1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/cpufreq_times.h>
102
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108
109 #include <trace/events/sched.h>
110
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113
114 #undef CREATE_TRACE_POINTS
115 #include <trace/hooks/sched.h>
116 /*
117 * Minimum number of threads to boot the kernel
118 */
119 #define MIN_THREADS 20
120
121 /*
122 * Maximum number of threads
123 */
124 #define MAX_THREADS FUTEX_TID_MASK
125
126 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
127
128 /*
129 * Protected counters by write_lock_irq(&tasklist_lock)
130 */
131 unsigned long total_forks; /* Handle normal Linux uptimes. */
132 int nr_threads; /* The idle threads do not count.. */
133
134 static int max_threads; /* tunable limit on nr_threads */
135
136 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
137
138 static const char * const resident_page_types[] = {
139 NAMED_ARRAY_INDEX(MM_FILEPAGES),
140 NAMED_ARRAY_INDEX(MM_ANONPAGES),
141 NAMED_ARRAY_INDEX(MM_SWAPENTS),
142 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
148 EXPORT_SYMBOL_GPL(tasklist_lock);
149
150 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)151 int lockdep_tasklist_lock_is_held(void)
152 {
153 return lockdep_is_held(&tasklist_lock);
154 }
155 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
156 #endif /* #ifdef CONFIG_PROVE_RCU */
157
nr_processes(void)158 int nr_processes(void)
159 {
160 int cpu;
161 int total = 0;
162
163 for_each_possible_cpu(cpu)
164 total += per_cpu(process_counts, cpu);
165
166 return total;
167 }
168
arch_release_task_struct(struct task_struct * tsk)169 void __weak arch_release_task_struct(struct task_struct *tsk)
170 {
171 }
172
173 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
174 static struct kmem_cache *task_struct_cachep;
175
alloc_task_struct_node(int node)176 static inline struct task_struct *alloc_task_struct_node(int node)
177 {
178 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
179 }
180
free_task_struct(struct task_struct * tsk)181 static inline void free_task_struct(struct task_struct *tsk)
182 {
183 kmem_cache_free(task_struct_cachep, tsk);
184 }
185 #endif
186
187 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
188
189 /*
190 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
191 * kmemcache based allocator.
192 */
193 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
194
195 #ifdef CONFIG_VMAP_STACK
196 /*
197 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
198 * flush. Try to minimize the number of calls by caching stacks.
199 */
200 #define NR_CACHED_STACKS 2
201 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
202
free_vm_stack_cache(unsigned int cpu)203 static int free_vm_stack_cache(unsigned int cpu)
204 {
205 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
206 int i;
207
208 for (i = 0; i < NR_CACHED_STACKS; i++) {
209 struct vm_struct *vm_stack = cached_vm_stacks[i];
210
211 if (!vm_stack)
212 continue;
213
214 vfree(vm_stack->addr);
215 cached_vm_stacks[i] = NULL;
216 }
217
218 return 0;
219 }
220 #endif
221
alloc_thread_stack_node(struct task_struct * tsk,int node)222 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
223 {
224 #ifdef CONFIG_VMAP_STACK
225 void *stack;
226 int i;
227
228 for (i = 0; i < NR_CACHED_STACKS; i++) {
229 struct vm_struct *s;
230
231 s = this_cpu_xchg(cached_stacks[i], NULL);
232
233 if (!s)
234 continue;
235
236 /* Reset stack metadata. */
237 kasan_unpoison_range(s->addr, THREAD_SIZE);
238
239 stack = kasan_reset_tag(s->addr);
240
241 /* Clear stale pointers from reused stack. */
242 memset(stack, 0, THREAD_SIZE);
243
244 tsk->stack_vm_area = s;
245 tsk->stack = stack;
246 return stack;
247 }
248
249 /*
250 * Allocated stacks are cached and later reused by new threads,
251 * so memcg accounting is performed manually on assigning/releasing
252 * stacks to tasks. Drop __GFP_ACCOUNT.
253 */
254 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
255 VMALLOC_START, VMALLOC_END,
256 THREADINFO_GFP & ~__GFP_ACCOUNT,
257 PAGE_KERNEL,
258 0, node, __builtin_return_address(0));
259
260 /*
261 * We can't call find_vm_area() in interrupt context, and
262 * free_thread_stack() can be called in interrupt context,
263 * so cache the vm_struct.
264 */
265 if (stack) {
266 stack = kasan_reset_tag(stack);
267 tsk->stack_vm_area = find_vm_area(stack);
268 tsk->stack = stack;
269 }
270 return stack;
271 #else
272 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
273 THREAD_SIZE_ORDER);
274
275 if (likely(page)) {
276 tsk->stack = kasan_reset_tag(page_address(page));
277 return tsk->stack;
278 }
279 return NULL;
280 #endif
281 }
282
free_thread_stack(struct task_struct * tsk)283 static inline void free_thread_stack(struct task_struct *tsk)
284 {
285 #ifdef CONFIG_VMAP_STACK
286 struct vm_struct *vm = task_stack_vm_area(tsk);
287
288 if (vm) {
289 int i;
290
291 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
292 memcg_kmem_uncharge_page(vm->pages[i], 0);
293
294 for (i = 0; i < NR_CACHED_STACKS; i++) {
295 if (this_cpu_cmpxchg(cached_stacks[i],
296 NULL, tsk->stack_vm_area) != NULL)
297 continue;
298
299 return;
300 }
301
302 vfree_atomic(tsk->stack);
303 return;
304 }
305 #endif
306
307 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
308 }
309 # else
310 static struct kmem_cache *thread_stack_cache;
311
alloc_thread_stack_node(struct task_struct * tsk,int node)312 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
313 int node)
314 {
315 unsigned long *stack;
316 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
317 stack = kasan_reset_tag(stack);
318 tsk->stack = stack;
319 return stack;
320 }
321
free_thread_stack(struct task_struct * tsk)322 static void free_thread_stack(struct task_struct *tsk)
323 {
324 kmem_cache_free(thread_stack_cache, tsk->stack);
325 }
326
thread_stack_cache_init(void)327 void thread_stack_cache_init(void)
328 {
329 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
330 THREAD_SIZE, THREAD_SIZE, 0, 0,
331 THREAD_SIZE, NULL);
332 BUG_ON(thread_stack_cache == NULL);
333 }
334 # endif
335 #endif
336
337 /* SLAB cache for signal_struct structures (tsk->signal) */
338 static struct kmem_cache *signal_cachep;
339
340 /* SLAB cache for sighand_struct structures (tsk->sighand) */
341 struct kmem_cache *sighand_cachep;
342
343 /* SLAB cache for files_struct structures (tsk->files) */
344 struct kmem_cache *files_cachep;
345
346 /* SLAB cache for fs_struct structures (tsk->fs) */
347 struct kmem_cache *fs_cachep;
348
349 /* SLAB cache for vm_area_struct structures */
350 static struct kmem_cache *vm_area_cachep;
351
352 /* SLAB cache for mm_struct structures (tsk->mm) */
353 static struct kmem_cache *mm_cachep;
354
vm_area_alloc(struct mm_struct * mm)355 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
356 {
357 struct vm_area_struct *vma;
358
359 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 if (vma)
361 vma_init(vma, mm);
362 return vma;
363 }
364
vm_area_dup(struct vm_area_struct * orig)365 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
366 {
367 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
368
369 if (new) {
370 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
371 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
372 /*
373 * orig->shared.rb may be modified concurrently, but the clone
374 * will be reinitialized.
375 */
376 *new = data_race(*orig);
377 INIT_VMA(new);
378 new->vm_next = new->vm_prev = NULL;
379 dup_anon_vma_name(orig, new);
380 }
381 return new;
382 }
383
384 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
__free_vm_area_struct(struct rcu_head * head)385 static void __free_vm_area_struct(struct rcu_head *head)
386 {
387 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
388 vm_rcu);
389 kmem_cache_free(vm_area_cachep, vma);
390 }
391
free_vm_area_struct(struct vm_area_struct * vma)392 static inline void free_vm_area_struct(struct vm_area_struct *vma)
393 {
394 call_rcu(&vma->vm_rcu, __free_vm_area_struct);
395 }
396 #else
free_vm_area_struct(struct vm_area_struct * vma)397 static inline void free_vm_area_struct(struct vm_area_struct *vma)
398 {
399 kmem_cache_free(vm_area_cachep, vma);
400 }
401 #endif
402
vm_area_free_no_check(struct vm_area_struct * vma)403 void vm_area_free_no_check(struct vm_area_struct *vma)
404 {
405 free_anon_vma_name(vma);
406 if (vma->vm_file)
407 fput(vma->vm_file);
408 free_vm_area_struct(vma);
409 }
410
vm_area_free(struct vm_area_struct * vma)411 void vm_area_free(struct vm_area_struct *vma)
412 {
413 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
414 /* Free only after refcount dropped to negative */
415 if (atomic_dec_return(&vma->file_ref_count) >= 0)
416 return;
417 #endif
418 vm_area_free_no_check(vma);
419 }
420
account_kernel_stack(struct task_struct * tsk,int account)421 static void account_kernel_stack(struct task_struct *tsk, int account)
422 {
423 void *stack = task_stack_page(tsk);
424 struct vm_struct *vm = task_stack_vm_area(tsk);
425
426 if (vm) {
427 int i;
428
429 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
430 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
431 account * (PAGE_SIZE / 1024));
432 } else {
433 /* All stack pages are in the same node. */
434 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
435 account * (THREAD_SIZE / 1024));
436 }
437 }
438
memcg_charge_kernel_stack(struct task_struct * tsk)439 static int memcg_charge_kernel_stack(struct task_struct *tsk)
440 {
441 #ifdef CONFIG_VMAP_STACK
442 struct vm_struct *vm = task_stack_vm_area(tsk);
443 int ret;
444
445 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
446
447 if (vm) {
448 int i;
449
450 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
451
452 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
453 /*
454 * If memcg_kmem_charge_page() fails, page's
455 * memory cgroup pointer is NULL, and
456 * memcg_kmem_uncharge_page() in free_thread_stack()
457 * will ignore this page.
