1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kvm nested virtualization support for s390x
4 *
5 * Copyright IBM Corp. 2016, 2018
6 *
7 * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8 */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include <asm/fpu/api.h>
22 #include "kvm-s390.h"
23 #include "gaccess.h"
24
25 struct vsie_page {
26 struct kvm_s390_sie_block scb_s; /* 0x0000 */
27 /*
28 * the backup info for machine check. ensure it's at
29 * the same offset as that in struct sie_page!
30 */
31 struct mcck_volatile_info mcck_info; /* 0x0200 */
32 /*
33 * The pinned original scb. Be aware that other VCPUs can modify
34 * it while we read from it. Values that are used for conditions or
35 * are reused conditionally, should be accessed via READ_ONCE.
36 */
37 struct kvm_s390_sie_block *scb_o; /* 0x0218 */
38 /* the shadow gmap in use by the vsie_page */
39 struct gmap *gmap; /* 0x0220 */
40 /* address of the last reported fault to guest2 */
41 unsigned long fault_addr; /* 0x0228 */
42 /* calculated guest addresses of satellite control blocks */
43 gpa_t sca_gpa; /* 0x0230 */
44 gpa_t itdba_gpa; /* 0x0238 */
45 gpa_t gvrd_gpa; /* 0x0240 */
46 gpa_t riccbd_gpa; /* 0x0248 */
47 gpa_t sdnx_gpa; /* 0x0250 */
48 __u8 reserved[0x0700 - 0x0258]; /* 0x0258 */
49 struct kvm_s390_crypto_cb crycb; /* 0x0700 */
50 __u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE]; /* 0x0800 */
51 };
52
53 /* trigger a validity icpt for the given scb */
set_validity_icpt(struct kvm_s390_sie_block * scb,__u16 reason_code)54 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
55 __u16 reason_code)
56 {
57 scb->ipa = 0x1000;
58 scb->ipb = ((__u32) reason_code) << 16;
59 scb->icptcode = ICPT_VALIDITY;
60 return 1;
61 }
62
63 /* mark the prefix as unmapped, this will block the VSIE */
prefix_unmapped(struct vsie_page * vsie_page)64 static void prefix_unmapped(struct vsie_page *vsie_page)
65 {
66 atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
67 }
68
69 /* mark the prefix as unmapped and wait until the VSIE has been left */
prefix_unmapped_sync(struct vsie_page * vsie_page)70 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
71 {
72 prefix_unmapped(vsie_page);
73 if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
74 atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
75 while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
76 cpu_relax();
77 }
78
79 /* mark the prefix as mapped, this will allow the VSIE to run */
prefix_mapped(struct vsie_page * vsie_page)80 static void prefix_mapped(struct vsie_page *vsie_page)
81 {
82 atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
83 }
84
85 /* test if the prefix is mapped into the gmap shadow */
prefix_is_mapped(struct vsie_page * vsie_page)86 static int prefix_is_mapped(struct vsie_page *vsie_page)
87 {
88 return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
89 }
90
91 /* copy the updated intervention request bits into the shadow scb */
update_intervention_requests(struct vsie_page * vsie_page)92 static void update_intervention_requests(struct vsie_page *vsie_page)
93 {
94 const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
95 int cpuflags;
96
97 cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
98 atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
99 atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
100 }
101
102 /* shadow (filter and validate) the cpuflags */
prepare_cpuflags(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)103 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
104 {
105 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
106 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
107 int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
108
109 /* we don't allow ESA/390 guests */
110 if (!(cpuflags & CPUSTAT_ZARCH))
111 return set_validity_icpt(scb_s, 0x0001U);
112
113 if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
114 return set_validity_icpt(scb_s, 0x0001U);
115 else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
116 return set_validity_icpt(scb_s, 0x0007U);
117
118 /* intervention requests will be set later */
119 newflags = CPUSTAT_ZARCH;
120 if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
121 newflags |= CPUSTAT_GED;
122 if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
123 if (cpuflags & CPUSTAT_GED)
124 return set_validity_icpt(scb_s, 0x0001U);
125 newflags |= CPUSTAT_GED2;
126 }
127 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
128 newflags |= cpuflags & CPUSTAT_P;
129 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
130 newflags |= cpuflags & CPUSTAT_SM;
131 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
132 newflags |= cpuflags & CPUSTAT_IBS;
133 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
134 newflags |= cpuflags & CPUSTAT_KSS;
135
136 atomic_set(&scb_s->cpuflags, newflags);
137 return 0;
138 }
139 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
setup_apcb10(struct kvm_vcpu * vcpu,struct kvm_s390_apcb1 * apcb_s,unsigned long apcb_o,struct kvm_s390_apcb1 * apcb_h)140 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
141 unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
142 {
143 struct kvm_s390_apcb0 tmp;
144
145 if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
146 return -EFAULT;
147
148 apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
149 apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
150 apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
151
152 return 0;
153
154 }
155
156 /**
157 * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
158 * @vcpu: pointer to the virtual CPU
159 * @apcb_s: pointer to start of apcb in the shadow crycb
160 * @apcb_o: pointer to start of original apcb in the guest2
161 * @apcb_h: pointer to start of apcb in the guest1
162 *
163 * Returns 0 and -EFAULT on error reading guest apcb
164 */
setup_apcb00(struct kvm_vcpu * vcpu,unsigned long * apcb_s,unsigned long apcb_o,unsigned long * apcb_h)165 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
166 unsigned long apcb_o, unsigned long *apcb_h)
167 {
168 if (read_guest_real(vcpu, apcb_o, apcb_s,
169 sizeof(struct kvm_s390_apcb0)))
170 return -EFAULT;
171
172 bitmap_and(apcb_s, apcb_s, apcb_h,
173 BITS_PER_BYTE * sizeof(struct kvm_s390_apcb0));
174
175 return 0;
176 }
177
178 /**
179 * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
180 * @vcpu: pointer to the virtual CPU
181 * @apcb_s: pointer to start of apcb in the shadow crycb
182 * @apcb_o: pointer to start of original guest apcb
183 * @apcb_h: pointer to start of apcb in the host
184 *
185 * Returns 0 and -EFAULT on error reading guest apcb
186 */
setup_apcb11(struct kvm_vcpu * vcpu,unsigned long * apcb_s,unsigned long apcb_o,unsigned long * apcb_h)187 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
188 unsigned long apcb_o,
189 unsigned long *apcb_h)
190 {
191 if (read_guest_real(vcpu, apcb_o, apcb_s,
192 sizeof(struct kvm_s390_apcb1)))
193 return -EFAULT;
194
195 bitmap_and(apcb_s, apcb_s, apcb_h,
196 BITS_PER_BYTE * sizeof(struct kvm_s390_apcb1));
197
198 return 0;
199 }
200
201 /**
202 * setup_apcb - Create a shadow copy of the apcb.
