• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 
20 #include <kvm/arm_vgic.h>
21 #include <kvm/arm_arch_timer.h>
22 
23 #include "trace.h"
24 
25 static struct timecounter *timecounter;
26 static unsigned int host_vtimer_irq;
27 static unsigned int host_ptimer_irq;
28 static u32 host_vtimer_irq_flags;
29 static u32 host_ptimer_irq_flags;
30 
31 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
32 
33 static const struct kvm_irq_level default_ptimer_irq = {
34 	.irq	= 30,
35 	.level	= 1,
36 };
37 
38 static const struct kvm_irq_level default_vtimer_irq = {
39 	.irq	= 27,
40 	.level	= 1,
41 };
42 
43 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
44 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
45 				 struct arch_timer_context *timer_ctx);
46 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
47 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
48 				struct arch_timer_context *timer,
49 				enum kvm_arch_timer_regs treg,
50 				u64 val);
51 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
52 			      struct arch_timer_context *timer,
53 			      enum kvm_arch_timer_regs treg);
54 
timer_get_ctl(struct arch_timer_context * ctxt)55 u32 timer_get_ctl(struct arch_timer_context *ctxt)
56 {
57 	struct kvm_vcpu *vcpu = ctxt->vcpu;
58 
59 	switch(arch_timer_ctx_index(ctxt)) {
60 	case TIMER_VTIMER:
61 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
62 	case TIMER_PTIMER:
63 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
64 	default:
65 		WARN_ON(1);
66 		return 0;
67 	}
68 }
69 
timer_get_cval(struct arch_timer_context * ctxt)70 u64 timer_get_cval(struct arch_timer_context *ctxt)
71 {
72 	struct kvm_vcpu *vcpu = ctxt->vcpu;
73 
74 	switch(arch_timer_ctx_index(ctxt)) {
75 	case TIMER_VTIMER:
76 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
77 	case TIMER_PTIMER:
78 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
79 	default:
80 		WARN_ON(1);
81 		return 0;
82 	}
83 }
84 
timer_get_offset(struct arch_timer_context * ctxt)85 static u64 timer_get_offset(struct arch_timer_context *ctxt)
86 {
87 	struct kvm_vcpu *vcpu = ctxt->vcpu;
88 
89 	switch(arch_timer_ctx_index(ctxt)) {
90 	case TIMER_VTIMER:
91 		if (likely(!kvm_vm_is_protected(vcpu->kvm)))
92 			return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
93 		fallthrough;
94 	default:
95 		return 0;
96 	}
97 }
98 
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)99 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
100 {
101 	struct kvm_vcpu *vcpu = ctxt->vcpu;
102 
103 	switch(arch_timer_ctx_index(ctxt)) {
104 	case TIMER_VTIMER:
105 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
106 		break;
107 	case TIMER_PTIMER:
108 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
109 		break;
110 	default:
111 		WARN_ON(1);
112 	}
113 }
114 
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)115 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
116 {
117 	struct kvm_vcpu *vcpu = ctxt->vcpu;
118 
119 	switch(arch_timer_ctx_index(ctxt)) {
120 	case TIMER_VTIMER:
121 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
122 		break;
123 	case TIMER_PTIMER:
124 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
125 		break;
126 	default:
127 		WARN_ON(1);
128 	}
129 }
130 
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)131 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
132 {
133 	struct kvm_vcpu *vcpu = ctxt->vcpu;
134 
135 	switch(arch_timer_ctx_index(ctxt)) {
136 	case TIMER_VTIMER:
137 		__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
138 		break;
139 	default:
140 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
141 	}
142 }
143 
kvm_phys_timer_read(void)144 u64 kvm_phys_timer_read(void)
145 {
146 	return timecounter->cc->read(timecounter->cc);
147 }
148 
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)149 static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
150 {
151 	if (has_vhe()) {
152 		map->direct_vtimer = vcpu_vtimer(vcpu);
153 		map->direct_ptimer = vcpu_ptimer(vcpu);
154 		map->emul_ptimer = NULL;
155 	} else {
156 		map->direct_vtimer = vcpu_vtimer(vcpu);
157 		map->direct_ptimer = NULL;
158 		map->emul_ptimer = vcpu_ptimer(vcpu);
159 	}
160 
161 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
162 }
163 
userspace_irqchip(struct kvm * kvm)164 static inline bool userspace_irqchip(struct kvm *kvm)
165 {
166 	return static_branch_unlikely(&userspace_irqchip_in_use) &&
167 		unlikely(!irqchip_in_kernel(kvm));
168 }
169 
soft_timer_start(struct hrtimer * hrt,u64 ns)170 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
171 {
172 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
173 		      HRTIMER_MODE_ABS_HARD);
174 }
175 
soft_timer_cancel(struct hrtimer * hrt)176 static void soft_timer_cancel(struct hrtimer *hrt)
177 {
178 	hrtimer_cancel(hrt);
179 }
180 
kvm_arch_timer_handler(int irq,void * dev_id)181 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
182 {
183 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
184 	struct arch_timer_context *ctx;
185 	struct timer_map map;
186 
187 	/*
188 	 * We may see a timer interrupt after vcpu_put() has been called which
189 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
190 	 * has been disabled in timer_save_state(), the hardware interrupt
191 	 * signal may not have been retired from the interrupt controller yet.
