1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 .set = set_nx_huge_pages,
73 .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 .set = set_nx_huge_pages_recovery_ratio,
78 .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91 * When setting this variable to true it enables Two-Dimensional-Paging
92 * where the hardware walks 2 page tables:
93 * 1. the guest-virtual to guest-physical
94 * 2. while doing 1. it walks guest-physical to host-physical
95 * If the hardware supports that we don't need to do shadow paging.
96 */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int tdp_root_level __read_mostly;
101 static int max_tdp_level __read_mostly;
102
103 enum {
104 AUDIT_PRE_PAGE_FAULT,
105 AUDIT_POST_PAGE_FAULT,
106 AUDIT_PRE_PTE_WRITE,
107 AUDIT_POST_PTE_WRITE,
108 AUDIT_PRE_SYNC,
109 AUDIT_POST_SYNC
110 };
111
112 #ifdef MMU_DEBUG
113 bool dbg = 0;
114 module_param(dbg, bool, 0644);
115 #endif
116
117 #define PTE_PREFETCH_NUM 8
118
119 #define PT32_LEVEL_BITS 10
120
121 #define PT32_LEVEL_SHIFT(level) \
122 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123
124 #define PT32_LVL_OFFSET_MASK(level) \
125 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT32_LEVEL_BITS))) - 1))
127
128 #define PT32_INDEX(address, level)\
129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137 * PT32_LEVEL_BITS))) - 1))
138
139 #include <trace/events/kvm.h>
140
141 /* make pte_list_desc fit well in cache lines */
142 #define PTE_LIST_EXT 14
143
144 /*
145 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
146 * at the start; then accessing it will only use one single cacheline for
147 * either full (entries==PTE_LIST_EXT) case or entries<=6.
148 */
149 struct pte_list_desc {
150 struct pte_list_desc *more;
151 /*
152 * Stores number of entries stored in the pte_list_desc. No need to be
153 * u64 but just for easier alignment. When PTE_LIST_EXT, means full.
154 */
155 u64 spte_count;
156 u64 *sptes[PTE_LIST_EXT];
157 };
158
159 struct kvm_shadow_walk_iterator {
160 u64 addr;
161 hpa_t shadow_addr;
162 u64 *sptep;
163 int level;
164 unsigned index;
165 };
166
167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
168 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
169 (_root), (_addr)); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
173 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)); \
176 shadow_walk_next(&(_walker)))
177
178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
179 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
180 shadow_walk_okay(&(_walker)) && \
181 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
182 __shadow_walk_next(&(_walker), spte))
183
184 static struct kmem_cache *pte_list_desc_cache;
185 struct kmem_cache *mmu_page_header_cache;
186 static struct percpu_counter kvm_total_used_mmu_pages;
187
188 static void mmu_spte_set(u64 *sptep, u64 spte);
189 static union kvm_mmu_page_role
190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191
192 struct kvm_mmu_role_regs {
193 const unsigned long cr0;
194 const unsigned long cr4;
195 const u64 efer;
196 };
197
198 #define CREATE_TRACE_POINTS
199 #include "mmutrace.h"
200
201 /*
202 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
203 * reading from the role_regs. Once the mmu_role is constructed, it becomes
204 * the single source of truth for the MMU's state.
205 */
206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 { \
209 return !!(regs->reg & flag); \
210 }
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
221
222 /*
223 * The MMU itself (with a valid role) is the single source of truth for the
224 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
225 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
226 * and the vCPU may be incorrect/irrelevant.
227 */
228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
230 { \
231 return !!(mmu->mmu_role. base_or_ext . reg##_##name); \
232 }
233 BUILD_MMU_ROLE_ACCESSOR(ext, cr0, pg);
234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
235 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
236 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pae);
237 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
238 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
239 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
240 BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
242
vcpu_to_role_regs(struct kvm_vcpu * vcpu)243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
244 {
245 struct kvm_mmu_role_regs regs = {
246 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
247 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
248 .efer = vcpu->arch.efer,
249 };
250
251 return regs;
252 }
253
role_regs_to_root_level(struct kvm_mmu_role_regs * regs)254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
255 {
256 if (!____is_cr0_pg(regs))
257 return 0;
258 else if (____is_efer_lma(regs))
259 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
260 PT64_ROOT_4LEVEL;
261 else if (____is_cr4_pae(regs))
262 return PT32E_ROOT_LEVEL;
263 else
264 return PT32_ROOT_LEVEL;
265 }
266
kvm_available_flush_tlb_with_range(void)267 static inline bool kvm_available_flush_tlb_with_range(void)
268 {
269 return kvm_x86_ops.tlb_remote_flush_with_range;
270 }
271
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
273 struct kvm_tlb_range *range)
274 {
275 int ret = -ENOTSUPP;
276
277 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279
280 if (ret)
281 kvm_flush_remote_tlbs(kvm);
282 }
283
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285 u64 start_gfn, u64 pages)
286 {
287 struct kvm_tlb_range range;
288
289 range.start_gfn = start_gfn;
290 range.pages = pages;
291
292 kvm_flush_remote_tlbs_with_range(kvm, &range);
293 }
294
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
296 unsigned int access)
297 {
298 u64 spte = make_mmio_spte(vcpu, gfn, access);
299
300 trace_mark_mmio_spte(sptep, gfn, spte);
301 mmu_spte_set(sptep, spte);
302 }
303
get_mmio_spte_gfn(u64 spte)304 static gfn_t get_mmio_spte_gfn(u64 spte)
305 {
306 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307
308 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309 & shadow_nonpresent_or_rsvd_mask;
310
311 return gpa >> PAGE_SHIFT;
312 }
313
get_mmio_spte_access(u64 spte)314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316 return spte & shadow_mmio_access_mask;
317 }
318
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320 {
321 u64 kvm_gen, spte_gen, gen;
322
323 gen = kvm_vcpu_memslots(vcpu)->generation;
324 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
325 return false;
326
327 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328 spte_gen = get_mmio_spte_generation(spte);
329
330 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
331 return likely(kvm_gen == spte_gen);
332 }
333
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
335 struct x86_exception *exception)
336 {
337 return gpa;
338 }
339
is_cpuid_PSE36(void)340 static int is_cpuid_PSE36(void)
341 {
342 return 1;
343 }
344
pse36_gfn_delta(u32 gpte)345 static gfn_t pse36_gfn_delta(u32 gpte)
346 {
347 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
348
349 return (gpte & PT32_DIR_PSE36_MASK) << shift;
350 }
351
352 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)353 static void __set_spte(u64 *sptep, u64 spte)
354 {
355 WRITE_ONCE(*sptep, spte);
356 }
357
__update_clear_spte_fast(u64 * sptep,u64 spte)358 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359 {
360 WRITE_ONCE(*sptep, spte);
361 }
362
__update_clear_spte_slow(u64 * sptep,u64 spte)363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365 return xchg(sptep, spte);
366 }
367
__get_spte_lockless(u64 * sptep)368 static u64 __get_spte_lockless(u64 *sptep)
369 {
370 return READ_ONCE(*sptep);
371 }
372 #else
373 union split_spte {
374 struct {
375 u32 spte_low;
376 u32 spte_high;
377 };
378 u64 spte;
379 };
380
count_spte_clear(u64 * sptep,u64 spte)381 static void count_spte_clear(u64 *sptep, u64 spte)
382 {
383 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
384
385 if (is_shadow_present_pte(spte))
386 return;
387
388 /* Ensure the spte is completely set before we increase the count */
389 smp_wmb();
390 sp->clear_spte_count++;
391 }
392
__set_spte(u64 * sptep,u64 spte)393 static void __set_spte(u64 *sptep, u64 spte)
394 {
395 union split_spte *ssptep, sspte;
396
397 ssptep = (union split_spte *)sptep;
398 sspte = (union split_spte)spte;
399
400 ssptep->spte_high = sspte.spte_high;
401
402 /*
403 * If we map the spte from nonpresent to present, We should store
404 * the high bits firstly, then set present bit, so cpu can not
405 * fetch this spte while we are setting the spte.
406 */
407 smp_wmb();
408
409 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 }
411
__update_clear_spte_fast(u64 * sptep,u64 spte)412 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
413 {
414 union split_spte *ssptep, sspte;
415
416 ssptep = (union split_spte *)sptep;
417 sspte = (union split_spte)spte;
418
419 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420
421 /*
422 * If we map the spte from present to nonpresent, we should clear
423 * present bit firstly to avoid vcpu fetch the old high bits.
424 */
425 smp_wmb();
426
427 ssptep->spte_high = sspte.spte_high;
428 count_spte_clear(sptep, spte);
429 }
430
__update_clear_spte_slow(u64 * sptep,u64 spte)431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
432 {
433 union split_spte *ssptep, sspte, orig;
434
435 ssptep = (union split_spte *)sptep;
436 sspte = (union split_spte)spte;
437
438 /* xchg acts as a barrier before the setting of the high bits */
439 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440 orig.spte_high = ssptep->spte_high;
441 ssptep->spte_high = sspte.spte_high;
442 count_spte_clear(sptep, spte);
443
444 return orig.spte;
445 }
446
447 /*
448 * The idea using the light way get the spte on x86_32 guest is from
449 * gup_get_pte (mm/gup.c).
450 *
451 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
452 * coalesces them and we are running out of the MMU lock. Therefore
453 * we need to protect against in-progress updates of the spte.
454 *
455 * Reading the spte while an update is in progress may get the old value
456 * for the high part of the spte. The race is fine for a present->non-present
457 * change (because the high part of the spte is ignored for non-present spte),
458 * but for a present->present change we must reread the spte.
459 *
460 * All such changes are done in two steps (present->non-present and
461 * non-present->present), hence it is enough to count the number of
462 * present->non-present updates: if it changed while reading the spte,
463 * we might have hit the race. This is done using clear_spte_count.
464 */
__get_spte_lockless(u64 * sptep)465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
468 union split_spte spte, *orig = (union split_spte *)sptep;
469 int count;
470
471 retry:
472 count = sp->clear_spte_count;
473 smp_rmb();
474
475 spte.spte_low = orig->spte_low;
476 smp_rmb();
477
478 spte.spte_high = orig->spte_high;
479 smp_rmb();
480
481 if (unlikely(spte.spte_low != orig->spte_low ||
482 count != sp->clear_spte_count))
483 goto retry;
484
485 return spte.spte;
486 }
487 #endif
488
spte_has_volatile_bits(u64 spte)489 static bool spte_has_volatile_bits(u64 spte)
490 {
491 if (!is_shadow_present_pte(spte))
492 return false;
493
494 /*
495 * Always atomically update spte if it can be updated
496 * out of mmu-lock, it can ensure dirty bit is not lost,
497 * also, it can help us to get a stable is_writable_pte()
498 * to ensure tlb flush is not missed.
499 */
500 if (spte_can_locklessly_be_made_writable(spte) ||
501 is_access_track_spte(spte))
502 return true;
503
504 if (spte_ad_enabled(spte)) {
505 if ((spte & shadow_accessed_mask) == 0 ||
506 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
507 return true;
508 }
509
510 return false;
511 }
512
513 /* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
mmu_spte_set(u64 * sptep,u64 new_spte)519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523 }
524
525 /*
526 * Update the SPTE (excluding the PFN), but do not track changes in its
527 * accessed/dirty status.
528 */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530 {
531 u64 old_spte = *sptep;
532
533 WARN_ON(!is_shadow_present_pte(new_spte));
534
535 if (!is_shadow_present_pte(old_spte)) {
536 mmu_spte_set(sptep, new_spte);
537 return old_spte;
538 }
539
540 if (!spte_has_volatile_bits(old_spte))
541 __update_clear_spte_fast(sptep, new_spte);
542 else
543 old_spte = __update_clear_spte_slow(sptep, new_spte);
544
545 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
546
547 return old_spte;
548 }
549
550 /* Rules for using mmu_spte_update:
551 * Update the state bits, it means the mapped pfn is not changed.
552 *
553 * Whenever we overwrite a writable spte with a read-only one we
554 * should flush remote TLBs. Otherwise rmap_write_protect
555 * will find a read-only spte, even though the writable spte
556 * might be cached on a CPU's TLB, the return value indicates this
557 * case.
558 *
559 * Returns true if the TLB needs to be flushed
560 */
mmu_spte_update(u64 * sptep,u64 new_spte)561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563 bool flush = false;
564 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
565
566 if (!is_shadow_present_pte(old_spte))
567 return false;
568
569 /*
570 * For the spte updated out of mmu-lock is safe, since
571 * we always atomically update it, see the comments in
572 * spte_has_volatile_bits().
573 */
574 if (spte_can_locklessly_be_made_writable(old_spte) &&
575 !is_writable_pte(new_spte))
576 flush = true;
577
578 /*
579 * Flush TLB when accessed/dirty states are changed in the page tables,
580 * to guarantee consistency between TLB and page tables.
581 */
582
583 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
584 flush = true;
585 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586 }
587
588 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
589 flush = true;
590 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591 }
592
593 return flush;
594 }
595
596 /*
597 * Rules for using mmu_spte_clear_track_bits:
598 * It sets the sptep from present to nonpresent, and track the
599 * state bits, it is used to clear the last level sptep.
600 * Returns the old PTE.
601 */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603 {
604 kvm_pfn_t pfn;
605 u64 old_spte = *sptep;
606 int level = sptep_to_sp(sptep)->role.level;
607
608 if (!spte_has_volatile_bits(old_spte))
609 __update_clear_spte_fast(sptep, 0ull);
610 else
611 old_spte = __update_clear_spte_slow(sptep, 0ull);
612
613 if (!is_shadow_present_pte(old_spte))
614 return old_spte;
615
616 kvm_update_page_stats(kvm, level, -1);
617
618 pfn = spte_to_pfn(old_spte);
619
620 /*
621 * KVM does not hold the refcount of the page used by
622 * kvm mmu, before reclaiming the page, we should
623 * unmap it from mmu first.
624 */
625 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626
627 if (is_accessed_spte(old_spte))
628 kvm_set_pfn_accessed(pfn);
629
630 if (is_dirty_spte(old_spte))
631 kvm_set_pfn_dirty(pfn);
632
633 return old_spte;
634 }
635
636 /*
637 * Rules for using mmu_spte_clear_no_track:
638 * Directly clear spte without caring the state bits of sptep,
639 * it is used to set the upper level spte.
640 */
mmu_spte_clear_no_track(u64 * sptep)641 static void mmu_spte_clear_no_track(u64 *sptep)
642 {
643 __update_clear_spte_fast(sptep, 0ull);
644 }
645
mmu_spte_get_lockless(u64 * sptep)646 static u64 mmu_spte_get_lockless(u64 *sptep)
647 {
648 return __get_spte_lockless(sptep);
649 }
650
651 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)652 static u64 restore_acc_track_spte(u64 spte)
653 {
654 u64 new_spte = spte;
655 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
656 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657
658 WARN_ON_ONCE(spte_ad_enabled(spte));
659 WARN_ON_ONCE(!is_access_track_spte(spte));
660
661 new_spte &= ~shadow_acc_track_mask;
662 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
663 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664 new_spte |= saved_bits;
665
666 return new_spte;
667 }
668
669 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)670 static bool mmu_spte_age(u64 *sptep)
671 {
672 u64 spte = mmu_spte_get_lockless(sptep);
673
674 if (!is_accessed_spte(spte))
675 return false;
676
677 if (spte_ad_enabled(spte)) {
678 clear_bit((ffs(shadow_accessed_mask) - 1),
679 (unsigned long *)sptep);
680 } else {
681 /*
682 * Capture the dirty status of the page, so that it doesn't get
683 * lost when the SPTE is marked for access tracking.
684 */
685 if (is_writable_pte(spte))
686 kvm_set_pfn_dirty(spte_to_pfn(spte));
687
688 spte = mark_spte_for_access_track(spte);
689 mmu_spte_update_no_track(sptep, spte);
690 }
691
692 return true;
693 }
694
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
696 {
697 if (is_tdp_mmu(vcpu->arch.mmu)) {
698 kvm_tdp_mmu_walk_lockless_begin();
699 } else {
700 /*
701 * Prevent page table teardown by making any free-er wait during
702 * kvm_flush_remote_tlbs() IPI to all active vcpus.
703 */
704 local_irq_disable();
705
706 /*
707 * Make sure a following spte read is not reordered ahead of the write
708 * to vcpu->mode.
709 */
710 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
711 }
712 }
713
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
715 {
716 if (is_tdp_mmu(vcpu->arch.mmu)) {
717 kvm_tdp_mmu_walk_lockless_end();
718 } else {
719 /*
720 * Make sure the write to vcpu->mode is not reordered in front of
721 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
722 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
723 */
724 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
725 local_irq_enable();
726 }
727 }
728
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730 {
731 int r;
732
733 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736 if (r)
737 return r;
738 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
739 PT64_ROOT_MAX_LEVEL);
740 if (r)
741 return r;
742 if (maybe_indirect) {
743 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
744 PT64_ROOT_MAX_LEVEL);
745 if (r)
746 return r;
747 }
748 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
749 PT64_ROOT_MAX_LEVEL);
750 }
751
mmu_free_memory_caches(struct kvm_vcpu * vcpu)752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
753 {
754 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
755 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
756 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
757 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 }
759
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761 {
762 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 }
764
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766 {
767 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 }
769
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
771 {
772 if (!sp->role.direct)
773 return sp->gfns[index];
774
775 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
776 }
777
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
779 {
780 if (!sp->role.direct) {
781 sp->gfns[index] = gfn;
782 return;
783 }
784
785 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
786 pr_err_ratelimited("gfn mismatch under direct page %llx "
787 "(expected %llx, got %llx)\n",
788 sp->gfn,
789 kvm_mmu_page_get_gfn(sp, index), gfn);
790 }
791
792 /*
793 * Return the pointer to the large page information for a given gfn,
794 * handling slots that are not large page aligned.
795 */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797 const struct kvm_memory_slot *slot, int level)
798 {
799 unsigned long idx;
800
801 idx = gfn_to_index(gfn, slot->base_gfn, level);
802 return &slot->arch.lpage_info[level - 2][idx];
803 }
804
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806 gfn_t gfn, int count)
807 {
808 struct kvm_lpage_info *linfo;
809 int i;
810
811 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812 linfo = lpage_info_slot(gfn, slot, i);
813 linfo->disallow_lpage += count;
814 WARN_ON(linfo->disallow_lpage < 0);
815 }
816 }
817
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 {
820 update_gfn_disallow_lpage_count(slot, gfn, 1);
821 }
822
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 {
825 update_gfn_disallow_lpage_count(slot, gfn, -1);
826 }
827
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830 struct kvm_memslots *slots;
831 struct kvm_memory_slot *slot;
832 gfn_t gfn;
833
834 kvm->arch.indirect_shadow_pages++;
835 gfn = sp->gfn;
836 slots = kvm_memslots_for_spte_role(kvm, sp->role);
837 slot = __gfn_to_memslot(slots, gfn);
838
839 /* the non-leaf shadow pages are keeping readonly. */
840 if (sp->role.level > PG_LEVEL_4K)
841 return kvm_slot_page_track_add_page(kvm, slot, gfn,
842 KVM_PAGE_TRACK_WRITE);
843
844 kvm_mmu_gfn_disallow_lpage(slot, gfn);
845 }
846
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
848 {
849 if (sp->lpage_disallowed)
850 return;
851
852 ++kvm->stat.nx_lpage_splits;
853 list_add_tail(&sp->lpage_disallowed_link,
854 &kvm->arch.lpage_disallowed_mmu_pages);
855 sp->lpage_disallowed = true;
856 }
857
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
859 {
860 struct kvm_memslots *slots;
861 struct kvm_memory_slot *slot;
862 gfn_t gfn;
863
864 kvm->arch.indirect_shadow_pages--;
865 gfn = sp->gfn;
866 slots = kvm_memslots_for_spte_role(kvm, sp->role);
867 slot = __gfn_to_memslot(slots, gfn);
868 if (sp->role.level > PG_LEVEL_4K)
869 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
870 KVM_PAGE_TRACK_WRITE);
871
872 kvm_mmu_gfn_allow_lpage(slot, gfn);
873 }
874
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877 --kvm->stat.nx_lpage_splits;
878 sp->lpage_disallowed = false;
879 list_del(&sp->lpage_disallowed_link);
880 }
881
882 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884 bool no_dirty_log)
885 {
886 struct kvm_memory_slot *slot;
887
888 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890 return NULL;
891 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892 return NULL;
893
894 return slot;
895 }
896
897 /*
898 * About rmap_head encoding:
899 *
900 * If the bit zero of rmap_head->val is clear, then it points to the only spte
901 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902 * pte_list_desc containing more mappings.
903 */
904
905 /*
906 * Returns the number of pointers in the rmap chain, not counting the new one.
