1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * handling kvm guest interrupts
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 */
9
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include "kvm-s390.h"
32 #include "gaccess.h"
33 #include "trace-s390.h"
34
35 #define PFAULT_INIT 0x0600
36 #define PFAULT_DONE 0x0680
37 #define VIRTIO_PARAM 0x0d00
38
39 static struct kvm_s390_gib *gib;
40
41 /* handle external calls via sigp interpretation facility */
sca_ext_call_pending(struct kvm_vcpu * vcpu,int * src_id)42 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
43 {
44 int c, scn;
45
46 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
47 return 0;
48
49 BUG_ON(!kvm_s390_use_sca_entries());
50 read_lock(&vcpu->kvm->arch.sca_lock);
51 if (vcpu->kvm->arch.use_esca) {
52 struct esca_block *sca = vcpu->kvm->arch.sca;
53 union esca_sigp_ctrl sigp_ctrl =
54 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
55
56 c = sigp_ctrl.c;
57 scn = sigp_ctrl.scn;
58 } else {
59 struct bsca_block *sca = vcpu->kvm->arch.sca;
60 union bsca_sigp_ctrl sigp_ctrl =
61 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
62
63 c = sigp_ctrl.c;
64 scn = sigp_ctrl.scn;
65 }
66 read_unlock(&vcpu->kvm->arch.sca_lock);
67
68 if (src_id)
69 *src_id = scn;
70
71 return c;
72 }
73
sca_inject_ext_call(struct kvm_vcpu * vcpu,int src_id)74 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
75 {
76 int expect, rc;
77
78 BUG_ON(!kvm_s390_use_sca_entries());
79 read_lock(&vcpu->kvm->arch.sca_lock);
80 if (vcpu->kvm->arch.use_esca) {
81 struct esca_block *sca = vcpu->kvm->arch.sca;
82 union esca_sigp_ctrl *sigp_ctrl =
83 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
84 union esca_sigp_ctrl new_val = {0}, old_val;
85
86 old_val = READ_ONCE(*sigp_ctrl);
87 new_val.scn = src_id;
88 new_val.c = 1;
89 old_val.c = 0;
90
91 expect = old_val.value;
92 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
93 } else {
94 struct bsca_block *sca = vcpu->kvm->arch.sca;
95 union bsca_sigp_ctrl *sigp_ctrl =
96 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
97 union bsca_sigp_ctrl new_val = {0}, old_val;
98
99 old_val = READ_ONCE(*sigp_ctrl);
100 new_val.scn = src_id;
101 new_val.c = 1;
102 old_val.c = 0;
103
104 expect = old_val.value;
105 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
106 }
107 read_unlock(&vcpu->kvm->arch.sca_lock);
108
109 if (rc != expect) {
110 /* another external call is pending */
111 return -EBUSY;
112 }
113 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
114 return 0;
115 }
116
sca_clear_ext_call(struct kvm_vcpu * vcpu)117 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
118 {
119 int rc, expect;
120
121 if (!kvm_s390_use_sca_entries())
122 return;
123 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
124 read_lock(&vcpu->kvm->arch.sca_lock);
125 if (vcpu->kvm->arch.use_esca) {
126 struct esca_block *sca = vcpu->kvm->arch.sca;
127 union esca_sigp_ctrl *sigp_ctrl =
128 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
129 union esca_sigp_ctrl old;
130
131 old = READ_ONCE(*sigp_ctrl);
132 expect = old.value;
133 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
134 } else {
135 struct bsca_block *sca = vcpu->kvm->arch.sca;
136 union bsca_sigp_ctrl *sigp_ctrl =
137 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
138 union bsca_sigp_ctrl old;
139
140 old = READ_ONCE(*sigp_ctrl);
141 expect = old.value;
142 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
143 }
144 read_unlock(&vcpu->kvm->arch.sca_lock);
145 WARN_ON(rc != expect); /* cannot clear? */
146 }
147
psw_extint_disabled(struct kvm_vcpu * vcpu)148 int psw_extint_disabled(struct kvm_vcpu *vcpu)
149 {
150 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
151 }
152
psw_ioint_disabled(struct kvm_vcpu * vcpu)153 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
154 {
155 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
156 }
157
psw_mchk_disabled(struct kvm_vcpu * vcpu)158 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
159 {
160 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
161 }
162
psw_interrupts_disabled(struct kvm_vcpu * vcpu)163 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
164 {
165 return psw_extint_disabled(vcpu) &&
166 psw_ioint_disabled(vcpu) &&
167 psw_mchk_disabled(vcpu);
168 }
169
ckc_interrupts_enabled(struct kvm_vcpu * vcpu)170 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
171 {
172 if (psw_extint_disabled(vcpu) ||
173 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
174 return 0;
175 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
176 /* No timer interrupts when single stepping */
177 return 0;
178 return 1;
179 }
180
ckc_irq_pending(struct kvm_vcpu * vcpu)181 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
182 {
183 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
184 const u64 ckc = vcpu->arch.sie_block->ckc;
185
186 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
187 if ((s64)ckc >= (s64)now)
188 return 0;
189 } else if (ckc >= now) {
190 return 0;
191 }
192 return ckc_interrupts_enabled(vcpu);
193 }
194
cpu_timer_interrupts_enabled(struct kvm_vcpu * vcpu)195 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
196 {
197 return !psw_extint_disabled(vcpu) &&
198 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
199 }
200
cpu_timer_irq_pending(struct kvm_vcpu * vcpu)201 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
202 {
203 if (!cpu_timer_interrupts_enabled(vcpu))
204 return 0;
205 return kvm_s390_get_cpu_timer(vcpu) >> 63;
206 }
207
isc_to_isc_bits(int isc)208 static uint64_t isc_to_isc_bits(int isc)
209 {
210 return (0x80 >> isc) << 24;
211 }
212
isc_to_int_word(u8 isc)213 static inline u32 isc_to_int_word(u8 isc)
214 {
215 return ((u32)isc << 27) | 0x80000000;
216 }
217
int_word_to_isc(u32 int_word)218 static inline u8 int_word_to_isc(u32 int_word)
219 {
220 return (int_word & 0x38000000) >> 27;
221 }
222
223 /*
224 * To use atomic bitmap functions, we have to provide a bitmap address
225 * that is u64 aligned. However, the ipm might be u32 aligned.
226 * Therefore, we logically start the bitmap at the very beginning of the
227 * struct and fixup the bit number.
228 */
229 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
230
231 /**
232 * gisa_set_iam - change the GISA interruption alert mask
233 *
234 * @gisa: gisa to operate on
235 * @iam: new IAM value to use
236 *
237 * Change the IAM atomically with the next alert address and the IPM
238 * of the GISA if the GISA is not part of the GIB alert list. All three
239 * fields are located in the first long word of the GISA.
240 *
241 * Returns: 0 on success
242 * -EBUSY in case the gisa is part of the alert list
243 */
gisa_set_iam(struct kvm_s390_gisa * gisa,u8 iam)244 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
245 {
246 u64 word, _word;
247
248 do {
249 word = READ_ONCE(gisa->u64.word[0]);
250 if ((u64)gisa != word >> 32)
251 return -EBUSY;
252 _word = (word & ~0xffUL) | iam;
253 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
254
255 return 0;
256 }
257
258 /**
259 * gisa_clear_ipm - clear the GISA interruption pending mask
260 *
261 * @gisa: gisa to operate on
262 *
263 * Clear the IPM atomically with the next alert address and the IAM
264 * of the GISA unconditionally. All three fields are located in the
265 * first long word of the GISA.
266 */
gisa_clear_ipm(struct kvm_s390_gisa * gisa)267 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
268 {
269 u64 word, _word;
270
271 do {
272 word = READ_ONCE(gisa->u64.word[0]);
273 _word = word & ~(0xffUL << 24);
274 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
275 }
276
277 /**
278 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
279 *
280 * @gi: gisa interrupt struct to work on
281 *
282 * Atomically restores the interruption alert mask if none of the
283 * relevant ISCs are pending and return the IPM.
284 *
285 * Returns: the relevant pending ISCs
286 */
gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt * gi)287 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
288 {
289 u8 pending_mask, alert_mask;
290 u64 word, _word;
291
292 do {
293 word = READ_ONCE(gi->origin->u64.word[0]);
294 alert_mask = READ_ONCE(gi->alert.mask);
295 pending_mask = (u8)(word >> 24) & alert_mask;
296 if (pending_mask)
297 return pending_mask;
298 _word = (word & ~0xffUL) | alert_mask;
299 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
300
301 return 0;
302 }
303
gisa_in_alert_list(struct kvm_s390_gisa * gisa)304 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
305 {
306 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
307 }
308
gisa_set_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)309 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
310 {
311 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
312 }
313
gisa_get_ipm(struct kvm_s390_gisa * gisa)314 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
315 {
316 return READ_ONCE(gisa->ipm);
317 }
318
gisa_clear_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)319 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
320 {
321 clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
322 }
323
gisa_tac_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)324 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
325 {
326 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
327 }
328
pending_irqs_no_gisa(struct kvm_vcpu * vcpu)329 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
330 {
331 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
332 vcpu->arch.local_int.pending_irqs;
333
334 pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
335 return pending;
336 }
337
pending_irqs(struct kvm_vcpu * vcpu)338 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
339 {
340 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
341 unsigned long pending_mask;
342
343 pending_mask = pending_irqs_no_gisa(vcpu);
344 if (gi->origin)
345 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
346 return pending_mask;
347 }
348
isc_to_irq_type(unsigned long isc)349 static inline int isc_to_irq_type(unsigned long isc)
350 {
351 return IRQ_PEND_IO_ISC_0 - isc;
352 }
353
irq_type_to_isc(unsigned long irq_type)354 static inline int irq_type_to_isc(unsigned long irq_type)
355 {
356 return IRQ_PEND_IO_ISC_0 - irq_type;
357 }
358
disable_iscs(struct kvm_vcpu * vcpu,unsigned long active_mask)359 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
360 unsigned long active_mask)
361 {
362 int i;
363
364 for (i = 0; i <= MAX_ISC; i++)
365 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
366 active_mask &= ~(1UL << (isc_to_irq_type(i)));
367
368 return active_mask;
369 }
370
deliverable_irqs(struct kvm_vcpu * vcpu)371 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
372 {
373 unsigned long active_mask;
374
375 active_mask = pending_irqs(vcpu);
376 if (!active_mask)
377 return 0;
378
379 if (psw_extint_disabled(vcpu))
380 active_mask &= ~IRQ_PEND_EXT_MASK;
381 if (psw_ioint_disabled(vcpu))
382 active_mask &= ~IRQ_PEND_IO_MASK;
383 else
384 active_mask = disable_iscs(vcpu, active_mask);
385 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
386 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
387 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
388 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
389 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
390 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
391 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
392 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
393 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
394 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
395 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
396 }
397 if (psw_mchk_disabled(vcpu))
398 active_mask &= ~IRQ_PEND_MCHK_MASK;
399 /* PV guest cpus can have a single interruption injected at a time. */
400 if (kvm_s390_pv_cpu_get_handle(vcpu) &&
401 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
402 active_mask &= ~(IRQ_PEND_EXT_II_MASK |
403 IRQ_PEND_IO_MASK |
404 IRQ_PEND_MCHK_MASK);
405 /*
406 * Check both floating and local interrupt's cr14 because
407 * bit IRQ_PEND_MCHK_REP could be set in both cases.
408 */
409 if (!(vcpu->arch.sie_block->gcr[14] &
410 (vcpu->kvm->arch.float_int.mchk.cr14 |
411 vcpu->arch.local_int.irq.mchk.cr14)))
412 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
413
414 /*
415 * STOP irqs will never be actively delivered. They are triggered via
416 * intercept requests and cleared when the stop intercept is performed.
