• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include "hyp_trace.h"
30 
31 #include <linux/uaccess.h>
32 #include <asm/ptrace.h>
33 #include <asm/mman.h>
34 #include <asm/tlbflush.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cpufeature.h>
37 #include <asm/virt.h>
38 #include <asm/kvm_arm.h>
39 #include <asm/kvm_asm.h>
40 #include <asm/kvm_mmu.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_emulate.h>
43 #include <asm/sections.h>
44 
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 
51 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
52 
53 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_base);
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55 DECLARE_KVM_NVHE_PER_CPU(int, hyp_cpu_number);
56 
57 static bool vgic_present;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66 
kvm_arch_hardware_setup(void * opaque)67 int kvm_arch_hardware_setup(void *opaque)
68 {
69 	return 0;
70 }
71 
kvm_arch_check_processor_compat(void * opaque)72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74 	return 0;
75 }
76 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78 			    struct kvm_enable_cap *cap)
79 {
80 	int r;
81 
82 	/* Capabilities with flags */
83 	switch (cap->cap) {
84 	case KVM_CAP_ARM_PROTECTED_VM:
85 		return pkvm_vm_ioctl_enable_cap(kvm, cap);
86 	default:
87 		if (cap->flags)
88 			return -EINVAL;
89 	}
90 
91 	/* Capabilities without flags */
92 	switch (cap->cap) {
93 	case KVM_CAP_ARM_NISV_TO_USER:
94 		if (kvm_vm_is_protected(kvm)) {
95 			r = -EINVAL;
96 		} else {
97 			r = 0;
98 			set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
99 				&kvm->arch.flags);
100 		}
101 		break;
102 	case KVM_CAP_ARM_MTE:
103 		mutex_lock(&kvm->lock);
104 		if (!system_supports_mte() ||
105 		    kvm_vm_is_protected(kvm) ||
106 		    kvm->created_vcpus) {
107 			r = -EINVAL;
108 		} else {
109 			r = 0;
110 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
111 		}
112 		mutex_unlock(&kvm->lock);
113 		break;
114 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
115 		r = 0;
116 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
117 		break;
118 	default:
119 		r = -EINVAL;
120 		break;
121 	}
122 
123 	return r;
124 }
125 
kvm_arm_default_max_vcpus(void)126 static int kvm_arm_default_max_vcpus(void)
127 {
128 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
129 }
130 
set_default_spectre(struct kvm * kvm)131 static void set_default_spectre(struct kvm *kvm)
132 {
133 	/*
134 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
135 	 * Although this is a per-CPU feature, we make it global because
136 	 * asymmetric systems are just a nuisance.
137 	 *
138 	 * Userspace can override this as long as it doesn't promise
139 	 * the impossible.
140 	 */
141 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
142 		kvm->arch.pfr0_csv2 = 1;
143 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
144 		kvm->arch.pfr0_csv3 = 1;
145 }
146 
147 /**
148  * kvm_arch_init_vm - initializes a VM data structure
149  * @kvm:	pointer to the KVM struct
150  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)151 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
152 {
153 	int ret;
154 
155 	if (type & ~KVM_VM_TYPE_MASK)
156 		return -EINVAL;
157 
158 	mutex_init(&kvm->arch.config_lock);
159 
160 #ifdef CONFIG_LOCKDEP
161 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
162 	mutex_lock(&kvm->lock);
163 	mutex_lock(&kvm->arch.config_lock);
164 	mutex_unlock(&kvm->arch.config_lock);
165 	mutex_unlock(&kvm->lock);
166 #endif
167 
168 	ret = kvm_share_hyp(kvm, kvm + 1);
169 	if (ret)
170 		return ret;
171 
172 	ret = pkvm_init_host_vm(kvm, type);
173 	if (ret)
174 		goto err_unshare_kvm;
175 
176 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL)) {
177 		ret = -ENOMEM;
178 		goto err_unshare_kvm;
179 	}
180 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
181 
182 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
183 	if (ret)
184 		goto err_free_cpumask;
185 
186 	kvm_vgic_early_init(kvm);
187 
188 	/* The maximum number of VCPUs is limited by the host's GIC model */
189 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
190 
191 	set_default_spectre(kvm);
192 	kvm_arm_init_hypercalls(kvm);
193 
194 	return 0;
195 
196 err_free_cpumask:
197 	free_cpumask_var(kvm->arch.supported_cpus);
198 err_unshare_kvm:
199 	kvm_unshare_hyp(kvm, kvm + 1);
200 	return ret;
201 }
202 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)203 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
204 {
205 	return VM_FAULT_SIGBUS;
206 }
207 
208 
209 /**
210  * kvm_arch_destroy_vm - destroy the VM data structure
211  * @kvm:	pointer to the KVM struct
212  */
kvm_arch_destroy_vm(struct kvm * kvm)213 void kvm_arch_destroy_vm(struct kvm *kvm)
214 {
215 	bitmap_free(kvm->arch.pmu_filter);
216 	free_cpumask_var(kvm->arch.supported_cpus);
217 
218 	kvm_vgic_destroy(kvm);
219 
220 	if (is_protected_kvm_enabled())
221 		pkvm_destroy_hyp_vm(kvm);
222 
223 	kvm_destroy_vcpus(kvm);
224 
225 	if (atomic64_read(&kvm->stat.protected_hyp_mem))
226 		pr_warn("%lluB of donations to the nVHE hyp are missing\n",
227 			atomic64_read(&kvm->stat.protected_hyp_mem));
228 
229 	kvm_unshare_hyp(kvm, kvm + 1);
230 }
231 
kvm_check_extension(struct kvm * kvm,long ext)232 static int kvm_check_extension(struct kvm *kvm, long ext)
233 {
234 	int r;
235 
236 	switch (ext) {
237 	case KVM_CAP_IRQCHIP:
238 		r = vgic_present;
239 		break;
240 	case KVM_CAP_IOEVENTFD:
241 	case KVM_CAP_DEVICE_CTRL:
242 	case KVM_CAP_USER_MEMORY:
243 	case KVM_CAP_SYNC_MMU:
244 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
245 	case KVM_CAP_ONE_REG:
246 	case KVM_CAP_ARM_PSCI:
247 	case KVM_CAP_ARM_PSCI_0_2:
248 	case KVM_CAP_READONLY_MEM:
249 	case KVM_CAP_MP_STATE:
250 	case KVM_CAP_IMMEDIATE_EXIT:
251 	case KVM_CAP_VCPU_EVENTS:
252 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
253 	case KVM_CAP_ARM_INJECT_EXT_DABT:
254 	case KVM_CAP_SET_GUEST_DEBUG:
255 	case KVM_CAP_VCPU_ATTRIBUTES:
256 	case KVM_CAP_PTP_KVM:
257 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
258 		r = 1;
259 		break;
260 	case KVM_CAP_ARM_NISV_TO_USER:
261 		r = !kvm || !kvm_vm_is_protected(kvm);
262 		break;
263 	case KVM_CAP_SET_GUEST_DEBUG2:
264 		return KVM_GUESTDBG_VALID_MASK;
265 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
266 		r = 1;
267 		break;
268 	case KVM_CAP_NR_VCPUS:
269 		/*
270 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
271 		 * architectures, as it does not always bound it to
272 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
273 		 * this is just an advisory value.
274 		 */
275 		r = min_t(unsigned int, num_online_cpus(),
276 			  kvm_arm_default_max_vcpus());
277 		break;
278 	case KVM_CAP_MAX_VCPUS:
279 	case KVM_CAP_MAX_VCPU_ID:
280 		if (kvm)
281 			r = kvm->arch.max_vcpus;
282 		else
283 			r = kvm_arm_default_max_vcpus();
284 		break;
285 	case KVM_CAP_MSI_DEVID:
286 		if (!kvm)
287 			r = -EINVAL;
288 		else
289 			r = kvm->arch.vgic.msis_require_devid;
290 		break;
291 	case KVM_CAP_ARM_USER_IRQ:
292 		/*
293 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
294 		 * (bump this number if adding more devices)
295 		 */
296 		r = 1;
297 		break;
298 	case KVM_CAP_ARM_MTE:
299 		r = system_supports_mte();
300 		break;
301 	case KVM_CAP_STEAL_TIME:
302 		r = kvm_arm_pvtime_supported();
303 		break;
304 	case KVM_CAP_ARM_EL1_32BIT:
305 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
306 		break;
307 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
308 		r = get_num_brps();
309 		break;
310 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
311 		r = get_num_wrps();
312 		break;
313 	case KVM_CAP_ARM_PMU_V3:
314 		r = kvm_arm_support_pmu_v3();
315 		break;
316 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
317 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
318 		break;
319 	case KVM_CAP_ARM_VM_IPA_SIZE:
320 		r = get_kvm_ipa_limit();
321 		break;
322 	case KVM_CAP_ARM_SVE:
323 		r = system_supports_sve();
324 		break;
325 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
326 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
327 		r = system_has_full_ptr_auth();
328 		break;
329 	default:
330 		r = 0;
331 	}
332 
333 	return r;
334 }
335 
336 /*
337  * Checks whether the extension specified in ext is supported in protected
338  * mode for the specified vm.
339  * The capabilities supported by kvm in general are passed in kvm_cap.