907 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909 struct kvm_rmap_head *rmap_head)
910 {
911 struct pte_list_desc *desc;
912 int count = 0;
913
914 if (!rmap_head->val) {
915 rmap_printk("%p %llx 0->1\n", spte, *spte);
916 rmap_head->val = (unsigned long)spte;
917 } else if (!(rmap_head->val & 1)) {
918 rmap_printk("%p %llx 1->many\n", spte, *spte);
919 desc = mmu_alloc_pte_list_desc(vcpu);
920 desc->sptes[0] = (u64 *)rmap_head->val;
921 desc->sptes[1] = spte;
922 desc->spte_count = 2;
923 rmap_head->val = (unsigned long)desc | 1;
924 ++count;
925 } else {
926 rmap_printk("%p %llx many->many\n", spte, *spte);
927 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928 while (desc->spte_count == PTE_LIST_EXT) {
929 count += PTE_LIST_EXT;
930 if (!desc->more) {
931 desc->more = mmu_alloc_pte_list_desc(vcpu);
932 desc = desc->more;
933 desc->spte_count = 0;
934 break;
935 }
936 desc = desc->more;
937 }
938 count += desc->spte_count;
939 desc->sptes[desc->spte_count++] = spte;
940 }
941 return count;
942 }
943
944 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
946 struct pte_list_desc *desc, int i,
947 struct pte_list_desc *prev_desc)
948 {
949 int j = desc->spte_count - 1;
950
951 desc->sptes[i] = desc->sptes[j];
952 desc->sptes[j] = NULL;
953 desc->spte_count--;
954 if (desc->spte_count)
955 return;
956 if (!prev_desc && !desc->more)
957 rmap_head->val = 0;
958 else
959 if (prev_desc)
960 prev_desc->more = desc->more;
961 else
962 rmap_head->val = (unsigned long)desc->more | 1;
963 mmu_free_pte_list_desc(desc);
964 }
965
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967 {
968 struct pte_list_desc *desc;
969 struct pte_list_desc *prev_desc;
970 int i;
971
972 if (!rmap_head->val) {
973 pr_err("%s: %p 0->BUG\n", __func__, spte);
974 BUG();
975 } else if (!(rmap_head->val & 1)) {
976 rmap_printk("%p 1->0\n", spte);
977 if ((u64 *)rmap_head->val != spte) {
978 pr_err("%s: %p 1->BUG\n", __func__, spte);
979 BUG();
980 }
981 rmap_head->val = 0;
982 } else {
983 rmap_printk("%p many->many\n", spte);
984 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985 prev_desc = NULL;
986 while (desc) {
987 for (i = 0; i < desc->spte_count; ++i) {
988 if (desc->sptes[i] == spte) {
989 pte_list_desc_remove_entry(rmap_head,
990 desc, i, prev_desc);
991 return;
992 }
993 }
994 prev_desc = desc;
995 desc = desc->more;
996 }
997 pr_err("%s: %p many->many\n", __func__, spte);
998 BUG();
999 }
1000 }
1001
pte_list_remove(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1003 u64 *sptep)
1004 {
1005 mmu_spte_clear_track_bits(kvm, sptep);
1006 __pte_list_remove(sptep, rmap_head);
1007 }
1008
1009 /* Return true if rmap existed, false otherwise */
pte_list_destroy(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1011 {
1012 struct pte_list_desc *desc, *next;
1013 int i;
1014
1015 if (!rmap_head->val)
1016 return false;
1017
1018 if (!(rmap_head->val & 1)) {
1019 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1020 goto out;
1021 }
1022
1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024
1025 for (; desc; desc = next) {
1026 for (i = 0; i < desc->spte_count; i++)
1027 mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1028 next = desc->more;
1029 mmu_free_pte_list_desc(desc);
1030 }
1031 out:
1032 /* rmap_head is meaningless now, remember to reset it */
1033 rmap_head->val = 0;
1034 return true;
1035 }
1036
pte_list_count(struct kvm_rmap_head * rmap_head)1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1038 {
1039 struct pte_list_desc *desc;
1040 unsigned int count = 0;
1041
1042 if (!rmap_head->val)
1043 return 0;
1044 else if (!(rmap_head->val & 1))
1045 return 1;
1046
1047 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1048
1049 while (desc) {
1050 count += desc->spte_count;
1051 desc = desc->more;
1052 }
1053
1054 return count;
1055 }
1056
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1058 const struct kvm_memory_slot *slot)
1059 {
1060 unsigned long idx;
1061
1062 idx = gfn_to_index(gfn, slot->base_gfn, level);
1063 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 }
1065
rmap_can_add(struct kvm_vcpu * vcpu)1066 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1067 {
1068 struct kvm_mmu_memory_cache *mc;
1069
1070 mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071 return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 }
1073
rmap_remove(struct kvm * kvm,u64 * spte)1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076 struct kvm_memslots *slots;
1077 struct kvm_memory_slot *slot;
1078 struct kvm_mmu_page *sp;
1079 gfn_t gfn;
1080 struct kvm_rmap_head *rmap_head;
1081
1082 sp = sptep_to_sp(spte);
1083 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084
1085 /*
1086 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1087 * so we have to determine which memslots to use based on context
1088 * information in sp->role.
1089 */
1090 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1091
1092 slot = __gfn_to_memslot(slots, gfn);
1093 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1094
1095 __pte_list_remove(spte, rmap_head);
1096 }
1097
1098 /*
1099 * Used by the following functions to iterate through the sptes linked by a
1100 * rmap. All fields are private and not assumed to be used outside.
1101 */
1102 struct rmap_iterator {
1103 /* private fields */
1104 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1105 int pos; /* index of the sptep */
1106 };
1107
1108 /*
1109 * Iteration must be started by this function. This should also be used after
1110 * removing/dropping sptes from the rmap link because in such cases the
1111 * information in the iterator may not be valid.
1112 *
1113 * Returns sptep if found, NULL otherwise.
1114 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1115 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1116 struct rmap_iterator *iter)
1117 {
1118 u64 *sptep;
1119
1120 if (!rmap_head->val)
1121 return NULL;
1122
1123 if (!(rmap_head->val & 1)) {
1124 iter->desc = NULL;
1125 sptep = (u64 *)rmap_head->val;
1126 goto out;
1127 }
1128
1129 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1130 iter->pos = 0;
1131 sptep = iter->desc->sptes[iter->pos];
1132 out:
1133 BUG_ON(!is_shadow_present_pte(*sptep));
1134 return sptep;
1135 }
1136
1137 /*
1138 * Must be used with a valid iterator: e.g. after rmap_get_first().
1139 *
1140 * Returns sptep if found, NULL otherwise.
1141 */
rmap_get_next(struct rmap_iterator * iter)1142 static u64 *rmap_get_next(struct rmap_iterator *iter)
1143 {
1144 u64 *sptep;
1145
1146 if (iter->desc) {
1147 if (iter->pos < PTE_LIST_EXT - 1) {
1148 ++iter->pos;
1149 sptep = iter->desc->sptes[iter->pos];
1150 if (sptep)
1151 goto out;
1152 }
1153
1154 iter->desc = iter->desc->more;
1155
1156 if (iter->desc) {
1157 iter->pos = 0;
1158 /* desc->sptes[0] cannot be NULL */
1159 sptep = iter->desc->sptes[iter->pos];
1160 goto out;
1161 }
1162 }
1163
1164 return NULL;
1165 out:
1166 BUG_ON(!is_shadow_present_pte(*sptep));
1167 return sptep;
1168 }
1169
1170 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1171 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1172 _spte_; _spte_ = rmap_get_next(_iter_))
1173
drop_spte(struct kvm * kvm,u64 * sptep)1174 static void drop_spte(struct kvm *kvm, u64 *sptep)
1175 {
1176 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1177
1178 if (is_shadow_present_pte(old_spte))
1179 rmap_remove(kvm, sptep);
1180 }
1181
1182
__drop_large_spte(struct kvm * kvm,u64 * sptep)1183 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1184 {
1185 if (is_large_pte(*sptep)) {
1186 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1187 drop_spte(kvm, sptep);
1188 return true;
1189 }
1190
1191 return false;
1192 }
1193
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1194 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1195 {
1196 if (__drop_large_spte(vcpu->kvm, sptep)) {
1197 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1198
1199 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1200 KVM_PAGES_PER_HPAGE(sp->role.level));
1201 }
1202 }
1203
1204 /*
1205 * Write-protect on the specified @sptep, @pt_protect indicates whether
1206 * spte write-protection is caused by protecting shadow page table.
1207 *
1208 * Note: write protection is difference between dirty logging and spte
1209 * protection:
1210 * - for dirty logging, the spte can be set to writable at anytime if
1211 * its dirty bitmap is properly set.
1212 * - for spte protection, the spte can be writable only after unsync-ing
1213 * shadow page.
1214 *
1215 * Return true if tlb need be flushed.
1216 */
spte_write_protect(u64 * sptep,bool pt_protect)1217 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1218 {
1219 u64 spte = *sptep;
1220
1221 if (!is_writable_pte(spte) &&
1222 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1223 return false;
1224
1225 rmap_printk("spte %p %llx\n", sptep, *sptep);
1226
1227 if (pt_protect)
1228 spte &= ~shadow_mmu_writable_mask;
1229 spte = spte & ~PT_WRITABLE_MASK;
1230
1231 return mmu_spte_update(sptep, spte);
1232 }
1233
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1234 static bool __rmap_write_protect(struct kvm *kvm,
1235 struct kvm_rmap_head *rmap_head,
1236 bool pt_protect)
1237 {
1238 u64 *sptep;
1239 struct rmap_iterator iter;
1240 bool flush = false;
1241
1242 for_each_rmap_spte(rmap_head, &iter, sptep)
1243 flush |= spte_write_protect(sptep, pt_protect);
1244
1245 return flush;
1246 }
1247
spte_clear_dirty(u64 * sptep)1248 static bool spte_clear_dirty(u64 *sptep)
1249 {
1250 u64 spte = *sptep;
1251
1252 rmap_printk("spte %p %llx\n", sptep, *sptep);
1253
1254 MMU_WARN_ON(!spte_ad_enabled(spte));
1255 spte &= ~shadow_dirty_mask;
1256 return mmu_spte_update(sptep, spte);
1257 }
1258
spte_wrprot_for_clear_dirty(u64 * sptep)1259 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1260 {
1261 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1262 (unsigned long *)sptep);
1263 if (was_writable && !spte_ad_enabled(*sptep))
1264 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1265
1266 return was_writable;
1267 }
1268
1269 /*
1270 * Gets the GFN ready for another round of dirty logging by clearing the
1271 * - D bit on ad-enabled SPTEs, and
1272 * - W bit on ad-disabled SPTEs.
1273 * Returns true iff any D or W bits were cleared.
1274 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1275 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1276 const struct kvm_memory_slot *slot)
1277 {
1278 u64 *sptep;
1279 struct rmap_iterator iter;
1280 bool flush = false;
1281
1282 for_each_rmap_spte(rmap_head, &iter, sptep)
1283 if (spte_ad_need_write_protect(*sptep))
1284 flush |= spte_wrprot_for_clear_dirty(sptep);
1285 else
1286 flush |= spte_clear_dirty(sptep);
1287
1288 return flush;
1289 }
1290
1291 /**
1292 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1293 * @kvm: kvm instance
1294 * @slot: slot to protect
1295 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1296 * @mask: indicates which pages we should protect
1297 *
1298 * Used when we do not need to care about huge page mappings.
1299 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1300 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1301 struct kvm_memory_slot *slot,
1302 gfn_t gfn_offset, unsigned long mask)
1303 {
1304 struct kvm_rmap_head *rmap_head;
1305
1306 if (is_tdp_mmu_enabled(kvm))
1307 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1308 slot->base_gfn + gfn_offset, mask, true);
1309
1310 if (!kvm_memslots_have_rmaps(kvm))
1311 return;
1312
1313 while (mask) {
1314 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 PG_LEVEL_4K, slot);
1316 __rmap_write_protect(kvm, rmap_head, false);
1317
1318 /* clear the first set bit */
1319 mask &= mask - 1;
1320 }
1321 }
1322
1323 /**
1324 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1325 * protect the page if the D-bit isn't supported.
1326 * @kvm: kvm instance
1327 * @slot: slot to clear D-bit
1328 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1329 * @mask: indicates which pages we should clear D-bit
1330 *
1331 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1332 */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1333 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1334 struct kvm_memory_slot *slot,
1335 gfn_t gfn_offset, unsigned long mask)
1336 {
1337 struct kvm_rmap_head *rmap_head;
1338
1339 if (is_tdp_mmu_enabled(kvm))
1340 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1341 slot->base_gfn + gfn_offset, mask, false);
1342
1343 if (!kvm_memslots_have_rmaps(kvm))
1344 return;
1345
1346 while (mask) {
1347 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1348 PG_LEVEL_4K, slot);
1349 __rmap_clear_dirty(kvm, rmap_head, slot);
1350
1351 /* clear the first set bit */
1352 mask &= mask - 1;
1353 }
1354 }
1355
1356 /**
1357 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1358 * PT level pages.
1359 *
1360 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1361 * enable dirty logging for them.
1362 *
1363 * We need to care about huge page mappings: e.g. during dirty logging we may
1364 * have such mappings.
1365 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1366 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1367 struct kvm_memory_slot *slot,
1368 gfn_t gfn_offset, unsigned long mask)
1369 {
1370 /*
1371 * Huge pages are NOT write protected when we start dirty logging in
1372 * initially-all-set mode; must write protect them here so that they
1373 * are split to 4K on the first write.
1374 *
1375 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1376 * of memslot has no such restriction, so the range can cross two large
1377 * pages.
1378 */
1379 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1380 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1381 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1382
1383 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1384
1385 /* Cross two large pages? */
1386 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1387 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1388 kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1389 PG_LEVEL_2M);
1390 }
1391
1392 /* Now handle 4K PTEs. */
1393 if (kvm_x86_ops.cpu_dirty_log_size)
1394 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1395 else
1396 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1397 }
1398
kvm_cpu_dirty_log_size(void)1399 int kvm_cpu_dirty_log_size(void)
1400 {
1401 return kvm_x86_ops.cpu_dirty_log_size;
1402 }
1403
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1404 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1405 struct kvm_memory_slot *slot, u64 gfn,
1406 int min_level)
1407 {
1408 struct kvm_rmap_head *rmap_head;
1409 int i;
1410 bool write_protected = false;
1411
1412 if (kvm_memslots_have_rmaps(kvm)) {
1413 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1414 rmap_head = gfn_to_rmap(gfn, i, slot);
1415 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1416 }
1417 }
1418
1419 if (is_tdp_mmu_enabled(kvm))
1420 write_protected |=
1421 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1422
1423 return write_protected;
1424 }
1425
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1426 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1427 {
1428 struct kvm_memory_slot *slot;
1429
1430 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1431 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1432 }
1433
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1434 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1435 const struct kvm_memory_slot *slot)
1436 {
1437 return pte_list_destroy(kvm, rmap_head);
1438 }
1439
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1440 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1441 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1442 pte_t unused)
1443 {
1444 return kvm_zap_rmapp(kvm, rmap_head, slot);
1445 }
1446
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t pte)1447 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1448 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1449 pte_t pte)
1450 {
1451 u64 *sptep;
1452 struct rmap_iterator iter;
1453 int need_flush = 0;
1454 u64 new_spte;
1455 kvm_pfn_t new_pfn;
1456
1457 WARN_ON(pte_huge(pte));
1458 new_pfn = pte_pfn(pte);
1459
1460 restart:
1461 for_each_rmap_spte(rmap_head, &iter, sptep) {
1462 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1463 sptep, *sptep, gfn, level);
1464
1465 need_flush = 1;
1466
1467 if (pte_write(pte)) {
1468 pte_list_remove(kvm, rmap_head, sptep);
1469 goto restart;
1470 } else {
1471 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1472 *sptep, new_pfn);
1473
1474 mmu_spte_clear_track_bits(kvm, sptep);
1475 mmu_spte_set(sptep, new_spte);
1476 }
1477 }
1478
1479 if (need_flush && kvm_available_flush_tlb_with_range()) {
1480 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1481 return 0;
1482 }
1483
1484 return need_flush;
1485 }
1486
1487 struct slot_rmap_walk_iterator {
1488 /* input fields. */
1489 const struct kvm_memory_slot *slot;
1490 gfn_t start_gfn;
1491 gfn_t end_gfn;
1492 int start_level;
1493 int end_level;
1494
1495 /* output fields. */
1496 gfn_t gfn;
1497 struct kvm_rmap_head *rmap;
1498 int level;
1499
1500 /* private field. */
1501 struct kvm_rmap_head *end_rmap;
1502 };
1503
1504 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1505 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1506 {
1507 iterator->level = level;
1508 iterator->gfn = iterator->start_gfn;
1509 iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1510 iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1511 }
1512
1513 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1514 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515 const struct kvm_memory_slot *slot, int start_level,
1516 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1517 {
1518 iterator->slot = slot;
1519 iterator->start_level = start_level;
1520 iterator->end_level = end_level;
1521 iterator->start_gfn = start_gfn;
1522 iterator->end_gfn = end_gfn;
1523
1524 rmap_walk_init_level(iterator, iterator->start_level);
1525 }
1526
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1527 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1528 {
1529 return !!iterator->rmap;
1530 }
1531
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1532 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1533 {
1534 if (++iterator->rmap <= iterator->end_rmap) {
1535 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1536 return;
1537 }
1538
1539 if (++iterator->level > iterator->end_level) {
1540 iterator->rmap = NULL;
1541 return;
1542 }
1543
1544 rmap_walk_init_level(iterator, iterator->level);
1545 }
1546
1547 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1548 _start_gfn, _end_gfn, _iter_) \
1549 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1550 _end_level_, _start_gfn, _end_gfn); \
1551 slot_rmap_walk_okay(_iter_); \
1552 slot_rmap_walk_next(_iter_))
1553
1554 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 struct kvm_memory_slot *slot, gfn_t gfn,
1556 int level, pte_t pte);
1557
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,rmap_handler_t handler)1558 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1559 struct kvm_gfn_range *range,
1560 rmap_handler_t handler)
1561 {
1562 struct slot_rmap_walk_iterator iterator;
1563 bool ret = false;
1564
1565 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1566 range->start, range->end - 1, &iterator)
1567 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1568 iterator.level, range->pte);
1569
1570 return ret;
1571 }
1572
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1573 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1574 {
1575 bool flush = false;
1576
1577 if (kvm_memslots_have_rmaps(kvm))
1578 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1579
1580 if (is_tdp_mmu_enabled(kvm))
1581 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1582
1583 return flush;
1584 }
1585
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1586 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1587 {
1588 bool flush = false;
1589
1590 if (kvm_memslots_have_rmaps(kvm))
1591 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1592
1593 if (is_tdp_mmu_enabled(kvm))
1594 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1595
1596 return flush;
1597 }
1598
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1599 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1600 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1601 pte_t unused)
1602 {
1603 u64 *sptep;
1604 struct rmap_iterator iter;
1605 int young = 0;
1606
1607 for_each_rmap_spte(rmap_head, &iter, sptep)
1608 young |= mmu_spte_age(sptep);
1609
1610 return young;
1611 }
1612
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1613 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614 struct kvm_memory_slot *slot, gfn_t gfn,
1615 int level, pte_t unused)
1616 {
1617 u64 *sptep;
1618 struct rmap_iterator iter;
1619
1620 for_each_rmap_spte(rmap_head, &iter, sptep)
1621 if (is_accessed_spte(*sptep))
1622 return 1;
1623 return 0;
1624 }
1625
1626 #define RMAP_RECYCLE_THRESHOLD 1000
1627
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1628 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1629 {
1630 struct kvm_memory_slot *slot;
1631 struct kvm_mmu_page *sp;
1632 struct kvm_rmap_head *rmap_head;
1633 int rmap_count;
1634
1635 sp = sptep_to_sp(spte);
1636 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1637 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1638 rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1639 rmap_count = pte_list_add(vcpu, spte, rmap_head);
1640
1641 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1642 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1643 kvm_flush_remote_tlbs_with_address(
1644 vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1645 }
1646 }
1647
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1648 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1649 {
1650 bool young = false;
1651
1652 if (kvm_memslots_have_rmaps(kvm))
1653 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1654
1655 if (is_tdp_mmu_enabled(kvm))
1656 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1657
1658 return young;
1659 }
1660
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1661 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1662 {
1663 bool young = false;
1664
1665 if (kvm_memslots_have_rmaps(kvm))
1666 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1667
1668 if (is_tdp_mmu_enabled(kvm))
1669 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1670
1671 return young;
1672 }
1673
1674 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1675 static int is_empty_shadow_page(u64 *spt)
1676 {
1677 u64 *pos;
1678 u64 *end;
1679
1680 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1681 if (is_shadow_present_pte(*pos)) {
1682 printk(KERN_ERR "%s: %p %llx\n", __func__,
1683 pos, *pos);
1684 return 0;
1685 }
1686 return 1;
1687 }
1688 #endif
1689
1690 /*
1691 * This value is the sum of all of the kvm instances's
1692 * kvm->arch.n_used_mmu_pages values. We need a global,
1693 * aggregate version in order to make the slab shrinker
1694 * faster
1695 */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)1696 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1697 {
1698 kvm->arch.n_used_mmu_pages += nr;
1699 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1700 }
1701
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1702 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1703 {
1704 kvm_mod_used_mmu_pages(kvm, +1);
1705 kvm_account_pgtable_pages((void *)sp->spt, +1);
1706 }
1707
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1708 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1709 {
1710 kvm_mod_used_mmu_pages(kvm, -1);
1711 kvm_account_pgtable_pages((void *)sp->spt, -1);
1712 }
1713
kvm_mmu_free_page(struct kvm_mmu_page * sp)1714 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1715 {
1716 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1717 hlist_del(&sp->hash_link);
1718 list_del(&sp->link);
1719 free_page((unsigned long)sp->spt);
1720 if (!sp->role.direct)
1721 free_page((unsigned long)sp->gfns);
1722 kmem_cache_free(mmu_page_header_cache, sp);
1723 }
1724
kvm_page_table_hashfn(gfn_t gfn)1725 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1726 {
1727 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1728 }
1729
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1730 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1731 struct kvm_mmu_page *sp, u64 *parent_pte)
1732 {
1733 if (!parent_pte)
1734 return;
1735
1736 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1737 }
1738
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1739 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1740 u64 *parent_pte)
1741 {
1742 __pte_list_remove(parent_pte, &sp->parent_ptes);
1743 }
1744
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1745 static void drop_parent_pte(struct kvm_mmu_page *sp,
1746 u64 *parent_pte)
1747 {
1748 mmu_page_remove_parent_pte(sp, parent_pte);
1749 mmu_spte_clear_no_track(parent_pte);
1750 }
1751
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1752 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1753 {
1754 struct kvm_mmu_page *sp;
1755
1756 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1757 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1758 if (!direct)
1759 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1760 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1761
1762 /*
1763 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1764 * depends on valid pages being added to the head of the list. See
1765 * comments in kvm_zap_obsolete_pages().
