• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27 
28 /*
29  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
30  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31  */
32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
33 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34 
xstate_required_size(u64 xstate_bv,bool compacted)35 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 {
37 	int feature_bit = 0;
38 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39 
40 	xstate_bv &= XFEATURE_MASK_EXTEND;
41 	while (xstate_bv) {
42 		if (xstate_bv & 0x1) {
43 		        u32 eax, ebx, ecx, edx, offset;
44 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
45 			offset = compacted ? ret : ebx;
46 			ret = max(ret, offset + eax);
47 		}
48 
49 		xstate_bv >>= 1;
50 		feature_bit++;
51 	}
52 
53 	return ret;
54 }
55 
56 #define F feature_bit
57 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
58 
cpuid_entry2_find(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u32 index)59 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
60 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
61 {
62 	struct kvm_cpuid_entry2 *e;
63 	int i;
64 
65 	for (i = 0; i < nent; i++) {
66 		e = &entries[i];
67 
68 		if (e->function == function &&
69 		    (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
70 			return e;
71 	}
72 
73 	return NULL;
74 }
75 
kvm_check_cpuid(struct kvm_cpuid_entry2 * entries,int nent)76 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
77 {
78 	struct kvm_cpuid_entry2 *best;
79 
80 	/*
81 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
82 	 * canonical address checks; exit if it is ever changed.
83 	 */
84 	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
85 	if (best) {
86 		int vaddr_bits = (best->eax & 0xff00) >> 8;
87 
88 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
89 			return -EINVAL;
90 	}
91 
92 	return 0;
93 }
94 
kvm_update_pv_runtime(struct kvm_vcpu * vcpu)95 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
96 {
97 	struct kvm_cpuid_entry2 *best;
98 
99 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
100 
101 	/*
102 	 * save the feature bitmap to avoid cpuid lookup for every PV
103 	 * operation
104 	 */
105 	if (best)
106 		vcpu->arch.pv_cpuid.features = best->eax;
107 }
108 
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)109 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
110 {
111 	struct kvm_cpuid_entry2 *best;
112 
113 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
114 	if (best) {
115 		/* Update OSXSAVE bit */
116 		if (boot_cpu_has(X86_FEATURE_XSAVE))
117 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
118 				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
119 
120 		cpuid_entry_change(best, X86_FEATURE_APIC,
121 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
122 	}
123 
124 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
125 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
126 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
127 				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
128 
129 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
130 	if (best)
131 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
132 
133 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
134 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
135 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
136 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
137 
138 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142 
143 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
144 		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
145 		if (best)
146 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
147 					   vcpu->arch.ia32_misc_enable_msr &
148 					   MSR_IA32_MISC_ENABLE_MWAIT);
149 	}
150 }
151 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
152 
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)153 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
154 {
155 	struct kvm_lapic *apic = vcpu->arch.apic;
156 	struct kvm_cpuid_entry2 *best;
157 
158 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
159 	if (best && apic) {
160 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
161 			apic->lapic_timer.timer_mode_mask = 3 << 17;
162 		else
163 			apic->lapic_timer.timer_mode_mask = 1 << 17;
164 
165 		kvm_apic_set_version(vcpu);
166 	}
167 
168 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
169 	if (!best)
170 		vcpu->arch.guest_supported_xcr0 = 0;
171 	else
172 		vcpu->arch.guest_supported_xcr0 =
173 			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
174 
175 	/*
176 	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
177 	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
178 	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
179 	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
180 	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
181 	 * '1' even on CPUs that don't support XSAVE.
182 	 */
183 	best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
184 	if (best) {
185 		best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
186 		best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
187 		best->ecx |= XFEATURE_MASK_FPSSE;
188 	}
189 
190 	kvm_update_pv_runtime(vcpu);
191 
192 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
193 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
194 
195 	kvm_pmu_refresh(vcpu);
196 	vcpu->arch.cr4_guest_rsvd_bits =
197 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
198 
199 	kvm_hv_set_cpuid(vcpu);
200 
201 	/* Invoke the vendor callback only after the above state is updated. */
202 	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
203 
204 	/*
205 	 * Except for the MMU, which needs to do its thing any vendor specific
206 	 * adjustments to the reserved GPA bits.