203 * @vcpu: pointer to the virtual CPU
204 * @crycb_s: pointer to shadow crycb
205 * @crycb_o: pointer to original guest crycb
206 * @crycb_h: pointer to the host crycb
207 * @fmt_o: format of the original guest crycb.
208 * @fmt_h: format of the host crycb.
209 *
210 * Checks the compatibility between the guest and host crycb and calls the
211 * appropriate copy function.
212 *
213 * Return 0 or an error number if the guest and host crycb are incompatible.
214 */
setup_apcb(struct kvm_vcpu * vcpu,struct kvm_s390_crypto_cb * crycb_s,const u32 crycb_o,struct kvm_s390_crypto_cb * crycb_h,int fmt_o,int fmt_h)215 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
216 const u32 crycb_o,
217 struct kvm_s390_crypto_cb *crycb_h,
218 int fmt_o, int fmt_h)
219 {
220 struct kvm_s390_crypto_cb *crycb;
221
222 crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
223
224 switch (fmt_o) {
225 case CRYCB_FORMAT2:
226 if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
227 return -EACCES;
228 if (fmt_h != CRYCB_FORMAT2)
229 return -EINVAL;
230 return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
231 (unsigned long) &crycb->apcb1,
232 (unsigned long *)&crycb_h->apcb1);
233 case CRYCB_FORMAT1:
234 switch (fmt_h) {
235 case CRYCB_FORMAT2:
236 return setup_apcb10(vcpu, &crycb_s->apcb1,
237 (unsigned long) &crycb->apcb0,
238 &crycb_h->apcb1);
239 case CRYCB_FORMAT1:
240 return setup_apcb00(vcpu,
241 (unsigned long *) &crycb_s->apcb0,
242 (unsigned long) &crycb->apcb0,
243 (unsigned long *) &crycb_h->apcb0);
244 }
245 break;
246 case CRYCB_FORMAT0:
247 if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
248 return -EACCES;
249
250 switch (fmt_h) {
251 case CRYCB_FORMAT2:
252 return setup_apcb10(vcpu, &crycb_s->apcb1,
253 (unsigned long) &crycb->apcb0,
254 &crycb_h->apcb1);
255 case CRYCB_FORMAT1:
256 case CRYCB_FORMAT0:
257 return setup_apcb00(vcpu,
258 (unsigned long *) &crycb_s->apcb0,
259 (unsigned long) &crycb->apcb0,
260 (unsigned long *) &crycb_h->apcb0);
261 }
262 }
263 return -EINVAL;
264 }
265
266 /**
267 * shadow_crycb - Create a shadow copy of the crycb block
268 * @vcpu: a pointer to the virtual CPU
269 * @vsie_page: a pointer to internal date used for the vSIE
270 *
271 * Create a shadow copy of the crycb block and setup key wrapping, if
272 * requested for guest 3 and enabled for guest 2.
273 *
274 * We accept format-1 or format-2, but we convert format-1 into format-2
275 * in the shadow CRYCB.
276 * Using format-2 enables the firmware to choose the right format when
277 * scheduling the SIE.
278 * There is nothing to do for format-0.
279 *
280 * This function centralize the issuing of set_validity_icpt() for all
281 * the subfunctions working on the crycb.
282 *
283 * Returns: - 0 if shadowed or nothing to do
284 * - > 0 if control has to be given to guest 2
285 */
shadow_crycb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)286 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
287 {
288 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
289 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
290 const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
291 const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
292 unsigned long *b1, *b2;
293 u8 ecb3_flags;
294 u32 ecd_flags;
295 int apie_h;
296 int apie_s;
297 int key_msk = test_kvm_facility(vcpu->kvm, 76);
298 int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
299 int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
300 int ret = 0;
301
302 scb_s->crycbd = 0;
303
304 apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
305 apie_s = apie_h & scb_o->eca;
306 if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
307 return 0;
308
309 if (!crycb_addr)
310 return set_validity_icpt(scb_s, 0x0039U);
311
312 if (fmt_o == CRYCB_FORMAT1)
313 if ((crycb_addr & PAGE_MASK) !=
314 ((crycb_addr + 128) & PAGE_MASK))
315 return set_validity_icpt(scb_s, 0x003CU);
316
317 if (apie_s) {
318 ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
319 vcpu->kvm->arch.crypto.crycb,
320 fmt_o, fmt_h);
321 if (ret)
322 goto end;
323 scb_s->eca |= scb_o->eca & ECA_APIE;
324 }
325
326 /* we may only allow it if enabled for guest 2 */
327 ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
328 (ECB3_AES | ECB3_DEA);
329 ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
330 if (!ecb3_flags && !ecd_flags)
331 goto end;
332
333 /* copy only the wrapping keys */
334 if (read_guest_real(vcpu, crycb_addr + 72,
335 vsie_page->crycb.dea_wrapping_key_mask, 56))
336 return set_validity_icpt(scb_s, 0x0035U);
337
338 scb_s->ecb3 |= ecb3_flags;
339 scb_s->ecd |= ecd_flags;
340
341 /* xor both blocks in one run */
342 b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
343 b2 = (unsigned long *)
344 vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
345 /* as 56%8 == 0, bitmap_xor won't overwrite any data */
346 bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
347 end:
348 switch (ret) {
349 case -EINVAL:
350 return set_validity_icpt(scb_s, 0x0022U);
351 case -EFAULT:
352 return set_validity_icpt(scb_s, 0x0035U);
353 case -EACCES:
354 return set_validity_icpt(scb_s, 0x003CU);
355 }
356 scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
357 return 0;
358 }
359
360 /* shadow (round up/down) the ibc to avoid validity icpt */
prepare_ibc(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)361 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
362 {
363 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
364 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
365 /* READ_ONCE does not work on bitfields - use a temporary variable */
366 const uint32_t __new_ibc = scb_o->ibc;
367 const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
368 __u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
369
370 scb_s->ibc = 0;
371 /* ibc installed in g2 and requested for g3 */
372 if (vcpu->kvm->arch.model.ibc && new_ibc) {
373 scb_s->ibc = new_ibc;
374 /* takte care of the minimum ibc level of the machine */
375 if (scb_s->ibc < min_ibc)
376 scb_s->ibc = min_ibc;
377 /* take care of the maximum ibc level set for the guest */
378 if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
379 scb_s->ibc = vcpu->kvm->arch.model.ibc;
380 }
381 }
382
383 /* unshadow the scb, copying parameters back to the real scb */
unshadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)384 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