417 */
418 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
419
420 return active_mask;
421 }
422
__set_cpu_idle(struct kvm_vcpu * vcpu)423 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
424 {
425 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
426 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
427 }
428
__unset_cpu_idle(struct kvm_vcpu * vcpu)429 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
430 {
431 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
432 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
433 }
434
__reset_intercept_indicators(struct kvm_vcpu * vcpu)435 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
436 {
437 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
438 CPUSTAT_STOP_INT);
439 vcpu->arch.sie_block->lctl = 0x0000;
440 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
441
442 if (guestdbg_enabled(vcpu)) {
443 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
444 LCTL_CR10 | LCTL_CR11);
445 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
446 }
447 }
448
set_intercept_indicators_io(struct kvm_vcpu * vcpu)449 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
450 {
451 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
452 return;
453 if (psw_ioint_disabled(vcpu))
454 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
455 else
456 vcpu->arch.sie_block->lctl |= LCTL_CR6;
457 }
458
set_intercept_indicators_ext(struct kvm_vcpu * vcpu)459 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
460 {
461 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
462 return;
463 if (psw_extint_disabled(vcpu))
464 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
465 else
466 vcpu->arch.sie_block->lctl |= LCTL_CR0;
467 }
468
set_intercept_indicators_mchk(struct kvm_vcpu * vcpu)469 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
470 {
471 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
472 return;
473 if (psw_mchk_disabled(vcpu))
474 vcpu->arch.sie_block->ictl |= ICTL_LPSW;
475 else
476 vcpu->arch.sie_block->lctl |= LCTL_CR14;
477 }
478
set_intercept_indicators_stop(struct kvm_vcpu * vcpu)479 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
480 {
481 if (kvm_s390_is_stop_irq_pending(vcpu))
482 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
483 }
484
485 /* Set interception request for non-deliverable interrupts */
set_intercept_indicators(struct kvm_vcpu * vcpu)486 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
487 {
488 set_intercept_indicators_io(vcpu);
489 set_intercept_indicators_ext(vcpu);
490 set_intercept_indicators_mchk(vcpu);
491 set_intercept_indicators_stop(vcpu);
492 }
493
__deliver_cpu_timer(struct kvm_vcpu * vcpu)494 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
495 {
496 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
497 int rc = 0;
498
499 vcpu->stat.deliver_cputm++;
500 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
501 0, 0);
502 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
503 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
504 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
505 } else {
506 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
507 (u16 *)__LC_EXT_INT_CODE);
508 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
509 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
510 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
511 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
512 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
513 }
514 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
515 return rc ? -EFAULT : 0;
516 }
517
__deliver_ckc(struct kvm_vcpu * vcpu)518 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
519 {
520 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
521 int rc = 0;
522
523 vcpu->stat.deliver_ckc++;
524 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
525 0, 0);
526 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
527 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
528 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
529 } else {
530 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
531 (u16 __user *)__LC_EXT_INT_CODE);
532 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
533 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
534 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
535 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
536 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
537 }
538 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
539 return rc ? -EFAULT : 0;
540 }
541
__deliver_pfault_init(struct kvm_vcpu * vcpu)542 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
543 {
544 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
545 struct kvm_s390_ext_info ext;
546 int rc;
547
548 spin_lock(&li->lock);
549 ext = li->irq.ext;
550 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
551 li->irq.ext.ext_params2 = 0;
552 spin_unlock(&li->lock);
553
554 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
555 ext.ext_params2);
556 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
557 KVM_S390_INT_PFAULT_INIT,
558 0, ext.ext_params2);
559
560 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
561 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
562 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
563 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
564 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
565 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
566 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
567 return rc ? -EFAULT : 0;
568 }
569
__write_machine_check(struct kvm_vcpu * vcpu,struct kvm_s390_mchk_info * mchk)570 static int __write_machine_check(struct kvm_vcpu *vcpu,
571 struct kvm_s390_mchk_info *mchk)
572 {
573 unsigned long ext_sa_addr;
574 unsigned long lc;
575 freg_t fprs[NUM_FPRS];
576 union mci mci;
577 int rc;
578
579 /*
580 * All other possible payload for a machine check (e.g. the register
581 * contents in the save area) will be handled by the ultravisor, as
582 * the hypervisor does not not have the needed information for
583 * protected guests.
584 */
585 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
586 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
587 vcpu->arch.sie_block->mcic = mchk->mcic;
588 vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
589 vcpu->arch.sie_block->edc = mchk->ext_damage_code;
590 return 0;
591 }
592
593 mci.val = mchk->mcic;
594 /* take care of lazy register loading */
595 save_fpu_regs();
596 save_access_regs(vcpu->run->s.regs.acrs);
597 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
598 save_gs_cb(current->thread.gs_cb);
599
600 /* Extended save area */
601 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
602 sizeof(unsigned long));
603 /* Only bits 0 through 63-LC are used for address formation */
604 lc = ext_sa_addr & MCESA_LC_MASK;
605 if (test_kvm_facility(vcpu->kvm, 133)) {
606 switch (lc) {
607 case 0:
608 case 10:
609 ext_sa_addr &= ~0x3ffUL;
610 break;
611 case 11:
612 ext_sa_addr &= ~0x7ffUL;
613 break;
614 case 12:
615 ext_sa_addr &= ~0xfffUL;
616 break;
617 default:
618 ext_sa_addr = 0;
619 break;
620 }
621 } else {
622 ext_sa_addr &= ~0x3ffUL;
623 }
624
625 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
626 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
627 512))
628 mci.vr = 0;
629 } else {
630 mci.vr = 0;
631 }
632 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
633 && (lc == 11 || lc == 12)) {
634 if (write_guest_abs(vcpu, ext_sa_addr + 1024,
635 &vcpu->run->s.regs.gscb, 32))
636 mci.gs = 0;
637 } else {
638 mci.gs = 0;
639 }
640
641 /* General interruption information */
642 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
643 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
644 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
645 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
646 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
647 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
648
649 /* Register-save areas */
650 if (MACHINE_HAS_VX) {
651 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
652 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
653 } else {
654 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
655 vcpu->run->s.regs.fprs, 128);
656 }
657 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
658 vcpu->run->s.regs.gprs, 128);
659 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
660 (u32 __user *) __LC_FP_CREG_SAVE_AREA);
661 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
662 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
663 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
664 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
665 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
666 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
667 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
668 &vcpu->run->s.regs.acrs, 64);
669 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
670 &vcpu->arch.sie_block->gcr, 128);
671
672 /* Extended interruption information */
673 rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
674 (u32 __user *) __LC_EXT_DAMAGE_CODE);
675 rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
676 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
677 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
678 sizeof(mchk->fixed_logout));
679 return rc ? -EFAULT : 0;
680 }
681
__deliver_machine_check(struct kvm_vcpu * vcpu)682 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
683 {
684 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
685 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
686 struct kvm_s390_mchk_info mchk = {};
687 int deliver = 0;
688 int rc = 0;
689
690 spin_lock(&fi->lock);
691 spin_lock(&li->lock);
692 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
693 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
694 /*
695 * If there was an exigent machine check pending, then any
696 * repressible machine checks that might have been pending
697 * are indicated along with it, so always clear bits for
698 * repressible and exigent interrupts
699 */
700 mchk = li->irq.mchk;
701 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
702 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
703 memset(&li->irq.mchk, 0, sizeof(mchk));
704 deliver = 1;
705 }
706 /*
707 * We indicate floating repressible conditions along with
708 * other pending conditions. Channel Report Pending and Channel
709 * Subsystem damage are the only two and and are indicated by
710 * bits in mcic and masked in cr14.
711 */
712 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
713 mchk.mcic |= fi->mchk.mcic;
714 mchk.cr14 |= fi->mchk.cr14;
715 memset(&fi->mchk, 0, sizeof(mchk));
716 deliver = 1;
717 }
718 spin_unlock(&li->lock);
719 spin_unlock(&fi->lock);
720
721 if (deliver) {
722 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
723 mchk.mcic);
724 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
725 KVM_S390_MCHK,
726 mchk.cr14, mchk.mcic);
727 vcpu->stat.deliver_machine_check++;
728 rc = __write_machine_check(vcpu, &mchk);
729 }
730 return rc;
731 }
732
__deliver_restart(struct kvm_vcpu * vcpu)733 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
734 {
735 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
736 int rc = 0;
737
738 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
739 vcpu->stat.deliver_restart_signal++;
740 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
741
742 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
743 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
744 } else {
745 rc = write_guest_lc(vcpu,
746 offsetof(struct lowcore, restart_old_psw),
747 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
748 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
749 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
750 }
751 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
752 return rc ? -EFAULT : 0;
753 }
754
__deliver_set_prefix(struct kvm_vcpu * vcpu)755 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
756 {
757 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
758 struct kvm_s390_prefix_info prefix;
759
760 spin_lock(&li->lock);
761 prefix = li->irq.prefix;
762 li->irq.prefix.address = 0;
763 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
764 spin_unlock(&li->lock);
765
766 vcpu->stat.deliver_prefix_signal++;
767 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
768 KVM_S390_SIGP_SET_PREFIX,
769 prefix.address, 0);
770
771 kvm_s390_set_prefix(vcpu, prefix.address);
772 return 0;
773 }
774
__deliver_emergency_signal(struct kvm_vcpu * vcpu)775 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
776 {
777 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
778 int rc;
779 int cpu_addr;
780
781 spin_lock(&li->lock);
782 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
783 clear_bit(cpu_addr, li->sigp_emerg_pending);
784 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
785 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
786 spin_unlock(&li->lock);
787
788 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
789 vcpu->stat.deliver_emergency_signal++;
790 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
791 cpu_addr, 0);
792 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
793 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
794 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
795 vcpu->arch.sie_block->extcpuaddr = cpu_addr;
796 return 0;
797 }
798
799 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
800 (u16 *)__LC_EXT_INT_CODE);
801 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
802 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
803 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
804 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
805 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
806 return rc ? -EFAULT : 0;
807 }
808
__deliver_external_call(struct kvm_vcpu * vcpu)809 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
810 {
811 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
812 struct kvm_s390_extcall_info extcall;
813 int rc;
814
815 spin_lock(&li->lock);
816 extcall = li->irq.extcall;
817 li->irq.extcall.code = 0;
818 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
819 spin_unlock(&li->lock);
820
821 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
822 vcpu->stat.deliver_external_call++;
823 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
824 KVM_S390_INT_EXTERNAL_CALL,
825 extcall.code, 0);
826 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
827 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
828 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
829 vcpu->arch.sie_block->extcpuaddr = extcall.code;
830 return 0;
831 }
832
833 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
834 (u16 *)__LC_EXT_INT_CODE);
835 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
836 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
837 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
838 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
839 sizeof(psw_t));
840 return rc ? -EFAULT : 0;
841 }
842
__deliver_prog_pv(struct kvm_vcpu * vcpu,u16 code)843 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
844 {
845 switch (code) {
846 case PGM_SPECIFICATION:
847 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
848 break;
849 case PGM_OPERAND:
850 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
851 break;
852 default:
853 return -EINVAL;
854 }
855 return 0;
856 }
857
__deliver_prog(struct kvm_vcpu * vcpu)858 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
859 {
860 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
861 struct kvm_s390_pgm_info pgm_info;
862 int rc = 0, nullifying = false;
863 u16 ilen;
864
865 spin_lock(&li->lock);
866 pgm_info = li->irq.pgm;
867 clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
868 memset(&li->irq.pgm, 0, sizeof(pgm_info));
869 spin_unlock(&li->lock);
870
871 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
