• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6 
7 #include <linux/auxiliary_bus.h>
8 #include <linux/bits.h>
9 #include <linux/clk.h>
10 #include <linux/debugfs.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/gpio/driver.h>
13 #include <linux/i2c.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 
21 #include <asm/unaligned.h>
22 
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_bridge.h>
26 #include <drm/drm_dp_aux_bus.h>
27 #include <drm/drm_dp_helper.h>
28 #include <drm/drm_mipi_dsi.h>
29 #include <drm/drm_of.h>
30 #include <drm/drm_panel.h>
31 #include <drm/drm_print.h>
32 #include <drm/drm_probe_helper.h>
33 
34 #define SN_DEVICE_REV_REG			0x08
35 #define SN_DPPLL_SRC_REG			0x0A
36 #define  DPPLL_CLK_SRC_DSICLK			BIT(0)
37 #define  REFCLK_FREQ_MASK			GENMASK(3, 1)
38 #define  REFCLK_FREQ(x)				((x) << 1)
39 #define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
40 #define SN_PLL_ENABLE_REG			0x0D
41 #define SN_DSI_LANES_REG			0x10
42 #define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
43 #define  CHA_DSI_LANES(x)			((x) << 3)
44 #define SN_DSIA_CLK_FREQ_REG			0x12
45 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
46 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
47 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
48 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
49 #define  CHA_HSYNC_POLARITY			BIT(7)
50 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
51 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
52 #define  CHA_VSYNC_POLARITY			BIT(7)
53 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
54 #define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
55 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
56 #define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
57 #define SN_LN_ASSIGN_REG			0x59
58 #define  LN_ASSIGN_WIDTH			2
59 #define SN_ENH_FRAME_REG			0x5A
60 #define  VSTREAM_ENABLE				BIT(3)
61 #define  LN_POLRS_OFFSET			4
62 #define  LN_POLRS_MASK				0xf0
63 #define SN_DATA_FORMAT_REG			0x5B
64 #define  BPP_18_RGB				BIT(0)
65 #define SN_HPD_DISABLE_REG			0x5C
66 #define  HPD_DISABLE				BIT(0)
67 #define SN_GPIO_IO_REG				0x5E
68 #define  SN_GPIO_INPUT_SHIFT			4
69 #define  SN_GPIO_OUTPUT_SHIFT			0
70 #define SN_GPIO_CTRL_REG			0x5F
71 #define  SN_GPIO_MUX_INPUT			0
72 #define  SN_GPIO_MUX_OUTPUT			1
73 #define  SN_GPIO_MUX_SPECIAL			2
74 #define  SN_GPIO_MUX_MASK			0x3
75 #define SN_AUX_WDATA_REG(x)			(0x64 + (x))
76 #define SN_AUX_ADDR_19_16_REG			0x74
77 #define SN_AUX_ADDR_15_8_REG			0x75
78 #define SN_AUX_ADDR_7_0_REG			0x76
79 #define SN_AUX_ADDR_MASK			GENMASK(19, 0)
80 #define SN_AUX_LENGTH_REG			0x77
81 #define SN_AUX_CMD_REG				0x78
82 #define  AUX_CMD_SEND				BIT(0)
83 #define  AUX_CMD_REQ(x)				((x) << 4)
84 #define SN_AUX_RDATA_REG(x)			(0x79 + (x))
85 #define SN_SSC_CONFIG_REG			0x93
86 #define  DP_NUM_LANES_MASK			GENMASK(5, 4)
87 #define  DP_NUM_LANES(x)			((x) << 4)
88 #define SN_DATARATE_CONFIG_REG			0x94
89 #define  DP_DATARATE_MASK			GENMASK(7, 5)
90 #define  DP_DATARATE(x)				((x) << 5)
91 #define SN_ML_TX_MODE_REG			0x96
92 #define  ML_TX_MAIN_LINK_OFF			0
93 #define  ML_TX_NORMAL_MODE			BIT(0)
94 #define SN_AUX_CMD_STATUS_REG			0xF4
95 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
96 #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
97 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
98 
99 #define MIN_DSI_CLK_FREQ_MHZ	40
100 
101 /* fudge factor required to account for 8b/10b encoding */
102 #define DP_CLK_FUDGE_NUM	10
103 #define DP_CLK_FUDGE_DEN	8
104 
105 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
106 #define SN_AUX_MAX_PAYLOAD_BYTES	16
107 
108 #define SN_REGULATOR_SUPPLY_NUM		4
109 
110 #define SN_MAX_DP_LANES			4
111 #define SN_NUM_GPIOS			4
112 #define SN_GPIO_PHYSICAL_OFFSET		1
113 
114 #define SN_LINK_TRAINING_TRIES		10
115 
116 /**
117  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
118  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
119  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
120  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
121  *
122  * @dev:          Pointer to the top level (i2c) device.
123  * @regmap:       Regmap for accessing i2c.
124  * @aux:          Our aux channel.
125  * @bridge:       Our bridge.
126  * @connector:    Our connector.
127  * @host_node:    Remote DSI node.
128  * @dsi:          Our MIPI DSI source.
129  * @refclk:       Our reference clock.
130  * @next_bridge:  The bridge on the eDP side.
131  * @enable_gpio:  The GPIO we toggle to enable the bridge.
132  * @supplies:     Data for bulk enabling/disabling our regulators.
133  * @dp_lanes:     Count of dp_lanes we're using.
134  * @ln_assign:    Value to program to the LN_ASSIGN register.
135  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
136  * @comms_enabled: If true then communication over the aux channel is enabled.
137  * @comms_mutex:   Protects modification of comms_enabled.
138  *
139  * @gchip:        If we expose our GPIOs, this is used.
140  * @gchip_output: A cache of whether we've set GPIOs to output.  This
141  *                serves double-duty of keeping track of the direction and
142  *                also keeping track of whether we've incremented the
143  *                pm_runtime reference count for this pin, which we do
144  *                whenever a pin is configured as an output.  This is a
145  *                bitmap so we can do atomic ops on it without an extra
146  *                lock so concurrent users of our 4 GPIOs don't stomp on
147  *                each other's read-modify-write.
