1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19 /* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54 #include <linux/stdarg.h>
55
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h> /* for boot_cpu_data */
67
68 #if defined(BOOTLOADER)
69 # undef spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76
77 extern unsigned long pdc_result[NUM_PDC_RESULT];
78 extern unsigned long pdc_result2[NUM_PDC_RESULT];
79
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE 0x1
82 #define NARROW_FIRMWARE 0x2
83
84 /* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = 1;
87 #endif
88
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104
105 #ifdef CONFIG_64BIT
106 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112
113
114 /**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
f_extend(unsigned long address)121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return (0xfffffff0UL << 32) | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return (0xffffffffUL << 32) | (u32)address;
130 }
131 #endif
132 return address;
133 }
134
135 /**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @address: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
convert_to_wide(unsigned long * addr)143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153 #endif
154 }
155
156 #ifdef CONFIG_64BIT
set_firmware_width_unlocked(void)157 void set_firmware_width_unlocked(void)
158 {
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 convert_to_wide(pdc_result);
164 if (pdc_result[0] != NARROW_FIRMWARE)
165 parisc_narrow_firmware = 0;
166 }
167
168 /**
169 * set_firmware_width - Determine if the firmware is wide or narrow.
170 *
171 * This function must be called before any pdc_* function that uses the
172 * convert_to_wide function.
173 */
set_firmware_width(void)174 void set_firmware_width(void)
175 {
176 unsigned long flags;
177 spin_lock_irqsave(&pdc_lock, flags);
178 set_firmware_width_unlocked();
179 spin_unlock_irqrestore(&pdc_lock, flags);
180 }
181 #else
set_firmware_width_unlocked(void)182 void set_firmware_width_unlocked(void)
183 {
184 return;
185 }
186
set_firmware_width(void)187 void set_firmware_width(void)
188 {
189 return;
190 }
191 #endif /*CONFIG_64BIT*/
192
193
194 #if !defined(BOOTLOADER)
195 /**
196 * pdc_emergency_unlock - Unlock the linux pdc lock
197 *
198 * This call unlocks the linux pdc lock in case we need some PDC functions
199 * (like pdc_add_valid) during kernel stack dump.
200 */
pdc_emergency_unlock(void)201 void pdc_emergency_unlock(void)
202 {
203 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
204 if (spin_is_locked(&pdc_lock))
205 spin_unlock(&pdc_lock);
206 }
207
208
209 /**
210 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
211 * @address: Address to be verified.
212 *
213 * This PDC call attempts to read from the specified address and verifies
214 * if the address is valid.
215 *
216 * The return value is PDC_OK (0) in case accessing this address is valid.
217 */
pdc_add_valid(unsigned long address)218 int pdc_add_valid(unsigned long address)
219 {
220 int retval;
221 unsigned long flags;
222
223 spin_lock_irqsave(&pdc_lock, flags);
224 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
225 spin_unlock_irqrestore(&pdc_lock, flags);
226
227 return retval;
228 }
229 EXPORT_SYMBOL(pdc_add_valid);
230
231 /**
232 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
233 * @instr: Pointer to variable which will get instruction opcode.
234 *
235 * The return value is PDC_OK (0) in case call succeeded.
236 */
pdc_instr(unsigned int * instr)237 int __init pdc_instr(unsigned int *instr)
238 {
239 int retval;
240 unsigned long flags;
241
242 spin_lock_irqsave(&pdc_lock, flags);
243 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
244 convert_to_wide(pdc_result);
245 *instr = pdc_result[0];
246 spin_unlock_irqrestore(&pdc_lock, flags);
247
248 return retval;
249 }
250
251 /**
252 * pdc_chassis_info - Return chassis information.
253 * @result: The return buffer.
254 * @chassis_info: The memory buffer address.
255 * @len: The size of the memory buffer address.
256 *
257 * An HVERSION dependent call for returning the chassis information.
258 */
pdc_chassis_info(struct pdc_chassis_info * chassis_info,void * led_info,unsigned long len)259 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
260 {
261 int retval;
262 unsigned long flags;
263
264 spin_lock_irqsave(&pdc_lock, flags);
265 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
266 memcpy(&pdc_result2, led_info, len);
267 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
268 __pa(pdc_result), __pa(pdc_result2), len);
269 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
270 memcpy(led_info, pdc_result2, len);
271 spin_unlock_irqrestore(&pdc_lock, flags);
272
273 return retval;
274 }
275
276 /**
277 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
278 * @retval: -1 on error, 0 on success. Other value are PDC errors
279 *
280 * Must be correctly formatted or expect system crash
281 */
282 #ifdef CONFIG_64BIT
pdc_pat_chassis_send_log(unsigned long state,unsigned long data)283 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
284 {
285 int retval = 0;
286 unsigned long flags;
287
288 if (!is_pdc_pat())
289 return -1;
290
291 spin_lock_irqsave(&pdc_lock, flags);
292 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
293 spin_unlock_irqrestore(&pdc_lock, flags);
294
295 return retval;
296 }
297 #endif
298
299 /**
300 * pdc_chassis_disp - Updates chassis code
301 * @retval: -1 on error, 0 on success
302 */
pdc_chassis_disp(unsigned long disp)303 int pdc_chassis_disp(unsigned long disp)
304 {
305 int retval = 0;
306 unsigned long flags;
307
308 spin_lock_irqsave(&pdc_lock, flags);
309 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
310 spin_unlock_irqrestore(&pdc_lock, flags);
311
312 return retval;
313 }
314
315 /**
316 * pdc_cpu_rendenzvous - Stop currently executing CPU
317 * @retval: -1 on error, 0 on success
318 */
__pdc_cpu_rendezvous(void)319 int __pdc_cpu_rendezvous(void)
320 {
321 if (is_pdc_pat())
322 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
323 else
324 return mem_pdc_call(PDC_PROC, 1, 0);
325 }
326
327
328 /**
329 * pdc_chassis_warn - Fetches chassis warnings
330 * @retval: -1 on error, 0 on success
331 */
pdc_chassis_warn(unsigned long * warn)332 int pdc_chassis_warn(unsigned long *warn)
333 {
334 int retval = 0;
335 unsigned long flags;
336
337 spin_lock_irqsave(&pdc_lock, flags);
338 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
339 *warn = pdc_result[0];
340 spin_unlock_irqrestore(&pdc_lock, flags);
341
342 return retval;
343 }
344
pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg * pdc_coproc_info)345 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
346 {
347 int ret;
348
349 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
350 convert_to_wide(pdc_result);
351 pdc_coproc_info->ccr_functional = pdc_result[0];
352 pdc_coproc_info->ccr_present = pdc_result[1];
353 pdc_coproc_info->revision = pdc_result[17];
354 pdc_coproc_info->model = pdc_result[18];
355
356 return ret;
357 }
358
359 /**
360 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
361 * @pdc_coproc_info: Return buffer address.