872 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
873 pgm_info.code, ilen);
874 vcpu->stat.deliver_program++;
875 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
876 pgm_info.code, 0);
877
878 /* PER is handled by the ultravisor */
879 if (kvm_s390_pv_cpu_is_protected(vcpu))
880 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
881
882 switch (pgm_info.code & ~PGM_PER) {
883 case PGM_AFX_TRANSLATION:
884 case PGM_ASX_TRANSLATION:
885 case PGM_EX_TRANSLATION:
886 case PGM_LFX_TRANSLATION:
887 case PGM_LSTE_SEQUENCE:
888 case PGM_LSX_TRANSLATION:
889 case PGM_LX_TRANSLATION:
890 case PGM_PRIMARY_AUTHORITY:
891 case PGM_SECONDARY_AUTHORITY:
892 nullifying = true;
893 fallthrough;
894 case PGM_SPACE_SWITCH:
895 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
896 (u64 *)__LC_TRANS_EXC_CODE);
897 break;
898 case PGM_ALEN_TRANSLATION:
899 case PGM_ALE_SEQUENCE:
900 case PGM_ASTE_INSTANCE:
901 case PGM_ASTE_SEQUENCE:
902 case PGM_ASTE_VALIDITY:
903 case PGM_EXTENDED_AUTHORITY:
904 rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
905 (u8 *)__LC_EXC_ACCESS_ID);
906 nullifying = true;
907 break;
908 case PGM_ASCE_TYPE:
909 case PGM_PAGE_TRANSLATION:
910 case PGM_REGION_FIRST_TRANS:
911 case PGM_REGION_SECOND_TRANS:
912 case PGM_REGION_THIRD_TRANS:
913 case PGM_SEGMENT_TRANSLATION:
914 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
915 (u64 *)__LC_TRANS_EXC_CODE);
916 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
917 (u8 *)__LC_EXC_ACCESS_ID);
918 rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
919 (u8 *)__LC_OP_ACCESS_ID);
920 nullifying = true;
921 break;
922 case PGM_MONITOR:
923 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
924 (u16 *)__LC_MON_CLASS_NR);
925 rc |= put_guest_lc(vcpu, pgm_info.mon_code,
926 (u64 *)__LC_MON_CODE);
927 break;
928 case PGM_VECTOR_PROCESSING:
929 case PGM_DATA:
930 rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
931 (u32 *)__LC_DATA_EXC_CODE);
932 break;
933 case PGM_PROTECTION:
934 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
935 (u64 *)__LC_TRANS_EXC_CODE);
936 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
937 (u8 *)__LC_EXC_ACCESS_ID);
938 break;
939 case PGM_STACK_FULL:
940 case PGM_STACK_EMPTY:
941 case PGM_STACK_SPECIFICATION:
942 case PGM_STACK_TYPE:
943 case PGM_STACK_OPERATION:
944 case PGM_TRACE_TABEL:
945 case PGM_CRYPTO_OPERATION:
946 nullifying = true;
947 break;
948 }
949
950 if (pgm_info.code & PGM_PER) {
951 rc |= put_guest_lc(vcpu, pgm_info.per_code,
952 (u8 *) __LC_PER_CODE);
953 rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
954 (u8 *)__LC_PER_ATMID);
955 rc |= put_guest_lc(vcpu, pgm_info.per_address,
956 (u64 *) __LC_PER_ADDRESS);
957 rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
958 (u8 *) __LC_PER_ACCESS_ID);
959 }
960
961 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
962 kvm_s390_rewind_psw(vcpu, ilen);
963
964 /* bit 1+2 of the target are the ilc, so we can directly use ilen */
965 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
966 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
967 (u64 *) __LC_LAST_BREAK);
968 rc |= put_guest_lc(vcpu, pgm_info.code,
969 (u16 *)__LC_PGM_INT_CODE);
970 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
971 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
972 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
973 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
974 return rc ? -EFAULT : 0;
975 }
976
977 #define SCCB_MASK 0xFFFFFFF8
978 #define SCCB_EVENT_PENDING 0x3
979
write_sclp(struct kvm_vcpu * vcpu,u32 parm)980 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
981 {
982 int rc;
983
984 if (kvm_s390_pv_cpu_get_handle(vcpu)) {
985 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
986 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
987 vcpu->arch.sie_block->eiparams = parm;
988 return 0;
989 }
990
991 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
992 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
993 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
994 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
995 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
996 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
997 rc |= put_guest_lc(vcpu, parm,
998 (u32 *)__LC_EXT_PARAMS);
999
1000 return rc ? -EFAULT : 0;
1001 }
1002
__deliver_service(struct kvm_vcpu * vcpu)1003 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
1004 {
1005 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1006 struct kvm_s390_ext_info ext;
1007
1008 spin_lock(&fi->lock);
1009 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1010 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1011 spin_unlock(&fi->lock);
1012 return 0;
1013 }
1014 ext = fi->srv_signal;
1015 memset(&fi->srv_signal, 0, sizeof(ext));
1016 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1017 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1018 if (kvm_s390_pv_cpu_is_protected(vcpu))
1019 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1020 spin_unlock(&fi->lock);
1021
1022 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1023 ext.ext_params);
1024 vcpu->stat.deliver_service_signal++;
1025 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1026 ext.ext_params, 0);
1027
1028 return write_sclp(vcpu, ext.ext_params);
1029 }
1030
__deliver_service_ev(struct kvm_vcpu * vcpu)1031 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1032 {
1033 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1034 struct kvm_s390_ext_info ext;
1035
1036 spin_lock(&fi->lock);
1037 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1038 spin_unlock(&fi->lock);
1039 return 0;
1040 }
1041 ext = fi->srv_signal;
1042 /* only clear the event bit */
1043 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1044 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1045 spin_unlock(&fi->lock);
1046
1047 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1048 vcpu->stat.deliver_service_signal++;
1049 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1050 ext.ext_params, 0);
1051
1052 return write_sclp(vcpu, SCCB_EVENT_PENDING);
1053 }
1054
__deliver_pfault_done(struct kvm_vcpu * vcpu)1055 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1056 {
1057 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1058 struct kvm_s390_interrupt_info *inti;
1059 int rc = 0;
1060
1061 spin_lock(&fi->lock);
1062 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1063 struct kvm_s390_interrupt_info,
1064 list);
1065 if (inti) {
1066 list_del(&inti->list);
1067 fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1068 }
1069 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1070 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1071 spin_unlock(&fi->lock);
1072
1073 if (inti) {
1074 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1075 KVM_S390_INT_PFAULT_DONE, 0,
1076 inti->ext.ext_params2);
1077 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1078 inti->ext.ext_params2);
1079
1080 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1081 (u16 *)__LC_EXT_INT_CODE);
1082 rc |= put_guest_lc(vcpu, PFAULT_DONE,
1083 (u16 *)__LC_EXT_CPU_ADDR);
1084 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1085 &vcpu->arch.sie_block->gpsw,
1086 sizeof(psw_t));
1087 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1088 &vcpu->arch.sie_block->gpsw,
1089 sizeof(psw_t));
1090 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1091 (u64 *)__LC_EXT_PARAMS2);
1092 kfree(inti);
1093 }
1094 return rc ? -EFAULT : 0;
1095 }
1096
__deliver_virtio(struct kvm_vcpu * vcpu)1097 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1098 {
1099 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1100 struct kvm_s390_interrupt_info *inti;
1101 int rc = 0;
1102
1103 spin_lock(&fi->lock);
1104 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1105 struct kvm_s390_interrupt_info,
1106 list);
1107 if (inti) {
1108 VCPU_EVENT(vcpu, 4,
1109 "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1110 inti->ext.ext_params, inti->ext.ext_params2);
1111 vcpu->stat.deliver_virtio++;
1112 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1113 inti->type,
1114 inti->ext.ext_params,
1115 inti->ext.ext_params2);
1116 list_del(&inti->list);
1117 fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1118 }
1119 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1120 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1121 spin_unlock(&fi->lock);
1122
1123 if (inti) {
1124 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1125 (u16 *)__LC_EXT_INT_CODE);
1126 rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1127 (u16 *)__LC_EXT_CPU_ADDR);
1128 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1129 &vcpu->arch.sie_block->gpsw,
1130 sizeof(psw_t));
1131 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1132 &vcpu->arch.sie_block->gpsw,
1133 sizeof(psw_t));
1134 rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1135 (u32 *)__LC_EXT_PARAMS);
1136 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1137 (u64 *)__LC_EXT_PARAMS2);
1138 kfree(inti);
1139 }
1140 return rc ? -EFAULT : 0;
1141 }
1142
__do_deliver_io(struct kvm_vcpu * vcpu,struct kvm_s390_io_info * io)1143 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1144 {
1145 int rc;
1146
1147 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1148 vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1149 vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1150 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1151 vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1152 vcpu->arch.sie_block->io_int_word = io->io_int_word;
1153 return 0;
1154 }
1155
1156 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1157 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1158 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1159 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1160 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1161 &vcpu->arch.sie_block->gpsw,
1162 sizeof(psw_t));
1163 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1164 &vcpu->arch.sie_block->gpsw,
1165 sizeof(psw_t));
1166 return rc ? -EFAULT : 0;
1167 }
1168
__deliver_io(struct kvm_vcpu * vcpu,unsigned long irq_type)1169 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1170 unsigned long irq_type)
1171 {
1172 struct list_head *isc_list;
1173 struct kvm_s390_float_interrupt *fi;
1174 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1175 struct kvm_s390_interrupt_info *inti = NULL;
1176 struct kvm_s390_io_info io;
1177 u32 isc;
1178 int rc = 0;
1179
1180 fi = &vcpu->kvm->arch.float_int;
1181
1182 spin_lock(&fi->lock);
1183 isc = irq_type_to_isc(irq_type);
1184 isc_list = &fi->lists[isc];
1185 inti = list_first_entry_or_null(isc_list,
1186 struct kvm_s390_interrupt_info,
1187 list);
1188 if (inti) {
1189 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1190 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1191 else
1192 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1193 inti->io.subchannel_id >> 8,
1194 inti->io.subchannel_id >> 1 & 0x3,
1195 inti->io.subchannel_nr);
1196
1197 vcpu->stat.deliver_io++;
1198 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1199 inti->type,
1200 ((__u32)inti->io.subchannel_id << 16) |
1201 inti->io.subchannel_nr,
1202 ((__u64)inti->io.io_int_parm << 32) |
1203 inti->io.io_int_word);
1204 list_del(&inti->list);
1205 fi->counters[FIRQ_CNTR_IO] -= 1;
1206 }
1207 if (list_empty(isc_list))
1208 clear_bit(irq_type, &fi->pending_irqs);
1209 spin_unlock(&fi->lock);
1210
1211 if (inti) {
1212 rc = __do_deliver_io(vcpu, &(inti->io));
1213 kfree(inti);
1214 goto out;
1215 }
1216
1217 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1218 /*
1219 * in case an adapter interrupt was not delivered
1220 * in SIE context KVM will handle the delivery
1221 */
1222 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1223 memset(&io, 0, sizeof(io));
1224 io.io_int_word = isc_to_int_word(isc);
1225 vcpu->stat.deliver_io++;
1226 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1227 KVM_S390_INT_IO(1, 0, 0, 0),
1228 ((__u32)io.subchannel_id << 16) |
1229 io.subchannel_nr,
1230 ((__u64)io.io_int_parm << 32) |
1231 io.io_int_word);
1232 rc = __do_deliver_io(vcpu, &io);
1233 }
1234 out:
1235 return rc;
1236 }
1237
1238 /* Check whether an external call is pending (deliverable or not) */
kvm_s390_ext_call_pending(struct kvm_vcpu * vcpu)1239 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1240 {
1241 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1242
1243 if (!sclp.has_sigpif)
1244 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1245
1246 return sca_ext_call_pending(vcpu, NULL);
1247 }
1248
kvm_s390_vcpu_has_irq(struct kvm_vcpu * vcpu,int exclude_stop)1249 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1250 {
1251 if (deliverable_irqs(vcpu))
1252 return 1;
1253
1254 if (kvm_cpu_has_pending_timer(vcpu))
1255 return 1;
1256
1257 /* external call pending and deliverable */
1258 if (kvm_s390_ext_call_pending(vcpu) &&
1259 !psw_extint_disabled(vcpu) &&
1260 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1261 return 1;
1262
1263 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1264 return 1;
1265 return 0;
1266 }
1267
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1268 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1269 {
1270 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1271 }
1272
__calculate_sltime(struct kvm_vcpu * vcpu)1273 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1274 {
1275 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1276 const u64 ckc = vcpu->arch.sie_block->ckc;
1277 u64 cputm, sltime = 0;
1278
1279 if (ckc_interrupts_enabled(vcpu)) {
1280 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1281 if ((s64)now < (s64)ckc)
1282 sltime = tod_to_ns((s64)ckc - (s64)now);
1283 } else if (now < ckc) {
1284 sltime = tod_to_ns(ckc - now);
1285 }
1286 /* already expired */
1287 if (!sltime)
1288 return 0;
1289 if (cpu_timer_interrupts_enabled(vcpu)) {
1290 cputm = kvm_s390_get_cpu_timer(vcpu);
1291 /* already expired? */
1292 if (cputm >> 63)
1293 return 0;
1294 return min_t(u64, sltime, tod_to_ns(cputm));
1295 }
1296 } else if (cpu_timer_interrupts_enabled(vcpu)) {
1297 sltime = kvm_s390_get_cpu_timer(vcpu);
1298 /* already expired? */
1299 if (sltime >> 63)
1300 return 0;
1301 }
1302 return sltime;
1303 }
1304
kvm_s390_handle_wait(struct kvm_vcpu * vcpu)1305 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1306 {
1307 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1308 u64 sltime;
1309
1310 vcpu->stat.exit_wait_state++;
1311
1312 /* fast path */
1313 if (kvm_arch_vcpu_runnable(vcpu))
1314 return 0;
1315
1316 if (psw_interrupts_disabled(vcpu)) {
1317 VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1318 return -EOPNOTSUPP; /* disabled wait */
1319 }
1320
1321 if (gi->origin &&
1322 (gisa_get_ipm_or_restore_iam(gi) &
1323 vcpu->arch.sie_block->gcr[6] >> 24))
1324 return 0;
1325
1326 if (!ckc_interrupts_enabled(vcpu) &&
1327 !cpu_timer_interrupts_enabled(vcpu)) {
1328 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1329 __set_cpu_idle(vcpu);
1330 goto no_timer;
1331 }
1332
1333 sltime = __calculate_sltime(vcpu);
1334 if (!sltime)
1335 return 0;
1336
1337 __set_cpu_idle(vcpu);
1338 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1339 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1340 no_timer:
1341 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1342 kvm_vcpu_block(vcpu);
1343 __unset_cpu_idle(vcpu);
1344 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1345
1346 hrtimer_cancel(&vcpu->arch.ckc_timer);
1347 return 0;
1348 }
1349
kvm_s390_vcpu_wakeup(struct kvm_vcpu * vcpu)1350 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1351 {
1352 vcpu->valid_wakeup = true;
1353 kvm_vcpu_wake_up(vcpu);
1354
1355 /*
1356 * The VCPU might not be sleeping but rather executing VSIE. Let's
1357 * kick it, so it leaves the SIE to process the request.