148  */
149 struct ti_sn65dsi86 {
150 	struct auxiliary_device		*bridge_aux;
151 	struct auxiliary_device		*gpio_aux;
152 	struct auxiliary_device		*aux_aux;
153 
154 	struct device			*dev;
155 	struct regmap			*regmap;
156 	struct drm_dp_aux		aux;
157 	struct drm_bridge		bridge;
158 	struct drm_connector		connector;
159 	struct device_node		*host_node;
160 	struct mipi_dsi_device		*dsi;
161 	struct clk			*refclk;
162 	struct drm_bridge		*next_bridge;
163 	struct gpio_desc		*enable_gpio;
164 	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
165 	int				dp_lanes;
166 	u8				ln_assign;
167 	u8				ln_polrs;
168 	bool				comms_enabled;
169 	struct mutex			comms_mutex;
170 
171 #if defined(CONFIG_OF_GPIO)
172 	struct gpio_chip		gchip;
173 	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
174 #endif
175 };
176 
177 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
178 	{ .range_min = 0, .range_max = 0xFF },
179 };
180 
181 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
182 	.yes_ranges = ti_sn65dsi86_volatile_ranges,
183 	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
184 };
185 
186 static const struct regmap_config ti_sn65dsi86_regmap_config = {
187 	.reg_bits = 8,
188 	.val_bits = 8,
189 	.volatile_table = &ti_sn_bridge_volatile_table,
190 	.cache_type = REGCACHE_NONE,
191 	.max_register = 0xFF,
192 };
193 
ti_sn65dsi86_write_u16(struct ti_sn65dsi86 * pdata,unsigned int reg,u16 val)194 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
195 				   unsigned int reg, u16 val)
196 {
197 	regmap_write(pdata->regmap, reg, val & 0xFF);
198 	regmap_write(pdata->regmap, reg + 1, val >> 8);
199 }
200 
ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 * pdata)201 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
202 {
203 	u32 bit_rate_khz, clk_freq_khz;
204 	struct drm_display_mode *mode =
205 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
206 
207 	bit_rate_khz = mode->clock *
208 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
209 	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
210 
211 	return clk_freq_khz;
212 }
213 
214 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
215 static const u32 ti_sn_bridge_refclk_lut[] = {
216 	12000000,
217 	19200000,
218 	26000000,
219 	27000000,
220 	38400000,
221 };
222 
223 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
224 static const u32 ti_sn_bridge_dsiclk_lut[] = {
225 	468000000,
226 	384000000,
227 	416000000,
228 	486000000,
229 	460800000,
230 };
231 
ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 * pdata)232 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
233 {
234 	int i;
235 	u32 refclk_rate;
236 	const u32 *refclk_lut;
237 	size_t refclk_lut_size;
238 
239 	if (pdata->refclk) {
240 		refclk_rate = clk_get_rate(pdata->refclk);
241 		refclk_lut = ti_sn_bridge_refclk_lut;
242 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
243 		clk_prepare_enable(pdata->refclk);
244 	} else {
245 		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
246 		refclk_lut = ti_sn_bridge_dsiclk_lut;
247 		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
248 	}
249 
250 	/* for i equals to refclk_lut_size means default frequency */
251 	for (i = 0; i < refclk_lut_size; i++)
252 		if (refclk_lut[i] == refclk_rate)
253 			break;
254 
255 	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
256 			   REFCLK_FREQ(i));
257 }
258 
ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 * pdata)259 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
260 {
261 	mutex_lock(&pdata->comms_mutex);
262 
263 	/* configure bridge ref_clk */
264 	ti_sn_bridge_set_refclk_freq(pdata);
265 
266 	/*
267 	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
268 	 * so the HPD is an internal signal that's only there to signal that
269 	 * the panel is done powering up.  ...but the bridge chip debounces
270 	 * this signal by between 100 ms and 400 ms (depending on process,
271 	 * voltage, and temperate--I measured it at about 200 ms).  One
272 	 * particular panel asserted HPD 84 ms after it was powered on meaning
273 	 * that we saw HPD 284 ms after power on.  ...but the same panel said
274 	 * that instead of looking at HPD you could just hardcode a delay of
275 	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
276 	 * delay in its prepare and always disable HPD.
277 	 *
278 	 * If HPD somehow makes sense on some future panel we'll have to
279 	 * change this to be conditional on someone specifying that HPD should
280 	 * be used.
281 	 */
282 	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
283 			   HPD_DISABLE);
284 
285 	pdata->comms_enabled = true;
286 
287 	mutex_unlock(&pdata->comms_mutex);
288 }
289 
ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 * pdata)290 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
291 {
292 	mutex_lock(&pdata->comms_mutex);
293 
294 	pdata->comms_enabled = false;
295 	clk_disable_unprepare(pdata->refclk);
296 
297 	mutex_unlock(&pdata->comms_mutex);
298 }
299 
ti_sn65dsi86_resume(struct device * dev)300 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
301 {
302 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
303 	int ret;
304 
305 	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
306 	if (ret) {
307 		DRM_ERROR("failed to enable supplies %d\n", ret);
308 		return ret;
309 	}
310 
311 	/* td2: min 100 us after regulators before enabling the GPIO */
312 	usleep_range(100, 110);
313 
314 	gpiod_set_value(pdata->enable_gpio, 1);
315 
316 	/*
317 	 * If we have a reference clock we can enable communication w/ the
318 	 * panel (including the aux channel) w/out any need for an input clock
319 	 * so we can do it in resume which lets us read the EDID before
320 	 * pre_enable(). Without a reference clock we need the MIPI reference
321 	 * clock so reading early doesn't work.
322 	 */
323 	if (pdata->refclk)
324 		ti_sn65dsi86_enable_comms(pdata);
325 
326 	return ret;
327 }
328 
ti_sn65dsi86_suspend(struct device * dev)329 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
330 {
331 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
332 	int ret;
333 
334 	if (pdata->refclk)
335 		ti_sn65dsi86_disable_comms(pdata);
336 
337 	gpiod_set_value(pdata->enable_gpio, 0);
338 
339 	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
340 	if (ret)
341 		DRM_ERROR("failed to disable supplies %d\n", ret);
342 
343 	return ret;
344 }
345 
346 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
347 	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
348 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
349 				pm_runtime_force_resume)
350 };
351 
status_show(struct seq_file * s,void * data)352 static int status_show(struct seq_file *s, void *data)
353 {
354 	struct ti_sn65dsi86 *pdata = s->private;
355 	unsigned int reg, val;
356 
357 	seq_puts(s, "STATUS REGISTERS:\n");
358 
359 	pm_runtime_get_sync(pdata->dev);
360 
361 	/* IRQ Status Registers, see Table 31 in datasheet */
362 	for (reg = 0xf0; reg <= 0xf8; reg++) {
363 		regmap_read(pdata->regmap, reg, &val);
364 		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
365 	}
366 
367 	pm_runtime_put_autosuspend(pdata->dev);
368 
369 	return 0;
370 }
371 
372 DEFINE_SHOW_ATTRIBUTE(status);
373 
ti_sn65dsi86_debugfs_remove(void * data)374 static void ti_sn65dsi86_debugfs_remove(void *data)
375 {
376 	debugfs_remove_recursive(data);
377 }
378 
ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 * pdata)379 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
380 {
381 	struct device *dev = pdata->dev;
382 	struct dentry *debugfs;
383 	int ret;
384 
385 	debugfs = debugfs_create_dir(dev_name(dev), NULL);
386 
387 	/*
388 	 * We might get an error back if debugfs wasn't enabled in the kernel
389 	 * so let's just silently return upon failure.