207 	 */
208 	kvm_mmu_after_set_cpuid(vcpu);
209 }
210 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)211 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
212 {
213 	struct kvm_cpuid_entry2 *best;
214 
215 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
216 	if (!best || best->eax < 0x80000008)
217 		goto not_found;
218 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
219 	if (best)
220 		return best->eax & 0xff;
221 not_found:
222 	return 36;
223 }
224 
225 /*
226  * This "raw" version returns the reserved GPA bits without any adjustments for
227  * encryption technologies that usurp bits.  The raw mask should be used if and
228  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
229  */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)230 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
231 {
232 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
233 }
234 
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)235 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
236                         int nent)
237 {
238     int r;
239 
240     r = kvm_check_cpuid(e2, nent);
241     if (r)
242         return r;
243 
244     kvfree(vcpu->arch.cpuid_entries);
245     vcpu->arch.cpuid_entries = e2;
246     vcpu->arch.cpuid_nent = nent;
247 
248     kvm_update_cpuid_runtime(vcpu);
249     kvm_vcpu_after_set_cpuid(vcpu);
250 
251     return 0;
252 }
253 
254 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)255 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
256 			     struct kvm_cpuid *cpuid,
257 			     struct kvm_cpuid_entry __user *entries)
258 {
259 	int r, i;
260 	struct kvm_cpuid_entry *e = NULL;
261 	struct kvm_cpuid_entry2 *e2 = NULL;
262 
263 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
264 		return -E2BIG;
265 
266 	if (cpuid->nent) {
267 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
268 		if (IS_ERR(e))
269 			return PTR_ERR(e);
270 
271 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
272 		if (!e2) {
273 			r = -ENOMEM;
274 			goto out_free_cpuid;
275 		}
276 	}
277 	for (i = 0; i < cpuid->nent; i++) {
278 		e2[i].function = e[i].function;
279 		e2[i].eax = e[i].eax;
280 		e2[i].ebx = e[i].ebx;
281 		e2[i].ecx = e[i].ecx;
282 		e2[i].edx = e[i].edx;
283 		e2[i].index = 0;
284 		e2[i].flags = 0;
285 		e2[i].padding[0] = 0;
286 		e2[i].padding[1] = 0;
287 		e2[i].padding[2] = 0;
288 	}
289 
290 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
291 	if (r)
292 		kvfree(e2);
293 
294 out_free_cpuid:
295 	kvfree(e);
296 
297 	return r;
298 }
299 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)300 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
301 			      struct kvm_cpuid2 *cpuid,
302 			      struct kvm_cpuid_entry2 __user *entries)
303 {
304 	struct kvm_cpuid_entry2 *e2 = NULL;
305 	int r;
306 
307 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
308 		return -E2BIG;
309 
310 	if (cpuid->nent) {
311 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
312 		if (IS_ERR(e2))
313 			return PTR_ERR(e2);
314 	}
315 
316 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
317 	if (r)
318 		kvfree(e2);
319 
320 	return r;
321 }
322 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)323 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
324 			      struct kvm_cpuid2 *cpuid,
325 			      struct kvm_cpuid_entry2 __user *entries)
326 {
327 	int r;
328 
329 	r = -E2BIG;
330 	if (cpuid->nent < vcpu->arch.cpuid_nent)
331 		goto out;
332 	r = -EFAULT;
333 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
334 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
335 		goto out;
336 	return 0;
337 
338 out:
339 	cpuid->nent = vcpu->arch.cpuid_nent;
340 	return r;
341 }
342 
343 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
__kvm_cpu_cap_mask(unsigned int leaf)344 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
345 {
346 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
347 	struct kvm_cpuid_entry2 entry;
348 
349 	reverse_cpuid_check(leaf);
350 
351 	cpuid_count(cpuid.function, cpuid.index,
352 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
353 
354 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
355 }
356 
357 static __always_inline
kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf,u32 mask)358 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
359 {
360 	/* Use kvm_cpu_cap_mask for non-scattered leafs. */
361 	BUILD_BUG_ON(leaf < NCAPINTS);
362 
363 	kvm_cpu_caps[leaf] = mask;
364 
365 	__kvm_cpu_cap_mask(leaf);
366 }
367 
kvm_cpu_cap_mask(enum cpuid_leafs leaf,u32 mask)368 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
369 {
370 	/* Use kvm_cpu_cap_init_scattered for scattered leafs. */
371 	BUILD_BUG_ON(leaf >= NCAPINTS);
372 
373 	kvm_cpu_caps[leaf] &= mask;
374 
375 	__kvm_cpu_cap_mask(leaf);
376 }
377 
kvm_set_cpu_caps(void)378 void kvm_set_cpu_caps(void)
379 {
380 #ifdef CONFIG_X86_64
381 	unsigned int f_gbpages = F(GBPAGES);
382 	unsigned int f_lm = F(LM);
383 #else
384 	unsigned int f_gbpages = 0;
385 	unsigned int f_lm = 0;
386 #endif
387 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
388 
389 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
390 		     sizeof(boot_cpu_data.x86_capability));
391 
392 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
393 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
394 
395 	kvm_cpu_cap_mask(CPUID_1_ECX,
396 		/*
397 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
398 		 * advertised to guests via CPUID!