1358 */
1359 kvm_s390_vsie_kick(vcpu);
1360 }
1361
kvm_s390_idle_wakeup(struct hrtimer * timer)1362 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1363 {
1364 struct kvm_vcpu *vcpu;
1365 u64 sltime;
1366
1367 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1368 sltime = __calculate_sltime(vcpu);
1369
1370 /*
1371 * If the monotonic clock runs faster than the tod clock we might be
1372 * woken up too early and have to go back to sleep to avoid deadlocks.
1373 */
1374 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1375 return HRTIMER_RESTART;
1376 kvm_s390_vcpu_wakeup(vcpu);
1377 return HRTIMER_NORESTART;
1378 }
1379
kvm_s390_clear_local_irqs(struct kvm_vcpu * vcpu)1380 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1381 {
1382 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1383
1384 spin_lock(&li->lock);
1385 li->pending_irqs = 0;
1386 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1387 memset(&li->irq, 0, sizeof(li->irq));
1388 spin_unlock(&li->lock);
1389
1390 sca_clear_ext_call(vcpu);
1391 }
1392
kvm_s390_deliver_pending_interrupts(struct kvm_vcpu * vcpu)1393 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1394 {
1395 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1396 int rc = 0;
1397 unsigned long irq_type;
1398 unsigned long irqs;
1399
1400 __reset_intercept_indicators(vcpu);
1401
1402 /* pending ckc conditions might have been invalidated */
1403 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1404 if (ckc_irq_pending(vcpu))
1405 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1406
1407 /* pending cpu timer conditions might have been invalidated */
1408 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1409 if (cpu_timer_irq_pending(vcpu))
1410 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1411
1412 while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1413 /* bits are in the reverse order of interrupt priority */
1414 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1415 switch (irq_type) {
1416 case IRQ_PEND_IO_ISC_0:
1417 case IRQ_PEND_IO_ISC_1:
1418 case IRQ_PEND_IO_ISC_2:
1419 case IRQ_PEND_IO_ISC_3:
1420 case IRQ_PEND_IO_ISC_4:
1421 case IRQ_PEND_IO_ISC_5:
1422 case IRQ_PEND_IO_ISC_6:
1423 case IRQ_PEND_IO_ISC_7:
1424 rc = __deliver_io(vcpu, irq_type);
1425 break;
1426 case IRQ_PEND_MCHK_EX:
1427 case IRQ_PEND_MCHK_REP:
1428 rc = __deliver_machine_check(vcpu);
1429 break;
1430 case IRQ_PEND_PROG:
1431 rc = __deliver_prog(vcpu);
1432 break;
1433 case IRQ_PEND_EXT_EMERGENCY:
1434 rc = __deliver_emergency_signal(vcpu);
1435 break;
1436 case IRQ_PEND_EXT_EXTERNAL:
1437 rc = __deliver_external_call(vcpu);
1438 break;
1439 case IRQ_PEND_EXT_CLOCK_COMP:
1440 rc = __deliver_ckc(vcpu);
1441 break;
1442 case IRQ_PEND_EXT_CPU_TIMER:
1443 rc = __deliver_cpu_timer(vcpu);
1444 break;
1445 case IRQ_PEND_RESTART:
1446 rc = __deliver_restart(vcpu);
1447 break;
1448 case IRQ_PEND_SET_PREFIX:
1449 rc = __deliver_set_prefix(vcpu);
1450 break;
1451 case IRQ_PEND_PFAULT_INIT:
1452 rc = __deliver_pfault_init(vcpu);
1453 break;
1454 case IRQ_PEND_EXT_SERVICE:
1455 rc = __deliver_service(vcpu);
1456 break;
1457 case IRQ_PEND_EXT_SERVICE_EV:
1458 rc = __deliver_service_ev(vcpu);
1459 break;
1460 case IRQ_PEND_PFAULT_DONE:
1461 rc = __deliver_pfault_done(vcpu);
1462 break;
1463 case IRQ_PEND_VIRTIO:
1464 rc = __deliver_virtio(vcpu);
1465 break;
1466 default:
1467 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1468 clear_bit(irq_type, &li->pending_irqs);
1469 }
1470 }
1471
1472 set_intercept_indicators(vcpu);
1473
1474 return rc;
1475 }
1476
__inject_prog(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1477 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1478 {
1479 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1480
1481 vcpu->stat.inject_program++;
1482 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1483 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1484 irq->u.pgm.code, 0);
1485
1486 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1487 /* auto detection if no valid ILC was given */
1488 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1489 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1490 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1491 }
1492
1493 if (irq->u.pgm.code == PGM_PER) {
1494 li->irq.pgm.code |= PGM_PER;
1495 li->irq.pgm.flags = irq->u.pgm.flags;
1496 /* only modify PER related information */
1497 li->irq.pgm.per_address = irq->u.pgm.per_address;
1498 li->irq.pgm.per_code = irq->u.pgm.per_code;
1499 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1500 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1501 } else if (!(irq->u.pgm.code & PGM_PER)) {
1502 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1503 irq->u.pgm.code;
1504 li->irq.pgm.flags = irq->u.pgm.flags;
1505 /* only modify non-PER information */
1506 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1507 li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1508 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1509 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1510 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1511 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1512 } else {
1513 li->irq.pgm = irq->u.pgm;
1514 }
1515 set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1516 return 0;
1517 }
1518
__inject_pfault_init(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1519 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1520 {
1521 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1522
1523 vcpu->stat.inject_pfault_init++;
1524 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1525 irq->u.ext.ext_params2);
1526 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1527 irq->u.ext.ext_params,
1528 irq->u.ext.ext_params2);
1529
1530 li->irq.ext = irq->u.ext;
1531 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1532 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1533 return 0;
1534 }
1535
__inject_extcall(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1536 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1537 {
1538 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1539 struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1540 uint16_t src_id = irq->u.extcall.code;
1541
1542 vcpu->stat.inject_external_call++;
1543 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1544 src_id);
1545 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1546 src_id, 0);
1547
1548 /* sending vcpu invalid */
1549 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1550 return -EINVAL;
1551
1552 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1553 return sca_inject_ext_call(vcpu, src_id);
1554
1555 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1556 return -EBUSY;
1557 *extcall = irq->u.extcall;
1558 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1559 return 0;
1560 }
1561
__inject_set_prefix(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1562 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1563 {
1564 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1565 struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1566
1567 vcpu->stat.inject_set_prefix++;
1568 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1569 irq->u.prefix.address);
1570 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1571 irq->u.prefix.address, 0);
1572
1573 if (!is_vcpu_stopped(vcpu))
1574 return -EBUSY;
1575
1576 *prefix = irq->u.prefix;
1577 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1578 return 0;
1579 }
1580
1581 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
__inject_sigp_stop(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1582 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1583 {
1584 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1585 struct kvm_s390_stop_info *stop = &li->irq.stop;
1586 int rc = 0;
1587
1588 vcpu->stat.inject_stop_signal++;
1589 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1590
1591 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1592 return -EINVAL;
1593
1594 if (is_vcpu_stopped(vcpu)) {
1595 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1596 rc = kvm_s390_store_status_unloaded(vcpu,
1597 KVM_S390_STORE_STATUS_NOADDR);
1598 return rc;
1599 }
1600
1601 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1602 return -EBUSY;
1603 stop->flags = irq->u.stop.flags;
1604 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1605 return 0;
1606 }
1607
__inject_sigp_restart(struct kvm_vcpu * vcpu)1608 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1609 {
1610 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1611
1612 vcpu->stat.inject_restart++;
1613 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1614 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1615
1616 set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1617 return 0;
1618 }
1619
__inject_sigp_emergency(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1620 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1621 struct kvm_s390_irq *irq)
1622 {
1623 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1624
1625 vcpu->stat.inject_emergency_signal++;
1626 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1627 irq->u.emerg.code);
1628 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1629 irq->u.emerg.code, 0);
1630
1631 /* sending vcpu invalid */
1632 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1633 return -EINVAL;
1634
1635 set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1636 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1637 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1638 return 0;
1639 }
1640
__inject_mchk(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1641 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1642 {
1643 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1644 struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1645
1646 vcpu->stat.inject_mchk++;
1647 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1648 irq->u.mchk.mcic);
1649 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1650 irq->u.mchk.mcic);
1651
1652 /*
1653 * Because repressible machine checks can be indicated along with
1654 * exigent machine checks (PoP, Chapter 11, Interruption action)
1655 * we need to combine cr14, mcic and external damage code.
1656 * Failing storage address and the logout area should not be or'ed
1657 * together, we just indicate the last occurrence of the corresponding
1658 * machine check
1659 */
1660 mchk->cr14 |= irq->u.mchk.cr14;
1661 mchk->mcic |= irq->u.mchk.mcic;
1662 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1663 mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1664 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1665 sizeof(mchk->fixed_logout));
1666 if (mchk->mcic & MCHK_EX_MASK)
1667 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1668 else if (mchk->mcic & MCHK_REP_MASK)
1669 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1670 return 0;
1671 }
1672
__inject_ckc(struct kvm_vcpu * vcpu)1673 static int __inject_ckc(struct kvm_vcpu *vcpu)
1674 {
1675 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1676
1677 vcpu->stat.inject_ckc++;
1678 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1679 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1680 0, 0);
1681
1682 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1683 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1684 return 0;
1685 }
1686
__inject_cpu_timer(struct kvm_vcpu * vcpu)1687 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1688 {
1689 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1690
1691 vcpu->stat.inject_cputm++;
1692 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1693 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1694 0, 0);
1695
1696 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1697 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1698 return 0;
1699 }
1700
get_io_int(struct kvm * kvm,int isc,u32 schid)1701 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1702 int isc, u32 schid)
1703 {
1704 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1705 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1706 struct kvm_s390_interrupt_info *iter;
1707 u16 id = (schid & 0xffff0000U) >> 16;
1708 u16 nr = schid & 0x0000ffffU;
1709
1710 spin_lock(&fi->lock);
1711 list_for_each_entry(iter, isc_list, list) {
1712 if (schid && (id != iter->io.subchannel_id ||
1713 nr != iter->io.subchannel_nr))
1714 continue;
1715 /* found an appropriate entry */
1716 list_del_init(&iter->list);
1717 fi->counters[FIRQ_CNTR_IO] -= 1;
1718 if (list_empty(isc_list))
1719 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1720 spin_unlock(&fi->lock);
1721 return iter;
1722 }
1723 spin_unlock(&fi->lock);
1724 return NULL;
1725 }
1726
get_top_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1727 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1728 u64 isc_mask, u32 schid)
1729 {
1730 struct kvm_s390_interrupt_info *inti = NULL;
1731 int isc;
1732
1733 for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1734 if (isc_mask & isc_to_isc_bits(isc))
1735 inti = get_io_int(kvm, isc, schid);
1736 }
1737 return inti;
1738 }
1739
get_top_gisa_isc(struct kvm * kvm,u64 isc_mask,u32 schid)1740 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1741 {
1742 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1743 unsigned long active_mask;
1744 int isc;
1745
1746 if (schid)
1747 goto out;
1748 if (!gi->origin)
1749 goto out;
1750
1751 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1752 while (active_mask) {
1753 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1754 if (gisa_tac_ipm_gisc(gi->origin, isc))
1755 return isc;
1756 clear_bit_inv(isc, &active_mask);
1757 }
1758 out:
1759 return -EINVAL;
1760 }
1761
1762 /*
1763 * Dequeue and return an I/O interrupt matching any of the interruption
1764 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1765 * Take into account the interrupts pending in the interrupt list and in GISA.
1766 *
1767 * Note that for a guest that does not enable I/O interrupts
1768 * but relies on TPI, a flood of classic interrupts may starve
1769 * out adapter interrupts on the same isc. Linux does not do
1770 * that, and it is possible to work around the issue by configuring
1771 * different iscs for classic and adapter interrupts in the guest,
1772 * but we may want to revisit this in the future.
