• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46 
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55 
56 #include "paging.h"
57 
58 extern bool itlb_multihit_kvm_mitigation;
59 
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67 
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70 
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72 	.set = set_nx_huge_pages,
73 	.get = param_get_bool,
74 };
75 
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 	.set = set_nx_huge_pages_recovery_ratio,
78 	.get = param_get_uint,
79 };
80 
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84 		&nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86 
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89 
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98 
99 static int max_huge_page_level __read_mostly;
100 static int tdp_root_level __read_mostly;
101 static int max_tdp_level __read_mostly;
102 
103 enum {
104 	AUDIT_PRE_PAGE_FAULT,
105 	AUDIT_POST_PAGE_FAULT,
106 	AUDIT_PRE_PTE_WRITE,
107 	AUDIT_POST_PTE_WRITE,
108 	AUDIT_PRE_SYNC,
109 	AUDIT_POST_SYNC
110 };
111 
112 #ifdef MMU_DEBUG
113 bool dbg = 0;
114 module_param(dbg, bool, 0644);
115 #endif
116 
117 #define PTE_PREFETCH_NUM		8
118 
119 #define PT32_LEVEL_BITS 10
120 
121 #define PT32_LEVEL_SHIFT(level) \
122 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
123 
124 #define PT32_LVL_OFFSET_MASK(level) \
125 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 						* PT32_LEVEL_BITS))) - 1))
127 
128 #define PT32_INDEX(address, level)\
129 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130 
131 
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137 					    * PT32_LEVEL_BITS))) - 1))
138 
139 #include <trace/events/kvm.h>
140 
141 /* make pte_list_desc fit well in cache lines */
142 #define PTE_LIST_EXT 14
143 
144 /*
145  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
146  * at the start; then accessing it will only use one single cacheline for
147  * either full (entries==PTE_LIST_EXT) case or entries<=6.
148  */
149 struct pte_list_desc {
150 	struct pte_list_desc *more;
151 	/*
152 	 * Stores number of entries stored in the pte_list_desc.  No need to be
153 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
154 	 */
155 	u64 spte_count;
156 	u64 *sptes[PTE_LIST_EXT];
157 };
158 
159 struct kvm_shadow_walk_iterator {
160 	u64 addr;
161 	hpa_t shadow_addr;
162 	u64 *sptep;
163 	int level;
164 	unsigned index;
165 };
166 
167 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
168 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
169 					 (_root), (_addr));                \
170 	     shadow_walk_okay(&(_walker));			           \
171 	     shadow_walk_next(&(_walker)))
172 
173 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
174 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
175 	     shadow_walk_okay(&(_walker));			\
176 	     shadow_walk_next(&(_walker)))
177 
178 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
179 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
180 	     shadow_walk_okay(&(_walker)) &&				\
181 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
182 	     __shadow_walk_next(&(_walker), spte))
183 
184 static struct kmem_cache *pte_list_desc_cache;
185 struct kmem_cache *mmu_page_header_cache;
186 static struct percpu_counter kvm_total_used_mmu_pages;
187 
188 static void mmu_spte_set(u64 *sptep, u64 spte);
189 static union kvm_mmu_page_role
190 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191 
192 struct kvm_mmu_role_regs {
193 	const unsigned long cr0;
194 	const unsigned long cr4;
195 	const u64 efer;
196 };
197 
198 #define CREATE_TRACE_POINTS
199 #include "mmutrace.h"
200 
201 /*
202  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
203  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
204  * the single source of truth for the MMU's state.
205  */
206 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
207 static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 {									\
209 	return !!(regs->reg & flag);					\
210 }
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
216 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
217 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
218 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
219 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
220 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
221 
222 /*
223  * The MMU itself (with a valid role) is the single source of truth for the
224  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
225  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
226  * and the vCPU may be incorrect/irrelevant.
227  */
228 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
229 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
230 {								\
231 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
232 }
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
234 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
236 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
237 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
238 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
239 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
240 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
241 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
242 
vcpu_to_role_regs(struct kvm_vcpu * vcpu)243 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
244 {
245 	struct kvm_mmu_role_regs regs = {
246 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
247 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
248 		.efer = vcpu->arch.efer,
249 	};
250 
251 	return regs;
252 }
253 
role_regs_to_root_level(struct kvm_mmu_role_regs * regs)254 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
255 {
256 	if (!____is_cr0_pg(regs))
257 		return 0;
258 	else if (____is_efer_lma(regs))
259 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
260 					       PT64_ROOT_4LEVEL;
261 	else if (____is_cr4_pae(regs))
262 		return PT32E_ROOT_LEVEL;
263 	else
264 		return PT32_ROOT_LEVEL;
265 }
266 
kvm_available_flush_tlb_with_range(void)267 static inline bool kvm_available_flush_tlb_with_range(void)
268 {
269 	return kvm_x86_ops.tlb_remote_flush_with_range;
270 }
271 
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)272 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
273 		struct kvm_tlb_range *range)
274 {
275 	int ret = -ENOTSUPP;
276 
277 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279 
280 	if (ret)
281 		kvm_flush_remote_tlbs(kvm);
282 }
283 
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)284 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285 		u64 start_gfn, u64 pages)
286 {
287 	struct kvm_tlb_range range;
288 
289 	range.start_gfn = start_gfn;
290 	range.pages = pages;
291 
292 	kvm_flush_remote_tlbs_with_range(kvm, &range);
293 }
294 
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)295 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
296 			   unsigned int access)
297 {
298 	u64 spte = make_mmio_spte(vcpu, gfn, access);
299 
300 	trace_mark_mmio_spte(sptep, gfn, spte);
301 	mmu_spte_set(sptep, spte);
302 }
303 
get_mmio_spte_gfn(u64 spte)304 static gfn_t get_mmio_spte_gfn(u64 spte)
305 {
306 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307 
308 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309 	       & shadow_nonpresent_or_rsvd_mask;
310 
311 	return gpa >> PAGE_SHIFT;
312 }
313 
get_mmio_spte_access(u64 spte)314 static unsigned get_mmio_spte_access(u64 spte)
315 {
316 	return spte & shadow_mmio_access_mask;
317 }
318 
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)319 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320 {
321 	u64 kvm_gen, spte_gen, gen;
322 
323 	gen = kvm_vcpu_memslots(vcpu)->generation;
324 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
325 		return false;
326 
327 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328 	spte_gen = get_mmio_spte_generation(spte);
329 
330 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
331 	return likely(kvm_gen == spte_gen);
332 }
333 
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)334 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
335                                   struct x86_exception *exception)
336 {
337         return gpa;
338 }
339 
is_cpuid_PSE36(void)340 static int is_cpuid_PSE36(void)
341 {
342 	return 1;
343 }
344 
pse36_gfn_delta(u32 gpte)345 static gfn_t pse36_gfn_delta(u32 gpte)
346 {
347 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
348 
349 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
350 }
351 
352 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)353 static void __set_spte(u64 *sptep, u64 spte)
354 {
355 	WRITE_ONCE(*sptep, spte);
356 }
357 
__update_clear_spte_fast(u64 * sptep,u64 spte)358 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359 {
360 	WRITE_ONCE(*sptep, spte);
361 }
362 
__update_clear_spte_slow(u64 * sptep,u64 spte)363 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
364 {
365 	return xchg(sptep, spte);
366 }
367 
__get_spte_lockless(u64 * sptep)368 static u64 __get_spte_lockless(u64 *sptep)
369 {
370 	return READ_ONCE(*sptep);
371 }
372 #else
373 union split_spte {
374 	struct {
375 		u32 spte_low;
376 		u32 spte_high;
377 	};
378 	u64 spte;
379 };
380 
count_spte_clear(u64 * sptep,u64 spte)381 static void count_spte_clear(u64 *sptep, u64 spte)
382 {
383 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
384 
385 	if (is_shadow_present_pte(spte))
386 		return;
387 
388 	/* Ensure the spte is completely set before we increase the count */
389 	smp_wmb();
390 	sp->clear_spte_count++;
391 }
392 
__set_spte(u64 * sptep,u64 spte)393 static void __set_spte(u64 *sptep, u64 spte)
394 {
395 	union split_spte *ssptep, sspte;
396 
397 	ssptep = (union split_spte *)sptep;
398 	sspte = (union split_spte)spte;
399 
400 	ssptep->spte_high = sspte.spte_high;
401 
402 	/*
403 	 * If we map the spte from nonpresent to present, We should store
404 	 * the high bits firstly, then set present bit, so cpu can not
405 	 * fetch this spte while we are setting the spte.
406 	 */
407 	smp_wmb();
408 
409 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 }
411 
__update_clear_spte_fast(u64 * sptep,u64 spte)412 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
413 {
414 	union split_spte *ssptep, sspte;
415 
416 	ssptep = (union split_spte *)sptep;
417 	sspte = (union split_spte)spte;
418 
419 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420 
421 	/*
422 	 * If we map the spte from present to nonpresent, we should clear
423 	 * present bit firstly to avoid vcpu fetch the old high bits.
424 	 */
425 	smp_wmb();
426 
427 	ssptep->spte_high = sspte.spte_high;
428 	count_spte_clear(sptep, spte);
429 }
430 
__update_clear_spte_slow(u64 * sptep,u64 spte)431 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
432 {
433 	union split_spte *ssptep, sspte, orig;
434 
435 	ssptep = (union split_spte *)sptep;
436 	sspte = (union split_spte)spte;
437 
438 	/* xchg acts as a barrier before the setting of the high bits */
439 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440 	orig.spte_high = ssptep->spte_high;
441 	ssptep->spte_high = sspte.spte_high;
442 	count_spte_clear(sptep, spte);
443 
444 	return orig.spte;
445 }
446 
447 /*
448  * The idea using the light way get the spte on x86_32 guest is from
449  * gup_get_pte (mm/gup.c).
450  *
451  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
452  * coalesces them and we are running out of the MMU lock.  Therefore
453  * we need to protect against in-progress updates of the spte.
454  *
455  * Reading the spte while an update is in progress may get the old value
456  * for the high part of the spte.  The race is fine for a present->non-present
457  * change (because the high part of the spte is ignored for non-present spte),
458  * but for a present->present change we must reread the spte.
459  *
460  * All such changes are done in two steps (present->non-present and
461  * non-present->present), hence it is enough to count the number of
462  * present->non-present updates: if it changed while reading the spte,
463  * we might have hit the race.  This is done using clear_spte_count.
464  */
__get_spte_lockless(u64 * sptep)465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
468 	union split_spte spte, *orig = (union split_spte *)sptep;
469 	int count;
470 
471 retry:
472 	count = sp->clear_spte_count;
473 	smp_rmb();
474 
475 	spte.spte_low = orig->spte_low;
476 	smp_rmb();
477 
478 	spte.spte_high = orig->spte_high;
479 	smp_rmb();
480 
481 	if (unlikely(spte.spte_low != orig->spte_low ||
482 	      count != sp->clear_spte_count))
483 		goto retry;
484 
485 	return spte.spte;
486 }
487 #endif
488 
spte_has_volatile_bits(u64 spte)489 static bool spte_has_volatile_bits(u64 spte)
490 {
491 	if (!is_shadow_present_pte(spte))
492 		return false;
493 
494 	/*
495 	 * Always atomically update spte if it can be updated
496 	 * out of mmu-lock, it can ensure dirty bit is not lost,
497 	 * also, it can help us to get a stable is_writable_pte()
498 	 * to ensure tlb flush is not missed.
499 	 */
500 	if (spte_can_locklessly_be_made_writable(spte) ||
501 	    is_access_track_spte(spte))
502 		return true;
503 
504 	if (spte_ad_enabled(spte)) {
505 		if ((spte & shadow_accessed_mask) == 0 ||
506 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
507 			return true;
508 	}
509 
510 	return false;
511 }
512 
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
mmu_spte_set(u64 * sptep,u64 new_spte)519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521 	WARN_ON(is_shadow_present_pte(*sptep));
522 	__set_spte(sptep, new_spte);
523 }
524 
525 /*
526  * Update the SPTE (excluding the PFN), but do not track changes in its
527  * accessed/dirty status.
528  */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)529 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530 {
531 	u64 old_spte = *sptep;
532 
533 	WARN_ON(!is_shadow_present_pte(new_spte));
534 
535 	if (!is_shadow_present_pte(old_spte)) {
536 		mmu_spte_set(sptep, new_spte);
537 		return old_spte;
538 	}
539 
540 	if (!spte_has_volatile_bits(old_spte))
541 		__update_clear_spte_fast(sptep, new_spte);
542 	else
543 		old_spte = __update_clear_spte_slow(sptep, new_spte);
544 
545 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
546 
547 	return old_spte;
548 }
549 
550 /* Rules for using mmu_spte_update:
551  * Update the state bits, it means the mapped pfn is not changed.
552  *
553  * Whenever we overwrite a writable spte with a read-only one we
554  * should flush remote TLBs. Otherwise rmap_write_protect
555  * will find a read-only spte, even though the writable spte
556  * might be cached on a CPU's TLB, the return value indicates this
557  * case.
558  *
559  * Returns true if the TLB needs to be flushed
560  */
mmu_spte_update(u64 * sptep,u64 new_spte)561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563 	bool flush = false;
564 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
565 
566 	if (!is_shadow_present_pte(old_spte))
567 		return false;
568 
569 	/*
570 	 * For the spte updated out of mmu-lock is safe, since
571 	 * we always atomically update it, see the comments in
572 	 * spte_has_volatile_bits().
573 	 */
574 	if (spte_can_locklessly_be_made_writable(old_spte) &&
575 	      !is_writable_pte(new_spte))
576 		flush = true;
577 
578 	/*
579 	 * Flush TLB when accessed/dirty states are changed in the page tables,
580 	 * to guarantee consistency between TLB and page tables.
581 	 */
582 
583 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
584 		flush = true;
585 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586 	}
587 
588 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
589 		flush = true;
590 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591 	}
592 
593 	return flush;
594 }
595 
596 /*
597  * Rules for using mmu_spte_clear_track_bits:
598  * It sets the sptep from present to nonpresent, and track the
599  * state bits, it is used to clear the last level sptep.
600  * Returns the old PTE.
601  */
mmu_spte_clear_track_bits(struct kvm * kvm,u64 * sptep)602 static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603 {
604 	kvm_pfn_t pfn;
605 	u64 old_spte = *sptep;
606 	int level = sptep_to_sp(sptep)->role.level;
607 
608 	if (!spte_has_volatile_bits(old_spte))
609 		__update_clear_spte_fast(sptep, 0ull);
610 	else
611 		old_spte = __update_clear_spte_slow(sptep, 0ull);
612 
613 	if (!is_shadow_present_pte(old_spte))
614 		return old_spte;
615 
616 	kvm_update_page_stats(kvm, level, -1);
617 
618 	pfn = spte_to_pfn(old_spte);
619 
620 	/*
621 	 * KVM does not hold the refcount of the page used by
622 	 * kvm mmu, before reclaiming the page, we should
623 	 * unmap it from mmu first.
624 	 */
625 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626 
627 	if (is_accessed_spte(old_spte))
628 		kvm_set_pfn_accessed(pfn);
629 
630 	if (is_dirty_spte(old_spte))
631 		kvm_set_pfn_dirty(pfn);
632 
633 	return old_spte;
634 }
635 
636 /*
637  * Rules for using mmu_spte_clear_no_track:
638  * Directly clear spte without caring the state bits of sptep,
639  * it is used to set the upper level spte.
640  */
mmu_spte_clear_no_track(u64 * sptep)641 static void mmu_spte_clear_no_track(u64 *sptep)
642 {
643 	__update_clear_spte_fast(sptep, 0ull);
644 }
645 
mmu_spte_get_lockless(u64 * sptep)646 static u64 mmu_spte_get_lockless(u64 *sptep)
647 {
648 	return __get_spte_lockless(sptep);
649 }
650 
651 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)652 static u64 restore_acc_track_spte(u64 spte)
653 {
654 	u64 new_spte = spte;
655 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
656 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657 
658 	WARN_ON_ONCE(spte_ad_enabled(spte));
659 	WARN_ON_ONCE(!is_access_track_spte(spte));
660 
661 	new_spte &= ~shadow_acc_track_mask;
662 	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
663 		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664 	new_spte |= saved_bits;
665 
666 	return new_spte;
667 }
668 
669 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)670 static bool mmu_spte_age(u64 *sptep)
671 {
672 	u64 spte = mmu_spte_get_lockless(sptep);
673 
674 	if (!is_accessed_spte(spte))
675 		return false;
676 
677 	if (spte_ad_enabled(spte)) {
678 		clear_bit((ffs(shadow_accessed_mask) - 1),
679 			  (unsigned long *)sptep);
680 	} else {
681 		/*
682 		 * Capture the dirty status of the page, so that it doesn't get
683 		 * lost when the SPTE is marked for access tracking.
684 		 */
685 		if (is_writable_pte(spte))
686 			kvm_set_pfn_dirty(spte_to_pfn(spte));
687 
688 		spte = mark_spte_for_access_track(spte);
689 		mmu_spte_update_no_track(sptep, spte);
690 	}
691 
692 	return true;
693 }
694 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)695 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
696 {
697 	if (is_tdp_mmu(vcpu->arch.mmu)) {
698 		kvm_tdp_mmu_walk_lockless_begin();
699 	} else {
700 		/*
701 		 * Prevent page table teardown by making any free-er wait during
702 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
703 		 */
704 		local_irq_disable();
705 
706 		/*
707 		 * Make sure a following spte read is not reordered ahead of the write
708 		 * to vcpu->mode.
709 		 */
710 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
711 	}
712 }
713 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)714 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
715 {
716 	if (is_tdp_mmu(vcpu->arch.mmu)) {
717 		kvm_tdp_mmu_walk_lockless_end();
718 	} else {
719 		/*
720 		 * Make sure the write to vcpu->mode is not reordered in front of
721 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
722 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
723 		 */
724 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
725 		local_irq_enable();
726 	}
727 }
728 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730 {
731 	int r;
732 
733 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
735 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736 	if (r)
737 		return r;
738 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
739 				       PT64_ROOT_MAX_LEVEL);
740 	if (r)
741 		return r;
742 	if (maybe_indirect) {
743 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
744 					       PT64_ROOT_MAX_LEVEL);
745 		if (r)
746 			return r;
747 	}
748 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
749 					  PT64_ROOT_MAX_LEVEL);
750 }
751 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)752 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
753 {
754 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
755 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
756 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
757 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 }
759 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)760 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761 {
762 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 }
764 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)765 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766 {
767 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 }
769 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)770 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
771 {
772 	if (!sp->role.direct)
773 		return sp->gfns[index];
774 
775 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
776 }
777 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)778 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
779 {
780 	if (!sp->role.direct) {
781 		sp->gfns[index] = gfn;
782 		return;
783 	}
784 
785 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
786 		pr_err_ratelimited("gfn mismatch under direct page %llx "
787 				   "(expected %llx, got %llx)\n",
788 				   sp->gfn,
789 				   kvm_mmu_page_get_gfn(sp, index), gfn);
790 }
791 
792 /*
793  * Return the pointer to the large page information for a given gfn,
794  * handling slots that are not large page aligned.
795  */
lpage_info_slot(gfn_t gfn,const struct kvm_memory_slot * slot,int level)796 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797 		const struct kvm_memory_slot *slot, int level)
798 {
799 	unsigned long idx;
800 
801 	idx = gfn_to_index(gfn, slot->base_gfn, level);
802 	return &slot->arch.lpage_info[level - 2][idx];
803 }
804 
update_gfn_disallow_lpage_count(const struct kvm_memory_slot * slot,gfn_t gfn,int count)805 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806 					    gfn_t gfn, int count)
807 {
808 	struct kvm_lpage_info *linfo;
809 	int i;
810 
811 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812 		linfo = lpage_info_slot(gfn, slot, i);
813 		linfo->disallow_lpage += count;
814 		WARN_ON(linfo->disallow_lpage < 0);
815 	}
816 }
817 
kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)818 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 {
820 	update_gfn_disallow_lpage_count(slot, gfn, 1);
821 }
822 
kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot * slot,gfn_t gfn)823 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 {
825 	update_gfn_disallow_lpage_count(slot, gfn, -1);
826 }
827 
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)828 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
829 {
830 	struct kvm_memslots *slots;
831 	struct kvm_memory_slot *slot;
832 	gfn_t gfn;
833 
834 	kvm->arch.indirect_shadow_pages++;
835 	gfn = sp->gfn;
836 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
837 	slot = __gfn_to_memslot(slots, gfn);
838 
839 	/* the non-leaf shadow pages are keeping readonly. */
840 	if (sp->role.level > PG_LEVEL_4K)
841 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
842 						    KVM_PAGE_TRACK_WRITE);
843 
844 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
845 }
846 
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)847 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
848 {
849 	if (sp->lpage_disallowed)
850 		return;
851 
852 	++kvm->stat.nx_lpage_splits;
853 	list_add_tail(&sp->lpage_disallowed_link,
854 		      &kvm->arch.lpage_disallowed_mmu_pages);
855 	sp->lpage_disallowed = true;
856 }
857 
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)858 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
859 {
860 	struct kvm_memslots *slots;
861 	struct kvm_memory_slot *slot;
862 	gfn_t gfn;
863 
864 	kvm->arch.indirect_shadow_pages--;
865 	gfn = sp->gfn;
866 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
867 	slot = __gfn_to_memslot(slots, gfn);
868 	if (sp->role.level > PG_LEVEL_4K)
869 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
870 						       KVM_PAGE_TRACK_WRITE);
871 
872 	kvm_mmu_gfn_allow_lpage(slot, gfn);
873 }
874 
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)875 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877 	--kvm->stat.nx_lpage_splits;
878 	sp->lpage_disallowed = false;
879 	list_del(&sp->lpage_disallowed_link);
880 }
881 
882 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)883 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
884 			    bool no_dirty_log)
885 {
886 	struct kvm_memory_slot *slot;
887 
888 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
890 		return NULL;
891 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892 		return NULL;
893 
894 	return slot;
895 }
896 
897 /*
898  * About rmap_head encoding:
899  *
900  * If the bit zero of rmap_head->val is clear, then it points to the only spte
901  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902  * pte_list_desc containing more mappings.
903  */
904 
905 /*
906  * Returns the number of pointers in the rmap chain, not counting the new one.