192 	 */
193 	if (!vcpu)
194 		return IRQ_HANDLED;
195 
196 	get_timer_map(vcpu, &map);
197 
198 	if (irq == host_vtimer_irq)
199 		ctx = map.direct_vtimer;
200 	else
201 		ctx = map.direct_ptimer;
202 
203 	if (kvm_timer_should_fire(ctx))
204 		kvm_timer_update_irq(vcpu, true, ctx);
205 
206 	if (userspace_irqchip(vcpu->kvm) &&
207 	    !static_branch_unlikely(&has_gic_active_state))
208 		disable_percpu_irq(host_vtimer_irq);
209 
210 	return IRQ_HANDLED;
211 }
212 
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)213 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
214 				     u64 val)
215 {
216 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
217 
218 	if (now < val) {
219 		u64 ns;
220 
221 		ns = cyclecounter_cyc2ns(timecounter->cc,
222 					 val - now,
223 					 timecounter->mask,
224 					 &timecounter->frac);
225 		return ns;
226 	}
227 
228 	return 0;
229 }
230 
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)231 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
232 {
233 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
234 }
235 
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)236 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
237 {
238 	WARN_ON(timer_ctx && timer_ctx->loaded);
239 	return timer_ctx &&
240 		((timer_get_ctl(timer_ctx) &
241 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
242 }
243 
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)244 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
245 {
246 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
247 		vcpu_get_flag(vcpu, IN_WFIT));
248 }
249 
wfit_delay_ns(struct kvm_vcpu * vcpu)250 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
251 {
252 	struct arch_timer_context *ctx = vcpu_vtimer(vcpu);
253 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
254 
255 	return kvm_counter_compute_delta(ctx, val);
256 }
257 
258 /*
259  * Returns the earliest expiration time in ns among guest timers.
260  * Note that it will return 0 if none of timers can fire.
261  */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)262 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
263 {
264 	u64 min_delta = ULLONG_MAX;
265 	int i;
266 
267 	for (i = 0; i < NR_KVM_TIMERS; i++) {
268 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
269 
270 		WARN(ctx->loaded, "timer %d loaded\n", i);
271 		if (kvm_timer_irq_can_fire(ctx))
272 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
273 	}
274 
275 	if (vcpu_has_wfit_active(vcpu))
276 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
277 
278 	/* If none of timers can fire, then return 0 */
279 	if (min_delta == ULLONG_MAX)
280 		return 0;
281 
282 	return min_delta;
283 }
284 
kvm_bg_timer_expire(struct hrtimer * hrt)285 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
286 {
287 	struct arch_timer_cpu *timer;
288 	struct kvm_vcpu *vcpu;
289 	u64 ns;
290 
291 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
292 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
293 
294 	/*
295 	 * Check that the timer has really expired from the guest's
296 	 * PoV (NTP on the host may have forced it to expire
297 	 * early). If we should have slept longer, restart it.
298 	 */
299 	ns = kvm_timer_earliest_exp(vcpu);
300 	if (unlikely(ns)) {
301 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
302 		return HRTIMER_RESTART;
303 	}
304 
305 	kvm_vcpu_wake_up(vcpu);
306 	return HRTIMER_NORESTART;
307 }
308 
kvm_hrtimer_expire(struct hrtimer * hrt)309 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
310 {
311 	struct arch_timer_context *ctx;
312 	struct kvm_vcpu *vcpu;
313 	u64 ns;
314 
315 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
316 	vcpu = ctx->vcpu;
317 
318 	trace_kvm_timer_hrtimer_expire(ctx);
319 
320 	/*
321 	 * Check that the timer has really expired from the guest's
322 	 * PoV (NTP on the host may have forced it to expire
323 	 * early). If not ready, schedule for a later time.