1766 */
1767 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1768 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1769 kvm_account_mmu_page(vcpu->kvm, sp);
1770 return sp;
1771 }
1772
1773 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1774 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1775 {
1776 u64 *sptep;
1777 struct rmap_iterator iter;
1778
1779 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1780 mark_unsync(sptep);
1781 }
1782 }
1783
mark_unsync(u64 * spte)1784 static void mark_unsync(u64 *spte)
1785 {
1786 struct kvm_mmu_page *sp;
1787 unsigned int index;
1788
1789 sp = sptep_to_sp(spte);
1790 index = spte - sp->spt;
1791 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1792 return;
1793 if (sp->unsync_children++)
1794 return;
1795 kvm_mmu_mark_parents_unsync(sp);
1796 }
1797
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1798 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1799 struct kvm_mmu_page *sp)
1800 {
1801 return 0;
1802 }
1803
1804 #define KVM_PAGE_ARRAY_NR 16
1805
1806 struct kvm_mmu_pages {
1807 struct mmu_page_and_offset {
1808 struct kvm_mmu_page *sp;
1809 unsigned int idx;
1810 } page[KVM_PAGE_ARRAY_NR];
1811 unsigned int nr;
1812 };
1813
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1814 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1815 int idx)
1816 {
1817 int i;
1818
1819 if (sp->unsync)
1820 for (i=0; i < pvec->nr; i++)
1821 if (pvec->page[i].sp == sp)
1822 return 0;
1823
1824 pvec->page[pvec->nr].sp = sp;
1825 pvec->page[pvec->nr].idx = idx;
1826 pvec->nr++;
1827 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1828 }
1829
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1830 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1831 {
1832 --sp->unsync_children;
1833 WARN_ON((int)sp->unsync_children < 0);
1834 __clear_bit(idx, sp->unsync_child_bitmap);
1835 }
1836
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1837 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1838 struct kvm_mmu_pages *pvec)
1839 {
1840 int i, ret, nr_unsync_leaf = 0;
1841
1842 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1843 struct kvm_mmu_page *child;
1844 u64 ent = sp->spt[i];
1845
1846 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1847 clear_unsync_child_bit(sp, i);
1848 continue;
1849 }
1850
1851 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1852
1853 if (child->unsync_children) {
1854 if (mmu_pages_add(pvec, child, i))
1855 return -ENOSPC;
1856
1857 ret = __mmu_unsync_walk(child, pvec);
1858 if (!ret) {
1859 clear_unsync_child_bit(sp, i);
1860 continue;
1861 } else if (ret > 0) {
1862 nr_unsync_leaf += ret;
1863 } else
1864 return ret;
1865 } else if (child->unsync) {
1866 nr_unsync_leaf++;
1867 if (mmu_pages_add(pvec, child, i))
1868 return -ENOSPC;
1869 } else
1870 clear_unsync_child_bit(sp, i);
1871 }
1872
1873 return nr_unsync_leaf;
1874 }
1875
1876 #define INVALID_INDEX (-1)
1877
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1878 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1879 struct kvm_mmu_pages *pvec)
1880 {
1881 pvec->nr = 0;
1882 if (!sp->unsync_children)
1883 return 0;
1884
1885 mmu_pages_add(pvec, sp, INVALID_INDEX);
1886 return __mmu_unsync_walk(sp, pvec);
1887 }
1888
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1889 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1890 {
1891 WARN_ON(!sp->unsync);
1892 trace_kvm_mmu_sync_page(sp);
1893 sp->unsync = 0;
1894 --kvm->stat.mmu_unsync;
1895 }
1896
1897 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1898 struct list_head *invalid_list);
1899 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1900 struct list_head *invalid_list);
1901
1902 #define for_each_valid_sp(_kvm, _sp, _list) \
1903 hlist_for_each_entry(_sp, _list, hash_link) \
1904 if (is_obsolete_sp((_kvm), (_sp))) { \
1905 } else
1906
1907 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1908 for_each_valid_sp(_kvm, _sp, \
1909 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1910 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1911
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1912 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1913 struct list_head *invalid_list)
1914 {
1915 if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1916 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1917 return false;
1918 }
1919
1920 return true;
1921 }
1922
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1923 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1924 struct list_head *invalid_list,
1925 bool remote_flush)
1926 {
1927 if (!remote_flush && list_empty(invalid_list))
1928 return false;
1929
1930 if (!list_empty(invalid_list))
1931 kvm_mmu_commit_zap_page(kvm, invalid_list);
1932 else
1933 kvm_flush_remote_tlbs(kvm);
1934 return true;
1935 }
1936
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1937 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1938 struct list_head *invalid_list,
1939 bool remote_flush, bool local_flush)
1940 {
1941 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1942 return;
1943
1944 if (local_flush)
1945 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1946 }
1947
1948 #ifdef CONFIG_KVM_MMU_AUDIT
1949 #include "mmu_audit.c"
1950 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1951 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1952 static void mmu_audit_disable(void) { }
1953 #endif
1954
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1955 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1956 {
1957 return sp->role.invalid ||
1958 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1959 }
1960
1961 struct mmu_page_path {
1962 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1963 unsigned int idx[PT64_ROOT_MAX_LEVEL];
1964 };
1965
1966 #define for_each_sp(pvec, sp, parents, i) \
1967 for (i = mmu_pages_first(&pvec, &parents); \
1968 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1969 i = mmu_pages_next(&pvec, &parents, i))
1970
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1971 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1972 struct mmu_page_path *parents,
1973 int i)
1974 {
1975 int n;
1976
1977 for (n = i+1; n < pvec->nr; n++) {
1978 struct kvm_mmu_page *sp = pvec->page[n].sp;
1979 unsigned idx = pvec->page[n].idx;
1980 int level = sp->role.level;
1981
1982 parents->idx[level-1] = idx;
1983 if (level == PG_LEVEL_4K)
1984 break;
1985
1986 parents->parent[level-2] = sp;
1987 }
1988
1989 return n;
1990 }
1991
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1992 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1993 struct mmu_page_path *parents)
1994 {
1995 struct kvm_mmu_page *sp;
1996 int level;
1997
1998 if (pvec->nr == 0)
1999 return 0;
2000
2001 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2002
2003 sp = pvec->page[0].sp;
2004 level = sp->role.level;
2005 WARN_ON(level == PG_LEVEL_4K);
2006
2007 parents->parent[level-2] = sp;
2008
2009 /* Also set up a sentinel. Further entries in pvec are all
2010 * children of sp, so this element is never overwritten.
2011 */
2012 parents->parent[level-1] = NULL;
2013 return mmu_pages_next(pvec, parents, 0);
2014 }
2015
mmu_pages_clear_parents(struct mmu_page_path * parents)2016 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2017 {
2018 struct kvm_mmu_page *sp;
2019 unsigned int level = 0;
2020
2021 do {
2022 unsigned int idx = parents->idx[level];
2023 sp = parents->parent[level];
2024 if (!sp)
2025 return;
2026
2027 WARN_ON(idx == INVALID_INDEX);
2028 clear_unsync_child_bit(sp, idx);
2029 level++;
2030 } while (!sp->unsync_children);
2031 }
2032
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)2033 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2034 struct kvm_mmu_page *parent, bool can_yield)
2035 {
2036 int i;
2037 struct kvm_mmu_page *sp;
2038 struct mmu_page_path parents;
2039 struct kvm_mmu_pages pages;
2040 LIST_HEAD(invalid_list);
2041 bool flush = false;
2042
2043 while (mmu_unsync_walk(parent, &pages)) {
2044 bool protected = false;
2045
2046 for_each_sp(pages, sp, parents, i)
2047 protected |= rmap_write_protect(vcpu, sp->gfn);
2048
2049 if (protected) {
2050 kvm_flush_remote_tlbs(vcpu->kvm);
2051 flush = false;
2052 }
2053
2054 for_each_sp(pages, sp, parents, i) {
2055 kvm_unlink_unsync_page(vcpu->kvm, sp);
2056 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2057 mmu_pages_clear_parents(&parents);
2058 }
2059 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2060 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2061 if (!can_yield) {
2062 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2063 return -EINTR;
2064 }
2065
2066 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2067 flush = false;
2068 }
2069 }
2070
2071 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2072 return 0;
2073 }
2074
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2075 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2076 {
2077 atomic_set(&sp->write_flooding_count, 0);
2078 }
2079
clear_sp_write_flooding_count(u64 * spte)2080 static void clear_sp_write_flooding_count(u64 *spte)
2081 {
2082 __clear_sp_write_flooding_count(sptep_to_sp(spte));
2083 }
2084
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2085 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2086 gfn_t gfn,
2087 gva_t gaddr,
2088 unsigned level,
2089 int direct,
2090 unsigned int access)
2091 {
2092 bool direct_mmu = vcpu->arch.mmu->direct_map;
2093 union kvm_mmu_page_role role;
2094 struct hlist_head *sp_list;
2095 unsigned quadrant;
2096 struct kvm_mmu_page *sp;
2097 int collisions = 0;
2098 LIST_HEAD(invalid_list);
2099
2100 role = vcpu->arch.mmu->mmu_role.base;
2101 role.level = level;
2102 role.direct = direct;
2103 if (role.direct)
2104 role.gpte_is_8_bytes = true;
2105 role.access = access;
2106 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2107 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2108 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2109 role.quadrant = quadrant;
2110 }
2111
2112 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2113 for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2114 if (sp->gfn != gfn) {
2115 collisions++;
2116 continue;
2117 }
2118
2119 if (sp->role.word != role.word) {
2120 /*
2121 * If the guest is creating an upper-level page, zap
2122 * unsync pages for the same gfn. While it's possible
2123 * the guest is using recursive page tables, in all
2124 * likelihood the guest has stopped using the unsync
2125 * page and is installing a completely unrelated page.
2126 * Unsync pages must not be left as is, because the new
2127 * upper-level page will be write-protected.
2128 */
2129 if (level > PG_LEVEL_4K && sp->unsync)
2130 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2131 &invalid_list);
2132 continue;
2133 }
2134
2135 if (direct_mmu)
2136 goto trace_get_page;
2137
2138 if (sp->unsync) {
2139 /*
2140 * The page is good, but is stale. kvm_sync_page does
2141 * get the latest guest state, but (unlike mmu_unsync_children)
2142 * it doesn't write-protect the page or mark it synchronized!
2143 * This way the validity of the mapping is ensured, but the
2144 * overhead of write protection is not incurred until the
2145 * guest invalidates the TLB mapping. This allows multiple
2146 * SPs for a single gfn to be unsync.
2147 *
2148 * If the sync fails, the page is zapped. If so, break
2149 * in order to rebuild it.
2150 */
2151 if (!kvm_sync_page(vcpu, sp, &invalid_list))
2152 break;
2153
2154 WARN_ON(!list_empty(&invalid_list));
2155 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2156 }
2157
2158 __clear_sp_write_flooding_count(sp);
2159
2160 trace_get_page:
2161 trace_kvm_mmu_get_page(sp, false);
2162 goto out;
2163 }
2164
2165 ++vcpu->kvm->stat.mmu_cache_miss;
2166
2167 sp = kvm_mmu_alloc_page(vcpu, direct);
2168
2169 sp->gfn = gfn;
2170 sp->role = role;
2171 hlist_add_head(&sp->hash_link, sp_list);
2172 if (!direct) {
2173 account_shadowed(vcpu->kvm, sp);
2174 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2175 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2176 }
2177 trace_kvm_mmu_get_page(sp, true);
2178 out:
2179 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2180
2181 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2182 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2183 return sp;
2184 }
2185
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2186 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2187 struct kvm_vcpu *vcpu, hpa_t root,
2188 u64 addr)
2189 {
2190 iterator->addr = addr;
2191 iterator->shadow_addr = root;
2192 iterator->level = vcpu->arch.mmu->shadow_root_level;
2193
2194 if (iterator->level >= PT64_ROOT_4LEVEL &&
2195 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2196 !vcpu->arch.mmu->direct_map)
2197 iterator->level = PT32E_ROOT_LEVEL;
2198
2199 if (iterator->level == PT32E_ROOT_LEVEL) {
2200 /*
2201 * prev_root is currently only used for 64-bit hosts. So only
2202 * the active root_hpa is valid here.
2203 */
2204 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2205
2206 iterator->shadow_addr
2207 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2208 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2209 --iterator->level;
2210 if (!iterator->shadow_addr)
2211 iterator->level = 0;
2212 }
2213 }
2214
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2215 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2216 struct kvm_vcpu *vcpu, u64 addr)
2217 {
2218 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2219 addr);
2220 }
2221
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2222 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2223 {
2224 if (iterator->level < PG_LEVEL_4K)
2225 return false;
2226
2227 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2228 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2229 return true;
2230 }
2231
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2232 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2233 u64 spte)
2234 {
2235 if (is_last_spte(spte, iterator->level)) {
2236 iterator->level = 0;
2237 return;
2238 }
2239
2240 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2241 --iterator->level;
2242 }
2243
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2244 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2245 {
2246 __shadow_walk_next(iterator, *iterator->sptep);
2247 }
2248
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2249 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2250 struct kvm_mmu_page *sp)
2251 {
2252 u64 spte;
2253
2254 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2255
2256 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2257
2258 mmu_spte_set(sptep, spte);
2259
2260 mmu_page_add_parent_pte(vcpu, sp, sptep);
2261
2262 if (sp->unsync_children || sp->unsync)
2263 mark_unsync(sptep);
2264 }
2265
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2266 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267 unsigned direct_access)
2268 {
2269 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270 struct kvm_mmu_page *child;
2271
2272 /*
2273 * For the direct sp, if the guest pte's dirty bit
2274 * changed form clean to dirty, it will corrupt the
2275 * sp's access: allow writable in the read-only sp,
2276 * so we should update the spte at this point to get
2277 * a new sp with the correct access.
2278 */
2279 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2280 if (child->role.access == direct_access)
2281 return;
2282
2283 drop_parent_pte(child, sptep);
2284 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2285 }
2286 }
2287
2288 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2289 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2290 u64 *spte, struct list_head *invalid_list)
2291 {
2292 u64 pte;
2293 struct kvm_mmu_page *child;
2294
2295 pte = *spte;
2296 if (is_shadow_present_pte(pte)) {
2297 if (is_last_spte(pte, sp->role.level)) {
2298 drop_spte(kvm, spte);
2299 } else {
2300 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2301 drop_parent_pte(child, spte);
2302
2303 /*
2304 * Recursively zap nested TDP SPs, parentless SPs are
2305 * unlikely to be used again in the near future. This
2306 * avoids retaining a large number of stale nested SPs.
2307 */
2308 if (tdp_enabled && invalid_list &&
2309 child->role.guest_mode && !child->parent_ptes.val)
2310 return kvm_mmu_prepare_zap_page(kvm, child,
2311 invalid_list);
2312 }
2313 } else if (is_mmio_spte(pte)) {
2314 mmu_spte_clear_no_track(spte);
2315 }
2316 return 0;
2317 }
2318
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2319 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2320 struct kvm_mmu_page *sp,
2321 struct list_head *invalid_list)
2322 {
2323 int zapped = 0;
2324 unsigned i;
2325
2326 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2327 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2328
2329 return zapped;
2330 }
2331
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2332 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2333 {
2334 u64 *sptep;
2335 struct rmap_iterator iter;
2336
2337 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2338 drop_parent_pte(sp, sptep);
2339 }
2340
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2341 static int mmu_zap_unsync_children(struct kvm *kvm,
2342 struct kvm_mmu_page *parent,
2343 struct list_head *invalid_list)
2344 {
2345 int i, zapped = 0;
2346 struct mmu_page_path parents;
2347 struct kvm_mmu_pages pages;
2348
2349 if (parent->role.level == PG_LEVEL_4K)
2350 return 0;
2351
2352 while (mmu_unsync_walk(parent, &pages)) {
2353 struct kvm_mmu_page *sp;
2354
2355 for_each_sp(pages, sp, parents, i) {
2356 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2357 mmu_pages_clear_parents(&parents);
2358 zapped++;
2359 }
2360 }
2361
2362 return zapped;
2363 }
2364
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2365 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2366 struct kvm_mmu_page *sp,
2367 struct list_head *invalid_list,
2368 int *nr_zapped)
2369 {
2370 bool list_unstable;
2371
2372 lockdep_assert_held_write(&kvm->mmu_lock);
2373 trace_kvm_mmu_prepare_zap_page(sp);
2374 ++kvm->stat.mmu_shadow_zapped;
2375 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2376 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2377 kvm_mmu_unlink_parents(kvm, sp);
2378
2379 /* Zapping children means active_mmu_pages has become unstable. */
2380 list_unstable = *nr_zapped;
2381
2382 if (!sp->role.invalid && !sp->role.direct)
2383 unaccount_shadowed(kvm, sp);
2384
2385 if (sp->unsync)
2386 kvm_unlink_unsync_page(kvm, sp);
2387 if (!sp->root_count) {
2388 /* Count self */
2389 (*nr_zapped)++;
2390
2391 /*
2392 * Already invalid pages (previously active roots) are not on
2393 * the active page list. See list_del() in the "else" case of
2394 * !sp->root_count.
2395 */
2396 if (sp->role.invalid)
2397 list_add(&sp->link, invalid_list);
2398 else
2399 list_move(&sp->link, invalid_list);
2400 kvm_unaccount_mmu_page(kvm, sp);
2401 } else {
2402 /*
2403 * Remove the active root from the active page list, the root
2404 * will be explicitly freed when the root_count hits zero.
2405 */
2406 list_del(&sp->link);
2407
2408 /*
2409 * Obsolete pages cannot be used on any vCPUs, see the comment
2410 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2411 * treats invalid shadow pages as being obsolete.
2412 */
2413 if (!is_obsolete_sp(kvm, sp))
2414 kvm_reload_remote_mmus(kvm);
2415 }
2416
2417 if (sp->lpage_disallowed)
2418 unaccount_huge_nx_page(kvm, sp);
2419
2420 sp->role.invalid = 1;
2421 return list_unstable;
2422 }
2423
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2424 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2425 struct list_head *invalid_list)
2426 {
2427 int nr_zapped;
2428
2429 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2430 return nr_zapped;
2431 }
2432
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2433 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2434 struct list_head *invalid_list)
2435 {
2436 struct kvm_mmu_page *sp, *nsp;
2437
2438 if (list_empty(invalid_list))
2439 return;
2440
2441 /*
2442 * We need to make sure everyone sees our modifications to
2443 * the page tables and see changes to vcpu->mode here. The barrier
2444 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2445 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2446 *
2447 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2448 * guest mode and/or lockless shadow page table walks.
2449 */
2450 kvm_flush_remote_tlbs(kvm);
2451
2452 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2453 WARN_ON(!sp->role.invalid || sp->root_count);
2454 kvm_mmu_free_page(sp);
2455 }
2456 }
2457
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2458 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2459 unsigned long nr_to_zap)
2460 {
2461 unsigned long total_zapped = 0;
2462 struct kvm_mmu_page *sp, *tmp;
2463 LIST_HEAD(invalid_list);
2464 bool unstable;
2465 int nr_zapped;
2466
2467 if (list_empty(&kvm->arch.active_mmu_pages))
2468 return 0;
2469
2470 restart:
2471 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2472 /*
2473 * Don't zap active root pages, the page itself can't be freed
2474 * and zapping it will just force vCPUs to realloc and reload.
2475 */
2476 if (sp->root_count)
2477 continue;
2478
2479 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2480 &nr_zapped);
2481 total_zapped += nr_zapped;
2482 if (total_zapped >= nr_to_zap)
2483 break;
2484
2485 if (unstable)
2486 goto restart;
2487 }
2488
2489 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2490
2491 kvm->stat.mmu_recycled += total_zapped;
2492 return total_zapped;
2493 }
2494
kvm_mmu_available_pages(struct kvm * kvm)2495 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2496 {
2497 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2498 return kvm->arch.n_max_mmu_pages -
2499 kvm->arch.n_used_mmu_pages;
2500
2501 return 0;
2502 }
2503
make_mmu_pages_available(struct kvm_vcpu * vcpu)2504 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2505 {
2506 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2507
2508 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2509 return 0;
2510
2511 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2512
2513 /*
2514 * Note, this check is intentionally soft, it only guarantees that one
2515 * page is available, while the caller may end up allocating as many as
2516 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2517 * exceeding the (arbitrary by default) limit will not harm the host,
2518 * being too aggressive may unnecessarily kill the guest, and getting an
2519 * exact count is far more trouble than it's worth, especially in the
2520 * page fault paths.