362 *
363 * This PDC call returns the presence and status of all the coprocessors
364 * attached to the processor.
365 */
pdc_coproc_cfg(struct pdc_coproc_cfg * pdc_coproc_info)366 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
367 {
368 int ret;
369 unsigned long flags;
370
371 spin_lock_irqsave(&pdc_lock, flags);
372 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
373 spin_unlock_irqrestore(&pdc_lock, flags);
374
375 return ret;
376 }
377
378 /**
379 * pdc_iodc_read - Read data from the modules IODC.
380 * @actcnt: The actual number of bytes.
381 * @hpa: The HPA of the module for the iodc read.
382 * @index: The iodc entry point.
383 * @iodc_data: A buffer memory for the iodc options.
384 * @iodc_data_size: Size of the memory buffer.
385 *
386 * This PDC call reads from the IODC of the module specified by the hpa
387 * argument.
388 */
pdc_iodc_read(unsigned long * actcnt,unsigned long hpa,unsigned int index,void * iodc_data,unsigned int iodc_data_size)389 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
390 void *iodc_data, unsigned int iodc_data_size)
391 {
392 int retval;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pdc_lock, flags);
396 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
397 index, __pa(pdc_result2), iodc_data_size);
398 convert_to_wide(pdc_result);
399 *actcnt = pdc_result[0];
400 memcpy(iodc_data, pdc_result2, iodc_data_size);
401 spin_unlock_irqrestore(&pdc_lock, flags);
402
403 return retval;
404 }
405 EXPORT_SYMBOL(pdc_iodc_read);
406
407 /**
408 * pdc_system_map_find_mods - Locate unarchitected modules.
409 * @pdc_mod_info: Return buffer address.
410 * @mod_path: pointer to dev path structure.
411 * @mod_index: fixed address module index.
412 *
413 * To locate and identify modules which reside at fixed I/O addresses, which
414 * do not self-identify via architected bus walks.
415 */
pdc_system_map_find_mods(struct pdc_system_map_mod_info * pdc_mod_info,struct pdc_module_path * mod_path,long mod_index)416 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
417 struct pdc_module_path *mod_path, long mod_index)
418 {
419 int retval;
420 unsigned long flags;
421
422 spin_lock_irqsave(&pdc_lock, flags);
423 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
424 __pa(pdc_result2), mod_index);
425 convert_to_wide(pdc_result);
426 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
427 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
428 spin_unlock_irqrestore(&pdc_lock, flags);
429
430 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
431 return retval;
432 }
433
434 /**
435 * pdc_system_map_find_addrs - Retrieve additional address ranges.
436 * @pdc_addr_info: Return buffer address.
437 * @mod_index: Fixed address module index.
438 * @addr_index: Address range index.
439 *
440 * Retrieve additional information about subsequent address ranges for modules
441 * with multiple address ranges.
442 */
pdc_system_map_find_addrs(struct pdc_system_map_addr_info * pdc_addr_info,long mod_index,long addr_index)443 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
444 long mod_index, long addr_index)
445 {
446 int retval;
447 unsigned long flags;
448
449 spin_lock_irqsave(&pdc_lock, flags);
450 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
451 mod_index, addr_index);
452 convert_to_wide(pdc_result);
453 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
454 spin_unlock_irqrestore(&pdc_lock, flags);
455
456 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
457 return retval;
458 }
459
460 /**
461 * pdc_model_info - Return model information about the processor.
462 * @model: The return buffer.
463 *
464 * Returns the version numbers, identifiers, and capabilities from the processor module.
465 */
pdc_model_info(struct pdc_model * model)466 int pdc_model_info(struct pdc_model *model)
467 {
468 int retval;
469 unsigned long flags;
470
471 spin_lock_irqsave(&pdc_lock, flags);
472 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
473 convert_to_wide(pdc_result);
474 memcpy(model, pdc_result, sizeof(*model));
475 spin_unlock_irqrestore(&pdc_lock, flags);
476
477 return retval;
478 }
479
480 /**
481 * pdc_model_sysmodel - Get the system model name.
482 * @name: A char array of at least 81 characters.
483 *
484 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
485 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
486 * on HP/UX.
487 */
pdc_model_sysmodel(char * name)488 int pdc_model_sysmodel(char *name)
489 {
490 int retval;
491 unsigned long flags;
492
493 spin_lock_irqsave(&pdc_lock, flags);
494 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
495 OS_ID_HPUX, __pa(name));
496 convert_to_wide(pdc_result);
497
498 if (retval == PDC_OK) {
499 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
500 } else {
501 name[0] = 0;
502 }
503 spin_unlock_irqrestore(&pdc_lock, flags);
504
505 return retval;
506 }
507
508 /**
509 * pdc_model_versions - Identify the version number of each processor.
510 * @cpu_id: The return buffer.
511 * @id: The id of the processor to check.
512 *
513 * Returns the version number for each processor component.
514 *
515 * This comment was here before, but I do not know what it means :( -RB
516 * id: 0 = cpu revision, 1 = boot-rom-version
517 */
pdc_model_versions(unsigned long * versions,int id)518 int pdc_model_versions(unsigned long *versions, int id)
519 {
520 int retval;
521 unsigned long flags;
522
523 spin_lock_irqsave(&pdc_lock, flags);
524 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
525 convert_to_wide(pdc_result);
526 *versions = pdc_result[0];
527 spin_unlock_irqrestore(&pdc_lock, flags);
528
529 return retval;
530 }
531
532 /**
533 * pdc_model_cpuid - Returns the CPU_ID.
534 * @cpu_id: The return buffer.
535 *
536 * Returns the CPU_ID value which uniquely identifies the cpu portion of
537 * the processor module.
538 */
pdc_model_cpuid(unsigned long * cpu_id)539 int pdc_model_cpuid(unsigned long *cpu_id)
540 {
541 int retval;
542 unsigned long flags;
543
544 spin_lock_irqsave(&pdc_lock, flags);
545 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
546 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
547 convert_to_wide(pdc_result);
548 *cpu_id = pdc_result[0];
549 spin_unlock_irqrestore(&pdc_lock, flags);
550
551 return retval;
552 }
553
554 /**
555 * pdc_model_capabilities - Returns the platform capabilities.
556 * @capabilities: The return buffer.
557 *
558 * Returns information about platform support for 32- and/or 64-bit
559 * OSes, IO-PDIR coherency, and virtual aliasing.