340  */
pkvm_check_extension(struct kvm * kvm,long ext,int kvm_cap)341 static int pkvm_check_extension(struct kvm *kvm, long ext, int kvm_cap)
342 {
343 	int r;
344 
345 	switch (ext) {
346 	case KVM_CAP_IRQCHIP:
347 	case KVM_CAP_ARM_PSCI:
348 	case KVM_CAP_ARM_PSCI_0_2:
349 	case KVM_CAP_NR_VCPUS:
350 	case KVM_CAP_MAX_VCPUS:
351 	case KVM_CAP_MAX_VCPU_ID:
352 	case KVM_CAP_MSI_DEVID:
353 	case KVM_CAP_ARM_VM_IPA_SIZE:
354 		r = kvm_cap;
355 		break;
356 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
357 		r = min(kvm_cap, pkvm_get_max_brps());
358 		break;
359 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
360 		r = min(kvm_cap, pkvm_get_max_wrps());
361 		break;
362 	case KVM_CAP_ARM_PMU_V3:
363 		r = kvm_cap && FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
364 					 PVM_ID_AA64DFR0_ALLOW);
365 		break;
366 	case KVM_CAP_ARM_SVE:
367 		r = kvm_cap && FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE),
368 					 PVM_ID_AA64PFR0_RESTRICT_UNSIGNED);
369 		break;
370 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
371 		r = kvm_cap &&
372 		    FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API),
373 			      PVM_ID_AA64ISAR1_ALLOW) &&
374 		    FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA),
375 			      PVM_ID_AA64ISAR1_ALLOW);
376 		break;
377 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
378 		r = kvm_cap &&
379 		    FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI),
380 			      PVM_ID_AA64ISAR1_ALLOW) &&
381 		    FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA),
382 			      PVM_ID_AA64ISAR1_ALLOW);
383 		break;
384 	case KVM_CAP_ARM_PROTECTED_VM:
385 		r = 1;
386 		break;
387 	default:
388 		r = 0;
389 		break;
390 	}
391 
392 	return r;
393 }
394 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)395 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
396 {
397 	int r = kvm_check_extension(kvm, ext);
398 
399 	if (kvm && kvm_vm_is_protected(kvm))
400 		r = pkvm_check_extension(kvm, ext, r);
401 
402 	return r;
403 }
404 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)405 long kvm_arch_dev_ioctl(struct file *filp,
406 			unsigned int ioctl, unsigned long arg)
407 {
408 	return -EINVAL;
409 }
410 
kvm_arch_alloc_vm(void)411 struct kvm *kvm_arch_alloc_vm(void)
412 {
413 	size_t sz = sizeof(struct kvm);
414 
415 	if (!has_vhe())
416 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
417 
418 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
419 }
420 
kvm_arch_free_vm(struct kvm * kvm)421 void kvm_arch_free_vm(struct kvm *kvm)
422 {
423 	if (!has_vhe())
424 		kfree(kvm);
425 	else
426 		vfree(kvm);
427 }
428 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)429 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
430 {
431 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
432 		return -EBUSY;
433 
434 	if (id >= kvm->arch.max_vcpus)
435 		return -EINVAL;
436 
437 	return 0;
438 }
439 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)440 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
441 {
442 	int err;
443 
444 	spin_lock_init(&vcpu->arch.mp_state_lock);
445 
446 #ifdef CONFIG_LOCKDEP
447 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
448 	mutex_lock(&vcpu->mutex);
449 	mutex_lock(&vcpu->kvm->arch.config_lock);
450 	mutex_unlock(&vcpu->kvm->arch.config_lock);
451 	mutex_unlock(&vcpu->mutex);
452 #endif
453 
454 	/* Force users to call KVM_ARM_VCPU_INIT */
455 	vcpu->arch.target = -1;
456 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
457 
458 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
459 
460 	/*
461 	 * Default value for the FP state, will be overloaded at load
462 	 * time if we support FP (pretty likely)
463 	 */
464 	vcpu->arch.fp_state = FP_STATE_FREE;
465 
466 	/* Set up the timer */
467 	kvm_timer_vcpu_init(vcpu);
468 
469 	kvm_pmu_vcpu_init(vcpu);
470 
471 	kvm_arm_reset_debug_ptr(vcpu);
472 
473 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
474 
475 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
476 
477 	err = kvm_vgic_vcpu_init(vcpu);
478 	if (err)
479 		return err;
480 
481 	return kvm_share_hyp(vcpu, vcpu + 1);
482 }
483 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)484 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
485 {
486 }
487 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)488 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
491 		static_branch_dec(&userspace_irqchip_in_use);
492 
493 	if (is_protected_kvm_enabled())
494 		free_hyp_stage2_memcache(&vcpu->arch.pkvm_memcache, vcpu->kvm);
495 	else
496 		kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
497 
498 	kvm_timer_vcpu_terminate(vcpu);
499 	kvm_pmu_vcpu_destroy(vcpu);
500 	kvm_vgic_vcpu_destroy(vcpu);
501 	kvm_arm_vcpu_destroy(vcpu);
502 }
503 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)504 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
505 {
506 
507 }
508 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)509 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
510 {
511 
512 }
513 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)514 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
515 {
516 	struct kvm_s2_mmu *mmu;
517 	int *last_ran;
518 
519 	if (is_protected_kvm_enabled())
520 		goto nommu;
521 
522 	mmu = vcpu->arch.hw_mmu;
523 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
524 
525 	/*
526 	 * We guarantee that both TLBs and I-cache are private to each
527 	 * vcpu. If detecting that a vcpu from the same VM has
528 	 * previously run on the same physical CPU, call into the
529 	 * hypervisor code to nuke the relevant contexts.
530 	 *
531 	 * We might get preempted before the vCPU actually runs, but
532 	 * over-invalidation doesn't affect correctness.
533 	 */
534 	if (*last_ran != vcpu->vcpu_id) {
535 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
536 		*last_ran = vcpu->vcpu_id;
537 	}
538 
539 nommu:
540 	vcpu->cpu = cpu;
541 
542 	kvm_vgic_load(vcpu);
543 	kvm_timer_vcpu_load(vcpu);
544 	if (has_vhe())
545 		kvm_vcpu_load_sysregs_vhe(vcpu);
546 	kvm_arch_vcpu_load_fp(vcpu);
547 	kvm_vcpu_pmu_restore_guest(vcpu);
548 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
549 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
550 
551 	if (single_task_running())
552 		vcpu_clear_wfx_traps(vcpu);
553 	else
554 		vcpu_set_wfx_traps(vcpu);
555 
556 	if (vcpu_has_ptrauth(vcpu))
557 		vcpu_ptrauth_disable(vcpu);
558 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
559 
560 	if (is_protected_kvm_enabled()) {
561 		kvm_call_hyp_nvhe(__pkvm_vcpu_load,
562 				  vcpu->kvm->arch.pkvm.handle,
563 				  vcpu->vcpu_idx, vcpu->arch.hcr_el2);
564 		kvm_call_hyp(__vgic_v3_restore_vmcr_aprs,
565 			     &vcpu->arch.vgic_cpu.vgic_v3);
566 	}
567 
568 	if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
569 		vcpu_set_on_unsupported_cpu(vcpu);
570 }
571 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)572 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
573 {
574 	if (is_protected_kvm_enabled()) {
575 		kvm_call_hyp(__vgic_v3_save_vmcr_aprs,
576 			     &vcpu->arch.vgic_cpu.vgic_v3);
577 		kvm_call_hyp_nvhe(__pkvm_vcpu_put);
578 
579 		/* __pkvm_vcpu_put implies a sync of the state */
580 		if (!kvm_vm_is_protected(vcpu->kvm))
581 			vcpu_set_flag(vcpu, PKVM_HOST_STATE_DIRTY);
582 	}
583 
584 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
585 	kvm_arch_vcpu_put_fp(vcpu);
586 	if (has_vhe())
587 		kvm_vcpu_put_sysregs_vhe(vcpu);
588 	kvm_timer_vcpu_put(vcpu);
589 	kvm_vgic_put(vcpu, false);
590 	kvm_vcpu_pmu_restore_host(vcpu);
591 	kvm_arm_vmid_clear_active();
592 
593 	vcpu_clear_on_unsupported_cpu(vcpu);
594 	vcpu->cpu = -1;
595 }
596 
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)597 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
598 {
599 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
600 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
601 	kvm_vcpu_kick(vcpu);
602 }
603 
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)604 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
605 {
606 	spin_lock(&vcpu->arch.mp_state_lock);
607 	__kvm_arm_vcpu_power_off(vcpu);
608 	spin_unlock(&vcpu->arch.mp_state_lock);
609 }
610 
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)611 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
612 {
613 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
614 }
615 
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)616 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
617 {
618 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
619 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
620 	kvm_vcpu_kick(vcpu);
621 }
622 
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)623 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
624 {
625 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
626 }
627 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)628 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
629 				    struct kvm_mp_state *mp_state)
630 {
631 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
632 
633 	return 0;
634 }
635 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)636 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
637 				    struct kvm_mp_state *mp_state)
638 {
639 	int ret = 0;
640 
641 	spin_lock(&vcpu->arch.mp_state_lock);
642 
643 	switch (mp_state->mp_state) {
644 	case KVM_MP_STATE_RUNNABLE:
645 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
646 		break;
647 	case KVM_MP_STATE_STOPPED:
648 		__kvm_arm_vcpu_power_off(vcpu);
649 		break;
650 	case KVM_MP_STATE_SUSPENDED:
651 		kvm_arm_vcpu_suspend(vcpu);
652 		break;
653 	default:
654 		ret = -EINVAL;
655 	}
656 
657 	spin_unlock(&vcpu->arch.mp_state_lock);
658 
659 	return ret;
660 }
661 
662 /**
663  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
664  * @v:		The VCPU pointer
665  *
666  * If the guest CPU is not waiting for interrupts or an interrupt line is
667  * asserted, the CPU is by definition runnable.