907  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909 			struct kvm_rmap_head *rmap_head)
910 {
911 	struct pte_list_desc *desc;
912 	int count = 0;
913 
914 	if (!rmap_head->val) {
915 		rmap_printk("%p %llx 0->1\n", spte, *spte);
916 		rmap_head->val = (unsigned long)spte;
917 	} else if (!(rmap_head->val & 1)) {
918 		rmap_printk("%p %llx 1->many\n", spte, *spte);
919 		desc = mmu_alloc_pte_list_desc(vcpu);
920 		desc->sptes[0] = (u64 *)rmap_head->val;
921 		desc->sptes[1] = spte;
922 		desc->spte_count = 2;
923 		rmap_head->val = (unsigned long)desc | 1;
924 		++count;
925 	} else {
926 		rmap_printk("%p %llx many->many\n", spte, *spte);
927 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928 		while (desc->spte_count == PTE_LIST_EXT) {
929 			count += PTE_LIST_EXT;
930 			if (!desc->more) {
931 				desc->more = mmu_alloc_pte_list_desc(vcpu);
932 				desc = desc->more;
933 				desc->spte_count = 0;
934 				break;
935 			}
936 			desc = desc->more;
937 		}
938 		count += desc->spte_count;
939 		desc->sptes[desc->spte_count++] = spte;
940 	}
941 	return count;
942 }
943 
944 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)945 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
946 			   struct pte_list_desc *desc, int i,
947 			   struct pte_list_desc *prev_desc)
948 {
949 	int j = desc->spte_count - 1;
950 
951 	desc->sptes[i] = desc->sptes[j];
952 	desc->sptes[j] = NULL;
953 	desc->spte_count--;
954 	if (desc->spte_count)
955 		return;
956 	if (!prev_desc && !desc->more)
957 		rmap_head->val = 0;
958 	else
959 		if (prev_desc)
960 			prev_desc->more = desc->more;
961 		else
962 			rmap_head->val = (unsigned long)desc->more | 1;
963 	mmu_free_pte_list_desc(desc);
964 }
965 
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)966 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967 {
968 	struct pte_list_desc *desc;
969 	struct pte_list_desc *prev_desc;
970 	int i;
971 
972 	if (!rmap_head->val) {
973 		pr_err("%s: %p 0->BUG\n", __func__, spte);
974 		BUG();
975 	} else if (!(rmap_head->val & 1)) {
976 		rmap_printk("%p 1->0\n", spte);
977 		if ((u64 *)rmap_head->val != spte) {
978 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
979 			BUG();
980 		}
981 		rmap_head->val = 0;
982 	} else {
983 		rmap_printk("%p many->many\n", spte);
984 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985 		prev_desc = NULL;
986 		while (desc) {
987 			for (i = 0; i < desc->spte_count; ++i) {
988 				if (desc->sptes[i] == spte) {
989 					pte_list_desc_remove_entry(rmap_head,
990 							desc, i, prev_desc);
991 					return;
992 				}
993 			}
994 			prev_desc = desc;
995 			desc = desc->more;
996 		}
997 		pr_err("%s: %p many->many\n", __func__, spte);
998 		BUG();
999 	}
1000 }
1001 
pte_list_remove(struct kvm * kvm,struct kvm_rmap_head * rmap_head,u64 * sptep)1002 static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1003 			    u64 *sptep)
1004 {
1005 	mmu_spte_clear_track_bits(kvm, sptep);
1006 	__pte_list_remove(sptep, rmap_head);
1007 }
1008 
1009 /* Return true if rmap existed, false otherwise */
pte_list_destroy(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1010 static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1011 {
1012 	struct pte_list_desc *desc, *next;
1013 	int i;
1014 
1015 	if (!rmap_head->val)
1016 		return false;
1017 
1018 	if (!(rmap_head->val & 1)) {
1019 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1020 		goto out;
1021 	}
1022 
1023 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024 
1025 	for (; desc; desc = next) {
1026 		for (i = 0; i < desc->spte_count; i++)
1027 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1028 		next = desc->more;
1029 		mmu_free_pte_list_desc(desc);
1030 	}
1031 out:
1032 	/* rmap_head is meaningless now, remember to reset it */
1033 	rmap_head->val = 0;
1034 	return true;
1035 }
1036 
pte_list_count(struct kvm_rmap_head * rmap_head)1037 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1038 {
1039 	struct pte_list_desc *desc;
1040 	unsigned int count = 0;
1041 
1042 	if (!rmap_head->val)
1043 		return 0;
1044 	else if (!(rmap_head->val & 1))
1045 		return 1;
1046 
1047 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1048 
1049 	while (desc) {
1050 		count += desc->spte_count;
1051 		desc = desc->more;
1052 	}
1053 
1054 	return count;
1055 }
1056 
gfn_to_rmap(gfn_t gfn,int level,const struct kvm_memory_slot * slot)1057 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1058 					 const struct kvm_memory_slot *slot)
1059 {
1060 	unsigned long idx;
1061 
1062 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1063 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 }
1065 
rmap_can_add(struct kvm_vcpu * vcpu)1066 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1067 {
1068 	struct kvm_mmu_memory_cache *mc;
1069 
1070 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071 	return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 }
1073 
rmap_remove(struct kvm * kvm,u64 * spte)1074 static void rmap_remove(struct kvm *kvm, u64 *spte)
1075 {
1076 	struct kvm_memslots *slots;
1077 	struct kvm_memory_slot *slot;
1078 	struct kvm_mmu_page *sp;
1079 	gfn_t gfn;
1080 	struct kvm_rmap_head *rmap_head;
1081 
1082 	sp = sptep_to_sp(spte);
1083 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084 
1085 	/*
1086 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1087 	 * so we have to determine which memslots to use based on context
1088 	 * information in sp->role.
1089 	 */
1090 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1091 
1092 	slot = __gfn_to_memslot(slots, gfn);
1093 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1094 
1095 	__pte_list_remove(spte, rmap_head);
1096 }
1097 
1098 /*
1099  * Used by the following functions to iterate through the sptes linked by a
1100  * rmap.  All fields are private and not assumed to be used outside.
1101  */
1102 struct rmap_iterator {
1103 	/* private fields */
1104 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1105 	int pos;			/* index of the sptep */
1106 };
1107 
1108 /*
1109  * Iteration must be started by this function.  This should also be used after
1110  * removing/dropping sptes from the rmap link because in such cases the
1111  * information in the iterator may not be valid.
1112  *
1113  * Returns sptep if found, NULL otherwise.
1114  */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1115 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1116 			   struct rmap_iterator *iter)
1117 {
1118 	u64 *sptep;
1119 
1120 	if (!rmap_head->val)
1121 		return NULL;
1122 
1123 	if (!(rmap_head->val & 1)) {
1124 		iter->desc = NULL;
1125 		sptep = (u64 *)rmap_head->val;
1126 		goto out;
1127 	}
1128 
1129 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1130 	iter->pos = 0;
1131 	sptep = iter->desc->sptes[iter->pos];
1132 out:
1133 	BUG_ON(!is_shadow_present_pte(*sptep));
1134 	return sptep;
1135 }
1136 
1137 /*
1138  * Must be used with a valid iterator: e.g. after rmap_get_first().
1139  *
1140  * Returns sptep if found, NULL otherwise.
1141  */
rmap_get_next(struct rmap_iterator * iter)1142 static u64 *rmap_get_next(struct rmap_iterator *iter)
1143 {
1144 	u64 *sptep;
1145 
1146 	if (iter->desc) {
1147 		if (iter->pos < PTE_LIST_EXT - 1) {
1148 			++iter->pos;
1149 			sptep = iter->desc->sptes[iter->pos];
1150 			if (sptep)
1151 				goto out;
1152 		}
1153 
1154 		iter->desc = iter->desc->more;
1155 
1156 		if (iter->desc) {
1157 			iter->pos = 0;
1158 			/* desc->sptes[0] cannot be NULL */
1159 			sptep = iter->desc->sptes[iter->pos];
1160 			goto out;
1161 		}
1162 	}
1163 
1164 	return NULL;
1165 out:
1166 	BUG_ON(!is_shadow_present_pte(*sptep));
1167 	return sptep;
1168 }
1169 
1170 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1171 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1172 	     _spte_; _spte_ = rmap_get_next(_iter_))
1173 
drop_spte(struct kvm * kvm,u64 * sptep)1174 static void drop_spte(struct kvm *kvm, u64 *sptep)
1175 {
1176 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1177 
1178 	if (is_shadow_present_pte(old_spte))
1179 		rmap_remove(kvm, sptep);
1180 }
1181 
1182 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1183 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1184 {
1185 	if (is_large_pte(*sptep)) {
1186 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1187 		drop_spte(kvm, sptep);
1188 		return true;
1189 	}
1190 
1191 	return false;
1192 }
1193 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1194 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1195 {
1196 	if (__drop_large_spte(vcpu->kvm, sptep)) {
1197 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1198 
1199 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1200 			KVM_PAGES_PER_HPAGE(sp->role.level));
1201 	}
1202 }
1203 
1204 /*
1205  * Write-protect on the specified @sptep, @pt_protect indicates whether
1206  * spte write-protection is caused by protecting shadow page table.
1207  *
1208  * Note: write protection is difference between dirty logging and spte
1209  * protection:
1210  * - for dirty logging, the spte can be set to writable at anytime if
1211  *   its dirty bitmap is properly set.
1212  * - for spte protection, the spte can be writable only after unsync-ing
1213  *   shadow page.
1214  *
1215  * Return true if tlb need be flushed.
1216  */
spte_write_protect(u64 * sptep,bool pt_protect)1217 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1218 {
1219 	u64 spte = *sptep;
1220 
1221 	if (!is_writable_pte(spte) &&
1222 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1223 		return false;
1224 
1225 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1226 
1227 	if (pt_protect)
1228 		spte &= ~shadow_mmu_writable_mask;
1229 	spte = spte & ~PT_WRITABLE_MASK;
1230 
1231 	return mmu_spte_update(sptep, spte);
1232 }
1233 
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1234 static bool __rmap_write_protect(struct kvm *kvm,
1235 				 struct kvm_rmap_head *rmap_head,
1236 				 bool pt_protect)
1237 {
1238 	u64 *sptep;
1239 	struct rmap_iterator iter;
1240 	bool flush = false;
1241 
1242 	for_each_rmap_spte(rmap_head, &iter, sptep)
1243 		flush |= spte_write_protect(sptep, pt_protect);
1244 
1245 	return flush;
1246 }
1247 
spte_clear_dirty(u64 * sptep)1248 static bool spte_clear_dirty(u64 *sptep)
1249 {
1250 	u64 spte = *sptep;
1251 
1252 	rmap_printk("spte %p %llx\n", sptep, *sptep);
1253 
1254 	MMU_WARN_ON(!spte_ad_enabled(spte));
1255 	spte &= ~shadow_dirty_mask;
1256 	return mmu_spte_update(sptep, spte);
1257 }
1258 
spte_wrprot_for_clear_dirty(u64 * sptep)1259 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1260 {
1261 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1262 					       (unsigned long *)sptep);
1263 	if (was_writable && !spte_ad_enabled(*sptep))
1264 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1265 
1266 	return was_writable;
1267 }
1268 
1269 /*
1270  * Gets the GFN ready for another round of dirty logging by clearing the
1271  *	- D bit on ad-enabled SPTEs, and
1272  *	- W bit on ad-disabled SPTEs.
1273  * Returns true iff any D or W bits were cleared.
1274  */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1275 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1276 			       const struct kvm_memory_slot *slot)
1277 {
1278 	u64 *sptep;
1279 	struct rmap_iterator iter;
1280 	bool flush = false;
1281 
1282 	for_each_rmap_spte(rmap_head, &iter, sptep)
1283 		if (spte_ad_need_write_protect(*sptep))
1284 			flush |= spte_wrprot_for_clear_dirty(sptep);
1285 		else
1286 			flush |= spte_clear_dirty(sptep);
1287 
1288 	return flush;
1289 }
1290 
1291 /**
1292  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1293  * @kvm: kvm instance
1294  * @slot: slot to protect
1295  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1296  * @mask: indicates which pages we should protect
1297  *
1298  * Used when we do not need to care about huge page mappings.
1299  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1300 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1301 				     struct kvm_memory_slot *slot,
1302 				     gfn_t gfn_offset, unsigned long mask)
1303 {
1304 	struct kvm_rmap_head *rmap_head;
1305 
1306 	if (is_tdp_mmu_enabled(kvm))
1307 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1308 				slot->base_gfn + gfn_offset, mask, true);
1309 
1310 	if (!kvm_memslots_have_rmaps(kvm))
1311 		return;
1312 
1313 	while (mask) {
1314 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315 					PG_LEVEL_4K, slot);
1316 		__rmap_write_protect(kvm, rmap_head, false);
1317 
1318 		/* clear the first set bit */
1319 		mask &= mask - 1;
1320 	}
1321 }
1322 
1323 /**
1324  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1325  * protect the page if the D-bit isn't supported.
1326  * @kvm: kvm instance
1327  * @slot: slot to clear D-bit
1328  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1329  * @mask: indicates which pages we should clear D-bit
1330  *
1331  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1332  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1333 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1334 					 struct kvm_memory_slot *slot,
1335 					 gfn_t gfn_offset, unsigned long mask)
1336 {
1337 	struct kvm_rmap_head *rmap_head;
1338 
1339 	if (is_tdp_mmu_enabled(kvm))
1340 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1341 				slot->base_gfn + gfn_offset, mask, false);
1342 
1343 	if (!kvm_memslots_have_rmaps(kvm))
1344 		return;
1345 
1346 	while (mask) {
1347 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1348 					PG_LEVEL_4K, slot);
1349 		__rmap_clear_dirty(kvm, rmap_head, slot);
1350 
1351 		/* clear the first set bit */
1352 		mask &= mask - 1;
1353 	}
1354 }
1355 
1356 /**
1357  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1358  * PT level pages.
1359  *
1360  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1361  * enable dirty logging for them.
1362  *
1363  * We need to care about huge page mappings: e.g. during dirty logging we may
1364  * have such mappings.
1365  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1366 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1367 				struct kvm_memory_slot *slot,
1368 				gfn_t gfn_offset, unsigned long mask)
1369 {
1370 	/*
1371 	 * Huge pages are NOT write protected when we start dirty logging in
1372 	 * initially-all-set mode; must write protect them here so that they
1373 	 * are split to 4K on the first write.
1374 	 *
1375 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1376 	 * of memslot has no such restriction, so the range can cross two large
1377 	 * pages.
1378 	 */
1379 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1380 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1381 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1382 
1383 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1384 
1385 		/* Cross two large pages? */
1386 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1387 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1388 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1389 						       PG_LEVEL_2M);
1390 	}
1391 
1392 	/* Now handle 4K PTEs.  */
1393 	if (kvm_x86_ops.cpu_dirty_log_size)
1394 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1395 	else
1396 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1397 }
1398 
kvm_cpu_dirty_log_size(void)1399 int kvm_cpu_dirty_log_size(void)
1400 {
1401 	return kvm_x86_ops.cpu_dirty_log_size;
1402 }
1403 
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn,int min_level)1404 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1405 				    struct kvm_memory_slot *slot, u64 gfn,
1406 				    int min_level)
1407 {
1408 	struct kvm_rmap_head *rmap_head;
1409 	int i;
1410 	bool write_protected = false;
1411 
1412 	if (kvm_memslots_have_rmaps(kvm)) {
1413 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1414 			rmap_head = gfn_to_rmap(gfn, i, slot);
1415 			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1416 		}
1417 	}
1418 
1419 	if (is_tdp_mmu_enabled(kvm))
1420 		write_protected |=
1421 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1422 
1423 	return write_protected;
1424 }
1425 
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1426 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1427 {
1428 	struct kvm_memory_slot *slot;
1429 
1430 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1431 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1432 }
1433 
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)1434 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1435 			  const struct kvm_memory_slot *slot)
1436 {
1437 	return pte_list_destroy(kvm, rmap_head);
1438 }
1439 
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1440 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1441 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
1442 			    pte_t unused)
1443 {
1444 	return kvm_zap_rmapp(kvm, rmap_head, slot);
1445 }
1446 
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t pte)1447 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1448 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
1449 			      pte_t pte)
1450 {
1451 	u64 *sptep;
1452 	struct rmap_iterator iter;
1453 	int need_flush = 0;
1454 	u64 new_spte;
1455 	kvm_pfn_t new_pfn;
1456 
1457 	WARN_ON(pte_huge(pte));
1458 	new_pfn = pte_pfn(pte);
1459 
1460 restart:
1461 	for_each_rmap_spte(rmap_head, &iter, sptep) {
1462 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1463 			    sptep, *sptep, gfn, level);
1464 
1465 		need_flush = 1;
1466 
1467 		if (pte_write(pte)) {
1468 			pte_list_remove(kvm, rmap_head, sptep);
1469 			goto restart;
1470 		} else {
1471 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1472 					*sptep, new_pfn);
1473 
1474 			mmu_spte_clear_track_bits(kvm, sptep);
1475 			mmu_spte_set(sptep, new_spte);
1476 		}
1477 	}
1478 
1479 	if (need_flush && kvm_available_flush_tlb_with_range()) {
1480 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1481 		return 0;
1482 	}
1483 
1484 	return need_flush;
1485 }
1486 
1487 struct slot_rmap_walk_iterator {
1488 	/* input fields. */
1489 	const struct kvm_memory_slot *slot;
1490 	gfn_t start_gfn;
1491 	gfn_t end_gfn;
1492 	int start_level;
1493 	int end_level;
1494 
1495 	/* output fields. */
1496 	gfn_t gfn;
1497 	struct kvm_rmap_head *rmap;
1498 	int level;
1499 
1500 	/* private field. */
1501 	struct kvm_rmap_head *end_rmap;
1502 };
1503 
1504 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1505 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1506 {
1507 	iterator->level = level;
1508 	iterator->gfn = iterator->start_gfn;
1509 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1510 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1511 }
1512 
1513 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,const struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1514 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1515 		    const struct kvm_memory_slot *slot, int start_level,
1516 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1517 {
1518 	iterator->slot = slot;
1519 	iterator->start_level = start_level;
1520 	iterator->end_level = end_level;
1521 	iterator->start_gfn = start_gfn;
1522 	iterator->end_gfn = end_gfn;
1523 
1524 	rmap_walk_init_level(iterator, iterator->start_level);
1525 }
1526 
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1527 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1528 {
1529 	return !!iterator->rmap;
1530 }
1531 
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1532 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1533 {
1534 	if (++iterator->rmap <= iterator->end_rmap) {
1535 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1536 		return;
1537 	}
1538 
1539 	if (++iterator->level > iterator->end_level) {
1540 		iterator->rmap = NULL;
1541 		return;
1542 	}
1543 
1544 	rmap_walk_init_level(iterator, iterator->level);
1545 }
1546 
1547 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1548 	   _start_gfn, _end_gfn, _iter_)				\
1549 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1550 				 _end_level_, _start_gfn, _end_gfn);	\
1551 	     slot_rmap_walk_okay(_iter_);				\
1552 	     slot_rmap_walk_next(_iter_))
1553 
1554 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555 			       struct kvm_memory_slot *slot, gfn_t gfn,
1556 			       int level, pte_t pte);
1557 
kvm_handle_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range,rmap_handler_t handler)1558 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1559 						 struct kvm_gfn_range *range,
1560 						 rmap_handler_t handler)
1561 {
1562 	struct slot_rmap_walk_iterator iterator;
1563 	bool ret = false;
1564 
1565 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1566 				 range->start, range->end - 1, &iterator)
1567 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1568 			       iterator.level, range->pte);
1569 
1570 	return ret;
1571 }
1572 
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1573 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1574 {
1575 	bool flush = false;
1576 
1577 	if (kvm_memslots_have_rmaps(kvm))
1578 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1579 
1580 	if (is_tdp_mmu_enabled(kvm))
1581 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1582 
1583 	return flush;
1584 }
1585 
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1586 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1587 {
1588 	bool flush = false;
1589 
1590 	if (kvm_memslots_have_rmaps(kvm))
1591 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1592 
1593 	if (is_tdp_mmu_enabled(kvm))
1594 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1595 
1596 	return flush;
1597 }
1598 
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1599 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1600 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
1601 			  pte_t unused)
1602 {
1603 	u64 *sptep;
1604 	struct rmap_iterator iter;
1605 	int young = 0;
1606 
1607 	for_each_rmap_spte(rmap_head, &iter, sptep)
1608 		young |= mmu_spte_age(sptep);
1609 
1610 	return young;
1611 }
1612 
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,pte_t unused)1613 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1614 			       struct kvm_memory_slot *slot, gfn_t gfn,
1615 			       int level, pte_t unused)
1616 {
1617 	u64 *sptep;
1618 	struct rmap_iterator iter;
1619 
1620 	for_each_rmap_spte(rmap_head, &iter, sptep)
1621 		if (is_accessed_spte(*sptep))
1622 			return 1;
1623 	return 0;
1624 }
1625 
1626 #define RMAP_RECYCLE_THRESHOLD 1000
1627 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1628 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1629 {
1630 	struct kvm_memory_slot *slot;
1631 	struct kvm_mmu_page *sp;
1632 	struct kvm_rmap_head *rmap_head;
1633 	int rmap_count;
1634 
1635 	sp = sptep_to_sp(spte);
1636 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1637 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1638 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1639 	rmap_count = pte_list_add(vcpu, spte, rmap_head);
1640 
1641 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1642 		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1643 		kvm_flush_remote_tlbs_with_address(
1644 				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
1645 	}
1646 }
1647 
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1648 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1649 {
1650 	bool young = false;
1651 
1652 	if (kvm_memslots_have_rmaps(kvm))
1653 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1654 
1655 	if (is_tdp_mmu_enabled(kvm))
1656 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1657 
1658 	return young;
1659 }
1660 
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1661 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1662 {
1663 	bool young = false;
1664 
1665 	if (kvm_memslots_have_rmaps(kvm))
1666 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1667 
1668 	if (is_tdp_mmu_enabled(kvm))
1669 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1670 
1671 	return young;
1672 }
1673 
1674 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1675 static int is_empty_shadow_page(u64 *spt)
1676 {
1677 	u64 *pos;
1678 	u64 *end;
1679 
1680 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1681 		if (is_shadow_present_pte(*pos)) {
1682 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1683 			       pos, *pos);
1684 			return 0;
1685 		}
1686 	return 1;
1687 }
1688 #endif
1689 
1690 /*
1691  * This value is the sum of all of the kvm instances's
1692  * kvm->arch.n_used_mmu_pages values.  We need a global,
1693  * aggregate version in order to make the slab shrinker
1694  * faster
1695  */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)1696 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1697 {
1698 	kvm->arch.n_used_mmu_pages += nr;
1699 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1700 }
1701 
kvm_account_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1702 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1703 {
1704 	kvm_mod_used_mmu_pages(kvm, +1);
1705 	kvm_account_pgtable_pages((void *)sp->spt, +1);
1706 }
1707 
kvm_unaccount_mmu_page(struct kvm * kvm,struct kvm_mmu_page * sp)1708 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1709 {
1710 	kvm_mod_used_mmu_pages(kvm, -1);
1711 	kvm_account_pgtable_pages((void *)sp->spt, -1);
1712 }
1713 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1714 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1715 {
1716 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1717 	hlist_del(&sp->hash_link);
1718 	list_del(&sp->link);
1719 	free_page((unsigned long)sp->spt);
1720 	if (!sp->role.direct)
1721 		free_page((unsigned long)sp->gfns);
1722 	kmem_cache_free(mmu_page_header_cache, sp);
1723 }
1724 
kvm_page_table_hashfn(gfn_t gfn)1725 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1726 {
1727 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1728 }
1729 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1730 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1731 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1732 {
1733 	if (!parent_pte)
1734 		return;
1735 
1736 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1737 }
1738 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1739 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1740 				       u64 *parent_pte)
1741 {
1742 	__pte_list_remove(parent_pte, &sp->parent_ptes);
1743 }
1744 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1745 static void drop_parent_pte(struct kvm_mmu_page *sp,
1746 			    u64 *parent_pte)
1747 {
1748 	mmu_page_remove_parent_pte(sp, parent_pte);
1749 	mmu_spte_clear_no_track(parent_pte);
1750 }
1751 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1752 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1753 {
1754 	struct kvm_mmu_page *sp;
1755 
1756 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1757 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1758 	if (!direct)
1759 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1760 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1761 
1762 	/*
1763 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1764 	 * depends on valid pages being added to the head of the list.  See
1765 	 * comments in kvm_zap_obsolete_pages().