2521 */
2522 if (!kvm_mmu_available_pages(vcpu->kvm))
2523 return -ENOSPC;
2524 return 0;
2525 }
2526
2527 /*
2528 * Changing the number of mmu pages allocated to the vm
2529 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2530 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2531 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2532 {
2533 write_lock(&kvm->mmu_lock);
2534
2535 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2536 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2537 goal_nr_mmu_pages);
2538
2539 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2540 }
2541
2542 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2543
2544 write_unlock(&kvm->mmu_lock);
2545 }
2546
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2547 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2548 {
2549 struct kvm_mmu_page *sp;
2550 LIST_HEAD(invalid_list);
2551 int r;
2552
2553 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2554 r = 0;
2555 write_lock(&kvm->mmu_lock);
2556 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2557 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2558 sp->role.word);
2559 r = 1;
2560 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2561 }
2562 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2563 write_unlock(&kvm->mmu_lock);
2564
2565 return r;
2566 }
2567
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)2568 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2569 {
2570 gpa_t gpa;
2571 int r;
2572
2573 if (vcpu->arch.mmu->direct_map)
2574 return 0;
2575
2576 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2577
2578 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2579
2580 return r;
2581 }
2582
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2583 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2584 {
2585 trace_kvm_mmu_unsync_page(sp);
2586 ++vcpu->kvm->stat.mmu_unsync;
2587 sp->unsync = 1;
2588
2589 kvm_mmu_mark_parents_unsync(sp);
2590 }
2591
2592 /*
2593 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2594 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2595 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2596 * be write-protected.
2597 */
mmu_try_to_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2598 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2599 {
2600 struct kvm_mmu_page *sp;
2601 bool locked = false;
2602
2603 /*
2604 * Force write-protection if the page is being tracked. Note, the page
2605 * track machinery is used to write-protect upper-level shadow pages,
2606 * i.e. this guards the role.level == 4K assertion below!
2607 */
2608 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2609 return -EPERM;
2610
2611 /*
2612 * The page is not write-tracked, mark existing shadow pages unsync
2613 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2614 * that case, KVM must complete emulation of the guest TLB flush before
2615 * allowing shadow pages to become unsync (writable by the guest).
2616 */
2617 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2618 if (!can_unsync)
2619 return -EPERM;
2620
2621 if (sp->unsync)
2622 continue;
2623
2624 /*
2625 * TDP MMU page faults require an additional spinlock as they
2626 * run with mmu_lock held for read, not write, and the unsync
2627 * logic is not thread safe. Take the spinklock regardless of
2628 * the MMU type to avoid extra conditionals/parameters, there's
2629 * no meaningful penalty if mmu_lock is held for write.
2630 */
2631 if (!locked) {
2632 locked = true;
2633 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2634
2635 /*
2636 * Recheck after taking the spinlock, a different vCPU
2637 * may have since marked the page unsync. A false
2638 * positive on the unprotected check above is not
2639 * possible as clearing sp->unsync _must_ hold mmu_lock
2640 * for write, i.e. unsync cannot transition from 0->1
2641 * while this CPU holds mmu_lock for read (or write).
2642 */
2643 if (READ_ONCE(sp->unsync))
2644 continue;
2645 }
2646
2647 WARN_ON(sp->role.level != PG_LEVEL_4K);
2648 kvm_unsync_page(vcpu, sp);
2649 }
2650 if (locked)
2651 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2652
2653 /*
2654 * We need to ensure that the marking of unsync pages is visible
2655 * before the SPTE is updated to allow writes because
2656 * kvm_mmu_sync_roots() checks the unsync flags without holding
2657 * the MMU lock and so can race with this. If the SPTE was updated
2658 * before the page had been marked as unsync-ed, something like the
2659 * following could happen:
2660 *
2661 * CPU 1 CPU 2
2662 * ---------------------------------------------------------------------
2663 * 1.2 Host updates SPTE
2664 * to be writable
2665 * 2.1 Guest writes a GPTE for GVA X.
2666 * (GPTE being in the guest page table shadowed
2667 * by the SP from CPU 1.)
2668 * This reads SPTE during the page table walk.
2669 * Since SPTE.W is read as 1, there is no
2670 * fault.
2671 *
2672 * 2.2 Guest issues TLB flush.
2673 * That causes a VM Exit.
2674 *
2675 * 2.3 Walking of unsync pages sees sp->unsync is
2676 * false and skips the page.
2677 *
2678 * 2.4 Guest accesses GVA X.
2679 * Since the mapping in the SP was not updated,
2680 * so the old mapping for GVA X incorrectly
2681 * gets used.
2682 * 1.1 Host marks SP
2683 * as unsync
2684 * (sp->unsync = true)
2685 *
2686 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2687 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2688 * pairs with this write barrier.
2689 */
2690 smp_wmb();
2691
2692 return 0;
2693 }
2694
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2695 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2696 unsigned int pte_access, int level,
2697 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2698 bool can_unsync, bool host_writable)
2699 {
2700 u64 spte;
2701 struct kvm_mmu_page *sp;
2702 int ret;
2703
2704 sp = sptep_to_sp(sptep);
2705
2706 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2707 can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2708
2709 if (spte & PT_WRITABLE_MASK)
2710 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2711
2712 if (*sptep == spte)
2713 ret |= SET_SPTE_SPURIOUS;
2714 else if (mmu_spte_update(sptep, spte))
2715 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2716 return ret;
2717 }
2718
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,bool write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2719 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2720 unsigned int pte_access, bool write_fault, int level,
2721 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2722 bool host_writable)
2723 {
2724 int was_rmapped = 0;
2725 int set_spte_ret;
2726 int ret = RET_PF_FIXED;
2727 bool flush = false;
2728
2729 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2730 *sptep, write_fault, gfn);
2731
2732 if (unlikely(is_noslot_pfn(pfn))) {
2733 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2734 return RET_PF_EMULATE;
2735 }
2736
2737 if (is_shadow_present_pte(*sptep)) {
2738 /*
2739 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2740 * the parent of the now unreachable PTE.
2741 */
2742 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2743 struct kvm_mmu_page *child;
2744 u64 pte = *sptep;
2745
2746 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2747 drop_parent_pte(child, sptep);
2748 flush = true;
2749 } else if (pfn != spte_to_pfn(*sptep)) {
2750 pgprintk("hfn old %llx new %llx\n",
2751 spte_to_pfn(*sptep), pfn);
2752 drop_spte(vcpu->kvm, sptep);
2753 flush = true;
2754 } else
2755 was_rmapped = 1;
2756 }
2757
2758 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2759 speculative, true, host_writable);
2760 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2761 if (write_fault)
2762 ret = RET_PF_EMULATE;
2763 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2764 }
2765
2766 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2767 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2768 KVM_PAGES_PER_HPAGE(level));
2769
2770 /*
2771 * The fault is fully spurious if and only if the new SPTE and old SPTE
2772 * are identical, and emulation is not required.
2773 */
2774 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2775 WARN_ON_ONCE(!was_rmapped);
2776 return RET_PF_SPURIOUS;
2777 }
2778
2779 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2780 trace_kvm_mmu_set_spte(level, gfn, sptep);
2781
2782 if (!was_rmapped) {
2783 kvm_update_page_stats(vcpu->kvm, level, 1);
2784 rmap_add(vcpu, sptep, gfn);
2785 }
2786
2787 return ret;
2788 }
2789
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2790 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2791 bool no_dirty_log)
2792 {
2793 struct kvm_memory_slot *slot;
2794
2795 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2796 if (!slot)
2797 return KVM_PFN_ERR_FAULT;
2798
2799 return gfn_to_pfn_memslot_atomic(slot, gfn);
2800 }
2801
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2802 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2803 struct kvm_mmu_page *sp,
2804 u64 *start, u64 *end)
2805 {
2806 struct page *pages[PTE_PREFETCH_NUM];
2807 struct kvm_memory_slot *slot;
2808 unsigned int access = sp->role.access;
2809 int i, ret;
2810 gfn_t gfn;
2811
2812 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2813 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2814 if (!slot)
2815 return -1;
2816
2817 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2818 if (ret <= 0)
2819 return -1;
2820
2821 for (i = 0; i < ret; i++, gfn++, start++) {
2822 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2823 page_to_pfn(pages[i]), true, true);
2824 put_page(pages[i]);
2825 }
2826
2827 return 0;
2828 }
2829
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2830 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2831 struct kvm_mmu_page *sp, u64 *sptep)
2832 {
2833 u64 *spte, *start = NULL;
2834 int i;
2835
2836 WARN_ON(!sp->role.direct);
2837
2838 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2839 spte = sp->spt + i;
2840
2841 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2842 if (is_shadow_present_pte(*spte) || spte == sptep) {
2843 if (!start)
2844 continue;
2845 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2846 break;
2847 start = NULL;
2848 } else if (!start)
2849 start = spte;
2850 }
2851 }
2852
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2853 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2854 {
2855 struct kvm_mmu_page *sp;
2856
2857 sp = sptep_to_sp(sptep);
2858
2859 /*
2860 * Without accessed bits, there's no way to distinguish between
2861 * actually accessed translations and prefetched, so disable pte
2862 * prefetch if accessed bits aren't available.
2863 */
2864 if (sp_ad_disabled(sp))
2865 return;
2866
2867 if (sp->role.level > PG_LEVEL_4K)
2868 return;
2869
2870 /*
2871 * If addresses are being invalidated, skip prefetching to avoid
2872 * accidentally prefetching those addresses.
2873 */
2874 if (unlikely(vcpu->kvm->mmu_notifier_count))
2875 return;
2876
2877 __direct_pte_prefetch(vcpu, sp, sptep);
2878 }
2879
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,const struct kvm_memory_slot * slot)2880 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2881 const struct kvm_memory_slot *slot)
2882 {
2883 unsigned long hva;
2884 pte_t *pte;
2885 int level;
2886
2887 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2888 return PG_LEVEL_4K;
2889
2890 /*
2891 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2892 * is not solely for performance, it's also necessary to avoid the
2893 * "writable" check in __gfn_to_hva_many(), which will always fail on
2894 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
2895 * page fault steps have already verified the guest isn't writing a
2896 * read-only memslot.
2897 */
2898 hva = __gfn_to_hva_memslot(slot, gfn);
2899
2900 pte = lookup_address_in_mm(kvm->mm, hva, &level);
2901 if (unlikely(!pte))
2902 return PG_LEVEL_4K;
2903
2904 return level;
2905 }
2906
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t pfn,int max_level)2907 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2908 const struct kvm_memory_slot *slot, gfn_t gfn,
2909 kvm_pfn_t pfn, int max_level)
2910 {
2911 struct kvm_lpage_info *linfo;
2912 int host_level;
2913
2914 max_level = min(max_level, max_huge_page_level);
2915 for ( ; max_level > PG_LEVEL_4K; max_level--) {
2916 linfo = lpage_info_slot(gfn, slot, max_level);
2917 if (!linfo->disallow_lpage)
2918 break;
2919 }
2920
2921 if (max_level == PG_LEVEL_4K)
2922 return PG_LEVEL_4K;
2923
2924 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2925 return min(host_level, max_level);
2926 }
2927
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,int max_level,kvm_pfn_t * pfnp,bool huge_page_disallowed,int * req_level)2928 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2929 int max_level, kvm_pfn_t *pfnp,
2930 bool huge_page_disallowed, int *req_level)
2931 {
2932 struct kvm_memory_slot *slot;
2933 kvm_pfn_t pfn = *pfnp;
2934 kvm_pfn_t mask;
2935 int level;
2936
2937 *req_level = PG_LEVEL_4K;
2938
2939 if (unlikely(max_level == PG_LEVEL_4K))
2940 return PG_LEVEL_4K;
2941
2942 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2943 return PG_LEVEL_4K;
2944
2945 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2946 if (!slot)
2947 return PG_LEVEL_4K;
2948
2949 /*
2950 * Enforce the iTLB multihit workaround after capturing the requested
2951 * level, which will be used to do precise, accurate accounting.
2952 */
2953 *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2954 if (level == PG_LEVEL_4K || huge_page_disallowed)
2955 return PG_LEVEL_4K;
2956
2957 /*
2958 * mmu_notifier_retry() was successful and mmu_lock is held, so
2959 * the pmd can't be split from under us.
2960 */
2961 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2962 VM_BUG_ON((gfn & mask) != (pfn & mask));
2963 *pfnp = pfn & ~mask;
2964
2965 return level;
2966 }
2967
disallowed_hugepage_adjust(u64 spte,gfn_t gfn,int cur_level,kvm_pfn_t * pfnp,int * goal_levelp)2968 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2969 kvm_pfn_t *pfnp, int *goal_levelp)
2970 {
2971 int level = *goal_levelp;
2972
2973 if (cur_level == level && level > PG_LEVEL_4K &&
2974 is_shadow_present_pte(spte) &&
2975 !is_large_pte(spte)) {
2976 /*
2977 * A small SPTE exists for this pfn, but FNAME(fetch)
2978 * and __direct_map would like to create a large PTE
2979 * instead: just force them to go down another level,
2980 * patching back for them into pfn the next 9 bits of
2981 * the address.
2982 */
2983 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2984 KVM_PAGES_PER_HPAGE(level - 1);
2985 *pfnp |= gfn & page_mask;
2986 (*goal_levelp)--;
2987 }
2988 }
2989
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault,bool is_tdp)2990 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2991 int map_writable, int max_level, kvm_pfn_t pfn,
2992 bool prefault, bool is_tdp)
2993 {
2994 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2995 bool write = error_code & PFERR_WRITE_MASK;
2996 bool exec = error_code & PFERR_FETCH_MASK;
2997 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2998 struct kvm_shadow_walk_iterator it;
2999 struct kvm_mmu_page *sp;
3000 int level, req_level, ret;
3001 gfn_t gfn = gpa >> PAGE_SHIFT;
3002 gfn_t base_gfn = gfn;
3003
3004 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
3005 huge_page_disallowed, &req_level);
3006
3007 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3008 for_each_shadow_entry(vcpu, gpa, it) {
3009 /*
3010 * We cannot overwrite existing page tables with an NX
3011 * large page, as the leaf could be executable.
3012 */
3013 if (nx_huge_page_workaround_enabled)
3014 disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3015 &pfn, &level);
3016
3017 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3018 if (it.level == level)
3019 break;
3020
3021 drop_large_spte(vcpu, it.sptep);
3022 if (is_shadow_present_pte(*it.sptep))
3023 continue;
3024
3025 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3026 it.level - 1, true, ACC_ALL);
3027
3028 link_shadow_page(vcpu, it.sptep, sp);
3029 if (is_tdp && huge_page_disallowed &&
3030 req_level >= it.level)
3031 account_huge_nx_page(vcpu->kvm, sp);
3032 }
3033
3034 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3035 write, level, base_gfn, pfn, prefault,
3036 map_writable);
3037 if (ret == RET_PF_SPURIOUS)
3038 return ret;
3039
3040 direct_pte_prefetch(vcpu, it.sptep);
3041 ++vcpu->stat.pf_fixed;
3042 return ret;
3043 }
3044
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3045 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3046 {
3047 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3048 }
3049
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3050 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3051 {
3052 /*
3053 * Do not cache the mmio info caused by writing the readonly gfn
3054 * into the spte otherwise read access on readonly gfn also can
3055 * caused mmio page fault and treat it as mmio access.
3056 */
3057 if (pfn == KVM_PFN_ERR_RO_FAULT)
3058 return RET_PF_EMULATE;
3059
3060 if (pfn == KVM_PFN_ERR_HWPOISON) {
3061 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3062 return RET_PF_RETRY;
3063 }
3064
3065 return -EFAULT;
3066 }
3067
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned int access,int * ret_val)3068 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3069 kvm_pfn_t pfn, unsigned int access,
3070 int *ret_val)
3071 {
3072 /* The pfn is invalid, report the error! */
3073 if (unlikely(is_error_pfn(pfn))) {
3074 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3075 return true;
3076 }
3077
3078 if (unlikely(is_noslot_pfn(pfn))) {
3079 vcpu_cache_mmio_info(vcpu, gva, gfn,
3080 access & shadow_mmio_access_mask);
3081 /*
3082 * If MMIO caching is disabled, emulate immediately without
3083 * touching the shadow page tables as attempting to install an
3084 * MMIO SPTE will just be an expensive nop.
3085 */
3086 if (unlikely(!shadow_mmio_value)) {
3087 *ret_val = RET_PF_EMULATE;
3088 return true;
3089 }
3090 }
3091
3092 return false;
3093 }
3094
page_fault_can_be_fast(u32 error_code)3095 static bool page_fault_can_be_fast(u32 error_code)
3096 {
3097 /*
3098 * Do not fix the mmio spte with invalid generation number which
3099 * need to be updated by slow page fault path.
3100 */
3101 if (unlikely(error_code & PFERR_RSVD_MASK))
3102 return false;
3103
3104 /* See if the page fault is due to an NX violation */
3105 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3106 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3107 return false;
3108
3109 /*
3110 * #PF can be fast if:
3111 * 1. The shadow page table entry is not present, which could mean that
3112 * the fault is potentially caused by access tracking (if enabled).
3113 * 2. The shadow page table entry is present and the fault
3114 * is caused by write-protect, that means we just need change the W
3115 * bit of the spte which can be done out of mmu-lock.
3116 *
3117 * However, if access tracking is disabled we know that a non-present
3118 * page must be a genuine page fault where we have to create a new SPTE.
3119 * So, if access tracking is disabled, we return true only for write
3120 * accesses to a present page.
3121 */
3122
3123 return shadow_acc_track_mask != 0 ||
3124 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3125 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3126 }
3127
3128 /*
3129 * Returns true if the SPTE was fixed successfully. Otherwise,
3130 * someone else modified the SPTE from its original value.
3131 */
3132 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)3133 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3134 u64 *sptep, u64 old_spte, u64 new_spte)
3135 {
3136 gfn_t gfn;
3137
3138 WARN_ON(!sp->role.direct);
3139
3140 /*
3141 * Theoretically we could also set dirty bit (and flush TLB) here in
3142 * order to eliminate unnecessary PML logging. See comments in
3143 * set_spte. But fast_page_fault is very unlikely to happen with PML
3144 * enabled, so we do not do this. This might result in the same GPA
3145 * to be logged in PML buffer again when the write really happens, and
3146 * eventually to be called by mark_page_dirty twice. But it's also no
3147 * harm. This also avoids the TLB flush needed after setting dirty bit
3148 * so non-PML cases won't be impacted.
3149 *
3150 * Compare with set_spte where instead shadow_dirty_mask is set.
3151 */
3152 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3153 return false;
3154
3155 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3156 /*
3157 * The gfn of direct spte is stable since it is
3158 * calculated by sp->gfn.
3159 */
3160 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3161 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3162 }
3163
3164 return true;
3165 }
3166
is_access_allowed(u32 fault_err_code,u64 spte)3167 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3168 {
3169 if (fault_err_code & PFERR_FETCH_MASK)
3170 return is_executable_pte(spte);
3171
3172 if (fault_err_code & PFERR_WRITE_MASK)
3173 return is_writable_pte(spte);
3174
3175 /* Fault was on Read access */
3176 return spte & PT_PRESENT_MASK;
3177 }
3178
3179 /*
3180 * Returns the last level spte pointer of the shadow page walk for the given
3181 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3182 * walk could be performed, returns NULL and *spte does not contain valid data.
3183 *
3184 * Contract:
3185 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3186 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3187 */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3188 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3189 {
3190 struct kvm_shadow_walk_iterator iterator;
3191 u64 old_spte;
3192 u64 *sptep = NULL;
3193
3194 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3195 sptep = iterator.sptep;
3196 *spte = old_spte;
3197
3198 if (!is_shadow_present_pte(old_spte))
3199 break;
3200 }
3201
3202 return sptep;
3203 }
3204
3205 /*
3206 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3207 */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code)3208 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3209 {
3210 struct kvm_mmu_page *sp;
3211 int ret = RET_PF_INVALID;
3212 u64 spte = 0ull;
3213 u64 *sptep = NULL;
3214 uint retry_count = 0;
3215
3216 if (!page_fault_can_be_fast(error_code))
3217 return ret;
3218
3219 walk_shadow_page_lockless_begin(vcpu);
3220
3221 do {
3222 u64 new_spte;
3223
3224 if (is_tdp_mmu(vcpu->arch.mmu))
3225 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3226 else
3227 sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3228
3229 if (!is_shadow_present_pte(spte))
3230 break;
3231
3232 sp = sptep_to_sp(sptep);
3233 if (!is_last_spte(spte, sp->role.level))
3234 break;
3235
3236 /*
3237 * Check whether the memory access that caused the fault would
3238 * still cause it if it were to be performed right now. If not,
3239 * then this is a spurious fault caused by TLB lazily flushed,
3240 * or some other CPU has already fixed the PTE after the
3241 * current CPU took the fault.
3242 *
3243 * Need not check the access of upper level table entries since
3244 * they are always ACC_ALL.
3245 */
3246 if (is_access_allowed(error_code, spte)) {
3247 ret = RET_PF_SPURIOUS;
3248 break;
3249 }
3250
3251 new_spte = spte;
3252
3253 if (is_access_track_spte(spte))
3254 new_spte = restore_acc_track_spte(new_spte);
3255
3256 /*
3257 * Currently, to simplify the code, write-protection can
3258 * be removed in the fast path only if the SPTE was
3259 * write-protected for dirty-logging or access tracking.
3260 */
3261 if ((error_code & PFERR_WRITE_MASK) &&
3262 spte_can_locklessly_be_made_writable(spte)) {
3263 new_spte |= PT_WRITABLE_MASK;
3264
3265 /*
3266 * Do not fix write-permission on the large spte. Since
3267 * we only dirty the first page into the dirty-bitmap in
3268 * fast_pf_fix_direct_spte(), other pages are missed
3269 * if its slot has dirty logging enabled.
3270 *
3271 * Instead, we let the slow page fault path create a
3272 * normal spte to fix the access.
3273 *
3274 * See the comments in kvm_arch_commit_memory_region().
