: Historical reference point used to interpolate system
1193 * time when counter provided by the driver is before the current interval
1194 * @xtstamp: Receives simultaneously captured system and device time
1195 *
1196 * Reads a timestamp from a device and correlates it to system time
1197 */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1198 int get_device_system_crosststamp(int (*get_time_fn)
1199 (ktime_t *device_time,
1200 struct system_counterval_t *sys_counterval,
1201 void *ctx),
1202 void *ctx,
1203 struct system_time_snapshot *history_begin,
1204 struct system_device_crosststamp *xtstamp)
1205 {
1206 struct system_counterval_t system_counterval;
1207 struct timekeeper *tk = &tk_core.timekeeper;
1208 u64 cycles, now, interval_start;
1209 unsigned int clock_was_set_seq = 0;
1210 ktime_t base_real, base_raw;
1211 u64 nsec_real, nsec_raw;
1212 u8 cs_was_changed_seq;
1213 unsigned int seq;
1214 bool do_interp;
1215 int ret;
1216
1217 do {
1218 seq = read_seqcount_begin(&tk_core.seq);
1219 /*
1220 * Try to synchronously capture device time and a system
1221 * counter value calling back into the device driver
1222 */
1223 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1224 if (ret)
1225 return ret;
1226
1227 /*
1228 * Verify that the clocksource associated with the captured
1229 * system counter value is the same as the currently installed
1230 * timekeeper clocksource
1231 */
1232 if (tk->tkr_mono.clock != system_counterval.cs)
1233 return -ENODEV;
1234 cycles = system_counterval.cycles;
1235
1236 /*
1237 * Check whether the system counter value provided by the
1238 * device driver is on the current timekeeping interval.
1239 */
1240 now = tk_clock_read(&tk->tkr_mono);
1241 interval_start = tk->tkr_mono.cycle_last;
1242 if (!cycle_between(interval_start, cycles, now)) {
1243 clock_was_set_seq = tk->clock_was_set_seq;
1244 cs_was_changed_seq = tk->cs_was_changed_seq;
1245 cycles = interval_start;
1246 do_interp = true;
1247 } else {
1248 do_interp = false;
1249 }
1250
1251 base_real = ktime_add(tk->tkr_mono.base,
1252 tk_core.timekeeper.offs_real);
1253 base_raw = tk->tkr_raw.base;
1254
1255 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1256 system_counterval.cycles);
1257 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1258 system_counterval.cycles);
1259 } while (read_seqcount_retry(&tk_core.seq, seq));
1260
1261 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1262 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1263
1264 /*
1265 * Interpolate if necessary, adjusting back from the start of the
1266 * current interval
1267 */
1268 if (do_interp) {
1269 u64 partial_history_cycles, total_history_cycles;
1270 bool discontinuity;
1271
1272 /*
1273 * Check that the counter value occurs after the provided
1274 * history reference and that the history doesn't cross a
1275 * clocksource change
1276 */
1277 if (!history_begin ||
1278 !cycle_between(history_begin->cycles,
1279 system_counterval.cycles, cycles) ||
1280 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1281 return -EINVAL;
1282 partial_history_cycles = cycles - system_counterval.cycles;
1283 total_history_cycles = cycles - history_begin->cycles;
1284 discontinuity =
1285 history_begin->clock_was_set_seq != clock_was_set_seq;
1286
1287 ret = adjust_historical_crosststamp(history_begin,
1288 partial_history_cycles,
1289 total_history_cycles,
1290 discontinuity, xtstamp);
1291 if (ret)
1292 return ret;
1293 }
1294
1295 return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1298
1299 /**
1300 * do_settimeofday64 - Sets the time of day.
1301 * @ts: pointer to the timespec64 variable containing the new time
1302 *
1303 * Sets the time of day to the new time and update NTP and notify hrtimers
1304 */
do_settimeofday64(const struct timespec64 * ts)1305 int do_settimeofday64(const struct timespec64 *ts)
1306 {
1307 struct timekeeper *tk = &tk_core.timekeeper;
1308 struct timespec64 ts_delta, xt;
1309 unsigned long flags;
1310 int ret = 0;
1311
1312 if (!timespec64_valid_settod(ts))
1313 return -EINVAL;
1314
1315 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1316 write_seqcount_begin(&tk_core.seq);
1317
1318 timekeeping_forward_now(tk);
1319
1320 xt = tk_xtime(tk);
1321 ts_delta = timespec64_sub(*ts, xt);
1322
1323 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1324 ret = -EINVAL;
1325 goto out;
1326 }
1327
1328 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1329
1330 tk_set_xtime(tk, ts);
1331 out:
1332 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1333
1334 write_seqcount_end(&tk_core.seq);
1335 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1336
1337 trace_android_rvh_tk_based_time_sync(tk);
1338
1339 /* Signal hrtimers about time change */
1340 clock_was_set(CLOCK_SET_WALL);
1341
1342 if (!ret) {
1343 audit_tk_injoffset(ts_delta);
1344 add_device_randomness(ts, sizeof(*ts));
1345 }
1346
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(do_settimeofday64);
1350
1351 /**
1352 * timekeeping_inject_offset - Adds or subtracts from the current time.
1353 * @ts: Pointer to the timespec variable containing the offset
1354 *
1355 * Adds or subtracts an offset value from the current time.