560 */
pdc_model_capabilities(unsigned long * capabilities)561 int pdc_model_capabilities(unsigned long *capabilities)
562 {
563 int retval;
564 unsigned long flags;
565
566 spin_lock_irqsave(&pdc_lock, flags);
567 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
568 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
569 convert_to_wide(pdc_result);
570 if (retval == PDC_OK) {
571 *capabilities = pdc_result[0];
572 } else {
573 *capabilities = PDC_MODEL_OS32;
574 }
575 spin_unlock_irqrestore(&pdc_lock, flags);
576
577 return retval;
578 }
579
580 /**
581 * pdc_model_platform_info - Returns machine product and serial number.
582 * @orig_prod_num: Return buffer for original product number.
583 * @current_prod_num: Return buffer for current product number.
584 * @serial_no: Return buffer for serial number.
585 *
586 * Returns strings containing the original and current product numbers and the
587 * serial number of the system.
588 */
pdc_model_platform_info(char * orig_prod_num,char * current_prod_num,char * serial_no)589 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
590 char *serial_no)
591 {
592 int retval;
593 unsigned long flags;
594
595 spin_lock_irqsave(&pdc_lock, flags);
596 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
597 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
598 convert_to_wide(pdc_result);
599 spin_unlock_irqrestore(&pdc_lock, flags);
600
601 return retval;
602 }
603
604 /**
605 * pdc_cache_info - Return cache and TLB information.
606 * @cache_info: The return buffer.
607 *
608 * Returns information about the processor's cache and TLB.
609 */
pdc_cache_info(struct pdc_cache_info * cache_info)610 int pdc_cache_info(struct pdc_cache_info *cache_info)
611 {
612 int retval;
613 unsigned long flags;
614
615 spin_lock_irqsave(&pdc_lock, flags);
616 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
617 convert_to_wide(pdc_result);
618 memcpy(cache_info, pdc_result, sizeof(*cache_info));
619 spin_unlock_irqrestore(&pdc_lock, flags);
620
621 return retval;
622 }
623
624 /**
625 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
626 * @space_bits: Should be 0, if not, bad mojo!
627 *
628 * Returns information about Space ID hashing.
629 */
pdc_spaceid_bits(unsigned long * space_bits)630 int pdc_spaceid_bits(unsigned long *space_bits)
631 {
632 int retval;
633 unsigned long flags;
634
635 spin_lock_irqsave(&pdc_lock, flags);
636 pdc_result[0] = 0;
637 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
638 convert_to_wide(pdc_result);
639 *space_bits = pdc_result[0];
640 spin_unlock_irqrestore(&pdc_lock, flags);
641
642 return retval;
643 }
644
645 #ifndef CONFIG_PA20
646 /**
647 * pdc_btlb_info - Return block TLB information.
648 * @btlb: The return buffer.
649 *
650 * Returns information about the hardware Block TLB.
651 */
pdc_btlb_info(struct pdc_btlb_info * btlb)652 int pdc_btlb_info(struct pdc_btlb_info *btlb)
653 {
654 int retval;
655 unsigned long flags;
656
657 spin_lock_irqsave(&pdc_lock, flags);
658 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
659 memcpy(btlb, pdc_result, sizeof(*btlb));
660 spin_unlock_irqrestore(&pdc_lock, flags);
661
662 if(retval < 0) {
663 btlb->max_size = 0;
664 }
665 return retval;
666 }
667
668 /**
669 * pdc_mem_map_hpa - Find fixed module information.
670 * @address: The return buffer
671 * @mod_path: pointer to dev path structure.
672 *
673 * This call was developed for S700 workstations to allow the kernel to find
674 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
675 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
676 * call.
677 *
678 * This call is supported by all existing S700 workstations (up to Gecko).
679 */
pdc_mem_map_hpa(struct pdc_memory_map * address,struct pdc_module_path * mod_path)680 int pdc_mem_map_hpa(struct pdc_memory_map *address,
681 struct pdc_module_path *mod_path)
682 {
683 int retval;
684 unsigned long flags;
685
686 spin_lock_irqsave(&pdc_lock, flags);
687 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
688 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
689 __pa(pdc_result2));
690 memcpy(address, pdc_result, sizeof(*address));
691 spin_unlock_irqrestore(&pdc_lock, flags);
692
693 return retval;
694 }
695 #endif /* !CONFIG_PA20 */
696
697 /**
698 * pdc_lan_station_id - Get the LAN address.
699 * @lan_addr: The return buffer.
700 * @hpa: The network device HPA.
701 *
702 * Get the LAN station address when it is not directly available from the LAN hardware.
703 */
pdc_lan_station_id(char * lan_addr,unsigned long hpa)704 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
705 {
706 int retval;
707 unsigned long flags;
708
709 spin_lock_irqsave(&pdc_lock, flags);
710 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
711 __pa(pdc_result), hpa);
712 if (retval < 0) {
713 /* FIXME: else read MAC from NVRAM */
714 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
715 } else {
716 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
717 }
718 spin_unlock_irqrestore(&pdc_lock, flags);
719
720 return retval;
721 }
722 EXPORT_SYMBOL(pdc_lan_station_id);
723
724 /**
725 * pdc_stable_read - Read data from Stable Storage.
726 * @staddr: Stable Storage address to access.
727 * @memaddr: The memory address where Stable Storage data shall be copied.
728 * @count: number of bytes to transfer. count is multiple of 4.
729 *
730 * This PDC call reads from the Stable Storage address supplied in staddr
731 * and copies count bytes to the memory address memaddr.
732 * The call will fail if staddr+count > PDC_STABLE size.
733 */
pdc_stable_read(unsigned long staddr,void * memaddr,unsigned long count)734 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
735 {
736 int retval;
737 unsigned long flags;
738
739 spin_lock_irqsave(&pdc_lock, flags);
740 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
741 __pa(pdc_result), count);
742 convert_to_wide(pdc_result);
743 memcpy(memaddr, pdc_result, count);
744 spin_unlock_irqrestore(&pdc_lock, flags);
745
746 return retval;
747 }
748 EXPORT_SYMBOL(pdc_stable_read);
749
750 /**
751 * pdc_stable_write - Write data to Stable Storage.
752 * @staddr: Stable Storage address to access.
753 * @memaddr: The memory address where Stable Storage data shall be read from.
754 * @count: number of bytes to transfer. count is multiple of 4.
755 *
756 * This PDC call reads count bytes from the supplied memaddr address,
757 * and copies count bytes to the Stable Storage address staddr.
758 * The call will fail if staddr+count > PDC_STABLE size.