399 		 */
400 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
401 		0 /* DS-CPL, VMX, SMX, EST */ |
402 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
403 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
404 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
405 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
406 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
407 		F(F16C) | F(RDRAND)
408 	);
409 	/* KVM emulates x2apic in software irrespective of host support. */
410 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
411 
412 	kvm_cpu_cap_mask(CPUID_1_EDX,
413 		F(FPU) | F(VME) | F(DE) | F(PSE) |
414 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
415 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
416 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
417 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
418 		0 /* Reserved, DS, ACPI */ | F(MMX) |
419 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
420 		0 /* HTT, TM, Reserved, PBE */
421 	);
422 
423 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
424 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
425 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
426 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
427 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
428 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
429 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
430 		F(AVX512VL));
431 
432 	kvm_cpu_cap_mask(CPUID_7_ECX,
433 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
434 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
435 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
436 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
437 		F(SGX_LC) | F(BUS_LOCK_DETECT)
438 	);
439 	/* Set LA57 based on hardware capability. */
440 	if (cpuid_ecx(7) & F(LA57))
441 		kvm_cpu_cap_set(X86_FEATURE_LA57);
442 
443 	/*
444 	 * PKU not yet implemented for shadow paging and requires OSPKE
445 	 * to be set on the host. Clear it if that is not the case
446 	 */
447 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
448 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
449 
450 	kvm_cpu_cap_mask(CPUID_7_EDX,
451 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
452 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
453 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
454 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
455 	);
456 
457 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
458 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
459 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
460 
461 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
462 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
463 	if (boot_cpu_has(X86_FEATURE_STIBP))
464 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
465 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
466 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
467 
468 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
469 		F(AVX_VNNI) | F(AVX512_BF16)
470 	);
471 
472 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
473 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
474 	);
475 
476 	kvm_cpu_cap_init_scattered(CPUID_12_EAX,
477 		SF(SGX1) | SF(SGX2)
478 	);
479 
480 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
481 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
482 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
483 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
484 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
485 		F(TOPOEXT) | F(PERFCTR_CORE)
486 	);
487 
488 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
489 		F(FPU) | F(VME) | F(DE) | F(PSE) |
490 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
491 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
492 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
493 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
494 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
495 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
496 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
497 	);
498 
499 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
500 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
501 
502 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
503 		F(CLZERO) | F(XSAVEERPTR) |
504 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
505 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
506 	);
507 
508 	/*
509 	 * AMD has separate bits for each SPEC_CTRL bit.
510 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
511 	 * record that in cpufeatures so use them.
512 	 */
513 	if (boot_cpu_has(X86_FEATURE_IBPB))
514 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
515 	if (boot_cpu_has(X86_FEATURE_IBRS))
516 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
517 	if (boot_cpu_has(X86_FEATURE_STIBP))
518 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
519 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
520 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
521 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
522 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
523 	/*
524 	 * The preference is to use SPEC CTRL MSR instead of the
525 	 * VIRT_SPEC MSR.
526 	 */
527 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
528 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
529 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
530 
531 	/*
532 	 * Hide all SVM features by default, SVM will set the cap bits for
533 	 * features it emulates and/or exposes for L1.