324 	 */
325 	ns = kvm_timer_compute_delta(ctx);
326 	if (unlikely(ns)) {
327 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
328 		return HRTIMER_RESTART;
329 	}
330 
331 	kvm_timer_update_irq(vcpu, true, ctx);
332 	return HRTIMER_NORESTART;
333 }
334 
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)335 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
336 {
337 	enum kvm_arch_timers index;
338 	u64 cval, now;
339 
340 	if (!timer_ctx)
341 		return false;
342 
343 	index = arch_timer_ctx_index(timer_ctx);
344 
345 	if (timer_ctx->loaded) {
346 		u32 cnt_ctl = 0;
347 
348 		switch (index) {
349 		case TIMER_VTIMER:
350 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
351 			break;
352 		case TIMER_PTIMER:
353 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
354 			break;
355 		case NR_KVM_TIMERS:
356 			/* GCC is braindead */
357 			cnt_ctl = 0;
358 			break;
359 		}
360 
361 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
362 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
363 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
364 	}
365 
366 	if (!kvm_timer_irq_can_fire(timer_ctx))
367 		return false;
368 
369 	cval = timer_get_cval(timer_ctx);
370 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
371 
372 	return cval <= now;
373 }
374 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)375 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
376 {
377 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
378 }
379 
380 /*
381  * Reflect the timer output level into the kvm_run structure
382  */
kvm_timer_update_run(struct kvm_vcpu * vcpu)383 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
384 {
385 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
386 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
387 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
388 
389 	/* Populate the device bitmap with the timer states */
390 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
391 				    KVM_ARM_DEV_EL1_PTIMER);
392 	if (kvm_timer_should_fire(vtimer))
393 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
394 	if (kvm_timer_should_fire(ptimer))
395 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
396 }
397 
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)398 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
399 				 struct arch_timer_context *timer_ctx)
400 {
401 	int ret;
402 
403 	timer_ctx->irq.level = new_level;
404 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
405 				   timer_ctx->irq.level);
406 
407 	if (!userspace_irqchip(vcpu->kvm)) {
408 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
409 					  timer_ctx->irq.irq,
410 					  timer_ctx->irq.level,
411 					  timer_ctx);
412 		WARN_ON(ret);
413 	}
414 }
415 
416 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)417 static void timer_emulate(struct arch_timer_context *ctx)
418 {
419 	bool should_fire = kvm_timer_should_fire(ctx);
420 
421 	trace_kvm_timer_emulate(ctx, should_fire);
422 
423 	if (should_fire != ctx->irq.level) {
424 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
425 		return;
426 	}
427 
428 	/*
429 	 * If the timer can fire now, we don't need to have a soft timer
430 	 * scheduled for the future.  If the timer cannot fire at all,
431 	 * then we also don't need a soft timer.
432 	 */
433 	if (!kvm_timer_irq_can_fire(ctx)) {
434 		soft_timer_cancel(&ctx->hrtimer);
435 		return;
436 	}
437 
438 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
439 }
440 
timer_save_state(struct arch_timer_context * ctx)441 static void timer_save_state(struct arch_timer_context *ctx)
442 {
443 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
444 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
445 	unsigned long flags;
446 
447 	if (!timer->enabled)
448 		return;
449 
450 	local_irq_save(flags);
451 
452 	if (!ctx->loaded)
453 		goto out;
454 
455 	switch (index) {
456 	case TIMER_VTIMER:
457 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
458 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
459 
460 		/* Disable the timer */
461 		write_sysreg_el0(0, SYS_CNTV_CTL);
462 		isb();
463 
464 		break;
465 	case TIMER_PTIMER:
466 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
467 		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
468 
469 		/* Disable the timer */
470 		write_sysreg_el0(0, SYS_CNTP_CTL);
471 		isb();
472 
473 		break;
474 	case NR_KVM_TIMERS:
475 		BUG();
476 	}
477 
478 	trace_kvm_timer_save_state(ctx);
479 
480 	ctx->loaded = false;
481 out:
482 	local_irq_restore(flags);
483 }
484 
485 /*
486  * Schedule the background timer before calling kvm_vcpu_block, so that this
487  * thread is removed from its waitqueue and made runnable when there's a timer
488  * interrupt to handle.
489  */
kvm_timer_blocking(struct kvm_vcpu * vcpu)490 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
491 {
492 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
493 	struct timer_map map;
494 
495 	get_timer_map(vcpu, &map);
496 
497 	/*
498 	 * If no timers are capable of raising interrupts (disabled or
499 	 * masked), then there's no more work for us to do.
500 	 */
501 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
502 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
503 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
504 	    !vcpu_has_wfit_active(vcpu))
505 		return;
506 
507 	/*
508 	 * At least one guest time will expire. Schedule a background timer.
509 	 * Set the earliest expiration time among the guest timers.