385 {
386 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
387 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
388
389 /* interception */
390 scb_o->icptcode = scb_s->icptcode;
391 scb_o->icptstatus = scb_s->icptstatus;
392 scb_o->ipa = scb_s->ipa;
393 scb_o->ipb = scb_s->ipb;
394 scb_o->gbea = scb_s->gbea;
395
396 /* timer */
397 scb_o->cputm = scb_s->cputm;
398 scb_o->ckc = scb_s->ckc;
399 scb_o->todpr = scb_s->todpr;
400
401 /* guest state */
402 scb_o->gpsw = scb_s->gpsw;
403 scb_o->gg14 = scb_s->gg14;
404 scb_o->gg15 = scb_s->gg15;
405 memcpy(scb_o->gcr, scb_s->gcr, 128);
406 scb_o->pp = scb_s->pp;
407
408 /* branch prediction */
409 if (test_kvm_facility(vcpu->kvm, 82)) {
410 scb_o->fpf &= ~FPF_BPBC;
411 scb_o->fpf |= scb_s->fpf & FPF_BPBC;
412 }
413
414 /* interrupt intercept */
415 switch (scb_s->icptcode) {
416 case ICPT_PROGI:
417 case ICPT_INSTPROGI:
418 case ICPT_EXTINT:
419 memcpy((void *)((u64)scb_o + 0xc0),
420 (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
421 break;
422 }
423
424 if (scb_s->ihcpu != 0xffffU)
425 scb_o->ihcpu = scb_s->ihcpu;
426 }
427
428 /*
429 * Setup the shadow scb by copying and checking the relevant parts of the g2
430 * provided scb.
431 *
432 * Returns: - 0 if the scb has been shadowed
433 * - > 0 if control has to be given to guest 2
434 */
shadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)435 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
436 {
437 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
438 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
439 /* READ_ONCE does not work on bitfields - use a temporary variable */
440 const uint32_t __new_prefix = scb_o->prefix;
441 const uint32_t new_prefix = READ_ONCE(__new_prefix);
442 const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
443 bool had_tx = scb_s->ecb & ECB_TE;
444 unsigned long new_mso = 0;
445 int rc;
446
447 /* make sure we don't have any leftovers when reusing the scb */
448 scb_s->icptcode = 0;
449 scb_s->eca = 0;
450 scb_s->ecb = 0;
451 scb_s->ecb2 = 0;
452 scb_s->ecb3 = 0;
453 scb_s->ecd = 0;
454 scb_s->fac = 0;
455 scb_s->fpf = 0;
456
457 rc = prepare_cpuflags(vcpu, vsie_page);
458 if (rc)
459 goto out;
460
461 /* timer */
462 scb_s->cputm = scb_o->cputm;
463 scb_s->ckc = scb_o->ckc;
464 scb_s->todpr = scb_o->todpr;
465 scb_s->epoch = scb_o->epoch;
466
467 /* guest state */
468 scb_s->gpsw = scb_o->gpsw;
469 scb_s->gg14 = scb_o->gg14;
470 scb_s->gg15 = scb_o->gg15;
471 memcpy(scb_s->gcr, scb_o->gcr, 128);
472 scb_s->pp = scb_o->pp;
473
474 /* interception / execution handling */
475 scb_s->gbea = scb_o->gbea;
476 scb_s->lctl = scb_o->lctl;
477 scb_s->svcc = scb_o->svcc;
478 scb_s->ictl = scb_o->ictl;
479 /*
480 * SKEY handling functions can't deal with false setting of PTE invalid
481 * bits. Therefore we cannot provide interpretation and would later
482 * have to provide own emulation handlers.
483 */
484 if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
485 scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
486
487 scb_s->icpua = scb_o->icpua;
488
489 if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
490 new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
491 /* if the hva of the prefix changes, we have to remap the prefix */
492 if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
493 prefix_unmapped(vsie_page);
494 /* SIE will do mso/msl validity and exception checks for us */
495 scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
496 scb_s->mso = new_mso;
497 scb_s->prefix = new_prefix;
498
499 /* We have to definetly flush the tlb if this scb never ran */
500 if (scb_s->ihcpu != 0xffffU)
501 scb_s->ihcpu = scb_o->ihcpu;
502
503 /* MVPG and Protection Exception Interpretation are always available */
504 scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
505 /* Host-protection-interruption introduced with ESOP */
506 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
507 scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
508 /* transactional execution */
509 if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
510 /* remap the prefix is tx is toggled on */
511 if (!had_tx)
512 prefix_unmapped(vsie_page);
513 scb_s->ecb |= ECB_TE;
514 }
515 /* specification exception interpretation */
516 scb_s->ecb |= scb_o->ecb & ECB_SPECI;
517 /* branch prediction */
518 if (test_kvm_facility(vcpu->kvm, 82))
519 scb_s->fpf |= scb_o->fpf & FPF_BPBC;
520 /* SIMD */
521 if (test_kvm_facility(vcpu->kvm, 129)) {
522 scb_s->eca |= scb_o->eca & ECA_VX;
523 scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
524 }
525 /* Run-time-Instrumentation */
526 if (test_kvm_facility(vcpu->kvm, 64))
527 scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
528 /* Instruction Execution Prevention */
529 if (test_kvm_facility(vcpu->kvm, 130))
530 scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
531 /* Guarded Storage */
532 if (test_kvm_facility(vcpu->kvm, 133)) {
533 scb_s->ecb |= scb_o->ecb & ECB_GS;
534 scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
535 }
536 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
537 scb_s->eca |= scb_o->eca & ECA_SII;
538 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
539 scb_s->eca |= scb_o->eca & ECA_IB;
540 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
541 scb_s->eca |= scb_o->eca & ECA_CEI;
542 /* Epoch Extension */
543 if (test_kvm_facility(vcpu->kvm, 139)) {
544 scb_s->ecd |= scb_o->ecd & ECD_MEF;
545 scb_s->epdx = scb_o->epdx;
546 }
547
548 /* etoken */
549 if (test_kvm_facility(vcpu->kvm, 156))
550 scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
551
552 scb_s->hpid = HPID_VSIE;
553 scb_s->cpnc = scb_o->cpnc;
554
555 prepare_ibc(vcpu, vsie_page);
556 rc = shadow_crycb(vcpu, vsie_page);
557 out:
558 if (rc)
559 unshadow_scb(vcpu, vsie_page);
560 return rc;
561 }
562
kvm_s390_vsie_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)563 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
564 unsigned long end)
565 {
566 struct kvm *kvm = gmap->private;
567 struct vsie_page *cur;
568 unsigned long prefix;
569 struct page *page;
570 int i;
571
572 if (!gmap_is_shadow(gmap))
573 return;
574 if (start >= 1UL << 31)
575 /* We are only interested in prefix pages */
576 return;
577
578 /*
579 * Only new shadow blocks are added to the list during runtime,
580 * therefore we can safely reference them all the time.