458 */
459 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
460 0);
461 if (ret)
462 return ret;
463 }
464 }
465 #endif
466 return 0;
467 }
468
release_task_stack(struct task_struct * tsk)469 static void release_task_stack(struct task_struct *tsk)
470 {
471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
472 return; /* Better to leak the stack than to free prematurely */
473
474 account_kernel_stack(tsk, -1);
475 free_thread_stack(tsk);
476 tsk->stack = NULL;
477 #ifdef CONFIG_VMAP_STACK
478 tsk->stack_vm_area = NULL;
479 #endif
480 }
481
482 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)483 void put_task_stack(struct task_struct *tsk)
484 {
485 if (refcount_dec_and_test(&tsk->stack_refcount))
486 release_task_stack(tsk);
487 }
488 #endif
489
free_task(struct task_struct * tsk)490 void free_task(struct task_struct *tsk)
491 {
492 #ifdef CONFIG_SECCOMP
493 WARN_ON_ONCE(tsk->seccomp.filter);
494 #endif
495 cpufreq_task_times_exit(tsk);
496 release_user_cpus_ptr(tsk);
497 scs_release(tsk);
498
499 trace_android_vh_free_task(tsk);
500 #ifndef CONFIG_THREAD_INFO_IN_TASK
501 /*
502 * The task is finally done with both the stack and thread_info,
503 * so free both.
504 */
505 release_task_stack(tsk);
506 #else
507 /*
508 * If the task had a separate stack allocation, it should be gone
509 * by now.
510 */
511 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
512 #endif
513 rt_mutex_debug_task_free(tsk);
514 ftrace_graph_exit_task(tsk);
515 arch_release_task_struct(tsk);
516 if (tsk->flags & PF_KTHREAD)
517 free_kthread_struct(tsk);
518 bpf_task_storage_free(tsk);
519 free_task_struct(tsk);
520 }
521 EXPORT_SYMBOL(free_task);
522
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)523 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
524 {
525 struct file *exe_file;
526
527 exe_file = get_mm_exe_file(oldmm);
528 RCU_INIT_POINTER(mm->exe_file, exe_file);
529 /*
530 * We depend on the oldmm having properly denied write access to the
531 * exe_file already.
532 */
533 if (exe_file && deny_write_access(exe_file))
534 pr_warn_once("deny_write_access() failed in %s\n", __func__);
535 }
536
537 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)538 static __latent_entropy int dup_mmap(struct mm_struct *mm,
539 struct mm_struct *oldmm)
540 {
541 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
542 struct rb_node **rb_link, *rb_parent;
543 int retval;
544 unsigned long charge;
545 LIST_HEAD(uf);
546
547 uprobe_start_dup_mmap();
548 if (mmap_write_lock_killable(oldmm)) {
549 retval = -EINTR;
550 goto fail_uprobe_end;
551 }
552 flush_cache_dup_mm(oldmm);
553 uprobe_dup_mmap(oldmm, mm);
554 /*
555 * Not linked in yet - no deadlock potential:
556 */
557 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
558
559 /* No ordering required: file already has been exposed. */
560 dup_mm_exe_file(mm, oldmm);
561
562 mm->total_vm = oldmm->total_vm;
563 mm->data_vm = oldmm->data_vm;
564 mm->exec_vm = oldmm->exec_vm;
565 mm->stack_vm = oldmm->stack_vm;
566
567 rb_link = &mm->mm_rb.rb_node;
568 rb_parent = NULL;
569 pprev = &mm->mmap;
570 retval = ksm_fork(mm, oldmm);
571 if (retval)
572 goto out;
573 retval = khugepaged_fork(mm, oldmm);
574 if (retval)
575 goto out;
576
577 prev = NULL;
578 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
579 struct file *file;
580
581 if (mpnt->vm_flags & VM_DONTCOPY) {
582 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
583 continue;
584 }
585 charge = 0;
586 /*
587 * Don't duplicate many vmas if we've been oom-killed (for
588 * example)
589 */
590 if (fatal_signal_pending(current)) {
591 retval = -EINTR;
592 goto out;
593 }
594 if (mpnt->vm_flags & VM_ACCOUNT) {
595 unsigned long len = vma_pages(mpnt);
596
597 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
598 goto fail_nomem;
599 charge = len;
600 }
601 tmp = vm_area_dup(mpnt);
602 if (!tmp)
603 goto fail_nomem;
604 retval = vma_dup_policy(mpnt, tmp);
605 if (retval)
606 goto fail_nomem_policy;
607 tmp->vm_mm = mm;
608 retval = dup_userfaultfd(tmp, &uf);
609 if (retval)
610 goto fail_nomem_anon_vma_fork;
611 if (tmp->vm_flags & VM_WIPEONFORK) {
612 /*
613 * VM_WIPEONFORK gets a clean slate in the child.
614 * Don't prepare anon_vma until fault since we don't
615 * copy page for current vma.
616 */
617 tmp->anon_vma = NULL;
618 } else if (anon_vma_fork(tmp, mpnt))
619 goto fail_nomem_anon_vma_fork;
620 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
621 file = tmp->vm_file;
622 if (file) {
623 struct address_space *mapping = file->f_mapping;
624
625 get_file(file);
626 i_mmap_lock_write(mapping);
627 if (tmp->vm_flags & VM_SHARED)
628 mapping_allow_writable(mapping);
629 flush_dcache_mmap_lock(mapping);
630 /* insert tmp into the share list, just after mpnt */
631 vma_interval_tree_insert_after(tmp, mpnt,
632 &mapping->i_mmap);
633 flush_dcache_mmap_unlock(mapping);
634 i_mmap_unlock_write(mapping);
635 }
636
637 /*
638 * Clear hugetlb-related page reserves for children. This only
639 * affects MAP_PRIVATE mappings. Faults generated by the child
640 * are not guaranteed to succeed, even if read-only
641 */
642 if (is_vm_hugetlb_page(tmp))
643 reset_vma_resv_huge_pages(tmp);
644
645 /*
646 * Link in the new vma and copy the page table entries.
647 */
648 *pprev = tmp;
649 pprev = &tmp->vm_next;
650 tmp->vm_prev = prev;
651 prev = tmp;
652
653 __vma_link_rb(mm, tmp, rb_link, rb_parent);
654 rb_link = &tmp->vm_rb.rb_right;
655 rb_parent = &tmp->vm_rb;
656
657 mm->map_count++;
658 if (!(tmp->vm_flags & VM_WIPEONFORK))
659 retval = copy_page_range(tmp, mpnt);
660
661 if (tmp->vm_ops && tmp->vm_ops->open)
662 tmp->vm_ops->open(tmp);
663
664 if (retval)
665 goto out;
666 }
667 /* a new mm has just been created */
668 retval = arch_dup_mmap(oldmm, mm);
669 out:
670 mmap_write_unlock(mm);
671 flush_tlb_mm(oldmm);
672 mmap_write_unlock(oldmm);
673 dup_userfaultfd_complete(&uf);
674 fail_uprobe_end:
675 uprobe_end_dup_mmap();
676 return retval;
677 fail_nomem_anon_vma_fork:
678 mpol_put(vma_policy(tmp));
679 fail_nomem_policy:
680 tmp->vm_file = NULL; /* prevents fput within vm_area_free() */
681 vm_area_free(tmp);
682 fail_nomem:
683 retval = -ENOMEM;
684 vm_unacct_memory(charge);
685 goto out;
686 }
687
mm_alloc_pgd(struct mm_struct * mm)688 static inline int mm_alloc_pgd(struct mm_struct *mm)
689 {
690 mm->pgd = pgd_alloc(mm);
691 if (unlikely(!mm->pgd))
692 return -ENOMEM;
693 return 0;
694 }
695
mm_free_pgd(struct mm_struct * mm)696 static inline void mm_free_pgd(struct mm_struct *mm)
697 {
698 pgd_free(mm, mm->pgd);
699 }
700 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)701 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
702 {
703 mmap_write_lock(oldmm);
704 dup_mm_exe_file(mm, oldmm);
705 mmap_write_unlock(oldmm);
706 return 0;
707 }
708 #define mm_alloc_pgd(mm) (0)
709 #define mm_free_pgd(mm)
710 #endif /* CONFIG_MMU */
711
check_mm(struct mm_struct * mm)712 static void check_mm(struct mm_struct *mm)
713 {
714 int i;
715
716 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
717 "Please make sure 'struct resident_page_types[]' is updated as well");
718
719 for (i = 0; i < NR_MM_COUNTERS; i++) {
720 long x = atomic_long_read(&mm->rss_stat.count[i]);
721
722 if (unlikely(x))
723 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
724 mm, resident_page_types[i], x);
725 }
726
727 if (mm_pgtables_bytes(mm))
728 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
729 mm_pgtables_bytes(mm));
730
731 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
732 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
733 #endif
734 }
735
736 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
737 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
738
739 /*
740 * Called when the last reference to the mm
741 * is dropped: either by a lazy thread or by
742 * mmput. Free the page directory and the mm.