510 	 */
511 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
512 }
513 
kvm_timer_unblocking(struct kvm_vcpu * vcpu)514 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
515 {
516 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
517 
518 	soft_timer_cancel(&timer->bg_timer);
519 }
520 
timer_restore_state(struct arch_timer_context * ctx)521 static void timer_restore_state(struct arch_timer_context *ctx)
522 {
523 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
524 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
525 	unsigned long flags;
526 
527 	if (!timer->enabled)
528 		return;
529 
530 	local_irq_save(flags);
531 
532 	if (ctx->loaded)
533 		goto out;
534 
535 	switch (index) {
536 	case TIMER_VTIMER:
537 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
538 		isb();
539 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
540 		break;
541 	case TIMER_PTIMER:
542 		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
543 		isb();
544 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
545 		break;
546 	case NR_KVM_TIMERS:
547 		BUG();
548 	}
549 
550 	trace_kvm_timer_restore_state(ctx);
551 
552 	ctx->loaded = true;
553 out:
554 	local_irq_restore(flags);
555 }
556 
set_cntvoff(u64 cntvoff)557 static void set_cntvoff(u64 cntvoff)
558 {
559 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
560 }
561 
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)562 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
563 {
564 	int r;
565 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
566 	WARN_ON(r);
567 }
568 
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)569 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
570 {
571 	struct kvm_vcpu *vcpu = ctx->vcpu;
572 	bool phys_active = false;
573 
574 	/*
575 	 * Update the timer output so that it is likely to match the
576 	 * state we're about to restore. If the timer expires between
577 	 * this point and the register restoration, we'll take the
578 	 * interrupt anyway.
579 	 */
580 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
581 
582 	if (irqchip_in_kernel(vcpu->kvm))
583 		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
584 
585 	phys_active |= ctx->irq.level;
586 
587 	set_timer_irq_phys_active(ctx, phys_active);
588 }
589 
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)590 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
591 {
592 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
593 
594 	/*
595 	 * Update the timer output so that it is likely to match the
596 	 * state we're about to restore. If the timer expires between
597 	 * this point and the register restoration, we'll take the
598 	 * interrupt anyway.
599 	 */
600 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
601 
602 	/*
603 	 * When using a userspace irqchip with the architected timers and a
604 	 * host interrupt controller that doesn't support an active state, we
605 	 * must still prevent continuously exiting from the guest, and
606 	 * therefore mask the physical interrupt by disabling it on the host
607 	 * interrupt controller when the virtual level is high, such that the
608 	 * guest can make forward progress.  Once we detect the output level
609 	 * being de-asserted, we unmask the interrupt again so that we exit
610 	 * from the guest when the timer fires.
611 	 */
612 	if (vtimer->irq.level)
613 		disable_percpu_irq(host_vtimer_irq);
614 	else
615 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
616 }
617 
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)618 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
619 {
620 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
621 	struct timer_map map;
622 
623 	if (unlikely(!timer->enabled))
624 		return;
625 
626 	get_timer_map(vcpu, &map);
627 
628 	if (static_branch_likely(&has_gic_active_state)) {
629 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
630 		if (map.direct_ptimer)
631 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
632 	} else {
633 		kvm_timer_vcpu_load_nogic(vcpu);
634 	}
635 
636 	set_cntvoff(timer_get_offset(map.direct_vtimer));
637 
638 	kvm_timer_unblocking(vcpu);
639 
640 	timer_restore_state(map.direct_vtimer);
641 	if (map.direct_ptimer)
642 		timer_restore_state(map.direct_ptimer);
643 
644 	if (map.emul_ptimer)
645 		timer_emulate(map.emul_ptimer);
646 }
647 
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)648 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
649 {
650 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
651 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
652 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
653 	bool vlevel, plevel;
654 
655 	if (likely(irqchip_in_kernel(vcpu->kvm)))
656 		return false;
657 
658 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
659 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
660 
661 	return kvm_timer_should_fire(vtimer) != vlevel ||
662 	       kvm_timer_should_fire(ptimer) != plevel;
663 }
664 
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)665 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
666 {
667 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
668 	struct timer_map map;
669 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
670 
671 	if (unlikely(!timer->enabled))
672 		return;
673 
674 	get_timer_map(vcpu, &map);
675 
676 	timer_save_state(map.direct_vtimer);
677 	if (map.direct_ptimer)
678 		timer_save_state(map.direct_ptimer);
679 
680 	/*
681 	 * Cancel soft timer emulation, because the only case where we
682 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
683 	 * in that case we already factor in the deadline for the physical
684 	 * timer when scheduling the bg_timer.
685 	 *
686 	 * In any case, we re-schedule the hrtimer for the physical timer when
687 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
688 	 */
689 	if (map.emul_ptimer)
690 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
691 
692 	if (rcuwait_active(wait))
693 		kvm_timer_blocking(vcpu);
694 
695 	/*
696 	 * The kernel may decide to run userspace after calling vcpu_put, so
697 	 * we reset cntvoff to 0 to ensure a consistent read between user
698 	 * accesses to the virtual counter and kernel access to the physical
699 	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
700 	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
701 	 */
702 	set_cntvoff(0);
703 }
704 
705 /*
706  * With a userspace irqchip we have to check if the guest de-asserted the
707  * timer and if so, unmask the timer irq signal on the host interrupt
708  * controller to ensure that we see future timer signals.