390 	 */
391 	if (IS_ERR_OR_NULL(debugfs))
392 		return;
393 
394 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
395 	if (ret)
396 		return;
397 
398 	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
399 }
400 
401 /* -----------------------------------------------------------------------------
402  * Auxiliary Devices (*not* AUX)
403  */
404 
ti_sn65dsi86_uninit_aux(void * data)405 static void ti_sn65dsi86_uninit_aux(void *data)
406 {
407 	auxiliary_device_uninit(data);
408 }
409 
ti_sn65dsi86_delete_aux(void * data)410 static void ti_sn65dsi86_delete_aux(void *data)
411 {
412 	auxiliary_device_delete(data);
413 }
414 
ti_sn65dsi86_aux_device_release(struct device * dev)415 static void ti_sn65dsi86_aux_device_release(struct device *dev)
416 {
417 	struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
418 
419 	kfree(aux);
420 }
421 
ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 * pdata,struct auxiliary_device ** aux_out,const char * name)422 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
423 				       struct auxiliary_device **aux_out,
424 				       const char *name)
425 {
426 	struct device *dev = pdata->dev;
427 	struct auxiliary_device *aux;
428 	int ret;
429 
430 	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
431 	if (!aux)
432 		return -ENOMEM;
433 
434 	aux->name = name;
435 	aux->dev.parent = dev;
436 	aux->dev.release = ti_sn65dsi86_aux_device_release;
437 	device_set_of_node_from_dev(&aux->dev, dev);
438 	ret = auxiliary_device_init(aux);
439 	if (ret) {
440 		kfree(aux);
441 		return ret;
442 	}
443 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
444 	if (ret)
445 		return ret;
446 
447 	ret = auxiliary_device_add(aux);
448 	if (ret)
449 		return ret;
450 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
451 	if (!ret)
452 		*aux_out = aux;
453 
454 	return ret;
455 }
456 
457 /* -----------------------------------------------------------------------------
458  * AUX Adapter
459  */
460 
aux_to_ti_sn65dsi86(struct drm_dp_aux * aux)461 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
462 {
463 	return container_of(aux, struct ti_sn65dsi86, aux);
464 }
465 
ti_sn_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)466 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
467 				  struct drm_dp_aux_msg *msg)
468 {
469 	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
470 	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
471 	u32 request_val = AUX_CMD_REQ(msg->request);
472 	u8 *buf = msg->buffer;
473 	unsigned int len = msg->size;
474 	unsigned int short_len;
475 	unsigned int val;
476 	int ret;
477 	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
478 
479 	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
480 		return -EINVAL;
481 
482 	pm_runtime_get_sync(pdata->dev);
483 	mutex_lock(&pdata->comms_mutex);
484 
485 	/*
486 	 * If someone tries to do a DDC over AUX transaction before pre_enable()
487 	 * on a device without a dedicated reference clock then we just can't
488 	 * do it. Fail right away. This prevents non-refclk users from reading
489 	 * the EDID before enabling the panel but such is life.
490 	 */
491 	if (!pdata->comms_enabled) {
492 		ret = -EIO;
493 		goto exit;
494 	}
495 
496 	switch (request) {
497 	case DP_AUX_NATIVE_WRITE:
498 	case DP_AUX_I2C_WRITE:
499 	case DP_AUX_NATIVE_READ:
500 	case DP_AUX_I2C_READ:
501 		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
502 		/* Assume it's good */
503 		msg->reply = 0;
504 		break;
505 	default:
506 		ret = -EINVAL;
507 		goto exit;
508 	}
509 
510 	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
511 	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
512 			   addr_len);
513 	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
514 			  ARRAY_SIZE(addr_len));
515 
516 	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
517 		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
518 
519 	/* Clear old status bits before start so we don't get confused */
520 	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
521 		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
522 		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
523 		     AUX_IRQ_STATUS_AUX_SHORT);
524 
525 	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
526 
527 	/* Zero delay loop because i2c transactions are slow already */
528 	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
529 				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
530 	if (ret)
531 		goto exit;
532 
533 	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
534 	if (ret)
535 		goto exit;
536 
537 	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
538 		/*
539 		 * The hardware tried the message seven times per the DP spec
540 		 * but it hit a timeout. We ignore defers here because they're
541 		 * handled in hardware.
542 		 */
543 		ret = -ETIMEDOUT;
544 		goto exit;
545 	}
546 
547 	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
548 		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
549 		len = min(len, short_len);
550 		if (ret)
551 			goto exit;
552 	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
553 		switch (request) {
554 		case DP_AUX_I2C_WRITE:
555 		case DP_AUX_I2C_READ:
556 			msg->reply |= DP_AUX_I2C_REPLY_NACK;
557 			break;
558 		case DP_AUX_NATIVE_READ:
559 		case DP_AUX_NATIVE_WRITE:
560 			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
561 			break;
562 		}
563 		len = 0;
564 		goto exit;
565 	}
566 
567 	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
568 		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
569 
570 exit:
571 	mutex_unlock(&pdata->comms_mutex);
572 	pm_runtime_mark_last_busy(pdata->dev);
573 	pm_runtime_put_autosuspend(pdata->dev);
574 
575 	if (ret)
576 		return ret;
577 	return len;
578 }
579 
ti_sn_aux_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)580 static int ti_sn_aux_probe(struct auxiliary_device *adev,
581 			   const struct auxiliary_device_id *id)
582 {
583 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
584 	int ret;
585 
586 	pdata->aux.name = "ti-sn65dsi86-aux";
587 	pdata->aux.dev = &adev->dev;
588 	pdata->aux.transfer = ti_sn_aux_transfer;
589 	drm_dp_aux_init(&pdata->aux);
590 
591 	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
592 	if (ret)
593 		return ret;
594 
595 	/*
596 	 * The eDP to MIPI bridge parts don't work until the AUX channel is
597 	 * setup so we don't add it in the main driver probe, we add it now.