743 */
__mmdrop(struct mm_struct * mm)744 void __mmdrop(struct mm_struct *mm)
745 {
746 BUG_ON(mm == &init_mm);
747 WARN_ON_ONCE(mm == current->mm);
748 WARN_ON_ONCE(mm == current->active_mm);
749 mm_free_pgd(mm);
750 destroy_context(mm);
751 mmu_notifier_subscriptions_destroy(mm);
752 check_mm(mm);
753 put_user_ns(mm->user_ns);
754 free_mm(mm);
755 }
756 EXPORT_SYMBOL_GPL(__mmdrop);
757
mmdrop_async_fn(struct work_struct * work)758 static void mmdrop_async_fn(struct work_struct *work)
759 {
760 struct mm_struct *mm;
761
762 mm = container_of(work, struct mm_struct, async_put_work);
763 __mmdrop(mm);
764 }
765
mmdrop_async(struct mm_struct * mm)766 static void mmdrop_async(struct mm_struct *mm)
767 {
768 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
769 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
770 schedule_work(&mm->async_put_work);
771 }
772 }
773
free_signal_struct(struct signal_struct * sig)774 static inline void free_signal_struct(struct signal_struct *sig)
775 {
776 taskstats_tgid_free(sig);
777 sched_autogroup_exit(sig);
778 /*
779 * __mmdrop is not safe to call from softirq context on x86 due to
780 * pgd_dtor so postpone it to the async context
781 */
782 if (sig->oom_mm)
783 mmdrop_async(sig->oom_mm);
784 kmem_cache_free(signal_cachep, sig);
785 }
786
put_signal_struct(struct signal_struct * sig)787 static inline void put_signal_struct(struct signal_struct *sig)
788 {
789 if (refcount_dec_and_test(&sig->sigcnt))
790 free_signal_struct(sig);
791 }
792
__put_task_struct(struct task_struct * tsk)793 void __put_task_struct(struct task_struct *tsk)
794 {
795 WARN_ON(!tsk->exit_state);
796 WARN_ON(refcount_read(&tsk->usage));
797 WARN_ON(tsk == current);
798
799 io_uring_free(tsk);
800 cgroup_free(tsk);
801 task_numa_free(tsk, true);
802 security_task_free(tsk);
803 exit_creds(tsk);
804 delayacct_tsk_free(tsk);
805 put_signal_struct(tsk->signal);
806 sched_core_free(tsk);
807
808 if (!profile_handoff_task(tsk))
809 free_task(tsk);
810 }
811 EXPORT_SYMBOL_GPL(__put_task_struct);
812
__put_task_struct_rcu_cb(struct rcu_head * rhp)813 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
814 {
815 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
816
817 __put_task_struct(task);
818 }
819 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
820
arch_task_cache_init(void)821 void __init __weak arch_task_cache_init(void) { }
822
823 /*
824 * set_max_threads
825 */
set_max_threads(unsigned int max_threads_suggested)826 static void set_max_threads(unsigned int max_threads_suggested)
827 {
828 u64 threads;
829 unsigned long nr_pages = totalram_pages();
830
831 /*
832 * The number of threads shall be limited such that the thread
833 * structures may only consume a small part of the available memory.
834 */
835 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
836 threads = MAX_THREADS;
837 else
838 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
839 (u64) THREAD_SIZE * 8UL);
840
841 if (threads > max_threads_suggested)
842 threads = max_threads_suggested;
843
844 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
845 }
846
847 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
848 /* Initialized by the architecture: */
849 int arch_task_struct_size __read_mostly;
850 #endif
851
852 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)853 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
854 {
855 /* Fetch thread_struct whitelist for the architecture. */
856 arch_thread_struct_whitelist(offset, size);
857
858 /*
859 * Handle zero-sized whitelist or empty thread_struct, otherwise
860 * adjust offset to position of thread_struct in task_struct.
861 */
862 if (unlikely(*size == 0))
863 *offset = 0;
864 else
865 *offset += offsetof(struct task_struct, thread);
866 }
867 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
868
fork_init(void)869 void __init fork_init(void)
870 {
871 int i;
872 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
873 #ifndef ARCH_MIN_TASKALIGN
874 #define ARCH_MIN_TASKALIGN 0
875 #endif
876 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
877 unsigned long useroffset, usersize;
878
879 /* create a slab on which task_structs can be allocated */
880 task_struct_whitelist(&useroffset, &usersize);
881 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
882 arch_task_struct_size, align,
883 SLAB_PANIC|SLAB_ACCOUNT,
884 useroffset, usersize, NULL);
885 #endif
886
887 /* do the arch specific task caches init */
888 arch_task_cache_init();
889
890 set_max_threads(MAX_THREADS);
891
892 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
893 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
894 init_task.signal->rlim[RLIMIT_SIGPENDING] =
895 init_task.signal->rlim[RLIMIT_NPROC];
896
897 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
898 init_user_ns.ucount_max[i] = max_threads/2;
899
900 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
901 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
902 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
903 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
904
905 #ifdef CONFIG_VMAP_STACK
906 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
907 NULL, free_vm_stack_cache);
908 #endif
909
910 scs_init();
911
912 lockdep_init_task(&init_task);
913 uprobes_init();
914 }
915
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)916 int __weak arch_dup_task_struct(struct task_struct *dst,
917 struct task_struct *src)
918 {
919 *dst = *src;
920 return 0;
921 }
922
set_task_stack_end_magic(struct task_struct * tsk)923 void set_task_stack_end_magic(struct task_struct *tsk)
924 {
925 unsigned long *stackend;
926
927 stackend = end_of_stack(tsk);
928 *stackend = STACK_END_MAGIC; /* for overflow detection */
929 }
930
dup_task_struct(struct task_struct * orig,int node)931 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
932 {
933 struct task_struct *tsk;
934 unsigned long *stack;
935 struct vm_struct *stack_vm_area __maybe_unused;
936 int err;
937
938 if (node == NUMA_NO_NODE)
939 node = tsk_fork_get_node(orig);
940 tsk = alloc_task_struct_node(node);
941 if (!tsk)
942 return NULL;
943
944 stack = alloc_thread_stack_node(tsk, node);
945 if (!stack)
946 goto free_tsk;
947
948 if (memcg_charge_kernel_stack(tsk))
949 goto free_stack;
950
951 stack_vm_area = task_stack_vm_area(tsk);
952
953 err = arch_dup_task_struct(tsk, orig);
954
955 /*
956 * arch_dup_task_struct() clobbers the stack-related fields. Make
957 * sure they're properly initialized before using any stack-related
958 * functions again.
959 */
960 tsk->stack = stack;
961 #ifdef CONFIG_VMAP_STACK
962 tsk->stack_vm_area = stack_vm_area;
963 #endif
964 #ifdef CONFIG_THREAD_INFO_IN_TASK
965 refcount_set(&tsk->stack_refcount, 1);
966 #endif
967
968 if (err)
969 goto free_stack;
970
971 err = scs_prepare(tsk, node);
972 if (err)
973 goto free_stack;
974
975 #ifdef CONFIG_SECCOMP
976 /*
977 * We must handle setting up seccomp filters once we're under
978 * the sighand lock in case orig has changed between now and
979 * then. Until then, filter must be NULL to avoid messing up
980 * the usage counts on the error path calling free_task.
981 */
982 tsk->seccomp.filter = NULL;
983 #endif
984
985 setup_thread_stack(tsk, orig);
986 clear_user_return_notifier(tsk);
987 clear_tsk_need_resched(tsk);
988 set_task_stack_end_magic(tsk);
989 clear_syscall_work_syscall_user_dispatch(tsk);
990
991 #ifdef CONFIG_STACKPROTECTOR
992 tsk->stack_canary = get_random_canary();
993 #endif
994 if (orig->cpus_ptr == &orig->cpus_mask)
995 tsk->cpus_ptr = &tsk->cpus_mask;
996 dup_user_cpus_ptr(tsk, orig, node);
997
998 /*
999 * One for the user space visible state that goes away when reaped.
1000 * One for the scheduler.