709  */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)710 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
711 {
712 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
713 
714 	if (!kvm_timer_should_fire(vtimer)) {
715 		kvm_timer_update_irq(vcpu, false, vtimer);
716 		if (static_branch_likely(&has_gic_active_state))
717 			set_timer_irq_phys_active(vtimer, false);
718 		else
719 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
720 	}
721 }
722 
kvm_timer_sync_user(struct kvm_vcpu * vcpu)723 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
724 {
725 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
726 
727 	if (unlikely(!timer->enabled))
728 		return;
729 
730 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
731 		unmask_vtimer_irq_user(vcpu);
732 }
733 
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)734 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
735 {
736 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
737 	struct timer_map map;
738 
739 	get_timer_map(vcpu, &map);
740 
741 	/*
742 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
743 	 * and to 0 for ARMv7.  We provide an implementation that always
744 	 * resets the timer to be disabled and unmasked and is compliant with
745 	 * the ARMv7 architecture.
746 	 */
747 	timer_set_ctl(vcpu_vtimer(vcpu), 0);
748 	timer_set_ctl(vcpu_ptimer(vcpu), 0);
749 
750 	if (timer->enabled) {
751 		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
752 		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
753 
754 		if (irqchip_in_kernel(vcpu->kvm)) {
755 			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
756 			if (map.direct_ptimer)
757 				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
758 		}
759 	}
760 
761 	if (map.emul_ptimer)
762 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
763 
764 	return 0;
765 }
766 
767 /* Make the updates of cntvoff for all vtimer contexts atomic */
update_vtimer_cntvoff(struct kvm_vcpu * vcpu,u64 cntvoff)768 static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
769 {
770 	unsigned long i;
771 	struct kvm *kvm = vcpu->kvm;
772 	struct kvm_vcpu *tmp;
773 
774 	if (unlikely(kvm_vm_is_protected(vcpu->kvm)))
775 		cntvoff = 0;
776 
777 	mutex_lock(&kvm->lock);
778 	kvm_for_each_vcpu(i, tmp, kvm)
779 		timer_set_offset(vcpu_vtimer(tmp), cntvoff);
780 
781 	/*
782 	 * When called from the vcpu create path, the CPU being created is not
783 	 * included in the loop above, so we just set it here as well.
784 	 */
785 	timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
786 	mutex_unlock(&kvm->lock);
787 }
788 
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)789 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
790 {
791 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
792 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
793 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
794 
795 	vtimer->vcpu = vcpu;
796 	ptimer->vcpu = vcpu;
797 
798 	/* Synchronize cntvoff across all vtimers of a VM. */
799 	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
800 	timer_set_offset(ptimer, 0);
801 
802 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
803 	timer->bg_timer.function = kvm_bg_timer_expire;
804 
805 	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
806 	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
807 	vtimer->hrtimer.function = kvm_hrtimer_expire;
808 	ptimer->hrtimer.function = kvm_hrtimer_expire;
809 
810 	vtimer->irq.irq = default_vtimer_irq.irq;
811 	ptimer->irq.irq = default_ptimer_irq.irq;
812 
813 	vtimer->host_timer_irq = host_vtimer_irq;
814 	ptimer->host_timer_irq = host_ptimer_irq;
815 
816 	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
817 	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
818 }
819 
kvm_timer_init_interrupt(void * info)820 static void kvm_timer_init_interrupt(void *info)
821 {
822 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
823 	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
824 }
825 
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)826 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
827 {
828 	struct arch_timer_context *timer;
829 
830 	switch (regid) {
831 	case KVM_REG_ARM_TIMER_CTL:
832 		timer = vcpu_vtimer(vcpu);
833 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
834 		break;
835 	case KVM_REG_ARM_TIMER_CNT:
836 		timer = vcpu_vtimer(vcpu);
837 		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
838 		break;
839 	case KVM_REG_ARM_TIMER_CVAL:
840 		timer = vcpu_vtimer(vcpu);
841 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
842 		break;
843 	case KVM_REG_ARM_PTIMER_CTL:
844 		timer = vcpu_ptimer(vcpu);
845 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
846 		break;
847 	case KVM_REG_ARM_PTIMER_CVAL:
848 		timer = vcpu_ptimer(vcpu);
849 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
850 		break;
851 
852 	default:
853 		return -1;
854 	}
855 
856 	return 0;
857 }
858 
read_timer_ctl(struct arch_timer_context * timer)859 static u64 read_timer_ctl(struct arch_timer_context *timer)
860 {
861 	/*
862 	 * Set ISTATUS bit if it's expired.
863 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
864 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
865 	 * regardless of ENABLE bit for our implementation convenience.