3275 */
3276 if (sp->role.level > PG_LEVEL_4K)
3277 break;
3278 }
3279
3280 /* Verify that the fault can be handled in the fast path */
3281 if (new_spte == spte ||
3282 !is_access_allowed(error_code, new_spte))
3283 break;
3284
3285 /*
3286 * Currently, fast page fault only works for direct mapping
3287 * since the gfn is not stable for indirect shadow page. See
3288 * Documentation/virt/kvm/locking.rst to get more detail.
3289 */
3290 if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3291 ret = RET_PF_FIXED;
3292 break;
3293 }
3294
3295 if (++retry_count > 4) {
3296 printk_once(KERN_WARNING
3297 "kvm: Fast #PF retrying more than 4 times.\n");
3298 break;
3299 }
3300
3301 } while (true);
3302
3303 trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3304 walk_shadow_page_lockless_end(vcpu);
3305
3306 return ret;
3307 }
3308
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3309 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3310 struct list_head *invalid_list)
3311 {
3312 struct kvm_mmu_page *sp;
3313
3314 if (!VALID_PAGE(*root_hpa))
3315 return;
3316
3317 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3318 if (WARN_ON(!sp))
3319 return;
3320
3321 if (is_tdp_mmu_page(sp))
3322 kvm_tdp_mmu_put_root(kvm, sp, false);
3323 else if (!--sp->root_count && sp->role.invalid)
3324 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3325
3326 *root_hpa = INVALID_PAGE;
3327 }
3328
3329 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3330 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3331 ulong roots_to_free)
3332 {
3333 struct kvm *kvm = vcpu->kvm;
3334 int i;
3335 LIST_HEAD(invalid_list);
3336 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3337
3338 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3339
3340 /* Before acquiring the MMU lock, see if we need to do any real work. */
3341 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3342 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3343 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3344 VALID_PAGE(mmu->prev_roots[i].hpa))
3345 break;
3346
3347 if (i == KVM_MMU_NUM_PREV_ROOTS)
3348 return;
3349 }
3350
3351 write_lock(&kvm->mmu_lock);
3352
3353 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3354 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3355 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3356 &invalid_list);
3357
3358 if (free_active_root) {
3359 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3360 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3361 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3362 } else if (mmu->pae_root) {
3363 for (i = 0; i < 4; ++i) {
3364 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3365 continue;
3366
3367 mmu_free_root_page(kvm, &mmu->pae_root[i],
3368 &invalid_list);
3369 mmu->pae_root[i] = INVALID_PAE_ROOT;
3370 }
3371 }
3372 mmu->root_hpa = INVALID_PAGE;
3373 mmu->root_pgd = 0;
3374 }
3375
3376 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3377 write_unlock(&kvm->mmu_lock);
3378 }
3379 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3380
kvm_mmu_free_guest_mode_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3381 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3382 {
3383 unsigned long roots_to_free = 0;
3384 hpa_t root_hpa;
3385 int i;
3386
3387 /*
3388 * This should not be called while L2 is active, L2 can't invalidate
3389 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3390 */
3391 WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3392
3393 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3394 root_hpa = mmu->prev_roots[i].hpa;
3395 if (!VALID_PAGE(root_hpa))
3396 continue;
3397
3398 if (!to_shadow_page(root_hpa) ||
3399 to_shadow_page(root_hpa)->role.guest_mode)
3400 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3401 }
3402
3403 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3404 }
3405 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3406
3407
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3408 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3409 {
3410 int ret = 0;
3411
3412 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3413 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3414 ret = 1;
3415 }
3416
3417 return ret;
3418 }
3419
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3420 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3421 u8 level, bool direct)
3422 {
3423 struct kvm_mmu_page *sp;
3424
3425 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3426 ++sp->root_count;
3427
3428 return __pa(sp->spt);
3429 }
3430
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3431 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3432 {
3433 struct kvm_mmu *mmu = vcpu->arch.mmu;
3434 u8 shadow_root_level = mmu->shadow_root_level;
3435 hpa_t root;
3436 unsigned i;
3437 int r;
3438
3439 write_lock(&vcpu->kvm->mmu_lock);
3440 r = make_mmu_pages_available(vcpu);
3441 if (r < 0)
3442 goto out_unlock;
3443
3444 if (is_tdp_mmu_enabled(vcpu->kvm)) {
3445 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3446 mmu->root_hpa = root;
3447 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3448 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3449 mmu->root_hpa = root;
3450 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3451 if (WARN_ON_ONCE(!mmu->pae_root)) {
3452 r = -EIO;
3453 goto out_unlock;
3454 }
3455
3456 for (i = 0; i < 4; ++i) {
3457 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3458
3459 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3460 i << 30, PT32_ROOT_LEVEL, true);
3461 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3462 shadow_me_mask;
3463 }
3464 mmu->root_hpa = __pa(mmu->pae_root);
3465 } else {
3466 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3467 r = -EIO;
3468 goto out_unlock;
3469 }
3470
3471 /* root_pgd is ignored for direct MMUs. */
3472 mmu->root_pgd = 0;
3473 out_unlock:
3474 write_unlock(&vcpu->kvm->mmu_lock);
3475 return r;
3476 }
3477
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3478 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3479 {
3480 struct kvm_mmu *mmu = vcpu->arch.mmu;
3481 u64 pdptrs[4], pm_mask;
3482 gfn_t root_gfn, root_pgd;
3483 hpa_t root;
3484 unsigned i;
3485 int r;
3486
3487 root_pgd = mmu->get_guest_pgd(vcpu);
3488 root_gfn = root_pgd >> PAGE_SHIFT;
3489
3490 if (mmu_check_root(vcpu, root_gfn))
3491 return 1;
3492
3493 /*
3494 * On SVM, reading PDPTRs might access guest memory, which might fault
3495 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3496 */
3497 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3498 for (i = 0; i < 4; ++i) {
3499 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3500 if (!(pdptrs[i] & PT_PRESENT_MASK))
3501 continue;
3502
3503 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3504 return 1;
3505 }
3506 }
3507
3508 r = alloc_all_memslots_rmaps(vcpu->kvm);
3509 if (r)
3510 return r;
3511
3512 write_lock(&vcpu->kvm->mmu_lock);
3513 r = make_mmu_pages_available(vcpu);
3514 if (r < 0)
3515 goto out_unlock;
3516
3517 /*
3518 * Do we shadow a long mode page table? If so we need to
3519 * write-protect the guests page table root.
3520 */
3521 if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3522 root = mmu_alloc_root(vcpu, root_gfn, 0,
3523 mmu->shadow_root_level, false);
3524 mmu->root_hpa = root;
3525 goto set_root_pgd;
3526 }
3527
3528 if (WARN_ON_ONCE(!mmu->pae_root)) {
3529 r = -EIO;
3530 goto out_unlock;
3531 }
3532
3533 /*
3534 * We shadow a 32 bit page table. This may be a legacy 2-level
3535 * or a PAE 3-level page table. In either case we need to be aware that
3536 * the shadow page table may be a PAE or a long mode page table.
3537 */
3538 pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3539 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3540 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3541
3542 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3543 r = -EIO;
3544 goto out_unlock;
3545 }
3546 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3547
3548 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3549 if (WARN_ON_ONCE(!mmu->pml5_root)) {
3550 r = -EIO;
3551 goto out_unlock;
3552 }
3553 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3554 }
3555 }
3556
3557 for (i = 0; i < 4; ++i) {
3558 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3559
3560 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3561 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3562 mmu->pae_root[i] = INVALID_PAE_ROOT;
3563 continue;
3564 }
3565 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3566 }
3567
3568 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3569 PT32_ROOT_LEVEL, false);
3570 mmu->pae_root[i] = root | pm_mask;
3571 }
3572
3573 if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3574 mmu->root_hpa = __pa(mmu->pml5_root);
3575 else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3576 mmu->root_hpa = __pa(mmu->pml4_root);
3577 else
3578 mmu->root_hpa = __pa(mmu->pae_root);
3579
3580 set_root_pgd:
3581 mmu->root_pgd = root_pgd;
3582 out_unlock:
3583 write_unlock(&vcpu->kvm->mmu_lock);
3584
3585 return r;
3586 }
3587
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)3588 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3589 {
3590 struct kvm_mmu *mmu = vcpu->arch.mmu;
3591 bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3592 u64 *pml5_root = NULL;
3593 u64 *pml4_root = NULL;
3594 u64 *pae_root;
3595
3596 /*
3597 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3598 * tables are allocated and initialized at root creation as there is no
3599 * equivalent level in the guest's NPT to shadow. Allocate the tables
3600 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3601 */
3602 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3603 mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3604 return 0;
3605
3606 /*
3607 * NPT, the only paging mode that uses this horror, uses a fixed number
3608 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3609 * all MMus are 5-level. Thus, this can safely require that pml5_root
3610 * is allocated if the other roots are valid and pml5 is needed, as any
3611 * prior MMU would also have required pml5.
3612 */
3613 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3614 return 0;
3615
3616 /*
3617 * The special roots should always be allocated in concert. Yell and
3618 * bail if KVM ends up in a state where only one of the roots is valid.
3619 */
3620 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3621 (need_pml5 && mmu->pml5_root)))
3622 return -EIO;
3623
3624 /*
3625 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3626 * doesn't need to be decrypted.
3627 */
3628 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3629 if (!pae_root)
3630 return -ENOMEM;
3631
3632 #ifdef CONFIG_X86_64
3633 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3634 if (!pml4_root)
3635 goto err_pml4;
3636
3637 if (need_pml5) {
3638 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3639 if (!pml5_root)
3640 goto err_pml5;
3641 }
3642 #endif
3643
3644 mmu->pae_root = pae_root;
3645 mmu->pml4_root = pml4_root;
3646 mmu->pml5_root = pml5_root;
3647
3648 return 0;
3649
3650 #ifdef CONFIG_X86_64
3651 err_pml5:
3652 free_page((unsigned long)pml4_root);
3653 err_pml4:
3654 free_page((unsigned long)pae_root);
3655 return -ENOMEM;
3656 #endif
3657 }
3658
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3659 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3660 {
3661 int i;
3662 struct kvm_mmu_page *sp;
3663
3664 if (vcpu->arch.mmu->direct_map)
3665 return;
3666
3667 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3668 return;
3669
3670 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3671
3672 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3673 hpa_t root = vcpu->arch.mmu->root_hpa;
3674 sp = to_shadow_page(root);
3675
3676 /*
3677 * Even if another CPU was marking the SP as unsync-ed
3678 * simultaneously, any guest page table changes are not
3679 * guaranteed to be visible anyway until this VCPU issues a TLB
3680 * flush strictly after those changes are made. We only need to
3681 * ensure that the other CPU sets these flags before any actual
3682 * changes to the page tables are made. The comments in
3683 * mmu_try_to_unsync_pages() describe what could go wrong if
3684 * this requirement isn't satisfied.
3685 */
3686 if (!smp_load_acquire(&sp->unsync) &&
3687 !smp_load_acquire(&sp->unsync_children))
3688 return;
3689
3690 write_lock(&vcpu->kvm->mmu_lock);
3691 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3692
3693 mmu_sync_children(vcpu, sp, true);
3694
3695 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3696 write_unlock(&vcpu->kvm->mmu_lock);
3697 return;
3698 }
3699
3700 write_lock(&vcpu->kvm->mmu_lock);
3701 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3702
3703 for (i = 0; i < 4; ++i) {
3704 hpa_t root = vcpu->arch.mmu->pae_root[i];
3705
3706 if (IS_VALID_PAE_ROOT(root)) {
3707 root &= PT64_BASE_ADDR_MASK;
3708 sp = to_shadow_page(root);
3709 mmu_sync_children(vcpu, sp, true);
3710 }
3711 }
3712
3713 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3714 write_unlock(&vcpu->kvm->mmu_lock);
3715 }
3716
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3717 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3718 u32 access, struct x86_exception *exception)
3719 {
3720 if (exception)
3721 exception->error_code = 0;
3722 return vaddr;
3723 }
3724
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3725 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3726 u32 access,
3727 struct x86_exception *exception)
3728 {
3729 if (exception)
3730 exception->error_code = 0;
3731 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3732 }
3733
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3734 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3735 {
3736 /*
3737 * A nested guest cannot use the MMIO cache if it is using nested
3738 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3739 */
3740 if (mmu_is_nested(vcpu))
3741 return false;
3742
3743 if (direct)
3744 return vcpu_match_mmio_gpa(vcpu, addr);
3745
3746 return vcpu_match_mmio_gva(vcpu, addr);
3747 }
3748
3749 /*
3750 * Return the level of the lowest level SPTE added to sptes.
3751 * That SPTE may be non-present.
3752 *
3753 * Must be called between walk_shadow_page_lockless_{begin,end}.
3754 */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)3755 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3756 {
3757 struct kvm_shadow_walk_iterator iterator;
3758 int leaf = -1;
3759 u64 spte;
3760
3761 for (shadow_walk_init(&iterator, vcpu, addr),
3762 *root_level = iterator.level;
3763 shadow_walk_okay(&iterator);
3764 __shadow_walk_next(&iterator, spte)) {
3765 leaf = iterator.level;
3766 spte = mmu_spte_get_lockless(iterator.sptep);
3767
3768 sptes[leaf] = spte;
3769
3770 if (!is_shadow_present_pte(spte))
3771 break;
3772 }
3773
3774 return leaf;
3775 }
3776
3777 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3778 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3779 {
3780 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3781 struct rsvd_bits_validate *rsvd_check;
3782 int root, leaf, level;
3783 bool reserved = false;
3784
3785 walk_shadow_page_lockless_begin(vcpu);
3786
3787 if (is_tdp_mmu(vcpu->arch.mmu))
3788 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3789 else
3790 leaf = get_walk(vcpu, addr, sptes, &root);
3791
3792 walk_shadow_page_lockless_end(vcpu);
3793
3794 if (unlikely(leaf < 0)) {
3795 *sptep = 0ull;
3796 return reserved;
3797 }
3798
3799 *sptep = sptes[leaf];
3800
3801 /*
3802 * Skip reserved bits checks on the terminal leaf if it's not a valid
3803 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
3804 * design, always have reserved bits set. The purpose of the checks is
3805 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3806 */
3807 if (!is_shadow_present_pte(sptes[leaf]))
3808 leaf++;
3809
3810 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3811
3812 for (level = root; level >= leaf; level--)
3813 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3814
3815 if (reserved) {
3816 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3817 __func__, addr);
3818 for (level = root; level >= leaf; level--)
3819 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3820 sptes[level], level,
3821 get_rsvd_bits(rsvd_check, sptes[level], level));
3822 }
3823
3824 return reserved;
3825 }
3826
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3827 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3828 {
3829 u64 spte;
3830 bool reserved;
3831
3832 if (mmio_info_in_cache(vcpu, addr, direct))
3833 return RET_PF_EMULATE;
3834
3835 reserved = get_mmio_spte(vcpu, addr, &spte);
3836 if (WARN_ON(reserved))
3837 return -EINVAL;
3838
3839 if (is_mmio_spte(spte)) {
3840 gfn_t gfn = get_mmio_spte_gfn(spte);
3841 unsigned int access = get_mmio_spte_access(spte);
3842
3843 if (!check_mmio_spte(vcpu, spte))
3844 return RET_PF_INVALID;
3845
3846 if (direct)
3847 addr = 0;
3848
3849 trace_handle_mmio_page_fault(addr, gfn, access);
3850 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3851 return RET_PF_EMULATE;
3852 }
3853
3854 /*
3855 * If the page table is zapped by other cpus, let CPU fault again on
3856 * the address.
3857 */
3858 return RET_PF_RETRY;
3859 }
3860
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3861 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3862 u32 error_code, gfn_t gfn)
3863 {
3864 if (unlikely(error_code & PFERR_RSVD_MASK))
3865 return false;
3866
3867 if (!(error_code & PFERR_PRESENT_MASK) ||
3868 !(error_code & PFERR_WRITE_MASK))
3869 return false;
3870
3871 /*
3872 * guest is writing the page which is write tracked which can
3873 * not be fixed by page fault handler.
3874 */
3875 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3876 return true;
3877
3878 return false;
3879 }
3880
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3881 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3882 {
3883 struct kvm_shadow_walk_iterator iterator;
3884 u64 spte;
3885
3886 walk_shadow_page_lockless_begin(vcpu);
3887 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3888 clear_sp_write_flooding_count(iterator.sptep);
3889 if (!is_shadow_present_pte(spte))
3890 break;
3891 }
3892 walk_shadow_page_lockless_end(vcpu);
3893 }
3894
alloc_apf_token(struct kvm_vcpu * vcpu)3895 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3896 {
3897 /* make sure the token value is not 0 */
3898 u32 id = vcpu->arch.apf.id;
3899
3900 if (id << 12 == 0)
3901 vcpu->arch.apf.id = 1;
3902
3903 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3904 }
3905
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3906 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3907 gfn_t gfn)
3908 {
3909 struct kvm_arch_async_pf arch;
3910
3911 arch.token = alloc_apf_token(vcpu);
3912 arch.gfn = gfn;
3913 arch.direct_map = vcpu->arch.mmu->direct_map;
3914 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3915
3916 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3917 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3918 }
3919
kvm_faultin_pfn(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,hva_t * hva,bool write,bool * writable,int * r)3920 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3921 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3922 bool write, bool *writable, int *r)
3923 {
3924 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3925 bool async;
3926
3927 /*
3928 * Retry the page fault if the gfn hit a memslot that is being deleted
3929 * or moved. This ensures any existing SPTEs for the old memslot will
3930 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3931 */
3932 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3933 goto out_retry;
3934
3935 if (!kvm_is_visible_memslot(slot)) {
3936 /* Don't expose private memslots to L2. */
3937 if (is_guest_mode(vcpu)) {
3938 *pfn = KVM_PFN_NOSLOT;
3939 *writable = false;
3940 return false;
3941 }
3942 /*
3943 * If the APIC access page exists but is disabled, go directly
3944 * to emulation without caching the MMIO access or creating a
3945 * MMIO SPTE. That way the cache doesn't need to be purged
3946 * when the AVIC is re-enabled.
3947 */
3948 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3949 !kvm_apicv_activated(vcpu->kvm)) {
3950 *r = RET_PF_EMULATE;
3951 return true;
3952 }
3953 }
3954
3955 async = false;
3956 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3957 write, writable, hva);
3958 if (!async)
3959 return false; /* *pfn has correct page already */
3960
3961 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3962 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3963 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3964 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3965 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3966 goto out_retry;
3967 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3968 goto out_retry;
3969 }
3970
3971 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3972 write, writable, hva);
3973 return false;
3974
3975 out_retry:
3976 *r = RET_PF_RETRY;
3977 return true;
3978 }
3979
direct_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault,int max_level,bool is_tdp)3980 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3981 bool prefault, int max_level, bool is_tdp)
3982 {
3983 bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3984 bool write = error_code & PFERR_WRITE_MASK;
3985 bool map_writable;
3986
3987 gfn_t gfn = gpa >> PAGE_SHIFT;
3988 unsigned long mmu_seq;
3989 kvm_pfn_t pfn;
3990 hva_t hva;
3991 int r;
3992
3993 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3994 return RET_PF_EMULATE;
3995
3996 r = fast_page_fault(vcpu, gpa, error_code);
3997 if (r != RET_PF_INVALID)
3998 return r;
3999
4000 r = mmu_topup_memory_caches(vcpu, false);
4001 if (r)
4002 return r;
4003
4004 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4005 smp_rmb();
4006
4007 if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
4008 write, &map_writable, &r))
4009 return r;
4010
4011 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4012 return r;
4013
4014 r = RET_PF_RETRY;
4015
4016 if (is_tdp_mmu_fault)
4017 read_lock(&vcpu->kvm->mmu_lock);
4018 else
4019 write_lock(&vcpu->kvm->mmu_lock);
4020
4021 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4022 goto out_unlock;
4023
4024 if (is_tdp_mmu_fault) {
4025 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
4026 pfn, prefault);
4027 } else {
4028 r = make_mmu_pages_available(vcpu);
4029 if (r)
4030 goto out_unlock;
4031 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
4032 prefault, is_tdp);
4033 }
4034
4035 out_unlock:
4036 if (is_tdp_mmu_fault)
4037 read_unlock(&vcpu->kvm->mmu_lock);
4038 else
4039 write_unlock(&vcpu->kvm->mmu_lock);
4040 kvm_release_pfn_clean(pfn);
4041 return r;
4042 }
4043
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4044 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4045 u32 error_code, bool prefault)
4046 {
4047 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4048
4049 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4050 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4051 PG_LEVEL_2M, false);
4052 }
4053
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4054 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4055 u64 fault_address, char *insn, int insn_len)
4056 {
4057 int r = 1;
4058 u32 flags = vcpu->arch.apf.host_apf_flags;
4059
4060 #ifndef CONFIG_X86_64
4061 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4062 if (WARN_ON_ONCE(fault_address >> 32))
4063 return -EFAULT;
4064 #endif
4065
4066 vcpu->arch.l1tf_flush_l1d = true;
4067 if (!flags) {
4068 trace_kvm_page_fault(fault_address, error_code);
4069
4070 if (kvm_event_needs_reinjection(vcpu))
4071 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4072 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4073 insn_len);
4074 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4075 vcpu->arch.apf.host_apf_flags = 0;
4076 local_irq_disable();
4077 kvm_async_pf_task_wait_schedule(fault_address);
4078 local_irq_enable();
4079 } else {
4080 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4081 }
4082
4083 return r;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4086
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4087 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4088 bool prefault)
4089 {
4090 int max_level;
4091
4092 for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4093 max_level > PG_LEVEL_4K;
4094 max_level--) {
4095 int page_num = KVM_PAGES_PER_HPAGE(max_level);
4096 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4097
4098 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4099 break;
4100 }
4101
4102 return direct_page_fault(vcpu, gpa, error_code, prefault,
4103 max_level, true);
4104 }
4105
nonpaging_init_context(struct kvm_mmu * context)4106 static void nonpaging_init_context(struct kvm_mmu *context)
4107 {
4108 context->page_fault = nonpaging_page_fault;
4109 context->gva_to_gpa = nonpaging_gva_to_gpa;
4110 context->sync_page = nonpaging_sync_page;
4111 context->invlpg = NULL;
4112 context->direct_map = true;
4113 }
4114
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4115 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4116 union kvm_mmu_page_role role)
4117 {
4118 return (role.direct || pgd == root->pgd) &&
4119 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4120 role.word == to_shadow_page(root->hpa)->role.word;
4121 }
4122
4123 /*
4124 * Find out if a previously cached root matching the new pgd/role is available.