668  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)669 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
670 {
671 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
672 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
673 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
674 }
675 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)676 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
677 {
678 	return vcpu_mode_priv(vcpu);
679 }
680 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)681 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
682 {
683 	return *vcpu_pc(vcpu);
684 }
685 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)686 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
687 {
688 	return vcpu->arch.target >= 0;
689 }
690 
691 /*
692  * Handle both the initialisation that is being done when the vcpu is
693  * run for the first time, as well as the updates that must be
694  * performed each time we get a new thread dealing with this vcpu.
695  */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)696 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
697 {
698 	struct kvm *kvm = vcpu->kvm;
699 	int ret;
700 
701 	if (!kvm_vcpu_initialized(vcpu))
702 		return -ENOEXEC;
703 
704 	if (!kvm_arm_vcpu_is_finalized(vcpu))
705 		return -EPERM;
706 
707 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
708 	if (ret)
709 		return ret;
710 
711 	if (likely(vcpu_has_run_once(vcpu)))
712 		return 0;
713 
714 	kvm_arm_vcpu_init_debug(vcpu);
715 
716 	if (likely(irqchip_in_kernel(kvm))) {
717 		/*
718 		 * Map the VGIC hardware resources before running a vcpu the
719 		 * first time on this VM.
720 		 */
721 		ret = kvm_vgic_map_resources(kvm);
722 		if (ret)
723 			return ret;
724 	}
725 
726 	ret = kvm_timer_enable(vcpu);
727 	if (ret)
728 		return ret;
729 
730 	ret = kvm_arm_pmu_v3_enable(vcpu);
731 	if (ret)
732 		return ret;
733 
734 	if (is_protected_kvm_enabled()) {
735 		/* Start with the vcpu in a dirty state */
736 		if (!kvm_vm_is_protected(vcpu->kvm))
737 			vcpu_set_flag(vcpu, PKVM_HOST_STATE_DIRTY);
738 		ret = pkvm_create_hyp_vm(kvm);
739 		if (ret)
740 			return ret;
741 	}
742 
743 	if (!irqchip_in_kernel(kvm)) {
744 		/*
745 		 * Tell the rest of the code that there are userspace irqchip
746 		 * VMs in the wild.
747 		 */
748 		static_branch_inc(&userspace_irqchip_in_use);
749 	}
750 
751 	mutex_lock(&kvm->arch.config_lock);
752 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
753 	mutex_unlock(&kvm->arch.config_lock);
754 
755 	return ret;
756 }
757 
kvm_arch_intc_initialized(struct kvm * kvm)758 bool kvm_arch_intc_initialized(struct kvm *kvm)
759 {
760 	return vgic_initialized(kvm);
761 }
762 
kvm_arm_halt_guest(struct kvm * kvm)763 void kvm_arm_halt_guest(struct kvm *kvm)
764 {
765 	unsigned long i;
766 	struct kvm_vcpu *vcpu;
767 
768 	kvm_for_each_vcpu(i, vcpu, kvm)
769 		vcpu->arch.pause = true;
770 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
771 }
772 
kvm_arm_resume_guest(struct kvm * kvm)773 void kvm_arm_resume_guest(struct kvm *kvm)
774 {
775 	unsigned long i;
776 	struct kvm_vcpu *vcpu;
777 
778 	kvm_for_each_vcpu(i, vcpu, kvm) {
779 		vcpu->arch.pause = false;
780 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
781 	}
782 }
783 
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)784 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
785 {
786 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
787 
788 	rcuwait_wait_event(wait,
789 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
790 			   TASK_INTERRUPTIBLE);
791 
792 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
793 		/* Awaken to handle a signal, request we sleep again later. */
794 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
795 	}
796 
797 	/*
798 	 * Make sure we will observe a potential reset request if we've
799 	 * observed a change to the power state. Pairs with the smp_wmb() in
800 	 * kvm_psci_vcpu_on().
801 	 */
802 	smp_rmb();
803 }
804 
805 /**
806  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
807  * @vcpu:	The VCPU pointer
808  *
809  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
810  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
811  * on when a wake event arrives, e.g. there may already be a pending wake event.
812  */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)813 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
814 {
815 	/*
816 	 * Sync back the state of the GIC CPU interface so that we have
817 	 * the latest PMR and group enables. This ensures that
818 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
819 	 * we have pending interrupts, e.g. when determining if the
820 	 * vCPU should block.
821 	 *
822 	 * For the same reason, we want to tell GICv4 that we need
823 	 * doorbells to be signalled, should an interrupt become pending.
824 	 */
825 	preempt_disable();
826 	kvm_vgic_put(vcpu, true);
827 	preempt_enable();
828 
829 	kvm_vcpu_block(vcpu);
830 	vcpu_clear_flag(vcpu, IN_WFIT);
831 	kvm_clear_request(KVM_REQ_UNHALT, vcpu);
832 
833 	preempt_disable();
834 	kvm_vgic_load(vcpu);
835 	preempt_enable();
836 }
837 
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)838 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
839 {
840 	if (!kvm_arm_vcpu_suspended(vcpu))
841 		return 1;
842 
843 	kvm_vcpu_wfi(vcpu);
844 
845 	/*
846 	 * The suspend state is sticky; we do not leave it until userspace
847 	 * explicitly marks the vCPU as runnable. Request that we suspend again
848 	 * later.
849 	 */
850 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
851 
852 	/*
853 	 * Check to make sure the vCPU is actually runnable. If so, exit to
854 	 * userspace informing it of the wakeup condition.
855 	 */
856 	if (kvm_arch_vcpu_runnable(vcpu)) {
857 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
858 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
859 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
860 		return 0;
861 	}
862 
863 	/*
864 	 * Otherwise, we were unblocked to process a different event, such as a
865 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
866 	 * process the event.
867 	 */
868 	return 1;
869 }
870 
871 /**
872  * check_vcpu_requests - check and handle pending vCPU requests
873  * @vcpu:	the VCPU pointer
874  *
875  * Return: 1 if we should enter the guest
876  *	   0 if we should exit to userspace
877  *	   < 0 if we should exit to userspace, where the return value indicates
878  *	   an error
879  */
check_vcpu_requests(struct kvm_vcpu * vcpu)880 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
881 {
882 	if (kvm_request_pending(vcpu)) {
883 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
884 			kvm_vcpu_sleep(vcpu);
885 
886 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
887 			kvm_reset_vcpu(vcpu);
888 
889 		/*
890 		 * Clear IRQ_PENDING requests that were made to guarantee
891 		 * that a VCPU sees new virtual interrupts.
892 		 */
893 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
894 
895 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
896 			kvm_update_stolen_time(vcpu);
897 
898 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
899 			/* The distributor enable bits were changed */
900 			preempt_disable();
901 			vgic_v4_put(vcpu, false);
902 			vgic_v4_load(vcpu);
903 			preempt_enable();
904 		}
905 
906 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
907 			kvm_pmu_handle_pmcr(vcpu,
908 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
909 
910 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
911 			return kvm_vcpu_suspend(vcpu);
912 	}
913 
914 	return 1;
915 }
916 
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)917 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
918 {
919 	if (likely(!vcpu_mode_is_32bit(vcpu)))
920 		return false;
921 
922 	return !kvm_supports_32bit_el0();
923 }
924 
925 /**
926  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
927  * @vcpu:	The VCPU pointer
928  * @ret:	Pointer to write optional return code
929  *
930  * Returns: true if the VCPU needs to return to a preemptible + interruptible
931  *	    and skip guest entry.
932  *
933  * This function disambiguates between two different types of exits: exits to a
934  * preemptible + interruptible kernel context and exits to userspace. For an
935  * exit to userspace, this function will write the return code to ret and return
936  * true. For an exit to preemptible + interruptible kernel context (i.e. check
937  * for pending work and re-enter), return true without writing to ret.
938  */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)939 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
940 {
941 	struct kvm_run *run = vcpu->run;
942 
943 	/*
944 	 * If we're using a userspace irqchip, then check if we need
945 	 * to tell a userspace irqchip about timer or PMU level
946 	 * changes and if so, exit to userspace (the actual level
947 	 * state gets updated in kvm_timer_update_run and
948 	 * kvm_pmu_update_run below).
949 	 */
950 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
951 		if (kvm_timer_should_notify_user(vcpu) ||
952 		    kvm_pmu_should_notify_user(vcpu)) {
953 			*ret = -EINTR;
954 			run->exit_reason = KVM_EXIT_INTR;
955 			return true;
956 		}
957 	}
958 
959 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
960 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
961 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
962 		run->fail_entry.cpu = smp_processor_id();
963 		*ret = 0;
964 		return true;
965 	}
966 
967 	return kvm_request_pending(vcpu) ||
968 			xfer_to_guest_mode_work_pending();
969 }
970 
971 /*
972  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
973  * the vCPU is running.
974  *
975  * This must be noinstr as instrumentation may make use of RCU, and this is not
976  * safe during the EQS.