534 	 */
535 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
536 
537 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
538 		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
539 		F(SME_COHERENT));
540 
541 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
542 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
543 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
544 		F(PMM) | F(PMM_EN)
545 	);
546 
547 	if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
548 		kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
549 
550 	/*
551 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
552 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
553 	 * should never happen, but the guest will likely crash if RDTSCP or
554 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
555 	 * the past.  For example, the sanity check may fire if this instance of
556 	 * KVM is running as L1 on top of an older, broken KVM.
557 	 */
558 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
559 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
560 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
561 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
562 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
563 	}
564 }
565 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
566 
567 struct kvm_cpuid_array {
568 	struct kvm_cpuid_entry2 *entries;
569 	int maxnent;
570 	int nent;
571 };
572 
get_next_cpuid(struct kvm_cpuid_array * array)573 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
574 {
575 	if (array->nent >= array->maxnent)
576 		return NULL;
577 
578 	return &array->entries[array->nent++];
579 }
580 
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)581 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
582 					      u32 function, u32 index)
583 {
584 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
585 
586 	if (!entry)
587 		return NULL;
588 
589 	entry->function = function;
590 	entry->index = index;
591 	entry->flags = 0;
592 
593 	cpuid_count(entry->function, entry->index,
594 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
595 
596 	switch (function) {
597 	case 4:
598 	case 7:
599 	case 0xb:
600 	case 0xd:
601 	case 0xf:
602 	case 0x10:
603 	case 0x12:
604 	case 0x14:
605 	case 0x17:
606 	case 0x18:
607 	case 0x1f:
608 	case 0x8000001d:
609 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
610 		break;
611 	}
612 
613 	return entry;
614 }
615 
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)616 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
617 {
618 	struct kvm_cpuid_entry2 *entry;
619 
620 	if (array->nent >= array->maxnent)
621 		return -E2BIG;
622 
623 	entry = &array->entries[array->nent];
624 	entry->function = func;
625 	entry->index = 0;
626 	entry->flags = 0;
627 
628 	switch (func) {
629 	case 0:
630 		entry->eax = 7;
631 		++array->nent;
632 		break;
633 	case 1:
634 		entry->ecx = F(MOVBE);
635 		++array->nent;
636 		break;
637 	case 7:
638 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
639 		entry->eax = 0;
640 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
641 			entry->ecx = F(RDPID);
642 		++array->nent;
643 		break;
644 	default:
645 		break;
646 	}
647 
648 	return 0;
649 }
650 
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)651 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
652 {
653 	struct kvm_cpuid_entry2 *entry;
654 	int r, i, max_idx;
655 
656 	/* all calls to cpuid_count() should be made on the same cpu */
657 	get_cpu();
658 
659 	r = -E2BIG;
660 
661 	entry = do_host_cpuid(array, function, 0);
662 	if (!entry)
663 		goto out;
664 
665 	switch (function) {
666 	case 0:
667 		/* Limited to the highest leaf implemented in KVM. */
668 		entry->eax = min(entry->eax, 0x1fU);
669 		break;
670 	case 1:
671 		cpuid_entry_override(entry, CPUID_1_EDX);
672 		cpuid_entry_override(entry, CPUID_1_ECX);
673 		break;
674 	case 2:
675 		/*
676 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
677 		 * CPUID(function=2, index=0) may return different results each
678 		 * time, with the least-significant byte in EAX enumerating the
679 		 * number of times software should do CPUID(2, 0).
680 		 *
681 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
682 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
683 		 * return 01H. Software should ignore this value and not
684 		 * interpret it as an informational descriptor", while AMD's
685 		 * APM states that CPUID(2) is reserved.
686 		 *
687 		 * WARN if a frankenstein CPU that supports virtualization and
688 		 * a stateful CPUID.0x2 is encountered.
689 		 */
690 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
691 		break;
692 	/* functions 4 and 0x8000001d have additional index. */
693 	case 4:
694 	case 0x8000001d:
695 		/*
696 		 * Read entries until the cache type in the previous entry is
697 		 * zero, i.e. indicates an invalid entry.