4125 * The current root is also inserted into the cache.
4126 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4127 * returned.
4128 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4129 * false is returned. This root should now be freed by the caller.
4130 */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4131 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4132 union kvm_mmu_page_role new_role)
4133 {
4134 uint i;
4135 struct kvm_mmu_root_info root;
4136 struct kvm_mmu *mmu = vcpu->arch.mmu;
4137
4138 root.pgd = mmu->root_pgd;
4139 root.hpa = mmu->root_hpa;
4140
4141 if (is_root_usable(&root, new_pgd, new_role))
4142 return true;
4143
4144 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4145 swap(root, mmu->prev_roots[i]);
4146
4147 if (is_root_usable(&root, new_pgd, new_role))
4148 break;
4149 }
4150
4151 mmu->root_hpa = root.hpa;
4152 mmu->root_pgd = root.pgd;
4153
4154 return i < KVM_MMU_NUM_PREV_ROOTS;
4155 }
4156
fast_pgd_switch(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4157 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4158 union kvm_mmu_page_role new_role)
4159 {
4160 struct kvm_mmu *mmu = vcpu->arch.mmu;
4161
4162 /*
4163 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4164 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4165 * later if necessary.
4166 */
4167 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4168 mmu->root_level >= PT64_ROOT_4LEVEL)
4169 return cached_root_available(vcpu, new_pgd, new_role);
4170
4171 return false;
4172 }
4173
__kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4174 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4175 union kvm_mmu_page_role new_role)
4176 {
4177 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4178 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4179 return;
4180 }
4181
4182 /*
4183 * It's possible that the cached previous root page is obsolete because
4184 * of a change in the MMU generation number. However, changing the
4185 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4186 * free the root set here and allocate a new one.
4187 */
4188 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4189
4190 if (force_flush_and_sync_on_reuse) {
4191 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4192 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4193 }
4194
4195 /*
4196 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4197 * switching to a new CR3, that GVA->GPA mapping may no longer be
4198 * valid. So clear any cached MMIO info even when we don't need to sync
4199 * the shadow page tables.
4200 */
4201 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4202
4203 /*
4204 * If this is a direct root page, it doesn't have a write flooding
4205 * count. Otherwise, clear the write flooding count.
4206 */
4207 if (!new_role.direct)
4208 __clear_sp_write_flooding_count(
4209 to_shadow_page(vcpu->arch.mmu->root_hpa));
4210 }
4211
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)4212 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4213 {
4214 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4215 }
4216 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4217
get_cr3(struct kvm_vcpu * vcpu)4218 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4219 {
4220 return kvm_read_cr3(vcpu);
4221 }
4222
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access,int * nr_present)4223 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4224 unsigned int access, int *nr_present)
4225 {
4226 if (unlikely(is_mmio_spte(*sptep))) {
4227 if (gfn != get_mmio_spte_gfn(*sptep)) {
4228 mmu_spte_clear_no_track(sptep);
4229 return true;
4230 }
4231
4232 (*nr_present)++;
4233 mark_mmio_spte(vcpu, sptep, gfn, access);
4234 return true;
4235 }
4236
4237 return false;
4238 }
4239
4240 #define PTTYPE_EPT 18 /* arbitrary */
4241 #define PTTYPE PTTYPE_EPT
4242 #include "paging_tmpl.h"
4243 #undef PTTYPE
4244
4245 #define PTTYPE 64
4246 #include "paging_tmpl.h"
4247 #undef PTTYPE
4248
4249 #define PTTYPE 32
4250 #include "paging_tmpl.h"
4251 #undef PTTYPE
4252
4253 static void
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)4254 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4255 u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4256 bool pse, bool amd)
4257 {
4258 u64 gbpages_bit_rsvd = 0;
4259 u64 nonleaf_bit8_rsvd = 0;
4260 u64 high_bits_rsvd;
4261
4262 rsvd_check->bad_mt_xwr = 0;
4263
4264 if (!gbpages)
4265 gbpages_bit_rsvd = rsvd_bits(7, 7);
4266
4267 if (level == PT32E_ROOT_LEVEL)
4268 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4269 else
4270 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4271
4272 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4273 if (!nx)
4274 high_bits_rsvd |= rsvd_bits(63, 63);
4275
4276 /*
4277 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4278 * leaf entries) on AMD CPUs only.
4279 */
4280 if (amd)
4281 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4282
4283 switch (level) {
4284 case PT32_ROOT_LEVEL:
4285 /* no rsvd bits for 2 level 4K page table entries */
4286 rsvd_check->rsvd_bits_mask[0][1] = 0;
4287 rsvd_check->rsvd_bits_mask[0][0] = 0;
4288 rsvd_check->rsvd_bits_mask[1][0] =
4289 rsvd_check->rsvd_bits_mask[0][0];
4290
4291 if (!pse) {
4292 rsvd_check->rsvd_bits_mask[1][1] = 0;
4293 break;
4294 }
4295
4296 if (is_cpuid_PSE36())
4297 /* 36bits PSE 4MB page */
4298 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4299 else
4300 /* 32 bits PSE 4MB page */
4301 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4302 break;
4303 case PT32E_ROOT_LEVEL:
4304 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4305 high_bits_rsvd |
4306 rsvd_bits(5, 8) |
4307 rsvd_bits(1, 2); /* PDPTE */
4308 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4309 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4310 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4311 rsvd_bits(13, 20); /* large page */
4312 rsvd_check->rsvd_bits_mask[1][0] =
4313 rsvd_check->rsvd_bits_mask[0][0];
4314 break;
4315 case PT64_ROOT_5LEVEL:
4316 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4317 nonleaf_bit8_rsvd |
4318 rsvd_bits(7, 7);
4319 rsvd_check->rsvd_bits_mask[1][4] =
4320 rsvd_check->rsvd_bits_mask[0][4];
4321 fallthrough;
4322 case PT64_ROOT_4LEVEL:
4323 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4324 nonleaf_bit8_rsvd |
4325 rsvd_bits(7, 7);
4326 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4327 gbpages_bit_rsvd;
4328 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4329 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4330 rsvd_check->rsvd_bits_mask[1][3] =
4331 rsvd_check->rsvd_bits_mask[0][3];
4332 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4333 gbpages_bit_rsvd |
4334 rsvd_bits(13, 29);
4335 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4336 rsvd_bits(13, 20); /* large page */
4337 rsvd_check->rsvd_bits_mask[1][0] =
4338 rsvd_check->rsvd_bits_mask[0][0];
4339 break;
4340 }
4341 }
4342
guest_can_use_gbpages(struct kvm_vcpu * vcpu)4343 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4344 {
4345 /*
4346 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4347 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
4348 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4349 * walk for performance and complexity reasons. Not to mention KVM
4350 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4351 * KVM once a TDP translation is installed. Mimic hardware behavior so
4352 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4353 */
4354 return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4355 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4356 }
4357
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4358 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4359 struct kvm_mmu *context)
4360 {
4361 __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4362 vcpu->arch.reserved_gpa_bits,
4363 context->root_level, is_efer_nx(context),
4364 guest_can_use_gbpages(vcpu),
4365 is_cr4_pse(context),
4366 guest_cpuid_is_amd_or_hygon(vcpu));
4367 }
4368
4369 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly)4370 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4371 u64 pa_bits_rsvd, bool execonly)
4372 {
4373 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4374 u64 bad_mt_xwr;
4375
4376 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4377 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4378 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4379 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4380 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4381
4382 /* large page */
4383 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4384 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4385 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4386 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4387 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4388
4389 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4390 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4391 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4392 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4393 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4394 if (!execonly) {
4395 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4396 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4397 }
4398 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4399 }
4400
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4401 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4402 struct kvm_mmu *context, bool execonly)
4403 {
4404 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4405 vcpu->arch.reserved_gpa_bits, execonly);
4406 }
4407
reserved_hpa_bits(void)4408 static inline u64 reserved_hpa_bits(void)
4409 {
4410 return rsvd_bits(shadow_phys_bits, 63);
4411 }
4412
4413 /*
4414 * the page table on host is the shadow page table for the page
4415 * table in guest or amd nested guest, its mmu features completely
4416 * follow the features in guest.
4417 */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4418 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4419 struct kvm_mmu *context)
4420 {
4421 /*
4422 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4423 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4424 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4425 * The iTLB multi-hit workaround can be toggled at any time, so assume
4426 * NX can be used by any non-nested shadow MMU to avoid having to reset
4427 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4428 */
4429 bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4430
4431 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4432 bool is_amd = true;
4433 /* KVM doesn't use 2-level page tables for the shadow MMU. */
4434 bool is_pse = false;
4435 struct rsvd_bits_validate *shadow_zero_check;
4436 int i;
4437
4438 WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4439
4440 shadow_zero_check = &context->shadow_zero_check;
4441 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4442 context->shadow_root_level, uses_nx,
4443 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4444
4445 if (!shadow_me_mask)
4446 return;
4447
4448 for (i = context->shadow_root_level; --i >= 0;) {
4449 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4450 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4451 }
4452
4453 }
4454
boot_cpu_is_amd(void)4455 static inline bool boot_cpu_is_amd(void)
4456 {
4457 WARN_ON_ONCE(!tdp_enabled);
4458 return shadow_x_mask == 0;
4459 }
4460
4461 /*
4462 * the direct page table on host, use as much mmu features as
4463 * possible, however, kvm currently does not do execution-protection.
4464 */
4465 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4466 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4467 struct kvm_mmu *context)
4468 {
4469 struct rsvd_bits_validate *shadow_zero_check;
4470 int i;
4471
4472 shadow_zero_check = &context->shadow_zero_check;
4473
4474 if (boot_cpu_is_amd())
4475 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4476 context->shadow_root_level, false,
4477 boot_cpu_has(X86_FEATURE_GBPAGES),
4478 false, true);
4479 else
4480 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4481 reserved_hpa_bits(), false);
4482
4483 if (!shadow_me_mask)
4484 return;
4485
4486 for (i = context->shadow_root_level; --i >= 0;) {
4487 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4488 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4489 }
4490 }
4491
4492 /*
4493 * as the comments in reset_shadow_zero_bits_mask() except it
4494 * is the shadow page table for intel nested guest.
4495 */
4496 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4497 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4498 struct kvm_mmu *context, bool execonly)
4499 {
4500 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4501 reserved_hpa_bits(), execonly);
4502 }
4503
4504 #define BYTE_MASK(access) \
4505 ((1 & (access) ? 2 : 0) | \
4506 (2 & (access) ? 4 : 0) | \
4507 (3 & (access) ? 8 : 0) | \
4508 (4 & (access) ? 16 : 0) | \
4509 (5 & (access) ? 32 : 0) | \
4510 (6 & (access) ? 64 : 0) | \
4511 (7 & (access) ? 128 : 0))
4512
4513
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)4514 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4515 {
4516 unsigned byte;
4517
4518 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4519 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4520 const u8 u = BYTE_MASK(ACC_USER_MASK);
4521
4522 bool cr4_smep = is_cr4_smep(mmu);
4523 bool cr4_smap = is_cr4_smap(mmu);
4524 bool cr0_wp = is_cr0_wp(mmu);
4525 bool efer_nx = is_efer_nx(mmu);
4526
4527 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4528 unsigned pfec = byte << 1;
4529
4530 /*
4531 * Each "*f" variable has a 1 bit for each UWX value
4532 * that causes a fault with the given PFEC.
4533 */
4534
4535 /* Faults from writes to non-writable pages */
4536 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4537 /* Faults from user mode accesses to supervisor pages */
4538 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4539 /* Faults from fetches of non-executable pages*/
4540 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4541 /* Faults from kernel mode fetches of user pages */
4542 u8 smepf = 0;
4543 /* Faults from kernel mode accesses of user pages */
4544 u8 smapf = 0;
4545
4546 if (!ept) {
4547 /* Faults from kernel mode accesses to user pages */
4548 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4549
4550 /* Not really needed: !nx will cause pte.nx to fault */
4551 if (!efer_nx)
4552 ff = 0;
4553
4554 /* Allow supervisor writes if !cr0.wp */
4555 if (!cr0_wp)
4556 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4557
4558 /* Disallow supervisor fetches of user code if cr4.smep */
4559 if (cr4_smep)
4560 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4561
4562 /*
4563 * SMAP:kernel-mode data accesses from user-mode
4564 * mappings should fault. A fault is considered
4565 * as a SMAP violation if all of the following
4566 * conditions are true:
4567 * - X86_CR4_SMAP is set in CR4
4568 * - A user page is accessed
4569 * - The access is not a fetch
4570 * - Page fault in kernel mode
4571 * - if CPL = 3 or X86_EFLAGS_AC is clear
4572 *
4573 * Here, we cover the first three conditions.
4574 * The fourth is computed dynamically in permission_fault();
4575 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4576 * *not* subject to SMAP restrictions.
4577 */
4578 if (cr4_smap)
4579 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4580 }
4581
4582 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4583 }
4584 }
4585
4586 /*
4587 * PKU is an additional mechanism by which the paging controls access to
4588 * user-mode addresses based on the value in the PKRU register. Protection
4589 * key violations are reported through a bit in the page fault error code.
4590 * Unlike other bits of the error code, the PK bit is not known at the
4591 * call site of e.g. gva_to_gpa; it must be computed directly in
4592 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4593 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4594 *
4595 * In particular the following conditions come from the error code, the
4596 * page tables and the machine state:
4597 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4598 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4599 * - PK is always zero if U=0 in the page tables
4600 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4601 *
4602 * The PKRU bitmask caches the result of these four conditions. The error
4603 * code (minus the P bit) and the page table's U bit form an index into the
4604 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4605 * with the two bits of the PKRU register corresponding to the protection key.
4606 * For the first three conditions above the bits will be 00, thus masking
4607 * away both AD and WD. For all reads or if the last condition holds, WD
4608 * only will be masked away.
4609 */
update_pkru_bitmask(struct kvm_mmu * mmu)4610 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4611 {
4612 unsigned bit;
4613 bool wp;
4614
4615 mmu->pkru_mask = 0;
4616
4617 if (!is_cr4_pke(mmu))
4618 return;
4619
4620 wp = is_cr0_wp(mmu);
4621
4622 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4623 unsigned pfec, pkey_bits;
4624 bool check_pkey, check_write, ff, uf, wf, pte_user;
4625
4626 pfec = bit << 1;
4627 ff = pfec & PFERR_FETCH_MASK;
4628 uf = pfec & PFERR_USER_MASK;
4629 wf = pfec & PFERR_WRITE_MASK;
4630
4631 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4632 pte_user = pfec & PFERR_RSVD_MASK;
4633
4634 /*
4635 * Only need to check the access which is not an
4636 * instruction fetch and is to a user page.
4637 */
4638 check_pkey = (!ff && pte_user);
4639 /*
4640 * write access is controlled by PKRU if it is a
4641 * user access or CR0.WP = 1.
4642 */
4643 check_write = check_pkey && wf && (uf || wp);
4644
4645 /* PKRU.AD stops both read and write access. */
4646 pkey_bits = !!check_pkey;
4647 /* PKRU.WD stops write access. */
4648 pkey_bits |= (!!check_write) << 1;
4649
4650 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4651 }
4652 }
4653
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4654 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4655 struct kvm_mmu *mmu)
4656 {
4657 if (!is_cr0_pg(mmu))
4658 return;
4659
4660 reset_rsvds_bits_mask(vcpu, mmu);
4661 update_permission_bitmask(mmu, false);
4662 update_pkru_bitmask(mmu);
4663 }
4664
paging64_init_context(struct kvm_mmu * context)4665 static void paging64_init_context(struct kvm_mmu *context)
4666 {
4667 context->page_fault = paging64_page_fault;
4668 context->gva_to_gpa = paging64_gva_to_gpa;
4669 context->sync_page = paging64_sync_page;
4670 context->invlpg = paging64_invlpg;
4671 context->direct_map = false;
4672 }
4673
paging32_init_context(struct kvm_mmu * context)4674 static void paging32_init_context(struct kvm_mmu *context)
4675 {
4676 context->page_fault = paging32_page_fault;
4677 context->gva_to_gpa = paging32_gva_to_gpa;
4678 context->sync_page = paging32_sync_page;
4679 context->invlpg = paging32_invlpg;
4680 context->direct_map = false;
4681 }
4682
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4683 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4684 struct kvm_mmu_role_regs *regs)
4685 {
4686 union kvm_mmu_extended_role ext = {0};
4687
4688 if (____is_cr0_pg(regs)) {
4689 ext.cr0_pg = 1;
4690 ext.cr4_pae = ____is_cr4_pae(regs);
4691 ext.cr4_smep = ____is_cr4_smep(regs);
4692 ext.cr4_smap = ____is_cr4_smap(regs);
4693 ext.cr4_pse = ____is_cr4_pse(regs);
4694
4695 /* PKEY and LA57 are active iff long mode is active. */
4696 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4697 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4698 ext.efer_lma = ____is_efer_lma(regs);
4699 }
4700
4701 ext.valid = 1;
4702
4703 return ext;
4704 }
4705
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4706 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4707 struct kvm_mmu_role_regs *regs,
4708 bool base_only)
4709 {
4710 union kvm_mmu_role role = {0};
4711
4712 role.base.access = ACC_ALL;
4713 if (____is_cr0_pg(regs)) {
4714 role.base.efer_nx = ____is_efer_nx(regs);
4715 role.base.cr0_wp = ____is_cr0_wp(regs);
4716 }
4717 role.base.smm = is_smm(vcpu);
4718 role.base.guest_mode = is_guest_mode(vcpu);
4719
4720 if (base_only)
4721 return role;
4722
4723 role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4724
4725 return role;
4726 }
4727
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4728 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4729 {
4730 /* tdp_root_level is architecture forced level, use it if nonzero */
4731 if (tdp_root_level)
4732 return tdp_root_level;
4733
4734 /* Use 5-level TDP if and only if it's useful/necessary. */
4735 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4736 return 4;
4737
4738 return max_tdp_level;
4739 }
4740
4741 static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4742 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4743 struct kvm_mmu_role_regs *regs, bool base_only)
4744 {
4745 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4746
4747 role.base.ad_disabled = (shadow_accessed_mask == 0);
4748 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4749 role.base.direct = true;
4750 role.base.gpte_is_8_bytes = true;
4751
4752 return role;
4753 }
4754
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4755 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4756 {
4757 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4758 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4759 union kvm_mmu_role new_role =
4760 kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false);
4761
4762 if (new_role.as_u64 == context->mmu_role.as_u64)
4763 return;
4764
4765 context->mmu_role.as_u64 = new_role.as_u64;
4766 context->page_fault = kvm_tdp_page_fault;
4767 context->sync_page = nonpaging_sync_page;
4768 context->invlpg = NULL;
4769 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4770 context->direct_map = true;
4771 context->get_guest_pgd = get_cr3;
4772 context->get_pdptr = kvm_pdptr_read;
4773 context->inject_page_fault = kvm_inject_page_fault;
4774 context->root_level = role_regs_to_root_level(®s);
4775
4776 if (!is_cr0_pg(context))
4777 context->gva_to_gpa = nonpaging_gva_to_gpa;
4778 else if (is_cr4_pae(context))
4779 context->gva_to_gpa = paging64_gva_to_gpa;
4780 else
4781 context->gva_to_gpa = paging32_gva_to_gpa;
4782
4783 reset_guest_paging_metadata(vcpu, context);
4784 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4785 }
4786
4787 static union kvm_mmu_role
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4788 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4789 struct kvm_mmu_role_regs *regs, bool base_only)
4790 {
4791 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4792
4793 role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4794 role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4795 role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4796
4797 return role;
4798 }
4799
4800 static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4801 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4802 struct kvm_mmu_role_regs *regs, bool base_only)
4803 {
4804 union kvm_mmu_role role =
4805 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4806
4807 role.base.direct = !____is_cr0_pg(regs);
4808
4809 if (!____is_efer_lma(regs))
4810 role.base.level = PT32E_ROOT_LEVEL;
4811 else if (____is_cr4_la57(regs))
4812 role.base.level = PT64_ROOT_5LEVEL;
4813 else
4814 role.base.level = PT64_ROOT_4LEVEL;
4815
4816 return role;
4817 }
4818
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,struct kvm_mmu_role_regs * regs,union kvm_mmu_role new_role)4819 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4820 struct kvm_mmu_role_regs *regs,
4821 union kvm_mmu_role new_role)
4822 {
4823 if (new_role.as_u64 == context->mmu_role.as_u64)
4824 return;
4825
4826 context->mmu_role.as_u64 = new_role.as_u64;
4827
4828 if (!is_cr0_pg(context))
4829 nonpaging_init_context(context);
4830 else if (is_cr4_pae(context))
4831 paging64_init_context(context);
4832 else
4833 paging32_init_context(context);
4834 context->root_level = role_regs_to_root_level(regs);
4835
4836 reset_guest_paging_metadata(vcpu, context);
4837 context->shadow_root_level = new_role.base.level;
4838
4839 reset_shadow_zero_bits_mask(vcpu, context);
4840 }
4841
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4842 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4843 struct kvm_mmu_role_regs *regs)
4844 {
4845 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4846 union kvm_mmu_role new_role =
4847 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4848
4849 shadow_mmu_init_context(vcpu, context, regs, new_role);
4850 }
4851
4852 static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4853 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4854 struct kvm_mmu_role_regs *regs)
4855 {
4856 union kvm_mmu_role role =
4857 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4858
4859 role.base.direct = false;
4860 role.base.level = kvm_mmu_get_tdp_level(vcpu);
4861
4862 return role;
4863 }
4864
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)4865 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4866 unsigned long cr4, u64 efer, gpa_t nested_cr3)
4867 {
4868 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4869 struct kvm_mmu_role_regs regs = {
4870 .cr0 = cr0,
4871 .cr4 = cr4 & ~X86_CR4_PKE,
4872 .efer = efer,
4873 };
4874 union kvm_mmu_role new_role;
4875
4876 new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s);
4877
4878 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4879
4880 shadow_mmu_init_context(vcpu, context, ®s, new_role);
4881 }
4882 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4883
4884 static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4885 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4886 bool execonly, u8 level)
4887 {
4888 union kvm_mmu_role role = {0};
4889
4890 /* SMM flag is inherited from root_mmu */
4891 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4892
4893 role.base.level = level;
4894 role.base.gpte_is_8_bytes = true;
4895 role.base.direct = false;
4896 role.base.ad_disabled = !accessed_dirty;
4897 role.base.guest_mode = true;
4898 role.base.access = ACC_ALL;
4899
4900 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4901 role.ext.word = 0;
4902 role.ext.execonly = execonly;
4903 role.ext.valid = 1;
4904
4905 return role;
4906 }
4907
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4908 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4909 bool accessed_dirty, gpa_t new_eptp)
4910 {
4911 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4912 u8 level = vmx_eptp_page_walk_level(new_eptp);
4913 union kvm_mmu_role new_role =
4914 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4915 execonly, level);
4916
4917 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4918
4919 if (new_role.as_u64 == context->mmu_role.as_u64)
4920 return;
4921
4922 context->mmu_role.as_u64 = new_role.as_u64;
4923
4924 context->shadow_root_level = level;
4925
4926 context->ept_ad = accessed_dirty;
4927 context->page_fault = ept_page_fault;
4928 context->gva_to_gpa = ept_gva_to_gpa;
4929 context->sync_page = ept_sync_page;
4930 context->invlpg = ept_invlpg;
4931 context->root_level = level;
4932 context->direct_map = false;
4933
4934 update_permission_bitmask(context, true);
4935 context->pkru_mask = 0;
4936 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4937 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4938 }
4939 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4940
init_kvm_softmmu(struct kvm_vcpu * vcpu)4941 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4942 {
4943 struct kvm_mmu *context = &vcpu->arch.root_mmu;
4944 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4945
4946 kvm_init_shadow_mmu(vcpu, ®s);
4947
4948 context->get_guest_pgd = get_cr3;
4949 context->get_pdptr = kvm_pdptr_read;
4950 context->inject_page_fault = kvm_inject_page_fault;
4951 }
4952
4953 static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4954 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4955 {
4956 union kvm_mmu_role role;
4957
4958 role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4959
4960 /*
4961 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4962 * shadow pages of their own and so "direct" has no meaning. Set it
4963 * to "true" to try to detect bogus usage of the nested MMU.