1356 */
timekeeping_inject_offset(const struct timespec64 * ts)1357 static int timekeeping_inject_offset(const struct timespec64 *ts)
1358 {
1359 struct timekeeper *tk = &tk_core.timekeeper;
1360 unsigned long flags;
1361 struct timespec64 tmp;
1362 int ret = 0;
1363
1364 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1365 return -EINVAL;
1366
1367 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1368 write_seqcount_begin(&tk_core.seq);
1369
1370 timekeeping_forward_now(tk);
1371
1372 /* Make sure the proposed value is valid */
1373 tmp = timespec64_add(tk_xtime(tk), *ts);
1374 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1375 !timespec64_valid_settod(&tmp)) {
1376 ret = -EINVAL;
1377 goto error;
1378 }
1379
1380 tk_xtime_add(tk, ts);
1381 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1382
1383 error: /* even if we error out, we forwarded the time, so call update */
1384 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1385
1386 write_seqcount_end(&tk_core.seq);
1387 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1388
1389 /* Signal hrtimers about time change */
1390 clock_was_set(CLOCK_SET_WALL);
1391
1392 return ret;
1393 }
1394
1395 /*
1396 * Indicates if there is an offset between the system clock and the hardware
1397 * clock/persistent clock/rtc.
1398 */
1399 int persistent_clock_is_local;
1400
1401 /*
1402 * Adjust the time obtained from the CMOS to be UTC time instead of
1403 * local time.
1404 *
1405 * This is ugly, but preferable to the alternatives. Otherwise we
1406 * would either need to write a program to do it in /etc/rc (and risk
1407 * confusion if the program gets run more than once; it would also be
1408 * hard to make the program warp the clock precisely n hours) or
1409 * compile in the timezone information into the kernel. Bad, bad....
1410 *
1411 * - TYT, 1992-01-01
1412 *
1413 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1414 * as real UNIX machines always do it. This avoids all headaches about
1415 * daylight saving times and warping kernel clocks.
1416 */
timekeeping_warp_clock(void)1417 void timekeeping_warp_clock(void)
1418 {
1419 if (sys_tz.tz_minuteswest != 0) {
1420 struct timespec64 adjust;
1421
1422 persistent_clock_is_local = 1;
1423 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1424 adjust.tv_nsec = 0;
1425 timekeeping_inject_offset(&adjust);
1426 }
1427 }
1428
1429 /*
1430 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1431 */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1432 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1433 {
1434 tk->tai_offset = tai_offset;
1435 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1436 }
1437
1438 /*
1439 * change_clocksource - Swaps clocksources if a new one is available
1440 *
1441 * Accumulates current time interval and initializes new clocksource
1442 */
change_clocksource(void * data)1443 static int change_clocksource(void *data)
1444 {
1445 struct timekeeper *tk = &tk_core.timekeeper;
1446 struct clocksource *new, *old = NULL;
1447 unsigned long flags;
1448 bool change = false;
1449
1450 new = (struct clocksource *) data;
1451
1452 /*
1453 * If the cs is in module, get a module reference. Succeeds
1454 * for built-in code (owner == NULL) as well.
1455 */
1456 if (try_module_get(new->owner)) {
1457 if (!new->enable || new->enable(new) == 0)
1458 change = true;
1459 else
1460 module_put(new->owner);
1461 }
1462
1463 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1464 write_seqcount_begin(&tk_core.seq);
1465
1466 timekeeping_forward_now(tk);
1467
1468 if (change) {
1469 old = tk->tkr_mono.clock;
1470 tk_setup_internals(tk, new);
1471 }
1472
1473 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1474
1475 write_seqcount_end(&tk_core.seq);
1476 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1477
1478 if (old) {
1479 if (old->disable)
1480 old->disable(old);
1481
1482 module_put(old->owner);
1483 }
1484
1485 return 0;
1486 }
1487
1488 /**
1489 * timekeeping_notify - Install a new clock source
1490 * @clock: pointer to the clock source
1491 *
1492 * This function is called from clocksource.c after a new, better clock
1493 * source has been registered. The caller holds the clocksource_mutex.
1494 */
timekeeping_notify(struct clocksource * clock)1495 int timekeeping_notify(struct clocksource *clock)
1496 {
1497 struct timekeeper *tk = &tk_core.timekeeper;
1498
1499 if (tk->tkr_mono.clock == clock)
1500 return 0;
1501 stop_machine(change_clocksource, clock, NULL);
1502 tick_clock_notify();
1503 return tk->tkr_mono.clock == clock ? 0 : -1;
1504 }
1505
1506 /**
1507 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1508 * @ts: pointer to the timespec64 to be set
1509 *
1510 * Returns the raw monotonic time (completely un-modified by ntp)
1511 */
ktime_get_raw_ts64(struct timespec64 * ts)1512 void ktime_get_raw_ts64(struct timespec64 *ts)
1513 {
1514 struct timekeeper *tk = &tk_core.timekeeper;
1515 unsigned int seq;
1516 u64 nsecs;
1517
1518 do {
1519 seq = read_seqcount_begin(&tk_core.seq);
1520 ts->tv_sec = tk->raw_sec;
1521 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1522
1523 } while (read_seqcount_retry(&tk_core.seq, seq));
1524
1525 ts->tv_nsec = 0;
1526 timespec64_add_ns(ts, nsecs);
1527 }
1528 EXPORT_SYMBOL(ktime_get_raw_ts64);
1529
1530
1531 /**
1532 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1533 */
timekeeping_valid_for_hres(void)1534 int timekeeping_valid_for_hres(void)
1535 {
1536 struct timekeeper *tk = &tk_core.timekeeper;
1537 unsigned int seq;
1538 int ret;
1539
1540 do {
1541 seq = read_seqcount_begin(&tk_core.seq);
1542
1543 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1544
1545 } while (read_seqcount_retry(&tk_core.seq, seq));
1546
1547 return ret;
1548 }
1549
1550 /**
1551 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1552 */
timekeeping_max_deferment(void)1553 u64 timekeeping_max_deferment(void)
1554 {
1555 struct timekeeper *tk = &tk_core.timekeeper;
1556 unsigned int seq;
1557 u64 ret;
1558
1559 do {
1560 seq = read_seqcount_begin(&tk_core.seq);
1561
1562 ret = tk->tkr_mono.clock->max_idle_ns;
1563
1564 } while (read_seqcount_retry(&tk_core.seq, seq));
1565
1566 return ret;
1567 }
1568
1569 /**
1570 * read_persistent_clock64 - Return time from the persistent clock.