977  */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)978 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
979 {
980 	int ret;
981 
982 	guest_state_enter_irqoff();
983 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
984 	guest_state_exit_irqoff();
985 
986 	return ret;
987 }
988 
989 /**
990  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
991  * @vcpu:	The VCPU pointer
992  *
993  * This function is called through the VCPU_RUN ioctl called from user space. It
994  * will execute VM code in a loop until the time slice for the process is used
995  * or some emulation is needed from user space in which case the function will
996  * return with return value 0 and with the kvm_run structure filled in with the
997  * required data for the requested emulation.
998  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)999 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1000 {
1001 	struct kvm_run *run = vcpu->run;
1002 	int ret;
1003 
1004 	if (run->exit_reason == KVM_EXIT_MMIO) {
1005 		ret = kvm_handle_mmio_return(vcpu);
1006 		if (ret)
1007 			return ret;
1008 	}
1009 
1010 	vcpu_load(vcpu);
1011 
1012 	if (run->immediate_exit) {
1013 		ret = -EINTR;
1014 		goto out;
1015 	}
1016 
1017 	kvm_sigset_activate(vcpu);
1018 
1019 	ret = 1;
1020 	run->exit_reason = KVM_EXIT_UNKNOWN;
1021 	while (ret > 0) {
1022 		/*
1023 		 * Check conditions before entering the guest
1024 		 */
1025 		ret = xfer_to_guest_mode_handle_work(vcpu);
1026 		if (!ret)
1027 			ret = 1;
1028 
1029 		if (ret > 0)
1030 			ret = check_vcpu_requests(vcpu);
1031 
1032 		/*
1033 		 * Preparing the interrupts to be injected also
1034 		 * involves poking the GIC, which must be done in a
1035 		 * non-preemptible context.
1036 		 */
1037 		preempt_disable();
1038 
1039 		/*
1040 		 * The VMID allocator only tracks active VMIDs per
1041 		 * physical CPU, and therefore the VMID allocated may not be
1042 		 * preserved on VMID roll-over if the task was preempted,
1043 		 * making a thread's VMID inactive. So we need to call
1044 		 * kvm_arm_vmid_update() in non-premptible context.
1045 		 */
1046 		kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
1047 
1048 		kvm_pmu_flush_hwstate(vcpu);
1049 
1050 		local_irq_disable();
1051 
1052 		kvm_vgic_flush_hwstate(vcpu);
1053 
1054 		kvm_pmu_update_vcpu_events(vcpu);
1055 
1056 		/*
1057 		 * Ensure we set mode to IN_GUEST_MODE after we disable
1058 		 * interrupts and before the final VCPU requests check.
1059 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1060 		 * Documentation/virt/kvm/vcpu-requests.rst
1061 		 */
1062 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1063 
1064 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1065 			vcpu->mode = OUTSIDE_GUEST_MODE;
1066 			isb(); /* Ensure work in x_flush_hwstate is committed */
1067 			kvm_pmu_sync_hwstate(vcpu);
1068 			if (static_branch_unlikely(&userspace_irqchip_in_use))
1069 				kvm_timer_sync_user(vcpu);
1070 			kvm_vgic_sync_hwstate(vcpu);
1071 			local_irq_enable();
1072 			preempt_enable();
1073 			continue;
1074 		}
1075 
1076 		kvm_arm_setup_debug(vcpu);
1077 		kvm_arch_vcpu_ctxflush_fp(vcpu);
1078 
1079 		/**************************************************************
1080 		 * Enter the guest
1081 		 */
1082 		trace_kvm_entry(*vcpu_pc(vcpu));
1083 		guest_timing_enter_irqoff();
1084 
1085 		ret = kvm_arm_vcpu_enter_exit(vcpu);
1086 
1087 		vcpu->mode = OUTSIDE_GUEST_MODE;
1088 		vcpu->stat.exits++;
1089 		/*
1090 		 * Back from guest
1091 		 *************************************************************/
1092 
1093 		kvm_arm_clear_debug(vcpu);
1094 
1095 		/*
1096 		 * We must sync the PMU state before the vgic state so
1097 		 * that the vgic can properly sample the updated state of the
1098 		 * interrupt line.
1099 		 */
1100 		kvm_pmu_sync_hwstate(vcpu);
1101 
1102 		/*
1103 		 * Sync the vgic state before syncing the timer state because
1104 		 * the timer code needs to know if the virtual timer
1105 		 * interrupts are active.
1106 		 */
1107 		kvm_vgic_sync_hwstate(vcpu);
1108 
1109 		/*
1110 		 * Sync the timer hardware state before enabling interrupts as
1111 		 * we don't want vtimer interrupts to race with syncing the
1112 		 * timer virtual interrupt state.
1113 		 */
1114 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1115 			kvm_timer_sync_user(vcpu);
1116 
1117 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1118 
1119 		/*
1120 		 * We must ensure that any pending interrupts are taken before
1121 		 * we exit guest timing so that timer ticks are accounted as
1122 		 * guest time. Transiently unmask interrupts so that any
1123 		 * pending interrupts are taken.
1124 		 *
1125 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1126 		 * context synchronization event) is necessary to ensure that
1127 		 * pending interrupts are taken.
1128 		 */
1129 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1130 			local_irq_enable();
1131 			isb();
1132 			local_irq_disable();
1133 		}
1134 
1135 		guest_timing_exit_irqoff();
1136 
1137 		local_irq_enable();
1138 
1139 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1140 
1141 		/* Exit types that need handling before we can be preempted */
1142 		handle_exit_early(vcpu, ret);
1143 
1144 		preempt_enable();
1145 
1146 		/*
1147 		 * The ARMv8 architecture doesn't give the hypervisor
1148 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1149 		 * if implemented by the CPU. If we spot the guest in such
1150 		 * state and that we decided it wasn't supposed to do so (like
1151 		 * with the asymmetric AArch32 case), return to userspace with
1152 		 * a fatal error.
1153 		 */
1154 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1155 			/*
1156 			 * As we have caught the guest red-handed, decide that
1157 			 * it isn't fit for purpose anymore by making the vcpu
1158 			 * invalid. The VMM can try and fix it by issuing  a
1159 			 * KVM_ARM_VCPU_INIT if it really wants to.
1160 			 */
1161 			vcpu->arch.target = -1;
1162 			ret = ARM_EXCEPTION_IL;
1163 		}
1164 
1165 		ret = handle_exit(vcpu, ret);
1166 	}
1167 
1168 	/* Tell userspace about in-kernel device output levels */
1169 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1170 		kvm_timer_update_run(vcpu);
1171 		kvm_pmu_update_run(vcpu);
1172 	}
1173 
1174 	kvm_sigset_deactivate(vcpu);
1175 
1176 out:
1177 	/*
1178 	 * In the unlikely event that we are returning to userspace
1179 	 * with pending exceptions or PC adjustment, commit these
1180 	 * adjustments in order to give userspace a consistent view of
1181 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1182 	 * being preempt-safe on VHE.
1183 	 */
1184 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1185 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1186 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1187 
1188 	vcpu_put(vcpu);
1189 	return ret;
1190 }
1191 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1192 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1193 {
1194 	int bit_index;
1195 	bool set;
1196 	unsigned long *hcr;
1197 
1198 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1199 		bit_index = __ffs(HCR_VI);
1200 	else /* KVM_ARM_IRQ_CPU_FIQ */
1201 		bit_index = __ffs(HCR_VF);
1202 
1203 	hcr = vcpu_hcr(vcpu);
1204 	if (level)
1205 		set = test_and_set_bit(bit_index, hcr);
1206 	else
1207 		set = test_and_clear_bit(bit_index, hcr);
1208 
1209 	/*
1210 	 * If we didn't change anything, no need to wake up or kick other CPUs
1211 	 */
1212 	if (set == level)
1213 		return 0;
1214 
1215 	/*
1216 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1217 	 * trigger a world-switch round on the running physical CPU to set the
1218 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1219 	 */
1220 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1221 	kvm_vcpu_kick(vcpu);
1222 
1223 	return 0;
1224 }
1225 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1226 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1227 			  bool line_status)
1228 {
1229 	u32 irq = irq_level->irq;
1230 	unsigned int irq_type, vcpu_idx, irq_num;
1231 	int nrcpus = atomic_read(&kvm->online_vcpus);
1232 	struct kvm_vcpu *vcpu = NULL;
1233 	bool level = irq_level->level;
1234 
1235 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1236 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1237 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1238 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1239 
1240 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1241 
1242 	switch (irq_type) {
1243 	case KVM_ARM_IRQ_TYPE_CPU:
1244 		if (irqchip_in_kernel(kvm))
1245 			return -ENXIO;
1246 
1247 		if (vcpu_idx >= nrcpus)
1248 			return -EINVAL;
1249 
1250 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1251 		if (!vcpu)
1252 			return -EINVAL;
1253 
1254 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1255 			return -EINVAL;
1256 
1257 		return vcpu_interrupt_line(vcpu, irq_num, level);
1258 	case KVM_ARM_IRQ_TYPE_PPI:
1259 		if (!irqchip_in_kernel(kvm))
1260 			return -ENXIO;
1261 
1262 		if (vcpu_idx >= nrcpus)
1263 			return -EINVAL;
1264 
1265 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1266 		if (!vcpu)
1267 			return -EINVAL;
1268 
1269 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1270 			return -EINVAL;
1271 
1272 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1273 	case KVM_ARM_IRQ_TYPE_SPI:
1274 		if (!irqchip_in_kernel(kvm))
1275 			return -ENXIO;
1276 
1277 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1278 			return -EINVAL;
1279 
1280 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1281 	}
1282 
1283 	return -EINVAL;
1284 }
1285 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1286 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1287 			       const struct kvm_vcpu_init *init)
1288 {
1289 	unsigned int i, ret;
1290 	u32 phys_target = kvm_target_cpu();
1291 
1292 	if (init->target != phys_target)
1293 		return -EINVAL;
1294 
1295 	/*
1296 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1297 	 * use the same target.