4964 */
4965 role.base.direct = true;
4966 role.base.level = role_regs_to_root_level(regs);
4967 return role;
4968 }
4969
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4970 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4971 {
4972 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4973 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s);
4974 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4975
4976 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4977 return;
4978
4979 g_context->mmu_role.as_u64 = new_role.as_u64;
4980 g_context->get_guest_pgd = get_cr3;
4981 g_context->get_pdptr = kvm_pdptr_read;
4982 g_context->inject_page_fault = kvm_inject_page_fault;
4983 g_context->root_level = new_role.base.level;
4984
4985 /*
4986 * L2 page tables are never shadowed, so there is no need to sync
4987 * SPTEs.
4988 */
4989 g_context->invlpg = NULL;
4990
4991 /*
4992 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4993 * L1's nested page tables (e.g. EPT12). The nested translation
4994 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4995 * L2's page tables as the first level of translation and L1's
4996 * nested page tables as the second level of translation. Basically
4997 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4998 */
4999 if (!is_paging(vcpu))
5000 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5001 else if (is_long_mode(vcpu))
5002 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5003 else if (is_pae(vcpu))
5004 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5005 else
5006 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5007
5008 reset_guest_paging_metadata(vcpu, g_context);
5009 }
5010
kvm_init_mmu(struct kvm_vcpu * vcpu)5011 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5012 {
5013 if (mmu_is_nested(vcpu))
5014 init_kvm_nested_mmu(vcpu);
5015 else if (tdp_enabled)
5016 init_kvm_tdp_mmu(vcpu);
5017 else
5018 init_kvm_softmmu(vcpu);
5019 }
5020 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5021
5022 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)5023 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5024 {
5025 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5026 union kvm_mmu_role role;
5027
5028 if (tdp_enabled)
5029 role = kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, true);
5030 else
5031 role = kvm_calc_shadow_mmu_root_page_role(vcpu, ®s, true);
5032
5033 return role.base;
5034 }
5035
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5036 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5037 {
5038 /*
5039 * Invalidate all MMU roles to force them to reinitialize as CPUID
5040 * information is factored into reserved bit calculations.
5041 */
5042 vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5043 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5044 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5045 kvm_mmu_reset_context(vcpu);
5046
5047 /*
5048 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5049 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5050 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
5051 * faults due to reusing SPs/SPTEs. Alert userspace, but otherwise
5052 * sweep the problem under the rug.
5053 *
5054 * KVM's horrific CPUID ABI makes the problem all but impossible to
5055 * solve, as correctly handling multiple vCPU models (with respect to
5056 * paging and physical address properties) in a single VM would require
5057 * tracking all relevant CPUID information in kvm_mmu_page_role. That
5058 * is very undesirable as it would double the memory requirements for
5059 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5060 * no sane VMM mucks with the core vCPU model on the fly.
5061 */
5062 if (vcpu->arch.last_vmentry_cpu != -1) {
5063 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5064 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5065 }
5066 }
5067
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5068 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5069 {
5070 kvm_mmu_unload(vcpu);
5071 kvm_init_mmu(vcpu);
5072 }
5073 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5074
kvm_mmu_load(struct kvm_vcpu * vcpu)5075 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5076 {
5077 int r;
5078
5079 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5080 if (r)
5081 goto out;
5082 r = mmu_alloc_special_roots(vcpu);
5083 if (r)
5084 goto out;
5085 if (vcpu->arch.mmu->direct_map)
5086 r = mmu_alloc_direct_roots(vcpu);
5087 else
5088 r = mmu_alloc_shadow_roots(vcpu);
5089 if (r)
5090 goto out;
5091
5092 kvm_mmu_sync_roots(vcpu);
5093
5094 kvm_mmu_load_pgd(vcpu);
5095 static_call(kvm_x86_tlb_flush_current)(vcpu);
5096 out:
5097 return r;
5098 }
5099
kvm_mmu_unload(struct kvm_vcpu * vcpu)5100 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5101 {
5102 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5103 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5104 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5105 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5106 }
5107
need_remote_flush(u64 old,u64 new)5108 static bool need_remote_flush(u64 old, u64 new)
5109 {
5110 if (!is_shadow_present_pte(old))
5111 return false;
5112 if (!is_shadow_present_pte(new))
5113 return true;
5114 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5115 return true;
5116 old ^= shadow_nx_mask;
5117 new ^= shadow_nx_mask;
5118 return (old & ~new & PT64_PERM_MASK) != 0;
5119 }
5120
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5121 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5122 int *bytes)
5123 {
5124 u64 gentry = 0;
5125 int r;
5126
5127 /*
5128 * Assume that the pte write on a page table of the same type
5129 * as the current vcpu paging mode since we update the sptes only
5130 * when they have the same mode.
5131 */
5132 if (is_pae(vcpu) && *bytes == 4) {
5133 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5134 *gpa &= ~(gpa_t)7;
5135 *bytes = 8;
5136 }
5137
5138 if (*bytes == 4 || *bytes == 8) {
5139 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5140 if (r)
5141 gentry = 0;
5142 }
5143
5144 return gentry;
5145 }
5146
5147 /*
5148 * If we're seeing too many writes to a page, it may no longer be a page table,
5149 * or we may be forking, in which case it is better to unmap the page.
5150 */
detect_write_flooding(struct kvm_mmu_page * sp)5151 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5152 {
5153 /*
5154 * Skip write-flooding detected for the sp whose level is 1, because
5155 * it can become unsync, then the guest page is not write-protected.
5156 */
5157 if (sp->role.level == PG_LEVEL_4K)
5158 return false;
5159
5160 atomic_inc(&sp->write_flooding_count);
5161 return atomic_read(&sp->write_flooding_count) >= 3;
5162 }
5163
5164 /*
5165 * Misaligned accesses are too much trouble to fix up; also, they usually
5166 * indicate a page is not used as a page table.
5167 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5168 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5169 int bytes)
5170 {
5171 unsigned offset, pte_size, misaligned;
5172
5173 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5174 gpa, bytes, sp->role.word);
5175
5176 offset = offset_in_page(gpa);
5177 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5178
5179 /*
5180 * Sometimes, the OS only writes the last one bytes to update status
5181 * bits, for example, in linux, andb instruction is used in clear_bit().
5182 */
5183 if (!(offset & (pte_size - 1)) && bytes == 1)
5184 return false;
5185
5186 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5187 misaligned |= bytes < 4;
5188
5189 return misaligned;
5190 }
5191
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5192 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5193 {
5194 unsigned page_offset, quadrant;
5195 u64 *spte;
5196 int level;
5197
5198 page_offset = offset_in_page(gpa);
5199 level = sp->role.level;
5200 *nspte = 1;
5201 if (!sp->role.gpte_is_8_bytes) {
5202 page_offset <<= 1; /* 32->64 */
5203 /*
5204 * A 32-bit pde maps 4MB while the shadow pdes map
5205 * only 2MB. So we need to double the offset again
5206 * and zap two pdes instead of one.
5207 */
5208 if (level == PT32_ROOT_LEVEL) {
5209 page_offset &= ~7; /* kill rounding error */
5210 page_offset <<= 1;
5211 *nspte = 2;
5212 }
5213 quadrant = page_offset >> PAGE_SHIFT;
5214 page_offset &= ~PAGE_MASK;
5215 if (quadrant != sp->role.quadrant)
5216 return NULL;
5217 }
5218
5219 spte = &sp->spt[page_offset / sizeof(*spte)];
5220 return spte;
5221 }
5222
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5223 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5224 const u8 *new, int bytes,
5225 struct kvm_page_track_notifier_node *node)
5226 {
5227 gfn_t gfn = gpa >> PAGE_SHIFT;
5228 struct kvm_mmu_page *sp;
5229 LIST_HEAD(invalid_list);
5230 u64 entry, gentry, *spte;
5231 int npte;
5232 bool remote_flush, local_flush;
5233
5234 /*
5235 * If we don't have indirect shadow pages, it means no page is
5236 * write-protected, so we can exit simply.
5237 */
5238 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5239 return;
5240
5241 remote_flush = local_flush = false;
5242
5243 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5244
5245 /*
5246 * No need to care whether allocation memory is successful
5247 * or not since pte prefetch is skipped if it does not have
5248 * enough objects in the cache.
5249 */
5250 mmu_topup_memory_caches(vcpu, true);
5251
5252 write_lock(&vcpu->kvm->mmu_lock);
5253
5254 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5255
5256 ++vcpu->kvm->stat.mmu_pte_write;
5257 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5258
5259 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5260 if (detect_write_misaligned(sp, gpa, bytes) ||
5261 detect_write_flooding(sp)) {
5262 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5263 ++vcpu->kvm->stat.mmu_flooded;
5264 continue;
5265 }
5266
5267 spte = get_written_sptes(sp, gpa, &npte);
5268 if (!spte)
5269 continue;
5270
5271 local_flush = true;
5272 while (npte--) {
5273 entry = *spte;
5274 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5275 if (gentry && sp->role.level != PG_LEVEL_4K)
5276 ++vcpu->kvm->stat.mmu_pde_zapped;
5277 if (need_remote_flush(entry, *spte))
5278 remote_flush = true;
5279 ++spte;
5280 }
5281 }
5282 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5283 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5284 write_unlock(&vcpu->kvm->mmu_lock);
5285 }
5286
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5287 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5288 void *insn, int insn_len)
5289 {
5290 int r, emulation_type = EMULTYPE_PF;
5291 bool direct = vcpu->arch.mmu->direct_map;
5292
5293 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5294 return RET_PF_RETRY;
5295
5296 r = RET_PF_INVALID;
5297 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5298 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5299 if (r == RET_PF_EMULATE)
5300 goto emulate;
5301 }
5302
5303 if (r == RET_PF_INVALID) {
5304 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5305 lower_32_bits(error_code), false);
5306 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5307 return -EIO;
5308 }
5309
5310 if (r < 0)
5311 return r;
5312 if (r != RET_PF_EMULATE)
5313 return 1;
5314
5315 /*
5316 * Before emulating the instruction, check if the error code
5317 * was due to a RO violation while translating the guest page.
5318 * This can occur when using nested virtualization with nested
5319 * paging in both guests. If true, we simply unprotect the page
5320 * and resume the guest.
5321 */
5322 if (vcpu->arch.mmu->direct_map &&
5323 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5324 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5325 return 1;
5326 }
5327
5328 /*
5329 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5330 * optimistically try to just unprotect the page and let the processor
5331 * re-execute the instruction that caused the page fault. Do not allow
5332 * retrying MMIO emulation, as it's not only pointless but could also
5333 * cause us to enter an infinite loop because the processor will keep
5334 * faulting on the non-existent MMIO address. Retrying an instruction
5335 * from a nested guest is also pointless and dangerous as we are only
5336 * explicitly shadowing L1's page tables, i.e. unprotecting something
5337 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5338 */
5339 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5340 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5341 emulate:
5342 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5343 insn_len);
5344 }
5345 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5346
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5347 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5348 gva_t gva, hpa_t root_hpa)
5349 {
5350 int i;
5351
5352 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5353 if (mmu != &vcpu->arch.guest_mmu) {
5354 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5355 if (is_noncanonical_address(gva, vcpu))
5356 return;
5357
5358 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5359 }
5360
5361 if (!mmu->invlpg)
5362 return;
5363
5364 if (root_hpa == INVALID_PAGE) {
5365 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5366
5367 /*
5368 * INVLPG is required to invalidate any global mappings for the VA,
5369 * irrespective of PCID. Since it would take us roughly similar amount
5370 * of work to determine whether any of the prev_root mappings of the VA
5371 * is marked global, or to just sync it blindly, so we might as well
5372 * just always sync it.
5373 *
5374 * Mappings not reachable via the current cr3 or the prev_roots will be
5375 * synced when switching to that cr3, so nothing needs to be done here
5376 * for them.
5377 */
5378 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5379 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5380 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5381 } else {
5382 mmu->invlpg(vcpu, gva, root_hpa);
5383 }
5384 }
5385
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5386 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5387 {
5388 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5389 ++vcpu->stat.invlpg;
5390 }
5391 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5392
5393
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5394 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5395 {
5396 struct kvm_mmu *mmu = vcpu->arch.mmu;
5397 bool tlb_flush = false;
5398 uint i;
5399
5400 if (pcid == kvm_get_active_pcid(vcpu)) {
5401 if (mmu->invlpg)
5402 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5403 tlb_flush = true;
5404 }
5405
5406 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5407 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5408 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5409 if (mmu->invlpg)
5410 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5411 tlb_flush = true;
5412 }
5413 }
5414
5415 if (tlb_flush)
5416 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5417
5418 ++vcpu->stat.invlpg;
5419
5420 /*
5421 * Mappings not reachable via the current cr3 or the prev_roots will be
5422 * synced when switching to that cr3, so nothing needs to be done here
5423 * for them.
5424 */
5425 }
5426
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)5427 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5428 int tdp_max_root_level, int tdp_huge_page_level)
5429 {
5430 tdp_enabled = enable_tdp;
5431 tdp_root_level = tdp_forced_root_level;
5432 max_tdp_level = tdp_max_root_level;
5433
5434 /*
5435 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5436 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5437 * the kernel is not. But, KVM never creates a page size greater than
5438 * what is used by the kernel for any given HVA, i.e. the kernel's
5439 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5440 */
5441 if (tdp_enabled)
5442 max_huge_page_level = tdp_huge_page_level;
5443 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5444 max_huge_page_level = PG_LEVEL_1G;
5445 else
5446 max_huge_page_level = PG_LEVEL_2M;
5447 }
5448 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5449
5450 /* The return value indicates if tlb flush on all vcpus is needed. */
5451 typedef bool (*slot_level_handler) (struct kvm *kvm,
5452 struct kvm_rmap_head *rmap_head,
5453 const struct kvm_memory_slot *slot);
5454
5455 /* The caller should hold mmu-lock before calling this function. */
5456 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool flush_on_yield,bool flush)5457 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5458 slot_level_handler fn, int start_level, int end_level,
5459 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5460 bool flush)
5461 {
5462 struct slot_rmap_walk_iterator iterator;
5463
5464 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5465 end_gfn, &iterator) {
5466 if (iterator.rmap)
5467 flush |= fn(kvm, iterator.rmap, memslot);
5468
5469 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5470 if (flush && flush_on_yield) {
5471 kvm_flush_remote_tlbs_with_address(kvm,
5472 start_gfn,
5473 iterator.gfn - start_gfn + 1);
5474 flush = false;
5475 }
5476 cond_resched_rwlock_write(&kvm->mmu_lock);
5477 }
5478 }
5479
5480 return flush;
5481 }
5482
5483 static __always_inline bool
slot_handle_level(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool flush_on_yield)5484 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5485 slot_level_handler fn, int start_level, int end_level,
5486 bool flush_on_yield)
5487 {
5488 return slot_handle_level_range(kvm, memslot, fn, start_level,
5489 end_level, memslot->base_gfn,
5490 memslot->base_gfn + memslot->npages - 1,
5491 flush_on_yield, false);
5492 }
5493
5494 static __always_inline bool
slot_handle_level_4k(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,bool flush_on_yield)5495 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5496 slot_level_handler fn, bool flush_on_yield)
5497 {
5498 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5499 PG_LEVEL_4K, flush_on_yield);
5500 }
5501
free_mmu_pages(struct kvm_mmu * mmu)5502 static void free_mmu_pages(struct kvm_mmu *mmu)
5503 {
5504 if (!tdp_enabled && mmu->pae_root)
5505 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5506 free_page((unsigned long)mmu->pae_root);
5507 free_page((unsigned long)mmu->pml4_root);
5508 free_page((unsigned long)mmu->pml5_root);
5509 }
5510
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5511 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5512 {
5513 struct page *page;
5514 int i;
5515
5516 mmu->root_hpa = INVALID_PAGE;
5517 mmu->root_pgd = 0;
5518 mmu->translate_gpa = translate_gpa;
5519 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5520 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5521
5522 /*
5523 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5524 * while the PDP table is a per-vCPU construct that's allocated at MMU
5525 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5526 * x86_64. Therefore we need to allocate the PDP table in the first
5527 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
5528 * generally doesn't use PAE paging and can skip allocating the PDP
5529 * table. The main exception, handled here, is SVM's 32-bit NPT. The
5530 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5531 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5532 */
5533 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5534 return 0;
5535
5536 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5537 if (!page)
5538 return -ENOMEM;
5539
5540 mmu->pae_root = page_address(page);
5541
5542 /*
5543 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5544 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
5545 * that KVM's writes and the CPU's reads get along. Note, this is
5546 * only necessary when using shadow paging, as 64-bit NPT can get at
5547 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5548 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5549 */
5550 if (!tdp_enabled)
5551 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5552 else
5553 WARN_ON_ONCE(shadow_me_mask);
5554
5555 for (i = 0; i < 4; ++i)
5556 mmu->pae_root[i] = INVALID_PAE_ROOT;
5557
5558 return 0;
5559 }
5560
kvm_mmu_create(struct kvm_vcpu * vcpu)5561 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5562 {
5563 int ret;
5564
5565 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5566 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5567
5568 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5569 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5570
5571 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5572
5573 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5574 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5575
5576 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5577
5578 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5579 if (ret)
5580 return ret;
5581
5582 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5583 if (ret)
5584 goto fail_allocate_root;
5585
5586 return ret;
5587 fail_allocate_root:
5588 free_mmu_pages(&vcpu->arch.guest_mmu);
5589 return ret;
5590 }
5591
5592 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)5593 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5594 {
5595 struct kvm_mmu_page *sp, *node;
5596 int nr_zapped, batch = 0;
5597 bool unstable;
5598
5599 restart:
5600 list_for_each_entry_safe_reverse(sp, node,
5601 &kvm->arch.active_mmu_pages, link) {
5602 /*
5603 * No obsolete valid page exists before a newly created page
5604 * since active_mmu_pages is a FIFO list.
5605 */
5606 if (!is_obsolete_sp(kvm, sp))
5607 break;
5608
5609 /*
5610 * Invalid pages should never land back on the list of active
5611 * pages. Skip the bogus page, otherwise we'll get stuck in an
5612 * infinite loop if the page gets put back on the list (again).