1571 * @ts: Pointer to the storage for the readout value
1572 *
1573 * Weak dummy function for arches that do not yet support it.
1574 * Reads the time from the battery backed persistent clock.
1575 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1576 *
1577 * XXX - Do be sure to remove it once all arches implement it.
1578 */
read_persistent_clock64(struct timespec64 * ts)1579 void __weak read_persistent_clock64(struct timespec64 *ts)
1580 {
1581 ts->tv_sec = 0;
1582 ts->tv_nsec = 0;
1583 }
1584
1585 /**
1586 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1587 * from the boot.
1588 *
1589 * Weak dummy function for arches that do not yet support it.
1590 * @wall_time: - current time as returned by persistent clock
1591 * @boot_offset: - offset that is defined as wall_time - boot_time
1592 *
1593 * The default function calculates offset based on the current value of
1594 * local_clock(). This way architectures that support sched_clock() but don't
1595 * support dedicated boot time clock will provide the best estimate of the
1596 * boot time.
1597 */
1598 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1599 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1600 struct timespec64 *boot_offset)
1601 {
1602 read_persistent_clock64(wall_time);
1603 *boot_offset = ns_to_timespec64(local_clock());
1604 }
1605
1606 /*
1607 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1608 *
1609 * The flag starts of false and is only set when a suspend reaches
1610 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1611 * timekeeper clocksource is not stopping across suspend and has been
1612 * used to update sleep time. If the timekeeper clocksource has stopped
1613 * then the flag stays true and is used by the RTC resume code to decide
1614 * whether sleeptime must be injected and if so the flag gets false then.
1615 *
1616 * If a suspend fails before reaching timekeeping_resume() then the flag
1617 * stays false and prevents erroneous sleeptime injection.
1618 */
1619 static bool suspend_timing_needed;
1620
1621 /* Flag for if there is a persistent clock on this platform */
1622 static bool persistent_clock_exists;
1623
1624 /*
1625 * timekeeping_init - Initializes the clocksource and common timekeeping values
1626 */
timekeeping_init(void)1627 void __init timekeeping_init(void)
1628 {
1629 struct timespec64 wall_time, boot_offset, wall_to_mono;
1630 struct timekeeper *tk = &tk_core.timekeeper;
1631 struct clocksource *clock;
1632 unsigned long flags;
1633
1634 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1635 if (timespec64_valid_settod(&wall_time) &&
1636 timespec64_to_ns(&wall_time) > 0) {
1637 persistent_clock_exists = true;
1638 } else if (timespec64_to_ns(&wall_time) != 0) {
1639 pr_warn("Persistent clock returned invalid value");
1640 wall_time = (struct timespec64){0};
1641 }
1642
1643 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1644 boot_offset = (struct timespec64){0};
1645
1646 /*
1647 * We want set wall_to_mono, so the following is true:
1648 * wall time + wall_to_mono = boot time
1649 */
1650 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1651
1652 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1653 write_seqcount_begin(&tk_core.seq);
1654 ntp_init();
1655
1656 clock = clocksource_default_clock();
1657 if (clock->enable)
1658 clock->enable(clock);
1659 tk_setup_internals(tk, clock);
1660
1661 tk_set_xtime(tk, &wall_time);
1662 tk->raw_sec = 0;
1663
1664 tk_set_wall_to_mono(tk, wall_to_mono);
1665
1666 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1667
1668 write_seqcount_end(&tk_core.seq);
1669 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1670 }
1671
1672 /* time in seconds when suspend began for persistent clock */
1673 static struct timespec64 timekeeping_suspend_time;
1674
1675 /**
1676 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1677 * @tk: Pointer to the timekeeper to be updated
1678 * @delta: Pointer to the delta value in timespec64 format
1679 *
1680 * Takes a timespec offset measuring a suspend interval and properly
1681 * adds the sleep offset to the timekeeping variables.
1682 */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1683 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1684 const struct timespec64 *delta)
1685 {
1686 if (!timespec64_valid_strict(delta)) {
1687 printk_deferred(KERN_WARNING
1688 "__timekeeping_inject_sleeptime: Invalid "
1689 "sleep delta value!\n");
1690 return;
1691 }
1692 tk_xtime_add(tk, delta);
1693 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1694 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1695 tk_debug_account_sleep_time(delta);
1696 }
1697
1698 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1699 /**
1700 * We have three kinds of time sources to use for sleep time
1701 * injection, the preference order is:
1702 * 1) non-stop clocksource
1703 * 2) persistent clock (ie: RTC accessible when irqs are off)
1704 * 3) RTC
1705 *
1706 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1707 * If system has neither 1) nor 2), 3) will be used finally.