1766 	 */
1767 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1768 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1769 	kvm_account_mmu_page(vcpu->kvm, sp);
1770 	return sp;
1771 }
1772 
1773 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1774 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1775 {
1776 	u64 *sptep;
1777 	struct rmap_iterator iter;
1778 
1779 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1780 		mark_unsync(sptep);
1781 	}
1782 }
1783 
mark_unsync(u64 * spte)1784 static void mark_unsync(u64 *spte)
1785 {
1786 	struct kvm_mmu_page *sp;
1787 	unsigned int index;
1788 
1789 	sp = sptep_to_sp(spte);
1790 	index = spte - sp->spt;
1791 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1792 		return;
1793 	if (sp->unsync_children++)
1794 		return;
1795 	kvm_mmu_mark_parents_unsync(sp);
1796 }
1797 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1798 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1799 			       struct kvm_mmu_page *sp)
1800 {
1801 	return 0;
1802 }
1803 
1804 #define KVM_PAGE_ARRAY_NR 16
1805 
1806 struct kvm_mmu_pages {
1807 	struct mmu_page_and_offset {
1808 		struct kvm_mmu_page *sp;
1809 		unsigned int idx;
1810 	} page[KVM_PAGE_ARRAY_NR];
1811 	unsigned int nr;
1812 };
1813 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1814 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1815 			 int idx)
1816 {
1817 	int i;
1818 
1819 	if (sp->unsync)
1820 		for (i=0; i < pvec->nr; i++)
1821 			if (pvec->page[i].sp == sp)
1822 				return 0;
1823 
1824 	pvec->page[pvec->nr].sp = sp;
1825 	pvec->page[pvec->nr].idx = idx;
1826 	pvec->nr++;
1827 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1828 }
1829 
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1830 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1831 {
1832 	--sp->unsync_children;
1833 	WARN_ON((int)sp->unsync_children < 0);
1834 	__clear_bit(idx, sp->unsync_child_bitmap);
1835 }
1836 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1837 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1838 			   struct kvm_mmu_pages *pvec)
1839 {
1840 	int i, ret, nr_unsync_leaf = 0;
1841 
1842 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1843 		struct kvm_mmu_page *child;
1844 		u64 ent = sp->spt[i];
1845 
1846 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1847 			clear_unsync_child_bit(sp, i);
1848 			continue;
1849 		}
1850 
1851 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1852 
1853 		if (child->unsync_children) {
1854 			if (mmu_pages_add(pvec, child, i))
1855 				return -ENOSPC;
1856 
1857 			ret = __mmu_unsync_walk(child, pvec);
1858 			if (!ret) {
1859 				clear_unsync_child_bit(sp, i);
1860 				continue;
1861 			} else if (ret > 0) {
1862 				nr_unsync_leaf += ret;
1863 			} else
1864 				return ret;
1865 		} else if (child->unsync) {
1866 			nr_unsync_leaf++;
1867 			if (mmu_pages_add(pvec, child, i))
1868 				return -ENOSPC;
1869 		} else
1870 			clear_unsync_child_bit(sp, i);
1871 	}
1872 
1873 	return nr_unsync_leaf;
1874 }
1875 
1876 #define INVALID_INDEX (-1)
1877 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1878 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1879 			   struct kvm_mmu_pages *pvec)
1880 {
1881 	pvec->nr = 0;
1882 	if (!sp->unsync_children)
1883 		return 0;
1884 
1885 	mmu_pages_add(pvec, sp, INVALID_INDEX);
1886 	return __mmu_unsync_walk(sp, pvec);
1887 }
1888 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1889 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1890 {
1891 	WARN_ON(!sp->unsync);
1892 	trace_kvm_mmu_sync_page(sp);
1893 	sp->unsync = 0;
1894 	--kvm->stat.mmu_unsync;
1895 }
1896 
1897 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1898 				     struct list_head *invalid_list);
1899 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1900 				    struct list_head *invalid_list);
1901 
1902 #define for_each_valid_sp(_kvm, _sp, _list)				\
1903 	hlist_for_each_entry(_sp, _list, hash_link)			\
1904 		if (is_obsolete_sp((_kvm), (_sp))) {			\
1905 		} else
1906 
1907 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1908 	for_each_valid_sp(_kvm, _sp,					\
1909 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1910 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1911 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1912 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1913 			 struct list_head *invalid_list)
1914 {
1915 	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1916 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1917 		return false;
1918 	}
1919 
1920 	return true;
1921 }
1922 
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1923 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1924 					struct list_head *invalid_list,
1925 					bool remote_flush)
1926 {
1927 	if (!remote_flush && list_empty(invalid_list))
1928 		return false;
1929 
1930 	if (!list_empty(invalid_list))
1931 		kvm_mmu_commit_zap_page(kvm, invalid_list);
1932 	else
1933 		kvm_flush_remote_tlbs(kvm);
1934 	return true;
1935 }
1936 
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1937 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1938 				 struct list_head *invalid_list,
1939 				 bool remote_flush, bool local_flush)
1940 {
1941 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1942 		return;
1943 
1944 	if (local_flush)
1945 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1946 }
1947 
1948 #ifdef CONFIG_KVM_MMU_AUDIT
1949 #include "mmu_audit.c"
1950 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1951 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1952 static void mmu_audit_disable(void) { }
1953 #endif
1954 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1955 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1956 {
1957 	return sp->role.invalid ||
1958 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1959 }
1960 
1961 struct mmu_page_path {
1962 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1963 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1964 };
1965 
1966 #define for_each_sp(pvec, sp, parents, i)			\
1967 		for (i = mmu_pages_first(&pvec, &parents);	\
1968 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1969 			i = mmu_pages_next(&pvec, &parents, i))
1970 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1971 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1972 			  struct mmu_page_path *parents,
1973 			  int i)
1974 {
1975 	int n;
1976 
1977 	for (n = i+1; n < pvec->nr; n++) {
1978 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1979 		unsigned idx = pvec->page[n].idx;
1980 		int level = sp->role.level;
1981 
1982 		parents->idx[level-1] = idx;
1983 		if (level == PG_LEVEL_4K)
1984 			break;
1985 
1986 		parents->parent[level-2] = sp;
1987 	}
1988 
1989 	return n;
1990 }
1991 
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1992 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1993 			   struct mmu_page_path *parents)
1994 {
1995 	struct kvm_mmu_page *sp;
1996 	int level;
1997 
1998 	if (pvec->nr == 0)
1999 		return 0;
2000 
2001 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2002 
2003 	sp = pvec->page[0].sp;
2004 	level = sp->role.level;
2005 	WARN_ON(level == PG_LEVEL_4K);
2006 
2007 	parents->parent[level-2] = sp;
2008 
2009 	/* Also set up a sentinel.  Further entries in pvec are all
2010 	 * children of sp, so this element is never overwritten.
2011 	 */
2012 	parents->parent[level-1] = NULL;
2013 	return mmu_pages_next(pvec, parents, 0);
2014 }
2015 
mmu_pages_clear_parents(struct mmu_page_path * parents)2016 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2017 {
2018 	struct kvm_mmu_page *sp;
2019 	unsigned int level = 0;
2020 
2021 	do {
2022 		unsigned int idx = parents->idx[level];
2023 		sp = parents->parent[level];
2024 		if (!sp)
2025 			return;
2026 
2027 		WARN_ON(idx == INVALID_INDEX);
2028 		clear_unsync_child_bit(sp, idx);
2029 		level++;
2030 	} while (!sp->unsync_children);
2031 }
2032 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent,bool can_yield)2033 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2034 			     struct kvm_mmu_page *parent, bool can_yield)
2035 {
2036 	int i;
2037 	struct kvm_mmu_page *sp;
2038 	struct mmu_page_path parents;
2039 	struct kvm_mmu_pages pages;
2040 	LIST_HEAD(invalid_list);
2041 	bool flush = false;
2042 
2043 	while (mmu_unsync_walk(parent, &pages)) {
2044 		bool protected = false;
2045 
2046 		for_each_sp(pages, sp, parents, i)
2047 			protected |= rmap_write_protect(vcpu, sp->gfn);
2048 
2049 		if (protected) {
2050 			kvm_flush_remote_tlbs(vcpu->kvm);
2051 			flush = false;
2052 		}
2053 
2054 		for_each_sp(pages, sp, parents, i) {
2055 			kvm_unlink_unsync_page(vcpu->kvm, sp);
2056 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2057 			mmu_pages_clear_parents(&parents);
2058 		}
2059 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2060 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2061 			if (!can_yield) {
2062 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2063 				return -EINTR;
2064 			}
2065 
2066 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2067 			flush = false;
2068 		}
2069 	}
2070 
2071 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2072 	return 0;
2073 }
2074 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2075 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2076 {
2077 	atomic_set(&sp->write_flooding_count,  0);
2078 }
2079 
clear_sp_write_flooding_count(u64 * spte)2080 static void clear_sp_write_flooding_count(u64 *spte)
2081 {
2082 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2083 }
2084 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2085 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2086 					     gfn_t gfn,
2087 					     gva_t gaddr,
2088 					     unsigned level,
2089 					     int direct,
2090 					     unsigned int access)
2091 {
2092 	bool direct_mmu = vcpu->arch.mmu->direct_map;
2093 	union kvm_mmu_page_role role;
2094 	struct hlist_head *sp_list;
2095 	unsigned quadrant;
2096 	struct kvm_mmu_page *sp;
2097 	int collisions = 0;
2098 	LIST_HEAD(invalid_list);
2099 
2100 	role = vcpu->arch.mmu->mmu_role.base;
2101 	role.level = level;
2102 	role.direct = direct;
2103 	if (role.direct)
2104 		role.gpte_is_8_bytes = true;
2105 	role.access = access;
2106 	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2107 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2108 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2109 		role.quadrant = quadrant;
2110 	}
2111 
2112 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2113 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2114 		if (sp->gfn != gfn) {
2115 			collisions++;
2116 			continue;
2117 		}
2118 
2119 		if (sp->role.word != role.word) {
2120 			/*
2121 			 * If the guest is creating an upper-level page, zap
2122 			 * unsync pages for the same gfn.  While it's possible
2123 			 * the guest is using recursive page tables, in all
2124 			 * likelihood the guest has stopped using the unsync
2125 			 * page and is installing a completely unrelated page.
2126 			 * Unsync pages must not be left as is, because the new
2127 			 * upper-level page will be write-protected.
2128 			 */
2129 			if (level > PG_LEVEL_4K && sp->unsync)
2130 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2131 							 &invalid_list);
2132 			continue;
2133 		}
2134 
2135 		if (direct_mmu)
2136 			goto trace_get_page;
2137 
2138 		if (sp->unsync) {
2139 			/*
2140 			 * The page is good, but is stale.  kvm_sync_page does
2141 			 * get the latest guest state, but (unlike mmu_unsync_children)
2142 			 * it doesn't write-protect the page or mark it synchronized!
2143 			 * This way the validity of the mapping is ensured, but the
2144 			 * overhead of write protection is not incurred until the
2145 			 * guest invalidates the TLB mapping.  This allows multiple
2146 			 * SPs for a single gfn to be unsync.
2147 			 *
2148 			 * If the sync fails, the page is zapped.  If so, break
2149 			 * in order to rebuild it.
2150 			 */
2151 			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2152 				break;
2153 
2154 			WARN_ON(!list_empty(&invalid_list));
2155 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2156 		}
2157 
2158 		__clear_sp_write_flooding_count(sp);
2159 
2160 trace_get_page:
2161 		trace_kvm_mmu_get_page(sp, false);
2162 		goto out;
2163 	}
2164 
2165 	++vcpu->kvm->stat.mmu_cache_miss;
2166 
2167 	sp = kvm_mmu_alloc_page(vcpu, direct);
2168 
2169 	sp->gfn = gfn;
2170 	sp->role = role;
2171 	hlist_add_head(&sp->hash_link, sp_list);
2172 	if (!direct) {
2173 		account_shadowed(vcpu->kvm, sp);
2174 		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2175 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2176 	}
2177 	trace_kvm_mmu_get_page(sp, true);
2178 out:
2179 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2180 
2181 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2182 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2183 	return sp;
2184 }
2185 
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2186 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2187 					struct kvm_vcpu *vcpu, hpa_t root,
2188 					u64 addr)
2189 {
2190 	iterator->addr = addr;
2191 	iterator->shadow_addr = root;
2192 	iterator->level = vcpu->arch.mmu->shadow_root_level;
2193 
2194 	if (iterator->level >= PT64_ROOT_4LEVEL &&
2195 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2196 	    !vcpu->arch.mmu->direct_map)
2197 		iterator->level = PT32E_ROOT_LEVEL;
2198 
2199 	if (iterator->level == PT32E_ROOT_LEVEL) {
2200 		/*
2201 		 * prev_root is currently only used for 64-bit hosts. So only
2202 		 * the active root_hpa is valid here.
2203 		 */
2204 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2205 
2206 		iterator->shadow_addr
2207 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2208 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2209 		--iterator->level;
2210 		if (!iterator->shadow_addr)
2211 			iterator->level = 0;
2212 	}
2213 }
2214 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2215 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2216 			     struct kvm_vcpu *vcpu, u64 addr)
2217 {
2218 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2219 				    addr);
2220 }
2221 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2222 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2223 {
2224 	if (iterator->level < PG_LEVEL_4K)
2225 		return false;
2226 
2227 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2228 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2229 	return true;
2230 }
2231 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2232 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2233 			       u64 spte)
2234 {
2235 	if (is_last_spte(spte, iterator->level)) {
2236 		iterator->level = 0;
2237 		return;
2238 	}
2239 
2240 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2241 	--iterator->level;
2242 }
2243 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2244 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2245 {
2246 	__shadow_walk_next(iterator, *iterator->sptep);
2247 }
2248 
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2249 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2250 			     struct kvm_mmu_page *sp)
2251 {
2252 	u64 spte;
2253 
2254 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2255 
2256 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2257 
2258 	mmu_spte_set(sptep, spte);
2259 
2260 	mmu_page_add_parent_pte(vcpu, sp, sptep);
2261 
2262 	if (sp->unsync_children || sp->unsync)
2263 		mark_unsync(sptep);
2264 }
2265 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2266 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267 				   unsigned direct_access)
2268 {
2269 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270 		struct kvm_mmu_page *child;
2271 
2272 		/*
2273 		 * For the direct sp, if the guest pte's dirty bit
2274 		 * changed form clean to dirty, it will corrupt the
2275 		 * sp's access: allow writable in the read-only sp,
2276 		 * so we should update the spte at this point to get
2277 		 * a new sp with the correct access.
2278 		 */
2279 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2280 		if (child->role.access == direct_access)
2281 			return;
2282 
2283 		drop_parent_pte(child, sptep);
2284 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2285 	}
2286 }
2287 
2288 /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2289 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2290 			    u64 *spte, struct list_head *invalid_list)
2291 {
2292 	u64 pte;
2293 	struct kvm_mmu_page *child;
2294 
2295 	pte = *spte;
2296 	if (is_shadow_present_pte(pte)) {
2297 		if (is_last_spte(pte, sp->role.level)) {
2298 			drop_spte(kvm, spte);
2299 		} else {
2300 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2301 			drop_parent_pte(child, spte);
2302 
2303 			/*
2304 			 * Recursively zap nested TDP SPs, parentless SPs are
2305 			 * unlikely to be used again in the near future.  This
2306 			 * avoids retaining a large number of stale nested SPs.
2307 			 */
2308 			if (tdp_enabled && invalid_list &&
2309 			    child->role.guest_mode && !child->parent_ptes.val)
2310 				return kvm_mmu_prepare_zap_page(kvm, child,
2311 								invalid_list);
2312 		}
2313 	} else if (is_mmio_spte(pte)) {
2314 		mmu_spte_clear_no_track(spte);
2315 	}
2316 	return 0;
2317 }
2318 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2319 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2320 					struct kvm_mmu_page *sp,
2321 					struct list_head *invalid_list)
2322 {
2323 	int zapped = 0;
2324 	unsigned i;
2325 
2326 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2327 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2328 
2329 	return zapped;
2330 }
2331 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2332 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2333 {
2334 	u64 *sptep;
2335 	struct rmap_iterator iter;
2336 
2337 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2338 		drop_parent_pte(sp, sptep);
2339 }
2340 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2341 static int mmu_zap_unsync_children(struct kvm *kvm,
2342 				   struct kvm_mmu_page *parent,
2343 				   struct list_head *invalid_list)
2344 {
2345 	int i, zapped = 0;
2346 	struct mmu_page_path parents;
2347 	struct kvm_mmu_pages pages;
2348 
2349 	if (parent->role.level == PG_LEVEL_4K)
2350 		return 0;
2351 
2352 	while (mmu_unsync_walk(parent, &pages)) {
2353 		struct kvm_mmu_page *sp;
2354 
2355 		for_each_sp(pages, sp, parents, i) {
2356 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2357 			mmu_pages_clear_parents(&parents);
2358 			zapped++;
2359 		}
2360 	}
2361 
2362 	return zapped;
2363 }
2364 
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2365 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2366 				       struct kvm_mmu_page *sp,
2367 				       struct list_head *invalid_list,
2368 				       int *nr_zapped)
2369 {
2370 	bool list_unstable;
2371 
2372 	lockdep_assert_held_write(&kvm->mmu_lock);
2373 	trace_kvm_mmu_prepare_zap_page(sp);
2374 	++kvm->stat.mmu_shadow_zapped;
2375 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2376 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2377 	kvm_mmu_unlink_parents(kvm, sp);
2378 
2379 	/* Zapping children means active_mmu_pages has become unstable. */
2380 	list_unstable = *nr_zapped;
2381 
2382 	if (!sp->role.invalid && !sp->role.direct)
2383 		unaccount_shadowed(kvm, sp);
2384 
2385 	if (sp->unsync)
2386 		kvm_unlink_unsync_page(kvm, sp);
2387 	if (!sp->root_count) {
2388 		/* Count self */
2389 		(*nr_zapped)++;
2390 
2391 		/*
2392 		 * Already invalid pages (previously active roots) are not on
2393 		 * the active page list.  See list_del() in the "else" case of
2394 		 * !sp->root_count.
2395 		 */
2396 		if (sp->role.invalid)
2397 			list_add(&sp->link, invalid_list);
2398 		else
2399 			list_move(&sp->link, invalid_list);
2400 		kvm_unaccount_mmu_page(kvm, sp);
2401 	} else {
2402 		/*
2403 		 * Remove the active root from the active page list, the root
2404 		 * will be explicitly freed when the root_count hits zero.
2405 		 */
2406 		list_del(&sp->link);
2407 
2408 		/*
2409 		 * Obsolete pages cannot be used on any vCPUs, see the comment
2410 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2411 		 * treats invalid shadow pages as being obsolete.
2412 		 */
2413 		if (!is_obsolete_sp(kvm, sp))
2414 			kvm_reload_remote_mmus(kvm);
2415 	}
2416 
2417 	if (sp->lpage_disallowed)
2418 		unaccount_huge_nx_page(kvm, sp);
2419 
2420 	sp->role.invalid = 1;
2421 	return list_unstable;
2422 }
2423 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2424 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2425 				     struct list_head *invalid_list)
2426 {
2427 	int nr_zapped;
2428 
2429 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2430 	return nr_zapped;
2431 }
2432 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2433 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2434 				    struct list_head *invalid_list)
2435 {
2436 	struct kvm_mmu_page *sp, *nsp;
2437 
2438 	if (list_empty(invalid_list))
2439 		return;
2440 
2441 	/*
2442 	 * We need to make sure everyone sees our modifications to
2443 	 * the page tables and see changes to vcpu->mode here. The barrier
2444 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2445 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2446 	 *
2447 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2448 	 * guest mode and/or lockless shadow page table walks.
2449 	 */
2450 	kvm_flush_remote_tlbs(kvm);
2451 
2452 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2453 		WARN_ON(!sp->role.invalid || sp->root_count);
2454 		kvm_mmu_free_page(sp);
2455 	}
2456 }
2457 
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2458 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2459 						  unsigned long nr_to_zap)
2460 {
2461 	unsigned long total_zapped = 0;
2462 	struct kvm_mmu_page *sp, *tmp;
2463 	LIST_HEAD(invalid_list);
2464 	bool unstable;
2465 	int nr_zapped;
2466 
2467 	if (list_empty(&kvm->arch.active_mmu_pages))
2468 		return 0;
2469 
2470 restart:
2471 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2472 		/*
2473 		 * Don't zap active root pages, the page itself can't be freed
2474 		 * and zapping it will just force vCPUs to realloc and reload.
2475 		 */
2476 		if (sp->root_count)
2477 			continue;
2478 
2479 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2480 						      &nr_zapped);
2481 		total_zapped += nr_zapped;
2482 		if (total_zapped >= nr_to_zap)
2483 			break;
2484 
2485 		if (unstable)
2486 			goto restart;
2487 	}
2488 
2489 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2490 
2491 	kvm->stat.mmu_recycled += total_zapped;
2492 	return total_zapped;
2493 }
2494 
kvm_mmu_available_pages(struct kvm * kvm)2495 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2496 {
2497 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2498 		return kvm->arch.n_max_mmu_pages -
2499 			kvm->arch.n_used_mmu_pages;
2500 
2501 	return 0;
2502 }
2503 
make_mmu_pages_available(struct kvm_vcpu * vcpu)2504 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2505 {
2506 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2507 
2508 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2509 		return 0;
2510 
2511 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2512 
2513 	/*
2514 	 * Note, this check is intentionally soft, it only guarantees that one
2515 	 * page is available, while the caller may end up allocating as many as
2516 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2517 	 * exceeding the (arbitrary by default) limit will not harm the host,
2518 	 * being too aggressive may unnecessarily kill the guest, and getting an
2519 	 * exact count is far more trouble than it's worth, especially in the
2520 	 * page fault paths.