759 */
pdc_stable_write(unsigned long staddr,void * memaddr,unsigned long count)760 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
761 {
762 int retval;
763 unsigned long flags;
764
765 spin_lock_irqsave(&pdc_lock, flags);
766 memcpy(pdc_result, memaddr, count);
767 convert_to_wide(pdc_result);
768 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
769 __pa(pdc_result), count);
770 spin_unlock_irqrestore(&pdc_lock, flags);
771
772 return retval;
773 }
774 EXPORT_SYMBOL(pdc_stable_write);
775
776 /**
777 * pdc_stable_get_size - Get Stable Storage size in bytes.
778 * @size: pointer where the size will be stored.
779 *
780 * This PDC call returns the number of bytes in the processor's Stable
781 * Storage, which is the number of contiguous bytes implemented in Stable
782 * Storage starting from staddr=0. size in an unsigned 64-bit integer
783 * which is a multiple of four.
784 */
pdc_stable_get_size(unsigned long * size)785 int pdc_stable_get_size(unsigned long *size)
786 {
787 int retval;
788 unsigned long flags;
789
790 spin_lock_irqsave(&pdc_lock, flags);
791 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
792 *size = pdc_result[0];
793 spin_unlock_irqrestore(&pdc_lock, flags);
794
795 return retval;
796 }
797 EXPORT_SYMBOL(pdc_stable_get_size);
798
799 /**
800 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
801 *
802 * This PDC call is meant to be used to check the integrity of the current
803 * contents of Stable Storage.
804 */
pdc_stable_verify_contents(void)805 int pdc_stable_verify_contents(void)
806 {
807 int retval;
808 unsigned long flags;
809
810 spin_lock_irqsave(&pdc_lock, flags);
811 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
812 spin_unlock_irqrestore(&pdc_lock, flags);
813
814 return retval;
815 }
816 EXPORT_SYMBOL(pdc_stable_verify_contents);
817
818 /**
819 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
820 * the validity indicator.
821 *
822 * This PDC call will erase all contents of Stable Storage. Use with care!
823 */
pdc_stable_initialize(void)824 int pdc_stable_initialize(void)
825 {
826 int retval;
827 unsigned long flags;
828
829 spin_lock_irqsave(&pdc_lock, flags);
830 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
831 spin_unlock_irqrestore(&pdc_lock, flags);
832
833 return retval;
834 }
835 EXPORT_SYMBOL(pdc_stable_initialize);
836
837 /**
838 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
839 * @hwpath: fully bc.mod style path to the device.
840 * @initiator: the array to return the result into
841 *
842 * Get the SCSI operational parameters from PDC.
843 * Needed since HPUX never used BIOS or symbios card NVRAM.
844 * Most ncr/sym cards won't have an entry and just use whatever
845 * capabilities of the card are (eg Ultra, LVD). But there are
846 * several cases where it's useful:
847 * o set SCSI id for Multi-initiator clusters,
848 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
849 * o bus width exported is less than what the interface chip supports.
850 */
pdc_get_initiator(struct hardware_path * hwpath,struct pdc_initiator * initiator)851 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
852 {
853 int retval;
854 unsigned long flags;
855
856 spin_lock_irqsave(&pdc_lock, flags);
857
858 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
859 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
860 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
861
862 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
863 __pa(pdc_result), __pa(hwpath));
864 if (retval < PDC_OK)
865 goto out;
866
867 if (pdc_result[0] < 16) {
868 initiator->host_id = pdc_result[0];
869 } else {
870 initiator->host_id = -1;
871 }
872
873 /*
874 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
875 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
876 */
877 switch (pdc_result[1]) {
878 case 1: initiator->factor = 50; break;
879 case 2: initiator->factor = 25; break;
880 case 5: initiator->factor = 12; break;
881 case 25: initiator->factor = 10; break;
882 case 20: initiator->factor = 12; break;
883 case 40: initiator->factor = 10; break;
884 default: initiator->factor = -1; break;
885 }
886
887 if (IS_SPROCKETS()) {
888 initiator->width = pdc_result[4];
889 initiator->mode = pdc_result[5];
890 } else {
891 initiator->width = -1;
892 initiator->mode = -1;
893 }
894
895 out:
896 spin_unlock_irqrestore(&pdc_lock, flags);
897
898 return (retval >= PDC_OK);
899 }
900 EXPORT_SYMBOL(pdc_get_initiator);
901
902
903 /**
904 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
905 * @num_entries: The return value.
906 * @hpa: The HPA for the device.
907 *
908 * This PDC function returns the number of entries in the specified cell's
909 * interrupt table.
910 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
911 */
pdc_pci_irt_size(unsigned long * num_entries,unsigned long hpa)912 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
913 {
914 int retval;
915 unsigned long flags;
916
917 spin_lock_irqsave(&pdc_lock, flags);
918 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
919 __pa(pdc_result), hpa);
920 convert_to_wide(pdc_result);
921 *num_entries = pdc_result[0];
922 spin_unlock_irqrestore(&pdc_lock, flags);
923
924 return retval;
925 }
926
927 /**
928 * pdc_pci_irt - Get the PCI interrupt routing table.
929 * @num_entries: The number of entries in the table.
930 * @hpa: The Hard Physical Address of the device.
931 * @tbl:
932 *
933 * Get the PCI interrupt routing table for the device at the given HPA.
934 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
935 */
pdc_pci_irt(unsigned long num_entries,unsigned long hpa,void * tbl)936 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
937 {
938 int retval;
939 unsigned long flags;
940
941 BUG_ON((unsigned long)tbl & 0x7);
942
943 spin_lock_irqsave(&pdc_lock, flags);
944 pdc_result[0] = num_entries;
945 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
946 __pa(pdc_result), hpa, __pa(tbl));
947 spin_unlock_irqrestore(&pdc_lock, flags);
948
949 return retval;
950 }
951
952
953 #if 0 /* UNTEST CODE - left here in case someone needs it */
954
955 /**
956 * pdc_pci_config_read - read PCI config space.
957 * @hpa token from PDC to indicate which PCI device
958 * @pci_addr configuration space address to read from
959 *
960 * Read PCI Configuration space *before* linux PCI subsystem is running.
961 */
962 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
963 {
964 int retval;
965 unsigned long flags;
966
967 spin_lock_irqsave(&pdc_lock, flags);
968 pdc_result[0] = 0;
969 pdc_result[1] = 0;
970 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
971 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
972 spin_unlock_irqrestore(&pdc_lock, flags);
973
974 return retval ? ~0 : (unsigned int) pdc_result[0];
975 }
976
977
978 /**
979 * pdc_pci_config_write - read PCI config space.
980 * @hpa token from PDC to indicate which PCI device
981 * @pci_addr configuration space address to write
982 * @val value we want in the 32-bit register
983 *
984 * Write PCI Configuration space *before* linux PCI subsystem is running.