1708 *
1709 *
1710 * If timekeeping has injected sleeptime via either 1) or 2),
1711 * 3) becomes needless, so in this case we don't need to call
1712 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1713 * means.
1714 */
timekeeping_rtc_skipresume(void)1715 bool timekeeping_rtc_skipresume(void)
1716 {
1717 return !suspend_timing_needed;
1718 }
1719
1720 /**
1721 * 1) can be determined whether to use or not only when doing
1722 * timekeeping_resume() which is invoked after rtc_suspend(),
1723 * so we can't skip rtc_suspend() surely if system has 1).
1724 *
1725 * But if system has 2), 2) will definitely be used, so in this
1726 * case we don't need to call rtc_suspend(), and this is what
1727 * timekeeping_rtc_skipsuspend() means.
1728 */
timekeeping_rtc_skipsuspend(void)1729 bool timekeeping_rtc_skipsuspend(void)
1730 {
1731 return persistent_clock_exists;
1732 }
1733
1734 /**
1735 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1736 * @delta: pointer to a timespec64 delta value
1737 *
1738 * This hook is for architectures that cannot support read_persistent_clock64
1739 * because their RTC/persistent clock is only accessible when irqs are enabled.
1740 * and also don't have an effective nonstop clocksource.
1741 *
1742 * This function should only be called by rtc_resume(), and allows
1743 * a suspend offset to be injected into the timekeeping values.
1744 */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1745 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1746 {
1747 struct timekeeper *tk = &tk_core.timekeeper;
1748 unsigned long flags;
1749
1750 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1751 write_seqcount_begin(&tk_core.seq);
1752
1753 suspend_timing_needed = false;
1754
1755 timekeeping_forward_now(tk);
1756
1757 __timekeeping_inject_sleeptime(tk, delta);
1758
1759 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1760
1761 write_seqcount_end(&tk_core.seq);
1762 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1763
1764 /* Signal hrtimers about time change */
1765 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1766 }
1767 #endif
1768
1769 /**
1770 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1771 */
timekeeping_resume(void)1772 void timekeeping_resume(void)
1773 {
1774 struct timekeeper *tk = &tk_core.timekeeper;
1775 struct clocksource *clock = tk->tkr_mono.clock;
1776 unsigned long flags;
1777 struct timespec64 ts_new, ts_delta;
1778 u64 cycle_now, nsec;
1779 bool inject_sleeptime = false;
1780
1781 read_persistent_clock64(&ts_new);
1782
1783 clockevents_resume();
1784 clocksource_resume();
1785
1786 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1787 write_seqcount_begin(&tk_core.seq);
1788
1789 /*
1790 * After system resumes, we need to calculate the suspended time and
1791 * compensate it for the OS time. There are 3 sources that could be
1792 * used: Nonstop clocksource during suspend, persistent clock and rtc
1793 * device.
1794 *
1795 * One specific platform may have 1 or 2 or all of them, and the
1796 * preference will be:
1797 * suspend-nonstop clocksource -> persistent clock -> rtc
1798 * The less preferred source will only be tried if there is no better
1799 * usable source. The rtc part is handled separately in rtc core code.
1800 */
1801 cycle_now = tk_clock_read(&tk->tkr_mono);
1802 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1803 if (nsec > 0) {
1804 ts_delta = ns_to_timespec64(nsec);
1805 inject_sleeptime = true;
1806 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1807 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1808 inject_sleeptime = true;
1809 }
1810
1811 if (inject_sleeptime) {
1812 suspend_timing_needed = false;
1813 __timekeeping_inject_sleeptime(tk, &ts_delta);
1814 }
1815
1816 /* Re-base the last cycle value */
1817 tk->tkr_mono.cycle_last = cycle_now;
1818 tk->tkr_raw.cycle_last = cycle_now;
1819
1820 tk->ntp_error = 0;
1821 timekeeping_suspended = 0;
1822 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1823 write_seqcount_end(&tk_core.seq);
1824 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1825
1826 touch_softlockup_watchdog();
1827
1828 /* Resume the clockevent device(s) and hrtimers */
1829 tick_resume();
1830 /* Notify timerfd as resume is equivalent to clock_was_set() */
1831 timerfd_resume();
1832 }
1833
timekeeping_suspend(void)1834 int timekeeping_suspend(void)
1835 {
1836 struct timekeeper *tk = &tk_core.timekeeper;
1837 unsigned long flags;
1838 struct timespec64 delta, delta_delta;
1839 static struct timespec64 old_delta;
1840 struct clocksource *curr_clock;
1841 u64 cycle_now;
1842
1843 read_persistent_clock64(&timekeeping_suspend_time);
1844
1845 /*
1846 * On some systems the persistent_clock can not be detected at
1847 * timekeeping_init by its return value, so if we see a valid
1848 * value returned, update the persistent_clock_exists flag.
1849 */
1850 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1851 persistent_clock_exists = true;
1852
1853 suspend_timing_needed = true;
1854
1855 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1856 write_seqcount_begin(&tk_core.seq);
1857 timekeeping_forward_now(tk);
1858 timekeeping_suspended = 1;
1859
1860 /*
1861 * Since we've called forward_now, cycle_last stores the value
1862 * just read from the current clocksource. Save this to potentially
1863 * use in suspend timing.