866 	 */
867 	u32 ctl = timer_get_ctl(timer);
868 
869 	if (!kvm_timer_compute_delta(timer))
870 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
871 
872 	return ctl;
873 }
874 
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)875 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
876 {
877 	switch (regid) {
878 	case KVM_REG_ARM_TIMER_CTL:
879 		return kvm_arm_timer_read(vcpu,
880 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
881 	case KVM_REG_ARM_TIMER_CNT:
882 		return kvm_arm_timer_read(vcpu,
883 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
884 	case KVM_REG_ARM_TIMER_CVAL:
885 		return kvm_arm_timer_read(vcpu,
886 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
887 	case KVM_REG_ARM_PTIMER_CTL:
888 		return kvm_arm_timer_read(vcpu,
889 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
890 	case KVM_REG_ARM_PTIMER_CNT:
891 		return kvm_arm_timer_read(vcpu,
892 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
893 	case KVM_REG_ARM_PTIMER_CVAL:
894 		return kvm_arm_timer_read(vcpu,
895 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
896 	}
897 	return (u64)-1;
898 }
899 
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)900 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
901 			      struct arch_timer_context *timer,
902 			      enum kvm_arch_timer_regs treg)
903 {
904 	u64 val;
905 
906 	switch (treg) {
907 	case TIMER_REG_TVAL:
908 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
909 		val = lower_32_bits(val);
910 		break;
911 
912 	case TIMER_REG_CTL:
913 		val = read_timer_ctl(timer);
914 		break;
915 
916 	case TIMER_REG_CVAL:
917 		val = timer_get_cval(timer);
918 		break;
919 
920 	case TIMER_REG_CNT:
921 		val = kvm_phys_timer_read() - timer_get_offset(timer);
922 		break;
923 
924 	default:
925 		BUG();
926 	}
927 
928 	return val;
929 }
930 
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)931 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
932 			      enum kvm_arch_timers tmr,
933 			      enum kvm_arch_timer_regs treg)
934 {
935 	u64 val;
936 
937 	preempt_disable();
938 	kvm_timer_vcpu_put(vcpu);
939 
940 	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
941 
942 	kvm_timer_vcpu_load(vcpu);
943 	preempt_enable();
944 
945 	return val;
946 }
947 
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)948 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
949 				struct arch_timer_context *timer,
950 				enum kvm_arch_timer_regs treg,
951 				u64 val)
952 {
953 	switch (treg) {
954 	case TIMER_REG_TVAL:
955 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
956 		break;
957 
958 	case TIMER_REG_CTL:
959 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
960 		break;
961 
962 	case TIMER_REG_CVAL:
963 		timer_set_cval(timer, val);
964 		break;
965 
966 	default:
967 		BUG();
968 	}
969 }
970 
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)971 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
972 				enum kvm_arch_timers tmr,
973 				enum kvm_arch_timer_regs treg,
974 				u64 val)
975 {
976 	preempt_disable();
977 	kvm_timer_vcpu_put(vcpu);
978 
979 	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
980 
981 	kvm_timer_vcpu_load(vcpu);
982 	preempt_enable();
983 }
984 
kvm_timer_starting_cpu(unsigned int cpu)985 static int kvm_timer_starting_cpu(unsigned int cpu)
986 {
987 	kvm_timer_init_interrupt(NULL);
988 	return 0;
989 }
990 
kvm_timer_dying_cpu(unsigned int cpu)991 static int kvm_timer_dying_cpu(unsigned int cpu)
992 {
993 	disable_percpu_irq(host_vtimer_irq);
994 	return 0;
995 }
996 
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)997 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
998 {
999 	if (vcpu)
1000 		irqd_set_forwarded_to_vcpu(d);
1001 	else
1002 		irqd_clr_forwarded_to_vcpu(d);
1003 
1004 	return 0;
1005 }
1006 
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1007 static int timer_irq_set_irqchip_state(struct irq_data *d,
1008 				       enum irqchip_irq_state which, bool val)
1009 {
1010 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1011 		return irq_chip_set_parent_state(d, which, val);
1012 
1013 	if (val)
1014 		irq_chip_mask_parent(d);
1015 	else
1016 		irq_chip_unmask_parent(d);
1017 
1018 	return 0;
1019 }
1020 
timer_irq_eoi(struct irq_data * d)1021 static void timer_irq_eoi(struct irq_data *d)
1022 {
1023 	if (!irqd_is_forwarded_to_vcpu(d))
1024 		irq_chip_eoi_parent(d);
1025 }
1026 
timer_irq_ack(struct irq_data * d)1027 static void timer_irq_ack(struct irq_data *d)
1028 {
1029 	d = d->parent_data;
1030 	if (d->chip->irq_ack)
1031 		d->chip->irq_ack(d);
1032 }
1033 
1034 static struct irq_chip timer_chip = {
1035 	.name			= "KVM",
1036 	.irq_ack		= timer_irq_ack,
1037 	.irq_mask		= irq_chip_mask_parent,
1038 	.irq_unmask		= irq_chip_unmask_parent,
1039 	.irq_eoi		= timer_irq_eoi,
1040 	.irq_set_type		= irq_chip_set_type_parent,
1041 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1042 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1043 };
1044 
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1045 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1046 				  unsigned int nr_irqs, void *arg)
1047 {
1048 	irq_hw_number_t hwirq = (uintptr_t)arg;
1049 
1050 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1051 					     &timer_chip, NULL);
1052 }
1053 
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1054 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1055 				  unsigned int nr_irqs)
1056 {
1057 }
1058 
1059 static const struct irq_domain_ops timer_domain_ops = {
1060 	.alloc	= timer_irq_domain_alloc,
1061 	.free	= timer_irq_domain_free,
1062 };
1063 
1064 static struct irq_ops arch_timer_irq_ops = {
1065 	.get_input_level = kvm_arch_timer_get_input_level,
1066 };
1067 
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1068 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1069 {
1070 	*flags = irq_get_trigger_type(virq);