598 	 */
599 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
600 }
601 
602 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
603 	{ .name = "ti_sn65dsi86.aux", },
604 	{},
605 };
606 
607 static struct auxiliary_driver ti_sn_aux_driver = {
608 	.name = "aux",
609 	.probe = ti_sn_aux_probe,
610 	.id_table = ti_sn_aux_id_table,
611 };
612 
613 /* -----------------------------------------------------------------------------
614  * DRM Connector Operations
615  */
616 
617 static struct ti_sn65dsi86 *
connector_to_ti_sn65dsi86(struct drm_connector * connector)618 connector_to_ti_sn65dsi86(struct drm_connector *connector)
619 {
620 	return container_of(connector, struct ti_sn65dsi86, connector);
621 }
622 
ti_sn_bridge_connector_get_modes(struct drm_connector * connector)623 static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
624 {
625 	struct ti_sn65dsi86 *pdata = connector_to_ti_sn65dsi86(connector);
626 
627 	return drm_bridge_get_modes(pdata->next_bridge, connector);
628 }
629 
630 static enum drm_mode_status
ti_sn_bridge_connector_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)631 ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
632 				  struct drm_display_mode *mode)
633 {
634 	/* maximum supported resolution is 4K at 60 fps */
635 	if (mode->clock > 594000)
636 		return MODE_CLOCK_HIGH;
637 
638 	return MODE_OK;
639 }
640 
641 static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
642 	.get_modes = ti_sn_bridge_connector_get_modes,
643 	.mode_valid = ti_sn_bridge_connector_mode_valid,
644 };
645 
646 static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
647 	.fill_modes = drm_helper_probe_single_connector_modes,
648 	.destroy = drm_connector_cleanup,
649 	.reset = drm_atomic_helper_connector_reset,
650 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
651 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
652 };
653 
ti_sn_bridge_connector_init(struct ti_sn65dsi86 * pdata)654 static int ti_sn_bridge_connector_init(struct ti_sn65dsi86 *pdata)
655 {
656 	int ret;
657 
658 	ret = drm_connector_init(pdata->bridge.dev, &pdata->connector,
659 				 &ti_sn_bridge_connector_funcs,
660 				 DRM_MODE_CONNECTOR_eDP);
661 	if (ret) {
662 		DRM_ERROR("Failed to initialize connector with drm\n");
663 		return ret;
664 	}
665 
666 	drm_connector_helper_add(&pdata->connector,
667 				 &ti_sn_bridge_connector_helper_funcs);
668 	drm_connector_attach_encoder(&pdata->connector, pdata->bridge.encoder);
669 
670 	return 0;
671 }
672 
673 /*------------------------------------------------------------------------------
674  * DRM Bridge
675  */
676 
bridge_to_ti_sn65dsi86(struct drm_bridge * bridge)677 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
678 {
679 	return container_of(bridge, struct ti_sn65dsi86, bridge);
680 }
681 
ti_sn_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)682 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
683 			       enum drm_bridge_attach_flags flags)
684 {
685 	int ret, val;
686 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
687 	struct mipi_dsi_host *host;
688 	struct mipi_dsi_device *dsi;
689 	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
690 						   .channel = 0,
691 						   .node = NULL,
692 						 };
693 
694 	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
695 		DRM_ERROR("Fix bridge driver to make connector optional!");
696 		return -EINVAL;
697 	}
698 
699 	pdata->aux.drm_dev = bridge->dev;
700 	ret = drm_dp_aux_register(&pdata->aux);
701 	if (ret < 0) {
702 		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
703 		return ret;
704 	}
705 
706 	ret = ti_sn_bridge_connector_init(pdata);
707 	if (ret < 0)
708 		goto err_conn_init;
709 
710 	/*
711 	 * TODO: ideally finding host resource and dsi dev registration needs
712 	 * to be done in bridge probe. But some existing DSI host drivers will
713 	 * wait for any of the drm_bridge/drm_panel to get added to the global
714 	 * bridge/panel list, before completing their probe. So if we do the
715 	 * dsi dev registration part in bridge probe, before populating in
716 	 * the global bridge list, then it will cause deadlock as dsi host probe
717 	 * will never complete, neither our bridge probe. So keeping it here
718 	 * will satisfy most of the existing host drivers. Once the host driver
719 	 * is fixed we can move the below code to bridge probe safely.
720 	 */
721 	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
722 	if (!host) {
723 		DRM_ERROR("failed to find dsi host\n");
724 		ret = -ENODEV;
725 		goto err_dsi_host;
726 	}
727 
728 	dsi = mipi_dsi_device_register_full(host, &info);
729 	if (IS_ERR(dsi)) {
730 		DRM_ERROR("failed to create dsi device\n");
731 		ret = PTR_ERR(dsi);
732 		goto err_dsi_host;
733 	}
734 
735 	/* TODO: setting to 4 MIPI lanes always for now */
736 	dsi->lanes = 4;
737 	dsi->format = MIPI_DSI_FMT_RGB888;
738 	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
739 
740 	/* check if continuous dsi clock is required or not */
741 	pm_runtime_get_sync(pdata->dev);
742 	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
743 	pm_runtime_put_autosuspend(pdata->dev);
744 	if (!(val & DPPLL_CLK_SRC_DSICLK))
745 		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
746 
747 	ret = mipi_dsi_attach(dsi);
748 	if (ret < 0) {
749 		DRM_ERROR("failed to attach dsi to host\n");
750 		goto err_dsi_attach;
751 	}
752 	pdata->dsi = dsi;
753 
754 	/* We never want the next bridge to *also* create a connector: */
755 	flags |= DRM_BRIDGE_ATTACH_NO_CONNECTOR;
756 
757 	/* Attach the next bridge */
758 	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
759 				&pdata->bridge, flags);
760 	if (ret < 0)
761 		goto err_dsi_detach;
762 
763 	return 0;
764 
765 err_dsi_detach:
766 	mipi_dsi_detach(dsi);
767 err_dsi_attach:
768 	mipi_dsi_device_unregister(dsi);
769 err_dsi_host:
770 	drm_connector_cleanup(&pdata->connector);
771 err_conn_init:
772 	drm_dp_aux_unregister(&pdata->aux);
773 	return ret;
774 }
775 
ti_sn_bridge_detach(struct drm_bridge * bridge)776 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
777 {
778 	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
779 }
780 
ti_sn_bridge_disable(struct drm_bridge * bridge)781 static void ti_sn_bridge_disable(struct drm_bridge *bridge)
782 {
783 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
784 
785 	/* disable video stream */
786 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
787 }
788 
ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 * pdata)789 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
790 {
791 	unsigned int bit_rate_mhz, clk_freq_mhz;
792 	unsigned int val;
793 	struct drm_display_mode *mode =
794 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
795 
796 	/* set DSIA clk frequency */
797 	bit_rate_mhz = (mode->clock / 1000) *
798 			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
799 	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
800 
801 	/* for each increment in val, frequency increases by 5MHz */
802 	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
803 		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
804 	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
805 }
806 
ti_sn_bridge_get_bpp(struct ti_sn65dsi86 * pdata)807 static unsigned int ti_sn_bridge_get_bpp(struct ti_sn65dsi86 *pdata)
808 {
809 	if (pdata->connector.display_info.bpc <= 6)
810 		return 18;
811 	else
812 		return 24;
813 }
814 
815 /*
816  * LUT index corresponds to register value and
817  * LUT values corresponds to dp data rate supported
818  * by the bridge in Mbps unit.