1864 */
1865 curr_clock = tk->tkr_mono.clock;
1866 cycle_now = tk->tkr_mono.cycle_last;
1867 clocksource_start_suspend_timing(curr_clock, cycle_now);
1868
1869 if (persistent_clock_exists) {
1870 /*
1871 * To avoid drift caused by repeated suspend/resumes,
1872 * which each can add ~1 second drift error,
1873 * try to compensate so the difference in system time
1874 * and persistent_clock time stays close to constant.
1875 */
1876 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1877 delta_delta = timespec64_sub(delta, old_delta);
1878 if (abs(delta_delta.tv_sec) >= 2) {
1879 /*
1880 * if delta_delta is too large, assume time correction
1881 * has occurred and set old_delta to the current delta.
1882 */
1883 old_delta = delta;
1884 } else {
1885 /* Otherwise try to adjust old_system to compensate */
1886 timekeeping_suspend_time =
1887 timespec64_add(timekeeping_suspend_time, delta_delta);
1888 }
1889 }
1890
1891 timekeeping_update(tk, TK_MIRROR);
1892 halt_fast_timekeeper(tk);
1893 write_seqcount_end(&tk_core.seq);
1894 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1895
1896 tick_suspend();
1897 clocksource_suspend();
1898 clockevents_suspend();
1899
1900 return 0;
1901 }
1902
1903 /* sysfs resume/suspend bits for timekeeping */
1904 static struct syscore_ops timekeeping_syscore_ops = {
1905 .resume = timekeeping_resume,
1906 .suspend = timekeeping_suspend,
1907 };
1908
timekeeping_init_ops(void)1909 static int __init timekeeping_init_ops(void)
1910 {
1911 register_syscore_ops(&timekeeping_syscore_ops);
1912 return 0;
1913 }
1914 device_initcall(timekeeping_init_ops);
1915
1916 /*
1917 * Apply a multiplier adjustment to the timekeeper
1918 */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1919 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1920 s64 offset,
1921 s32 mult_adj)
1922 {
1923 s64 interval = tk->cycle_interval;
1924
1925 if (mult_adj == 0) {
1926 return;
1927 } else if (mult_adj == -1) {
1928 interval = -interval;
1929 offset = -offset;
1930 } else if (mult_adj != 1) {
1931 interval *= mult_adj;
1932 offset *= mult_adj;
1933 }
1934
1935 /*
1936 * So the following can be confusing.
1937 *
1938 * To keep things simple, lets assume mult_adj == 1 for now.
1939 *
1940 * When mult_adj != 1, remember that the interval and offset values
1941 * have been appropriately scaled so the math is the same.
1942 *
1943 * The basic idea here is that we're increasing the multiplier
1944 * by one, this causes the xtime_interval to be incremented by
1945 * one cycle_interval. This is because:
1946 * xtime_interval = cycle_interval * mult
1947 * So if mult is being incremented by one:
1948 * xtime_interval = cycle_interval * (mult + 1)
1949 * Its the same as:
1950 * xtime_interval = (cycle_interval * mult) + cycle_interval
1951 * Which can be shortened to:
1952 * xtime_interval += cycle_interval
1953 *
1954 * So offset stores the non-accumulated cycles. Thus the current
1955 * time (in shifted nanoseconds) is:
1956 * now = (offset * adj) + xtime_nsec
1957 * Now, even though we're adjusting the clock frequency, we have
1958 * to keep time consistent. In other words, we can't jump back
1959 * in time, and we also want to avoid jumping forward in time.
1960 *
1961 * So given the same offset value, we need the time to be the same
1962 * both before and after the freq adjustment.
1963 * now = (offset * adj_1) + xtime_nsec_1
1964 * now = (offset * adj_2) + xtime_nsec_2
1965 * So:
1966 * (offset * adj_1) + xtime_nsec_1 =
1967 * (offset * adj_2) + xtime_nsec_2
1968 * And we know:
1969 * adj_2 = adj_1 + 1
1970 * So:
1971 * (offset * adj_1) + xtime_nsec_1 =
1972 * (offset * (adj_1+1)) + xtime_nsec_2
1973 * (offset * adj_1) + xtime_nsec_1 =
1974 * (offset * adj_1) + offset + xtime_nsec_2
1975 * Canceling the sides:
1976 * xtime_nsec_1 = offset + xtime_nsec_2
1977 * Which gives us:
1978 * xtime_nsec_2 = xtime_nsec_1 - offset
1979 * Which simplifies to:
1980 * xtime_nsec -= offset
1981 */
1982 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1983 /* NTP adjustment caused clocksource mult overflow */
1984 WARN_ON_ONCE(1);
1985 return;
1986 }
1987
1988 tk->tkr_mono.mult += mult_adj;
1989 tk->xtime_interval += interval;
1990 tk->tkr_mono.xtime_nsec -= offset;
1991 }
1992
1993 /*
1994 * Adjust the timekeeper's multiplier to the correct frequency
1995 * and also to reduce the accumulated error value.
1996 */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1997 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1998 {
1999 u32 mult;
2000
2001 /*
2002 * Determine the multiplier from the current NTP tick length.
2003 * Avoid expensive division when the tick length doesn't change.