1071 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1072 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1073 			virq);
1074 		*flags = IRQF_TRIGGER_LOW;
1075 	}
1076 }
1077 
kvm_irq_init(struct arch_timer_kvm_info * info)1078 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1079 {
1080 	struct irq_domain *domain = NULL;
1081 
1082 	if (info->virtual_irq <= 0) {
1083 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1084 			info->virtual_irq);
1085 		return -ENODEV;
1086 	}
1087 
1088 	host_vtimer_irq = info->virtual_irq;
1089 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1090 
1091 	if (kvm_vgic_global_state.no_hw_deactivation) {
1092 		struct fwnode_handle *fwnode;
1093 		struct irq_data *data;
1094 
1095 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1096 		if (!fwnode)
1097 			return -ENOMEM;
1098 
1099 		/* Assume both vtimer and ptimer in the same parent */
1100 		data = irq_get_irq_data(host_vtimer_irq);
1101 		domain = irq_domain_create_hierarchy(data->domain, 0,
1102 						     NR_KVM_TIMERS, fwnode,
1103 						     &timer_domain_ops, NULL);
1104 		if (!domain) {
1105 			irq_domain_free_fwnode(fwnode);
1106 			return -ENOMEM;
1107 		}
1108 
1109 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1110 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1111 					    (void *)TIMER_VTIMER));
1112 	}
1113 
1114 	if (info->physical_irq > 0) {
1115 		host_ptimer_irq = info->physical_irq;
1116 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1117 
1118 		if (domain)
1119 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1120 						    (void *)TIMER_PTIMER));
1121 	}
1122 
1123 	return 0;
1124 }
1125 
kvm_timer_hyp_init(bool has_gic)1126 int kvm_timer_hyp_init(bool has_gic)
1127 {
1128 	struct arch_timer_kvm_info *info;
1129 	int err;
1130 
1131 	info = arch_timer_get_kvm_info();
1132 	timecounter = &info->timecounter;
1133 
1134 	if (!timecounter->cc) {
1135 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1136 		return -ENODEV;
1137 	}
1138 
1139 	err = kvm_irq_init(info);
1140 	if (err)
1141 		return err;
1142 
1143 	/* First, do the virtual EL1 timer irq */
1144 
1145 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1146 				 "kvm guest vtimer", kvm_get_running_vcpus());
1147 	if (err) {
1148 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1149 			host_vtimer_irq, err);
1150 		return err;
1151 	}
1152 
1153 	if (has_gic) {
1154 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1155 					    kvm_get_running_vcpus());
1156 		if (err) {
1157 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1158 			goto out_free_irq;
1159 		}
1160 
1161 		static_branch_enable(&has_gic_active_state);
1162 	}
1163 
1164 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1165 
1166 	/* Now let's do the physical EL1 timer irq */
1167 
1168 	if (info->physical_irq > 0) {
1169 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1170 					 "kvm guest ptimer", kvm_get_running_vcpus());
1171 		if (err) {
1172 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1173 				host_ptimer_irq, err);
1174 			return err;
1175 		}
1176 
1177 		if (has_gic) {
1178 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1179 						    kvm_get_running_vcpus());
1180 			if (err) {
1181 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1182 				goto out_free_irq;
1183 			}
1184 		}
1185 
1186 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1187 	} else if (has_vhe()) {
1188 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1189 			info->physical_irq);
1190 		err = -ENODEV;
1191 		goto out_free_irq;
1192 	}
1193 
1194 	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
1195 			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
1196 			  kvm_timer_dying_cpu);
1197 	return 0;
1198 out_free_irq:
1199 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1200 	return err;
1201 }
1202 
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1203 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1204 {
1205 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1206 
1207 	soft_timer_cancel(&timer->bg_timer);
1208 }
1209 
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1210 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1211 {
1212 	int vtimer_irq, ptimer_irq, ret;
1213 	unsigned long i;
1214 
1215 	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
1216 	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
1217 	if (ret)
1218 		return false;
1219 
1220 	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
1221 	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
1222 	if (ret)
1223 		return false;
1224 
1225 	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
1226 		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
1227 		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
1228 			return false;
1229 	}
1230 
1231 	return true;
1232 }
1233 
kvm_arch_timer_get_input_level(int vintid)1234 bool kvm_arch_timer_get_input_level(int vintid)
1235 {
1236 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1237 	struct arch_timer_context *timer;
1238 
1239 	if (WARN(!vcpu, "No vcpu context!\n"))
1240 		return false;
1241 
1242 	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
1243 		timer = vcpu_vtimer(vcpu);
1244 	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
1245 		timer = vcpu_ptimer(vcpu);
1246 	else
1247 		BUG();
1248 
1249 	return kvm_timer_should_fire(timer);
1250 }
1251 
kvm_timer_enable(struct kvm_vcpu * vcpu)1252 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1253 {
1254 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1255 	struct timer_map map;
1256 	int ret;
1257 
1258 	if (timer->enabled)
1259 		return 0;
1260 
1261 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1262 	if (!irqchip_in_kernel(vcpu->kvm))
1263 		goto no_vgic;
1264 
1265 	/*
1266 	 * At this stage, we have the guarantee that the vgic is both
1267 	 * available and initialized.