1001 */
1002 refcount_set(&tsk->rcu_users, 2);
1003 /* One for the rcu users */
1004 refcount_set(&tsk->usage, 1);
1005 #ifdef CONFIG_BLK_DEV_IO_TRACE
1006 tsk->btrace_seq = 0;
1007 #endif
1008 tsk->splice_pipe = NULL;
1009 tsk->task_frag.page = NULL;
1010 tsk->wake_q.next = NULL;
1011 tsk->pf_io_worker = NULL;
1012
1013 account_kernel_stack(tsk, 1);
1014
1015 kcov_task_init(tsk);
1016 kmap_local_fork(tsk);
1017
1018 #ifdef CONFIG_FAULT_INJECTION
1019 tsk->fail_nth = 0;
1020 #endif
1021
1022 #ifdef CONFIG_BLK_CGROUP
1023 tsk->throttle_queue = NULL;
1024 tsk->use_memdelay = 0;
1025 #endif
1026
1027 #ifdef CONFIG_MEMCG
1028 tsk->active_memcg = NULL;
1029 #endif
1030 #ifdef CONFIG_ANDROID_VENDOR_OEM_DATA
1031 memset(&tsk->android_vendor_data1, 0, sizeof(tsk->android_vendor_data1));
1032 memset(&tsk->android_oem_data1, 0, sizeof(tsk->android_oem_data1));
1033 #endif
1034 trace_android_vh_dup_task_struct(tsk, orig);
1035 return tsk;
1036
1037 free_stack:
1038 free_thread_stack(tsk);
1039 free_tsk:
1040 free_task_struct(tsk);
1041 return NULL;
1042 }
1043
1044 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1045
1046 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1047
coredump_filter_setup(char * s)1048 static int __init coredump_filter_setup(char *s)
1049 {
1050 default_dump_filter =
1051 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1052 MMF_DUMP_FILTER_MASK;
1053 return 1;
1054 }
1055
1056 __setup("coredump_filter=", coredump_filter_setup);
1057
1058 #include <linux/init_task.h>
1059
mm_init_aio(struct mm_struct * mm)1060 static void mm_init_aio(struct mm_struct *mm)
1061 {
1062 #ifdef CONFIG_AIO
1063 spin_lock_init(&mm->ioctx_lock);
1064 mm->ioctx_table = NULL;
1065 #endif
1066 }
1067
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1068 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1069 struct task_struct *p)
1070 {
1071 #ifdef CONFIG_MEMCG
1072 if (mm->owner == p)
1073 WRITE_ONCE(mm->owner, NULL);
1074 #endif
1075 }
1076
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1077 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1078 {
1079 #ifdef CONFIG_MEMCG
1080 mm->owner = p;
1081 #endif
1082 }
1083
mm_init_pasid(struct mm_struct * mm)1084 static void mm_init_pasid(struct mm_struct *mm)
1085 {
1086 #ifdef CONFIG_IOMMU_SUPPORT
1087 mm->pasid = INIT_PASID;
1088 #endif
1089 }
1090
mm_init_uprobes_state(struct mm_struct * mm)1091 static void mm_init_uprobes_state(struct mm_struct *mm)
1092 {
1093 #ifdef CONFIG_UPROBES
1094 mm->uprobes_state.xol_area = NULL;
1095 #endif
1096 }
1097
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1098 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1099 struct user_namespace *user_ns)
1100 {
1101 mm->mmap = NULL;
1102 mm->mm_rb = RB_ROOT;
1103 mm->vmacache_seqnum = 0;
1104 atomic_set(&mm->mm_users, 1);
1105 atomic_set(&mm->mm_count, 1);
1106 seqcount_init(&mm->write_protect_seq);
1107 mmap_init_lock(mm);
1108 INIT_LIST_HEAD(&mm->mmlist);
1109 mm->core_state = NULL;
1110 mm_pgtables_bytes_init(mm);
1111 mm->map_count = 0;
1112 mm->locked_vm = 0;
1113 atomic64_set(&mm->pinned_vm, 0);
1114 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1115 spin_lock_init(&mm->page_table_lock);
1116 spin_lock_init(&mm->arg_lock);
1117 mm_init_cpumask(mm);
1118 mm_init_aio(mm);
1119 mm_init_owner(mm, p);
1120 mm_init_pasid(mm);
1121 RCU_INIT_POINTER(mm->exe_file, NULL);
1122 if (!mmu_notifier_subscriptions_init(mm))
1123 goto fail_nopgd;
1124 init_tlb_flush_pending(mm);
1125 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1126 mm->pmd_huge_pte = NULL;
1127 #endif
1128 mm_init_uprobes_state(mm);
1129 hugetlb_count_init(mm);
1130
1131 if (current->mm) {
1132 mm->flags = current->mm->flags & MMF_INIT_MASK;
1133 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1134 } else {
1135 mm->flags = default_dump_filter;
1136 mm->def_flags = 0;
1137 }
1138
1139 if (mm_alloc_pgd(mm))
1140 goto fail_nopgd;
1141
1142 if (init_new_context(p, mm))
1143 goto fail_nocontext;
1144
1145 mm->user_ns = get_user_ns(user_ns);
1146 lru_gen_init_mm(mm);
1147 return mm;
1148
1149 fail_nocontext:
1150 mm_free_pgd(mm);
1151 fail_nopgd:
1152 free_mm(mm);
1153 return NULL;
1154 }
1155
1156 /*
1157 * Allocate and initialize an mm_struct.
1158 */
mm_alloc(void)1159 struct mm_struct *mm_alloc(void)
1160 {
1161 struct mm_struct *mm;
1162
1163 mm = allocate_mm();
1164 if (!mm)
1165 return NULL;
1166
1167 memset(mm, 0, sizeof(*mm));
1168 return mm_init(mm, current, current_user_ns());
1169 }
1170
__mmput(struct mm_struct * mm)1171 static inline void __mmput(struct mm_struct *mm)
1172 {
1173 VM_BUG_ON(atomic_read(&mm->mm_users));
1174
1175 uprobe_clear_state(mm);
1176 exit_aio(mm);
1177 ksm_exit(mm);
1178 khugepaged_exit(mm); /* must run before exit_mmap */
1179 exit_mmap(mm);
1180 mm_put_huge_zero_page(mm);
1181 set_mm_exe_file(mm, NULL);
1182 if (!list_empty(&mm->mmlist)) {
1183 spin_lock(&mmlist_lock);
1184 list_del(&mm->mmlist);
1185 spin_unlock(&mmlist_lock);
1186 }
1187 if (mm->binfmt)
1188 module_put(mm->binfmt->module);
1189 lru_gen_del_mm(mm);
1190 mmdrop(mm);
1191 }
1192
1193 /*
1194 * Decrement the use count and release all resources for an mm.
1195 */
mmput(struct mm_struct * mm)1196 void mmput(struct mm_struct *mm)
1197 {
1198 might_sleep();
1199
1200 if (atomic_dec_and_test(&mm->mm_users))
1201 __mmput(mm);
1202 }
1203 EXPORT_SYMBOL_GPL(mmput);
1204
1205 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1206 static void mmput_async_fn(struct work_struct *work)
1207 {
1208 struct mm_struct *mm = container_of(work, struct mm_struct,
1209 async_put_work);
1210
1211 __mmput(mm);
1212 }
1213
mmput_async(struct mm_struct * mm)1214 void mmput_async(struct mm_struct *mm)
1215 {
1216 if (atomic_dec_and_test(&mm->mm_users)) {
1217 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1218 schedule_work(&mm->async_put_work);
1219 }
1220 }
1221 EXPORT_SYMBOL_GPL(mmput_async);
1222 #endif
1223
1224 /**
1225 * set_mm_exe_file - change a reference to the mm's executable file
1226 *
1227 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1228 *
1229 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1230 * invocations: in mmput() nobody alive left, in execve task is single
1231 * threaded.
1232 *
1233 * Can only fail if new_exe_file != NULL.
1234 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1235 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1236 {
1237 struct file *old_exe_file;
1238
1239 /*
1240 * It is safe to dereference the exe_file without RCU as
1241 * this function is only called if nobody else can access
1242 * this mm -- see comment above for justification.
1243 */
1244 old_exe_file = rcu_dereference_raw(mm->exe_file);
1245
1246 if (new_exe_file) {
1247 /*
1248 * We expect the caller (i.e., sys_execve) to already denied
1249 * write access, so this is unlikely to fail.
1250 */
1251 if (unlikely(deny_write_access(new_exe_file)))
1252 return -EACCES;
1253 get_file(new_exe_file);
1254 }
1255 rcu_assign_pointer(mm->exe_file, new_exe_file);
1256 if (old_exe_file) {
1257 allow_write_access(old_exe_file);
1258 fput(old_exe_file);
1259 }
1260 return 0;
1261 }
1262
1263 /**
1264 * replace_mm_exe_file - replace a reference to the mm's executable file
1265 *
1266 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1267 * dealing with concurrent invocation and without grabbing the mmap lock in
1268 * write mode.
1269 *
1270 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1271 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1272 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1273 {
1274 struct vm_area_struct *vma;
1275 struct file *old_exe_file;
1276 int ret = 0;
1277
1278 /* Forbid mm->exe_file change if old file still mapped. */
1279 old_exe_file = get_mm_exe_file(mm);
1280 if (old_exe_file) {
1281 mmap_read_lock(mm);
1282 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1283 if (!vma->vm_file)
1284 continue;
1285 if (path_equal(&vma->vm_file->f_path,
1286 &old_exe_file->f_path))
1287 ret = -EBUSY;
1288 }
1289 mmap_read_unlock(mm);
1290 fput(old_exe_file);
1291 if (ret)
1292 return ret;
1293 }
1294
1295 /* set the new file, lockless */
1296 ret = deny_write_access(new_exe_file);
1297 if (ret)
1298 return -EACCES;
1299 get_file(new_exe_file);
1300
1301 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1302 if (old_exe_file) {
1303 /*
1304 * Don't race with dup_mmap() getting the file and disallowing
1305 * write access while someone might open the file writable.
1306 */
1307 mmap_read_lock(mm);
1308 allow_write_access(old_exe_file);
1309 fput(old_exe_file);
1310 mmap_read_unlock(mm);
1311 }
1312 return 0;
1313 }
1314
1315 /**
1316 * get_mm_exe_file - acquire a reference to the mm's executable file
1317 *
1318 * Returns %NULL if mm has no associated executable file.
1319 * User must release file via fput().
1320 */
get_mm_exe_file(struct mm_struct * mm)1321 struct file *get_mm_exe_file(struct mm_struct *mm)
1322 {
1323 struct file *exe_file;
1324
1325 rcu_read_lock();
1326 exe_file = rcu_dereference(mm->exe_file);
1327 if (exe_file && !get_file_rcu(exe_file))
1328 exe_file = NULL;
1329 rcu_read_unlock();
1330 return exe_file;
1331 }
1332
1333 /**
1334 * get_task_exe_file - acquire a reference to the task's executable file
1335 *
1336 * Returns %NULL if task's mm (if any) has no associated executable file or
1337 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1338 * User must release file via fput().
1339 */
get_task_exe_file(struct task_struct * task)1340 struct file *get_task_exe_file(struct task_struct *task)
1341 {
1342 struct file *exe_file = NULL;
1343 struct mm_struct *mm;
1344
1345 task_lock(task);
1346 mm = task->mm;
1347 if (mm) {
1348 if (!(task->flags & PF_KTHREAD))
1349 exe_file = get_mm_exe_file(mm);
1350 }
1351 task_unlock(task);
1352 return exe_file;
1353 }
1354
1355 /**
1356 * get_task_mm - acquire a reference to the task's mm
1357 *
1358 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1359 * this kernel workthread has transiently adopted a user mm with use_mm,
1360 * to do its AIO) is not set and if so returns a reference to it, after
1361 * bumping up the use count. User must release the mm via mmput()
1362 * after use. Typically used by /proc and ptrace.