819  */
820 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
821 	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
822 };
823 
ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 * pdata)824 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata)
825 {
826 	unsigned int bit_rate_khz, dp_rate_mhz;
827 	unsigned int i;
828 	struct drm_display_mode *mode =
829 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
830 
831 	/* Calculate minimum bit rate based on our pixel clock. */
832 	bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
833 
834 	/* Calculate minimum DP data rate, taking 80% as per DP spec */
835 	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
836 				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
837 
838 	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
839 		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
840 			break;
841 
842 	return i;
843 }
844 
ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 * pdata)845 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
846 {
847 	unsigned int valid_rates = 0;
848 	unsigned int rate_per_200khz;
849 	unsigned int rate_mhz;
850 	u8 dpcd_val;
851 	int ret;
852 	int i, j;
853 
854 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
855 	if (ret != 1) {
856 		DRM_DEV_ERROR(pdata->dev,
857 			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
858 		dpcd_val = DP_EDP_11;
859 	}
860 
861 	if (dpcd_val >= DP_EDP_14) {
862 		/* eDP 1.4 devices must provide a custom table */
863 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
864 
865 		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
866 				       sink_rates, sizeof(sink_rates));
867 
868 		if (ret != sizeof(sink_rates)) {
869 			DRM_DEV_ERROR(pdata->dev,
870 				"Can't read supported rate table (%d)\n", ret);
871 
872 			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
873 			memset(sink_rates, 0, sizeof(sink_rates));
874 		}
875 
876 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
877 			rate_per_200khz = le16_to_cpu(sink_rates[i]);
878 
879 			if (!rate_per_200khz)
880 				break;
881 
882 			rate_mhz = rate_per_200khz * 200 / 1000;
883 			for (j = 0;
884 			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
885 			     j++) {
886 				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
887 					valid_rates |= BIT(j);
888 			}
889 		}
890 
891 		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
892 			if (valid_rates & BIT(i))
893 				return valid_rates;
894 		}
895 		DRM_DEV_ERROR(pdata->dev,
896 			      "No matching eDP rates in table; falling back\n");
897 	}
898 
899 	/* On older versions best we can do is use DP_MAX_LINK_RATE */
900 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
901 	if (ret != 1) {
902 		DRM_DEV_ERROR(pdata->dev,
903 			      "Can't read max rate (%d); assuming 5.4 GHz\n",
904 			      ret);
905 		dpcd_val = DP_LINK_BW_5_4;
906 	}
907 
908 	switch (dpcd_val) {
909 	default:
910 		DRM_DEV_ERROR(pdata->dev,
911 			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
912 			      (int)dpcd_val);
913 		fallthrough;
914 	case DP_LINK_BW_5_4:
915 		valid_rates |= BIT(7);
916 		fallthrough;
917 	case DP_LINK_BW_2_7:
918 		valid_rates |= BIT(4);
919 		fallthrough;
920 	case DP_LINK_BW_1_62:
921 		valid_rates |= BIT(1);
922 		break;
923 	}
924 
925 	return valid_rates;
926 }
927 
ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 * pdata)928 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
929 {
930 	struct drm_display_mode *mode =
931 		&pdata->bridge.encoder->crtc->state->adjusted_mode;
932 	u8 hsync_polarity = 0, vsync_polarity = 0;
933 
934 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
935 		hsync_polarity = CHA_HSYNC_POLARITY;
936 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
937 		vsync_polarity = CHA_VSYNC_POLARITY;
938 
939 	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
940 			       mode->hdisplay);
941 	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
942 			       mode->vdisplay);
943 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
944 		     (mode->hsync_end - mode->hsync_start) & 0xFF);
945 	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
946 		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
947 		     hsync_polarity);
948 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
949 		     (mode->vsync_end - mode->vsync_start) & 0xFF);
950 	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
951 		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
952 		     vsync_polarity);
953 
954 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
955 		     (mode->htotal - mode->hsync_end) & 0xFF);
956 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
957 		     (mode->vtotal - mode->vsync_end) & 0xFF);
958 
959 	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
960 		     (mode->hsync_start - mode->hdisplay) & 0xFF);
961 	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
962 		     (mode->vsync_start - mode->vdisplay) & 0xFF);
963 
964 	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
965 }
966 
ti_sn_get_max_lanes(struct ti_sn65dsi86 * pdata)967 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
968 {
969 	u8 data;
970 	int ret;
971 
972 	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
973 	if (ret != 1) {
974 		DRM_DEV_ERROR(pdata->dev,
975 			      "Can't read lane count (%d); assuming 4\n", ret);
976 		return 4;
977 	}
978 
979 	return data & DP_LANE_COUNT_MASK;
980 }
981 
ti_sn_link_training(struct ti_sn65dsi86 * pdata,int dp_rate_idx,const char ** last_err_str)982 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
983 			       const char **last_err_str)
984 {
985 	unsigned int val;
986 	int ret;
987 	int i;
988 
989 	/* set dp clk frequency value */
990 	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
991 			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
992 
993 	/* enable DP PLL */
994 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
995 
996 	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
997 				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
998 				       50 * 1000);
999 	if (ret) {
1000 		*last_err_str = "DP_PLL_LOCK polling failed";
1001 		goto exit;
1002 	}
1003 
1004 	/*
1005 	 * We'll try to link train several times.  As part of link training
1006 	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1007 	 * the panel isn't ready quite it might respond NAK here which means
1008 	 * we need to try again.