1773 */
kvm_s390_get_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1774 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1775 u64 isc_mask, u32 schid)
1776 {
1777 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1778 struct kvm_s390_interrupt_info *inti, *tmp_inti;
1779 int isc;
1780
1781 inti = get_top_io_int(kvm, isc_mask, schid);
1782
1783 isc = get_top_gisa_isc(kvm, isc_mask, schid);
1784 if (isc < 0)
1785 /* no AI in GISA */
1786 goto out;
1787
1788 if (!inti)
1789 /* AI in GISA but no classical IO int */
1790 goto gisa_out;
1791
1792 /* both types of interrupts present */
1793 if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1794 /* classical IO int with higher priority */
1795 gisa_set_ipm_gisc(gi->origin, isc);
1796 goto out;
1797 }
1798 gisa_out:
1799 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1800 if (tmp_inti) {
1801 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1802 tmp_inti->io.io_int_word = isc_to_int_word(isc);
1803 if (inti)
1804 kvm_s390_reinject_io_int(kvm, inti);
1805 inti = tmp_inti;
1806 } else
1807 gisa_set_ipm_gisc(gi->origin, isc);
1808 out:
1809 return inti;
1810 }
1811
__inject_service(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1812 static int __inject_service(struct kvm *kvm,
1813 struct kvm_s390_interrupt_info *inti)
1814 {
1815 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1816
1817 kvm->stat.inject_service_signal++;
1818 spin_lock(&fi->lock);
1819 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1820
1821 /* We always allow events, track them separately from the sccb ints */
1822 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1823 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1824
1825 /*
1826 * Early versions of the QEMU s390 bios will inject several
1827 * service interrupts after another without handling a
1828 * condition code indicating busy.
1829 * We will silently ignore those superfluous sccb values.
1830 * A future version of QEMU will take care of serialization
1831 * of servc requests
1832 */
1833 if (fi->srv_signal.ext_params & SCCB_MASK)
1834 goto out;
1835 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1836 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1837 out:
1838 spin_unlock(&fi->lock);
1839 kfree(inti);
1840 return 0;
1841 }
1842
__inject_virtio(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1843 static int __inject_virtio(struct kvm *kvm,
1844 struct kvm_s390_interrupt_info *inti)
1845 {
1846 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1847
1848 kvm->stat.inject_virtio++;
1849 spin_lock(&fi->lock);
1850 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1851 spin_unlock(&fi->lock);
1852 return -EBUSY;
1853 }
1854 fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1855 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1856 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1857 spin_unlock(&fi->lock);
1858 return 0;
1859 }
1860
__inject_pfault_done(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1861 static int __inject_pfault_done(struct kvm *kvm,
1862 struct kvm_s390_interrupt_info *inti)
1863 {
1864 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1865
1866 kvm->stat.inject_pfault_done++;
1867 spin_lock(&fi->lock);
1868 if (fi->counters[FIRQ_CNTR_PFAULT] >=
1869 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1870 spin_unlock(&fi->lock);
1871 return -EBUSY;
1872 }
1873 fi->counters[FIRQ_CNTR_PFAULT] += 1;
1874 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1875 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1876 spin_unlock(&fi->lock);
1877 return 0;
1878 }
1879
1880 #define CR_PENDING_SUBCLASS 28
__inject_float_mchk(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1881 static int __inject_float_mchk(struct kvm *kvm,
1882 struct kvm_s390_interrupt_info *inti)
1883 {
1884 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1885
1886 kvm->stat.inject_float_mchk++;
1887 spin_lock(&fi->lock);
1888 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1889 fi->mchk.mcic |= inti->mchk.mcic;
1890 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1891 spin_unlock(&fi->lock);
1892 kfree(inti);
1893 return 0;
1894 }
1895
__inject_io(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1896 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1897 {
1898 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1899 struct kvm_s390_float_interrupt *fi;
1900 struct list_head *list;
1901 int isc;
1902
1903 kvm->stat.inject_io++;
1904 isc = int_word_to_isc(inti->io.io_int_word);
1905
1906 /*
1907 * Do not make use of gisa in protected mode. We do not use the lock
1908 * checking variant as this is just a performance optimization and we
1909 * do not hold the lock here. This is ok as the code will pick
1910 * interrupts from both "lists" for delivery.
1911 */
1912 if (!kvm_s390_pv_get_handle(kvm) &&
1913 gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1914 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1915 gisa_set_ipm_gisc(gi->origin, isc);
1916 kfree(inti);
1917 return 0;
1918 }
1919
1920 fi = &kvm->arch.float_int;
1921 spin_lock(&fi->lock);
1922 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1923 spin_unlock(&fi->lock);
1924 return -EBUSY;
1925 }
1926 fi->counters[FIRQ_CNTR_IO] += 1;
1927
1928 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1929 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1930 else
1931 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1932 inti->io.subchannel_id >> 8,
1933 inti->io.subchannel_id >> 1 & 0x3,
1934 inti->io.subchannel_nr);
1935 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1936 list_add_tail(&inti->list, list);
1937 set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1938 spin_unlock(&fi->lock);
1939 return 0;
1940 }
1941
1942 /*
1943 * Find a destination VCPU for a floating irq and kick it.
1944 */
__floating_irq_kick(struct kvm * kvm,u64 type)1945 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1946 {
1947 struct kvm_vcpu *dst_vcpu;
1948 int sigcpu, online_vcpus, nr_tries = 0;
1949
1950 online_vcpus = atomic_read(&kvm->online_vcpus);
1951 if (!online_vcpus)
1952 return;
1953
1954 /* find idle VCPUs first, then round robin */
1955 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1956 if (sigcpu == online_vcpus) {
1957 do {
1958 sigcpu = kvm->arch.float_int.next_rr_cpu++;
1959 kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1960 /* avoid endless loops if all vcpus are stopped */
1961 if (nr_tries++ >= online_vcpus)
1962 return;
1963 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1964 }
1965 dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1966
1967 /* make the VCPU drop out of the SIE, or wake it up if sleeping */
1968 switch (type) {
1969 case KVM_S390_MCHK:
1970 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1971 break;
1972 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1973 if (!(type & KVM_S390_INT_IO_AI_MASK &&
1974 kvm->arch.gisa_int.origin) ||
1975 kvm_s390_pv_cpu_get_handle(dst_vcpu))
1976 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1977 break;
1978 default:
1979 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1980 break;
1981 }
1982 kvm_s390_vcpu_wakeup(dst_vcpu);
1983 }
1984
__inject_vm(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1985 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1986 {
1987 u64 type = READ_ONCE(inti->type);
1988 int rc;
1989
1990 switch (type) {
1991 case KVM_S390_MCHK:
1992 rc = __inject_float_mchk(kvm, inti);
1993 break;
1994 case KVM_S390_INT_VIRTIO:
1995 rc = __inject_virtio(kvm, inti);
1996 break;
1997 case KVM_S390_INT_SERVICE:
1998 rc = __inject_service(kvm, inti);
1999 break;
2000 case KVM_S390_INT_PFAULT_DONE:
2001 rc = __inject_pfault_done(kvm, inti);
2002 break;
2003 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2004 rc = __inject_io(kvm, inti);
2005 break;
2006 default:
2007 rc = -EINVAL;
2008 }
2009 if (rc)
2010 return rc;
2011
2012 __floating_irq_kick(kvm, type);
2013 return 0;
2014 }
2015
kvm_s390_inject_vm(struct kvm * kvm,struct kvm_s390_interrupt * s390int)2016 int kvm_s390_inject_vm(struct kvm *kvm,
2017 struct kvm_s390_interrupt *s390int)
2018 {
2019 struct kvm_s390_interrupt_info *inti;
2020 int rc;
2021
2022 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2023 if (!inti)
2024 return -ENOMEM;
2025
2026 inti->type = s390int->type;
2027 switch (inti->type) {
2028 case KVM_S390_INT_VIRTIO:
2029 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2030 s390int->parm, s390int->parm64);
2031 inti->ext.ext_params = s390int->parm;
2032 inti->ext.ext_params2 = s390int->parm64;
2033 break;
2034 case KVM_S390_INT_SERVICE:
2035 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2036 inti->ext.ext_params = s390int->parm;
2037 break;
2038 case KVM_S390_INT_PFAULT_DONE:
2039 inti->ext.ext_params2 = s390int->parm64;
2040 break;
2041 case KVM_S390_MCHK:
2042 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2043 s390int->parm64);
2044 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2045 inti->mchk.mcic = s390int->parm64;
2046 break;
2047 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2048 inti->io.subchannel_id = s390int->parm >> 16;
2049 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2050 inti->io.io_int_parm = s390int->parm64 >> 32;
2051 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2052 break;
2053 default:
2054 kfree(inti);
2055 return -EINVAL;
2056 }
2057 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2058 2);
2059
2060 rc = __inject_vm(kvm, inti);
2061 if (rc)
2062 kfree(inti);
2063 return rc;
2064 }
2065
kvm_s390_reinject_io_int(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)2066 int kvm_s390_reinject_io_int(struct kvm *kvm,
2067 struct kvm_s390_interrupt_info *inti)
2068 {
2069 return __inject_vm(kvm, inti);
2070 }
2071
s390int_to_s390irq(struct kvm_s390_interrupt * s390int,struct kvm_s390_irq * irq)2072 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2073 struct kvm_s390_irq *irq)
2074 {
2075 irq->type = s390int->type;
2076 switch (irq->type) {
2077 case KVM_S390_PROGRAM_INT:
2078 if (s390int->parm & 0xffff0000)
2079 return -EINVAL;
2080 irq->u.pgm.code = s390int->parm;
2081 break;
2082 case KVM_S390_SIGP_SET_PREFIX:
2083 irq->u.prefix.address = s390int->parm;
2084 break;
2085 case KVM_S390_SIGP_STOP:
2086 irq->u.stop.flags = s390int->parm;
2087 break;
2088 case KVM_S390_INT_EXTERNAL_CALL:
2089 if (s390int->parm & 0xffff0000)
2090 return -EINVAL;
2091 irq->u.extcall.code = s390int->parm;
2092 break;
2093 case KVM_S390_INT_EMERGENCY:
2094 if (s390int->parm & 0xffff0000)
2095 return -EINVAL;
2096 irq->u.emerg.code = s390int->parm;
2097 break;
2098 case KVM_S390_MCHK:
2099 irq->u.mchk.mcic = s390int->parm64;
2100 break;
2101 case KVM_S390_INT_PFAULT_INIT:
2102 irq->u.ext.ext_params = s390int->parm;
2103 irq->u.ext.ext_params2 = s390int->parm64;
2104 break;
2105 case KVM_S390_RESTART:
2106 case KVM_S390_INT_CLOCK_COMP:
2107 case KVM_S390_INT_CPU_TIMER:
2108 break;
2109 default:
2110 return -EINVAL;
2111 }
2112 return 0;
2113 }
2114
kvm_s390_is_stop_irq_pending(struct kvm_vcpu * vcpu)2115 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2116 {
2117 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2118
2119 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2120 }
2121
kvm_s390_is_restart_irq_pending(struct kvm_vcpu * vcpu)2122 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2123 {
2124 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2125
2126 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2127 }
2128
kvm_s390_clear_stop_irq(struct kvm_vcpu * vcpu)2129 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2130 {
2131 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2132
2133 spin_lock(&li->lock);
2134 li->irq.stop.flags = 0;
2135 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2136 spin_unlock(&li->lock);
2137 }
2138
do_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2139 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2140 {
2141 int rc;
2142
2143 switch (irq->type) {
2144 case KVM_S390_PROGRAM_INT:
2145 rc = __inject_prog(vcpu, irq);
2146 break;
2147 case KVM_S390_SIGP_SET_PREFIX:
2148 rc = __inject_set_prefix(vcpu, irq);
2149 break;
2150 case KVM_S390_SIGP_STOP:
2151 rc = __inject_sigp_stop(vcpu, irq);