2004 */
2005 if (likely(tk->ntp_tick == ntp_tick_length())) {
2006 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2007 } else {
2008 tk->ntp_tick = ntp_tick_length();
2009 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2010 tk->xtime_remainder, tk->cycle_interval);
2011 }
2012
2013 /*
2014 * If the clock is behind the NTP time, increase the multiplier by 1
2015 * to catch up with it. If it's ahead and there was a remainder in the
2016 * tick division, the clock will slow down. Otherwise it will stay
2017 * ahead until the tick length changes to a non-divisible value.
2018 */
2019 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2020 mult += tk->ntp_err_mult;
2021
2022 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2023
2024 if (unlikely(tk->tkr_mono.clock->maxadj &&
2025 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2026 > tk->tkr_mono.clock->maxadj))) {
2027 printk_once(KERN_WARNING
2028 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2029 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2030 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2031 }
2032
2033 /*
2034 * It may be possible that when we entered this function, xtime_nsec
2035 * was very small. Further, if we're slightly speeding the clocksource
2036 * in the code above, its possible the required corrective factor to
2037 * xtime_nsec could cause it to underflow.
2038 *
2039 * Now, since we have already accumulated the second and the NTP
2040 * subsystem has been notified via second_overflow(), we need to skip
2041 * the next update.
2042 */
2043 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2044 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2045 tk->tkr_mono.shift;
2046 tk->xtime_sec--;
2047 tk->skip_second_overflow = 1;
2048 }
2049 }
2050
2051 /*
2052 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2053 *
2054 * Helper function that accumulates the nsecs greater than a second
2055 * from the xtime_nsec field to the xtime_secs field.
2056 * It also calls into the NTP code to handle leapsecond processing.
2057 */
accumulate_nsecs_to_secs(struct timekeeper * tk)2058 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2059 {
2060 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2061 unsigned int clock_set = 0;
2062
2063 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2064 int leap;
2065
2066 tk->tkr_mono.xtime_nsec -= nsecps;
2067 tk->xtime_sec++;
2068
2069 /*
2070 * Skip NTP update if this second was accumulated before,
2071 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2072 */
2073 if (unlikely(tk->skip_second_overflow)) {
2074 tk->skip_second_overflow = 0;
2075 continue;
2076 }
2077
2078 /* Figure out if its a leap sec and apply if needed */
2079 leap = second_overflow(tk->xtime_sec);
2080 if (unlikely(leap)) {
2081 struct timespec64 ts;
2082
2083 tk->xtime_sec += leap;
2084
2085 ts.tv_sec = leap;
2086 ts.tv_nsec = 0;
2087 tk_set_wall_to_mono(tk,
2088 timespec64_sub(tk->wall_to_monotonic, ts));
2089
2090 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2091
2092 clock_set = TK_CLOCK_WAS_SET;
2093 }
2094 }
2095 return clock_set;
2096 }
2097
2098 /*
2099 * logarithmic_accumulation - shifted accumulation of cycles
2100 *
2101 * This functions accumulates a shifted interval of cycles into
2102 * a shifted interval nanoseconds. Allows for O(log) accumulation
2103 * loop.
2104 *
2105 * Returns the unconsumed cycles.
2106 */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2107 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2108 u32 shift, unsigned int *clock_set)
2109 {
2110 u64 interval = tk->cycle_interval << shift;
2111 u64 snsec_per_sec;
2112
2113 /* If the offset is smaller than a shifted interval, do nothing */
2114 if (offset < interval)
2115 return offset;
2116
2117 /* Accumulate one shifted interval */
2118 offset -= interval;
2119 tk->tkr_mono.cycle_last += interval;
2120 tk->tkr_raw.cycle_last += interval;
2121
2122 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2123 *clock_set |= accumulate_nsecs_to_secs(tk);
2124
2125 /* Accumulate raw time */
2126 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2127 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2128 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2129 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2130 tk->raw_sec++;
2131 }
2132
2133 /* Accumulate error between NTP and clock interval */
2134 tk->ntp_error += tk->ntp_tick << shift;
2135 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2136 (tk->ntp_error_shift + shift);
2137
2138 return offset;
2139 }
2140
2141 /*
2142 * timekeeping_advance - Updates the timekeeper to the current time and
2143 * current NTP tick length
2144 */
timekeeping_advance(enum timekeeping_adv_mode mode)2145 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2146 {
2147 struct timekeeper *real_tk = &tk_core.timekeeper;
2148 struct timekeeper *tk = &shadow_timekeeper;
2149 u64 offset;
2150 int shift = 0, maxshift;
2151 unsigned int clock_set = 0;
2152 unsigned long flags;
2153
2154 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2155
2156 /* Make sure we're fully resumed: */
2157 if (unlikely(timekeeping_suspended))
2158 goto out;
2159
2160 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2161 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2162
2163 /* Check if there's really nothing to do */
2164 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2165 goto out;
2166
2167 /* Do some additional sanity checking */
2168 timekeeping_check_update(tk, offset);
2169
2170 /*
2171 * With NO_HZ we may have to accumulate many cycle_intervals
2172 * (think "ticks") worth of time at once. To do this efficiently,
2173 * we calculate the largest doubling multiple of cycle_intervals
2174 * that is smaller than the offset. We then accumulate that
2175 * chunk in one go, and then try to consume the next smaller
2176 * doubled multiple.