1363 */
get_task_mm(struct task_struct * task)1364 struct mm_struct *get_task_mm(struct task_struct *task)
1365 {
1366 struct mm_struct *mm;
1367
1368 task_lock(task);
1369 mm = task->mm;
1370 if (mm) {
1371 if (task->flags & PF_KTHREAD)
1372 mm = NULL;
1373 else
1374 mmget(mm);
1375 }
1376 task_unlock(task);
1377 return mm;
1378 }
1379 EXPORT_SYMBOL_GPL(get_task_mm);
1380
mm_access(struct task_struct * task,unsigned int mode)1381 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1382 {
1383 struct mm_struct *mm;
1384 int err;
1385
1386 err = down_read_killable(&task->signal->exec_update_lock);
1387 if (err)
1388 return ERR_PTR(err);
1389
1390 mm = get_task_mm(task);
1391 if (mm && mm != current->mm &&
1392 !ptrace_may_access(task, mode)) {
1393 mmput(mm);
1394 mm = ERR_PTR(-EACCES);
1395 }
1396 up_read(&task->signal->exec_update_lock);
1397
1398 return mm;
1399 }
1400
complete_vfork_done(struct task_struct * tsk)1401 static void complete_vfork_done(struct task_struct *tsk)
1402 {
1403 struct completion *vfork;
1404
1405 task_lock(tsk);
1406 vfork = tsk->vfork_done;
1407 if (likely(vfork)) {
1408 tsk->vfork_done = NULL;
1409 complete(vfork);
1410 }
1411 task_unlock(tsk);
1412 }
1413
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1414 static int wait_for_vfork_done(struct task_struct *child,
1415 struct completion *vfork)
1416 {
1417 int killed;
1418
1419 freezer_do_not_count();
1420 cgroup_enter_frozen();
1421 killed = wait_for_completion_killable(vfork);
1422 cgroup_leave_frozen(false);
1423 freezer_count();
1424
1425 if (killed) {
1426 task_lock(child);
1427 child->vfork_done = NULL;
1428 task_unlock(child);
1429 }
1430
1431 put_task_struct(child);
1432 return killed;
1433 }
1434
1435 /* Please note the differences between mmput and mm_release.
1436 * mmput is called whenever we stop holding onto a mm_struct,
1437 * error success whatever.
1438 *
1439 * mm_release is called after a mm_struct has been removed
1440 * from the current process.
1441 *
1442 * This difference is important for error handling, when we
1443 * only half set up a mm_struct for a new process and need to restore
1444 * the old one. Because we mmput the new mm_struct before
1445 * restoring the old one. . .
1446 * Eric Biederman 10 January 1998
1447 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1448 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1449 {
1450 uprobe_free_utask(tsk);
1451
1452 /* Get rid of any cached register state */
1453 deactivate_mm(tsk, mm);
1454
1455 /*
1456 * Signal userspace if we're not exiting with a core dump
1457 * because we want to leave the value intact for debugging
1458 * purposes.
1459 */
1460 if (tsk->clear_child_tid) {
1461 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1462 atomic_read(&mm->mm_users) > 1) {
1463 /*
1464 * We don't check the error code - if userspace has
1465 * not set up a proper pointer then tough luck.
1466 */
1467 put_user(0, tsk->clear_child_tid);
1468 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1469 1, NULL, NULL, 0, 0);
1470 }
1471 tsk->clear_child_tid = NULL;
1472 }
1473
1474 /*
1475 * All done, finally we can wake up parent and return this mm to him.
1476 * Also kthread_stop() uses this completion for synchronization.
1477 */
1478 if (tsk->vfork_done)
1479 complete_vfork_done(tsk);
1480 }
1481
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1482 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1483 {
1484 futex_exit_release(tsk);
1485 mm_release(tsk, mm);
1486 }
1487
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1488 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1489 {
1490 futex_exec_release(tsk);
1491 mm_release(tsk, mm);
1492 }
1493
1494 /**
1495 * dup_mm() - duplicates an existing mm structure
1496 * @tsk: the task_struct with which the new mm will be associated.
1497 * @oldmm: the mm to duplicate.
1498 *
1499 * Allocates a new mm structure and duplicates the provided @oldmm structure
1500 * content into it.
1501 *
1502 * Return: the duplicated mm or NULL on failure.
1503 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1504 static struct mm_struct *dup_mm(struct task_struct *tsk,
1505 struct mm_struct *oldmm)
1506 {
1507 struct mm_struct *mm;
1508 int err;
1509
1510 mm = allocate_mm();
1511 if (!mm)
1512 goto fail_nomem;
1513
1514 memcpy(mm, oldmm, sizeof(*mm));
1515
1516 if (!mm_init(mm, tsk, mm->user_ns))
1517 goto fail_nomem;
1518
1519 err = dup_mmap(mm, oldmm);
1520 if (err)
1521 goto free_pt;
1522
1523 mm->hiwater_rss = get_mm_rss(mm);
1524 mm->hiwater_vm = mm->total_vm;
1525
1526 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1527 goto free_pt;
1528
1529 return mm;
1530
1531 free_pt:
1532 /* don't put binfmt in mmput, we haven't got module yet */
1533 mm->binfmt = NULL;
1534 mm_init_owner(mm, NULL);
1535 mmput(mm);
1536
1537 fail_nomem:
1538 return NULL;
1539 }
1540
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1541 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1542 {
1543 struct mm_struct *mm, *oldmm;
1544
1545 tsk->min_flt = tsk->maj_flt = 0;
1546 tsk->nvcsw = tsk->nivcsw = 0;
1547 #ifdef CONFIG_DETECT_HUNG_TASK
1548 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1549 tsk->last_switch_time = 0;
1550 #endif
1551
1552 tsk->mm = NULL;
1553 tsk->active_mm = NULL;
1554
1555 /*
1556 * Are we cloning a kernel thread?
1557 *
1558 * We need to steal a active VM for that..
1559 */
1560 oldmm = current->mm;
1561 if (!oldmm)
1562 return 0;
1563
1564 /* initialize the new vmacache entries */
1565 vmacache_flush(tsk);
1566
1567 if (clone_flags & CLONE_VM) {
1568 mmget(oldmm);
1569 mm = oldmm;
1570 } else {
1571 mm = dup_mm(tsk, current->mm);
1572 if (!mm)
1573 return -ENOMEM;
1574 }
1575
1576 tsk->mm = mm;
1577 tsk->active_mm = mm;
1578 return 0;
1579 }
1580
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1581 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1582 {
1583 struct fs_struct *fs = current->fs;
1584 if (clone_flags & CLONE_FS) {
1585 /* tsk->fs is already what we want */
1586 spin_lock(&fs->lock);
1587 if (fs->in_exec) {
1588 spin_unlock(&fs->lock);
1589 return -EAGAIN;
1590 }
1591 fs->users++;
1592 spin_unlock(&fs->lock);
1593 return 0;
1594 }
1595 tsk->fs = copy_fs_struct(fs);
1596 if (!tsk->fs)
1597 return -ENOMEM;
1598 return 0;
1599 }
1600
copy_files(unsigned long clone_flags,struct task_struct * tsk)1601 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1602 {
1603 struct files_struct *oldf, *newf;
1604 int error = 0;
1605
1606 /*
1607 * A background process may not have any files ...
1608 */
1609 oldf = current->files;
1610 if (!oldf)
1611 goto out;
1612
1613 if (clone_flags & CLONE_FILES) {
1614 atomic_inc(&oldf->count);
1615 goto out;
1616 }
1617
1618 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1619 if (!newf)
1620 goto out;
1621
1622 tsk->files = newf;
1623 error = 0;
1624 out:
1625 return error;
1626 }
1627
copy_io(unsigned long clone_flags,struct task_struct * tsk)1628 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1629 {
1630 #ifdef CONFIG_BLOCK
1631 struct io_context *ioc = current->io_context;
1632 struct io_context *new_ioc;
1633
1634 if (!ioc)
1635 return 0;
1636 /*
1637 * Share io context with parent, if CLONE_IO is set
1638 */
1639 if (clone_flags & CLONE_IO) {
1640 ioc_task_link(ioc);
1641 tsk->io_context = ioc;
1642 } else if (ioprio_valid(ioc->ioprio)) {
1643 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1644 if (unlikely(!new_ioc))
1645 return -ENOMEM;
1646
1647 new_ioc->ioprio = ioc->ioprio;
1648 put_io_context(new_ioc);
1649 }
1650 #endif
1651 return 0;
1652 }
1653
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1654 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1655 {
1656 struct sighand_struct *sig;
1657
1658 if (clone_flags & CLONE_SIGHAND) {
1659 refcount_inc(¤t->sighand->count);
1660 return 0;
1661 }
1662 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1663 RCU_INIT_POINTER(tsk->sighand, sig);
1664 if (!sig)
1665 return -ENOMEM;
1666
1667 refcount_set(&sig->count, 1);
1668 spin_lock_irq(¤t->sighand->siglock);
1669 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1670 spin_unlock_irq(¤t->sighand->siglock);
1671
1672 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1673 if (clone_flags & CLONE_CLEAR_SIGHAND)
1674 flush_signal_handlers(tsk, 0);
1675
1676 return 0;
1677 }
1678
__cleanup_sighand(struct sighand_struct * sighand)1679 void __cleanup_sighand(struct sighand_struct *sighand)
1680 {
1681 if (refcount_dec_and_test(&sighand->count)) {
1682 signalfd_cleanup(sighand);
1683 /*
1684 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1685 * without an RCU grace period, see __lock_task_sighand().
1686 */
1687 kmem_cache_free(sighand_cachep, sighand);
1688 }
1689 }
1690
1691 /*
1692 * Initialize POSIX timer handling for a thread group.