985 */
986 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
987 {
988 int retval;
989 unsigned long flags;
990
991 spin_lock_irqsave(&pdc_lock, flags);
992 pdc_result[0] = 0;
993 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
994 __pa(pdc_result), hpa,
995 cfg_addr&~3UL, 4UL, (unsigned long) val);
996 spin_unlock_irqrestore(&pdc_lock, flags);
997
998 return retval;
999 }
1000 #endif /* UNTESTED CODE */
1001
1002 /**
1003 * pdc_tod_read - Read the Time-Of-Day clock.
1004 * @tod: The return buffer:
1005 *
1006 * Read the Time-Of-Day clock
1007 */
pdc_tod_read(struct pdc_tod * tod)1008 int pdc_tod_read(struct pdc_tod *tod)
1009 {
1010 int retval;
1011 unsigned long flags;
1012
1013 spin_lock_irqsave(&pdc_lock, flags);
1014 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1015 convert_to_wide(pdc_result);
1016 memcpy(tod, pdc_result, sizeof(*tod));
1017 spin_unlock_irqrestore(&pdc_lock, flags);
1018
1019 return retval;
1020 }
1021 EXPORT_SYMBOL(pdc_tod_read);
1022
pdc_mem_pdt_info(struct pdc_mem_retinfo * rinfo)1023 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1024 {
1025 int retval;
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&pdc_lock, flags);
1029 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1030 convert_to_wide(pdc_result);
1031 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1032 spin_unlock_irqrestore(&pdc_lock, flags);
1033
1034 return retval;
1035 }
1036
pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt * pret,unsigned long * pdt_entries_ptr)1037 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1038 unsigned long *pdt_entries_ptr)
1039 {
1040 int retval;
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&pdc_lock, flags);
1044 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1045 __pa(pdt_entries_ptr));
1046 if (retval == PDC_OK) {
1047 convert_to_wide(pdc_result);
1048 memcpy(pret, pdc_result, sizeof(*pret));
1049 }
1050 spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052 #ifdef CONFIG_64BIT
1053 /*
1054 * 64-bit kernels should not call this PDT function in narrow mode.
1055 * The pdt_entries_ptr array above will now contain 32-bit values
1056 */
1057 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1058 return PDC_ERROR;
1059 #endif
1060
1061 return retval;
1062 }
1063
1064 /**
1065 * pdc_tod_set - Set the Time-Of-Day clock.
1066 * @sec: The number of seconds since epoch.
1067 * @usec: The number of micro seconds.
1068 *
1069 * Set the Time-Of-Day clock.
1070 */
pdc_tod_set(unsigned long sec,unsigned long usec)1071 int pdc_tod_set(unsigned long sec, unsigned long usec)
1072 {
1073 int retval;
1074 unsigned long flags;
1075
1076 spin_lock_irqsave(&pdc_lock, flags);
1077 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1078 spin_unlock_irqrestore(&pdc_lock, flags);
1079
1080 return retval;
1081 }
1082 EXPORT_SYMBOL(pdc_tod_set);
1083
1084 #ifdef CONFIG_64BIT
pdc_mem_mem_table(struct pdc_memory_table_raddr * r_addr,struct pdc_memory_table * tbl,unsigned long entries)1085 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1086 struct pdc_memory_table *tbl, unsigned long entries)
1087 {
1088 int retval;
1089 unsigned long flags;
1090
1091 spin_lock_irqsave(&pdc_lock, flags);
1092 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1093 convert_to_wide(pdc_result);
1094 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1095 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1096 spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098 return retval;
1099 }
1100 #endif /* CONFIG_64BIT */
1101
1102 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1103 * so I guessed at unsigned long. Someone who knows what this does, can fix
1104 * it later. :)
1105 */
pdc_do_firm_test_reset(unsigned long ftc_bitmap)1106 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1107 {
1108 int retval;
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&pdc_lock, flags);
1112 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1113 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1114 spin_unlock_irqrestore(&pdc_lock, flags);
1115
1116 return retval;
1117 }
1118
1119 /*
1120 * pdc_do_reset - Reset the system.
1121 *
1122 * Reset the system.
1123 */
pdc_do_reset(void)1124 int pdc_do_reset(void)
1125 {
1126 int retval;
1127 unsigned long flags;
1128
1129 spin_lock_irqsave(&pdc_lock, flags);
1130 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1131 spin_unlock_irqrestore(&pdc_lock, flags);
1132
1133 return retval;
1134 }
1135
1136 /*
1137 * pdc_soft_power_info - Enable soft power switch.
1138 * @power_reg: address of soft power register
1139 *
1140 * Return the absolute address of the soft power switch register
1141 */
pdc_soft_power_info(unsigned long * power_reg)1142 int __init pdc_soft_power_info(unsigned long *power_reg)
1143 {
1144 int retval;
1145 unsigned long flags;
1146
1147 *power_reg = (unsigned long) (-1);
1148
1149 spin_lock_irqsave(&pdc_lock, flags);
1150 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1151 if (retval == PDC_OK) {
1152 convert_to_wide(pdc_result);
1153 *power_reg = f_extend(pdc_result[0]);
1154 }
1155 spin_unlock_irqrestore(&pdc_lock, flags);
1156
1157 return retval;
1158 }
1159
1160 /*
1161 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1162 * @sw_control: 0 for hardware control, 1 for software control
1163 *
1164 *
1165 * This PDC function places the soft power button under software or
1166 * hardware control.
1167 * Under software control the OS may control to when to allow to shut
1168 * down the system. Under hardware control pressing the power button
1169 * powers off the system immediately.
1170 *
1171 * The _panic version relies on spin_trylock to prevent deadlock
1172 * on panic path.
1173 */
pdc_soft_power_button(int sw_control)1174 int pdc_soft_power_button(int sw_control)
1175 {
1176 int retval;
1177 unsigned long flags;
1178
1179 spin_lock_irqsave(&pdc_lock, flags);
1180 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1181 spin_unlock_irqrestore(&pdc_lock, flags);
1182
1183 return retval;
1184 }
1185
pdc_soft_power_button_panic(int sw_control)1186 int pdc_soft_power_button_panic(int sw_control)
1187 {
1188 int retval;
1189 unsigned long flags;
1190
1191 if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1192 pr_emerg("Couldn't enable soft power button\n");
1193 return -EBUSY; /* ignored by the panic notifier */
1194 }
1195
1196 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1197 spin_unlock_irqrestore(&pdc_lock, flags);
1198
1199 return retval;
1200 }
1201
1202 /*
1203 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1204 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1205 * who knows what other platform firmware might do with this OS "hook".