581 */
582 for (i = 0; i < kvm->arch.vsie.page_count; i++) {
583 page = READ_ONCE(kvm->arch.vsie.pages[i]);
584 if (!page)
585 continue;
586 cur = page_to_virt(page);
587 if (READ_ONCE(cur->gmap) != gmap)
588 continue;
589 prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
590 /* with mso/msl, the prefix lies at an offset */
591 prefix += cur->scb_s.mso;
592 if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
593 prefix_unmapped_sync(cur);
594 }
595 }
596
597 /*
598 * Map the first prefix page and if tx is enabled also the second prefix page.
599 *
600 * The prefix will be protected, a gmap notifier will inform about unmaps.
601 * The shadow scb must not be executed until the prefix is remapped, this is
602 * guaranteed by properly handling PROG_REQUEST.
603 *
604 * Returns: - 0 on if successfully mapped or already mapped
605 * - > 0 if control has to be given to guest 2
606 * - -EAGAIN if the caller can retry immediately
607 * - -ENOMEM if out of memory
608 */
map_prefix(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)609 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
610 {
611 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
612 u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
613 int rc;
614
615 if (prefix_is_mapped(vsie_page))
616 return 0;
617
618 /* mark it as mapped so we can catch any concurrent unmappers */
619 prefix_mapped(vsie_page);
620
621 /* with mso/msl, the prefix lies at offset *mso* */
622 prefix += scb_s->mso;
623
624 rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix, NULL);
625 if (!rc && (scb_s->ecb & ECB_TE))
626 rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
627 prefix + PAGE_SIZE, NULL);
628 /*
629 * We don't have to mprotect, we will be called for all unshadows.
630 * SIE will detect if protection applies and trigger a validity.
631 */
632 if (rc)
633 prefix_unmapped(vsie_page);
634 if (rc > 0 || rc == -EFAULT)
635 rc = set_validity_icpt(scb_s, 0x0037U);
636 return rc;
637 }
638
639 /*
640 * Pin the guest page given by gpa and set hpa to the pinned host address.
641 * Will always be pinned writable.
642 *
643 * Returns: - 0 on success
644 * - -EINVAL if the gpa is not valid guest storage
645 */
pin_guest_page(struct kvm * kvm,gpa_t gpa,hpa_t * hpa)646 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
647 {
648 struct page *page;
649
650 page = gfn_to_page(kvm, gpa_to_gfn(gpa));
651 if (is_error_page(page))
652 return -EINVAL;
653 *hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
654 return 0;
655 }
656
657 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
unpin_guest_page(struct kvm * kvm,gpa_t gpa,hpa_t hpa)658 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
659 {
660 kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
661 /* mark the page always as dirty for migration */
662 mark_page_dirty(kvm, gpa_to_gfn(gpa));
663 }
664
665 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
unpin_blocks(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)666 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
667 {
668 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
669 hpa_t hpa;
670
671 hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
672 if (hpa) {
673 unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
674 vsie_page->sca_gpa = 0;
675 scb_s->scaol = 0;
676 scb_s->scaoh = 0;
677 }
678
679 hpa = scb_s->itdba;
680 if (hpa) {
681 unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
682 vsie_page->itdba_gpa = 0;
683 scb_s->itdba = 0;
684 }
685
686 hpa = scb_s->gvrd;
687 if (hpa) {
688 unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
689 vsie_page->gvrd_gpa = 0;
690 scb_s->gvrd = 0;
691 }
692
693 hpa = scb_s->riccbd;
694 if (hpa) {
695 unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
696 vsie_page->riccbd_gpa = 0;
697 scb_s->riccbd = 0;
698 }
699
700 hpa = scb_s->sdnxo;
701 if (hpa) {
702 unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
703 vsie_page->sdnx_gpa = 0;
704 scb_s->sdnxo = 0;
705 }
706 }
707
708 /*
709 * Instead of shadowing some blocks, we can simply forward them because the
710 * addresses in the scb are 64 bit long.
711 *
712 * This works as long as the data lies in one page. If blocks ever exceed one
713 * page, we have to fall back to shadowing.
714 *
715 * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
716 * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
717 *
718 * Returns: - 0 if all blocks were pinned.