1298 	 */
1299 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1300 		return -EINVAL;
1301 
1302 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1303 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1304 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1305 
1306 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1307 			return -ENOENT;
1308 
1309 		/*
1310 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1311 		 * use the same feature set.
1312 		 */
1313 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1314 		    test_bit(i, vcpu->arch.features) != set)
1315 			return -EINVAL;
1316 
1317 		if (set)
1318 			set_bit(i, vcpu->arch.features);
1319 	}
1320 
1321 	vcpu->arch.target = phys_target;
1322 
1323 	/* Now we know what it is, we can reset it. */
1324 	ret = kvm_reset_vcpu(vcpu);
1325 	if (ret) {
1326 		vcpu->arch.target = -1;
1327 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1328 	}
1329 
1330 	return ret;
1331 }
1332 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1333 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1334 					 struct kvm_vcpu_init *init)
1335 {
1336 	int ret;
1337 
1338 	ret = kvm_vcpu_set_target(vcpu, init);
1339 	if (ret)
1340 		return ret;
1341 
1342 	/*
1343 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1344 	 * guest MMU is turned off and flush the caches as needed.
1345 	 *
1346 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1347 	 * ensuring that the data side is always coherent. We still
1348 	 * need to invalidate the I-cache though, as FWB does *not*
1349 	 * imply CTR_EL0.DIC.
1350 	 */
1351 	if (vcpu_has_run_once(vcpu)) {
1352 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1353 			stage2_unmap_vm(vcpu->kvm);
1354 		else
1355 			icache_inval_all_pou();
1356 	}
1357 
1358 	vcpu_reset_hcr(vcpu);
1359 	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1360 
1361 	/*
1362 	 * Handle the "start in power-off" case.
1363 	 */
1364 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1365 		kvm_arm_vcpu_power_off(vcpu);
1366 	else
1367 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1368 
1369 	return 0;
1370 }
1371 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1372 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1373 				 struct kvm_device_attr *attr)
1374 {
1375 	int ret = -ENXIO;
1376 
1377 	switch (attr->group) {
1378 	default:
1379 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1380 		break;
1381 	}
1382 
1383 	return ret;
1384 }
1385 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1386 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1387 				 struct kvm_device_attr *attr)
1388 {
1389 	int ret = -ENXIO;
1390 
1391 	switch (attr->group) {
1392 	default:
1393 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1394 		break;
1395 	}
1396 
1397 	return ret;
1398 }
1399 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1400 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1401 				 struct kvm_device_attr *attr)
1402 {
1403 	int ret = -ENXIO;
1404 
1405 	switch (attr->group) {
1406 	default:
1407 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1408 		break;
1409 	}
1410 
1411 	return ret;
1412 }
1413 
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1414 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1415 				   struct kvm_vcpu_events *events)
1416 {
1417 	memset(events, 0, sizeof(*events));
1418 
1419 	return __kvm_arm_vcpu_get_events(vcpu, events);
1420 }
1421 
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1422 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1423 				   struct kvm_vcpu_events *events)
1424 {
1425 	int i;
1426 
1427 	/* check whether the reserved field is zero */
1428 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1429 		if (events->reserved[i])
1430 			return -EINVAL;
1431 
1432 	/* check whether the pad field is zero */
1433 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1434 		if (events->exception.pad[i])
1435 			return -EINVAL;
1436 
1437 	return __kvm_arm_vcpu_set_events(vcpu, events);
1438 }
1439 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1440 long kvm_arch_vcpu_ioctl(struct file *filp,
1441 			 unsigned int ioctl, unsigned long arg)
1442 {
1443 	struct kvm_vcpu *vcpu = filp->private_data;
1444 	void __user *argp = (void __user *)arg;
1445 	struct kvm_device_attr attr;
1446 	long r;
1447 
1448 	switch (ioctl) {
1449 	case KVM_ARM_VCPU_INIT: {
1450 		struct kvm_vcpu_init init;
1451 
1452 		r = -EFAULT;
1453 		if (copy_from_user(&init, argp, sizeof(init)))
1454 			break;
1455 
1456 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1457 		break;
1458 	}
1459 	case KVM_SET_ONE_REG:
1460 	case KVM_GET_ONE_REG: {
1461 		struct kvm_one_reg reg;
1462 
1463 		r = -ENOEXEC;
1464 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1465 			break;
1466 
1467 		r = -EFAULT;
1468 		if (copy_from_user(&reg, argp, sizeof(reg)))
1469 			break;
1470 
1471 		/*
1472 		 * We could owe a reset due to PSCI. Handle the pending reset
1473 		 * here to ensure userspace register accesses are ordered after
1474 		 * the reset.
1475 		 */
1476 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1477 			kvm_reset_vcpu(vcpu);
1478 
1479 		if (ioctl == KVM_SET_ONE_REG)
1480 			r = kvm_arm_set_reg(vcpu, &reg);
1481 		else
1482 			r = kvm_arm_get_reg(vcpu, &reg);
1483 		break;
1484 	}
1485 	case KVM_GET_REG_LIST: {
1486 		struct kvm_reg_list __user *user_list = argp;
1487 		struct kvm_reg_list reg_list;
1488 		unsigned n;
1489 
1490 		r = -ENOEXEC;
1491 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1492 			break;
1493 
1494 		r = -EPERM;
1495 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1496 			break;
1497 
1498 		r = -EFAULT;
1499 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1500 			break;
1501 		n = reg_list.n;
1502 		reg_list.n = kvm_arm_num_regs(vcpu);
1503 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1504 			break;
1505 		r = -E2BIG;
1506 		if (n < reg_list.n)
1507 			break;
1508 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1509 		break;
1510 	}
1511 	case KVM_SET_DEVICE_ATTR: {
1512 		r = -EFAULT;
1513 		if (copy_from_user(&attr, argp, sizeof(attr)))
1514 			break;
1515 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1516 		break;
1517 	}
1518 	case KVM_GET_DEVICE_ATTR: {
1519 		r = -EFAULT;
1520 		if (copy_from_user(&attr, argp, sizeof(attr)))
1521 			break;
1522 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1523 		break;
1524 	}
1525 	case KVM_HAS_DEVICE_ATTR: {
1526 		r = -EFAULT;
1527 		if (copy_from_user(&attr, argp, sizeof(attr)))
1528 			break;
1529 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1530 		break;
1531 	}
1532 	case KVM_GET_VCPU_EVENTS: {
1533 		struct kvm_vcpu_events events;
1534 
1535 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1536 			return -EINVAL;
1537 
1538 		if (copy_to_user(argp, &events, sizeof(events)))
1539 			return -EFAULT;
1540 
1541 		return 0;
1542 	}
1543 	case KVM_SET_VCPU_EVENTS: {
1544 		struct kvm_vcpu_events events;
1545 
1546 		if (copy_from_user(&events, argp, sizeof(events)))
1547 			return -EFAULT;
1548 
1549 		return kvm_arm_vcpu_set_events(vcpu, &events);
1550 	}
1551 	case KVM_ARM_VCPU_FINALIZE: {
1552 		int what;
1553 
1554 		if (!kvm_vcpu_initialized(vcpu))
1555 			return -ENOEXEC;
1556 
1557 		if (get_user(what, (const int __user *)argp))
1558 			return -EFAULT;
1559 
1560 		return kvm_arm_vcpu_finalize(vcpu, what);
1561 	}
1562 	default:
1563 		r = -EINVAL;
1564 	}
1565 
1566 	return r;
1567 }
1568 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1569 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1570 {
1571 
1572 }
1573 
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)1574 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1575 					const struct kvm_memory_slot *memslot)
1576 {
1577 	kvm_flush_remote_tlbs(kvm);
1578 }
1579 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1580 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1581 					struct kvm_arm_device_addr *dev_addr)
1582 {
1583 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1584 	case KVM_ARM_DEVICE_VGIC_V2:
1585 		if (!vgic_present)
1586 			return -ENXIO;
1587 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1588 	default:
1589 		return -ENODEV;
1590 	}
1591 }
1592 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1593 long kvm_arch_vm_ioctl(struct file *filp,
1594 		       unsigned int ioctl, unsigned long arg)
1595 {
1596 	struct kvm *kvm = filp->private_data;
1597 	void __user *argp = (void __user *)arg;
1598 
1599 	switch (ioctl) {
1600 	case KVM_CREATE_IRQCHIP: {
1601 		int ret;
1602 		if (!vgic_present)
1603 			return -ENXIO;
1604 		mutex_lock(&kvm->lock);
1605 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1606 		mutex_unlock(&kvm->lock);
1607 		return ret;
1608 	}
1609 	case KVM_ARM_SET_DEVICE_ADDR: {
1610 		struct kvm_arm_device_addr dev_addr;
1611 
1612 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1613 			return -EFAULT;
1614 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1615 	}
1616 	case KVM_ARM_PREFERRED_TARGET: {
1617 		struct kvm_vcpu_init init;
1618 
1619 		kvm_vcpu_preferred_target(&init);
1620 
1621 		if (copy_to_user(argp, &init, sizeof(init)))
1622 			return -EFAULT;
1623 
1624 		return 0;
1625 	}
1626 	case KVM_ARM_MTE_COPY_TAGS: {
1627 		struct kvm_arm_copy_mte_tags copy_tags;
1628 
1629 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1630 			return -EFAULT;
1631 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1632 	}
1633 	default:
1634 		return -EINVAL;
1635 	}
1636 }
1637 
nvhe_percpu_size(void)1638 static unsigned long nvhe_percpu_size(void)
1639 {
1640 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1641 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1642 }
1643 
nvhe_percpu_order(void)1644 static unsigned long nvhe_percpu_order(void)
1645 {
1646 	unsigned long size = nvhe_percpu_size();
1647 
1648 	return size ? get_order(size) : 0;
1649 }
1650 
pkvm_host_fp_state_order(void)1651 static inline size_t pkvm_host_fp_state_order(void)
1652 {
1653 	return get_order(pkvm_host_fp_state_size());
1654 }
1655 
1656 /* A lookup table holding the hypervisor VA for each vector slot */
1657 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1658 
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1659 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1660 {
1661 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1662 }
1663 
kvm_init_vector_slots(void)1664 static int kvm_init_vector_slots(void)
1665 {
1666 	int err;
1667 	void *base;
1668 
1669 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1670 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1671 
1672 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1673 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1674 
1675 	if (kvm_system_needs_idmapped_vectors() &&
1676 	    !is_protected_kvm_enabled()) {
1677 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1678 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1679 		if (err)
1680 			return err;
1681 	}
1682 
1683 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1684 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1685 	return 0;
1686 }
1687 
cpu_prepare_hyp_mode(int cpu)1688 static void cpu_prepare_hyp_mode(int cpu)
1689 {
1690 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1691 	unsigned long tcr;
1692 	int *hyp_cpu_number_ptr = per_cpu_ptr_nvhe_sym(hyp_cpu_number, cpu);
1693 
1694 	*hyp_cpu_number_ptr = cpu;
1695 
1696 	/*
1697 	 * Calculate the raw per-cpu offset without a translation from the
1698 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1699 	 * so that we can use adr_l to access per-cpu variables in EL2.