1693 */
posix_cpu_timers_init_group(struct signal_struct * sig)1694 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1695 {
1696 struct posix_cputimers *pct = &sig->posix_cputimers;
1697 unsigned long cpu_limit;
1698
1699 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1700 posix_cputimers_group_init(pct, cpu_limit);
1701 }
1702
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1703 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1704 {
1705 struct signal_struct *sig;
1706
1707 if (clone_flags & CLONE_THREAD)
1708 return 0;
1709
1710 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1711 tsk->signal = sig;
1712 if (!sig)
1713 return -ENOMEM;
1714
1715 sig->nr_threads = 1;
1716 atomic_set(&sig->live, 1);
1717 refcount_set(&sig->sigcnt, 1);
1718
1719 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1720 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1721 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1722
1723 init_waitqueue_head(&sig->wait_chldexit);
1724 sig->curr_target = tsk;
1725 init_sigpending(&sig->shared_pending);
1726 INIT_HLIST_HEAD(&sig->multiprocess);
1727 seqlock_init(&sig->stats_lock);
1728 prev_cputime_init(&sig->prev_cputime);
1729
1730 #ifdef CONFIG_POSIX_TIMERS
1731 INIT_LIST_HEAD(&sig->posix_timers);
1732 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1733 sig->real_timer.function = it_real_fn;
1734 #endif
1735
1736 task_lock(current->group_leader);
1737 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1738 task_unlock(current->group_leader);
1739
1740 posix_cpu_timers_init_group(sig);
1741
1742 tty_audit_fork(sig);
1743 sched_autogroup_fork(sig);
1744
1745 sig->oom_score_adj = current->signal->oom_score_adj;
1746 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1747
1748 mutex_init(&sig->cred_guard_mutex);
1749 init_rwsem(&sig->exec_update_lock);
1750
1751 return 0;
1752 }
1753
copy_seccomp(struct task_struct * p)1754 static void copy_seccomp(struct task_struct *p)
1755 {
1756 #ifdef CONFIG_SECCOMP
1757 /*
1758 * Must be called with sighand->lock held, which is common to
1759 * all threads in the group. Holding cred_guard_mutex is not
1760 * needed because this new task is not yet running and cannot
1761 * be racing exec.
1762 */
1763 assert_spin_locked(¤t->sighand->siglock);
1764
1765 /* Ref-count the new filter user, and assign it. */
1766 get_seccomp_filter(current);
1767 p->seccomp = current->seccomp;
1768
1769 /*
1770 * Explicitly enable no_new_privs here in case it got set
1771 * between the task_struct being duplicated and holding the
1772 * sighand lock. The seccomp state and nnp must be in sync.
1773 */
1774 if (task_no_new_privs(current))
1775 task_set_no_new_privs(p);
1776
1777 /*
1778 * If the parent gained a seccomp mode after copying thread
1779 * flags and between before we held the sighand lock, we have
1780 * to manually enable the seccomp thread flag here.
1781 */
1782 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1783 set_task_syscall_work(p, SECCOMP);
1784 #endif
1785 }
1786
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1787 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1788 {
1789 current->clear_child_tid = tidptr;
1790
1791 return task_pid_vnr(current);
1792 }
1793
rt_mutex_init_task(struct task_struct * p)1794 static void rt_mutex_init_task(struct task_struct *p)
1795 {
1796 raw_spin_lock_init(&p->pi_lock);
1797 #ifdef CONFIG_RT_MUTEXES
1798 p->pi_waiters = RB_ROOT_CACHED;
1799 p->pi_top_task = NULL;
1800 p->pi_blocked_on = NULL;
1801 #endif
1802 }
1803
init_task_pid_links(struct task_struct * task)1804 static inline void init_task_pid_links(struct task_struct *task)
1805 {
1806 enum pid_type type;
1807
1808 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1809 INIT_HLIST_NODE(&task->pid_links[type]);
1810 }
1811
1812 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1813 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1814 {
1815 if (type == PIDTYPE_PID)
1816 task->thread_pid = pid;
1817 else
1818 task->signal->pids[type] = pid;
1819 }
1820
rcu_copy_process(struct task_struct * p)1821 static inline void rcu_copy_process(struct task_struct *p)
1822 {
1823 #ifdef CONFIG_PREEMPT_RCU
1824 p->rcu_read_lock_nesting = 0;
1825 p->rcu_read_unlock_special.s = 0;
1826 p->rcu_blocked_node = NULL;
1827 INIT_LIST_HEAD(&p->rcu_node_entry);
1828 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1829 #ifdef CONFIG_TASKS_RCU
1830 p->rcu_tasks_holdout = false;
1831 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1832 p->rcu_tasks_idle_cpu = -1;
1833 #endif /* #ifdef CONFIG_TASKS_RCU */
1834 #ifdef CONFIG_TASKS_TRACE_RCU
1835 p->trc_reader_nesting = 0;
1836 p->trc_reader_special.s = 0;
1837 INIT_LIST_HEAD(&p->trc_holdout_list);
1838 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1839 }
1840
pidfd_pid(const struct file * file)1841 struct pid *pidfd_pid(const struct file *file)
1842 {
1843 if (file->f_op == &pidfd_fops)
1844 return file->private_data;
1845
1846 return ERR_PTR(-EBADF);
1847 }
1848
pidfd_release(struct inode * inode,struct file * file)1849 static int pidfd_release(struct inode *inode, struct file *file)
1850 {
1851 struct pid *pid = file->private_data;
1852
1853 file->private_data = NULL;
1854 put_pid(pid);
1855 return 0;
1856 }
1857
1858 #ifdef CONFIG_PROC_FS
1859 /**
1860 * pidfd_show_fdinfo - print information about a pidfd
1861 * @m: proc fdinfo file
1862 * @f: file referencing a pidfd
1863 *
1864 * Pid:
1865 * This function will print the pid that a given pidfd refers to in the
1866 * pid namespace of the procfs instance.
1867 * If the pid namespace of the process is not a descendant of the pid
1868 * namespace of the procfs instance 0 will be shown as its pid. This is
1869 * similar to calling getppid() on a process whose parent is outside of
1870 * its pid namespace.
1871 *
1872 * NSpid:
1873 * If pid namespaces are supported then this function will also print
1874 * the pid of a given pidfd refers to for all descendant pid namespaces
1875 * starting from the current pid namespace of the instance, i.e. the
1876 * Pid field and the first entry in the NSpid field will be identical.
1877 * If the pid namespace of the process is not a descendant of the pid
1878 * namespace of the procfs instance 0 will be shown as its first NSpid
1879 * entry and no others will be shown.
1880 * Note that this differs from the Pid and NSpid fields in
1881 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1882 * the pid namespace of the procfs instance. The difference becomes
1883 * obvious when sending around a pidfd between pid namespaces from a
1884 * different branch of the tree, i.e. where no ancestral relation is
1885 * present between the pid namespaces:
1886 * - create two new pid namespaces ns1 and ns2 in the initial pid
1887 * namespace (also take care to create new mount namespaces in the
1888 * new pid namespace and mount procfs)
1889 * - create a process with a pidfd in ns1
1890 * - send pidfd from ns1 to ns2
1891 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1892 * have exactly one entry, which is 0
1893 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1894 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1895 {
1896 struct pid *pid = f->private_data;
1897 struct pid_namespace *ns;
1898 pid_t nr = -1;
1899
1900 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1901 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1902 nr = pid_nr_ns(pid, ns);
1903 }
1904
1905 seq_put_decimal_ll(m, "Pid:\t", nr);
1906
1907 #ifdef CONFIG_PID_NS
1908 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1909 if (nr > 0) {
1910 int i;
1911
1912 /* If nr is non-zero it means that 'pid' is valid and that
1913 * ns, i.e. the pid namespace associated with the procfs
1914 * instance, is in the pid namespace hierarchy of pid.
1915 * Start at one below the already printed level.
1916 */
1917 for (i = ns->level + 1; i <= pid->level; i++)
1918 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1919 }
1920 #endif
1921 seq_putc(m, '\n');
1922 }
1923 #endif
1924
1925 /*
1926 * Poll support for process exit notification.
1927 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1928 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1929 {
1930 struct pid *pid = file->private_data;
1931 __poll_t poll_flags = 0;
1932
1933 poll_wait(file, &pid->wait_pidfd, pts);
1934
1935 /*
1936 * Inform pollers only when the whole thread group exits.
1937 * If the thread group leader exits before all other threads in the
1938 * group, then poll(2) should block, similar to the wait(2) family.
1939 */
1940 if (thread_group_exited(pid))
1941 poll_flags = EPOLLIN | EPOLLRDNORM;
1942
1943 return poll_flags;
1944 }
1945
1946 const struct file_operations pidfd_fops = {
1947 .release = pidfd_release,
1948 .poll = pidfd_poll,
1949 #ifdef CONFIG_PROC_FS
1950 .show_fdinfo = pidfd_show_fdinfo,
1951 #endif
1952 };
1953
__delayed_free_task(struct rcu_head * rhp)1954 static void __delayed_free_task(struct rcu_head *rhp)
1955 {
1956 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1957
1958 free_task(tsk);
1959 }
1960
delayed_free_task(struct task_struct * tsk)1961 static __always_inline void delayed_free_task(struct task_struct *tsk)
1962 {
1963 if (IS_ENABLED(CONFIG_MEMCG))
1964 call_rcu(&tsk->rcu, __delayed_free_task);
1965 else
1966 free_task(tsk);
1967 }
1968
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1969 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1970 {
1971 /* Skip if kernel thread */
1972 if (!tsk->mm)
1973 return;
1974
1975 /* Skip if spawning a thread or using vfork */
1976 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1977 return;
1978
1979 /* We need to synchronize with __set_oom_adj */
1980 mutex_lock(&oom_adj_mutex);
1981 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1982 /* Update the values in case they were changed after copy_signal */
1983 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1984 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1985 mutex_unlock(&oom_adj_mutex);
1986 }
1987
1988 /*
1989 * This creates a new process as a copy of the old one,
1990 * but does not actually start it yet.
1991 *
1992 * It copies the registers, and all the appropriate
1993 * parts of the process environment (as per the clone
1994 * flags). The actual kick-off is left to the caller.
1995 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1996 static __latent_entropy struct task_struct *copy_process(
1997 struct pid *pid,
1998 int trace,
1999 int node,
2000 struct kernel_clone_args *args)
2001 {
2002 int pidfd = -1, retval;
2003 struct task_struct *p;
2004 struct multiprocess_signals delayed;
2005 struct file *pidfile = NULL;
2006 u64 clone_flags = args->flags;
2007 struct nsproxy *nsp = current->nsproxy;
2008
2009 /*
2010 * Don't allow sharing the root directory with processes in a different
2011 * namespace
2012 */
2013 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2014 return ERR_PTR(-EINVAL);
2015
2016 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2017 return ERR_PTR(-EINVAL);
2018
2019 /*
2020 * Thread groups must share signals as well, and detached threads
2021 * can only be started up within the thread group.