1009 	 */
1010 	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1011 		/* Semi auto link training mode */
1012 		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1013 		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1014 					       val == ML_TX_MAIN_LINK_OFF ||
1015 					       val == ML_TX_NORMAL_MODE, 1000,
1016 					       500 * 1000);
1017 		if (ret) {
1018 			*last_err_str = "Training complete polling failed";
1019 		} else if (val == ML_TX_MAIN_LINK_OFF) {
1020 			*last_err_str = "Link training failed, link is off";
1021 			ret = -EIO;
1022 			continue;
1023 		}
1024 
1025 		break;
1026 	}
1027 
1028 	/* If we saw quite a few retries, add a note about it */
1029 	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1030 		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1031 
1032 exit:
1033 	/* Disable the PLL if we failed */
1034 	if (ret)
1035 		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1036 
1037 	return ret;
1038 }
1039 
ti_sn_bridge_enable(struct drm_bridge * bridge)1040 static void ti_sn_bridge_enable(struct drm_bridge *bridge)
1041 {
1042 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1043 	const char *last_err_str = "No supported DP rate";
1044 	unsigned int valid_rates;
1045 	int dp_rate_idx;
1046 	unsigned int val;
1047 	int ret = -EINVAL;
1048 	int max_dp_lanes;
1049 
1050 	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1051 	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1052 
1053 	/* DSI_A lane config */
1054 	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1055 	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1056 			   CHA_DSI_LANES_MASK, val);
1057 
1058 	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1059 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1060 			   pdata->ln_polrs << LN_POLRS_OFFSET);
1061 
1062 	/* set dsi clk frequency value */
1063 	ti_sn_bridge_set_dsi_rate(pdata);
1064 
1065 	/*
1066 	 * The SN65DSI86 only supports ASSR Display Authentication method and
1067 	 * this method is enabled by default. An eDP panel must support this
1068 	 * authentication method. We need to enable this method in the eDP panel
1069 	 * at DisplayPort address 0x0010A prior to link training.
1070 	 */
1071 	drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1072 			   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1073 
1074 	/* Set the DP output format (18 bpp or 24 bpp) */
1075 	val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
1076 	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1077 
1078 	/* DP lane config */
1079 	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1080 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1081 			   val);
1082 
1083 	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1084 
1085 	/* Train until we run out of rates */
1086 	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
1087 	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1088 	     dp_rate_idx++) {
1089 		if (!(valid_rates & BIT(dp_rate_idx)))
1090 			continue;
1091 
1092 		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1093 		if (!ret)
1094 			break;
1095 	}
1096 	if (ret) {
1097 		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1098 		return;
1099 	}
1100 
1101 	/* config video parameters */
1102 	ti_sn_bridge_set_video_timings(pdata);
1103 
1104 	/* enable video stream */
1105 	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1106 			   VSTREAM_ENABLE);
1107 }
1108 
ti_sn_bridge_pre_enable(struct drm_bridge * bridge)1109 static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
1110 {
1111 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1112 
1113 	pm_runtime_get_sync(pdata->dev);
1114 
1115 	if (!pdata->refclk)
1116 		ti_sn65dsi86_enable_comms(pdata);
1117 
1118 	/* td7: min 100 us after enable before DSI data */
1119 	usleep_range(100, 110);
1120 }
1121 
ti_sn_bridge_post_disable(struct drm_bridge * bridge)1122 static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
1123 {
1124 	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1125 
1126 	/* semi auto link training mode OFF */
1127 	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1128 	/* Num lanes to 0 as per power sequencing in data sheet */
1129 	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1130 	/* disable DP PLL */
1131 	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1132 
1133 	if (!pdata->refclk)
1134 		ti_sn65dsi86_disable_comms(pdata);
1135 
1136 	pm_runtime_put_sync(pdata->dev);
1137 }
1138 
1139 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1140 	.attach = ti_sn_bridge_attach,
1141 	.detach = ti_sn_bridge_detach,
1142 	.pre_enable = ti_sn_bridge_pre_enable,
1143 	.enable = ti_sn_bridge_enable,
1144 	.disable = ti_sn_bridge_disable,
1145 	.post_disable = ti_sn_bridge_post_disable,
1146 };
1147 
ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 * pdata,struct device_node * np)1148 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1149 				     struct device_node *np)
1150 {
1151 	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1152 	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1153 	struct device_node *endpoint;
1154 	u8 ln_assign = 0;
1155 	u8 ln_polrs = 0;
1156 	int dp_lanes;
1157 	int i;
1158 
1159 	/*
1160 	 * Read config from the device tree about lane remapping and lane
1161 	 * polarities.  These are optional and we assume identity map and
1162 	 * normal polarity if nothing is specified.  It's OK to specify just
1163 	 * data-lanes but not lane-polarities but not vice versa.
1164 	 *
1165 	 * Error checking is light (we just make sure we don't crash or
1166 	 * buffer overrun) and we assume dts is well formed and specifying
1167 	 * mappings that the hardware supports.
1168 	 */
1169 	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1170 	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1171 	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1172 		of_property_read_u32_array(endpoint, "data-lanes",
1173 					   lane_assignments, dp_lanes);
1174 		of_property_read_u32_array(endpoint, "lane-polarities",
1175 					   lane_polarities, dp_lanes);
1176 	} else {
1177 		dp_lanes = SN_MAX_DP_LANES;
1178 	}
1179 	of_node_put(endpoint);
1180 
1181 	/*
1182 	 * Convert into register format.  Loop over all lanes even if
1183 	 * data-lanes had fewer elements so that we nicely initialize
1184 	 * the LN_ASSIGN register.