1206 */
pdc_io_reset(void)1207 void pdc_io_reset(void)
1208 {
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&pdc_lock, flags);
1212 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1213 spin_unlock_irqrestore(&pdc_lock, flags);
1214 }
1215
1216 /*
1217 * pdc_io_reset_devices - Hack to Stop USB controller
1218 *
1219 * If PDC used the usb controller, the usb controller
1220 * is still running and will crash the machines during iommu
1221 * setup, because of still running DMA. This PDC call
1222 * stops the USB controller.
1223 * Normally called after calling pdc_io_reset().
1224 */
pdc_io_reset_devices(void)1225 void pdc_io_reset_devices(void)
1226 {
1227 unsigned long flags;
1228
1229 spin_lock_irqsave(&pdc_lock, flags);
1230 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1231 spin_unlock_irqrestore(&pdc_lock, flags);
1232 }
1233
1234 #endif /* defined(BOOTLOADER) */
1235
1236 /* locked by pdc_console_lock */
1237 static int __attribute__((aligned(8))) iodc_retbuf[32];
1238 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1239
1240 /**
1241 * pdc_iodc_print - Console print using IODC.
1242 * @str: the string to output.
1243 * @count: length of str
1244 *
1245 * Note that only these special chars are architected for console IODC io:
1246 * BEL, BS, CR, and LF. Others are passed through.
1247 * Since the HP console requires CR+LF to perform a 'newline', we translate
1248 * "\n" to "\r\n".
1249 */
pdc_iodc_print(const unsigned char * str,unsigned count)1250 int pdc_iodc_print(const unsigned char *str, unsigned count)
1251 {
1252 unsigned int i, found = 0;
1253 unsigned long flags;
1254
1255 for (i = 0; i < count;) {
1256 switch(str[i]) {
1257 case '\n':
1258 iodc_dbuf[i+0] = '\r';
1259 iodc_dbuf[i+1] = '\n';
1260 i += 2;
1261 found = 1;
1262 goto print;
1263 default:
1264 iodc_dbuf[i] = str[i];
1265 i++;
1266 break;
1267 }
1268 }
1269
1270 print:
1271 spin_lock_irqsave(&pdc_lock, flags);
1272 real32_call(PAGE0->mem_cons.iodc_io,
1273 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1274 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1275 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1276 spin_unlock_irqrestore(&pdc_lock, flags);
1277
1278 return i - found;
1279 }
1280
1281 #if !defined(BOOTLOADER)
1282 /**
1283 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1284 *
1285 * Read a character (non-blocking) from the PDC console, returns -1 if
1286 * key is not present.
1287 */
pdc_iodc_getc(void)1288 int pdc_iodc_getc(void)
1289 {
1290 int ch;
1291 int status;
1292 unsigned long flags;
1293
1294 /* Bail if no console input device. */
1295 if (!PAGE0->mem_kbd.iodc_io)
1296 return 0;
1297
1298 /* wait for a keyboard (rs232)-input */
1299 spin_lock_irqsave(&pdc_lock, flags);
1300 real32_call(PAGE0->mem_kbd.iodc_io,
1301 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1302 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1303 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1304
1305 ch = *iodc_dbuf;
1306 status = *iodc_retbuf;
1307 spin_unlock_irqrestore(&pdc_lock, flags);
1308
1309 if (status == 0)
1310 return -1;
1311
1312 return ch;
1313 }
1314
pdc_sti_call(unsigned long func,unsigned long flags,unsigned long inptr,unsigned long outputr,unsigned long glob_cfg)1315 int pdc_sti_call(unsigned long func, unsigned long flags,
1316 unsigned long inptr, unsigned long outputr,
1317 unsigned long glob_cfg)
1318 {
1319 int retval;
1320 unsigned long irqflags;
1321
1322 spin_lock_irqsave(&pdc_lock, irqflags);
1323 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1324 spin_unlock_irqrestore(&pdc_lock, irqflags);
1325
1326 return retval;
1327 }
1328 EXPORT_SYMBOL(pdc_sti_call);
1329
1330 #ifdef CONFIG_64BIT
1331 /**
1332 * pdc_pat_cell_get_number - Returns the cell number.
1333 * @cell_info: The return buffer.
1334 *
1335 * This PDC call returns the cell number of the cell from which the call
1336 * is made.
1337 */
pdc_pat_cell_get_number(struct pdc_pat_cell_num * cell_info)1338 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1339 {
1340 int retval;
1341 unsigned long flags;
1342
1343 spin_lock_irqsave(&pdc_lock, flags);
1344 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1345 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1346 spin_unlock_irqrestore(&pdc_lock, flags);
1347
1348 return retval;
1349 }
1350
1351 /**
1352 * pdc_pat_cell_module - Retrieve the cell's module information.
1353 * @actcnt: The number of bytes written to mem_addr.
1354 * @ploc: The physical location.
1355 * @mod: The module index.
1356 * @view_type: The view of the address type.
1357 * @mem_addr: The return buffer.
1358 *
1359 * This PDC call returns information about each module attached to the cell
1360 * at the specified location.
1361 */
pdc_pat_cell_module(unsigned long * actcnt,unsigned long ploc,unsigned long mod,unsigned long view_type,void * mem_addr)1362 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1363 unsigned long view_type, void *mem_addr)
1364 {
1365 int retval;
1366 unsigned long flags;
1367 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1368
1369 spin_lock_irqsave(&pdc_lock, flags);
1370 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1371 ploc, mod, view_type, __pa(&result));
1372 if(!retval) {
1373 *actcnt = pdc_result[0];
1374 memcpy(mem_addr, &result, *actcnt);
1375 }
1376 spin_unlock_irqrestore(&pdc_lock, flags);
1377
1378 return retval;
1379 }
1380
1381 /**
1382 * pdc_pat_cell_info - Retrieve the cell's information.
1383 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1384 * @actcnt: The number of bytes which should be written to info.
1385 * @offset: offset of the structure.
1386 * @cell_number: The cell number which should be asked, or -1 for current cell.
1387 *
1388 * This PDC call returns information about the given cell (or all cells).
1389 */
pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block * info,unsigned long * actcnt,unsigned long offset,unsigned long cell_number)1390 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1391 unsigned long *actcnt, unsigned long offset,
1392 unsigned long cell_number)
1393 {
1394 int retval;
1395 unsigned long flags;
1396 struct pdc_pat_cell_info_rtn_block result;
1397
1398 spin_lock_irqsave(&pdc_lock, flags);
1399 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1400 __pa(pdc_result), __pa(&result), *actcnt,
1401 offset, cell_number);
1402 if (!retval) {
1403 *actcnt = pdc_result[0];
1404 memcpy(info, &result, *actcnt);
1405 }
1406 spin_unlock_irqrestore(&pdc_lock, flags);
1407
1408 return retval;
1409 }
1410
1411 /**
1412 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1413 * @cpu_info: The return buffer.