5613 */
5614 if (WARN_ON(sp->role.invalid))
5615 continue;
5616
5617 /*
5618 * No need to flush the TLB since we're only zapping shadow
5619 * pages with an obsolete generation number and all vCPUS have
5620 * loaded a new root, i.e. the shadow pages being zapped cannot
5621 * be in active use by the guest.
5622 */
5623 if (batch >= BATCH_ZAP_PAGES &&
5624 cond_resched_rwlock_write(&kvm->mmu_lock)) {
5625 batch = 0;
5626 goto restart;
5627 }
5628
5629 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5630 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
5631 batch += nr_zapped;
5632
5633 if (unstable)
5634 goto restart;
5635 }
5636
5637 /*
5638 * Trigger a remote TLB flush before freeing the page tables to ensure
5639 * KVM is not in the middle of a lockless shadow page table walk, which
5640 * may reference the pages.
5641 */
5642 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5643 }
5644
5645 /*
5646 * Fast invalidate all shadow pages and use lock-break technique
5647 * to zap obsolete pages.
5648 *
5649 * It's required when memslot is being deleted or VM is being
5650 * destroyed, in these cases, we should ensure that KVM MMU does
5651 * not use any resource of the being-deleted slot or all slots
5652 * after calling the function.
5653 */
kvm_mmu_zap_all_fast(struct kvm * kvm)5654 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5655 {
5656 lockdep_assert_held(&kvm->slots_lock);
5657
5658 write_lock(&kvm->mmu_lock);
5659 trace_kvm_mmu_zap_all_fast(kvm);
5660
5661 /*
5662 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5663 * held for the entire duration of zapping obsolete pages, it's
5664 * impossible for there to be multiple invalid generations associated
5665 * with *valid* shadow pages at any given time, i.e. there is exactly
5666 * one valid generation and (at most) one invalid generation.
5667 */
5668 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5669
5670 /* In order to ensure all threads see this change when
5671 * handling the MMU reload signal, this must happen in the
5672 * same critical section as kvm_reload_remote_mmus, and
5673 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5674 * could drop the MMU lock and yield.
5675 */
5676 if (is_tdp_mmu_enabled(kvm))
5677 kvm_tdp_mmu_invalidate_all_roots(kvm);
5678
5679 /*
5680 * Notify all vcpus to reload its shadow page table and flush TLB.
5681 * Then all vcpus will switch to new shadow page table with the new
5682 * mmu_valid_gen.
5683 *
5684 * Note: we need to do this under the protection of mmu_lock,
5685 * otherwise, vcpu would purge shadow page but miss tlb flush.
5686 */
5687 kvm_reload_remote_mmus(kvm);
5688
5689 kvm_zap_obsolete_pages(kvm);
5690
5691 write_unlock(&kvm->mmu_lock);
5692
5693 if (is_tdp_mmu_enabled(kvm)) {
5694 read_lock(&kvm->mmu_lock);
5695 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5696 read_unlock(&kvm->mmu_lock);
5697 }
5698 }
5699
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5700 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5701 {
5702 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5703 }
5704
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5705 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5706 struct kvm_memory_slot *slot,
5707 struct kvm_page_track_notifier_node *node)
5708 {
5709 kvm_mmu_zap_all_fast(kvm);
5710 }
5711
kvm_mmu_init_vm(struct kvm * kvm)5712 void kvm_mmu_init_vm(struct kvm *kvm)
5713 {
5714 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5715
5716 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5717
5718 if (!kvm_mmu_init_tdp_mmu(kvm))
5719 /*
5720 * No smp_load/store wrappers needed here as we are in
5721 * VM init and there cannot be any memslots / other threads
5722 * accessing this struct kvm yet.
5723 */
5724 kvm->arch.memslots_have_rmaps = true;
5725
5726 node->track_write = kvm_mmu_pte_write;
5727 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5728 kvm_page_track_register_notifier(kvm, node);
5729 }
5730
kvm_mmu_uninit_vm(struct kvm * kvm)5731 void kvm_mmu_uninit_vm(struct kvm *kvm)
5732 {
5733 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5734
5735 kvm_page_track_unregister_notifier(kvm, node);
5736
5737 kvm_mmu_uninit_tdp_mmu(kvm);
5738 }
5739
5740 /*
5741 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5742 * (not including it)
5743 */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5744 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5745 {
5746 struct kvm_memslots *slots;
5747 struct kvm_memory_slot *memslot;
5748 int i;
5749 bool flush = false;
5750
5751 write_lock(&kvm->mmu_lock);
5752
5753 kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5754
5755 if (kvm_memslots_have_rmaps(kvm)) {
5756 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5757 slots = __kvm_memslots(kvm, i);
5758 kvm_for_each_memslot(memslot, slots) {
5759 gfn_t start, end;
5760
5761 start = max(gfn_start, memslot->base_gfn);
5762 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5763 if (start >= end)
5764 continue;
5765
5766 flush = slot_handle_level_range(kvm,
5767 (const struct kvm_memory_slot *) memslot,
5768 kvm_zap_rmapp, PG_LEVEL_4K,
5769 KVM_MAX_HUGEPAGE_LEVEL, start,
5770 end - 1, true, flush);
5771 }
5772 }
5773 if (flush)
5774 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5775 gfn_end - gfn_start);
5776 }
5777
5778 if (is_tdp_mmu_enabled(kvm)) {
5779 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5780 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5781 gfn_end, flush);
5782 }
5783
5784 if (flush)
5785 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5786 gfn_end - gfn_start);
5787
5788 kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5789
5790 write_unlock(&kvm->mmu_lock);
5791 }
5792
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5793 static bool slot_rmap_write_protect(struct kvm *kvm,
5794 struct kvm_rmap_head *rmap_head,
5795 const struct kvm_memory_slot *slot)
5796 {
5797 return __rmap_write_protect(kvm, rmap_head, false);
5798 }
5799
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)5800 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5801 const struct kvm_memory_slot *memslot,
5802 int start_level)
5803 {
5804 bool flush = false;
5805
5806 if (kvm_memslots_have_rmaps(kvm)) {
5807 write_lock(&kvm->mmu_lock);
5808 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5809 start_level, KVM_MAX_HUGEPAGE_LEVEL,
5810 false);
5811 write_unlock(&kvm->mmu_lock);
5812 }
5813
5814 if (is_tdp_mmu_enabled(kvm)) {
5815 read_lock(&kvm->mmu_lock);
5816 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5817 read_unlock(&kvm->mmu_lock);
5818 }
5819
5820 /*
5821 * We can flush all the TLBs out of the mmu lock without TLB
5822 * corruption since we just change the spte from writable to
5823 * readonly so that we only need to care the case of changing
5824 * spte from present to present (changing the spte from present
5825 * to nonpresent will flush all the TLBs immediately), in other
5826 * words, the only case we care is mmu_spte_update() where we
5827 * have checked Host-writable | MMU-writable instead of
5828 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5829 * anymore.
5830 */
5831 if (flush)
5832 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5833 }
5834
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5835 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5836 struct kvm_rmap_head *rmap_head,
5837 const struct kvm_memory_slot *slot)
5838 {
5839 u64 *sptep;
5840 struct rmap_iterator iter;
5841 int need_tlb_flush = 0;
5842 kvm_pfn_t pfn;
5843 struct kvm_mmu_page *sp;
5844
5845 restart:
5846 for_each_rmap_spte(rmap_head, &iter, sptep) {
5847 sp = sptep_to_sp(sptep);
5848 pfn = spte_to_pfn(*sptep);
5849
5850 /*
5851 * We cannot do huge page mapping for indirect shadow pages,
5852 * which are found on the last rmap (level = 1) when not using
5853 * tdp; such shadow pages are synced with the page table in
5854 * the guest, and the guest page table is using 4K page size
5855 * mapping if the indirect sp has level = 1.
5856 */
5857 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5858 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5859 pfn, PG_LEVEL_NUM)) {
5860 pte_list_remove(kvm, rmap_head, sptep);
5861
5862 if (kvm_available_flush_tlb_with_range())
5863 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5864 KVM_PAGES_PER_HPAGE(sp->role.level));
5865 else
5866 need_tlb_flush = 1;
5867
5868 goto restart;
5869 }
5870 }
5871
5872 return need_tlb_flush;
5873 }
5874
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)5875 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5876 const struct kvm_memory_slot *slot)
5877 {
5878 if (kvm_memslots_have_rmaps(kvm)) {
5879 write_lock(&kvm->mmu_lock);
5880 /*
5881 * Zap only 4k SPTEs since the legacy MMU only supports dirty
5882 * logging at a 4k granularity and never creates collapsible
5883 * 2m SPTEs during dirty logging.
5884 */
5885 if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5886 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5887 write_unlock(&kvm->mmu_lock);
5888 }
5889
5890 if (is_tdp_mmu_enabled(kvm)) {
5891 read_lock(&kvm->mmu_lock);
5892 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5893 read_unlock(&kvm->mmu_lock);
5894 }
5895 }
5896
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)5897 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5898 const struct kvm_memory_slot *memslot)
5899 {
5900 /*
5901 * All current use cases for flushing the TLBs for a specific memslot
5902 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5903 * The interaction between the various operations on memslot must be
5904 * serialized by slots_locks to ensure the TLB flush from one operation
5905 * is observed by any other operation on the same memslot.
5906 */
5907 lockdep_assert_held(&kvm->slots_lock);
5908 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5909 memslot->npages);
5910 }
5911
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)5912 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5913 const struct kvm_memory_slot *memslot)
5914 {
5915 bool flush = false;
5916
5917 if (kvm_memslots_have_rmaps(kvm)) {
5918 write_lock(&kvm->mmu_lock);
5919 /*
5920 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
5921 * support dirty logging at a 4k granularity.
5922 */
5923 flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5924 write_unlock(&kvm->mmu_lock);
5925 }
5926
5927 if (is_tdp_mmu_enabled(kvm)) {
5928 read_lock(&kvm->mmu_lock);
5929 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5930 read_unlock(&kvm->mmu_lock);
5931 }
5932
5933 /*
5934 * It's also safe to flush TLBs out of mmu lock here as currently this
5935 * function is only used for dirty logging, in which case flushing TLB
5936 * out of mmu lock also guarantees no dirty pages will be lost in
5937 * dirty_bitmap.
5938 */
5939 if (flush)
5940 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5941 }
5942
kvm_mmu_zap_all(struct kvm * kvm)5943 void kvm_mmu_zap_all(struct kvm *kvm)
5944 {
5945 struct kvm_mmu_page *sp, *node;
5946 LIST_HEAD(invalid_list);
5947 int ign;
5948
5949 write_lock(&kvm->mmu_lock);
5950 restart:
5951 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5952 if (WARN_ON(sp->role.invalid))
5953 continue;
5954 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5955 goto restart;
5956 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5957 goto restart;
5958 }
5959
5960 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5961
5962 if (is_tdp_mmu_enabled(kvm))
5963 kvm_tdp_mmu_zap_all(kvm);
5964
5965 write_unlock(&kvm->mmu_lock);
5966 }
5967
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5968 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5969 {
5970 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5971
5972 gen &= MMIO_SPTE_GEN_MASK;
5973
5974 /*
5975 * Generation numbers are incremented in multiples of the number of
5976 * address spaces in order to provide unique generations across all
5977 * address spaces. Strip what is effectively the address space
5978 * modifier prior to checking for a wrap of the MMIO generation so
5979 * that a wrap in any address space is detected.
5980 */
5981 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5982
5983 /*
5984 * The very rare case: if the MMIO generation number has wrapped,
5985 * zap all shadow pages.
5986 */
5987 if (unlikely(gen == 0)) {
5988 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5989 kvm_mmu_zap_all_fast(kvm);
5990 }
5991 }
5992
5993 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5994 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5995 {
5996 struct kvm *kvm;
5997 int nr_to_scan = sc->nr_to_scan;
5998 unsigned long freed = 0;
5999
6000 mutex_lock(&kvm_lock);
6001
6002 list_for_each_entry(kvm, &vm_list, vm_list) {
6003 int idx;
6004 LIST_HEAD(invalid_list);
6005
6006 /*
6007 * Never scan more than sc->nr_to_scan VM instances.
6008 * Will not hit this condition practically since we do not try
6009 * to shrink more than one VM and it is very unlikely to see
6010 * !n_used_mmu_pages so many times.
6011 */
6012 if (!nr_to_scan--)
6013 break;
6014 /*
6015 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6016 * here. We may skip a VM instance errorneosly, but we do not
6017 * want to shrink a VM that only started to populate its MMU
6018 * anyway.
6019 */
6020 if (!kvm->arch.n_used_mmu_pages &&
6021 !kvm_has_zapped_obsolete_pages(kvm))
6022 continue;
6023
6024 idx = srcu_read_lock(&kvm->srcu);
6025 write_lock(&kvm->mmu_lock);
6026
6027 if (kvm_has_zapped_obsolete_pages(kvm)) {
6028 kvm_mmu_commit_zap_page(kvm,
6029 &kvm->arch.zapped_obsolete_pages);
6030 goto unlock;
6031 }
6032
6033 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6034
6035 unlock:
6036 write_unlock(&kvm->mmu_lock);
6037 srcu_read_unlock(&kvm->srcu, idx);
6038
6039 /*
6040 * unfair on small ones
6041 * per-vm shrinkers cry out
6042 * sadness comes quickly
6043 */
6044 list_move_tail(&kvm->vm_list, &vm_list);
6045 break;
6046 }
6047
6048 mutex_unlock(&kvm_lock);
6049 return freed;
6050 }
6051
6052 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6053 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6054 {
6055 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6056 }
6057
6058 static struct shrinker mmu_shrinker = {
6059 .count_objects = mmu_shrink_count,
6060 .scan_objects = mmu_shrink_scan,
6061 .seeks = DEFAULT_SEEKS * 10,
6062 };
6063
mmu_destroy_caches(void)6064 static void mmu_destroy_caches(void)
6065 {
6066 kmem_cache_destroy(pte_list_desc_cache);
6067 kmem_cache_destroy(mmu_page_header_cache);
6068 }
6069
get_nx_auto_mode(void)6070 static bool get_nx_auto_mode(void)
6071 {
6072 /* Return true when CPU has the bug, and mitigations are ON */
6073 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6074 }
6075
__set_nx_huge_pages(bool val)6076 static void __set_nx_huge_pages(bool val)
6077 {
6078 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6079 }
6080
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6081 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6082 {
6083 bool old_val = nx_huge_pages;
6084 bool new_val;
6085
6086 /* In "auto" mode deploy workaround only if CPU has the bug. */
6087 if (sysfs_streq(val, "off"))
6088 new_val = 0;
6089 else if (sysfs_streq(val, "force"))
6090 new_val = 1;
6091 else if (sysfs_streq(val, "auto"))
6092 new_val = get_nx_auto_mode();
6093 else if (strtobool(val, &new_val) < 0)
6094 return -EINVAL;
6095
6096 __set_nx_huge_pages(new_val);
6097
6098 if (new_val != old_val) {
6099 struct kvm *kvm;
6100
6101 mutex_lock(&kvm_lock);
6102
6103 list_for_each_entry(kvm, &vm_list, vm_list) {
6104 mutex_lock(&kvm->slots_lock);
6105 kvm_mmu_zap_all_fast(kvm);
6106 mutex_unlock(&kvm->slots_lock);
6107
6108 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6109 }
6110 mutex_unlock(&kvm_lock);
6111 }
6112
6113 return 0;
6114 }
6115
6116 /*
6117 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6118 * its default value of -1 is technically undefined behavior for a boolean.
6119 */
kvm_mmu_x86_module_init(void)6120 void __init kvm_mmu_x86_module_init(void)
6121 {
6122 if (nx_huge_pages == -1)
6123 __set_nx_huge_pages(get_nx_auto_mode());
6124 }
6125
6126 /*
6127 * The bulk of the MMU initialization is deferred until the vendor module is
6128 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6129 * to be reset when a potentially different vendor module is loaded.
6130 */
kvm_mmu_vendor_module_init(void)6131 int kvm_mmu_vendor_module_init(void)
6132 {
6133 int ret = -ENOMEM;
6134
6135 /*
6136 * MMU roles use union aliasing which is, generally speaking, an
6137 * undefined behavior. However, we supposedly know how compilers behave
6138 * and the current status quo is unlikely to change. Guardians below are
6139 * supposed to let us know if the assumption becomes false.
6140 */
6141 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6142 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6143 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6144
6145 kvm_mmu_reset_all_pte_masks();
6146
6147 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6148 sizeof(struct pte_list_desc),
6149 0, SLAB_ACCOUNT, NULL);
6150 if (!pte_list_desc_cache)
6151 goto out;
6152
6153 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6154 sizeof(struct kvm_mmu_page),
6155 0, SLAB_ACCOUNT, NULL);
6156 if (!mmu_page_header_cache)
6157 goto out;
6158
6159 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6160 goto out;
6161
6162 ret = register_shrinker(&mmu_shrinker);
6163 if (ret)
6164 goto out;
6165
6166 return 0;
6167
6168 out:
6169 mmu_destroy_caches();
6170 return ret;
6171 }
6172
6173 /*
6174 * Calculate mmu pages needed for kvm.
6175 */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)6176 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6177 {
6178 unsigned long nr_mmu_pages;
6179 unsigned long nr_pages = 0;
6180 struct kvm_memslots *slots;
6181 struct kvm_memory_slot *memslot;
6182 int i;
6183
6184 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6185 slots = __kvm_memslots(kvm, i);
6186
6187 kvm_for_each_memslot(memslot, slots)
6188 nr_pages += memslot->npages;
6189 }
6190
6191 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6192 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6193
6194 return nr_mmu_pages;
6195 }
6196
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6197 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6198 {
6199 kvm_mmu_unload(vcpu);
6200 free_mmu_pages(&vcpu->arch.root_mmu);
6201 free_mmu_pages(&vcpu->arch.guest_mmu);
6202 mmu_free_memory_caches(vcpu);
6203 }
6204
kvm_mmu_vendor_module_exit(void)6205 void kvm_mmu_vendor_module_exit(void)
6206 {
6207 mmu_destroy_caches();
6208 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6209 unregister_shrinker(&mmu_shrinker);
6210 mmu_audit_disable();
6211 }
6212
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)6213 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6214 {
6215 unsigned int old_val;
6216 int err;
6217
6218 old_val = nx_huge_pages_recovery_ratio;
6219 err = param_set_uint(val, kp);
6220 if (err)
6221 return err;
6222
6223 if (READ_ONCE(nx_huge_pages) &&
6224 !old_val && nx_huge_pages_recovery_ratio) {
6225 struct kvm *kvm;
6226
6227 mutex_lock(&kvm_lock);
6228
6229 list_for_each_entry(kvm, &vm_list, vm_list)
6230 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6231
6232 mutex_unlock(&kvm_lock);
6233 }
6234
6235 return err;
6236 }
6237
kvm_recover_nx_lpages(struct kvm * kvm)6238 static void kvm_recover_nx_lpages(struct kvm *kvm)
6239 {
6240 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6241 int rcu_idx;
6242 struct kvm_mmu_page *sp;
6243 unsigned int ratio;
6244 LIST_HEAD(invalid_list);
6245 bool flush = false;
6246 ulong to_zap;
6247
6248 rcu_idx = srcu_read_lock(&kvm->srcu);
6249 write_lock(&kvm->mmu_lock);
6250
6251 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6252 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6253 for ( ; to_zap; --to_zap) {
6254 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6255 break;
6256
6257 /*
6258 * We use a separate list instead of just using active_mmu_pages
6259 * because the number of lpage_disallowed pages is expected to
6260 * be relatively small compared to the total.
6261 */
6262 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6263 struct kvm_mmu_page,
6264 lpage_disallowed_link);
6265 WARN_ON_ONCE(!sp->lpage_disallowed);
6266 if (is_tdp_mmu_page(sp)) {
6267 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6268 } else {
6269 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6270 WARN_ON_ONCE(sp->lpage_disallowed);
6271 }
6272
6273 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6274 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6275 cond_resched_rwlock_write(&kvm->mmu_lock);
6276 flush = false;
6277 }
6278 }
6279 kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6280
6281 write_unlock(&kvm->mmu_lock);
6282 srcu_read_unlock(&kvm->srcu, rcu_idx);
6283 }
6284
get_nx_lpage_recovery_timeout(u64 start_time)6285 static long get_nx_lpage_recovery_timeout(u64 start_time)
6286 {
6287 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6288 ? start_time + 60 * HZ - get_jiffies_64()
6289 : MAX_SCHEDULE_TIMEOUT;
6290 }
6291
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6292 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6293 {
6294 u64 start_time;
6295 long remaining_time;
6296
6297 while (true) {
6298 start_time = get_jiffies_64();
6299 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6300
6301 set_current_state(TASK_INTERRUPTIBLE);
6302 while (!kthread_should_stop() && remaining_time > 0) {
6303 schedule_timeout(remaining_time);
6304 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6305 set_current_state(TASK_INTERRUPTIBLE);
6306 }
6307
6308 set_current_state(TASK_RUNNING);
6309
6310 if (kthread_should_stop())
6311 return 0;
6312
6313 kvm_recover_nx_lpages(kvm);
6314 }
6315 }
6316
kvm_mmu_post_init_vm(struct kvm * kvm)6317 int kvm_mmu_post_init_vm(struct kvm *kvm)
6318 {
6319 int err;
6320
6321 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6322 "kvm-nx-lpage-recovery",
6323 &kvm->arch.nx_lpage_recovery_thread);
6324 if (!err)
6325 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6326
6327 return err;
6328 }
6329
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6330 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6331 {
6332 if (kvm->arch.nx_lpage_recovery_thread)
6333 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6334 }
6335