719 * - > 0 if control has to be given to guest 2
720 * - -ENOMEM if out of memory
721 */
pin_blocks(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)722 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
723 {
724 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
725 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
726 hpa_t hpa;
727 gpa_t gpa;
728 int rc = 0;
729
730 gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
731 if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
732 gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
733 if (gpa) {
734 if (gpa < 2 * PAGE_SIZE)
735 rc = set_validity_icpt(scb_s, 0x0038U);
736 else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
737 rc = set_validity_icpt(scb_s, 0x0011U);
738 else if ((gpa & PAGE_MASK) !=
739 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
740 rc = set_validity_icpt(scb_s, 0x003bU);
741 if (!rc) {
742 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
743 if (rc)
744 rc = set_validity_icpt(scb_s, 0x0034U);
745 }
746 if (rc)
747 goto unpin;
748 vsie_page->sca_gpa = gpa;
749 scb_s->scaoh = (u32)((u64)hpa >> 32);
750 scb_s->scaol = (u32)(u64)hpa;
751 }
752
753 gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
754 if (gpa && (scb_s->ecb & ECB_TE)) {
755 if (gpa < 2 * PAGE_SIZE) {
756 rc = set_validity_icpt(scb_s, 0x0080U);
757 goto unpin;
758 }
759 /* 256 bytes cannot cross page boundaries */
760 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
761 if (rc) {
762 rc = set_validity_icpt(scb_s, 0x0080U);
763 goto unpin;
764 }
765 vsie_page->itdba_gpa = gpa;
766 scb_s->itdba = hpa;
767 }
768
769 gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
770 if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
771 if (gpa < 2 * PAGE_SIZE) {
772 rc = set_validity_icpt(scb_s, 0x1310U);
773 goto unpin;
774 }
775 /*
776 * 512 bytes vector registers cannot cross page boundaries
777 * if this block gets bigger, we have to shadow it.
778 */
779 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
780 if (rc) {
781 rc = set_validity_icpt(scb_s, 0x1310U);
782 goto unpin;
783 }
784 vsie_page->gvrd_gpa = gpa;
785 scb_s->gvrd = hpa;
786 }
787
788 gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
789 if (gpa && (scb_s->ecb3 & ECB3_RI)) {
790 if (gpa < 2 * PAGE_SIZE) {
791 rc = set_validity_icpt(scb_s, 0x0043U);
792 goto unpin;
793 }
794 /* 64 bytes cannot cross page boundaries */
795 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
796 if (rc) {
797 rc = set_validity_icpt(scb_s, 0x0043U);
798 goto unpin;
799 }
800 /* Validity 0x0044 will be checked by SIE */
801 vsie_page->riccbd_gpa = gpa;
802 scb_s->riccbd = hpa;
803 }
804 if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
805 (scb_s->ecd & ECD_ETOKENF)) {
806 unsigned long sdnxc;
807
808 gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
809 sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
810 if (!gpa || gpa < 2 * PAGE_SIZE) {
811 rc = set_validity_icpt(scb_s, 0x10b0U);
812 goto unpin;
813 }
814 if (sdnxc < 6 || sdnxc > 12) {
815 rc = set_validity_icpt(scb_s, 0x10b1U);
816 goto unpin;
817 }
818 if (gpa & ((1 << sdnxc) - 1)) {
819 rc = set_validity_icpt(scb_s, 0x10b2U);
820 goto unpin;
821 }
822 /* Due to alignment rules (checked above) this cannot
823 * cross page boundaries
824 */
825 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
826 if (rc) {
827 rc = set_validity_icpt(scb_s, 0x10b0U);
828 goto unpin;
829 }
830 vsie_page->sdnx_gpa = gpa;
831 scb_s->sdnxo = hpa | sdnxc;
832 }
833 return 0;
834 unpin:
835 unpin_blocks(vcpu, vsie_page);
836 return rc;
837 }
838
839 /* unpin the scb provided by guest 2, marking it as dirty */
unpin_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,gpa_t gpa)840 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
841 gpa_t gpa)
842 {
843 hpa_t hpa = (hpa_t) vsie_page->scb_o;
844
845 if (hpa)
846 unpin_guest_page(vcpu->kvm, gpa, hpa);
847 vsie_page->scb_o = NULL;
848 }
849
850 /*
851 * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
852 *
853 * Returns: - 0 if the scb was pinned.
854 * - > 0 if control has to be given to guest 2
855 */
pin_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,gpa_t gpa)856 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
857 gpa_t gpa)
858 {
859 hpa_t hpa;
860 int rc;
861
862 rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
863 if (rc) {
864 rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
865 WARN_ON_ONCE(rc);
866 return 1;
867 }
868 vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
869 return 0;
870 }
871
872 /*
873 * Inject a fault into guest 2.
874 *
875 * Returns: - > 0 if control has to be given to guest 2
876 * < 0 if an error occurred during injection.
877 */
inject_fault(struct kvm_vcpu * vcpu,__u16 code,__u64 vaddr,bool write_flag)878 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
879 bool write_flag)
880 {
881 struct kvm_s390_pgm_info pgm = {
882 .code = code,
883 .trans_exc_code =
884 /* 0-51: virtual address */
885 (vaddr & 0xfffffffffffff000UL) |
886 /* 52-53: store / fetch */
887 (((unsigned int) !write_flag) + 1) << 10,
888 /* 62-63: asce id (alway primary == 0) */
889 .exc_access_id = 0, /* always primary */
890 .op_access_id = 0, /* not MVPG */
891 };
892 int rc;
893
894 if (code == PGM_PROTECTION)
895 pgm.trans_exc_code |= 0x4UL;
896
897 rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
898 return rc ? rc : 1;
899 }
900
901 /*
902 * Handle a fault during vsie execution on a gmap shadow.
903 *
904 * Returns: - 0 if the fault was resolved
905 * - > 0 if control has to be given to guest 2
906 * - < 0 if an error occurred
907 */
handle_fault(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)908 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
909 {
910 int rc;
911
912 if (current->thread.gmap_int_code == PGM_PROTECTION)
913 /* we can directly forward all protection exceptions */
914 return inject_fault(vcpu, PGM_PROTECTION,
915 current->thread.gmap_addr, 1);
916
917 rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
918 current->thread.gmap_addr, NULL);
919 if (rc > 0) {
920 rc = inject_fault(vcpu, rc,
921 current->thread.gmap_addr,
922 current->thread.gmap_write_flag);
923 if (rc >= 0)
924 vsie_page->fault_addr = current->thread.gmap_addr;
925 }
926 return rc;
927 }
928
929 /*
930 * Retry the previous fault that required guest 2 intervention. This avoids
931 * one superfluous SIE re-entry and direct exit.
932 *
933 * Will ignore any errors. The next SIE fault will do proper fault handling.