2521 	 */
2522 	if (!kvm_mmu_available_pages(vcpu->kvm))
2523 		return -ENOSPC;
2524 	return 0;
2525 }
2526 
2527 /*
2528  * Changing the number of mmu pages allocated to the vm
2529  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2530  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2531 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2532 {
2533 	write_lock(&kvm->mmu_lock);
2534 
2535 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2536 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2537 						  goal_nr_mmu_pages);
2538 
2539 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2540 	}
2541 
2542 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2543 
2544 	write_unlock(&kvm->mmu_lock);
2545 }
2546 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2547 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2548 {
2549 	struct kvm_mmu_page *sp;
2550 	LIST_HEAD(invalid_list);
2551 	int r;
2552 
2553 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2554 	r = 0;
2555 	write_lock(&kvm->mmu_lock);
2556 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2557 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2558 			 sp->role.word);
2559 		r = 1;
2560 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2561 	}
2562 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2563 	write_unlock(&kvm->mmu_lock);
2564 
2565 	return r;
2566 }
2567 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)2568 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2569 {
2570 	gpa_t gpa;
2571 	int r;
2572 
2573 	if (vcpu->arch.mmu->direct_map)
2574 		return 0;
2575 
2576 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2577 
2578 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2579 
2580 	return r;
2581 }
2582 
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2583 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2584 {
2585 	trace_kvm_mmu_unsync_page(sp);
2586 	++vcpu->kvm->stat.mmu_unsync;
2587 	sp->unsync = 1;
2588 
2589 	kvm_mmu_mark_parents_unsync(sp);
2590 }
2591 
2592 /*
2593  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2594  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2595  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2596  * be write-protected.
2597  */
mmu_try_to_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2598 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2599 {
2600 	struct kvm_mmu_page *sp;
2601 	bool locked = false;
2602 
2603 	/*
2604 	 * Force write-protection if the page is being tracked.  Note, the page
2605 	 * track machinery is used to write-protect upper-level shadow pages,
2606 	 * i.e. this guards the role.level == 4K assertion below!
2607 	 */
2608 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2609 		return -EPERM;
2610 
2611 	/*
2612 	 * The page is not write-tracked, mark existing shadow pages unsync
2613 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2614 	 * that case, KVM must complete emulation of the guest TLB flush before
2615 	 * allowing shadow pages to become unsync (writable by the guest).
2616 	 */
2617 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2618 		if (!can_unsync)
2619 			return -EPERM;
2620 
2621 		if (sp->unsync)
2622 			continue;
2623 
2624 		/*
2625 		 * TDP MMU page faults require an additional spinlock as they
2626 		 * run with mmu_lock held for read, not write, and the unsync
2627 		 * logic is not thread safe.  Take the spinklock regardless of
2628 		 * the MMU type to avoid extra conditionals/parameters, there's
2629 		 * no meaningful penalty if mmu_lock is held for write.
2630 		 */
2631 		if (!locked) {
2632 			locked = true;
2633 			spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2634 
2635 			/*
2636 			 * Recheck after taking the spinlock, a different vCPU
2637 			 * may have since marked the page unsync.  A false
2638 			 * positive on the unprotected check above is not
2639 			 * possible as clearing sp->unsync _must_ hold mmu_lock
2640 			 * for write, i.e. unsync cannot transition from 0->1
2641 			 * while this CPU holds mmu_lock for read (or write).
2642 			 */
2643 			if (READ_ONCE(sp->unsync))
2644 				continue;
2645 		}
2646 
2647 		WARN_ON(sp->role.level != PG_LEVEL_4K);
2648 		kvm_unsync_page(vcpu, sp);
2649 	}
2650 	if (locked)
2651 		spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2652 
2653 	/*
2654 	 * We need to ensure that the marking of unsync pages is visible
2655 	 * before the SPTE is updated to allow writes because
2656 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2657 	 * the MMU lock and so can race with this. If the SPTE was updated
2658 	 * before the page had been marked as unsync-ed, something like the
2659 	 * following could happen:
2660 	 *
2661 	 * CPU 1                    CPU 2
2662 	 * ---------------------------------------------------------------------
2663 	 * 1.2 Host updates SPTE
2664 	 *     to be writable
2665 	 *                      2.1 Guest writes a GPTE for GVA X.
2666 	 *                          (GPTE being in the guest page table shadowed
2667 	 *                           by the SP from CPU 1.)
2668 	 *                          This reads SPTE during the page table walk.
2669 	 *                          Since SPTE.W is read as 1, there is no
2670 	 *                          fault.
2671 	 *
2672 	 *                      2.2 Guest issues TLB flush.
2673 	 *                          That causes a VM Exit.
2674 	 *
2675 	 *                      2.3 Walking of unsync pages sees sp->unsync is
2676 	 *                          false and skips the page.
2677 	 *
2678 	 *                      2.4 Guest accesses GVA X.
2679 	 *                          Since the mapping in the SP was not updated,
2680 	 *                          so the old mapping for GVA X incorrectly
2681 	 *                          gets used.
2682 	 * 1.1 Host marks SP
2683 	 *     as unsync
2684 	 *     (sp->unsync = true)
2685 	 *
2686 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2687 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2688 	 * pairs with this write barrier.
2689 	 */
2690 	smp_wmb();
2691 
2692 	return 0;
2693 }
2694 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2695 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2696 		    unsigned int pte_access, int level,
2697 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2698 		    bool can_unsync, bool host_writable)
2699 {
2700 	u64 spte;
2701 	struct kvm_mmu_page *sp;
2702 	int ret;
2703 
2704 	sp = sptep_to_sp(sptep);
2705 
2706 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2707 			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2708 
2709 	if (spte & PT_WRITABLE_MASK)
2710 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2711 
2712 	if (*sptep == spte)
2713 		ret |= SET_SPTE_SPURIOUS;
2714 	else if (mmu_spte_update(sptep, spte))
2715 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2716 	return ret;
2717 }
2718 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,bool write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2719 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2720 			unsigned int pte_access, bool write_fault, int level,
2721 			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2722 			bool host_writable)
2723 {
2724 	int was_rmapped = 0;
2725 	int set_spte_ret;
2726 	int ret = RET_PF_FIXED;
2727 	bool flush = false;
2728 
2729 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2730 		 *sptep, write_fault, gfn);
2731 
2732 	if (unlikely(is_noslot_pfn(pfn))) {
2733 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2734 		return RET_PF_EMULATE;
2735 	}
2736 
2737 	if (is_shadow_present_pte(*sptep)) {
2738 		/*
2739 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2740 		 * the parent of the now unreachable PTE.
2741 		 */
2742 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2743 			struct kvm_mmu_page *child;
2744 			u64 pte = *sptep;
2745 
2746 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2747 			drop_parent_pte(child, sptep);
2748 			flush = true;
2749 		} else if (pfn != spte_to_pfn(*sptep)) {
2750 			pgprintk("hfn old %llx new %llx\n",
2751 				 spte_to_pfn(*sptep), pfn);
2752 			drop_spte(vcpu->kvm, sptep);
2753 			flush = true;
2754 		} else
2755 			was_rmapped = 1;
2756 	}
2757 
2758 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2759 				speculative, true, host_writable);
2760 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2761 		if (write_fault)
2762 			ret = RET_PF_EMULATE;
2763 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2764 	}
2765 
2766 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2767 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2768 				KVM_PAGES_PER_HPAGE(level));
2769 
2770 	/*
2771 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2772 	 * are identical, and emulation is not required.
2773 	 */
2774 	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2775 		WARN_ON_ONCE(!was_rmapped);
2776 		return RET_PF_SPURIOUS;
2777 	}
2778 
2779 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2780 	trace_kvm_mmu_set_spte(level, gfn, sptep);
2781 
2782 	if (!was_rmapped) {
2783 		kvm_update_page_stats(vcpu->kvm, level, 1);
2784 		rmap_add(vcpu, sptep, gfn);
2785 	}
2786 
2787 	return ret;
2788 }
2789 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2790 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2791 				     bool no_dirty_log)
2792 {
2793 	struct kvm_memory_slot *slot;
2794 
2795 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2796 	if (!slot)
2797 		return KVM_PFN_ERR_FAULT;
2798 
2799 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2800 }
2801 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2802 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2803 				    struct kvm_mmu_page *sp,
2804 				    u64 *start, u64 *end)
2805 {
2806 	struct page *pages[PTE_PREFETCH_NUM];
2807 	struct kvm_memory_slot *slot;
2808 	unsigned int access = sp->role.access;
2809 	int i, ret;
2810 	gfn_t gfn;
2811 
2812 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2813 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2814 	if (!slot)
2815 		return -1;
2816 
2817 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2818 	if (ret <= 0)
2819 		return -1;
2820 
2821 	for (i = 0; i < ret; i++, gfn++, start++) {
2822 		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2823 			     page_to_pfn(pages[i]), true, true);
2824 		put_page(pages[i]);
2825 	}
2826 
2827 	return 0;
2828 }
2829 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2830 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2831 				  struct kvm_mmu_page *sp, u64 *sptep)
2832 {
2833 	u64 *spte, *start = NULL;
2834 	int i;
2835 
2836 	WARN_ON(!sp->role.direct);
2837 
2838 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2839 	spte = sp->spt + i;
2840 
2841 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2842 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2843 			if (!start)
2844 				continue;
2845 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2846 				break;
2847 			start = NULL;
2848 		} else if (!start)
2849 			start = spte;
2850 	}
2851 }
2852 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2853 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2854 {
2855 	struct kvm_mmu_page *sp;
2856 
2857 	sp = sptep_to_sp(sptep);
2858 
2859 	/*
2860 	 * Without accessed bits, there's no way to distinguish between
2861 	 * actually accessed translations and prefetched, so disable pte
2862 	 * prefetch if accessed bits aren't available.
2863 	 */
2864 	if (sp_ad_disabled(sp))
2865 		return;
2866 
2867 	if (sp->role.level > PG_LEVEL_4K)
2868 		return;
2869 
2870 	/*
2871 	 * If addresses are being invalidated, skip prefetching to avoid
2872 	 * accidentally prefetching those addresses.
2873 	 */
2874 	if (unlikely(vcpu->kvm->mmu_notifier_count))
2875 		return;
2876 
2877 	__direct_pte_prefetch(vcpu, sp, sptep);
2878 }
2879 
host_pfn_mapping_level(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,const struct kvm_memory_slot * slot)2880 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2881 				  const struct kvm_memory_slot *slot)
2882 {
2883 	unsigned long hva;
2884 	pte_t *pte;
2885 	int level;
2886 
2887 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2888 		return PG_LEVEL_4K;
2889 
2890 	/*
2891 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2892 	 * is not solely for performance, it's also necessary to avoid the
2893 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2894 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2895 	 * page fault steps have already verified the guest isn't writing a
2896 	 * read-only memslot.
2897 	 */
2898 	hva = __gfn_to_hva_memslot(slot, gfn);
2899 
2900 	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2901 	if (unlikely(!pte))
2902 		return PG_LEVEL_4K;
2903 
2904 	return level;
2905 }
2906 
kvm_mmu_max_mapping_level(struct kvm * kvm,const struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t pfn,int max_level)2907 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2908 			      const struct kvm_memory_slot *slot, gfn_t gfn,
2909 			      kvm_pfn_t pfn, int max_level)
2910 {
2911 	struct kvm_lpage_info *linfo;
2912 	int host_level;
2913 
2914 	max_level = min(max_level, max_huge_page_level);
2915 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2916 		linfo = lpage_info_slot(gfn, slot, max_level);
2917 		if (!linfo->disallow_lpage)
2918 			break;
2919 	}
2920 
2921 	if (max_level == PG_LEVEL_4K)
2922 		return PG_LEVEL_4K;
2923 
2924 	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
2925 	return min(host_level, max_level);
2926 }
2927 
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,int max_level,kvm_pfn_t * pfnp,bool huge_page_disallowed,int * req_level)2928 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2929 			    int max_level, kvm_pfn_t *pfnp,
2930 			    bool huge_page_disallowed, int *req_level)
2931 {
2932 	struct kvm_memory_slot *slot;
2933 	kvm_pfn_t pfn = *pfnp;
2934 	kvm_pfn_t mask;
2935 	int level;
2936 
2937 	*req_level = PG_LEVEL_4K;
2938 
2939 	if (unlikely(max_level == PG_LEVEL_4K))
2940 		return PG_LEVEL_4K;
2941 
2942 	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2943 		return PG_LEVEL_4K;
2944 
2945 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2946 	if (!slot)
2947 		return PG_LEVEL_4K;
2948 
2949 	/*
2950 	 * Enforce the iTLB multihit workaround after capturing the requested
2951 	 * level, which will be used to do precise, accurate accounting.
2952 	 */
2953 	*req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2954 	if (level == PG_LEVEL_4K || huge_page_disallowed)
2955 		return PG_LEVEL_4K;
2956 
2957 	/*
2958 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2959 	 * the pmd can't be split from under us.
2960 	 */
2961 	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2962 	VM_BUG_ON((gfn & mask) != (pfn & mask));
2963 	*pfnp = pfn & ~mask;
2964 
2965 	return level;
2966 }
2967 
disallowed_hugepage_adjust(u64 spte,gfn_t gfn,int cur_level,kvm_pfn_t * pfnp,int * goal_levelp)2968 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2969 				kvm_pfn_t *pfnp, int *goal_levelp)
2970 {
2971 	int level = *goal_levelp;
2972 
2973 	if (cur_level == level && level > PG_LEVEL_4K &&
2974 	    is_shadow_present_pte(spte) &&
2975 	    !is_large_pte(spte)) {
2976 		/*
2977 		 * A small SPTE exists for this pfn, but FNAME(fetch)
2978 		 * and __direct_map would like to create a large PTE
2979 		 * instead: just force them to go down another level,
2980 		 * patching back for them into pfn the next 9 bits of
2981 		 * the address.
2982 		 */
2983 		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2984 				KVM_PAGES_PER_HPAGE(level - 1);
2985 		*pfnp |= gfn & page_mask;
2986 		(*goal_levelp)--;
2987 	}
2988 }
2989 
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault,bool is_tdp)2990 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2991 			int map_writable, int max_level, kvm_pfn_t pfn,
2992 			bool prefault, bool is_tdp)
2993 {
2994 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2995 	bool write = error_code & PFERR_WRITE_MASK;
2996 	bool exec = error_code & PFERR_FETCH_MASK;
2997 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2998 	struct kvm_shadow_walk_iterator it;
2999 	struct kvm_mmu_page *sp;
3000 	int level, req_level, ret;
3001 	gfn_t gfn = gpa >> PAGE_SHIFT;
3002 	gfn_t base_gfn = gfn;
3003 
3004 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
3005 					huge_page_disallowed, &req_level);
3006 
3007 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3008 	for_each_shadow_entry(vcpu, gpa, it) {
3009 		/*
3010 		 * We cannot overwrite existing page tables with an NX
3011 		 * large page, as the leaf could be executable.
3012 		 */
3013 		if (nx_huge_page_workaround_enabled)
3014 			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
3015 						   &pfn, &level);
3016 
3017 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3018 		if (it.level == level)
3019 			break;
3020 
3021 		drop_large_spte(vcpu, it.sptep);
3022 		if (is_shadow_present_pte(*it.sptep))
3023 			continue;
3024 
3025 		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3026 				      it.level - 1, true, ACC_ALL);
3027 
3028 		link_shadow_page(vcpu, it.sptep, sp);
3029 		if (is_tdp && huge_page_disallowed &&
3030 		    req_level >= it.level)
3031 			account_huge_nx_page(vcpu->kvm, sp);
3032 	}
3033 
3034 	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3035 			   write, level, base_gfn, pfn, prefault,
3036 			   map_writable);
3037 	if (ret == RET_PF_SPURIOUS)
3038 		return ret;
3039 
3040 	direct_pte_prefetch(vcpu, it.sptep);
3041 	++vcpu->stat.pf_fixed;
3042 	return ret;
3043 }
3044 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3045 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3046 {
3047 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3048 }
3049 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3050 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3051 {
3052 	/*
3053 	 * Do not cache the mmio info caused by writing the readonly gfn
3054 	 * into the spte otherwise read access on readonly gfn also can
3055 	 * caused mmio page fault and treat it as mmio access.
3056 	 */
3057 	if (pfn == KVM_PFN_ERR_RO_FAULT)
3058 		return RET_PF_EMULATE;
3059 
3060 	if (pfn == KVM_PFN_ERR_HWPOISON) {
3061 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3062 		return RET_PF_RETRY;
3063 	}
3064 
3065 	return -EFAULT;
3066 }
3067 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned int access,int * ret_val)3068 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3069 				kvm_pfn_t pfn, unsigned int access,
3070 				int *ret_val)
3071 {
3072 	/* The pfn is invalid, report the error! */
3073 	if (unlikely(is_error_pfn(pfn))) {
3074 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3075 		return true;
3076 	}
3077 
3078 	if (unlikely(is_noslot_pfn(pfn))) {
3079 		vcpu_cache_mmio_info(vcpu, gva, gfn,
3080 				     access & shadow_mmio_access_mask);
3081 		/*
3082 		 * If MMIO caching is disabled, emulate immediately without
3083 		 * touching the shadow page tables as attempting to install an
3084 		 * MMIO SPTE will just be an expensive nop.
3085 		 */
3086 		if (unlikely(!shadow_mmio_value)) {
3087 			*ret_val = RET_PF_EMULATE;
3088 			return true;
3089 		}
3090 	}
3091 
3092 	return false;
3093 }
3094 
page_fault_can_be_fast(u32 error_code)3095 static bool page_fault_can_be_fast(u32 error_code)
3096 {
3097 	/*
3098 	 * Do not fix the mmio spte with invalid generation number which
3099 	 * need to be updated by slow page fault path.
3100 	 */
3101 	if (unlikely(error_code & PFERR_RSVD_MASK))
3102 		return false;
3103 
3104 	/* See if the page fault is due to an NX violation */
3105 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3106 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3107 		return false;
3108 
3109 	/*
3110 	 * #PF can be fast if:
3111 	 * 1. The shadow page table entry is not present, which could mean that
3112 	 *    the fault is potentially caused by access tracking (if enabled).
3113 	 * 2. The shadow page table entry is present and the fault
3114 	 *    is caused by write-protect, that means we just need change the W
3115 	 *    bit of the spte which can be done out of mmu-lock.
3116 	 *
3117 	 * However, if access tracking is disabled we know that a non-present
3118 	 * page must be a genuine page fault where we have to create a new SPTE.
3119 	 * So, if access tracking is disabled, we return true only for write
3120 	 * accesses to a present page.
3121 	 */
3122 
3123 	return shadow_acc_track_mask != 0 ||
3124 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3125 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3126 }
3127 
3128 /*
3129  * Returns true if the SPTE was fixed successfully. Otherwise,
3130  * someone else modified the SPTE from its original value.
3131  */
3132 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)3133 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3134 			u64 *sptep, u64 old_spte, u64 new_spte)
3135 {
3136 	gfn_t gfn;
3137 
3138 	WARN_ON(!sp->role.direct);
3139 
3140 	/*
3141 	 * Theoretically we could also set dirty bit (and flush TLB) here in
3142 	 * order to eliminate unnecessary PML logging. See comments in
3143 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3144 	 * enabled, so we do not do this. This might result in the same GPA
3145 	 * to be logged in PML buffer again when the write really happens, and
3146 	 * eventually to be called by mark_page_dirty twice. But it's also no
3147 	 * harm. This also avoids the TLB flush needed after setting dirty bit
3148 	 * so non-PML cases won't be impacted.
3149 	 *
3150 	 * Compare with set_spte where instead shadow_dirty_mask is set.
3151 	 */
3152 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3153 		return false;
3154 
3155 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3156 		/*
3157 		 * The gfn of direct spte is stable since it is
3158 		 * calculated by sp->gfn.
3159 		 */
3160 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3161 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3162 	}
3163 
3164 	return true;
3165 }
3166 
is_access_allowed(u32 fault_err_code,u64 spte)3167 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3168 {
3169 	if (fault_err_code & PFERR_FETCH_MASK)
3170 		return is_executable_pte(spte);
3171 
3172 	if (fault_err_code & PFERR_WRITE_MASK)
3173 		return is_writable_pte(spte);
3174 
3175 	/* Fault was on Read access */
3176 	return spte & PT_PRESENT_MASK;
3177 }
3178 
3179 /*
3180  * Returns the last level spte pointer of the shadow page walk for the given
3181  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3182  * walk could be performed, returns NULL and *spte does not contain valid data.
3183  *
3184  * Contract:
3185  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3186  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3187  */
fast_pf_get_last_sptep(struct kvm_vcpu * vcpu,gpa_t gpa,u64 * spte)3188 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3189 {
3190 	struct kvm_shadow_walk_iterator iterator;
3191 	u64 old_spte;
3192 	u64 *sptep = NULL;
3193 
3194 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3195 		sptep = iterator.sptep;
3196 		*spte = old_spte;
3197 
3198 		if (!is_shadow_present_pte(old_spte))
3199 			break;
3200 	}
3201 
3202 	return sptep;
3203 }
3204 
3205 /*
3206  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3207  */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code)3208 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code)
3209 {
3210 	struct kvm_mmu_page *sp;
3211 	int ret = RET_PF_INVALID;
3212 	u64 spte = 0ull;
3213 	u64 *sptep = NULL;
3214 	uint retry_count = 0;
3215 
3216 	if (!page_fault_can_be_fast(error_code))
3217 		return ret;
3218 
3219 	walk_shadow_page_lockless_begin(vcpu);
3220 
3221 	do {
3222 		u64 new_spte;
3223 
3224 		if (is_tdp_mmu(vcpu->arch.mmu))
3225 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, gpa, &spte);
3226 		else
3227 			sptep = fast_pf_get_last_sptep(vcpu, gpa, &spte);
3228 
3229 		if (!is_shadow_present_pte(spte))
3230 			break;
3231 
3232 		sp = sptep_to_sp(sptep);
3233 		if (!is_last_spte(spte, sp->role.level))
3234 			break;
3235 
3236 		/*
3237 		 * Check whether the memory access that caused the fault would
3238 		 * still cause it if it were to be performed right now. If not,
3239 		 * then this is a spurious fault caused by TLB lazily flushed,
3240 		 * or some other CPU has already fixed the PTE after the
3241 		 * current CPU took the fault.
3242 		 *
3243 		 * Need not check the access of upper level table entries since
3244 		 * they are always ACC_ALL.
3245 		 */
3246 		if (is_access_allowed(error_code, spte)) {
3247 			ret = RET_PF_SPURIOUS;
3248 			break;
3249 		}
3250 
3251 		new_spte = spte;
3252 
3253 		if (is_access_track_spte(spte))
3254 			new_spte = restore_acc_track_spte(new_spte);
3255 
3256 		/*
3257 		 * Currently, to simplify the code, write-protection can
3258 		 * be removed in the fast path only if the SPTE was
3259 		 * write-protected for dirty-logging or access tracking.
3260 		 */
3261 		if ((error_code & PFERR_WRITE_MASK) &&
3262 		    spte_can_locklessly_be_made_writable(spte)) {
3263 			new_spte |= PT_WRITABLE_MASK;
3264 
3265 			/*
3266 			 * Do not fix write-permission on the large spte.  Since
3267 			 * we only dirty the first page into the dirty-bitmap in
3268 			 * fast_pf_fix_direct_spte(), other pages are missed
3269 			 * if its slot has dirty logging enabled.