1700 	 * Also drop the KASAN tag which gets in the way...
1701 	 */
1702 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1703 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1704 
1705 	params->mair_el2 = read_sysreg(mair_el1);
1706 
1707 	/*
1708 	 * The ID map may be configured to use an extended virtual address
1709 	 * range. This is only the case if system RAM is out of range for the
1710 	 * currently configured page size and VA_BITS, in which case we will
1711 	 * also need the extended virtual range for the HYP ID map, or we won't
1712 	 * be able to enable the EL2 MMU.
1713 	 *
1714 	 * However, at EL2, there is only one TTBR register, and we can't switch
1715 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1716 	 * time. Bottom line: we need to use the extended range with *both* our
1717 	 * translation tables.
1718 	 *
1719 	 * So use the same T0SZ value we use for the ID map.
1720 	 */
1721 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1722 	tcr &= ~TCR_T0SZ_MASK;
1723 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1724 	params->tcr_el2 = tcr;
1725 
1726 	params->pgd_pa = kvm_mmu_get_httbr();
1727 	if (is_protected_kvm_enabled())
1728 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1729 	else
1730 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1731 	params->vttbr = params->vtcr = 0;
1732 	params->hfgwtr_el2 = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
1733 
1734 	/*
1735 	 * Flush the init params from the data cache because the struct will
1736 	 * be read while the MMU is off.
1737 	 */
1738 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1739 }
1740 
hyp_install_host_vector(void)1741 static void hyp_install_host_vector(void)
1742 {
1743 	struct kvm_nvhe_init_params *params;
1744 	struct arm_smccc_res res;
1745 
1746 	/* Switch from the HYP stub to our own HYP init vector */
1747 	__hyp_set_vectors(kvm_get_idmap_vector());
1748 
1749 	/*
1750 	 * Call initialization code, and switch to the full blown HYP code.
1751 	 * If the cpucaps haven't been finalized yet, something has gone very
1752 	 * wrong, and hyp will crash and burn when it uses any
1753 	 * cpus_have_const_cap() wrapper.
1754 	 */
1755 	BUG_ON(!system_capabilities_finalized());
1756 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1757 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1758 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1759 }
1760 
cpu_init_hyp_mode(void)1761 static void cpu_init_hyp_mode(void)
1762 {
1763 	hyp_install_host_vector();
1764 
1765 	/*
1766 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1767 	 * at EL2.
1768 	 */
1769 	if (this_cpu_has_cap(ARM64_SSBS) &&
1770 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1771 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1772 	}
1773 }
1774 
cpu_hyp_reset(void)1775 static void cpu_hyp_reset(void)
1776 {
1777 	if (!is_kernel_in_hyp_mode())
1778 		__hyp_reset_vectors();
1779 }
1780 
1781 /*
1782  * EL2 vectors can be mapped and rerouted in a number of ways,
1783  * depending on the kernel configuration and CPU present:
1784  *
1785  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1786  *   placed in one of the vector slots, which is executed before jumping
1787  *   to the real vectors.
1788  *
1789  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1790  *   containing the hardening sequence is mapped next to the idmap page,
1791  *   and executed before jumping to the real vectors.
1792  *
1793  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1794  *   empty slot is selected, mapped next to the idmap page, and
1795  *   executed before jumping to the real vectors.
1796  *
1797  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1798  * VHE, as we don't have hypervisor-specific mappings. If the system
1799  * is VHE and yet selects this capability, it will be ignored.
1800  */
cpu_set_hyp_vector(void)1801 static void cpu_set_hyp_vector(void)
1802 {
1803 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1804 	void *vector = hyp_spectre_vector_selector[data->slot];
1805 
1806 	if (!is_protected_kvm_enabled())
1807 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1808 	else
1809 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1810 }
1811 
cpu_hyp_init_context(void)1812 static void cpu_hyp_init_context(void)
1813 {
1814 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1815 
1816 	if (!is_kernel_in_hyp_mode())
1817 		cpu_init_hyp_mode();
1818 }
1819 
cpu_hyp_init_features(void)1820 static void cpu_hyp_init_features(void)
1821 {
1822 	cpu_set_hyp_vector();
1823 	kvm_arm_init_debug();
1824 
1825 	if (is_kernel_in_hyp_mode())
1826 		kvm_timer_init_vhe();
1827 
1828 	if (vgic_present)
1829 		kvm_vgic_init_cpu_hardware();
1830 }
1831 
cpu_hyp_reinit(void)1832 static void cpu_hyp_reinit(void)
1833 {
1834 	cpu_hyp_reset();
1835 	cpu_hyp_init_context();
1836 	cpu_hyp_init_features();
1837 }
1838 
_kvm_arch_hardware_enable(void * discard)1839 static void _kvm_arch_hardware_enable(void *discard)
1840 {
1841 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1842 		cpu_hyp_reinit();
1843 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1844 	}
1845 }
1846 
kvm_arch_hardware_enable(void)1847 int kvm_arch_hardware_enable(void)
1848 {
1849 	_kvm_arch_hardware_enable(NULL);
1850 	return 0;
1851 }
1852 
_kvm_arch_hardware_disable(void * discard)1853 static void _kvm_arch_hardware_disable(void *discard)
1854 {
1855 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1856 		cpu_hyp_reset();
1857 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1858 	}
1859 }
1860 
kvm_arch_hardware_disable(void)1861 void kvm_arch_hardware_disable(void)
1862 {
1863 	if (!is_protected_kvm_enabled())
1864 		_kvm_arch_hardware_disable(NULL);
1865 }
1866 
1867 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1868 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1869 				    unsigned long cmd,
1870 				    void *v)
1871 {
1872 	/*
1873 	 * kvm_arm_hardware_enabled is left with its old value over
1874 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1875 	 * re-enable hyp.
1876 	 */
1877 	switch (cmd) {
1878 	case CPU_PM_ENTER:
1879 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1880 			/*
1881 			 * don't update kvm_arm_hardware_enabled here
1882 			 * so that the hardware will be re-enabled
1883 			 * when we resume. See below.
1884 			 */
1885 			cpu_hyp_reset();
1886 
1887 		return NOTIFY_OK;
1888 	case CPU_PM_ENTER_FAILED:
1889 	case CPU_PM_EXIT:
1890 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1891 			/* The hardware was enabled before suspend. */
1892 			cpu_hyp_reinit();
1893 
1894 		return NOTIFY_OK;
1895 
1896 	default:
1897 		return NOTIFY_DONE;
1898 	}
1899 }
1900 
1901 static struct notifier_block hyp_init_cpu_pm_nb = {
1902 	.notifier_call = hyp_init_cpu_pm_notifier,
1903 };
1904 
hyp_cpu_pm_init(void)1905 static void hyp_cpu_pm_init(void)
1906 {
1907 	if (!is_protected_kvm_enabled())
1908 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1909 }
hyp_cpu_pm_exit(void)1910 static void hyp_cpu_pm_exit(void)
1911 {
1912 	if (!is_protected_kvm_enabled())
1913 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1914 }
1915 #else
hyp_cpu_pm_init(void)1916 static inline void hyp_cpu_pm_init(void)
1917 {
1918 }
hyp_cpu_pm_exit(void)1919 static inline void hyp_cpu_pm_exit(void)
1920 {
1921 }
1922 #endif
1923 
init_cpu_logical_map(void)1924 static void init_cpu_logical_map(void)
1925 {
1926 	unsigned int cpu;
1927 
1928 	/*
1929 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1930 	 * Only copy the set of online CPUs whose features have been checked
1931 	 * against the finalized system capabilities. The hypervisor will not
1932 	 * allow any other CPUs from the `possible` set to boot.