698 		 */
699 		for (i = 1; entry->eax & 0x1f; ++i) {
700 			entry = do_host_cpuid(array, function, i);
701 			if (!entry)
702 				goto out;
703 		}
704 		break;
705 	case 6: /* Thermal management */
706 		entry->eax = 0x4; /* allow ARAT */
707 		entry->ebx = 0;
708 		entry->ecx = 0;
709 		entry->edx = 0;
710 		break;
711 	/* function 7 has additional index. */
712 	case 7:
713 		entry->eax = min(entry->eax, 1u);
714 		cpuid_entry_override(entry, CPUID_7_0_EBX);
715 		cpuid_entry_override(entry, CPUID_7_ECX);
716 		cpuid_entry_override(entry, CPUID_7_EDX);
717 
718 		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
719 		if (entry->eax == 1) {
720 			entry = do_host_cpuid(array, function, 1);
721 			if (!entry)
722 				goto out;
723 
724 			cpuid_entry_override(entry, CPUID_7_1_EAX);
725 			entry->ebx = 0;
726 			entry->ecx = 0;
727 			entry->edx = 0;
728 		}
729 		break;
730 	case 0xa: { /* Architectural Performance Monitoring */
731 		struct x86_pmu_capability cap;
732 		union cpuid10_eax eax;
733 		union cpuid10_edx edx;
734 
735 		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
736 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
737 			break;
738 		}
739 
740 		perf_get_x86_pmu_capability(&cap);
741 
742 		/*
743 		 * Only support guest architectural pmu on a host
744 		 * with architectural pmu.
745 		 */
746 		if (!cap.version)
747 			memset(&cap, 0, sizeof(cap));
748 
749 		eax.split.version_id = min(cap.version, 2);
750 		eax.split.num_counters = cap.num_counters_gp;
751 		eax.split.bit_width = cap.bit_width_gp;
752 		eax.split.mask_length = cap.events_mask_len;
753 
754 		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
755 		edx.split.bit_width_fixed = cap.bit_width_fixed;
756 		if (cap.version)
757 			edx.split.anythread_deprecated = 1;
758 		edx.split.reserved1 = 0;
759 		edx.split.reserved2 = 0;
760 
761 		entry->eax = eax.full;
762 		entry->ebx = cap.events_mask;
763 		entry->ecx = 0;
764 		entry->edx = edx.full;
765 		break;
766 	}
767 	case 0x1f:
768 	case 0xb:
769 		/*
770 		 * No topology; a valid topology is indicated by the presence
771 		 * of subleaf 1.
772 		 */
773 		entry->eax = entry->ebx = entry->ecx = 0;
774 		break;
775 	case 0xd:
776 		entry->eax &= supported_xcr0;
777 		entry->ebx = xstate_required_size(supported_xcr0, false);
778 		entry->ecx = entry->ebx;
779 		entry->edx &= supported_xcr0 >> 32;
780 		if (!supported_xcr0)
781 			break;
782 
783 		entry = do_host_cpuid(array, function, 1);
784 		if (!entry)
785 			goto out;
786 
787 		cpuid_entry_override(entry, CPUID_D_1_EAX);
788 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
789 			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
790 							  true);
791 		else {
792 			WARN_ON_ONCE(supported_xss != 0);
793 			entry->ebx = 0;
794 		}
795 		entry->ecx &= supported_xss;
796 		entry->edx &= supported_xss >> 32;
797 
798 		for (i = 2; i < 64; ++i) {
799 			bool s_state;
800 			if (supported_xcr0 & BIT_ULL(i))
801 				s_state = false;
802 			else if (supported_xss & BIT_ULL(i))
803 				s_state = true;
804 			else
805 				continue;
806 
807 			entry = do_host_cpuid(array, function, i);
808 			if (!entry)
809 				goto out;
810 
811 			/*
812 			 * The supported check above should have filtered out
813 			 * invalid sub-leafs.  Only valid sub-leafs should
814 			 * reach this point, and they should have a non-zero
815 			 * save state size.  Furthermore, check whether the
816 			 * processor agrees with supported_xcr0/supported_xss
817 			 * on whether this is an XCR0- or IA32_XSS-managed area.