934 */
handle_last_fault(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)935 static void handle_last_fault(struct kvm_vcpu *vcpu,
936 struct vsie_page *vsie_page)
937 {
938 if (vsie_page->fault_addr)
939 kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
940 vsie_page->fault_addr, NULL);
941 vsie_page->fault_addr = 0;
942 }
943
clear_vsie_icpt(struct vsie_page * vsie_page)944 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
945 {
946 vsie_page->scb_s.icptcode = 0;
947 }
948
949 /* rewind the psw and clear the vsie icpt, so we can retry execution */
retry_vsie_icpt(struct vsie_page * vsie_page)950 static void retry_vsie_icpt(struct vsie_page *vsie_page)
951 {
952 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
953 int ilen = insn_length(scb_s->ipa >> 8);
954
955 /* take care of EXECUTE instructions */
956 if (scb_s->icptstatus & 1) {
957 ilen = (scb_s->icptstatus >> 4) & 0x6;
958 if (!ilen)
959 ilen = 4;
960 }
961 scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
962 clear_vsie_icpt(vsie_page);
963 }
964
965 /*
966 * Try to shadow + enable the guest 2 provided facility list.
967 * Retry instruction execution if enabled for and provided by guest 2.
968 *
969 * Returns: - 0 if handled (retry or guest 2 icpt)
970 * - > 0 if control has to be given to guest 2
971 */
handle_stfle(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)972 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
973 {
974 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
975 __u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
976
977 if (fac && test_kvm_facility(vcpu->kvm, 7)) {
978 retry_vsie_icpt(vsie_page);
979 if (read_guest_real(vcpu, fac, &vsie_page->fac,
980 sizeof(vsie_page->fac)))
981 return set_validity_icpt(scb_s, 0x1090U);
982 scb_s->fac = (__u32)(__u64) &vsie_page->fac;
983 }
984 return 0;
985 }
986
987 /*
988 * Get a register for a nested guest.
989 * @vcpu the vcpu of the guest
990 * @vsie_page the vsie_page for the nested guest
991 * @reg the register number, the upper 4 bits are ignored.
992 * returns: the value of the register.
993 */
vsie_get_register(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,u8 reg)994 static u64 vsie_get_register(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, u8 reg)
995 {
996 /* no need to validate the parameter and/or perform error handling */
997 reg &= 0xf;
998 switch (reg) {
999 case 15:
1000 return vsie_page->scb_s.gg15;
1001 case 14:
1002 return vsie_page->scb_s.gg14;
1003 default:
1004 return vcpu->run->s.regs.gprs[reg];
1005 }
1006 }
1007
vsie_handle_mvpg(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1008 static int vsie_handle_mvpg(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1009 {
1010 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1011 unsigned long pei_dest, pei_src, src, dest, mask, prefix;
1012 u64 *pei_block = &vsie_page->scb_o->mcic;
1013 int edat, rc_dest, rc_src;
1014 union ctlreg0 cr0;
1015
1016 cr0.val = vcpu->arch.sie_block->gcr[0];
1017 edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1018 mask = _kvm_s390_logical_to_effective(&scb_s->gpsw, PAGE_MASK);
1019 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
1020
1021 dest = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 20) & mask;
1022 dest = _kvm_s390_real_to_abs(prefix, dest) + scb_s->mso;
1023 src = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 16) & mask;
1024 src = _kvm_s390_real_to_abs(prefix, src) + scb_s->mso;
1025
1026 rc_dest = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, dest, &pei_dest);
1027 rc_src = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, src, &pei_src);
1028 /*
1029 * Either everything went well, or something non-critical went wrong
1030 * e.g. because of a race. In either case, simply retry.
1031 */
1032 if (rc_dest == -EAGAIN || rc_src == -EAGAIN || (!rc_dest && !rc_src)) {
1033 retry_vsie_icpt(vsie_page);
1034 return -EAGAIN;
1035 }
1036 /* Something more serious went wrong, propagate the error */
1037 if (rc_dest < 0)
1038 return rc_dest;
1039 if (rc_src < 0)
1040 return rc_src;
1041
1042 /* The only possible suppressing exception: just deliver it */
1043 if (rc_dest == PGM_TRANSLATION_SPEC || rc_src == PGM_TRANSLATION_SPEC) {
1044 clear_vsie_icpt(vsie_page);
1045 rc_dest = kvm_s390_inject_program_int(vcpu, PGM_TRANSLATION_SPEC);
1046 WARN_ON_ONCE(rc_dest);
1047 return 1;
1048 }
1049
1050 /*
1051 * Forward the PEI intercept to the guest if it was a page fault, or
1052 * also for segment and region table faults if EDAT applies.
1053 */
1054 if (edat) {
1055 rc_dest = rc_dest == PGM_ASCE_TYPE ? rc_dest : 0;
1056 rc_src = rc_src == PGM_ASCE_TYPE ? rc_src : 0;
1057 } else {
1058 rc_dest = rc_dest != PGM_PAGE_TRANSLATION ? rc_dest : 0;
1059 rc_src = rc_src != PGM_PAGE_TRANSLATION ? rc_src : 0;
1060 }
1061 if (!rc_dest && !rc_src) {
1062 pei_block[0] = pei_dest;
1063 pei_block[1] = pei_src;
1064 return 1;
1065 }
1066
1067 retry_vsie_icpt(vsie_page);
1068
1069 /*
1070 * The host has edat, and the guest does not, or it was an ASCE type
1071 * exception. The host needs to inject the appropriate DAT interrupts
1072 * into the guest.
1073 */
1074 if (rc_dest)
1075 return inject_fault(vcpu, rc_dest, dest, 1);
1076 return inject_fault(vcpu, rc_src, src, 0);
1077 }
1078
1079 /*
1080 * Run the vsie on a shadow scb and a shadow gmap, without any further
1081 * sanity checks, handling SIE faults.
1082 *
1083 * Returns: - 0 everything went fine
1084 * - > 0 if control has to be given to guest 2
1085 * - < 0 if an error occurred
1086 */
do_vsie_run(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1087 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1088 __releases(vcpu->kvm->srcu)
1089 __acquires(vcpu->kvm->srcu)
1090 {
1091 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1092 struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
1093 int guest_bp_isolation;
1094 int rc = 0;
1095
1096 handle_last_fault(vcpu, vsie_page);
1097
1098 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1099
1100 /* save current guest state of bp isolation override */
1101 guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1102
1103 /*
1104 * The guest is running with BPBC, so we have to force it on for our
1105 * nested guest. This is done by enabling BPBC globally, so the BPBC
1106 * control in the SCB (which the nested guest can modify) is simply
1107 * ignored.