2152 break;
2153 case KVM_S390_RESTART:
2154 rc = __inject_sigp_restart(vcpu);
2155 break;
2156 case KVM_S390_INT_CLOCK_COMP:
2157 rc = __inject_ckc(vcpu);
2158 break;
2159 case KVM_S390_INT_CPU_TIMER:
2160 rc = __inject_cpu_timer(vcpu);
2161 break;
2162 case KVM_S390_INT_EXTERNAL_CALL:
2163 rc = __inject_extcall(vcpu, irq);
2164 break;
2165 case KVM_S390_INT_EMERGENCY:
2166 rc = __inject_sigp_emergency(vcpu, irq);
2167 break;
2168 case KVM_S390_MCHK:
2169 rc = __inject_mchk(vcpu, irq);
2170 break;
2171 case KVM_S390_INT_PFAULT_INIT:
2172 rc = __inject_pfault_init(vcpu, irq);
2173 break;
2174 case KVM_S390_INT_VIRTIO:
2175 case KVM_S390_INT_SERVICE:
2176 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2177 default:
2178 rc = -EINVAL;
2179 }
2180
2181 return rc;
2182 }
2183
kvm_s390_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2184 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2185 {
2186 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2187 int rc;
2188
2189 spin_lock(&li->lock);
2190 rc = do_inject_vcpu(vcpu, irq);
2191 spin_unlock(&li->lock);
2192 if (!rc)
2193 kvm_s390_vcpu_wakeup(vcpu);
2194 return rc;
2195 }
2196
clear_irq_list(struct list_head * _list)2197 static inline void clear_irq_list(struct list_head *_list)
2198 {
2199 struct kvm_s390_interrupt_info *inti, *n;
2200
2201 list_for_each_entry_safe(inti, n, _list, list) {
2202 list_del(&inti->list);
2203 kfree(inti);
2204 }
2205 }
2206
inti_to_irq(struct kvm_s390_interrupt_info * inti,struct kvm_s390_irq * irq)2207 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2208 struct kvm_s390_irq *irq)
2209 {
2210 irq->type = inti->type;
2211 switch (inti->type) {
2212 case KVM_S390_INT_PFAULT_INIT:
2213 case KVM_S390_INT_PFAULT_DONE:
2214 case KVM_S390_INT_VIRTIO:
2215 irq->u.ext = inti->ext;
2216 break;
2217 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2218 irq->u.io = inti->io;
2219 break;
2220 }
2221 }
2222
kvm_s390_clear_float_irqs(struct kvm * kvm)2223 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2224 {
2225 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2226 int i;
2227
2228 mutex_lock(&kvm->lock);
2229 if (!kvm_s390_pv_is_protected(kvm))
2230 fi->masked_irqs = 0;
2231 mutex_unlock(&kvm->lock);
2232 spin_lock(&fi->lock);
2233 fi->pending_irqs = 0;
2234 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2235 memset(&fi->mchk, 0, sizeof(fi->mchk));
2236 for (i = 0; i < FIRQ_LIST_COUNT; i++)
2237 clear_irq_list(&fi->lists[i]);
2238 for (i = 0; i < FIRQ_MAX_COUNT; i++)
2239 fi->counters[i] = 0;
2240 spin_unlock(&fi->lock);
2241 kvm_s390_gisa_clear(kvm);
2242 };
2243
get_all_floating_irqs(struct kvm * kvm,u8 __user * usrbuf,u64 len)2244 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2245 {
2246 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2247 struct kvm_s390_interrupt_info *inti;
2248 struct kvm_s390_float_interrupt *fi;
2249 struct kvm_s390_irq *buf;
2250 struct kvm_s390_irq *irq;
2251 int max_irqs;
2252 int ret = 0;
2253 int n = 0;
2254 int i;
2255
2256 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2257 return -EINVAL;
2258
2259 /*
2260 * We are already using -ENOMEM to signal
2261 * userspace it may retry with a bigger buffer,
2262 * so we need to use something else for this case
2263 */
2264 buf = vzalloc(len);
2265 if (!buf)
2266 return -ENOBUFS;
2267
2268 max_irqs = len / sizeof(struct kvm_s390_irq);
2269
2270 if (gi->origin && gisa_get_ipm(gi->origin)) {
2271 for (i = 0; i <= MAX_ISC; i++) {
2272 if (n == max_irqs) {
2273 /* signal userspace to try again */
2274 ret = -ENOMEM;
2275 goto out_nolock;
2276 }
2277 if (gisa_tac_ipm_gisc(gi->origin, i)) {
2278 irq = (struct kvm_s390_irq *) &buf[n];
2279 irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2280 irq->u.io.io_int_word = isc_to_int_word(i);
2281 n++;
2282 }
2283 }
2284 }
2285 fi = &kvm->arch.float_int;
2286 spin_lock(&fi->lock);
2287 for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2288 list_for_each_entry(inti, &fi->lists[i], list) {
2289 if (n == max_irqs) {
2290 /* signal userspace to try again */
2291 ret = -ENOMEM;
2292 goto out;
2293 }
2294 inti_to_irq(inti, &buf[n]);
2295 n++;
2296 }
2297 }
2298 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2299 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2300 if (n == max_irqs) {
2301 /* signal userspace to try again */
2302 ret = -ENOMEM;
2303 goto out;
2304 }
2305 irq = (struct kvm_s390_irq *) &buf[n];
2306 irq->type = KVM_S390_INT_SERVICE;
2307 irq->u.ext = fi->srv_signal;
2308 n++;
2309 }
2310 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2311 if (n == max_irqs) {
2312 /* signal userspace to try again */
2313 ret = -ENOMEM;
2314 goto out;
2315 }
2316 irq = (struct kvm_s390_irq *) &buf[n];
2317 irq->type = KVM_S390_MCHK;
2318 irq->u.mchk = fi->mchk;
2319 n++;
2320 }
2321
2322 out:
2323 spin_unlock(&fi->lock);
2324 out_nolock:
2325 if (!ret && n > 0) {
2326 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2327 ret = -EFAULT;
2328 }
2329 vfree(buf);
2330
2331 return ret < 0 ? ret : n;
2332 }
2333
flic_ais_mode_get_all(struct kvm * kvm,struct kvm_device_attr * attr)2334 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2335 {
2336 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2337 struct kvm_s390_ais_all ais;
2338
2339 if (attr->attr < sizeof(ais))
2340 return -EINVAL;
2341
2342 if (!test_kvm_facility(kvm, 72))
2343 return -EOPNOTSUPP;
2344
2345 mutex_lock(&fi->ais_lock);
2346 ais.simm = fi->simm;
2347 ais.nimm = fi->nimm;
2348 mutex_unlock(&fi->ais_lock);
2349
2350 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2351 return -EFAULT;
2352
2353 return 0;
2354 }
2355
flic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2356 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2357 {
2358 int r;
2359
2360 switch (attr->group) {
2361 case KVM_DEV_FLIC_GET_ALL_IRQS:
2362 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2363 attr->attr);
2364 break;
2365 case KVM_DEV_FLIC_AISM_ALL:
2366 r = flic_ais_mode_get_all(dev->kvm, attr);
2367 break;
2368 default:
2369 r = -EINVAL;
2370 }
2371
2372 return r;
2373 }
2374
copy_irq_from_user(struct kvm_s390_interrupt_info * inti,u64 addr)2375 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2376 u64 addr)
2377 {
2378 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2379 void *target = NULL;
2380 void __user *source;
2381 u64 size;
2382
2383 if (get_user(inti->type, (u64 __user *)addr))
2384 return -EFAULT;
2385
2386 switch (inti->type) {
2387 case KVM_S390_INT_PFAULT_INIT:
2388 case KVM_S390_INT_PFAULT_DONE:
2389 case KVM_S390_INT_VIRTIO:
2390 case KVM_S390_INT_SERVICE:
2391 target = (void *) &inti->ext;
2392 source = &uptr->u.ext;
2393 size = sizeof(inti->ext);
2394 break;
2395 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2396 target = (void *) &inti->io;
2397 source = &uptr->u.io;
2398 size = sizeof(inti->io);
2399 break;
2400 case KVM_S390_MCHK:
2401 target = (void *) &inti->mchk;
2402 source = &uptr->u.mchk;
2403 size = sizeof(inti->mchk);
2404 break;
2405 default:
2406 return -EINVAL;
2407 }
2408
2409 if (copy_from_user(target, source, size))
2410 return -EFAULT;
2411
2412 return 0;
2413 }
2414
enqueue_floating_irq(struct kvm_device * dev,struct kvm_device_attr * attr)2415 static int enqueue_floating_irq(struct kvm_device *dev,
2416 struct kvm_device_attr *attr)
2417 {
2418 struct kvm_s390_interrupt_info *inti = NULL;
2419 int r = 0;
2420 int len = attr->attr;
2421
2422 if (len % sizeof(struct kvm_s390_irq) != 0)
2423 return -EINVAL;
2424 else if (len > KVM_S390_FLIC_MAX_BUFFER)
2425 return -EINVAL;
2426
2427 while (len >= sizeof(struct kvm_s390_irq)) {
2428 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2429 if (!inti)
2430 return -ENOMEM;
2431
2432 r = copy_irq_from_user(inti, attr->addr);
2433 if (r) {
2434 kfree(inti);
2435 return r;
2436 }
2437 r = __inject_vm(dev->kvm, inti);
2438 if (r) {
2439 kfree(inti);
2440 return r;
2441 }
2442 len -= sizeof(struct kvm_s390_irq);
2443 attr->addr += sizeof(struct kvm_s390_irq);
2444 }
2445
2446 return r;
2447 }
2448
get_io_adapter(struct kvm * kvm,unsigned int id)2449 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2450 {
2451 if (id >= MAX_S390_IO_ADAPTERS)
2452 return NULL;
2453 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2454 return kvm->arch.adapters[id];
2455 }
2456
register_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2457 static int register_io_adapter(struct kvm_device *dev,
2458 struct kvm_device_attr *attr)
2459 {
2460 struct s390_io_adapter *adapter;
2461 struct kvm_s390_io_adapter adapter_info;
2462
2463 if (copy_from_user(&adapter_info,
2464 (void __user *)attr->addr, sizeof(adapter_info)))
2465 return -EFAULT;
2466
2467 if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2468 return -EINVAL;
2469
2470 adapter_info.id = array_index_nospec(adapter_info.id,
2471 MAX_S390_IO_ADAPTERS);
2472
2473 if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2474 return -EINVAL;
2475
2476 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2477 if (!adapter)
2478 return -ENOMEM;
2479
2480 adapter->id = adapter_info.id;
2481 adapter->isc = adapter_info.isc;
2482 adapter->maskable = adapter_info.maskable;
2483 adapter->masked = false;
2484 adapter->swap = adapter_info.swap;
2485 adapter->suppressible = (adapter_info.flags) &
2486 KVM_S390_ADAPTER_SUPPRESSIBLE;
2487 dev->kvm->arch.adapters[adapter->id] = adapter;
2488
2489 return 0;
2490 }
2491
kvm_s390_mask_adapter(struct kvm * kvm,unsigned int id,bool masked)2492 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2493 {
2494 int ret;
2495 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2496
2497 if (!adapter || !adapter->maskable)
2498 return -EINVAL;
2499 ret = adapter->masked;
2500 adapter->masked = masked;
2501 return ret;
2502 }
2503
kvm_s390_destroy_adapters(struct kvm * kvm)2504 void kvm_s390_destroy_adapters(struct kvm *kvm)
2505 {
2506 int i;
2507
2508 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2509 kfree(kvm->arch.adapters[i]);
2510 }
2511
modify_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2512 static int modify_io_adapter(struct kvm_device *dev,
2513 struct kvm_device_attr *attr)
2514 {
2515 struct kvm_s390_io_adapter_req req;
2516 struct s390_io_adapter *adapter;
2517 int ret;
2518
2519 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2520 return -EFAULT;
2521
2522 adapter = get_io_adapter(dev->kvm, req.id);
2523 if (!adapter)
2524 return -EINVAL;
2525 switch (req.type) {
2526 case KVM_S390_IO_ADAPTER_MASK:
2527 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2528 if (ret > 0)
2529 ret = 0;
2530 break;
2531 /*
2532 * The following operations are no longer needed and therefore no-ops.
2533 * The gpa to hva translation is done when an IRQ route is set up. The
2534 * set_irq code uses get_user_pages_remote() to do the actual write.
2535 */
2536 case KVM_S390_IO_ADAPTER_MAP:
2537 case KVM_S390_IO_ADAPTER_UNMAP:
2538 ret = 0;
2539 break;
2540 default:
2541 ret = -EINVAL;
2542 }
2543
2544 return ret;
2545 }
2546
clear_io_irq(struct kvm * kvm,struct kvm_device_attr * attr)2547 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2548
2549 {
2550 const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2551 u32 schid;
2552
2553 if (attr->flags)
2554 return -EINVAL;
2555 if (attr->attr != sizeof(schid))
2556 return -EINVAL;
2557 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2558 return -EFAULT;
2559 if (!schid)
2560 return -EINVAL;
2561 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2562 /*
2563 * If userspace is conforming to the architecture, we can have at most
2564 * one pending I/O interrupt per subchannel, so this is effectively a
2565 * clear all.
2566 */
2567 return 0;
2568 }
2569
modify_ais_mode(struct kvm * kvm,struct kvm_device_attr * attr)2570 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2571 {
2572 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2573 struct kvm_s390_ais_req req;
2574 int ret = 0;
2575
2576 if (!test_kvm_facility(kvm, 72))
2577 return -EOPNOTSUPP;
2578
2579 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2580 return -EFAULT;
2581
2582 if (req.isc > MAX_ISC)
2583 return -EINVAL;
2584
2585 trace_kvm_s390_modify_ais_mode(req.isc,
2586 (fi->simm & AIS_MODE_MASK(req.isc)) ?