1933 	 */
1934 	for_each_online_cpu(cpu)
1935 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1936 }
1937 
1938 #define init_psci_0_1_impl_state(config, what)	\
1939 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1940 
init_psci_relay(void)1941 static bool init_psci_relay(void)
1942 {
1943 	/*
1944 	 * If PSCI has not been initialized, protected KVM cannot install
1945 	 * itself on newly booted CPUs.
1946 	 */
1947 	if (!psci_ops.get_version) {
1948 		kvm_err("Cannot initialize protected mode without PSCI\n");
1949 		return false;
1950 	}
1951 
1952 	kvm_host_psci_config.version = psci_ops.get_version();
1953 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1954 
1955 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1956 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1957 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1958 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1959 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1960 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1961 	}
1962 	return true;
1963 }
1964 
init_subsystems(void)1965 static int init_subsystems(void)
1966 {
1967 	int err = 0;
1968 
1969 	/*
1970 	 * Enable hardware so that subsystem initialisation can access EL2.
1971 	 */
1972 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1973 
1974 	/*
1975 	 * Register CPU lower-power notifier
1976 	 */
1977 	hyp_cpu_pm_init();
1978 
1979 	/*
1980 	 * Init HYP view of VGIC
1981 	 */
1982 	err = kvm_vgic_hyp_init();
1983 	switch (err) {
1984 	case 0:
1985 		vgic_present = true;
1986 		break;
1987 	case -ENODEV:
1988 	case -ENXIO:
1989 		vgic_present = false;
1990 		err = 0;
1991 		break;
1992 	default:
1993 		goto out;
1994 	}
1995 
1996 	/*
1997 	 * Init HYP architected timer support
1998 	 */
1999 	err = kvm_timer_hyp_init(vgic_present);
2000 	if (err)
2001 		goto out;
2002 
2003 	kvm_register_perf_callbacks(NULL);
2004 
2005 out:
2006 	if (err || !is_protected_kvm_enabled())
2007 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
2008 
2009 	return err;
2010 }
2011 
teardown_hyp_mode(void)2012 static void teardown_hyp_mode(void)
2013 {
2014 	int cpu;
2015 
2016 	free_hyp_pgds();
2017 	for_each_possible_cpu(cpu) {
2018 		free_pages(per_cpu(kvm_arm_hyp_stack_base, cpu), NVHE_STACK_SHIFT - PAGE_SHIFT);
2019 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2020 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_host_fp_state)[cpu],
2021 					pkvm_host_fp_state_order());
2022 	}
2023 }
2024 
do_pkvm_init(u32 hyp_va_bits)2025 static int do_pkvm_init(u32 hyp_va_bits)
2026 {
2027 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2028 	int ret;
2029 
2030 	preempt_disable();
2031 	cpu_hyp_init_context();
2032 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2033 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2034 				hyp_va_bits);
2035 	cpu_hyp_init_features();
2036 
2037 	/*
2038 	 * The stub hypercalls are now disabled, so set our local flag to
2039 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2040 	 */
2041 	__this_cpu_write(kvm_arm_hardware_enabled, 1);
2042 	preempt_enable();
2043 
2044 	return ret;
2045 }
2046 
get_hyp_id_aa64pfr0_el1(void)2047 static u64 get_hyp_id_aa64pfr0_el1(void)
2048 {
2049 	/*
2050 	 * Track whether the system isn't affected by spectre/meltdown in the
2051 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2052 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2053 	 * to have to worry about vcpu migration.
2054 	 *
2055 	 * Unlike for non-protected VMs, userspace cannot override this for
2056 	 * protected VMs.
2057 	 */
2058 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2059 
2060 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2061 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2062 
2063 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2064 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2065 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2066 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2067 
2068 	return val;
2069 }
2070 
kvm_hyp_init_symbols(void)2071 static void kvm_hyp_init_symbols(void)
2072 {
2073 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2074 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2075 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2076 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2077 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2078 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2079 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2080 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2081 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2082 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2083 	kvm_nvhe_sym(smccc_trng_available) = smccc_trng_available;
2084 	kvm_nvhe_sym(kvm_host_sve_max_vl) = kvm_host_sve_max_vl;
2085 }
2086 
2087 int kvm_hyp_init_events(void);
2088 
kvm_hyp_init_protection(u32 hyp_va_bits)2089 static int kvm_hyp_init_protection(u32 hyp_va_bits)
2090 {
2091 	void *addr = phys_to_virt(hyp_mem_base);
2092 	int ret;
2093 
2094 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2095 	if (ret)
2096 		return ret;
2097 
2098 	ret = do_pkvm_init(hyp_va_bits);
2099 	if (ret)
2100 		return ret;
2101 
2102 	free_hyp_pgds();
2103 
2104 	return 0;
2105 }
2106 
init_pkvm_host_fp_state(void)2107 static int init_pkvm_host_fp_state(void)
2108 {
2109 	int cpu;
2110 
2111 	if (!is_protected_kvm_enabled())
2112 		return 0;
2113 
2114 	/* Allocate pages for protected-mode host-fp state. */
2115 	for_each_possible_cpu(cpu) {
2116 		struct page *page;
2117 		unsigned long addr;
2118 
2119 		page = alloc_pages(GFP_KERNEL, pkvm_host_fp_state_order());
2120 		if (!page)
2121 			return -ENOMEM;
2122 
2123 		addr = (unsigned long)page_address(page);
2124 		kvm_nvhe_sym(kvm_arm_hyp_host_fp_state)[cpu] = addr;
2125 	}
2126 
2127 	/*
2128 	 * Don't map the pages in hyp since these are only used in protected
2129 	 * mode, which will (re)create its own mapping when initialized.
2130 	 */
2131 
2132 	return 0;
2133 }
2134 
2135 /*
2136  * Finalizes the initialization of hyp mode, once everything else is initialized
2137  * and the initialziation process cannot fail.
2138  */
finalize_init_hyp_mode(void)2139 static void finalize_init_hyp_mode(void)
2140 {
2141 	int cpu;
2142 
2143 	for_each_possible_cpu(cpu) {
2144 		kvm_nvhe_sym(kvm_arm_hyp_host_fp_state)[cpu] =
2145 			kern_hyp_va(kvm_nvhe_sym(kvm_arm_hyp_host_fp_state)[cpu]);
2146 	}
2147 }
2148 
2149 /**
2150  * Inits Hyp-mode on all online CPUs
2151  */
init_hyp_mode(void)2152 static int init_hyp_mode(void)
2153 {
2154 	u32 hyp_va_bits;
2155 	int cpu;
2156 	int err = -ENOMEM;
2157 
2158 	/*
2159 	 * The protected Hyp-mode cannot be initialized if the memory pool
2160 	 * allocation has failed.
2161 	 */
2162 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2163 		goto out_err;
2164 
2165 	/*
2166 	 * Allocate Hyp PGD and setup Hyp identity mapping
2167 	 */
2168 	err = kvm_mmu_init(&hyp_va_bits);
2169 	if (err)
2170 		goto out_err;
2171 
2172 	/*
2173 	 * Allocate stack pages for Hypervisor-mode
2174 	 */
2175 	for_each_possible_cpu(cpu) {
2176 		unsigned long stack_base;
2177 
2178 		stack_base = __get_free_pages(GFP_KERNEL, NVHE_STACK_SHIFT - PAGE_SHIFT);
2179 		if (!stack_base) {
2180 			err = -ENOMEM;
2181 			goto out_err;
2182 		}
2183 
2184 		per_cpu(kvm_arm_hyp_stack_base, cpu) = stack_base;
2185 	}
2186 
2187 	/*
2188 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2189 	 */
2190 	for_each_possible_cpu(cpu) {
2191 		struct page *page;
2192 		void *page_addr;
2193 
2194 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2195 		if (!page) {
2196 			err = -ENOMEM;
2197 			goto out_err;
2198 		}
2199 
2200 		page_addr = page_address(page);
2201 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2202 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2203 	}
2204 
2205 	/*
2206 	 * Map the Hyp-code called directly from the host
2207 	 */
2208 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2209 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2210 	if (err) {
2211 		kvm_err("Cannot map world-switch code\n");
2212 		goto out_err;
2213 	}
2214 
2215 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_start),
2216 				  kvm_ksym_ref(__hyp_data_end), PAGE_HYP);
2217 	if (err) {
2218 		kvm_err("Cannot map .hyp.data section\n");
2219 		goto out_err;
2220 	}
2221 
2222 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2223 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2224 	if (err) {
2225 		kvm_err("Cannot map .hyp.rodata section\n");
2226 		goto out_err;
2227 	}
2228 
2229 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2230 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2231 	if (err) {
2232 		kvm_err("Cannot map rodata section\n");
2233 		goto out_err;
2234 	}
2235 
2236 	/*
2237 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2238 	 * section thanks to an assertion in the linker script. Map it RW and
2239 	 * the rest of .bss RO.