1185 	 */
1186 	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1187 		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1188 		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1189 	}
1190 
1191 	/* Stash in our struct for when we power on */
1192 	pdata->dp_lanes = dp_lanes;
1193 	pdata->ln_assign = ln_assign;
1194 	pdata->ln_polrs = ln_polrs;
1195 }
1196 
ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 * pdata)1197 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1198 {
1199 	struct device_node *np = pdata->dev->of_node;
1200 
1201 	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1202 
1203 	if (!pdata->host_node) {
1204 		DRM_ERROR("remote dsi host node not found\n");
1205 		return -ENODEV;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
ti_sn_bridge_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1211 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1212 			      const struct auxiliary_device_id *id)
1213 {
1214 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1215 	struct device_node *np = pdata->dev->of_node;
1216 	struct drm_panel *panel;
1217 	int ret;
1218 
1219 	ret = drm_of_find_panel_or_bridge(np, 1, 0, &panel, NULL);
1220 	if (ret)
1221 		return dev_err_probe(&adev->dev, ret,
1222 				     "could not find any panel node\n");
1223 
1224 	pdata->next_bridge = devm_drm_panel_bridge_add(pdata->dev, panel);
1225 	if (IS_ERR(pdata->next_bridge)) {
1226 		DRM_ERROR("failed to create panel bridge\n");
1227 		return PTR_ERR(pdata->next_bridge);
1228 	}
1229 
1230 	ti_sn_bridge_parse_lanes(pdata, np);
1231 
1232 	ret = ti_sn_bridge_parse_dsi_host(pdata);
1233 	if (ret)
1234 		return ret;
1235 
1236 	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1237 	pdata->bridge.of_node = np;
1238 
1239 	drm_bridge_add(&pdata->bridge);
1240 
1241 	return 0;
1242 }
1243 
ti_sn_bridge_remove(struct auxiliary_device * adev)1244 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1245 {
1246 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1247 
1248 	if (!pdata)
1249 		return;
1250 
1251 	if (pdata->dsi) {
1252 		mipi_dsi_detach(pdata->dsi);
1253 		mipi_dsi_device_unregister(pdata->dsi);
1254 	}
1255 
1256 	drm_bridge_remove(&pdata->bridge);
1257 
1258 	of_node_put(pdata->host_node);
1259 }
1260 
1261 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1262 	{ .name = "ti_sn65dsi86.bridge", },
1263 	{},
1264 };
1265 
1266 static struct auxiliary_driver ti_sn_bridge_driver = {
1267 	.name = "bridge",
1268 	.probe = ti_sn_bridge_probe,
1269 	.remove = ti_sn_bridge_remove,
1270 	.id_table = ti_sn_bridge_id_table,
1271 };
1272 
1273 /* -----------------------------------------------------------------------------
1274  * GPIO Controller
1275  */
1276 
1277 #if defined(CONFIG_OF_GPIO)
1278 
tn_sn_bridge_of_xlate(struct gpio_chip * chip,const struct of_phandle_args * gpiospec,u32 * flags)1279 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1280 				 const struct of_phandle_args *gpiospec,
1281 				 u32 *flags)
1282 {
1283 	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1284 		return -EINVAL;
1285 
1286 	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1287 		return -EINVAL;
1288 
1289 	if (flags)
1290 		*flags = gpiospec->args[1];
1291 
1292 	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1293 }
1294 
ti_sn_bridge_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)1295 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1296 					   unsigned int offset)
1297 {
1298 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1299 
1300 	/*
1301 	 * We already have to keep track of the direction because we use
1302 	 * that to figure out whether we've powered the device.  We can
1303 	 * just return that rather than (maybe) powering up the device
1304 	 * to ask its direction.
1305 	 */
1306 	return test_bit(offset, pdata->gchip_output) ?
1307 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1308 }
1309 
ti_sn_bridge_gpio_get(struct gpio_chip * chip,unsigned int offset)1310 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1311 {
1312 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1313 	unsigned int val;
1314 	int ret;
1315 
1316 	/*
1317 	 * When the pin is an input we don't forcibly keep the bridge
1318 	 * powered--we just power it on to read the pin.  NOTE: part of
1319 	 * the reason this works is that the bridge defaults (when
1320 	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1321 	 * Also note that if something else is keeping the chip powered the
1322 	 * pm_runtime functions are lightweight increments of a refcount.
1323 	 */
1324 	pm_runtime_get_sync(pdata->dev);
1325 	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1326 	pm_runtime_put_autosuspend(pdata->dev);
1327 
1328 	if (ret)
1329 		return ret;
1330 
1331 	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1332 }
1333 
ti_sn_bridge_gpio_set(struct gpio_chip * chip,unsigned int offset,int val)1334 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1335 				  int val)
1336 {
1337 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1338 	int ret;
1339 
1340 	if (!test_bit(offset, pdata->gchip_output)) {
1341 		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1342 		return;
1343 	}
1344 
1345 	val &= 1;
1346 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1347 				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1348 				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1349 	if (ret)
1350 		dev_warn(pdata->dev,
1351 			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1352 }
1353 
ti_sn_bridge_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)1354 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1355 					     unsigned int offset)
1356 {
1357 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1358 	int shift = offset * 2;
1359 	int ret;
1360 
1361 	if (!test_and_clear_bit(offset, pdata->gchip_output))
1362 		return 0;
1363 
1364 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1365 				 SN_GPIO_MUX_MASK << shift,
1366 				 SN_GPIO_MUX_INPUT << shift);
1367 	if (ret) {
1368 		set_bit(offset, pdata->gchip_output);
1369 		return ret;
1370 	}
1371 
1372 	/*
1373 	 * NOTE: if nobody else is powering the device this may fully power
1374 	 * it off and when it comes back it will have lost all state, but
1375 	 * that's OK because the default is input and we're now an input.
1376 	 */
1377 	pm_runtime_put_autosuspend(pdata->dev);
1378 
1379 	return 0;
1380 }
1381 
ti_sn_bridge_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int val)1382 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1383 					      unsigned int offset, int val)
1384 {
1385 	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1386 	int shift = offset * 2;
1387 	int ret;
1388 
1389 	if (test_and_set_bit(offset, pdata->gchip_output))
1390 		return 0;
1391 
1392 	pm_runtime_get_sync(pdata->dev);
1393 
1394 	/* Set value first to avoid glitching */
1395 	ti_sn_bridge_gpio_set(chip, offset, val);
1396 
1397 	/* Set direction */
1398 	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1399 				 SN_GPIO_MUX_MASK << shift,
1400 				 SN_GPIO_MUX_OUTPUT << shift);
1401 	if (ret) {
1402 		clear_bit(offset, pdata->gchip_output);
1403 		pm_runtime_put_autosuspend(pdata->dev);
1404 	}
1405 
1406 	return ret;
1407 }
1408 
ti_sn_bridge_gpio_free(struct gpio_chip * chip,unsigned int offset)1409 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1410 {
1411 	/* We won't keep pm_runtime if we're input, so switch there on free */
1412 	ti_sn_bridge_gpio_direction_input(chip, offset);
1413 }
1414 
1415 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1416 	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1417 };
1418 