2587 (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2588 2 : KVM_S390_AIS_MODE_SINGLE :
2589 KVM_S390_AIS_MODE_ALL, req.mode);
2590
2591 mutex_lock(&fi->ais_lock);
2592 switch (req.mode) {
2593 case KVM_S390_AIS_MODE_ALL:
2594 fi->simm &= ~AIS_MODE_MASK(req.isc);
2595 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2596 break;
2597 case KVM_S390_AIS_MODE_SINGLE:
2598 fi->simm |= AIS_MODE_MASK(req.isc);
2599 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2600 break;
2601 default:
2602 ret = -EINVAL;
2603 }
2604 mutex_unlock(&fi->ais_lock);
2605
2606 return ret;
2607 }
2608
kvm_s390_inject_airq(struct kvm * kvm,struct s390_io_adapter * adapter)2609 static int kvm_s390_inject_airq(struct kvm *kvm,
2610 struct s390_io_adapter *adapter)
2611 {
2612 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2613 struct kvm_s390_interrupt s390int = {
2614 .type = KVM_S390_INT_IO(1, 0, 0, 0),
2615 .parm = 0,
2616 .parm64 = isc_to_int_word(adapter->isc),
2617 };
2618 int ret = 0;
2619
2620 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2621 return kvm_s390_inject_vm(kvm, &s390int);
2622
2623 mutex_lock(&fi->ais_lock);
2624 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2625 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2626 goto out;
2627 }
2628
2629 ret = kvm_s390_inject_vm(kvm, &s390int);
2630 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2631 fi->nimm |= AIS_MODE_MASK(adapter->isc);
2632 trace_kvm_s390_modify_ais_mode(adapter->isc,
2633 KVM_S390_AIS_MODE_SINGLE, 2);
2634 }
2635 out:
2636 mutex_unlock(&fi->ais_lock);
2637 return ret;
2638 }
2639
flic_inject_airq(struct kvm * kvm,struct kvm_device_attr * attr)2640 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2641 {
2642 unsigned int id = attr->attr;
2643 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2644
2645 if (!adapter)
2646 return -EINVAL;
2647
2648 return kvm_s390_inject_airq(kvm, adapter);
2649 }
2650
flic_ais_mode_set_all(struct kvm * kvm,struct kvm_device_attr * attr)2651 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2652 {
2653 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2654 struct kvm_s390_ais_all ais;
2655
2656 if (!test_kvm_facility(kvm, 72))
2657 return -EOPNOTSUPP;
2658
2659 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2660 return -EFAULT;
2661
2662 mutex_lock(&fi->ais_lock);
2663 fi->simm = ais.simm;
2664 fi->nimm = ais.nimm;
2665 mutex_unlock(&fi->ais_lock);
2666
2667 return 0;
2668 }
2669
flic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2670 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2671 {
2672 int r = 0;
2673 unsigned long i;
2674 struct kvm_vcpu *vcpu;
2675
2676 switch (attr->group) {
2677 case KVM_DEV_FLIC_ENQUEUE:
2678 r = enqueue_floating_irq(dev, attr);
2679 break;
2680 case KVM_DEV_FLIC_CLEAR_IRQS:
2681 kvm_s390_clear_float_irqs(dev->kvm);
2682 break;
2683 case KVM_DEV_FLIC_APF_ENABLE:
2684 dev->kvm->arch.gmap->pfault_enabled = 1;
2685 break;
2686 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2687 dev->kvm->arch.gmap->pfault_enabled = 0;
2688 /*
2689 * Make sure no async faults are in transition when
2690 * clearing the queues. So we don't need to worry
2691 * about late coming workers.
2692 */
2693 synchronize_srcu(&dev->kvm->srcu);
2694 kvm_for_each_vcpu(i, vcpu, dev->kvm)
2695 kvm_clear_async_pf_completion_queue(vcpu);
2696 break;
2697 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2698 r = register_io_adapter(dev, attr);
2699 break;
2700 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2701 r = modify_io_adapter(dev, attr);
2702 break;
2703 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2704 r = clear_io_irq(dev->kvm, attr);
2705 break;
2706 case KVM_DEV_FLIC_AISM:
2707 r = modify_ais_mode(dev->kvm, attr);
2708 break;
2709 case KVM_DEV_FLIC_AIRQ_INJECT:
2710 r = flic_inject_airq(dev->kvm, attr);
2711 break;
2712 case KVM_DEV_FLIC_AISM_ALL:
2713 r = flic_ais_mode_set_all(dev->kvm, attr);
2714 break;
2715 default:
2716 r = -EINVAL;
2717 }
2718
2719 return r;
2720 }
2721
flic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2722 static int flic_has_attr(struct kvm_device *dev,
2723 struct kvm_device_attr *attr)
2724 {
2725 switch (attr->group) {
2726 case KVM_DEV_FLIC_GET_ALL_IRQS:
2727 case KVM_DEV_FLIC_ENQUEUE:
2728 case KVM_DEV_FLIC_CLEAR_IRQS:
2729 case KVM_DEV_FLIC_APF_ENABLE:
2730 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2731 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2732 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2733 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2734 case KVM_DEV_FLIC_AISM:
2735 case KVM_DEV_FLIC_AIRQ_INJECT:
2736 case KVM_DEV_FLIC_AISM_ALL:
2737 return 0;
2738 }
2739 return -ENXIO;
2740 }
2741
flic_create(struct kvm_device * dev,u32 type)2742 static int flic_create(struct kvm_device *dev, u32 type)
2743 {
2744 if (!dev)
2745 return -EINVAL;
2746 if (dev->kvm->arch.flic)
2747 return -EINVAL;
2748 dev->kvm->arch.flic = dev;
2749 return 0;
2750 }
2751
flic_destroy(struct kvm_device * dev)2752 static void flic_destroy(struct kvm_device *dev)
2753 {
2754 dev->kvm->arch.flic = NULL;
2755 kfree(dev);
2756 }
2757
2758 /* s390 floating irq controller (flic) */
2759 struct kvm_device_ops kvm_flic_ops = {
2760 .name = "kvm-flic",
2761 .get_attr = flic_get_attr,
2762 .set_attr = flic_set_attr,
2763 .has_attr = flic_has_attr,
2764 .create = flic_create,
2765 .destroy = flic_destroy,
2766 };
2767
get_ind_bit(__u64 addr,unsigned long bit_nr,bool swap)2768 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2769 {
2770 unsigned long bit;
2771
2772 bit = bit_nr + (addr % PAGE_SIZE) * 8;
2773
2774 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2775 }
2776
get_map_page(struct kvm * kvm,u64 uaddr)2777 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2778 {
2779 struct page *page = NULL;
2780
2781 mmap_read_lock(kvm->mm);
2782 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2783 &page, NULL, NULL);
2784 mmap_read_unlock(kvm->mm);
2785 return page;
2786 }
2787
adapter_indicators_set(struct kvm * kvm,struct s390_io_adapter * adapter,struct kvm_s390_adapter_int * adapter_int)2788 static int adapter_indicators_set(struct kvm *kvm,
2789 struct s390_io_adapter *adapter,
2790 struct kvm_s390_adapter_int *adapter_int)
2791 {
2792 unsigned long bit;
2793 int summary_set, idx;
2794 struct page *ind_page, *summary_page;
2795 void *map;
2796
2797 ind_page = get_map_page(kvm, adapter_int->ind_addr);
2798 if (!ind_page)
2799 return -1;
2800 summary_page = get_map_page(kvm, adapter_int->summary_addr);
2801 if (!summary_page) {
2802 put_page(ind_page);
2803 return -1;
2804 }
2805
2806 idx = srcu_read_lock(&kvm->srcu);
2807 map = page_address(ind_page);
2808 bit = get_ind_bit(adapter_int->ind_addr,
2809 adapter_int->ind_offset, adapter->swap);
2810 set_bit(bit, map);
2811 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2812 set_page_dirty_lock(ind_page);
2813 map = page_address(summary_page);
2814 bit = get_ind_bit(adapter_int->summary_addr,
2815 adapter_int->summary_offset, adapter->swap);
2816 summary_set = test_and_set_bit(bit, map);
2817 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2818 set_page_dirty_lock(summary_page);
2819 srcu_read_unlock(&kvm->srcu, idx);
2820
2821 put_page(ind_page);
2822 put_page(summary_page);
2823 return summary_set ? 0 : 1;
2824 }
2825
2826 /*
2827 * < 0 - not injected due to error
2828 * = 0 - coalesced, summary indicator already active
2829 * > 0 - injected interrupt
2830 */
set_adapter_int(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2831 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2832 struct kvm *kvm, int irq_source_id, int level,
2833 bool line_status)
2834 {
2835 int ret;
2836 struct s390_io_adapter *adapter;
2837
2838 /* We're only interested in the 0->1 transition. */
2839 if (!level)
2840 return 0;
2841 adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2842 if (!adapter)
2843 return -1;
2844 ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2845 if ((ret > 0) && !adapter->masked) {
2846 ret = kvm_s390_inject_airq(kvm, adapter);
2847 if (ret == 0)
2848 ret = 1;
2849 }
2850 return ret;
2851 }
2852
2853 /*
2854 * Inject the machine check to the guest.
2855 */
kvm_s390_reinject_machine_check(struct kvm_vcpu * vcpu,struct mcck_volatile_info * mcck_info)2856 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2857 struct mcck_volatile_info *mcck_info)
2858 {
2859 struct kvm_s390_interrupt_info inti;
2860 struct kvm_s390_irq irq;
2861 struct kvm_s390_mchk_info *mchk;
2862 union mci mci;
2863 __u64 cr14 = 0; /* upper bits are not used */
2864 int rc;
2865
2866 mci.val = mcck_info->mcic;
2867 if (mci.sr)
2868 cr14 |= CR14_RECOVERY_SUBMASK;
2869 if (mci.dg)
2870 cr14 |= CR14_DEGRADATION_SUBMASK;
2871 if (mci.w)
2872 cr14 |= CR14_WARNING_SUBMASK;
2873
2874 mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2875 mchk->cr14 = cr14;
2876 mchk->mcic = mcck_info->mcic;
2877 mchk->ext_damage_code = mcck_info->ext_damage_code;
2878 mchk->failing_storage_address = mcck_info->failing_storage_address;
2879 if (mci.ck) {
2880 /* Inject the floating machine check */
2881 inti.type = KVM_S390_MCHK;
2882 rc = __inject_vm(vcpu->kvm, &inti);
2883 } else {
2884 /* Inject the machine check to specified vcpu */
2885 irq.type = KVM_S390_MCHK;
2886 rc = kvm_s390_inject_vcpu(vcpu, &irq);
2887 }
2888 WARN_ON_ONCE(rc);
2889 }
2890
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)2891 int kvm_set_routing_entry(struct kvm *kvm,
2892 struct kvm_kernel_irq_routing_entry *e,
2893 const struct kvm_irq_routing_entry *ue)
2894 {
2895 u64 uaddr;
2896
2897 switch (ue->type) {
2898 /* we store the userspace addresses instead of the guest addresses */
2899 case KVM_IRQ_ROUTING_S390_ADAPTER:
2900 e->set = set_adapter_int;
2901 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2902 if (uaddr == -EFAULT)
2903 return -EFAULT;
2904 e->adapter.summary_addr = uaddr;
2905 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2906 if (uaddr == -EFAULT)
2907 return -EFAULT;
2908 e->adapter.ind_addr = uaddr;
2909 e->adapter.summary_offset = ue->u.adapter.summary_offset;
2910 e->adapter.ind_offset = ue->u.adapter.ind_offset;
2911 e->adapter.adapter_id = ue->u.adapter.adapter_id;
2912 return 0;
2913 default:
2914 return -EINVAL;
2915 }
2916 }
2917
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2918 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2919 int irq_source_id, int level, bool line_status)
2920 {
2921 return -EINVAL;
2922 }
2923
kvm_s390_set_irq_state(struct kvm_vcpu * vcpu,void __user * irqstate,int len)2924 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2925 {
2926 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2927 struct kvm_s390_irq *buf;
2928 int r = 0;
2929 int n;
2930
2931 buf = vmalloc(len);
2932 if (!buf)
2933 return -ENOMEM;
2934
2935 if (copy_from_user((void *) buf, irqstate, len)) {
2936 r = -EFAULT;
2937 goto out_free;
2938 }
2939
2940 /*
2941 * Don't allow setting the interrupt state
2942 * when there are already interrupts pending
2943 */
2944 spin_lock(&li->lock);
2945 if (li->pending_irqs) {
2946 r = -EBUSY;
2947 goto out_unlock;
2948 }
2949
2950 for (n = 0; n < len / sizeof(*buf); n++) {
2951 r = do_inject_vcpu(vcpu, &buf[n]);
2952 if (r)
2953 break;
2954 }
2955
2956 out_unlock:
2957 spin_unlock(&li->lock);
2958 out_free:
2959 vfree(buf);
2960
2961 return r;
2962 }
2963
store_local_irq(struct kvm_s390_local_interrupt * li,struct kvm_s390_irq * irq,unsigned long irq_type)2964 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2965 struct kvm_s390_irq *irq,