3270 			 *
3271 			 * Instead, we let the slow page fault path create a
3272 			 * normal spte to fix the access.
3273 			 *
3274 			 * See the comments in kvm_arch_commit_memory_region().
3275 			 */
3276 			if (sp->role.level > PG_LEVEL_4K)
3277 				break;
3278 		}
3279 
3280 		/* Verify that the fault can be handled in the fast path */
3281 		if (new_spte == spte ||
3282 		    !is_access_allowed(error_code, new_spte))
3283 			break;
3284 
3285 		/*
3286 		 * Currently, fast page fault only works for direct mapping
3287 		 * since the gfn is not stable for indirect shadow page. See
3288 		 * Documentation/virt/kvm/locking.rst to get more detail.
3289 		 */
3290 		if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3291 			ret = RET_PF_FIXED;
3292 			break;
3293 		}
3294 
3295 		if (++retry_count > 4) {
3296 			printk_once(KERN_WARNING
3297 				"kvm: Fast #PF retrying more than 4 times.\n");
3298 			break;
3299 		}
3300 
3301 	} while (true);
3302 
3303 	trace_fast_page_fault(vcpu, gpa, error_code, sptep, spte, ret);
3304 	walk_shadow_page_lockless_end(vcpu);
3305 
3306 	return ret;
3307 }
3308 
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3309 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3310 			       struct list_head *invalid_list)
3311 {
3312 	struct kvm_mmu_page *sp;
3313 
3314 	if (!VALID_PAGE(*root_hpa))
3315 		return;
3316 
3317 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3318 	if (WARN_ON(!sp))
3319 		return;
3320 
3321 	if (is_tdp_mmu_page(sp))
3322 		kvm_tdp_mmu_put_root(kvm, sp, false);
3323 	else if (!--sp->root_count && sp->role.invalid)
3324 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3325 
3326 	*root_hpa = INVALID_PAGE;
3327 }
3328 
3329 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3330 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3331 			ulong roots_to_free)
3332 {
3333 	struct kvm *kvm = vcpu->kvm;
3334 	int i;
3335 	LIST_HEAD(invalid_list);
3336 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3337 
3338 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3339 
3340 	/* Before acquiring the MMU lock, see if we need to do any real work. */
3341 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3342 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3343 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3344 			    VALID_PAGE(mmu->prev_roots[i].hpa))
3345 				break;
3346 
3347 		if (i == KVM_MMU_NUM_PREV_ROOTS)
3348 			return;
3349 	}
3350 
3351 	write_lock(&kvm->mmu_lock);
3352 
3353 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3354 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3355 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3356 					   &invalid_list);
3357 
3358 	if (free_active_root) {
3359 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3360 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3361 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3362 		} else if (mmu->pae_root) {
3363 			for (i = 0; i < 4; ++i) {
3364 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3365 					continue;
3366 
3367 				mmu_free_root_page(kvm, &mmu->pae_root[i],
3368 						   &invalid_list);
3369 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3370 			}
3371 		}
3372 		mmu->root_hpa = INVALID_PAGE;
3373 		mmu->root_pgd = 0;
3374 	}
3375 
3376 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3377 	write_unlock(&kvm->mmu_lock);
3378 }
3379 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3380 
kvm_mmu_free_guest_mode_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3381 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3382 {
3383 	unsigned long roots_to_free = 0;
3384 	hpa_t root_hpa;
3385 	int i;
3386 
3387 	/*
3388 	 * This should not be called while L2 is active, L2 can't invalidate
3389 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3390 	 */
3391 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3392 
3393 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3394 		root_hpa = mmu->prev_roots[i].hpa;
3395 		if (!VALID_PAGE(root_hpa))
3396 			continue;
3397 
3398 		if (!to_shadow_page(root_hpa) ||
3399 			to_shadow_page(root_hpa)->role.guest_mode)
3400 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3401 	}
3402 
3403 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3404 }
3405 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3406 
3407 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3408 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3409 {
3410 	int ret = 0;
3411 
3412 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3413 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3414 		ret = 1;
3415 	}
3416 
3417 	return ret;
3418 }
3419 
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3420 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3421 			    u8 level, bool direct)
3422 {
3423 	struct kvm_mmu_page *sp;
3424 
3425 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3426 	++sp->root_count;
3427 
3428 	return __pa(sp->spt);
3429 }
3430 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3431 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3432 {
3433 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3434 	u8 shadow_root_level = mmu->shadow_root_level;
3435 	hpa_t root;
3436 	unsigned i;
3437 	int r;
3438 
3439 	write_lock(&vcpu->kvm->mmu_lock);
3440 	r = make_mmu_pages_available(vcpu);
3441 	if (r < 0)
3442 		goto out_unlock;
3443 
3444 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3445 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3446 		mmu->root_hpa = root;
3447 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3448 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3449 		mmu->root_hpa = root;
3450 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3451 		if (WARN_ON_ONCE(!mmu->pae_root)) {
3452 			r = -EIO;
3453 			goto out_unlock;
3454 		}
3455 
3456 		for (i = 0; i < 4; ++i) {
3457 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3458 
3459 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3460 					      i << 30, PT32_ROOT_LEVEL, true);
3461 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
3462 					   shadow_me_mask;
3463 		}
3464 		mmu->root_hpa = __pa(mmu->pae_root);
3465 	} else {
3466 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3467 		r = -EIO;
3468 		goto out_unlock;
3469 	}
3470 
3471 	/* root_pgd is ignored for direct MMUs. */
3472 	mmu->root_pgd = 0;
3473 out_unlock:
3474 	write_unlock(&vcpu->kvm->mmu_lock);
3475 	return r;
3476 }
3477 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3478 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3479 {
3480 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3481 	u64 pdptrs[4], pm_mask;
3482 	gfn_t root_gfn, root_pgd;
3483 	hpa_t root;
3484 	unsigned i;
3485 	int r;
3486 
3487 	root_pgd = mmu->get_guest_pgd(vcpu);
3488 	root_gfn = root_pgd >> PAGE_SHIFT;
3489 
3490 	if (mmu_check_root(vcpu, root_gfn))
3491 		return 1;
3492 
3493 	/*
3494 	 * On SVM, reading PDPTRs might access guest memory, which might fault
3495 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3496 	 */
3497 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
3498 		for (i = 0; i < 4; ++i) {
3499 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
3500 			if (!(pdptrs[i] & PT_PRESENT_MASK))
3501 				continue;
3502 
3503 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3504 				return 1;
3505 		}
3506 	}
3507 
3508 	r = alloc_all_memslots_rmaps(vcpu->kvm);
3509 	if (r)
3510 		return r;
3511 
3512 	write_lock(&vcpu->kvm->mmu_lock);
3513 	r = make_mmu_pages_available(vcpu);
3514 	if (r < 0)
3515 		goto out_unlock;
3516 
3517 	/*
3518 	 * Do we shadow a long mode page table? If so we need to
3519 	 * write-protect the guests page table root.
3520 	 */
3521 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3522 		root = mmu_alloc_root(vcpu, root_gfn, 0,
3523 				      mmu->shadow_root_level, false);
3524 		mmu->root_hpa = root;
3525 		goto set_root_pgd;
3526 	}
3527 
3528 	if (WARN_ON_ONCE(!mmu->pae_root)) {
3529 		r = -EIO;
3530 		goto out_unlock;
3531 	}
3532 
3533 	/*
3534 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3535 	 * or a PAE 3-level page table. In either case we need to be aware that
3536 	 * the shadow page table may be a PAE or a long mode page table.
3537 	 */
3538 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3539 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3540 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3541 
3542 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3543 			r = -EIO;
3544 			goto out_unlock;
3545 		}
3546 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3547 
3548 		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
3549 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
3550 				r = -EIO;
3551 				goto out_unlock;
3552 			}
3553 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3554 		}
3555 	}
3556 
3557 	for (i = 0; i < 4; ++i) {
3558 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3559 
3560 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3561 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3562 				mmu->pae_root[i] = INVALID_PAE_ROOT;
3563 				continue;
3564 			}
3565 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3566 		}
3567 
3568 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3569 				      PT32_ROOT_LEVEL, false);
3570 		mmu->pae_root[i] = root | pm_mask;
3571 	}
3572 
3573 	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
3574 		mmu->root_hpa = __pa(mmu->pml5_root);
3575 	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3576 		mmu->root_hpa = __pa(mmu->pml4_root);
3577 	else
3578 		mmu->root_hpa = __pa(mmu->pae_root);
3579 
3580 set_root_pgd:
3581 	mmu->root_pgd = root_pgd;
3582 out_unlock:
3583 	write_unlock(&vcpu->kvm->mmu_lock);
3584 
3585 	return r;
3586 }
3587 
mmu_alloc_special_roots(struct kvm_vcpu * vcpu)3588 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3589 {
3590 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3591 	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3592 	u64 *pml5_root = NULL;
3593 	u64 *pml4_root = NULL;
3594 	u64 *pae_root;
3595 
3596 	/*
3597 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3598 	 * tables are allocated and initialized at root creation as there is no
3599 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
3600 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3601 	 */
3602 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3603 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3604 		return 0;
3605 
3606 	/*
3607 	 * NPT, the only paging mode that uses this horror, uses a fixed number
3608 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3609 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
3610 	 * is allocated if the other roots are valid and pml5 is needed, as any
3611 	 * prior MMU would also have required pml5.
3612 	 */
3613 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3614 		return 0;
3615 
3616 	/*
3617 	 * The special roots should always be allocated in concert.  Yell and
3618 	 * bail if KVM ends up in a state where only one of the roots is valid.
3619 	 */
3620 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3621 			 (need_pml5 && mmu->pml5_root)))
3622 		return -EIO;
3623 
3624 	/*
3625 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3626 	 * doesn't need to be decrypted.
3627 	 */
3628 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3629 	if (!pae_root)
3630 		return -ENOMEM;
3631 
3632 #ifdef CONFIG_X86_64
3633 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3634 	if (!pml4_root)
3635 		goto err_pml4;
3636 
3637 	if (need_pml5) {
3638 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3639 		if (!pml5_root)
3640 			goto err_pml5;
3641 	}
3642 #endif
3643 
3644 	mmu->pae_root = pae_root;
3645 	mmu->pml4_root = pml4_root;
3646 	mmu->pml5_root = pml5_root;
3647 
3648 	return 0;
3649 
3650 #ifdef CONFIG_X86_64
3651 err_pml5:
3652 	free_page((unsigned long)pml4_root);
3653 err_pml4:
3654 	free_page((unsigned long)pae_root);
3655 	return -ENOMEM;
3656 #endif
3657 }
3658 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3659 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3660 {
3661 	int i;
3662 	struct kvm_mmu_page *sp;
3663 
3664 	if (vcpu->arch.mmu->direct_map)
3665 		return;
3666 
3667 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3668 		return;
3669 
3670 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3671 
3672 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3673 		hpa_t root = vcpu->arch.mmu->root_hpa;
3674 		sp = to_shadow_page(root);
3675 
3676 		/*
3677 		 * Even if another CPU was marking the SP as unsync-ed
3678 		 * simultaneously, any guest page table changes are not
3679 		 * guaranteed to be visible anyway until this VCPU issues a TLB
3680 		 * flush strictly after those changes are made. We only need to
3681 		 * ensure that the other CPU sets these flags before any actual
3682 		 * changes to the page tables are made. The comments in
3683 		 * mmu_try_to_unsync_pages() describe what could go wrong if
3684 		 * this requirement isn't satisfied.
3685 		 */
3686 		if (!smp_load_acquire(&sp->unsync) &&
3687 		    !smp_load_acquire(&sp->unsync_children))
3688 			return;
3689 
3690 		write_lock(&vcpu->kvm->mmu_lock);
3691 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3692 
3693 		mmu_sync_children(vcpu, sp, true);
3694 
3695 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3696 		write_unlock(&vcpu->kvm->mmu_lock);
3697 		return;
3698 	}
3699 
3700 	write_lock(&vcpu->kvm->mmu_lock);
3701 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3702 
3703 	for (i = 0; i < 4; ++i) {
3704 		hpa_t root = vcpu->arch.mmu->pae_root[i];
3705 
3706 		if (IS_VALID_PAE_ROOT(root)) {
3707 			root &= PT64_BASE_ADDR_MASK;
3708 			sp = to_shadow_page(root);
3709 			mmu_sync_children(vcpu, sp, true);
3710 		}
3711 	}
3712 
3713 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3714 	write_unlock(&vcpu->kvm->mmu_lock);
3715 }
3716 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3717 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3718 				  u32 access, struct x86_exception *exception)
3719 {
3720 	if (exception)
3721 		exception->error_code = 0;
3722 	return vaddr;
3723 }
3724 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3725 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3726 					 u32 access,
3727 					 struct x86_exception *exception)
3728 {
3729 	if (exception)
3730 		exception->error_code = 0;
3731 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3732 }
3733 
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3734 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3735 {
3736 	/*
3737 	 * A nested guest cannot use the MMIO cache if it is using nested
3738 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3739 	 */
3740 	if (mmu_is_nested(vcpu))
3741 		return false;
3742 
3743 	if (direct)
3744 		return vcpu_match_mmio_gpa(vcpu, addr);
3745 
3746 	return vcpu_match_mmio_gva(vcpu, addr);
3747 }
3748 
3749 /*
3750  * Return the level of the lowest level SPTE added to sptes.
3751  * That SPTE may be non-present.
3752  *
3753  * Must be called between walk_shadow_page_lockless_{begin,end}.
3754  */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes,int * root_level)3755 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3756 {
3757 	struct kvm_shadow_walk_iterator iterator;
3758 	int leaf = -1;
3759 	u64 spte;
3760 
3761 	for (shadow_walk_init(&iterator, vcpu, addr),
3762 	     *root_level = iterator.level;
3763 	     shadow_walk_okay(&iterator);
3764 	     __shadow_walk_next(&iterator, spte)) {
3765 		leaf = iterator.level;
3766 		spte = mmu_spte_get_lockless(iterator.sptep);
3767 
3768 		sptes[leaf] = spte;
3769 
3770 		if (!is_shadow_present_pte(spte))
3771 			break;
3772 	}
3773 
3774 	return leaf;
3775 }
3776 
3777 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3778 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3779 {
3780 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3781 	struct rsvd_bits_validate *rsvd_check;
3782 	int root, leaf, level;
3783 	bool reserved = false;
3784 
3785 	walk_shadow_page_lockless_begin(vcpu);
3786 
3787 	if (is_tdp_mmu(vcpu->arch.mmu))
3788 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3789 	else
3790 		leaf = get_walk(vcpu, addr, sptes, &root);
3791 
3792 	walk_shadow_page_lockless_end(vcpu);
3793 
3794 	if (unlikely(leaf < 0)) {
3795 		*sptep = 0ull;
3796 		return reserved;
3797 	}
3798 
3799 	*sptep = sptes[leaf];
3800 
3801 	/*
3802 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
3803 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3804 	 * design, always have reserved bits set.  The purpose of the checks is
3805 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3806 	 */
3807 	if (!is_shadow_present_pte(sptes[leaf]))
3808 		leaf++;
3809 
3810 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3811 
3812 	for (level = root; level >= leaf; level--)
3813 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3814 
3815 	if (reserved) {
3816 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3817 		       __func__, addr);
3818 		for (level = root; level >= leaf; level--)
3819 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3820 			       sptes[level], level,
3821 			       get_rsvd_bits(rsvd_check, sptes[level], level));
3822 	}
3823 
3824 	return reserved;
3825 }
3826 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3827 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3828 {
3829 	u64 spte;
3830 	bool reserved;
3831 
3832 	if (mmio_info_in_cache(vcpu, addr, direct))
3833 		return RET_PF_EMULATE;
3834 
3835 	reserved = get_mmio_spte(vcpu, addr, &spte);
3836 	if (WARN_ON(reserved))
3837 		return -EINVAL;
3838 
3839 	if (is_mmio_spte(spte)) {
3840 		gfn_t gfn = get_mmio_spte_gfn(spte);
3841 		unsigned int access = get_mmio_spte_access(spte);
3842 
3843 		if (!check_mmio_spte(vcpu, spte))
3844 			return RET_PF_INVALID;
3845 
3846 		if (direct)
3847 			addr = 0;
3848 
3849 		trace_handle_mmio_page_fault(addr, gfn, access);
3850 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3851 		return RET_PF_EMULATE;
3852 	}
3853 
3854 	/*
3855 	 * If the page table is zapped by other cpus, let CPU fault again on
3856 	 * the address.
3857 	 */
3858 	return RET_PF_RETRY;
3859 }
3860 
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3861 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3862 					 u32 error_code, gfn_t gfn)
3863 {
3864 	if (unlikely(error_code & PFERR_RSVD_MASK))
3865 		return false;
3866 
3867 	if (!(error_code & PFERR_PRESENT_MASK) ||
3868 	      !(error_code & PFERR_WRITE_MASK))
3869 		return false;
3870 
3871 	/*
3872 	 * guest is writing the page which is write tracked which can
3873 	 * not be fixed by page fault handler.
3874 	 */
3875 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3876 		return true;
3877 
3878 	return false;
3879 }
3880 
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3881 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3882 {
3883 	struct kvm_shadow_walk_iterator iterator;
3884 	u64 spte;
3885 
3886 	walk_shadow_page_lockless_begin(vcpu);
3887 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3888 		clear_sp_write_flooding_count(iterator.sptep);
3889 		if (!is_shadow_present_pte(spte))
3890 			break;
3891 	}
3892 	walk_shadow_page_lockless_end(vcpu);
3893 }
3894 
alloc_apf_token(struct kvm_vcpu * vcpu)3895 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
3896 {
3897 	/* make sure the token value is not 0 */
3898 	u32 id = vcpu->arch.apf.id;
3899 
3900 	if (id << 12 == 0)
3901 		vcpu->arch.apf.id = 1;
3902 
3903 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3904 }
3905 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3906 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3907 				    gfn_t gfn)
3908 {
3909 	struct kvm_arch_async_pf arch;
3910 
3911 	arch.token = alloc_apf_token(vcpu);
3912 	arch.gfn = gfn;
3913 	arch.direct_map = vcpu->arch.mmu->direct_map;
3914 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3915 
3916 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3917 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3918 }
3919 
kvm_faultin_pfn(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,hva_t * hva,bool write,bool * writable,int * r)3920 static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3921 			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3922 			 bool write, bool *writable, int *r)
3923 {
3924 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3925 	bool async;
3926 
3927 	/*
3928 	 * Retry the page fault if the gfn hit a memslot that is being deleted
3929 	 * or moved.  This ensures any existing SPTEs for the old memslot will
3930 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3931 	 */
3932 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3933 		goto out_retry;
3934 
3935 	if (!kvm_is_visible_memslot(slot)) {
3936 		/* Don't expose private memslots to L2. */
3937 		if (is_guest_mode(vcpu)) {
3938 			*pfn = KVM_PFN_NOSLOT;
3939 			*writable = false;
3940 			return false;
3941 		}
3942 		/*
3943 		 * If the APIC access page exists but is disabled, go directly
3944 		 * to emulation without caching the MMIO access or creating a
3945 		 * MMIO SPTE.  That way the cache doesn't need to be purged
3946 		 * when the AVIC is re-enabled.
3947 		 */
3948 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
3949 		    !kvm_apicv_activated(vcpu->kvm)) {
3950 			*r = RET_PF_EMULATE;
3951 			return true;
3952 		}
3953 	}
3954 
3955 	async = false;
3956 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3957 				    write, writable, hva);
3958 	if (!async)
3959 		return false; /* *pfn has correct page already */
3960 
3961 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3962 		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3963 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3964 			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3965 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3966 			goto out_retry;
3967 		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3968 			goto out_retry;
3969 	}
3970 
3971 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3972 				    write, writable, hva);
3973 	return false;
3974 
3975 out_retry:
3976 	*r = RET_PF_RETRY;
3977 	return true;
3978 }
3979 
direct_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault,int max_level,bool is_tdp)3980 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3981 			     bool prefault, int max_level, bool is_tdp)
3982 {
3983 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3984 	bool write = error_code & PFERR_WRITE_MASK;
3985 	bool map_writable;
3986 
3987 	gfn_t gfn = gpa >> PAGE_SHIFT;
3988 	unsigned long mmu_seq;
3989 	kvm_pfn_t pfn;
3990 	hva_t hva;
3991 	int r;
3992 
3993 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3994 		return RET_PF_EMULATE;
3995 
3996 	r = fast_page_fault(vcpu, gpa, error_code);
3997 	if (r != RET_PF_INVALID)
3998 		return r;
3999 
4000 	r = mmu_topup_memory_caches(vcpu, false);
4001 	if (r)
4002 		return r;
4003 
4004 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
4005 	smp_rmb();
4006 
4007 	if (kvm_faultin_pfn(vcpu, prefault, gfn, gpa, &pfn, &hva,
4008 			 write, &map_writable, &r))
4009 		return r;
4010 
4011 	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4012 		return r;
4013 
4014 	r = RET_PF_RETRY;
4015 
4016 	if (is_tdp_mmu_fault)
4017 		read_lock(&vcpu->kvm->mmu_lock);
4018 	else
4019 		write_lock(&vcpu->kvm->mmu_lock);
4020 
4021 	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
4022 		goto out_unlock;
4023 
4024 	if (is_tdp_mmu_fault) {
4025 		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
4026 				    pfn, prefault);
4027 	} else {
4028 		r = make_mmu_pages_available(vcpu);
4029 		if (r)
4030 			goto out_unlock;
4031 		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
4032 				 prefault, is_tdp);
4033 	}
4034 
4035 out_unlock:
4036 	if (is_tdp_mmu_fault)
4037 		read_unlock(&vcpu->kvm->mmu_lock);
4038 	else
4039 		write_unlock(&vcpu->kvm->mmu_lock);
4040 	kvm_release_pfn_clean(pfn);
4041 	return r;
4042 }
4043 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4044 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4045 				u32 error_code, bool prefault)
4046 {
4047 	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4048 
4049 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4050 	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4051 				 PG_LEVEL_2M, false);
4052 }
4053 
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4054 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4055 				u64 fault_address, char *insn, int insn_len)
4056 {
4057 	int r = 1;
4058 	u32 flags = vcpu->arch.apf.host_apf_flags;
4059 
4060 #ifndef CONFIG_X86_64
4061 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
4062 	if (WARN_ON_ONCE(fault_address >> 32))
4063 		return -EFAULT;
4064 #endif
4065 
4066 	vcpu->arch.l1tf_flush_l1d = true;
4067 	if (!flags) {
4068 		trace_kvm_page_fault(fault_address, error_code);
4069 
4070 		if (kvm_event_needs_reinjection(vcpu))
4071 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4072 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4073 				insn_len);
4074 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4075 		vcpu->arch.apf.host_apf_flags = 0;
4076 		local_irq_disable();
4077 		kvm_async_pf_task_wait_schedule(fault_address);
4078 		local_irq_enable();
4079 	} else {
4080 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4081 	}
4082 
4083 	return r;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4086 
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4087 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4088 		       bool prefault)
4089 {
4090 	int max_level;
4091 
4092 	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4093 	     max_level > PG_LEVEL_4K;
4094 	     max_level--) {
4095 		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4096 		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4097 
4098 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4099 			break;
4100 	}
4101 
4102 	return direct_page_fault(vcpu, gpa, error_code, prefault,
4103 				 max_level, true);
4104 }
4105 
nonpaging_init_context(struct kvm_mmu * context)4106 static void nonpaging_init_context(struct kvm_mmu *context)
4107 {
4108 	context->page_fault = nonpaging_page_fault;
4109 	context->gva_to_gpa = nonpaging_gva_to_gpa;
4110 	context->sync_page = nonpaging_sync_page;
4111 	context->invlpg = NULL;
4112 	context->direct_map = true;
4113 }
4114 
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)4115 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4116 				  union kvm_mmu_page_role role)
4117 {
4118 	return (role.direct || pgd == root->pgd) &&
4119 	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
4120 	       role.word == to_shadow_page(root->hpa)->role.word;
4121 }
4122 
4123 /*
4124  * Find out if a previously cached root matching the new pgd/role is available.