2240 	 */
2241 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2242 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2243 	if (err) {
2244 		kvm_err("Cannot map hyp bss section: %d\n", err);
2245 		goto out_err;
2246 	}
2247 
2248 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2249 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2250 	if (err) {
2251 		kvm_err("Cannot map bss section\n");
2252 		goto out_err;
2253 	}
2254 
2255 	/*
2256 	 * Map the Hyp stack pages
2257 	 */
2258 	for_each_possible_cpu(cpu) {
2259 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2260 		char *stack_base = (char *)per_cpu(kvm_arm_hyp_stack_base, cpu);
2261 		unsigned long hyp_addr;
2262 
2263 		/*
2264 		 * Allocate a contiguous HYP private VA range for the stack
2265 		 * and guard page. The allocation is also aligned based on
2266 		 * the order of its size.
2267 		 */
2268 		err = hyp_alloc_private_va_range(NVHE_STACK_SIZE * 2, &hyp_addr);
2269 		if (err) {
2270 			kvm_err("Cannot allocate hyp stack guard page\n");
2271 			goto out_err;
2272 		}
2273 
2274 		/*
2275 		 * Since the stack grows downwards, map the stack to the page
2276 		 * at the higher address and leave the lower guard page
2277 		 * unbacked.
2278 		 *
2279 		 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
2280 		 * and addresses corresponding to the guard page have the
2281 		 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
2282 		 */
2283 		err = __create_hyp_mappings(hyp_addr + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
2284 					    __pa(stack_base), PAGE_HYP);
2285 		if (err) {
2286 			kvm_err("Cannot map hyp stack\n");
2287 			goto out_err;
2288 		}
2289 
2290 		/*
2291 		 * Save the stack PA in nvhe_init_params. This will be needed
2292 		 * to recreate the stack mapping in protected nVHE mode.
2293 		 * __hyp_pa() won't do the right thing there, since the stack
2294 		 * has been mapped in the flexible private VA space.
2295 		 */
2296 		params->stack_pa = __pa(stack_base);
2297 
2298 		params->stack_hyp_va = hyp_addr + (2 * NVHE_STACK_SIZE);
2299 	}
2300 
2301 	for_each_possible_cpu(cpu) {
2302 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2303 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2304 
2305 		/* Map Hyp percpu pages */
2306 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2307 		if (err) {
2308 			kvm_err("Cannot map hyp percpu region\n");
2309 			goto out_err;
2310 		}
2311 
2312 		/* Prepare the CPU initialization parameters */
2313 		cpu_prepare_hyp_mode(cpu);
2314 	}
2315 
2316 	err = init_pkvm_host_fp_state();
2317 	if (err)
2318 		goto out_err;
2319 
2320 	kvm_hyp_init_symbols();
2321 
2322 	/* TODO: Real .h interface */
2323 #ifdef CONFIG_TRACING
2324 	kvm_hyp_init_events();
2325 #endif
2326 
2327 	if (is_protected_kvm_enabled()) {
2328 		init_cpu_logical_map();
2329 
2330 		if (!init_psci_relay()) {
2331 			err = -ENODEV;
2332 			goto out_err;
2333 		}
2334 
2335 		err = kvm_hyp_init_protection(hyp_va_bits);
2336 		if (err) {
2337 			kvm_err("Failed to init hyp memory protection\n");
2338 			goto out_err;
2339 		}
2340 	}
2341 
2342 	return 0;
2343 
2344 out_err:
2345 	teardown_hyp_mode();
2346 	kvm_err("error initializing Hyp mode: %d\n", err);
2347 	return err;
2348 }
2349 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2350 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2351 {
2352 	struct kvm_vcpu *vcpu;
2353 	unsigned long i;
2354 
2355 	mpidr &= MPIDR_HWID_BITMASK;
2356 	kvm_for_each_vcpu(i, vcpu, kvm) {
2357 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2358 			return vcpu;
2359 	}
2360 	return NULL;
2361 }
2362 
kvm_arch_has_irq_bypass(void)2363 bool kvm_arch_has_irq_bypass(void)
2364 {
2365 	return true;
2366 }
2367 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2368 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2369 				      struct irq_bypass_producer *prod)
2370 {
2371 	struct kvm_kernel_irqfd *irqfd =
2372 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2373 
2374 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2375 					  &irqfd->irq_entry);
2376 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2377 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2378 				      struct irq_bypass_producer *prod)
2379 {
2380 	struct kvm_kernel_irqfd *irqfd =
2381 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2382 
2383 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2384 				     &irqfd->irq_entry);
2385 }
2386 
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2387 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2388 {
2389 	struct kvm_kernel_irqfd *irqfd =
2390 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2391 
2392 	kvm_arm_halt_guest(irqfd->kvm);
2393 }
2394 
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2395 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2396 {
2397 	struct kvm_kernel_irqfd *irqfd =
2398 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2399 
2400 	kvm_arm_resume_guest(irqfd->kvm);
2401 }
2402 
2403 /**
2404  * Initialize Hyp-mode and memory mappings on all CPUs.
2405  */
kvm_arch_init(void * opaque)2406 int kvm_arch_init(void *opaque)
2407 {
2408 	int err;
2409 	bool in_hyp_mode;
2410 
2411 	if (!is_hyp_mode_available()) {
2412 		kvm_info("HYP mode not available\n");
2413 		return -ENODEV;
2414 	}
2415 
2416 	if (kvm_get_mode() == KVM_MODE_NONE) {
2417 		kvm_info("KVM disabled from command line\n");
2418 		return -ENODEV;
2419 	}
2420 
2421 	err = kvm_sys_reg_table_init();
2422 	if (err) {
2423 		kvm_info("Error initializing system register tables");
2424 		return err;
2425 	}
2426 
2427 	in_hyp_mode = is_kernel_in_hyp_mode();
2428 
2429 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2430 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2431 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2432 			 "Only trusted guests should be used on this system.\n");
2433 
2434 	err = kvm_set_ipa_limit();
2435 	if (err)
2436 		return err;
2437 
2438 	err = kvm_arm_init_sve();
2439 	if (err)
2440 		return err;
2441 
2442 	err = kvm_arm_vmid_alloc_init();
2443 	if (err) {
2444 		kvm_err("Failed to initialize VMID allocator.\n");
2445 		return err;
2446 	}
2447 
2448 	if (!in_hyp_mode) {
2449 		err = init_hyp_mode();
2450 		if (err)
2451 			goto out_err;
2452 	}
2453 
2454 	err = kvm_init_vector_slots();
2455 	if (err) {
2456 		kvm_err("Cannot initialise vector slots\n");
2457 		goto out_err;
2458 	}
2459 
2460 	err = init_subsystems();
2461 	if (err)
2462 		goto out_hyp;
2463 
2464 	if (!in_hyp_mode) {
2465 		err = init_hyp_tracefs();
2466 		if (err)
2467 			kvm_err("Failed to initialize Hyp tracing\n");
2468 	}
2469 
2470 	if (is_protected_kvm_enabled()) {
2471 		kvm_info("Protected nVHE mode initialized successfully\n");
2472 	} else if (in_hyp_mode) {
2473 		kvm_info("VHE mode initialized successfully\n");
2474 	} else {
2475 		kvm_info("Hyp mode initialized successfully\n");
2476 	}
2477 
2478 	/*
2479 	 * This should be called after initialization is done and failure isn't
2480 	 * possible anymore.
2481 	 */
2482 	if (!in_hyp_mode)
2483 		finalize_init_hyp_mode();
2484 
2485 	return 0;
2486 
2487 out_hyp:
2488 	hyp_cpu_pm_exit();
2489 	if (!in_hyp_mode)
2490 		teardown_hyp_mode();
2491 out_err:
2492 	kvm_arm_vmid_alloc_free();
2493 	return err;
2494 }
2495 
2496 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)2497 void kvm_arch_exit(void)
2498 {
2499 	kvm_unregister_perf_callbacks();
2500 }
2501 
early_kvm_mode_cfg(char * arg)2502 static int __init early_kvm_mode_cfg(char *arg)
2503 {
2504 	if (!arg)
2505 		return -EINVAL;
2506 
2507 	if (strcmp(arg, "none") == 0) {
2508 		kvm_mode = KVM_MODE_NONE;
2509 		return 0;
2510 	}
2511 
2512 	if (!is_hyp_mode_available()) {
2513 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2514 		return 0;
2515 	}
2516 
2517 	if (strcmp(arg, "protected") == 0) {
2518 		if (!is_kernel_in_hyp_mode())
2519 			kvm_mode = KVM_MODE_PROTECTED;
2520 		else
2521 			pr_warn_once("Protected KVM not available with VHE\n");
2522 
2523 		return 0;
2524 	}
2525 
2526 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2527 		kvm_mode = KVM_MODE_DEFAULT;
2528 		return 0;
2529 	}
2530 
2531 	return -EINVAL;
2532 }
2533 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2534 
kvm_get_mode(void)2535 enum kvm_mode kvm_get_mode(void)
2536 {
2537 	return kvm_mode;
2538 }
2539 
arm_init(void)2540 static int arm_init(void)
2541 {
2542 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2543 	return rc;
2544 }
2545 
2546 module_init(arm_init);
2547