1268 	 */
1269 	if (!timer_irqs_are_valid(vcpu)) {
1270 		kvm_debug("incorrectly configured timer irqs\n");
1271 		return -EINVAL;
1272 	}
1273 
1274 	get_timer_map(vcpu, &map);
1275 
1276 	ret = kvm_vgic_map_phys_irq(vcpu,
1277 				    map.direct_vtimer->host_timer_irq,
1278 				    map.direct_vtimer->irq.irq,
1279 				    &arch_timer_irq_ops);
1280 	if (ret)
1281 		return ret;
1282 
1283 	if (map.direct_ptimer) {
1284 		ret = kvm_vgic_map_phys_irq(vcpu,
1285 					    map.direct_ptimer->host_timer_irq,
1286 					    map.direct_ptimer->irq.irq,
1287 					    &arch_timer_irq_ops);
1288 	}
1289 
1290 	if (ret)
1291 		return ret;
1292 
1293 no_vgic:
1294 	timer->enabled = 1;
1295 	return 0;
1296 }
1297 
1298 /*
1299  * On VHE system, we only need to configure the EL2 timer trap register once,
1300  * not for every world switch.
1301  * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
1302  * and this makes those bits have no effect for the host kernel execution.
1303  */
kvm_timer_init_vhe(void)1304 void kvm_timer_init_vhe(void)
1305 {
1306 	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
1307 	u32 cnthctl_shift = 10;
1308 	u64 val;
1309 
1310 	/*
1311 	 * VHE systems allow the guest direct access to the EL1 physical
1312 	 * timer/counter.
1313 	 */
1314 	val = read_sysreg(cnthctl_el2);
1315 	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
1316 	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
1317 	write_sysreg(val, cnthctl_el2);
1318 }
1319 
set_timer_irqs(struct kvm * kvm,int vtimer_irq,int ptimer_irq)1320 static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
1321 {
1322 	struct kvm_vcpu *vcpu;
1323 	unsigned long i;
1324 
1325 	kvm_for_each_vcpu(i, vcpu, kvm) {
1326 		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
1327 		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
1328 	}
1329 }
1330 
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1331 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1332 {
1333 	int __user *uaddr = (int __user *)(long)attr->addr;
1334 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1335 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
1336 	int irq;
1337 
1338 	if (!irqchip_in_kernel(vcpu->kvm))
1339 		return -EINVAL;
1340 
1341 	if (get_user(irq, uaddr))
1342 		return -EFAULT;
1343 
1344 	if (!(irq_is_ppi(irq)))
1345 		return -EINVAL;
1346 
1347 	if (vcpu->arch.timer_cpu.enabled)
1348 		return -EBUSY;
1349 
1350 	switch (attr->attr) {
1351 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1352 		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
1353 		break;
1354 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1355 		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
1356 		break;
1357 	default:
1358 		return -ENXIO;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1364 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1365 {
1366 	int __user *uaddr = (int __user *)(long)attr->addr;
1367 	struct arch_timer_context *timer;
1368 	int irq;
1369 
1370 	switch (attr->attr) {
1371 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1372 		timer = vcpu_vtimer(vcpu);
1373 		break;
1374 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1375 		timer = vcpu_ptimer(vcpu);
1376 		break;
1377 	default:
1378 		return -ENXIO;
1379 	}
1380 
1381 	irq = timer->irq.irq;
1382 	return put_user(irq, uaddr);
1383 }
1384 
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1385 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1386 {
1387 	switch (attr->attr) {
1388 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1389 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1390 		return 0;
1391 	}
1392 
1393 	return -ENXIO;
1394 }
1395