2022 */
2023 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2024 return ERR_PTR(-EINVAL);
2025
2026 /*
2027 * Shared signal handlers imply shared VM. By way of the above,
2028 * thread groups also imply shared VM. Blocking this case allows
2029 * for various simplifications in other code.
2030 */
2031 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2032 return ERR_PTR(-EINVAL);
2033
2034 /*
2035 * Siblings of global init remain as zombies on exit since they are
2036 * not reaped by their parent (swapper). To solve this and to avoid
2037 * multi-rooted process trees, prevent global and container-inits
2038 * from creating siblings.
2039 */
2040 if ((clone_flags & CLONE_PARENT) &&
2041 current->signal->flags & SIGNAL_UNKILLABLE)
2042 return ERR_PTR(-EINVAL);
2043
2044 /*
2045 * If the new process will be in a different pid or user namespace
2046 * do not allow it to share a thread group with the forking task.
2047 */
2048 if (clone_flags & CLONE_THREAD) {
2049 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2050 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2051 return ERR_PTR(-EINVAL);
2052 }
2053
2054 /*
2055 * If the new process will be in a different time namespace
2056 * do not allow it to share VM or a thread group with the forking task.
2057 */
2058 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2059 if (nsp->time_ns != nsp->time_ns_for_children)
2060 return ERR_PTR(-EINVAL);
2061 }
2062
2063 if (clone_flags & CLONE_PIDFD) {
2064 /*
2065 * - CLONE_DETACHED is blocked so that we can potentially
2066 * reuse it later for CLONE_PIDFD.
2067 * - CLONE_THREAD is blocked until someone really needs it.
2068 */
2069 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2070 return ERR_PTR(-EINVAL);
2071 }
2072
2073 /*
2074 * Force any signals received before this point to be delivered
2075 * before the fork happens. Collect up signals sent to multiple
2076 * processes that happen during the fork and delay them so that
2077 * they appear to happen after the fork.
2078 */
2079 sigemptyset(&delayed.signal);
2080 INIT_HLIST_NODE(&delayed.node);
2081
2082 spin_lock_irq(¤t->sighand->siglock);
2083 if (!(clone_flags & CLONE_THREAD))
2084 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2085 recalc_sigpending();
2086 spin_unlock_irq(¤t->sighand->siglock);
2087 retval = -ERESTARTNOINTR;
2088 if (task_sigpending(current))
2089 goto fork_out;
2090
2091 retval = -ENOMEM;
2092 p = dup_task_struct(current, node);
2093 if (!p)
2094 goto fork_out;
2095 if (args->io_thread) {
2096 /*
2097 * Mark us an IO worker, and block any signal that isn't
2098 * fatal or STOP
2099 */
2100 p->flags |= PF_IO_WORKER;
2101 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2102 }
2103
2104 cpufreq_task_times_init(p);
2105
2106 /*
2107 * This _must_ happen before we call free_task(), i.e. before we jump
2108 * to any of the bad_fork_* labels. This is to avoid freeing
2109 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2110 * kernel threads (PF_KTHREAD).
2111 */
2112 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2113 /*
2114 * Clear TID on mm_release()?
2115 */
2116 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2117
2118 ftrace_graph_init_task(p);
2119
2120 rt_mutex_init_task(p);
2121
2122 lockdep_assert_irqs_enabled();
2123 #ifdef CONFIG_PROVE_LOCKING
2124 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2125 #endif
2126 retval = copy_creds(p, clone_flags);
2127 if (retval < 0)
2128 goto bad_fork_free;
2129
2130 retval = -EAGAIN;
2131 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2132 if (p->real_cred->user != INIT_USER &&
2133 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2134 goto bad_fork_cleanup_count;
2135 }
2136 current->flags &= ~PF_NPROC_EXCEEDED;
2137
2138 /*
2139 * If multiple threads are within copy_process(), then this check
2140 * triggers too late. This doesn't hurt, the check is only there
2141 * to stop root fork bombs.
2142 */
2143 retval = -EAGAIN;
2144 if (data_race(nr_threads >= max_threads))
2145 goto bad_fork_cleanup_count;
2146
2147 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2148 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2149 p->flags |= PF_FORKNOEXEC;
2150 INIT_LIST_HEAD(&p->children);
2151 INIT_LIST_HEAD(&p->sibling);
2152 rcu_copy_process(p);
2153 p->vfork_done = NULL;
2154 spin_lock_init(&p->alloc_lock);
2155
2156 init_sigpending(&p->pending);
2157
2158 p->utime = p->stime = p->gtime = 0;
2159 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2160 p->utimescaled = p->stimescaled = 0;
2161 #endif
2162 prev_cputime_init(&p->prev_cputime);
2163
2164 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2165 seqcount_init(&p->vtime.seqcount);
2166 p->vtime.starttime = 0;
2167 p->vtime.state = VTIME_INACTIVE;
2168 #endif
2169
2170 #ifdef CONFIG_IO_URING
2171 p->io_uring = NULL;
2172 #endif
2173
2174 #if defined(SPLIT_RSS_COUNTING)
2175 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2176 #endif
2177
2178 p->default_timer_slack_ns = current->timer_slack_ns;
2179
2180 #ifdef CONFIG_PSI
2181 p->psi_flags = 0;
2182 #endif
2183
2184 task_io_accounting_init(&p->ioac);
2185 acct_clear_integrals(p);
2186
2187 posix_cputimers_init(&p->posix_cputimers);
2188
2189 p->io_context = NULL;
2190 audit_set_context(p, NULL);
2191 cgroup_fork(p);
2192 #ifdef CONFIG_NUMA
2193 p->mempolicy = mpol_dup(p->mempolicy);
2194 if (IS_ERR(p->mempolicy)) {
2195 retval = PTR_ERR(p->mempolicy);
2196 p->mempolicy = NULL;
2197 goto bad_fork_cleanup_threadgroup_lock;
2198 }
2199 #endif
2200 #ifdef CONFIG_CPUSETS
2201 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2202 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2203 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2204 #endif
2205 #ifdef CONFIG_TRACE_IRQFLAGS
2206 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2207 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2208 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2209 p->softirqs_enabled = 1;
2210 p->softirq_context = 0;
2211 #endif
2212
2213 p->pagefault_disabled = 0;
2214
2215 #ifdef CONFIG_LOCKDEP
2216 lockdep_init_task(p);
2217 #endif
2218
2219 #ifdef CONFIG_DEBUG_MUTEXES
2220 p->blocked_on = NULL; /* not blocked yet */
2221 #endif
2222 #ifdef CONFIG_BCACHE
2223 p->sequential_io = 0;
2224 p->sequential_io_avg = 0;
2225 #endif
2226 #ifdef CONFIG_BPF_SYSCALL
2227 RCU_INIT_POINTER(p->bpf_storage, NULL);
2228 p->bpf_ctx = NULL;
2229 #endif
2230
2231 /* Perform scheduler related setup. Assign this task to a CPU. */
2232 retval = sched_fork(clone_flags, p);
2233 if (retval)
2234 goto bad_fork_cleanup_policy;
2235
2236 retval = perf_event_init_task(p, clone_flags);
2237 if (retval)
2238 goto bad_fork_cleanup_policy;
2239 retval = audit_alloc(p);
2240 if (retval)
2241 goto bad_fork_cleanup_perf;
2242 /* copy all the process information */
2243 shm_init_task(p);
2244 retval = security_task_alloc(p, clone_flags);
2245 if (retval)
2246 goto bad_fork_cleanup_audit;
2247 retval = copy_semundo(clone_flags, p);
2248 if (retval)
2249 goto bad_fork_cleanup_security;
2250 retval = copy_files(clone_flags, p);
2251 if (retval)
2252 goto bad_fork_cleanup_semundo;
2253 retval = copy_fs(clone_flags, p);
2254 if (retval)
2255 goto bad_fork_cleanup_files;
2256 retval = copy_sighand(clone_flags, p);
2257 if (retval)
2258 goto bad_fork_cleanup_fs;
2259 retval = copy_signal(clone_flags, p);
2260 if (retval)
2261 goto bad_fork_cleanup_sighand;
2262 retval = copy_mm(clone_flags, p);
2263 if (retval)
2264 goto bad_fork_cleanup_signal;
2265 retval = copy_namespaces(clone_flags, p);
2266 if (retval)
2267 goto bad_fork_cleanup_mm;
2268 retval = copy_io(clone_flags, p);
2269 if (retval)
2270 goto bad_fork_cleanup_namespaces;
2271 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2272 if (retval)
2273 goto bad_fork_cleanup_io;
2274
2275 stackleak_task_init(p);
2276
2277 if (pid != &init_struct_pid) {
2278 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2279 args->set_tid_size);
2280 if (IS_ERR(pid)) {
2281 retval = PTR_ERR(pid);
2282 goto bad_fork_cleanup_thread;
2283 }
2284 }
2285
2286 /*
2287 * This has to happen after we've potentially unshared the file
2288 * descriptor table (so that the pidfd doesn't leak into the child
2289 * if the fd table isn't shared).
2290 */
2291 if (clone_flags & CLONE_PIDFD) {
2292 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2293 if (retval < 0)
2294 goto bad_fork_free_pid;
2295
2296 pidfd = retval;
2297
2298 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2299 O_RDWR | O_CLOEXEC);
2300 if (IS_ERR(pidfile)) {
2301 put_unused_fd(pidfd);
2302 retval = PTR_ERR(pidfile);
2303 goto bad_fork_free_pid;
2304 }
2305 get_pid(pid); /* held by pidfile now */
2306
2307 retval = put_user(pidfd, args->pidfd);
2308 if (retval)
2309 goto bad_fork_put_pidfd;
2310 }
2311
2312 #ifdef CONFIG_BLOCK
2313 p->plug = NULL;
2314 #endif
2315 futex_init_task(p);
2316
2317 /*
2318 * sigaltstack should be cleared when sharing the same VM
2319 */
2320 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2321 sas_ss_reset(p);
2322
2323 /*
2324 * Syscall tracing and stepping should be turned off in the
2325 * child regardless of CLONE_PTRACE.