818 			 */
819 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
820 				--array->nent;
821 				continue;
822 			}
823 			entry->edx = 0;
824 		}
825 		break;
826 	case 0x12:
827 		/* Intel SGX */
828 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
829 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
830 			break;
831 		}
832 
833 		/*
834 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
835 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
836 		 * are restricted by kernel and KVM capabilities (like most
837 		 * feature flags), while enclave size is unrestricted.
838 		 */
839 		cpuid_entry_override(entry, CPUID_12_EAX);
840 		entry->ebx &= SGX_MISC_EXINFO;
841 
842 		entry = do_host_cpuid(array, function, 1);
843 		if (!entry)
844 			goto out;
845 
846 		/*
847 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
848 		 * feature flags.  Advertise all supported flags, including
849 		 * privileged attributes that require explicit opt-in from
850 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
851 		 * expected to derive it from supported XCR0.
852 		 */
853 		entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
854 			      SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
855 			      SGX_ATTR_KSS;
856 		entry->ebx &= 0;
857 		break;
858 	/* Intel PT */
859 	case 0x14:
860 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
861 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
862 			break;
863 		}
864 
865 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
866 			if (!do_host_cpuid(array, function, i))
867 				goto out;
868 		}
869 		break;
870 	case KVM_CPUID_SIGNATURE: {
871 		static const char signature[12] = "KVMKVMKVM\0\0";
872 		const u32 *sigptr = (const u32 *)signature;
873 		entry->eax = KVM_CPUID_FEATURES;
874 		entry->ebx = sigptr[0];
875 		entry->ecx = sigptr[1];
876 		entry->edx = sigptr[2];
877 		break;
878 	}
879 	case KVM_CPUID_FEATURES:
880 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
881 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
882 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
883 			     (1 << KVM_FEATURE_ASYNC_PF) |
884 			     (1 << KVM_FEATURE_PV_EOI) |
885 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
886 			     (1 << KVM_FEATURE_PV_UNHALT) |
887 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
888 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
889 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
890 			     (1 << KVM_FEATURE_POLL_CONTROL) |
891 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
892 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
893 
894 		if (sched_info_on())
895 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
896 
897 		entry->ebx = 0;
898 		entry->ecx = 0;
899 		entry->edx = 0;
900 		break;
901 	case 0x80000000:
902 		entry->eax = min(entry->eax, 0x8000001f);
903 		break;
904 	case 0x80000001:
905 		entry->ebx &= ~GENMASK(27, 16);
906 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
907 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
908 		break;
909 	case 0x80000006:
910 		/* Drop reserved bits, pass host L2 cache and TLB info. */
911 		entry->edx &= ~GENMASK(17, 16);
912 		break;
913 	case 0x80000007: /* Advanced power management */
914 		/* invariant TSC is CPUID.80000007H:EDX[8] */
915 		entry->edx &= (1 << 8);
916 		/* mask against host */
917 		entry->edx &= boot_cpu_data.x86_power;
918 		entry->eax = entry->ebx = entry->ecx = 0;
919 		break;
920 	case 0x80000008: {
921 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
922 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
923 		unsigned phys_as = entry->eax & 0xff;
924 
925 		/*
926 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
927 		 * the guest operates in the same PA space as the host, i.e.
928 		 * reductions in MAXPHYADDR for memory encryption affect shadow
929 		 * paging, too.
930 		 *
931 		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
932 		 * provided, use the raw bare metal MAXPHYADDR as reductions to
933 		 * the HPAs do not affect GPAs.