1108 */
1109 if (test_kvm_facility(vcpu->kvm, 82) &&
1110 vcpu->arch.sie_block->fpf & FPF_BPBC)
1111 set_thread_flag(TIF_ISOLATE_BP_GUEST);
1112
1113 local_irq_disable();
1114 guest_enter_irqoff();
1115 local_irq_enable();
1116
1117 /*
1118 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1119 * and VCPU requests also hinder the vSIE from running and lead
1120 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1121 * also kick the vSIE.
1122 */
1123 vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1124 barrier();
1125 if (test_cpu_flag(CIF_FPU))
1126 load_fpu_regs();
1127 if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1128 rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1129 barrier();
1130 vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1131
1132 local_irq_disable();
1133 guest_exit_irqoff();
1134 local_irq_enable();
1135
1136 /* restore guest state for bp isolation override */
1137 if (!guest_bp_isolation)
1138 clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1139
1140 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1141
1142 if (rc == -EINTR) {
1143 VCPU_EVENT(vcpu, 3, "%s", "machine check");
1144 kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1145 return 0;
1146 }
1147
1148 if (rc > 0)
1149 rc = 0; /* we could still have an icpt */
1150 else if (rc == -EFAULT)
1151 return handle_fault(vcpu, vsie_page);
1152
1153 switch (scb_s->icptcode) {
1154 case ICPT_INST:
1155 if (scb_s->ipa == 0xb2b0)
1156 rc = handle_stfle(vcpu, vsie_page);
1157 break;
1158 case ICPT_STOP:
1159 /* stop not requested by g2 - must have been a kick */
1160 if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1161 clear_vsie_icpt(vsie_page);
1162 break;
1163 case ICPT_VALIDITY:
1164 if ((scb_s->ipa & 0xf000) != 0xf000)
1165 scb_s->ipa += 0x1000;
1166 break;
1167 case ICPT_PARTEXEC:
1168 if (scb_s->ipa == 0xb254)
1169 rc = vsie_handle_mvpg(vcpu, vsie_page);
1170 break;
1171 }
1172 return rc;
1173 }
1174
release_gmap_shadow(struct vsie_page * vsie_page)1175 static void release_gmap_shadow(struct vsie_page *vsie_page)
1176 {
1177 if (vsie_page->gmap)
1178 gmap_put(vsie_page->gmap);
1179 WRITE_ONCE(vsie_page->gmap, NULL);
1180 prefix_unmapped(vsie_page);
1181 }
1182
acquire_gmap_shadow(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1183 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1184 struct vsie_page *vsie_page)
1185 {
1186 unsigned long asce;
1187 union ctlreg0 cr0;
1188 struct gmap *gmap;
1189 int edat;
1190
1191 asce = vcpu->arch.sie_block->gcr[1];
1192 cr0.val = vcpu->arch.sie_block->gcr[0];
1193 edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1194 edat += edat && test_kvm_facility(vcpu->kvm, 78);
1195
1196 /*
1197 * ASCE or EDAT could have changed since last icpt, or the gmap
1198 * we're holding has been unshadowed. If the gmap is still valid,
1199 * we can safely reuse it.
1200 */
1201 if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1202 return 0;
1203
1204 /* release the old shadow - if any, and mark the prefix as unmapped */
1205 release_gmap_shadow(vsie_page);
1206 gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1207 if (IS_ERR(gmap))
1208 return PTR_ERR(gmap);
1209 gmap->private = vcpu->kvm;
1210 WRITE_ONCE(vsie_page->gmap, gmap);
1211 return 0;
1212 }
1213
1214 /*
1215 * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1216 */
register_shadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1217 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1218 struct vsie_page *vsie_page)
1219 {
1220 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1221
1222 WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1223 /*
1224 * External calls have to lead to a kick of the vcpu and
1225 * therefore the vsie -> Simulate Wait state.
1226 */
1227 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1228 /*
1229 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1230 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1231 */
1232 preempt_disable();
1233 scb_s->epoch += vcpu->kvm->arch.epoch;
1234
1235 if (scb_s->ecd & ECD_MEF) {
1236 scb_s->epdx += vcpu->kvm->arch.epdx;
1237 if (scb_s->epoch < vcpu->kvm->arch.epoch)
1238 scb_s->epdx += 1;
1239 }
1240
1241 preempt_enable();
1242 }
1243
1244 /*
1245 * Unregister a shadow scb from a VCPU.
1246 */
unregister_shadow_scb(struct kvm_vcpu * vcpu)1247 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1248 {
1249 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1250 WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1251 }
1252
1253 /*
1254 * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1255 * prefix pages and faults.
1256 *
1257 * Returns: - 0 if no errors occurred
1258 * - > 0 if control has to be given to guest 2
1259 * - -ENOMEM if out of memory
1260 */
vsie_run(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1261 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1262 {
1263 struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1264 int rc = 0;
1265
1266 while (1) {
1267 rc = acquire_gmap_shadow(vcpu, vsie_page);
1268 if (!rc)
1269 rc = map_prefix(vcpu, vsie_page);
1270 if (!rc) {
1271 gmap_enable(vsie_page->gmap);
1272 update_intervention_requests(vsie_page);
1273 rc = do_vsie_run(vcpu, vsie_page);
1274 gmap_enable(vcpu->arch.gmap);
1275 }
1276 atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1277
1278 if (rc == -EAGAIN)
1279 rc = 0;
1280 if (rc || scb_s->icptcode || signal_pending(current) ||
1281 kvm_s390_vcpu_has_irq(vcpu, 0) ||
1282 kvm_s390_vcpu_sie_inhibited(vcpu))
1283 break;
1284 cond_resched();
1285 }
1286
1287 if (rc == -EFAULT) {
1288 /*
1289 * Addressing exceptions are always presentes as intercepts.
1290 * As addressing exceptions are suppressing and our guest 3 PSW
1291 * points at the responsible instruction, we have to
1292 * forward the PSW and set the ilc. If we can't read guest 3
1293 * instruction, we can use an arbitrary ilc. Let's always use
1294 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1295 * memory. (we could also fake the shadow so the hardware
1296 * handles it).