2177 */
2178 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2179 shift = max(0, shift);
2180 /* Bound shift to one less than what overflows tick_length */
2181 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2182 shift = min(shift, maxshift);
2183 while (offset >= tk->cycle_interval) {
2184 offset = logarithmic_accumulation(tk, offset, shift,
2185 &clock_set);
2186 if (offset < tk->cycle_interval<<shift)
2187 shift--;
2188 }
2189
2190 /* Adjust the multiplier to correct NTP error */
2191 timekeeping_adjust(tk, offset);
2192
2193 /*
2194 * Finally, make sure that after the rounding
2195 * xtime_nsec isn't larger than NSEC_PER_SEC
2196 */
2197 clock_set |= accumulate_nsecs_to_secs(tk);
2198
2199 write_seqcount_begin(&tk_core.seq);
2200 /*
2201 * Update the real timekeeper.
2202 *
2203 * We could avoid this memcpy by switching pointers, but that
2204 * requires changes to all other timekeeper usage sites as
2205 * well, i.e. move the timekeeper pointer getter into the
2206 * spinlocked/seqcount protected sections. And we trade this
2207 * memcpy under the tk_core.seq against one before we start
2208 * updating.
2209 */
2210 timekeeping_update(tk, clock_set);
2211 memcpy(real_tk, tk, sizeof(*tk));
2212 /* The memcpy must come last. Do not put anything here! */
2213 write_seqcount_end(&tk_core.seq);
2214 out:
2215 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2216
2217 return !!clock_set;
2218 }
2219
2220 /**
2221 * update_wall_time - Uses the current clocksource to increment the wall time
2222 *
2223 */
update_wall_time(void)2224 void update_wall_time(void)
2225 {
2226 if (timekeeping_advance(TK_ADV_TICK))
2227 clock_was_set_delayed();
2228 }
2229
2230 /**
2231 * getboottime64 - Return the real time of system boot.
2232 * @ts: pointer to the timespec64 to be set
2233 *
2234 * Returns the wall-time of boot in a timespec64.
2235 *
2236 * This is based on the wall_to_monotonic offset and the total suspend
2237 * time. Calls to settimeofday will affect the value returned (which
2238 * basically means that however wrong your real time clock is at boot time,
2239 * you get the right time here).
2240 */
getboottime64(struct timespec64 * ts)2241 void getboottime64(struct timespec64 *ts)
2242 {
2243 struct timekeeper *tk = &tk_core.timekeeper;
2244 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2245
2246 *ts = ktime_to_timespec64(t);
2247 }
2248 EXPORT_SYMBOL_GPL(getboottime64);
2249
ktime_get_coarse_real_ts64(struct timespec64 * ts)2250 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2251 {
2252 struct timekeeper *tk = &tk_core.timekeeper;
2253 unsigned int seq;
2254
2255 do {
2256 seq = read_seqcount_begin(&tk_core.seq);
2257
2258 *ts = tk_xtime(tk);
2259 } while (read_seqcount_retry(&tk_core.seq, seq));
2260 }
2261 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2262
ktime_get_coarse_ts64(struct timespec64 * ts)2263 void ktime_get_coarse_ts64(struct timespec64 *ts)
2264 {
2265 struct timekeeper *tk = &tk_core.timekeeper;
2266 struct timespec64 now, mono;
2267 unsigned int seq;
2268
2269 do {
2270 seq = read_seqcount_begin(&tk_core.seq);
2271
2272 now = tk_xtime(tk);
2273 mono = tk->wall_to_monotonic;
2274 } while (read_seqcount_retry(&tk_core.seq, seq));
2275
2276 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2277 now.tv_nsec + mono.tv_nsec);
2278 }
2279 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2280
2281 /*
2282 * Must hold jiffies_lock
2283 */
do_timer(unsigned long ticks)2284 void do_timer(unsigned long ticks)
2285 {
2286 jiffies_64 += ticks;
2287 calc_global_load();
2288 }
2289
2290 /**
2291 * ktime_get_update_offsets_now - hrtimer helper
2292 * @cwsseq: pointer to check and store the clock was set sequence number
2293 * @offs_real: pointer to storage for monotonic -> realtime offset
2294 * @offs_boot: pointer to storage for monotonic -> boottime offset
2295 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2296 *
2297 * Returns current monotonic time and updates the offsets if the
2298 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2299 * different.
2300 *
2301 * Called from hrtimer_interrupt() or retrigger_next_event()
2302 */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2303 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2304 ktime_t *offs_boot, ktime_t *offs_tai)
2305 {
2306 struct timekeeper *tk = &tk_core.timekeeper;
2307 unsigned int seq;
2308 ktime_t base;
2309 u64 nsecs;
2310
2311 do {
2312 seq = read_seqcount_begin(&tk_core.seq);
2313
2314 base = tk->tkr_mono.base;
2315 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2316 base = ktime_add_ns(base, nsecs);
2317
2318 if (*cwsseq != tk->clock_was_set_seq) {
2319 *cwsseq = tk->clock_was_set_seq;
2320 *offs_real = tk->offs_real;
2321 *offs_boot = tk->offs_boot;
2322 *offs_tai = tk->offs_tai;
2323 }
2324
2325 /* Handle leapsecond insertion adjustments */
2326 if (unlikely(base >= tk->next_leap_ktime))
2327 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2328
2329 } while (read_seqcount_retry(&tk_core.seq, seq));
2330
2331 return base;
2332 }
2333
2334 /*
2335 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2336 */
timekeeping_validate_timex(const struct __kernel_timex * txc)2337 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2338 {
2339 if (txc->modes & ADJ_ADJTIME) {
2340 /* singleshot must not be used with any other mode bits */
2341 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2342 return -EINVAL;
2343 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2344 !capable(CAP_SYS_TIME))
2345 return -EPERM;
2346 } else {
2347 /* In order to modify anything, you gotta be super-user! */
2348 if (txc->modes && !capable(CAP_SYS_TIME))
2349 return -EPERM;
2350 /*
2351 * if the quartz is off by more than 10% then
2352 * something is VERY wrong!