4125  * The current root is also inserted into the cache.
4126  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4127  * returned.
4128  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4129  * false is returned. This root should now be freed by the caller.
4130  */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4131 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4132 				  union kvm_mmu_page_role new_role)
4133 {
4134 	uint i;
4135 	struct kvm_mmu_root_info root;
4136 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4137 
4138 	root.pgd = mmu->root_pgd;
4139 	root.hpa = mmu->root_hpa;
4140 
4141 	if (is_root_usable(&root, new_pgd, new_role))
4142 		return true;
4143 
4144 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4145 		swap(root, mmu->prev_roots[i]);
4146 
4147 		if (is_root_usable(&root, new_pgd, new_role))
4148 			break;
4149 	}
4150 
4151 	mmu->root_hpa = root.hpa;
4152 	mmu->root_pgd = root.pgd;
4153 
4154 	return i < KVM_MMU_NUM_PREV_ROOTS;
4155 }
4156 
fast_pgd_switch(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4157 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4158 			    union kvm_mmu_page_role new_role)
4159 {
4160 	struct kvm_mmu *mmu = vcpu->arch.mmu;
4161 
4162 	/*
4163 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4164 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4165 	 * later if necessary.
4166 	 */
4167 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4168 	    mmu->root_level >= PT64_ROOT_4LEVEL)
4169 		return cached_root_available(vcpu, new_pgd, new_role);
4170 
4171 	return false;
4172 }
4173 
__kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)4174 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4175 			      union kvm_mmu_page_role new_role)
4176 {
4177 	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4178 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4179 		return;
4180 	}
4181 
4182 	/*
4183 	 * It's possible that the cached previous root page is obsolete because
4184 	 * of a change in the MMU generation number. However, changing the
4185 	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4186 	 * free the root set here and allocate a new one.
4187 	 */
4188 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4189 
4190 	if (force_flush_and_sync_on_reuse) {
4191 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4192 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4193 	}
4194 
4195 	/*
4196 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4197 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
4198 	 * valid. So clear any cached MMIO info even when we don't need to sync
4199 	 * the shadow page tables.
4200 	 */
4201 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4202 
4203 	/*
4204 	 * If this is a direct root page, it doesn't have a write flooding
4205 	 * count. Otherwise, clear the write flooding count.
4206 	 */
4207 	if (!new_role.direct)
4208 		__clear_sp_write_flooding_count(
4209 				to_shadow_page(vcpu->arch.mmu->root_hpa));
4210 }
4211 
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd)4212 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4213 {
4214 	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4215 }
4216 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4217 
get_cr3(struct kvm_vcpu * vcpu)4218 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4219 {
4220 	return kvm_read_cr3(vcpu);
4221 }
4222 
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access,int * nr_present)4223 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4224 			   unsigned int access, int *nr_present)
4225 {
4226 	if (unlikely(is_mmio_spte(*sptep))) {
4227 		if (gfn != get_mmio_spte_gfn(*sptep)) {
4228 			mmu_spte_clear_no_track(sptep);
4229 			return true;
4230 		}
4231 
4232 		(*nr_present)++;
4233 		mark_mmio_spte(vcpu, sptep, gfn, access);
4234 		return true;
4235 	}
4236 
4237 	return false;
4238 }
4239 
4240 #define PTTYPE_EPT 18 /* arbitrary */
4241 #define PTTYPE PTTYPE_EPT
4242 #include "paging_tmpl.h"
4243 #undef PTTYPE
4244 
4245 #define PTTYPE 64
4246 #include "paging_tmpl.h"
4247 #undef PTTYPE
4248 
4249 #define PTTYPE 32
4250 #include "paging_tmpl.h"
4251 #undef PTTYPE
4252 
4253 static void
__reset_rsvds_bits_mask(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,int level,bool nx,bool gbpages,bool pse,bool amd)4254 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4255 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4256 			bool pse, bool amd)
4257 {
4258 	u64 gbpages_bit_rsvd = 0;
4259 	u64 nonleaf_bit8_rsvd = 0;
4260 	u64 high_bits_rsvd;
4261 
4262 	rsvd_check->bad_mt_xwr = 0;
4263 
4264 	if (!gbpages)
4265 		gbpages_bit_rsvd = rsvd_bits(7, 7);
4266 
4267 	if (level == PT32E_ROOT_LEVEL)
4268 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4269 	else
4270 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4271 
4272 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
4273 	if (!nx)
4274 		high_bits_rsvd |= rsvd_bits(63, 63);
4275 
4276 	/*
4277 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4278 	 * leaf entries) on AMD CPUs only.
4279 	 */
4280 	if (amd)
4281 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4282 
4283 	switch (level) {
4284 	case PT32_ROOT_LEVEL:
4285 		/* no rsvd bits for 2 level 4K page table entries */
4286 		rsvd_check->rsvd_bits_mask[0][1] = 0;
4287 		rsvd_check->rsvd_bits_mask[0][0] = 0;
4288 		rsvd_check->rsvd_bits_mask[1][0] =
4289 			rsvd_check->rsvd_bits_mask[0][0];
4290 
4291 		if (!pse) {
4292 			rsvd_check->rsvd_bits_mask[1][1] = 0;
4293 			break;
4294 		}
4295 
4296 		if (is_cpuid_PSE36())
4297 			/* 36bits PSE 4MB page */
4298 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4299 		else
4300 			/* 32 bits PSE 4MB page */
4301 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4302 		break;
4303 	case PT32E_ROOT_LEVEL:
4304 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4305 						   high_bits_rsvd |
4306 						   rsvd_bits(5, 8) |
4307 						   rsvd_bits(1, 2);	/* PDPTE */
4308 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
4309 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
4310 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4311 						   rsvd_bits(13, 20);	/* large page */
4312 		rsvd_check->rsvd_bits_mask[1][0] =
4313 			rsvd_check->rsvd_bits_mask[0][0];
4314 		break;
4315 	case PT64_ROOT_5LEVEL:
4316 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4317 						   nonleaf_bit8_rsvd |
4318 						   rsvd_bits(7, 7);
4319 		rsvd_check->rsvd_bits_mask[1][4] =
4320 			rsvd_check->rsvd_bits_mask[0][4];
4321 		fallthrough;
4322 	case PT64_ROOT_4LEVEL:
4323 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4324 						   nonleaf_bit8_rsvd |
4325 						   rsvd_bits(7, 7);
4326 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4327 						   gbpages_bit_rsvd;
4328 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4329 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4330 		rsvd_check->rsvd_bits_mask[1][3] =
4331 			rsvd_check->rsvd_bits_mask[0][3];
4332 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4333 						   gbpages_bit_rsvd |
4334 						   rsvd_bits(13, 29);
4335 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4336 						   rsvd_bits(13, 20); /* large page */
4337 		rsvd_check->rsvd_bits_mask[1][0] =
4338 			rsvd_check->rsvd_bits_mask[0][0];
4339 		break;
4340 	}
4341 }
4342 
guest_can_use_gbpages(struct kvm_vcpu * vcpu)4343 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4344 {
4345 	/*
4346 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
4347 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4348 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4349 	 * walk for performance and complexity reasons.  Not to mention KVM
4350 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
4351 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
4352 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4353 	 */
4354 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4355 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4356 }
4357 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4358 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4359 				  struct kvm_mmu *context)
4360 {
4361 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4362 				vcpu->arch.reserved_gpa_bits,
4363 				context->root_level, is_efer_nx(context),
4364 				guest_can_use_gbpages(vcpu),
4365 				is_cr4_pse(context),
4366 				guest_cpuid_is_amd_or_hygon(vcpu));
4367 }
4368 
4369 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,u64 pa_bits_rsvd,bool execonly)4370 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4371 			    u64 pa_bits_rsvd, bool execonly)
4372 {
4373 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4374 	u64 bad_mt_xwr;
4375 
4376 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4377 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4378 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4379 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4380 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4381 
4382 	/* large page */
4383 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4384 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4385 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4386 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4387 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4388 
4389 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4390 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4391 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4392 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4393 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4394 	if (!execonly) {
4395 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4396 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4397 	}
4398 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4399 }
4400 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4401 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4402 		struct kvm_mmu *context, bool execonly)
4403 {
4404 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4405 				    vcpu->arch.reserved_gpa_bits, execonly);
4406 }
4407 
reserved_hpa_bits(void)4408 static inline u64 reserved_hpa_bits(void)
4409 {
4410 	return rsvd_bits(shadow_phys_bits, 63);
4411 }
4412 
4413 /*
4414  * the page table on host is the shadow page table for the page
4415  * table in guest or amd nested guest, its mmu features completely
4416  * follow the features in guest.
4417  */
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4418 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4419 					struct kvm_mmu *context)
4420 {
4421 	/*
4422 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4423 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4424 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4425 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
4426 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
4427 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4428 	 */
4429 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4430 
4431 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4432 	bool is_amd = true;
4433 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
4434 	bool is_pse = false;
4435 	struct rsvd_bits_validate *shadow_zero_check;
4436 	int i;
4437 
4438 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4439 
4440 	shadow_zero_check = &context->shadow_zero_check;
4441 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4442 				context->shadow_root_level, uses_nx,
4443 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4444 
4445 	if (!shadow_me_mask)
4446 		return;
4447 
4448 	for (i = context->shadow_root_level; --i >= 0;) {
4449 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4450 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4451 	}
4452 
4453 }
4454 
boot_cpu_is_amd(void)4455 static inline bool boot_cpu_is_amd(void)
4456 {
4457 	WARN_ON_ONCE(!tdp_enabled);
4458 	return shadow_x_mask == 0;
4459 }
4460 
4461 /*
4462  * the direct page table on host, use as much mmu features as
4463  * possible, however, kvm currently does not do execution-protection.
4464  */
4465 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4466 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4467 				struct kvm_mmu *context)
4468 {
4469 	struct rsvd_bits_validate *shadow_zero_check;
4470 	int i;
4471 
4472 	shadow_zero_check = &context->shadow_zero_check;
4473 
4474 	if (boot_cpu_is_amd())
4475 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4476 					context->shadow_root_level, false,
4477 					boot_cpu_has(X86_FEATURE_GBPAGES),
4478 					false, true);
4479 	else
4480 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4481 					    reserved_hpa_bits(), false);
4482 
4483 	if (!shadow_me_mask)
4484 		return;
4485 
4486 	for (i = context->shadow_root_level; --i >= 0;) {
4487 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4488 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4489 	}
4490 }
4491 
4492 /*
4493  * as the comments in reset_shadow_zero_bits_mask() except it
4494  * is the shadow page table for intel nested guest.
4495  */
4496 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4497 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4498 				struct kvm_mmu *context, bool execonly)
4499 {
4500 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4501 				    reserved_hpa_bits(), execonly);
4502 }
4503 
4504 #define BYTE_MASK(access) \
4505 	((1 & (access) ? 2 : 0) | \
4506 	 (2 & (access) ? 4 : 0) | \
4507 	 (3 & (access) ? 8 : 0) | \
4508 	 (4 & (access) ? 16 : 0) | \
4509 	 (5 & (access) ? 32 : 0) | \
4510 	 (6 & (access) ? 64 : 0) | \
4511 	 (7 & (access) ? 128 : 0))
4512 
4513 
update_permission_bitmask(struct kvm_mmu * mmu,bool ept)4514 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4515 {
4516 	unsigned byte;
4517 
4518 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4519 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4520 	const u8 u = BYTE_MASK(ACC_USER_MASK);
4521 
4522 	bool cr4_smep = is_cr4_smep(mmu);
4523 	bool cr4_smap = is_cr4_smap(mmu);
4524 	bool cr0_wp = is_cr0_wp(mmu);
4525 	bool efer_nx = is_efer_nx(mmu);
4526 
4527 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4528 		unsigned pfec = byte << 1;
4529 
4530 		/*
4531 		 * Each "*f" variable has a 1 bit for each UWX value
4532 		 * that causes a fault with the given PFEC.
4533 		 */
4534 
4535 		/* Faults from writes to non-writable pages */
4536 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4537 		/* Faults from user mode accesses to supervisor pages */
4538 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4539 		/* Faults from fetches of non-executable pages*/
4540 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4541 		/* Faults from kernel mode fetches of user pages */
4542 		u8 smepf = 0;
4543 		/* Faults from kernel mode accesses of user pages */
4544 		u8 smapf = 0;
4545 
4546 		if (!ept) {
4547 			/* Faults from kernel mode accesses to user pages */
4548 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4549 
4550 			/* Not really needed: !nx will cause pte.nx to fault */
4551 			if (!efer_nx)
4552 				ff = 0;
4553 
4554 			/* Allow supervisor writes if !cr0.wp */
4555 			if (!cr0_wp)
4556 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4557 
4558 			/* Disallow supervisor fetches of user code if cr4.smep */
4559 			if (cr4_smep)
4560 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4561 
4562 			/*
4563 			 * SMAP:kernel-mode data accesses from user-mode
4564 			 * mappings should fault. A fault is considered
4565 			 * as a SMAP violation if all of the following
4566 			 * conditions are true:
4567 			 *   - X86_CR4_SMAP is set in CR4
4568 			 *   - A user page is accessed
4569 			 *   - The access is not a fetch
4570 			 *   - Page fault in kernel mode
4571 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4572 			 *
4573 			 * Here, we cover the first three conditions.
4574 			 * The fourth is computed dynamically in permission_fault();
4575 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4576 			 * *not* subject to SMAP restrictions.
4577 			 */
4578 			if (cr4_smap)
4579 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4580 		}
4581 
4582 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4583 	}
4584 }
4585 
4586 /*
4587 * PKU is an additional mechanism by which the paging controls access to
4588 * user-mode addresses based on the value in the PKRU register.  Protection
4589 * key violations are reported through a bit in the page fault error code.
4590 * Unlike other bits of the error code, the PK bit is not known at the
4591 * call site of e.g. gva_to_gpa; it must be computed directly in
4592 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4593 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4594 *
4595 * In particular the following conditions come from the error code, the
4596 * page tables and the machine state:
4597 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4598 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4599 * - PK is always zero if U=0 in the page tables
4600 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4601 *
4602 * The PKRU bitmask caches the result of these four conditions.  The error
4603 * code (minus the P bit) and the page table's U bit form an index into the
4604 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4605 * with the two bits of the PKRU register corresponding to the protection key.
4606 * For the first three conditions above the bits will be 00, thus masking
4607 * away both AD and WD.  For all reads or if the last condition holds, WD
4608 * only will be masked away.
4609 */
update_pkru_bitmask(struct kvm_mmu * mmu)4610 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4611 {
4612 	unsigned bit;
4613 	bool wp;
4614 
4615 	mmu->pkru_mask = 0;
4616 
4617 	if (!is_cr4_pke(mmu))
4618 		return;
4619 
4620 	wp = is_cr0_wp(mmu);
4621 
4622 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4623 		unsigned pfec, pkey_bits;
4624 		bool check_pkey, check_write, ff, uf, wf, pte_user;
4625 
4626 		pfec = bit << 1;
4627 		ff = pfec & PFERR_FETCH_MASK;
4628 		uf = pfec & PFERR_USER_MASK;
4629 		wf = pfec & PFERR_WRITE_MASK;
4630 
4631 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4632 		pte_user = pfec & PFERR_RSVD_MASK;
4633 
4634 		/*
4635 		 * Only need to check the access which is not an
4636 		 * instruction fetch and is to a user page.
4637 		 */
4638 		check_pkey = (!ff && pte_user);
4639 		/*
4640 		 * write access is controlled by PKRU if it is a
4641 		 * user access or CR0.WP = 1.
4642 		 */
4643 		check_write = check_pkey && wf && (uf || wp);
4644 
4645 		/* PKRU.AD stops both read and write access. */
4646 		pkey_bits = !!check_pkey;
4647 		/* PKRU.WD stops write access. */
4648 		pkey_bits |= (!!check_write) << 1;
4649 
4650 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4651 	}
4652 }
4653 
reset_guest_paging_metadata(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4654 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4655 					struct kvm_mmu *mmu)
4656 {
4657 	if (!is_cr0_pg(mmu))
4658 		return;
4659 
4660 	reset_rsvds_bits_mask(vcpu, mmu);
4661 	update_permission_bitmask(mmu, false);
4662 	update_pkru_bitmask(mmu);
4663 }
4664 
paging64_init_context(struct kvm_mmu * context)4665 static void paging64_init_context(struct kvm_mmu *context)
4666 {
4667 	context->page_fault = paging64_page_fault;
4668 	context->gva_to_gpa = paging64_gva_to_gpa;
4669 	context->sync_page = paging64_sync_page;
4670 	context->invlpg = paging64_invlpg;
4671 	context->direct_map = false;
4672 }
4673 
paging32_init_context(struct kvm_mmu * context)4674 static void paging32_init_context(struct kvm_mmu *context)
4675 {
4676 	context->page_fault = paging32_page_fault;
4677 	context->gva_to_gpa = paging32_gva_to_gpa;
4678 	context->sync_page = paging32_sync_page;
4679 	context->invlpg = paging32_invlpg;
4680 	context->direct_map = false;
4681 }
4682 
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4683 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4684 							 struct kvm_mmu_role_regs *regs)
4685 {
4686 	union kvm_mmu_extended_role ext = {0};
4687 
4688 	if (____is_cr0_pg(regs)) {
4689 		ext.cr0_pg = 1;
4690 		ext.cr4_pae = ____is_cr4_pae(regs);
4691 		ext.cr4_smep = ____is_cr4_smep(regs);
4692 		ext.cr4_smap = ____is_cr4_smap(regs);
4693 		ext.cr4_pse = ____is_cr4_pse(regs);
4694 
4695 		/* PKEY and LA57 are active iff long mode is active. */
4696 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4697 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4698 		ext.efer_lma = ____is_efer_lma(regs);
4699 	}
4700 
4701 	ext.valid = 1;
4702 
4703 	return ext;
4704 }
4705 
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4706 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4707 						   struct kvm_mmu_role_regs *regs,
4708 						   bool base_only)
4709 {
4710 	union kvm_mmu_role role = {0};
4711 
4712 	role.base.access = ACC_ALL;
4713 	if (____is_cr0_pg(regs)) {
4714 		role.base.efer_nx = ____is_efer_nx(regs);
4715 		role.base.cr0_wp = ____is_cr0_wp(regs);
4716 	}
4717 	role.base.smm = is_smm(vcpu);
4718 	role.base.guest_mode = is_guest_mode(vcpu);
4719 
4720 	if (base_only)
4721 		return role;
4722 
4723 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4724 
4725 	return role;
4726 }
4727 
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4728 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4729 {
4730 	/* tdp_root_level is architecture forced level, use it if nonzero */
4731 	if (tdp_root_level)
4732 		return tdp_root_level;
4733 
4734 	/* Use 5-level TDP if and only if it's useful/necessary. */
4735 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4736 		return 4;
4737 
4738 	return max_tdp_level;
4739 }
4740 
4741 static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4742 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4743 				struct kvm_mmu_role_regs *regs, bool base_only)
4744 {
4745 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4746 
4747 	role.base.ad_disabled = (shadow_accessed_mask == 0);
4748 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4749 	role.base.direct = true;
4750 	role.base.gpte_is_8_bytes = true;
4751 
4752 	return role;
4753 }
4754 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4755 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4756 {
4757 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4758 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4759 	union kvm_mmu_role new_role =
4760 		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4761 
4762 	if (new_role.as_u64 == context->mmu_role.as_u64)
4763 		return;
4764 
4765 	context->mmu_role.as_u64 = new_role.as_u64;
4766 	context->page_fault = kvm_tdp_page_fault;
4767 	context->sync_page = nonpaging_sync_page;
4768 	context->invlpg = NULL;
4769 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4770 	context->direct_map = true;
4771 	context->get_guest_pgd = get_cr3;
4772 	context->get_pdptr = kvm_pdptr_read;
4773 	context->inject_page_fault = kvm_inject_page_fault;
4774 	context->root_level = role_regs_to_root_level(&regs);
4775 
4776 	if (!is_cr0_pg(context))
4777 		context->gva_to_gpa = nonpaging_gva_to_gpa;
4778 	else if (is_cr4_pae(context))
4779 		context->gva_to_gpa = paging64_gva_to_gpa;
4780 	else
4781 		context->gva_to_gpa = paging32_gva_to_gpa;
4782 
4783 	reset_guest_paging_metadata(vcpu, context);
4784 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4785 }
4786 
4787 static union kvm_mmu_role
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4788 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4789 				      struct kvm_mmu_role_regs *regs, bool base_only)
4790 {
4791 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4792 
4793 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4794 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4795 	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4796 
4797 	return role;
4798 }
4799 
4800 static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs,bool base_only)4801 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4802 				   struct kvm_mmu_role_regs *regs, bool base_only)
4803 {
4804 	union kvm_mmu_role role =
4805 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4806 
4807 	role.base.direct = !____is_cr0_pg(regs);
4808 
4809 	if (!____is_efer_lma(regs))
4810 		role.base.level = PT32E_ROOT_LEVEL;
4811 	else if (____is_cr4_la57(regs))
4812 		role.base.level = PT64_ROOT_5LEVEL;
4813 	else
4814 		role.base.level = PT64_ROOT_4LEVEL;
4815 
4816 	return role;
4817 }
4818 
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,struct kvm_mmu_role_regs * regs,union kvm_mmu_role new_role)4819 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4820 				    struct kvm_mmu_role_regs *regs,
4821 				    union kvm_mmu_role new_role)
4822 {
4823 	if (new_role.as_u64 == context->mmu_role.as_u64)
4824 		return;
4825 
4826 	context->mmu_role.as_u64 = new_role.as_u64;
4827 
4828 	if (!is_cr0_pg(context))
4829 		nonpaging_init_context(context);
4830 	else if (is_cr4_pae(context))
4831 		paging64_init_context(context);
4832 	else
4833 		paging32_init_context(context);
4834 	context->root_level = role_regs_to_root_level(regs);
4835 
4836 	reset_guest_paging_metadata(vcpu, context);
4837 	context->shadow_root_level = new_role.base.level;
4838 
4839 	reset_shadow_zero_bits_mask(vcpu, context);
4840 }
4841 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4842 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4843 				struct kvm_mmu_role_regs *regs)
4844 {
4845 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4846 	union kvm_mmu_role new_role =
4847 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4848 
4849 	shadow_mmu_init_context(vcpu, context, regs, new_role);
4850 }
4851 
4852 static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4853 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4854 				   struct kvm_mmu_role_regs *regs)
4855 {
4856 	union kvm_mmu_role role =
4857 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4858 
4859 	role.base.direct = false;
4860 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4861 
4862 	return role;
4863 }
4864 
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,unsigned long cr0,unsigned long cr4,u64 efer,gpa_t nested_cr3)4865 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4866 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4867 {
4868 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4869 	struct kvm_mmu_role_regs regs = {
4870 		.cr0 = cr0,
4871 		.cr4 = cr4 & ~X86_CR4_PKE,
4872 		.efer = efer,
4873 	};
4874 	union kvm_mmu_role new_role;
4875 
4876 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4877 
4878 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4879 
4880 	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4881 }
4882 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4883 
4884 static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4885 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4886 				   bool execonly, u8 level)
4887 {
4888 	union kvm_mmu_role role = {0};
4889 
4890 	/* SMM flag is inherited from root_mmu */
4891 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4892 
4893 	role.base.level = level;
4894 	role.base.gpte_is_8_bytes = true;
4895 	role.base.direct = false;
4896 	role.base.ad_disabled = !accessed_dirty;
4897 	role.base.guest_mode = true;
4898 	role.base.access = ACC_ALL;
4899 
4900 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4901 	role.ext.word = 0;
4902 	role.ext.execonly = execonly;
4903 	role.ext.valid = 1;
4904 
4905 	return role;
4906 }
4907 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4908 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4909 			     bool accessed_dirty, gpa_t new_eptp)
4910 {
4911 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4912 	u8 level = vmx_eptp_page_walk_level(new_eptp);
4913 	union kvm_mmu_role new_role =
4914 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4915 						   execonly, level);
4916 
4917 	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4918 
4919 	if (new_role.as_u64 == context->mmu_role.as_u64)
4920 		return;
4921 
4922 	context->mmu_role.as_u64 = new_role.as_u64;
4923 
4924 	context->shadow_root_level = level;
4925 
4926 	context->ept_ad = accessed_dirty;
4927 	context->page_fault = ept_page_fault;
4928 	context->gva_to_gpa = ept_gva_to_gpa;
4929 	context->sync_page = ept_sync_page;
4930 	context->invlpg = ept_invlpg;
4931 	context->root_level = level;
4932 	context->direct_map = false;
4933 
4934 	update_permission_bitmask(context, true);
4935 	context->pkru_mask = 0;
4936 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4937 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4938 }
4939 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4940 
init_kvm_softmmu(struct kvm_vcpu * vcpu)4941 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4942 {
4943 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4944 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4945 
4946 	kvm_init_shadow_mmu(vcpu, &regs);
4947 
4948 	context->get_guest_pgd     = get_cr3;
4949 	context->get_pdptr         = kvm_pdptr_read;
4950 	context->inject_page_fault = kvm_inject_page_fault;
4951 }
4952 
4953 static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu * vcpu,struct kvm_mmu_role_regs * regs)4954 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4955 {
4956 	union kvm_mmu_role role;
4957 
4958 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4959 
4960 	/*
4961 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
4962 	 * shadow pages of their own and so "direct" has no meaning.   Set it
4963 	 * to "true" to try to detect bogus usage of the nested MMU.