1297 */
1298 scb_s->icptcode = ICPT_PROGI;
1299 scb_s->iprcc = PGM_ADDRESSING;
1300 scb_s->pgmilc = 4;
1301 scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1302 rc = 1;
1303 }
1304 return rc;
1305 }
1306
1307 /*
1308 * Get or create a vsie page for a scb address.
1309 *
1310 * Returns: - address of a vsie page (cached or new one)
1311 * - NULL if the same scb address is already used by another VCPU
1312 * - ERR_PTR(-ENOMEM) if out of memory
1313 */
get_vsie_page(struct kvm * kvm,unsigned long addr)1314 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1315 {
1316 struct vsie_page *vsie_page;
1317 struct page *page;
1318 int nr_vcpus;
1319
1320 rcu_read_lock();
1321 page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1322 rcu_read_unlock();
1323 if (page) {
1324 if (page_ref_inc_return(page) == 2)
1325 return page_to_virt(page);
1326 page_ref_dec(page);
1327 }
1328
1329 /*
1330 * We want at least #online_vcpus shadows, so every VCPU can execute
1331 * the VSIE in parallel.
1332 */
1333 nr_vcpus = atomic_read(&kvm->online_vcpus);
1334
1335 mutex_lock(&kvm->arch.vsie.mutex);
1336 if (kvm->arch.vsie.page_count < nr_vcpus) {
1337 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO | GFP_DMA);
1338 if (!page) {
1339 mutex_unlock(&kvm->arch.vsie.mutex);
1340 return ERR_PTR(-ENOMEM);
1341 }
1342 page_ref_inc(page);
1343 kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1344 kvm->arch.vsie.page_count++;
1345 } else {
1346 /* reuse an existing entry that belongs to nobody */
1347 while (true) {
1348 page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1349 if (page_ref_inc_return(page) == 2)
1350 break;
1351 page_ref_dec(page);
1352 kvm->arch.vsie.next++;
1353 kvm->arch.vsie.next %= nr_vcpus;
1354 }
1355 radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1356 }
1357 page->index = addr;
1358 /* double use of the same address */
1359 if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1360 page_ref_dec(page);
1361 mutex_unlock(&kvm->arch.vsie.mutex);
1362 return NULL;
1363 }
1364 mutex_unlock(&kvm->arch.vsie.mutex);
1365
1366 vsie_page = page_to_virt(page);
1367 memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1368 release_gmap_shadow(vsie_page);
1369 vsie_page->fault_addr = 0;
1370 vsie_page->scb_s.ihcpu = 0xffffU;
1371 return vsie_page;
1372 }
1373
1374 /* put a vsie page acquired via get_vsie_page */
put_vsie_page(struct kvm * kvm,struct vsie_page * vsie_page)1375 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1376 {
1377 struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1378
1379 page_ref_dec(page);
1380 }
1381
kvm_s390_handle_vsie(struct kvm_vcpu * vcpu)1382 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1383 {
1384 struct vsie_page *vsie_page;
1385 unsigned long scb_addr;
1386 int rc;
1387
1388 vcpu->stat.instruction_sie++;
1389 if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1390 return -EOPNOTSUPP;
1391 if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1392 return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1393
1394 BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1395 scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1396
1397 /* 512 byte alignment */
1398 if (unlikely(scb_addr & 0x1ffUL))
1399 return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1400
1401 if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1402 kvm_s390_vcpu_sie_inhibited(vcpu))
1403 return 0;
1404
1405 vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1406 if (IS_ERR(vsie_page))
1407 return PTR_ERR(vsie_page);
1408 else if (!vsie_page)
1409 /* double use of sie control block - simply do nothing */
1410 return 0;
1411
1412 rc = pin_scb(vcpu, vsie_page, scb_addr);
1413 if (rc)
1414 goto out_put;
1415 rc = shadow_scb(vcpu, vsie_page);
1416 if (rc)
1417 goto out_unpin_scb;
1418 rc = pin_blocks(vcpu, vsie_page);
1419 if (rc)
1420 goto out_unshadow;
1421 register_shadow_scb(vcpu, vsie_page);
1422 rc = vsie_run(vcpu, vsie_page);
1423 unregister_shadow_scb(vcpu);
1424 unpin_blocks(vcpu, vsie_page);
1425 out_unshadow:
1426 unshadow_scb(vcpu, vsie_page);
1427 out_unpin_scb:
1428 unpin_scb(vcpu, vsie_page, scb_addr);
1429 out_put:
1430 put_vsie_page(vcpu->kvm, vsie_page);
1431
1432 return rc < 0 ? rc : 0;
1433 }
1434
1435 /* Init the vsie data structures. To be called when a vm is initialized. */
kvm_s390_vsie_init(struct kvm * kvm)1436 void kvm_s390_vsie_init(struct kvm *kvm)
1437 {
1438 mutex_init(&kvm->arch.vsie.mutex);
1439 INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL_ACCOUNT);
1440 }
1441
1442 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
kvm_s390_vsie_destroy(struct kvm * kvm)1443 void kvm_s390_vsie_destroy(struct kvm *kvm)
1444 {
1445 struct vsie_page *vsie_page;
1446 struct page *page;
1447 int i;
1448
1449 mutex_lock(&kvm->arch.vsie.mutex);
1450 for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1451 page = kvm->arch.vsie.pages[i];
1452 kvm->arch.vsie.pages[i] = NULL;
1453 vsie_page = page_to_virt(page);
1454 release_gmap_shadow(vsie_page);
1455 /* free the radix tree entry */
1456 radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1457 __free_page(page);
1458 }
1459 kvm->arch.vsie.page_count = 0;
1460 mutex_unlock(&kvm->arch.vsie.mutex);
1461 }
1462
kvm_s390_vsie_kick(struct kvm_vcpu * vcpu)1463 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1464 {
1465 struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1466
1467 /*
1468 * Even if the VCPU lets go of the shadow sie block reference, it is
1469 * still valid in the cache. So we can safely kick it.
1470 */
1471 if (scb) {
1472 atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1473 if (scb->prog0c & PROG_IN_SIE)
1474 atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1475 }
1476 }
1477