2353 */
2354 if (txc->modes & ADJ_TICK &&
2355 (txc->tick < 900000/USER_HZ ||
2356 txc->tick > 1100000/USER_HZ))
2357 return -EINVAL;
2358 }
2359
2360 if (txc->modes & ADJ_SETOFFSET) {
2361 /* In order to inject time, you gotta be super-user! */
2362 if (!capable(CAP_SYS_TIME))
2363 return -EPERM;
2364
2365 /*
2366 * Validate if a timespec/timeval used to inject a time
2367 * offset is valid. Offsets can be positive or negative, so
2368 * we don't check tv_sec. The value of the timeval/timespec
2369 * is the sum of its fields,but *NOTE*:
2370 * The field tv_usec/tv_nsec must always be non-negative and
2371 * we can't have more nanoseconds/microseconds than a second.
2372 */
2373 if (txc->time.tv_usec < 0)
2374 return -EINVAL;
2375
2376 if (txc->modes & ADJ_NANO) {
2377 if (txc->time.tv_usec >= NSEC_PER_SEC)
2378 return -EINVAL;
2379 } else {
2380 if (txc->time.tv_usec >= USEC_PER_SEC)
2381 return -EINVAL;
2382 }
2383 }
2384
2385 /*
2386 * Check for potential multiplication overflows that can
2387 * only happen on 64-bit systems:
2388 */
2389 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2390 if (LLONG_MIN / PPM_SCALE > txc->freq)
2391 return -EINVAL;
2392 if (LLONG_MAX / PPM_SCALE < txc->freq)
2393 return -EINVAL;
2394 }
2395
2396 return 0;
2397 }
2398
2399 /**
2400 * random_get_entropy_fallback - Returns the raw clock source value,
2401 * used by random.c for platforms with no valid random_get_entropy().
2402 */
random_get_entropy_fallback(void)2403 unsigned long random_get_entropy_fallback(void)
2404 {
2405 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2406 struct clocksource *clock = READ_ONCE(tkr->clock);
2407
2408 if (unlikely(timekeeping_suspended || !clock))
2409 return 0;
2410 return clock->read(clock);
2411 }
2412 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2413
2414 /**
2415 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2416 */
do_adjtimex(struct __kernel_timex * txc)2417 int do_adjtimex(struct __kernel_timex *txc)
2418 {
2419 struct timekeeper *tk = &tk_core.timekeeper;
2420 struct audit_ntp_data ad;
2421 bool clock_set = false;
2422 struct timespec64 ts;
2423 unsigned long flags;
2424 s32 orig_tai, tai;
2425 int ret;
2426
2427 /* Validate the data before disabling interrupts */
2428 ret = timekeeping_validate_timex(txc);
2429 if (ret)
2430 return ret;
2431 add_device_randomness(txc, sizeof(*txc));
2432
2433 if (txc->modes & ADJ_SETOFFSET) {
2434 struct timespec64 delta;
2435 delta.tv_sec = txc->time.tv_sec;
2436 delta.tv_nsec = txc->time.tv_usec;
2437 if (!(txc->modes & ADJ_NANO))
2438 delta.tv_nsec *= 1000;
2439 ret = timekeeping_inject_offset(&delta);
2440 if (ret)
2441 return ret;
2442
2443 audit_tk_injoffset(delta);
2444 }
2445
2446 audit_ntp_init(&ad);
2447
2448 ktime_get_real_ts64(&ts);
2449 add_device_randomness(&ts, sizeof(ts));
2450
2451 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2452 write_seqcount_begin(&tk_core.seq);
2453
2454 orig_tai = tai = tk->tai_offset;
2455 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2456
2457 if (tai != orig_tai) {
2458 __timekeeping_set_tai_offset(tk, tai);
2459 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2460 clock_set = true;
2461 }
2462 tk_update_leap_state(tk);
2463
2464 write_seqcount_end(&tk_core.seq);
2465 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2466
2467 audit_ntp_log(&ad);
2468
2469 /* Update the multiplier immediately if frequency was set directly */
2470 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2471 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2472
2473 if (clock_set)
2474 clock_was_set(CLOCK_REALTIME);
2475
2476 ntp_notify_cmos_timer();
2477
2478 return ret;
2479 }
2480
2481 #ifdef CONFIG_NTP_PPS
2482 /**
2483 * hardpps() - Accessor function to NTP __hardpps function
2484 */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2485 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2486 {
2487 unsigned long flags;
2488
2489 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2490 write_seqcount_begin(&tk_core.seq);
2491
2492 __hardpps(phase_ts, raw_ts);
2493
2494 write_seqcount_end(&tk_core.seq);
2495 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2496 }
2497 EXPORT_SYMBOL(hardpps);
2498 #endif /* CONFIG_NTP_PPS */
2499