4964 	 */
4965 	role.base.direct = true;
4966 	role.base.level = role_regs_to_root_level(regs);
4967 	return role;
4968 }
4969 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4970 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4971 {
4972 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4973 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4974 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4975 
4976 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4977 		return;
4978 
4979 	g_context->mmu_role.as_u64 = new_role.as_u64;
4980 	g_context->get_guest_pgd     = get_cr3;
4981 	g_context->get_pdptr         = kvm_pdptr_read;
4982 	g_context->inject_page_fault = kvm_inject_page_fault;
4983 	g_context->root_level        = new_role.base.level;
4984 
4985 	/*
4986 	 * L2 page tables are never shadowed, so there is no need to sync
4987 	 * SPTEs.
4988 	 */
4989 	g_context->invlpg            = NULL;
4990 
4991 	/*
4992 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4993 	 * L1's nested page tables (e.g. EPT12). The nested translation
4994 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4995 	 * L2's page tables as the first level of translation and L1's
4996 	 * nested page tables as the second level of translation. Basically
4997 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4998 	 */
4999 	if (!is_paging(vcpu))
5000 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5001 	else if (is_long_mode(vcpu))
5002 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5003 	else if (is_pae(vcpu))
5004 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5005 	else
5006 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5007 
5008 	reset_guest_paging_metadata(vcpu, g_context);
5009 }
5010 
kvm_init_mmu(struct kvm_vcpu * vcpu)5011 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5012 {
5013 	if (mmu_is_nested(vcpu))
5014 		init_kvm_nested_mmu(vcpu);
5015 	else if (tdp_enabled)
5016 		init_kvm_tdp_mmu(vcpu);
5017 	else
5018 		init_kvm_softmmu(vcpu);
5019 }
5020 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5021 
5022 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)5023 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5024 {
5025 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5026 	union kvm_mmu_role role;
5027 
5028 	if (tdp_enabled)
5029 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
5030 	else
5031 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
5032 
5033 	return role.base;
5034 }
5035 
kvm_mmu_after_set_cpuid(struct kvm_vcpu * vcpu)5036 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5037 {
5038 	/*
5039 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
5040 	 * information is factored into reserved bit calculations.
5041 	 */
5042 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
5043 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
5044 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
5045 	kvm_mmu_reset_context(vcpu);
5046 
5047 	/*
5048 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
5049 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
5050 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
5051 	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
5052 	 * sweep the problem under the rug.
5053 	 *
5054 	 * KVM's horrific CPUID ABI makes the problem all but impossible to
5055 	 * solve, as correctly handling multiple vCPU models (with respect to
5056 	 * paging and physical address properties) in a single VM would require
5057 	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
5058 	 * is very undesirable as it would double the memory requirements for
5059 	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
5060 	 * no sane VMM mucks with the core vCPU model on the fly.
5061 	 */
5062 	if (vcpu->arch.last_vmentry_cpu != -1) {
5063 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
5064 		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
5065 	}
5066 }
5067 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5068 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5069 {
5070 	kvm_mmu_unload(vcpu);
5071 	kvm_init_mmu(vcpu);
5072 }
5073 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5074 
kvm_mmu_load(struct kvm_vcpu * vcpu)5075 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5076 {
5077 	int r;
5078 
5079 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
5080 	if (r)
5081 		goto out;
5082 	r = mmu_alloc_special_roots(vcpu);
5083 	if (r)
5084 		goto out;
5085 	if (vcpu->arch.mmu->direct_map)
5086 		r = mmu_alloc_direct_roots(vcpu);
5087 	else
5088 		r = mmu_alloc_shadow_roots(vcpu);
5089 	if (r)
5090 		goto out;
5091 
5092 	kvm_mmu_sync_roots(vcpu);
5093 
5094 	kvm_mmu_load_pgd(vcpu);
5095 	static_call(kvm_x86_tlb_flush_current)(vcpu);
5096 out:
5097 	return r;
5098 }
5099 
kvm_mmu_unload(struct kvm_vcpu * vcpu)5100 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5101 {
5102 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5103 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5104 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5105 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5106 }
5107 
need_remote_flush(u64 old,u64 new)5108 static bool need_remote_flush(u64 old, u64 new)
5109 {
5110 	if (!is_shadow_present_pte(old))
5111 		return false;
5112 	if (!is_shadow_present_pte(new))
5113 		return true;
5114 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
5115 		return true;
5116 	old ^= shadow_nx_mask;
5117 	new ^= shadow_nx_mask;
5118 	return (old & ~new & PT64_PERM_MASK) != 0;
5119 }
5120 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5121 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5122 				    int *bytes)
5123 {
5124 	u64 gentry = 0;
5125 	int r;
5126 
5127 	/*
5128 	 * Assume that the pte write on a page table of the same type
5129 	 * as the current vcpu paging mode since we update the sptes only
5130 	 * when they have the same mode.
5131 	 */
5132 	if (is_pae(vcpu) && *bytes == 4) {
5133 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5134 		*gpa &= ~(gpa_t)7;
5135 		*bytes = 8;
5136 	}
5137 
5138 	if (*bytes == 4 || *bytes == 8) {
5139 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5140 		if (r)
5141 			gentry = 0;
5142 	}
5143 
5144 	return gentry;
5145 }
5146 
5147 /*
5148  * If we're seeing too many writes to a page, it may no longer be a page table,
5149  * or we may be forking, in which case it is better to unmap the page.
5150  */
detect_write_flooding(struct kvm_mmu_page * sp)5151 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5152 {
5153 	/*
5154 	 * Skip write-flooding detected for the sp whose level is 1, because
5155 	 * it can become unsync, then the guest page is not write-protected.
5156 	 */
5157 	if (sp->role.level == PG_LEVEL_4K)
5158 		return false;
5159 
5160 	atomic_inc(&sp->write_flooding_count);
5161 	return atomic_read(&sp->write_flooding_count) >= 3;
5162 }
5163 
5164 /*
5165  * Misaligned accesses are too much trouble to fix up; also, they usually
5166  * indicate a page is not used as a page table.
5167  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5168 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5169 				    int bytes)
5170 {
5171 	unsigned offset, pte_size, misaligned;
5172 
5173 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5174 		 gpa, bytes, sp->role.word);
5175 
5176 	offset = offset_in_page(gpa);
5177 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5178 
5179 	/*
5180 	 * Sometimes, the OS only writes the last one bytes to update status
5181 	 * bits, for example, in linux, andb instruction is used in clear_bit().
5182 	 */
5183 	if (!(offset & (pte_size - 1)) && bytes == 1)
5184 		return false;
5185 
5186 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5187 	misaligned |= bytes < 4;
5188 
5189 	return misaligned;
5190 }
5191 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5192 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5193 {
5194 	unsigned page_offset, quadrant;
5195 	u64 *spte;
5196 	int level;
5197 
5198 	page_offset = offset_in_page(gpa);
5199 	level = sp->role.level;
5200 	*nspte = 1;
5201 	if (!sp->role.gpte_is_8_bytes) {
5202 		page_offset <<= 1;	/* 32->64 */
5203 		/*
5204 		 * A 32-bit pde maps 4MB while the shadow pdes map
5205 		 * only 2MB.  So we need to double the offset again
5206 		 * and zap two pdes instead of one.
5207 		 */
5208 		if (level == PT32_ROOT_LEVEL) {
5209 			page_offset &= ~7; /* kill rounding error */
5210 			page_offset <<= 1;
5211 			*nspte = 2;
5212 		}
5213 		quadrant = page_offset >> PAGE_SHIFT;
5214 		page_offset &= ~PAGE_MASK;
5215 		if (quadrant != sp->role.quadrant)
5216 			return NULL;
5217 	}
5218 
5219 	spte = &sp->spt[page_offset / sizeof(*spte)];
5220 	return spte;
5221 }
5222 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5223 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5224 			      const u8 *new, int bytes,
5225 			      struct kvm_page_track_notifier_node *node)
5226 {
5227 	gfn_t gfn = gpa >> PAGE_SHIFT;
5228 	struct kvm_mmu_page *sp;
5229 	LIST_HEAD(invalid_list);
5230 	u64 entry, gentry, *spte;
5231 	int npte;
5232 	bool remote_flush, local_flush;
5233 
5234 	/*
5235 	 * If we don't have indirect shadow pages, it means no page is
5236 	 * write-protected, so we can exit simply.
5237 	 */
5238 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5239 		return;
5240 
5241 	remote_flush = local_flush = false;
5242 
5243 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5244 
5245 	/*
5246 	 * No need to care whether allocation memory is successful
5247 	 * or not since pte prefetch is skipped if it does not have
5248 	 * enough objects in the cache.
5249 	 */
5250 	mmu_topup_memory_caches(vcpu, true);
5251 
5252 	write_lock(&vcpu->kvm->mmu_lock);
5253 
5254 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5255 
5256 	++vcpu->kvm->stat.mmu_pte_write;
5257 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5258 
5259 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5260 		if (detect_write_misaligned(sp, gpa, bytes) ||
5261 		      detect_write_flooding(sp)) {
5262 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5263 			++vcpu->kvm->stat.mmu_flooded;
5264 			continue;
5265 		}
5266 
5267 		spte = get_written_sptes(sp, gpa, &npte);
5268 		if (!spte)
5269 			continue;
5270 
5271 		local_flush = true;
5272 		while (npte--) {
5273 			entry = *spte;
5274 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5275 			if (gentry && sp->role.level != PG_LEVEL_4K)
5276 				++vcpu->kvm->stat.mmu_pde_zapped;
5277 			if (need_remote_flush(entry, *spte))
5278 				remote_flush = true;
5279 			++spte;
5280 		}
5281 	}
5282 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5283 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5284 	write_unlock(&vcpu->kvm->mmu_lock);
5285 }
5286 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5287 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5288 		       void *insn, int insn_len)
5289 {
5290 	int r, emulation_type = EMULTYPE_PF;
5291 	bool direct = vcpu->arch.mmu->direct_map;
5292 
5293 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5294 		return RET_PF_RETRY;
5295 
5296 	r = RET_PF_INVALID;
5297 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5298 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5299 		if (r == RET_PF_EMULATE)
5300 			goto emulate;
5301 	}
5302 
5303 	if (r == RET_PF_INVALID) {
5304 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5305 					  lower_32_bits(error_code), false);
5306 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5307 			return -EIO;
5308 	}
5309 
5310 	if (r < 0)
5311 		return r;
5312 	if (r != RET_PF_EMULATE)
5313 		return 1;
5314 
5315 	/*
5316 	 * Before emulating the instruction, check if the error code
5317 	 * was due to a RO violation while translating the guest page.
5318 	 * This can occur when using nested virtualization with nested
5319 	 * paging in both guests. If true, we simply unprotect the page
5320 	 * and resume the guest.
5321 	 */
5322 	if (vcpu->arch.mmu->direct_map &&
5323 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5324 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5325 		return 1;
5326 	}
5327 
5328 	/*
5329 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5330 	 * optimistically try to just unprotect the page and let the processor
5331 	 * re-execute the instruction that caused the page fault.  Do not allow
5332 	 * retrying MMIO emulation, as it's not only pointless but could also
5333 	 * cause us to enter an infinite loop because the processor will keep
5334 	 * faulting on the non-existent MMIO address.  Retrying an instruction
5335 	 * from a nested guest is also pointless and dangerous as we are only
5336 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5337 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5338 	 */
5339 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5340 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5341 emulate:
5342 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5343 				       insn_len);
5344 }
5345 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5346 
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5347 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5348 			    gva_t gva, hpa_t root_hpa)
5349 {
5350 	int i;
5351 
5352 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5353 	if (mmu != &vcpu->arch.guest_mmu) {
5354 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5355 		if (is_noncanonical_address(gva, vcpu))
5356 			return;
5357 
5358 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5359 	}
5360 
5361 	if (!mmu->invlpg)
5362 		return;
5363 
5364 	if (root_hpa == INVALID_PAGE) {
5365 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5366 
5367 		/*
5368 		 * INVLPG is required to invalidate any global mappings for the VA,
5369 		 * irrespective of PCID. Since it would take us roughly similar amount
5370 		 * of work to determine whether any of the prev_root mappings of the VA
5371 		 * is marked global, or to just sync it blindly, so we might as well
5372 		 * just always sync it.
5373 		 *
5374 		 * Mappings not reachable via the current cr3 or the prev_roots will be
5375 		 * synced when switching to that cr3, so nothing needs to be done here
5376 		 * for them.
5377 		 */
5378 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5379 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5380 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5381 	} else {
5382 		mmu->invlpg(vcpu, gva, root_hpa);
5383 	}
5384 }
5385 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5386 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5387 {
5388 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
5389 	++vcpu->stat.invlpg;
5390 }
5391 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5392 
5393 
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5394 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5395 {
5396 	struct kvm_mmu *mmu = vcpu->arch.mmu;
5397 	bool tlb_flush = false;
5398 	uint i;
5399 
5400 	if (pcid == kvm_get_active_pcid(vcpu)) {
5401 		if (mmu->invlpg)
5402 			mmu->invlpg(vcpu, gva, mmu->root_hpa);
5403 		tlb_flush = true;
5404 	}
5405 
5406 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5407 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5408 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5409 			if (mmu->invlpg)
5410 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5411 			tlb_flush = true;
5412 		}
5413 	}
5414 
5415 	if (tlb_flush)
5416 		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5417 
5418 	++vcpu->stat.invlpg;
5419 
5420 	/*
5421 	 * Mappings not reachable via the current cr3 or the prev_roots will be
5422 	 * synced when switching to that cr3, so nothing needs to be done here
5423 	 * for them.
5424 	 */
5425 }
5426 
kvm_configure_mmu(bool enable_tdp,int tdp_forced_root_level,int tdp_max_root_level,int tdp_huge_page_level)5427 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
5428 		       int tdp_max_root_level, int tdp_huge_page_level)
5429 {
5430 	tdp_enabled = enable_tdp;
5431 	tdp_root_level = tdp_forced_root_level;
5432 	max_tdp_level = tdp_max_root_level;
5433 
5434 	/*
5435 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5436 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5437 	 * the kernel is not.  But, KVM never creates a page size greater than
5438 	 * what is used by the kernel for any given HVA, i.e. the kernel's
5439 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5440 	 */
5441 	if (tdp_enabled)
5442 		max_huge_page_level = tdp_huge_page_level;
5443 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5444 		max_huge_page_level = PG_LEVEL_1G;
5445 	else
5446 		max_huge_page_level = PG_LEVEL_2M;
5447 }
5448 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5449 
5450 /* The return value indicates if tlb flush on all vcpus is needed. */
5451 typedef bool (*slot_level_handler) (struct kvm *kvm,
5452 				    struct kvm_rmap_head *rmap_head,
5453 				    const struct kvm_memory_slot *slot);
5454 
5455 /* The caller should hold mmu-lock before calling this function. */
5456 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool flush_on_yield,bool flush)5457 slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5458 			slot_level_handler fn, int start_level, int end_level,
5459 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5460 			bool flush)
5461 {
5462 	struct slot_rmap_walk_iterator iterator;
5463 
5464 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5465 			end_gfn, &iterator) {
5466 		if (iterator.rmap)
5467 			flush |= fn(kvm, iterator.rmap, memslot);
5468 
5469 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5470 			if (flush && flush_on_yield) {
5471 				kvm_flush_remote_tlbs_with_address(kvm,
5472 						start_gfn,
5473 						iterator.gfn - start_gfn + 1);
5474 				flush = false;
5475 			}
5476 			cond_resched_rwlock_write(&kvm->mmu_lock);
5477 		}
5478 	}
5479 
5480 	return flush;
5481 }
5482 
5483 static __always_inline bool
slot_handle_level(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool flush_on_yield)5484 slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5485 		  slot_level_handler fn, int start_level, int end_level,
5486 		  bool flush_on_yield)
5487 {
5488 	return slot_handle_level_range(kvm, memslot, fn, start_level,
5489 			end_level, memslot->base_gfn,
5490 			memslot->base_gfn + memslot->npages - 1,
5491 			flush_on_yield, false);
5492 }
5493 
5494 static __always_inline bool
slot_handle_level_4k(struct kvm * kvm,const struct kvm_memory_slot * memslot,slot_level_handler fn,bool flush_on_yield)5495 slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5496 		     slot_level_handler fn, bool flush_on_yield)
5497 {
5498 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5499 				 PG_LEVEL_4K, flush_on_yield);
5500 }
5501 
free_mmu_pages(struct kvm_mmu * mmu)5502 static void free_mmu_pages(struct kvm_mmu *mmu)
5503 {
5504 	if (!tdp_enabled && mmu->pae_root)
5505 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5506 	free_page((unsigned long)mmu->pae_root);
5507 	free_page((unsigned long)mmu->pml4_root);
5508 	free_page((unsigned long)mmu->pml5_root);
5509 }
5510 
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5511 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5512 {
5513 	struct page *page;
5514 	int i;
5515 
5516 	mmu->root_hpa = INVALID_PAGE;
5517 	mmu->root_pgd = 0;
5518 	mmu->translate_gpa = translate_gpa;
5519 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5520 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5521 
5522 	/*
5523 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5524 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5525 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5526 	 * x86_64.  Therefore we need to allocate the PDP table in the first
5527 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5528 	 * generally doesn't use PAE paging and can skip allocating the PDP
5529 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5530 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5531 	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5532 	 */
5533 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5534 		return 0;
5535 
5536 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5537 	if (!page)
5538 		return -ENOMEM;
5539 
5540 	mmu->pae_root = page_address(page);
5541 
5542 	/*
5543 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5544 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5545 	 * that KVM's writes and the CPU's reads get along.  Note, this is
5546 	 * only necessary when using shadow paging, as 64-bit NPT can get at
5547 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5548 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5549 	 */
5550 	if (!tdp_enabled)
5551 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5552 	else
5553 		WARN_ON_ONCE(shadow_me_mask);
5554 
5555 	for (i = 0; i < 4; ++i)
5556 		mmu->pae_root[i] = INVALID_PAE_ROOT;
5557 
5558 	return 0;
5559 }
5560 
kvm_mmu_create(struct kvm_vcpu * vcpu)5561 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5562 {
5563 	int ret;
5564 
5565 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5566 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5567 
5568 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5569 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5570 
5571 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5572 
5573 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5574 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5575 
5576 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5577 
5578 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5579 	if (ret)
5580 		return ret;
5581 
5582 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5583 	if (ret)
5584 		goto fail_allocate_root;
5585 
5586 	return ret;
5587  fail_allocate_root:
5588 	free_mmu_pages(&vcpu->arch.guest_mmu);
5589 	return ret;
5590 }
5591 
5592 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)5593 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5594 {
5595 	struct kvm_mmu_page *sp, *node;
5596 	int nr_zapped, batch = 0;
5597 	bool unstable;
5598 
5599 restart:
5600 	list_for_each_entry_safe_reverse(sp, node,
5601 	      &kvm->arch.active_mmu_pages, link) {
5602 		/*
5603 		 * No obsolete valid page exists before a newly created page
5604 		 * since active_mmu_pages is a FIFO list.
5605 		 */
5606 		if (!is_obsolete_sp(kvm, sp))
5607 			break;
5608 
5609 		/*
5610 		 * Invalid pages should never land back on the list of active
5611 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5612 		 * infinite loop if the page gets put back on the list (again).
5613 		 */
5614 		if (WARN_ON(sp->role.invalid))
5615 			continue;
5616 
5617 		/*
5618 		 * No need to flush the TLB since we're only zapping shadow
5619 		 * pages with an obsolete generation number and all vCPUS have
5620 		 * loaded a new root, i.e. the shadow pages being zapped cannot
5621 		 * be in active use by the guest.