934 		 */
935 		if (!tdp_enabled)
936 			g_phys_as = boot_cpu_data.x86_phys_bits;
937 		else if (!g_phys_as)
938 			g_phys_as = phys_as;
939 
940 		entry->eax = g_phys_as | (virt_as << 8);
941 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
942 		entry->edx = 0;
943 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
944 		break;
945 	}
946 	case 0x8000000A:
947 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
948 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
949 			break;
950 		}
951 		entry->eax = 1; /* SVM revision 1 */
952 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
953 				   ASID emulation to nested SVM */
954 		entry->ecx = 0; /* Reserved */
955 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
956 		break;
957 	case 0x80000019:
958 		entry->ecx = entry->edx = 0;
959 		break;
960 	case 0x8000001a:
961 		entry->eax &= GENMASK(2, 0);
962 		entry->ebx = entry->ecx = entry->edx = 0;
963 		break;
964 	case 0x8000001e:
965 		/* Do not return host topology information.  */
966 		entry->eax = entry->ebx = entry->ecx = 0;
967 		entry->edx = 0; /* reserved */
968 		break;
969 	case 0x8000001F:
970 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
971 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
972 		} else {
973 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
974 			/* Clear NumVMPL since KVM does not support VMPL.  */
975 			entry->ebx &= ~GENMASK(31, 12);
976 			/*
977 			 * Enumerate '0' for "PA bits reduction", the adjusted
978 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
979 			 */
980 			entry->ebx &= ~GENMASK(11, 6);
981 		}
982 		break;
983 	/*Add support for Centaur's CPUID instruction*/
984 	case 0xC0000000:
985 		/*Just support up to 0xC0000004 now*/
986 		entry->eax = min(entry->eax, 0xC0000004);
987 		break;
988 	case 0xC0000001:
989 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
990 		break;
991 	case 3: /* Processor serial number */
992 	case 5: /* MONITOR/MWAIT */
993 	case 0xC0000002:
994 	case 0xC0000003:
995 	case 0xC0000004:
996 	default:
997 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
998 		break;
999 	}
1000 
1001 	r = 0;
1002 
1003 out:
1004 	put_cpu();
1005 
1006 	return r;
1007 }
1008 
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1009 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1010 			 unsigned int type)
1011 {
1012 	if (type == KVM_GET_EMULATED_CPUID)
1013 		return __do_cpuid_func_emulated(array, func);
1014 
1015 	return __do_cpuid_func(array, func);
1016 }
1017 
1018 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1019 
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1020 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1021 			  unsigned int type)
1022 {
1023 	u32 limit;
1024 	int r;
1025 
1026 	if (func == CENTAUR_CPUID_SIGNATURE &&
1027 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1028 		return 0;
1029 
1030 	r = do_cpuid_func(array, func, type);
1031 	if (r)
1032 		return r;
1033 
1034 	limit = array->entries[array->nent - 1].eax;
1035 	for (func = func + 1; func <= limit; ++func) {
1036 		r = do_cpuid_func(array, func, type);
1037 		if (r)
1038 			break;
1039 	}
1040 
1041 	return r;
1042 }
1043 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1044 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1045 				 __u32 num_entries, unsigned int ioctl_type)
1046 {
1047 	int i;
1048 	__u32 pad[3];
1049 
1050 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1051 		return false;
1052 
1053 	/*
1054 	 * We want to make sure that ->padding is being passed clean from
1055 	 * userspace in case we want to use it for something in the future.
1056 	 *
1057 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1058 	 * have to give ourselves satisfied only with the emulated side. /me
1059 	 * sheds a tear.
1060 	 */
1061 	for (i = 0; i < num_entries; i++) {
1062 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1063 			return true;
1064 
1065 		if (pad[0] || pad[1] || pad[2])
1066 			return true;
1067 	}
1068 	return false;
1069 }
1070 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1071 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1072 			    struct kvm_cpuid_entry2 __user *entries,
1073 			    unsigned int type)
1074 {
1075 	static const u32 funcs[] = {
1076 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1077 	};
1078 
1079 	struct kvm_cpuid_array array = {
1080 		.nent = 0,
1081 	};
1082 	int r, i;
1083 
1084 	if (cpuid->nent < 1)
1085 		return -E2BIG;
1086 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1087 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1088 
1089 	if (sanity_check_entries(entries, cpuid->nent, type))
1090 		return -EINVAL;
1091 
1092 	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1093 					   cpuid->nent));
1094 	if (!array.entries)
1095 		return -ENOMEM;
1096 
1097 	array.maxnent = cpuid->nent;
1098 
1099 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1100 		r = get_cpuid_func(&array, funcs[i], type);
1101 		if (r)
1102 			goto out_free;
1103 	}
1104 	cpuid->nent = array.nent;
1105 
1106 	if (copy_to_user(entries, array.entries,
1107 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1108 		r = -EFAULT;
1109 
1110 out_free:
1111 	vfree(array.entries);
1112 	return r;
1113 }
1114 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)1115 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1116 					      u32 function, u32 index)
1117 {
1118 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1119 				 function, index);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1122 
1123 /*
1124  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1125  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1126  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1127  * range.  Centaur/VIA follows Intel semantics.