ti_sn_gpio_probe(struct auxiliary_device * adev,const struct auxiliary_device_id * id)1419 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1420 			    const struct auxiliary_device_id *id)
1421 {
1422 	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1423 	int ret;
1424 
1425 	/* Only init if someone is going to use us as a GPIO controller */
1426 	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1427 		return 0;
1428 
1429 	pdata->gchip.label = dev_name(pdata->dev);
1430 	pdata->gchip.parent = pdata->dev;
1431 	pdata->gchip.owner = THIS_MODULE;
1432 	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1433 	pdata->gchip.of_gpio_n_cells = 2;
1434 	pdata->gchip.free = ti_sn_bridge_gpio_free;
1435 	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1436 	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1437 	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1438 	pdata->gchip.get = ti_sn_bridge_gpio_get;
1439 	pdata->gchip.set = ti_sn_bridge_gpio_set;
1440 	pdata->gchip.can_sleep = true;
1441 	pdata->gchip.names = ti_sn_bridge_gpio_names;
1442 	pdata->gchip.ngpio = SN_NUM_GPIOS;
1443 	pdata->gchip.base = -1;
1444 	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1445 	if (ret)
1446 		dev_err(pdata->dev, "can't add gpio chip\n");
1447 
1448 	return ret;
1449 }
1450 
1451 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1452 	{ .name = "ti_sn65dsi86.gpio", },
1453 	{},
1454 };
1455 
1456 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1457 
1458 static struct auxiliary_driver ti_sn_gpio_driver = {
1459 	.name = "gpio",
1460 	.probe = ti_sn_gpio_probe,
1461 	.id_table = ti_sn_gpio_id_table,
1462 };
1463 
ti_sn_gpio_register(void)1464 static int __init ti_sn_gpio_register(void)
1465 {
1466 	return auxiliary_driver_register(&ti_sn_gpio_driver);
1467 }
1468 
ti_sn_gpio_unregister(void)1469 static void ti_sn_gpio_unregister(void)
1470 {
1471 	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1472 }
1473 
1474 #else
1475 
ti_sn_gpio_register(void)1476 static inline int ti_sn_gpio_register(void) { return 0; }
ti_sn_gpio_unregister(void)1477 static inline void ti_sn_gpio_unregister(void) {}
1478 
1479 #endif
1480 
1481 /* -----------------------------------------------------------------------------
1482  * Probe & Remove
1483  */
1484 
ti_sn65dsi86_runtime_disable(void * data)1485 static void ti_sn65dsi86_runtime_disable(void *data)
1486 {
1487 	pm_runtime_dont_use_autosuspend(data);
1488 	pm_runtime_disable(data);
1489 }
1490 
ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 * pdata)1491 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1492 {
1493 	unsigned int i;
1494 	const char * const ti_sn_bridge_supply_names[] = {
1495 		"vcca", "vcc", "vccio", "vpll",
1496 	};
1497 
1498 	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1499 		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1500 
1501 	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1502 				       pdata->supplies);
1503 }
1504 
ti_sn65dsi86_probe(struct i2c_client * client,const struct i2c_device_id * id)1505 static int ti_sn65dsi86_probe(struct i2c_client *client,
1506 			      const struct i2c_device_id *id)
1507 {
1508 	struct device *dev = &client->dev;
1509 	struct ti_sn65dsi86 *pdata;
1510 	int ret;
1511 
1512 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1513 		DRM_ERROR("device doesn't support I2C\n");
1514 		return -ENODEV;
1515 	}
1516 
1517 	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1518 	if (!pdata)
1519 		return -ENOMEM;
1520 	dev_set_drvdata(dev, pdata);
1521 	pdata->dev = dev;
1522 
1523 	mutex_init(&pdata->comms_mutex);
1524 
1525 	pdata->regmap = devm_regmap_init_i2c(client,
1526 					     &ti_sn65dsi86_regmap_config);
1527 	if (IS_ERR(pdata->regmap))
1528 		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1529 				     "regmap i2c init failed\n");
1530 
1531 	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1532 						     GPIOD_OUT_LOW);
1533 	if (IS_ERR(pdata->enable_gpio))
1534 		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1535 				     "failed to get enable gpio from DT\n");
1536 
1537 	ret = ti_sn65dsi86_parse_regulators(pdata);
1538 	if (ret)
1539 		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1540 
1541 	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1542 	if (IS_ERR(pdata->refclk))
1543 		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1544 				     "failed to get reference clock\n");
1545 
1546 	pm_runtime_enable(dev);
1547 	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1548 	pm_runtime_use_autosuspend(pdata->dev);
1549 	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1550 	if (ret)
1551 		return ret;
1552 
1553 	ti_sn65dsi86_debugfs_init(pdata);
1554 
1555 	/*
1556 	 * Break ourselves up into a collection of aux devices. The only real
1557 	 * motiviation here is to solve the chicken-and-egg problem of probe
1558 	 * ordering. The bridge wants the panel to be there when it probes.
1559 	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1560 	 * when it probes. The panel and maybe backlight might want the DDC
1561 	 * bus. Soon the PWM provided by the bridge chip will have the same
1562 	 * problem. Having sub-devices allows the some sub devices to finish
1563 	 * probing even if others return -EPROBE_DEFER and gets us around the
1564 	 * problems.
1565 	 */
1566 
1567 	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1568 		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1569 		if (ret)
1570 			return ret;
1571 	}
1572 
1573 	/*
1574 	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1575 	 * for the bridge. This is because the bridge can't be used until the
1576 	 * AUX channel is there and this is a very simple solution to the
1577 	 * dependency problem.
1578 	 */
1579 	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1580 }
1581 
1582 static struct i2c_device_id ti_sn65dsi86_id[] = {
1583 	{ "ti,sn65dsi86", 0},
1584 	{},
1585 };
1586 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1587 
1588 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1589 	{.compatible = "ti,sn65dsi86"},
1590 	{},
1591 };
1592 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1593 
1594 static struct i2c_driver ti_sn65dsi86_driver = {
1595 	.driver = {
1596 		.name = "ti_sn65dsi86",
1597 		.of_match_table = ti_sn65dsi86_match_table,
1598 		.pm = &ti_sn65dsi86_pm_ops,
1599 	},
1600 	.probe = ti_sn65dsi86_probe,
1601 	.id_table = ti_sn65dsi86_id,
1602 };
1603 
ti_sn65dsi86_init(void)1604 static int __init ti_sn65dsi86_init(void)
1605 {
1606 	int ret;
1607 
1608 	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1609 	if (ret)
1610 		return ret;
1611 
1612 	ret = ti_sn_gpio_register();
1613 	if (ret)
1614 		goto err_main_was_registered;
1615 
1616 	ret = auxiliary_driver_register(&ti_sn_aux_driver);
1617 	if (ret)
1618 		goto err_gpio_was_registered;
1619 
1620 	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1621 	if (ret)
1622 		goto err_aux_was_registered;
1623 
1624 	return 0;
1625 
1626 err_aux_was_registered:
1627 	auxiliary_driver_unregister(&ti_sn_aux_driver);
1628 err_gpio_was_registered:
1629 	ti_sn_gpio_unregister();
1630 err_main_was_registered:
1631 	i2c_del_driver(&ti_sn65dsi86_driver);
1632 
1633 	return ret;
1634 }
1635 module_init(ti_sn65dsi86_init);
1636 
ti_sn65dsi86_exit(void)1637 static void __exit ti_sn65dsi86_exit(void)
1638 {
1639 	auxiliary_driver_unregister(&ti_sn_bridge_driver);
1640 	auxiliary_driver_unregister(&ti_sn_aux_driver);
1641 	ti_sn_gpio_unregister();
1642 	i2c_del_driver(&ti_sn65dsi86_driver);
1643 }
1644 module_exit(ti_sn65dsi86_exit);
1645 
1646 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1647 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1648 MODULE_LICENSE("GPL v2");
1649