1414 * @hpa: The Hard Physical Address of the CPU.
1415 *
1416 * Retrieve the cpu number for the cpu at the specified HPA.
1417 */
pdc_pat_cpu_get_number(struct pdc_pat_cpu_num * cpu_info,unsigned long hpa)1418 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1419 {
1420 int retval;
1421 unsigned long flags;
1422
1423 spin_lock_irqsave(&pdc_lock, flags);
1424 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1425 __pa(&pdc_result), hpa);
1426 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1427 spin_unlock_irqrestore(&pdc_lock, flags);
1428
1429 return retval;
1430 }
1431
1432 /**
1433 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1434 * @num_entries: The return value.
1435 * @cell_num: The target cell.
1436 *
1437 * This PDC function returns the number of entries in the specified cell's
1438 * interrupt table.
1439 */
pdc_pat_get_irt_size(unsigned long * num_entries,unsigned long cell_num)1440 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1441 {
1442 int retval;
1443 unsigned long flags;
1444
1445 spin_lock_irqsave(&pdc_lock, flags);
1446 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1447 __pa(pdc_result), cell_num);
1448 *num_entries = pdc_result[0];
1449 spin_unlock_irqrestore(&pdc_lock, flags);
1450
1451 return retval;
1452 }
1453
1454 /**
1455 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1456 * @r_addr: The return buffer.
1457 * @cell_num: The target cell.
1458 *
1459 * This PDC function returns the actual interrupt table for the specified cell.
1460 */
pdc_pat_get_irt(void * r_addr,unsigned long cell_num)1461 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1462 {
1463 int retval;
1464 unsigned long flags;
1465
1466 spin_lock_irqsave(&pdc_lock, flags);
1467 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1468 __pa(r_addr), cell_num);
1469 spin_unlock_irqrestore(&pdc_lock, flags);
1470
1471 return retval;
1472 }
1473
1474 /**
1475 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1476 * @actlen: The return buffer.
1477 * @mem_addr: Pointer to the memory buffer.
1478 * @count: The number of bytes to read from the buffer.
1479 * @offset: The offset with respect to the beginning of the buffer.
1480 *
1481 */
pdc_pat_pd_get_addr_map(unsigned long * actual_len,void * mem_addr,unsigned long count,unsigned long offset)1482 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1483 unsigned long count, unsigned long offset)
1484 {
1485 int retval;
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&pdc_lock, flags);
1489 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1490 __pa(pdc_result2), count, offset);
1491 *actual_len = pdc_result[0];
1492 memcpy(mem_addr, pdc_result2, *actual_len);
1493 spin_unlock_irqrestore(&pdc_lock, flags);
1494
1495 return retval;
1496 }
1497
1498 /**
1499 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1500 * @legacy_rev: The legacy revision.
1501 * @pat_rev: The PAT revision.
1502 * @pdc_cap: The PDC capabilities.
1503 *
1504 */
pdc_pat_pd_get_pdc_revisions(unsigned long * legacy_rev,unsigned long * pat_rev,unsigned long * pdc_cap)1505 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1506 unsigned long *pat_rev, unsigned long *pdc_cap)
1507 {
1508 int retval;
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&pdc_lock, flags);
1512 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1513 __pa(pdc_result));
1514 if (retval == PDC_OK) {
1515 *legacy_rev = pdc_result[0];
1516 *pat_rev = pdc_result[1];
1517 *pdc_cap = pdc_result[2];
1518 }
1519 spin_unlock_irqrestore(&pdc_lock, flags);
1520
1521 return retval;
1522 }
1523
1524
1525 /**
1526 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1527 * @pci_addr: PCI configuration space address for which the read request is being made.
1528 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1529 * @mem_addr: Pointer to return memory buffer.
1530 *
1531 */
pdc_pat_io_pci_cfg_read(unsigned long pci_addr,int pci_size,u32 * mem_addr)1532 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1533 {
1534 int retval;
1535 unsigned long flags;
1536
1537 spin_lock_irqsave(&pdc_lock, flags);
1538 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1539 __pa(pdc_result), pci_addr, pci_size);
1540 switch(pci_size) {
1541 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1542 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1543 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1544 }
1545 spin_unlock_irqrestore(&pdc_lock, flags);
1546
1547 return retval;
1548 }
1549
1550 /**
1551 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1552 * @pci_addr: PCI configuration space address for which the write request is being made.
1553 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1554 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1555 * written to PCI Config space.
1556 *
1557 */
pdc_pat_io_pci_cfg_write(unsigned long pci_addr,int pci_size,u32 val)1558 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1559 {
1560 int retval;
1561 unsigned long flags;
1562
1563 spin_lock_irqsave(&pdc_lock, flags);
1564 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1565 pci_addr, pci_size, val);
1566 spin_unlock_irqrestore(&pdc_lock, flags);
1567
1568 return retval;
1569 }
1570
1571 /**
1572 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1573 * @rinfo: memory pdt information
1574 *
1575 */
pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo * rinfo)1576 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1577 {
1578 int retval;
1579 unsigned long flags;
1580
1581 spin_lock_irqsave(&pdc_lock, flags);
1582 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1583 __pa(&pdc_result));
1584 if (retval == PDC_OK)
1585 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1586 spin_unlock_irqrestore(&pdc_lock, flags);
1587
1588 return retval;
1589 }
1590
1591 /**
1592 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1593 * table of a cell
1594 * @rinfo: memory pdt information
1595 * @cell: cell number
1596 *
1597 */
pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo * rinfo,unsigned long cell)1598 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1599 unsigned long cell)
1600 {
1601 int retval;
1602 unsigned long flags;
1603
1604 spin_lock_irqsave(&pdc_lock, flags);
1605 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1606 __pa(&pdc_result), cell);
1607 if (retval == PDC_OK)
1608 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1609 spin_unlock_irqrestore(&pdc_lock, flags);
1610
1611 return retval;
1612 }
1613
1614 /**
1615 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1616 * @pret: array of PDT entries