5622 		 */
5623 		if (batch >= BATCH_ZAP_PAGES &&
5624 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5625 			batch = 0;
5626 			goto restart;
5627 		}
5628 
5629 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5630 				&kvm->arch.zapped_obsolete_pages, &nr_zapped);
5631 		batch += nr_zapped;
5632 
5633 		if (unstable)
5634 			goto restart;
5635 	}
5636 
5637 	/*
5638 	 * Trigger a remote TLB flush before freeing the page tables to ensure
5639 	 * KVM is not in the middle of a lockless shadow page table walk, which
5640 	 * may reference the pages.
5641 	 */
5642 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5643 }
5644 
5645 /*
5646  * Fast invalidate all shadow pages and use lock-break technique
5647  * to zap obsolete pages.
5648  *
5649  * It's required when memslot is being deleted or VM is being
5650  * destroyed, in these cases, we should ensure that KVM MMU does
5651  * not use any resource of the being-deleted slot or all slots
5652  * after calling the function.
5653  */
kvm_mmu_zap_all_fast(struct kvm * kvm)5654 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5655 {
5656 	lockdep_assert_held(&kvm->slots_lock);
5657 
5658 	write_lock(&kvm->mmu_lock);
5659 	trace_kvm_mmu_zap_all_fast(kvm);
5660 
5661 	/*
5662 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5663 	 * held for the entire duration of zapping obsolete pages, it's
5664 	 * impossible for there to be multiple invalid generations associated
5665 	 * with *valid* shadow pages at any given time, i.e. there is exactly
5666 	 * one valid generation and (at most) one invalid generation.
5667 	 */
5668 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5669 
5670 	/* In order to ensure all threads see this change when
5671 	 * handling the MMU reload signal, this must happen in the
5672 	 * same critical section as kvm_reload_remote_mmus, and
5673 	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5674 	 * could drop the MMU lock and yield.
5675 	 */
5676 	if (is_tdp_mmu_enabled(kvm))
5677 		kvm_tdp_mmu_invalidate_all_roots(kvm);
5678 
5679 	/*
5680 	 * Notify all vcpus to reload its shadow page table and flush TLB.
5681 	 * Then all vcpus will switch to new shadow page table with the new
5682 	 * mmu_valid_gen.
5683 	 *
5684 	 * Note: we need to do this under the protection of mmu_lock,
5685 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5686 	 */
5687 	kvm_reload_remote_mmus(kvm);
5688 
5689 	kvm_zap_obsolete_pages(kvm);
5690 
5691 	write_unlock(&kvm->mmu_lock);
5692 
5693 	if (is_tdp_mmu_enabled(kvm)) {
5694 		read_lock(&kvm->mmu_lock);
5695 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
5696 		read_unlock(&kvm->mmu_lock);
5697 	}
5698 }
5699 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5700 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5701 {
5702 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5703 }
5704 
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5705 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5706 			struct kvm_memory_slot *slot,
5707 			struct kvm_page_track_notifier_node *node)
5708 {
5709 	kvm_mmu_zap_all_fast(kvm);
5710 }
5711 
kvm_mmu_init_vm(struct kvm * kvm)5712 void kvm_mmu_init_vm(struct kvm *kvm)
5713 {
5714 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5715 
5716 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5717 
5718 	if (!kvm_mmu_init_tdp_mmu(kvm))
5719 		/*
5720 		 * No smp_load/store wrappers needed here as we are in
5721 		 * VM init and there cannot be any memslots / other threads
5722 		 * accessing this struct kvm yet.
5723 		 */
5724 		kvm->arch.memslots_have_rmaps = true;
5725 
5726 	node->track_write = kvm_mmu_pte_write;
5727 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5728 	kvm_page_track_register_notifier(kvm, node);
5729 }
5730 
kvm_mmu_uninit_vm(struct kvm * kvm)5731 void kvm_mmu_uninit_vm(struct kvm *kvm)
5732 {
5733 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5734 
5735 	kvm_page_track_unregister_notifier(kvm, node);
5736 
5737 	kvm_mmu_uninit_tdp_mmu(kvm);
5738 }
5739 
5740 /*
5741  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
5742  * (not including it)
5743  */
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5744 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5745 {
5746 	struct kvm_memslots *slots;
5747 	struct kvm_memory_slot *memslot;
5748 	int i;
5749 	bool flush = false;
5750 
5751 	write_lock(&kvm->mmu_lock);
5752 
5753 	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
5754 
5755 	if (kvm_memslots_have_rmaps(kvm)) {
5756 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5757 			slots = __kvm_memslots(kvm, i);
5758 			kvm_for_each_memslot(memslot, slots) {
5759 				gfn_t start, end;
5760 
5761 				start = max(gfn_start, memslot->base_gfn);
5762 				end = min(gfn_end, memslot->base_gfn + memslot->npages);
5763 				if (start >= end)
5764 					continue;
5765 
5766 				flush = slot_handle_level_range(kvm,
5767 						(const struct kvm_memory_slot *) memslot,
5768 						kvm_zap_rmapp, PG_LEVEL_4K,
5769 						KVM_MAX_HUGEPAGE_LEVEL, start,
5770 						end - 1, true, flush);
5771 			}
5772 		}
5773 		if (flush)
5774 			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5775 							   gfn_end - gfn_start);
5776 	}
5777 
5778 	if (is_tdp_mmu_enabled(kvm)) {
5779 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5780 			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5781 							  gfn_end, flush);
5782 	}
5783 
5784 	if (flush)
5785 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5786 						   gfn_end - gfn_start);
5787 
5788 	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
5789 
5790 	write_unlock(&kvm->mmu_lock);
5791 }
5792 
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5793 static bool slot_rmap_write_protect(struct kvm *kvm,
5794 				    struct kvm_rmap_head *rmap_head,
5795 				    const struct kvm_memory_slot *slot)
5796 {
5797 	return __rmap_write_protect(kvm, rmap_head, false);
5798 }
5799 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,const struct kvm_memory_slot * memslot,int start_level)5800 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5801 				      const struct kvm_memory_slot *memslot,
5802 				      int start_level)
5803 {
5804 	bool flush = false;
5805 
5806 	if (kvm_memslots_have_rmaps(kvm)) {
5807 		write_lock(&kvm->mmu_lock);
5808 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5809 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
5810 					  false);
5811 		write_unlock(&kvm->mmu_lock);
5812 	}
5813 
5814 	if (is_tdp_mmu_enabled(kvm)) {
5815 		read_lock(&kvm->mmu_lock);
5816 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5817 		read_unlock(&kvm->mmu_lock);
5818 	}
5819 
5820 	/*
5821 	 * We can flush all the TLBs out of the mmu lock without TLB
5822 	 * corruption since we just change the spte from writable to
5823 	 * readonly so that we only need to care the case of changing
5824 	 * spte from present to present (changing the spte from present
5825 	 * to nonpresent will flush all the TLBs immediately), in other
5826 	 * words, the only case we care is mmu_spte_update() where we
5827 	 * have checked Host-writable | MMU-writable instead of
5828 	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5829 	 * anymore.
5830 	 */
5831 	if (flush)
5832 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5833 }
5834 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head,const struct kvm_memory_slot * slot)5835 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5836 					 struct kvm_rmap_head *rmap_head,
5837 					 const struct kvm_memory_slot *slot)
5838 {
5839 	u64 *sptep;
5840 	struct rmap_iterator iter;
5841 	int need_tlb_flush = 0;
5842 	kvm_pfn_t pfn;
5843 	struct kvm_mmu_page *sp;
5844 
5845 restart:
5846 	for_each_rmap_spte(rmap_head, &iter, sptep) {
5847 		sp = sptep_to_sp(sptep);
5848 		pfn = spte_to_pfn(*sptep);
5849 
5850 		/*
5851 		 * We cannot do huge page mapping for indirect shadow pages,
5852 		 * which are found on the last rmap (level = 1) when not using
5853 		 * tdp; such shadow pages are synced with the page table in
5854 		 * the guest, and the guest page table is using 4K page size
5855 		 * mapping if the indirect sp has level = 1.
5856 		 */
5857 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5858 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5859 							       pfn, PG_LEVEL_NUM)) {
5860 			pte_list_remove(kvm, rmap_head, sptep);
5861 
5862 			if (kvm_available_flush_tlb_with_range())
5863 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5864 					KVM_PAGES_PER_HPAGE(sp->role.level));
5865 			else
5866 				need_tlb_flush = 1;
5867 
5868 			goto restart;
5869 		}
5870 	}
5871 
5872 	return need_tlb_flush;
5873 }
5874 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * slot)5875 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5876 				   const struct kvm_memory_slot *slot)
5877 {
5878 	if (kvm_memslots_have_rmaps(kvm)) {
5879 		write_lock(&kvm->mmu_lock);
5880 		/*
5881 		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
5882 		 * logging at a 4k granularity and never creates collapsible
5883 		 * 2m SPTEs during dirty logging.
5884 		 */
5885 		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
5886 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5887 		write_unlock(&kvm->mmu_lock);
5888 	}
5889 
5890 	if (is_tdp_mmu_enabled(kvm)) {
5891 		read_lock(&kvm->mmu_lock);
5892 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
5893 		read_unlock(&kvm->mmu_lock);
5894 	}
5895 }
5896 
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)5897 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5898 					const struct kvm_memory_slot *memslot)
5899 {
5900 	/*
5901 	 * All current use cases for flushing the TLBs for a specific memslot
5902 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5903 	 * The interaction between the various operations on memslot must be
5904 	 * serialized by slots_locks to ensure the TLB flush from one operation
5905 	 * is observed by any other operation on the same memslot.
5906 	 */
5907 	lockdep_assert_held(&kvm->slots_lock);
5908 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5909 					   memslot->npages);
5910 }
5911 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,const struct kvm_memory_slot * memslot)5912 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5913 				   const struct kvm_memory_slot *memslot)
5914 {
5915 	bool flush = false;
5916 
5917 	if (kvm_memslots_have_rmaps(kvm)) {
5918 		write_lock(&kvm->mmu_lock);
5919 		/*
5920 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
5921 		 * support dirty logging at a 4k granularity.
5922 		 */
5923 		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
5924 		write_unlock(&kvm->mmu_lock);
5925 	}
5926 
5927 	if (is_tdp_mmu_enabled(kvm)) {
5928 		read_lock(&kvm->mmu_lock);
5929 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5930 		read_unlock(&kvm->mmu_lock);
5931 	}
5932 
5933 	/*
5934 	 * It's also safe to flush TLBs out of mmu lock here as currently this
5935 	 * function is only used for dirty logging, in which case flushing TLB
5936 	 * out of mmu lock also guarantees no dirty pages will be lost in
5937 	 * dirty_bitmap.
5938 	 */
5939 	if (flush)
5940 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5941 }
5942 
kvm_mmu_zap_all(struct kvm * kvm)5943 void kvm_mmu_zap_all(struct kvm *kvm)
5944 {
5945 	struct kvm_mmu_page *sp, *node;
5946 	LIST_HEAD(invalid_list);
5947 	int ign;
5948 
5949 	write_lock(&kvm->mmu_lock);
5950 restart:
5951 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5952 		if (WARN_ON(sp->role.invalid))
5953 			continue;
5954 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5955 			goto restart;
5956 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5957 			goto restart;
5958 	}
5959 
5960 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5961 
5962 	if (is_tdp_mmu_enabled(kvm))
5963 		kvm_tdp_mmu_zap_all(kvm);
5964 
5965 	write_unlock(&kvm->mmu_lock);
5966 }
5967 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5968 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5969 {
5970 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5971 
5972 	gen &= MMIO_SPTE_GEN_MASK;
5973 
5974 	/*
5975 	 * Generation numbers are incremented in multiples of the number of
5976 	 * address spaces in order to provide unique generations across all
5977 	 * address spaces.  Strip what is effectively the address space
5978 	 * modifier prior to checking for a wrap of the MMIO generation so
5979 	 * that a wrap in any address space is detected.
5980 	 */
5981 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5982 
5983 	/*
5984 	 * The very rare case: if the MMIO generation number has wrapped,
5985 	 * zap all shadow pages.
5986 	 */
5987 	if (unlikely(gen == 0)) {
5988 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5989 		kvm_mmu_zap_all_fast(kvm);
5990 	}
5991 }
5992 
5993 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5994 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5995 {
5996 	struct kvm *kvm;
5997 	int nr_to_scan = sc->nr_to_scan;
5998 	unsigned long freed = 0;
5999 
6000 	mutex_lock(&kvm_lock);
6001 
6002 	list_for_each_entry(kvm, &vm_list, vm_list) {
6003 		int idx;
6004 		LIST_HEAD(invalid_list);
6005 
6006 		/*
6007 		 * Never scan more than sc->nr_to_scan VM instances.
6008 		 * Will not hit this condition practically since we do not try
6009 		 * to shrink more than one VM and it is very unlikely to see
6010 		 * !n_used_mmu_pages so many times.
6011 		 */
6012 		if (!nr_to_scan--)
6013 			break;
6014 		/*
6015 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6016 		 * here. We may skip a VM instance errorneosly, but we do not
6017 		 * want to shrink a VM that only started to populate its MMU
6018 		 * anyway.
6019 		 */
6020 		if (!kvm->arch.n_used_mmu_pages &&
6021 		    !kvm_has_zapped_obsolete_pages(kvm))
6022 			continue;
6023 
6024 		idx = srcu_read_lock(&kvm->srcu);
6025 		write_lock(&kvm->mmu_lock);
6026 
6027 		if (kvm_has_zapped_obsolete_pages(kvm)) {
6028 			kvm_mmu_commit_zap_page(kvm,
6029 			      &kvm->arch.zapped_obsolete_pages);
6030 			goto unlock;
6031 		}
6032 
6033 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6034 
6035 unlock:
6036 		write_unlock(&kvm->mmu_lock);
6037 		srcu_read_unlock(&kvm->srcu, idx);
6038 
6039 		/*
6040 		 * unfair on small ones
6041 		 * per-vm shrinkers cry out
6042 		 * sadness comes quickly
6043 		 */
6044 		list_move_tail(&kvm->vm_list, &vm_list);
6045 		break;
6046 	}
6047 
6048 	mutex_unlock(&kvm_lock);
6049 	return freed;
6050 }
6051 
6052 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6053 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6054 {
6055 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6056 }
6057 
6058 static struct shrinker mmu_shrinker = {
6059 	.count_objects = mmu_shrink_count,
6060 	.scan_objects = mmu_shrink_scan,
6061 	.seeks = DEFAULT_SEEKS * 10,
6062 };
6063 
mmu_destroy_caches(void)6064 static void mmu_destroy_caches(void)
6065 {
6066 	kmem_cache_destroy(pte_list_desc_cache);
6067 	kmem_cache_destroy(mmu_page_header_cache);
6068 }
6069 
get_nx_auto_mode(void)6070 static bool get_nx_auto_mode(void)
6071 {
6072 	/* Return true when CPU has the bug, and mitigations are ON */
6073 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6074 }
6075 
__set_nx_huge_pages(bool val)6076 static void __set_nx_huge_pages(bool val)
6077 {
6078 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6079 }
6080 
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6081 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6082 {
6083 	bool old_val = nx_huge_pages;
6084 	bool new_val;
6085 
6086 	/* In "auto" mode deploy workaround only if CPU has the bug. */
6087 	if (sysfs_streq(val, "off"))
6088 		new_val = 0;
6089 	else if (sysfs_streq(val, "force"))
6090 		new_val = 1;
6091 	else if (sysfs_streq(val, "auto"))
6092 		new_val = get_nx_auto_mode();
6093 	else if (strtobool(val, &new_val) < 0)
6094 		return -EINVAL;
6095 
6096 	__set_nx_huge_pages(new_val);
6097 
6098 	if (new_val != old_val) {
6099 		struct kvm *kvm;
6100 
6101 		mutex_lock(&kvm_lock);
6102 
6103 		list_for_each_entry(kvm, &vm_list, vm_list) {
6104 			mutex_lock(&kvm->slots_lock);
6105 			kvm_mmu_zap_all_fast(kvm);
6106 			mutex_unlock(&kvm->slots_lock);
6107 
6108 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6109 		}
6110 		mutex_unlock(&kvm_lock);
6111 	}
6112 
6113 	return 0;
6114 }
6115 
6116 /*
6117  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
6118  * its default value of -1 is technically undefined behavior for a boolean.
6119  */
kvm_mmu_x86_module_init(void)6120 void __init kvm_mmu_x86_module_init(void)
6121 {
6122 	if (nx_huge_pages == -1)
6123 		__set_nx_huge_pages(get_nx_auto_mode());
6124 }
6125 
6126 /*
6127  * The bulk of the MMU initialization is deferred until the vendor module is
6128  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
6129  * to be reset when a potentially different vendor module is loaded.
6130  */
kvm_mmu_vendor_module_init(void)6131 int kvm_mmu_vendor_module_init(void)
6132 {
6133 	int ret = -ENOMEM;
6134 
6135 	/*
6136 	 * MMU roles use union aliasing which is, generally speaking, an
6137 	 * undefined behavior. However, we supposedly know how compilers behave
6138 	 * and the current status quo is unlikely to change. Guardians below are
6139 	 * supposed to let us know if the assumption becomes false.
6140 	 */
6141 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6142 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6143 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6144 
6145 	kvm_mmu_reset_all_pte_masks();
6146 
6147 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6148 					    sizeof(struct pte_list_desc),
6149 					    0, SLAB_ACCOUNT, NULL);
6150 	if (!pte_list_desc_cache)
6151 		goto out;
6152 
6153 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6154 						  sizeof(struct kvm_mmu_page),
6155 						  0, SLAB_ACCOUNT, NULL);
6156 	if (!mmu_page_header_cache)
6157 		goto out;
6158 
6159 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6160 		goto out;
6161 
6162 	ret = register_shrinker(&mmu_shrinker);
6163 	if (ret)
6164 		goto out;
6165 
6166 	return 0;
6167 
6168 out:
6169 	mmu_destroy_caches();
6170 	return ret;
6171 }
6172 
6173 /*
6174  * Calculate mmu pages needed for kvm.
6175  */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)6176 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6177 {
6178 	unsigned long nr_mmu_pages;
6179 	unsigned long nr_pages = 0;
6180 	struct kvm_memslots *slots;
6181 	struct kvm_memory_slot *memslot;
6182 	int i;
6183 
6184 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6185 		slots = __kvm_memslots(kvm, i);
6186 
6187 		kvm_for_each_memslot(memslot, slots)
6188 			nr_pages += memslot->npages;
6189 	}
6190 
6191 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6192 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6193 
6194 	return nr_mmu_pages;
6195 }
6196 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6197 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6198 {
6199 	kvm_mmu_unload(vcpu);
6200 	free_mmu_pages(&vcpu->arch.root_mmu);
6201 	free_mmu_pages(&vcpu->arch.guest_mmu);
6202 	mmu_free_memory_caches(vcpu);
6203 }
6204 
kvm_mmu_vendor_module_exit(void)6205 void kvm_mmu_vendor_module_exit(void)
6206 {
6207 	mmu_destroy_caches();
6208 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
6209 	unregister_shrinker(&mmu_shrinker);
6210 	mmu_audit_disable();
6211 }
6212 
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)6213 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6214 {
6215 	unsigned int old_val;
6216 	int err;
6217 
6218 	old_val = nx_huge_pages_recovery_ratio;
6219 	err = param_set_uint(val, kp);
6220 	if (err)
6221 		return err;
6222 
6223 	if (READ_ONCE(nx_huge_pages) &&
6224 	    !old_val && nx_huge_pages_recovery_ratio) {
6225 		struct kvm *kvm;
6226 
6227 		mutex_lock(&kvm_lock);
6228 
6229 		list_for_each_entry(kvm, &vm_list, vm_list)
6230 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6231 
6232 		mutex_unlock(&kvm_lock);
6233 	}
6234 
6235 	return err;
6236 }
6237 
kvm_recover_nx_lpages(struct kvm * kvm)6238 static void kvm_recover_nx_lpages(struct kvm *kvm)
6239 {
6240 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6241 	int rcu_idx;
6242 	struct kvm_mmu_page *sp;
6243 	unsigned int ratio;
6244 	LIST_HEAD(invalid_list);
6245 	bool flush = false;
6246 	ulong to_zap;
6247 
6248 	rcu_idx = srcu_read_lock(&kvm->srcu);
6249 	write_lock(&kvm->mmu_lock);
6250 
6251 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6252 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6253 	for ( ; to_zap; --to_zap) {
6254 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6255 			break;
6256 
6257 		/*
6258 		 * We use a separate list instead of just using active_mmu_pages
6259 		 * because the number of lpage_disallowed pages is expected to
6260 		 * be relatively small compared to the total.
6261 		 */
6262 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6263 				      struct kvm_mmu_page,
6264 				      lpage_disallowed_link);
6265 		WARN_ON_ONCE(!sp->lpage_disallowed);
6266 		if (is_tdp_mmu_page(sp)) {
6267 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6268 		} else {
6269 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6270 			WARN_ON_ONCE(sp->lpage_disallowed);
6271 		}
6272 
6273 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6274 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6275 			cond_resched_rwlock_write(&kvm->mmu_lock);
6276 			flush = false;
6277 		}
6278 	}
6279 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6280 
6281 	write_unlock(&kvm->mmu_lock);
6282 	srcu_read_unlock(&kvm->srcu, rcu_idx);
6283 }
6284 
get_nx_lpage_recovery_timeout(u64 start_time)6285 static long get_nx_lpage_recovery_timeout(u64 start_time)
6286 {
6287 	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6288 		? start_time + 60 * HZ - get_jiffies_64()
6289 		: MAX_SCHEDULE_TIMEOUT;
6290 }
6291 
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6292 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6293 {
6294 	u64 start_time;
6295 	long remaining_time;
6296 
6297 	while (true) {
6298 		start_time = get_jiffies_64();
6299 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6300 
6301 		set_current_state(TASK_INTERRUPTIBLE);
6302 		while (!kthread_should_stop() && remaining_time > 0) {
6303 			schedule_timeout(remaining_time);
6304 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6305 			set_current_state(TASK_INTERRUPTIBLE);
6306 		}
6307 
6308 		set_current_state(TASK_RUNNING);
6309 
6310 		if (kthread_should_stop())
6311 			return 0;
6312 
6313 		kvm_recover_nx_lpages(kvm);
6314 	}
6315 }
6316 
kvm_mmu_post_init_vm(struct kvm * kvm)6317 int kvm_mmu_post_init_vm(struct kvm *kvm)
6318 {
6319 	int err;
6320 
6321 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6322 					  "kvm-nx-lpage-recovery",
6323 					  &kvm->arch.nx_lpage_recovery_thread);
6324 	if (!err)
6325 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6326 
6327 	return err;
6328 }
6329 
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6330 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6331 {
6332 	if (kvm->arch.nx_lpage_recovery_thread)
6333 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6334 }
6335