1128  *
1129  * A leaf is considered out-of-range if its function is higher than the maximum
1130  * supported leaf of its associated class or if its associated class does not
1131  * exist.
1132  *
1133  * There are three primary classes to be considered, with their respective
1134  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1135  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1136  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1137  *
1138  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1139  *  - Hypervisor: 0x40000000 - 0x4fffffff
1140  *  - Extended:   0x80000000 - 0xbfffffff
1141  *  - Centaur:    0xc0000000 - 0xcfffffff
1142  *
1143  * The Hypervisor class is further subdivided into sub-classes that each act as
1144  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1145  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1146  * CPUID sub-classes are:
1147  *
1148  *  - HyperV:     0x40000000 - 0x400000ff
1149  *  - KVM:        0x40000100 - 0x400001ff
1150  */
1151 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1152 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1153 {
1154 	struct kvm_cpuid_entry2 *basic, *class;
1155 	u32 function = *fn_ptr;
1156 
1157 	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1158 	if (!basic)
1159 		return NULL;
1160 
1161 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1162 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1163 		return NULL;
1164 
1165 	if (function >= 0x40000000 && function <= 0x4fffffff)
1166 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1167 	else if (function >= 0xc0000000)
1168 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1169 	else
1170 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1171 
1172 	if (class && function <= class->eax)
1173 		return NULL;
1174 
1175 	/*
1176 	 * Leaf specific adjustments are also applied when redirecting to the
1177 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1178 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1179 	 * needs to be pulled from CPUID.0xb.1.
1180 	 */
1181 	*fn_ptr = basic->eax;
1182 
1183 	/*
1184 	 * The class does not exist or the requested function is out of range;
1185 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1186 	 * the original requested leaf is observed!
1187 	 */
1188 	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1189 }
1190 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)1191 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1192 	       u32 *ecx, u32 *edx, bool exact_only)
1193 {
1194 	u32 orig_function = *eax, function = *eax, index = *ecx;
1195 	struct kvm_cpuid_entry2 *entry;
1196 	bool exact, used_max_basic = false;
1197 
1198 	entry = kvm_find_cpuid_entry(vcpu, function, index);
1199 	exact = !!entry;
1200 
1201 	if (!entry && !exact_only) {
1202 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1203 		used_max_basic = !!entry;
1204 	}
1205 
1206 	if (entry) {
1207 		*eax = entry->eax;
1208 		*ebx = entry->ebx;
1209 		*ecx = entry->ecx;
1210 		*edx = entry->edx;
1211 		if (function == 7 && index == 0) {
1212 			u64 data;
1213 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1214 			    (data & TSX_CTRL_CPUID_CLEAR))
1215 				*ebx &= ~(F(RTM) | F(HLE));
1216 		}
1217 	} else {
1218 		*eax = *ebx = *ecx = *edx = 0;
1219 		/*
1220 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1221 		 * and EDX is always the x2APIC ID, even for undefined
1222 		 * subleaves. Index 1 will exist iff the leaf is
1223 		 * implemented, so we pass through CL iff leaf 1
1224 		 * exists. EDX can be copied from any existing index.
1225 		 */
1226 		if (function == 0xb || function == 0x1f) {
1227 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1228 			if (entry) {
1229 				*ecx = index & 0xff;
1230 				*edx = entry->edx;
1231 			}
1232 		}
1233 	}
1234 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1235 			used_max_basic);
1236 	return exact;
1237 }
1238 EXPORT_SYMBOL_GPL(kvm_cpuid);
1239 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1240 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1241 {
1242 	u32 eax, ebx, ecx, edx;
1243 
1244 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1245 		return 1;
1246 
1247 	eax = kvm_rax_read(vcpu);
1248 	ecx = kvm_rcx_read(vcpu);
1249 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1250 	kvm_rax_write(vcpu, eax);
1251 	kvm_rbx_write(vcpu, ebx);
1252 	kvm_rcx_write(vcpu, ecx);
1253 	kvm_rdx_write(vcpu, edx);
1254 	return kvm_skip_emulated_instruction(vcpu);
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1257