1617 * @pdt_entries_ptr: ptr to hold number of PDT entries
1618 * @max_entries: maximum number of entries to be read
1619 *
1620 */
pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long max_entries)1621 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1622 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1623 {
1624 int retval;
1625 unsigned long flags, entries;
1626
1627 spin_lock_irqsave(&pdc_lock, flags);
1628 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1629 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1630 __pa(&pdc_result), parisc_cell_num,
1631 __pa(pdt_entries_ptr));
1632
1633 if (retval == PDC_OK) {
1634 /* build up return value as for PDC_PAT_MEM_PD_READ */
1635 entries = min(pdc_result[0], max_entries);
1636 pret->pdt_entries = entries;
1637 pret->actual_count_bytes = entries * sizeof(unsigned long);
1638 }
1639
1640 spin_unlock_irqrestore(&pdc_lock, flags);
1641 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1642
1643 return retval;
1644 }
1645 /**
1646 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1647 * @pret: array of PDT entries
1648 * @pdt_entries_ptr: ptr to hold number of PDT entries
1649 * @count: number of bytes to read
1650 * @offset: offset to start (in bytes)
1651 *
1652 */
pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo * pret,unsigned long * pdt_entries_ptr,unsigned long count,unsigned long offset)1653 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1654 unsigned long *pdt_entries_ptr, unsigned long count,
1655 unsigned long offset)
1656 {
1657 int retval;
1658 unsigned long flags, entries;
1659
1660 spin_lock_irqsave(&pdc_lock, flags);
1661 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1662 __pa(&pdc_result), __pa(pdt_entries_ptr),
1663 count, offset);
1664
1665 if (retval == PDC_OK) {
1666 entries = min(pdc_result[0], count);
1667 pret->actual_count_bytes = entries;
1668 pret->pdt_entries = entries / sizeof(unsigned long);
1669 }
1670
1671 spin_unlock_irqrestore(&pdc_lock, flags);
1672
1673 return retval;
1674 }
1675
1676 /**
1677 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1678 * @pret: ptr to hold returned information
1679 * @phys_addr: physical address to examine
1680 *
1681 */
pdc_pat_mem_get_dimm_phys_location(struct pdc_pat_mem_phys_mem_location * pret,unsigned long phys_addr)1682 int pdc_pat_mem_get_dimm_phys_location(
1683 struct pdc_pat_mem_phys_mem_location *pret,
1684 unsigned long phys_addr)
1685 {
1686 int retval;
1687 unsigned long flags;
1688
1689 spin_lock_irqsave(&pdc_lock, flags);
1690 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1691 __pa(&pdc_result), phys_addr);
1692
1693 if (retval == PDC_OK)
1694 memcpy(pret, &pdc_result, sizeof(*pret));
1695
1696 spin_unlock_irqrestore(&pdc_lock, flags);
1697
1698 return retval;
1699 }
1700 #endif /* CONFIG_64BIT */
1701 #endif /* defined(BOOTLOADER) */
1702
1703
1704 /***************** 32-bit real-mode calls ***********/
1705 /* The struct below is used
1706 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1707 * real32_call_asm() then uses this stack in narrow real mode
1708 */
1709
1710 struct narrow_stack {
1711 /* use int, not long which is 64 bits */
1712 unsigned int arg13;
1713 unsigned int arg12;
1714 unsigned int arg11;
1715 unsigned int arg10;
1716 unsigned int arg9;
1717 unsigned int arg8;
1718 unsigned int arg7;
1719 unsigned int arg6;
1720 unsigned int arg5;
1721 unsigned int arg4;
1722 unsigned int arg3;
1723 unsigned int arg2;
1724 unsigned int arg1;
1725 unsigned int arg0;
1726 unsigned int frame_marker[8];
1727 unsigned int sp;
1728 /* in reality, there's nearly 8k of stack after this */
1729 };
1730
real32_call(unsigned long fn,...)1731 long real32_call(unsigned long fn, ...)
1732 {
1733 va_list args;
1734 extern struct narrow_stack real_stack;
1735 extern unsigned long real32_call_asm(unsigned int *,
1736 unsigned int *,
1737 unsigned int);
1738
1739 va_start(args, fn);
1740 real_stack.arg0 = va_arg(args, unsigned int);
1741 real_stack.arg1 = va_arg(args, unsigned int);
1742 real_stack.arg2 = va_arg(args, unsigned int);
1743 real_stack.arg3 = va_arg(args, unsigned int);
1744 real_stack.arg4 = va_arg(args, unsigned int);
1745 real_stack.arg5 = va_arg(args, unsigned int);
1746 real_stack.arg6 = va_arg(args, unsigned int);
1747 real_stack.arg7 = va_arg(args, unsigned int);
1748 real_stack.arg8 = va_arg(args, unsigned int);
1749 real_stack.arg9 = va_arg(args, unsigned int);
1750 real_stack.arg10 = va_arg(args, unsigned int);
1751 real_stack.arg11 = va_arg(args, unsigned int);
1752 real_stack.arg12 = va_arg(args, unsigned int);
1753 real_stack.arg13 = va_arg(args, unsigned int);
1754 va_end(args);
1755
1756 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1757 }
1758
1759 #ifdef CONFIG_64BIT
1760 /***************** 64-bit real-mode calls ***********/
1761
1762 struct wide_stack {
1763 unsigned long arg0;
1764 unsigned long arg1;
1765 unsigned long arg2;
1766 unsigned long arg3;
1767 unsigned long arg4;
1768 unsigned long arg5;
1769 unsigned long arg6;
1770 unsigned long arg7;
1771 unsigned long arg8;
1772 unsigned long arg9;
1773 unsigned long arg10;
1774 unsigned long arg11;
1775 unsigned long arg12;
1776 unsigned long arg13;
1777 unsigned long frame_marker[2]; /* rp, previous sp */
1778 unsigned long sp;
1779 /* in reality, there's nearly 8k of stack after this */
1780 };
1781
real64_call(unsigned long fn,...)1782 long real64_call(unsigned long fn, ...)
1783 {
1784 va_list args;
1785 extern struct wide_stack real64_stack;
1786 extern unsigned long real64_call_asm(unsigned long *,
1787 unsigned long *,
1788 unsigned long);
1789
1790 va_start(args, fn);
1791 real64_stack.arg0 = va_arg(args, unsigned long);
1792 real64_stack.arg1 = va_arg(args, unsigned long);
1793 real64_stack.arg2 = va_arg(args, unsigned long);
1794 real64_stack.arg3 = va_arg(args, unsigned long);
1795 real64_stack.arg4 = va_arg(args, unsigned long);
1796 real64_stack.arg5 = va_arg(args, unsigned long);
1797 real64_stack.arg6 = va_arg(args, unsigned long);
1798 real64_stack.arg7 = va_arg(args, unsigned long);
1799 real64_stack.arg8 = va_arg(args, unsigned long);
1800 real64_stack.arg9 = va_arg(args, unsigned long);
1801 real64_stack.arg10 = va_arg(args, unsigned long);
1802 real64_stack.arg11 = va_arg(args, unsigned long);
1803 real64_stack.arg12 = va_arg(args, unsigned long);
1804 real64_stack.arg13 = va_arg(args, unsigned long);
1805 va_end(args);
1806
1807 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1808 }
1809
1810 #endif /* CONFIG_64BIT */
1811