2966 unsigned long irq_type)
2967 {
2968 switch (irq_type) {
2969 case IRQ_PEND_MCHK_EX:
2970 case IRQ_PEND_MCHK_REP:
2971 irq->type = KVM_S390_MCHK;
2972 irq->u.mchk = li->irq.mchk;
2973 break;
2974 case IRQ_PEND_PROG:
2975 irq->type = KVM_S390_PROGRAM_INT;
2976 irq->u.pgm = li->irq.pgm;
2977 break;
2978 case IRQ_PEND_PFAULT_INIT:
2979 irq->type = KVM_S390_INT_PFAULT_INIT;
2980 irq->u.ext = li->irq.ext;
2981 break;
2982 case IRQ_PEND_EXT_EXTERNAL:
2983 irq->type = KVM_S390_INT_EXTERNAL_CALL;
2984 irq->u.extcall = li->irq.extcall;
2985 break;
2986 case IRQ_PEND_EXT_CLOCK_COMP:
2987 irq->type = KVM_S390_INT_CLOCK_COMP;
2988 break;
2989 case IRQ_PEND_EXT_CPU_TIMER:
2990 irq->type = KVM_S390_INT_CPU_TIMER;
2991 break;
2992 case IRQ_PEND_SIGP_STOP:
2993 irq->type = KVM_S390_SIGP_STOP;
2994 irq->u.stop = li->irq.stop;
2995 break;
2996 case IRQ_PEND_RESTART:
2997 irq->type = KVM_S390_RESTART;
2998 break;
2999 case IRQ_PEND_SET_PREFIX:
3000 irq->type = KVM_S390_SIGP_SET_PREFIX;
3001 irq->u.prefix = li->irq.prefix;
3002 break;
3003 }
3004 }
3005
kvm_s390_get_irq_state(struct kvm_vcpu * vcpu,__u8 __user * buf,int len)3006 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3007 {
3008 int scn;
3009 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3010 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3011 unsigned long pending_irqs;
3012 struct kvm_s390_irq irq;
3013 unsigned long irq_type;
3014 int cpuaddr;
3015 int n = 0;
3016
3017 spin_lock(&li->lock);
3018 pending_irqs = li->pending_irqs;
3019 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3020 sizeof(sigp_emerg_pending));
3021 spin_unlock(&li->lock);
3022
3023 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3024 memset(&irq, 0, sizeof(irq));
3025 if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3026 continue;
3027 if (n + sizeof(irq) > len)
3028 return -ENOBUFS;
3029 store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3030 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3031 return -EFAULT;
3032 n += sizeof(irq);
3033 }
3034
3035 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3036 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3037 memset(&irq, 0, sizeof(irq));
3038 if (n + sizeof(irq) > len)
3039 return -ENOBUFS;
3040 irq.type = KVM_S390_INT_EMERGENCY;
3041 irq.u.emerg.code = cpuaddr;
3042 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3043 return -EFAULT;
3044 n += sizeof(irq);
3045 }
3046 }
3047
3048 if (sca_ext_call_pending(vcpu, &scn)) {
3049 if (n + sizeof(irq) > len)
3050 return -ENOBUFS;
3051 memset(&irq, 0, sizeof(irq));
3052 irq.type = KVM_S390_INT_EXTERNAL_CALL;
3053 irq.u.extcall.code = scn;
3054 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3055 return -EFAULT;
3056 n += sizeof(irq);
3057 }
3058
3059 return n;
3060 }
3061
__airqs_kick_single_vcpu(struct kvm * kvm,u8 deliverable_mask)3062 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3063 {
3064 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3065 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3066 struct kvm_vcpu *vcpu;
3067 u8 vcpu_isc_mask;
3068
3069 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3070 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3071 if (psw_ioint_disabled(vcpu))
3072 continue;
3073 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3074 if (deliverable_mask & vcpu_isc_mask) {
3075 /* lately kicked but not yet running */
3076 if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3077 return;
3078 kvm_s390_vcpu_wakeup(vcpu);
3079 return;
3080 }
3081 }
3082 }
3083
gisa_vcpu_kicker(struct hrtimer * timer)3084 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3085 {
3086 struct kvm_s390_gisa_interrupt *gi =
3087 container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3088 struct kvm *kvm =
3089 container_of(gi->origin, struct sie_page2, gisa)->kvm;
3090 u8 pending_mask;
3091
3092 pending_mask = gisa_get_ipm_or_restore_iam(gi);
3093 if (pending_mask) {
3094 __airqs_kick_single_vcpu(kvm, pending_mask);
3095 hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3096 return HRTIMER_RESTART;
3097 }
3098
3099 return HRTIMER_NORESTART;
3100 }
3101
3102 #define NULL_GISA_ADDR 0x00000000UL
3103 #define NONE_GISA_ADDR 0x00000001UL
3104 #define GISA_ADDR_MASK 0xfffff000UL
3105
process_gib_alert_list(void)3106 static void process_gib_alert_list(void)
3107 {
3108 struct kvm_s390_gisa_interrupt *gi;
3109 struct kvm_s390_gisa *gisa;
3110 struct kvm *kvm;
3111 u32 final, origin = 0UL;
3112
3113 do {
3114 /*
3115 * If the NONE_GISA_ADDR is still stored in the alert list
3116 * origin, we will leave the outer loop. No further GISA has
3117 * been added to the alert list by millicode while processing
3118 * the current alert list.
3119 */
3120 final = (origin & NONE_GISA_ADDR);
3121 /*
3122 * Cut off the alert list and store the NONE_GISA_ADDR in the
3123 * alert list origin to avoid further GAL interruptions.
3124 * A new alert list can be build up by millicode in parallel
3125 * for guests not in the yet cut-off alert list. When in the
3126 * final loop, store the NULL_GISA_ADDR instead. This will re-
3127 * enable GAL interruptions on the host again.
3128 */
3129 origin = xchg(&gib->alert_list_origin,
3130 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3131 /*
3132 * Loop through the just cut-off alert list and start the
3133 * gisa timers to kick idle vcpus to consume the pending
3134 * interruptions asap.
3135 */
3136 while (origin & GISA_ADDR_MASK) {
3137 gisa = (struct kvm_s390_gisa *)(u64)origin;
3138 origin = gisa->next_alert;
3139 gisa->next_alert = (u32)(u64)gisa;
3140 kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3141 gi = &kvm->arch.gisa_int;
3142 if (hrtimer_active(&gi->timer))
3143 hrtimer_cancel(&gi->timer);
3144 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3145 }
3146 } while (!final);
3147
3148 }
3149
kvm_s390_gisa_clear(struct kvm * kvm)3150 void kvm_s390_gisa_clear(struct kvm *kvm)
3151 {
3152 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3153
3154 if (!gi->origin)
3155 return;
3156 gisa_clear_ipm(gi->origin);
3157 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3158 }
3159
kvm_s390_gisa_init(struct kvm * kvm)3160 void kvm_s390_gisa_init(struct kvm *kvm)
3161 {
3162 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3163
3164 if (!css_general_characteristics.aiv)
3165 return;
3166 gi->origin = &kvm->arch.sie_page2->gisa;
3167 gi->alert.mask = 0;
3168 spin_lock_init(&gi->alert.ref_lock);
3169 gi->expires = 50 * 1000; /* 50 usec */
3170 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3171 gi->timer.function = gisa_vcpu_kicker;
3172 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3173 gi->origin->next_alert = (u32)(u64)gi->origin;
3174 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3175 }
3176
kvm_s390_gisa_destroy(struct kvm * kvm)3177 void kvm_s390_gisa_destroy(struct kvm *kvm)
3178 {
3179 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3180
3181 if (!gi->origin)
3182 return;
3183 if (gi->alert.mask)
3184 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
3185 kvm, gi->alert.mask);
3186 while (gisa_in_alert_list(gi->origin))
3187 cpu_relax();
3188 hrtimer_cancel(&gi->timer);
3189 gi->origin = NULL;
3190 }
3191
3192 /**
3193 * kvm_s390_gisc_register - register a guest ISC
3194 *
3195 * @kvm: the kernel vm to work with
3196 * @gisc: the guest interruption sub class to register
3197 *
3198 * The function extends the vm specific alert mask to use.
3199 * The effective IAM mask in the GISA is updated as well
3200 * in case the GISA is not part of the GIB alert list.
3201 * It will be updated latest when the IAM gets restored
3202 * by gisa_get_ipm_or_restore_iam().
3203 *
3204 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3205 * has registered with the channel subsystem.
3206 * -ENODEV in case the vm uses no GISA
3207 * -ERANGE in case the guest ISC is invalid
3208 */
kvm_s390_gisc_register(struct kvm * kvm,u32 gisc)3209 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3210 {
3211 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3212
3213 if (!gi->origin)
3214 return -ENODEV;
3215 if (gisc > MAX_ISC)
3216 return -ERANGE;
3217
3218 spin_lock(&gi->alert.ref_lock);
3219 gi->alert.ref_count[gisc]++;
3220 if (gi->alert.ref_count[gisc] == 1) {
3221 gi->alert.mask |= 0x80 >> gisc;
3222 gisa_set_iam(gi->origin, gi->alert.mask);
3223 }
3224 spin_unlock(&gi->alert.ref_lock);
3225
3226 return gib->nisc;
3227 }
3228 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3229
3230 /**
3231 * kvm_s390_gisc_unregister - unregister a guest ISC
3232 *
3233 * @kvm: the kernel vm to work with
3234 * @gisc: the guest interruption sub class to register
3235 *
3236 * The function reduces the vm specific alert mask to use.
3237 * The effective IAM mask in the GISA is updated as well
3238 * in case the GISA is not part of the GIB alert list.
3239 * It will be updated latest when the IAM gets restored
3240 * by gisa_get_ipm_or_restore_iam().
3241 *
3242 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3243 * has registered with the channel subsystem.
3244 * -ENODEV in case the vm uses no GISA
3245 * -ERANGE in case the guest ISC is invalid
3246 * -EINVAL in case the guest ISC is not registered
3247 */
kvm_s390_gisc_unregister(struct kvm * kvm,u32 gisc)3248 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3249 {
3250 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3251 int rc = 0;
3252
3253 if (!gi->origin)
3254 return -ENODEV;
3255 if (gisc > MAX_ISC)
3256 return -ERANGE;
3257
3258 spin_lock(&gi->alert.ref_lock);
3259 if (gi->alert.ref_count[gisc] == 0) {
3260 rc = -EINVAL;
3261 goto out;
3262 }
3263 gi->alert.ref_count[gisc]--;
3264 if (gi->alert.ref_count[gisc] == 0) {
3265 gi->alert.mask &= ~(0x80 >> gisc);
3266 gisa_set_iam(gi->origin, gi->alert.mask);
3267 }
3268 out:
3269 spin_unlock(&gi->alert.ref_lock);
3270
3271 return rc;
3272 }
3273 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3274
gib_alert_irq_handler(struct airq_struct * airq,bool floating)3275 static void gib_alert_irq_handler(struct airq_struct *airq, bool floating)
3276 {
3277 inc_irq_stat(IRQIO_GAL);
3278 process_gib_alert_list();
3279 }
3280
3281 static struct airq_struct gib_alert_irq = {
3282 .handler = gib_alert_irq_handler,
3283 .lsi_ptr = &gib_alert_irq.lsi_mask,
3284 };
3285
kvm_s390_gib_destroy(void)3286 void kvm_s390_gib_destroy(void)
3287 {
3288 if (!gib)
3289 return;
3290 chsc_sgib(0);
3291 unregister_adapter_interrupt(&gib_alert_irq);
3292 free_page((unsigned long)gib);
3293 gib = NULL;
3294 }
3295
kvm_s390_gib_init(u8 nisc)3296 int kvm_s390_gib_init(u8 nisc)
3297 {
3298 int rc = 0;
3299
3300 if (!css_general_characteristics.aiv) {
3301 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3302 goto out;
3303 }
3304
3305 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3306 if (!gib) {
3307 rc = -ENOMEM;
3308 goto out;
3309 }
3310
3311 gib_alert_irq.isc = nisc;
3312 if (register_adapter_interrupt(&gib_alert_irq)) {
3313 pr_err("Registering the GIB alert interruption handler failed\n");
3314 rc = -EIO;
3315 goto out_free_gib;
3316 }
3317
3318 gib->nisc = nisc;
3319 if (chsc_sgib((u32)(u64)gib)) {
3320 pr_err("Associating the GIB with the AIV facility failed\n");
3321 free_page((unsigned long)gib);
3322 gib = NULL;
3323 rc = -EIO;
3324 goto out_unreg_gal;
3325 }
3326
3327 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3328 goto out;
3329
3330 out_unreg_gal:
3331 unregister_adapter_interrupt(&gib_alert_irq);
3332 out_free_gib:
3333 free_page((unsigned long)gib);
3334 gib = NULL;
3335 out:
3336 return rc;
3337 }
3338