2326 */
2327 user_disable_single_step(p);
2328 clear_task_syscall_work(p, SYSCALL_TRACE);
2329 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2330 clear_task_syscall_work(p, SYSCALL_EMU);
2331 #endif
2332 clear_tsk_latency_tracing(p);
2333
2334 /* ok, now we should be set up.. */
2335 p->pid = pid_nr(pid);
2336 if (clone_flags & CLONE_THREAD) {
2337 p->group_leader = current->group_leader;
2338 p->tgid = current->tgid;
2339 } else {
2340 p->group_leader = p;
2341 p->tgid = p->pid;
2342 }
2343
2344 p->nr_dirtied = 0;
2345 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2346 p->dirty_paused_when = 0;
2347
2348 p->pdeath_signal = 0;
2349 INIT_LIST_HEAD(&p->thread_group);
2350 p->task_works = NULL;
2351 clear_posix_cputimers_work(p);
2352
2353 #ifdef CONFIG_KRETPROBES
2354 p->kretprobe_instances.first = NULL;
2355 #endif
2356
2357 /*
2358 * Ensure that the cgroup subsystem policies allow the new process to be
2359 * forked. It should be noted that the new process's css_set can be changed
2360 * between here and cgroup_post_fork() if an organisation operation is in
2361 * progress.
2362 */
2363 retval = cgroup_can_fork(p, args);
2364 if (retval)
2365 goto bad_fork_put_pidfd;
2366
2367 /*
2368 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2369 * the new task on the correct runqueue. All this *before* the task
2370 * becomes visible.
2371 *
2372 * This isn't part of ->can_fork() because while the re-cloning is
2373 * cgroup specific, it unconditionally needs to place the task on a
2374 * runqueue.
2375 */
2376 sched_cgroup_fork(p, args);
2377
2378 /*
2379 * From this point on we must avoid any synchronous user-space
2380 * communication until we take the tasklist-lock. In particular, we do
2381 * not want user-space to be able to predict the process start-time by
2382 * stalling fork(2) after we recorded the start_time but before it is
2383 * visible to the system.
2384 */
2385
2386 p->start_time = ktime_get_ns();
2387 p->start_boottime = ktime_get_boottime_ns();
2388
2389 /*
2390 * Make it visible to the rest of the system, but dont wake it up yet.
2391 * Need tasklist lock for parent etc handling!
2392 */
2393 write_lock_irq(&tasklist_lock);
2394
2395 /* CLONE_PARENT re-uses the old parent */
2396 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2397 p->real_parent = current->real_parent;
2398 p->parent_exec_id = current->parent_exec_id;
2399 if (clone_flags & CLONE_THREAD)
2400 p->exit_signal = -1;
2401 else
2402 p->exit_signal = current->group_leader->exit_signal;
2403 } else {
2404 p->real_parent = current;
2405 p->parent_exec_id = current->self_exec_id;
2406 p->exit_signal = args->exit_signal;
2407 }
2408
2409 klp_copy_process(p);
2410
2411 sched_core_fork(p);
2412
2413 spin_lock(¤t->sighand->siglock);
2414
2415 rseq_fork(p, clone_flags);
2416
2417 /* Don't start children in a dying pid namespace */
2418 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2419 retval = -ENOMEM;
2420 goto bad_fork_cancel_cgroup;
2421 }
2422
2423 /* Let kill terminate clone/fork in the middle */
2424 if (fatal_signal_pending(current)) {
2425 retval = -EINTR;
2426 goto bad_fork_cancel_cgroup;
2427 }
2428
2429 /* No more failure paths after this point. */
2430
2431 /*
2432 * Copy seccomp details explicitly here, in case they were changed
2433 * before holding sighand lock.
2434 */
2435 copy_seccomp(p);
2436
2437 init_task_pid_links(p);
2438 if (likely(p->pid)) {
2439 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2440
2441 init_task_pid(p, PIDTYPE_PID, pid);
2442 if (thread_group_leader(p)) {
2443 init_task_pid(p, PIDTYPE_TGID, pid);
2444 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2445 init_task_pid(p, PIDTYPE_SID, task_session(current));
2446
2447 if (is_child_reaper(pid)) {
2448 ns_of_pid(pid)->child_reaper = p;
2449 p->signal->flags |= SIGNAL_UNKILLABLE;
2450 }
2451 p->signal->shared_pending.signal = delayed.signal;
2452 p->signal->tty = tty_kref_get(current->signal->tty);
2453 /*
2454 * Inherit has_child_subreaper flag under the same
2455 * tasklist_lock with adding child to the process tree
2456 * for propagate_has_child_subreaper optimization.
2457 */
2458 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2459 p->real_parent->signal->is_child_subreaper;
2460 list_add_tail(&p->sibling, &p->real_parent->children);
2461 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2462 attach_pid(p, PIDTYPE_TGID);
2463 attach_pid(p, PIDTYPE_PGID);
2464 attach_pid(p, PIDTYPE_SID);
2465 __this_cpu_inc(process_counts);
2466 } else {
2467 current->signal->nr_threads++;
2468 atomic_inc(¤t->signal->live);
2469 refcount_inc(¤t->signal->sigcnt);
2470 task_join_group_stop(p);
2471 list_add_tail_rcu(&p->thread_group,
2472 &p->group_leader->thread_group);
2473 list_add_tail_rcu(&p->thread_node,
2474 &p->signal->thread_head);
2475 }
2476 attach_pid(p, PIDTYPE_PID);
2477 nr_threads++;
2478 }
2479 total_forks++;
2480 hlist_del_init(&delayed.node);
2481 spin_unlock(¤t->sighand->siglock);
2482 syscall_tracepoint_update(p);
2483 write_unlock_irq(&tasklist_lock);
2484
2485 if (pidfile)
2486 fd_install(pidfd, pidfile);
2487
2488 proc_fork_connector(p);
2489 sched_post_fork(p);
2490 cgroup_post_fork(p, args);
2491 perf_event_fork(p);
2492
2493 trace_task_newtask(p, clone_flags);
2494 uprobe_copy_process(p, clone_flags);
2495
2496 copy_oom_score_adj(clone_flags, p);
2497
2498 return p;
2499
2500 bad_fork_cancel_cgroup:
2501 sched_core_free(p);
2502 spin_unlock(¤t->sighand->siglock);
2503 write_unlock_irq(&tasklist_lock);
2504 cgroup_cancel_fork(p, args);
2505 bad_fork_put_pidfd:
2506 if (clone_flags & CLONE_PIDFD) {
2507 fput(pidfile);
2508 put_unused_fd(pidfd);
2509 }
2510 bad_fork_free_pid:
2511 if (pid != &init_struct_pid)
2512 free_pid(pid);
2513 bad_fork_cleanup_thread:
2514 exit_thread(p);
2515 bad_fork_cleanup_io:
2516 if (p->io_context)
2517 exit_io_context(p);
2518 bad_fork_cleanup_namespaces:
2519 exit_task_namespaces(p);
2520 bad_fork_cleanup_mm:
2521 if (p->mm) {
2522 mm_clear_owner(p->mm, p);
2523 mmput(p->mm);
2524 }
2525 bad_fork_cleanup_signal:
2526 if (!(clone_flags & CLONE_THREAD))
2527 free_signal_struct(p->signal);
2528 bad_fork_cleanup_sighand:
2529 __cleanup_sighand(p->sighand);
2530 bad_fork_cleanup_fs:
2531 exit_fs(p); /* blocking */
2532 bad_fork_cleanup_files:
2533 exit_files(p); /* blocking */
2534 bad_fork_cleanup_semundo:
2535 exit_sem(p);
2536 bad_fork_cleanup_security:
2537 security_task_free(p);
2538 bad_fork_cleanup_audit:
2539 audit_free(p);
2540 bad_fork_cleanup_perf:
2541 perf_event_free_task(p);
2542 bad_fork_cleanup_policy:
2543 lockdep_free_task(p);
2544 #ifdef CONFIG_NUMA
2545 mpol_put(p->mempolicy);
2546 bad_fork_cleanup_threadgroup_lock:
2547 #endif
2548 delayacct_tsk_free(p);
2549 bad_fork_cleanup_count:
2550 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2551 exit_creds(p);
2552 bad_fork_free:
2553 WRITE_ONCE(p->__state, TASK_DEAD);
2554 put_task_stack(p);
2555 delayed_free_task(p);
2556 fork_out:
2557 spin_lock_irq(¤t->sighand->siglock);
2558 hlist_del_init(&delayed.node);
2559 spin_unlock_irq(¤t->sighand->siglock);
2560 return ERR_PTR(retval);
2561 }
2562
init_idle_pids(struct task_struct * idle)2563 static inline void init_idle_pids(struct task_struct *idle)
2564 {
2565 enum pid_type type;
2566
2567 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2568 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2569 init_task_pid(idle, type, &init_struct_pid);
2570 }
2571 }
2572
fork_idle(int cpu)2573 struct task_struct * __init fork_idle(int cpu)
2574 {
2575 struct task_struct *task;
2576 struct kernel_clone_args args = {
2577 .flags = CLONE_VM,
2578 };
2579
2580 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2581 if (!IS_ERR(task)) {
2582 init_idle_pids(task);
2583 init_idle(task, cpu);
2584 }
2585
2586 return task;
2587 }
2588
2589 /*
2590 * This is like kernel_clone(), but shaved down and tailored to just
2591 * creating io_uring workers. It returns a created task, or an error pointer.
2592 * The returned task is inactive, and the caller must fire it up through
2593 * wake_up_new_task(p). All signals are blocked in the created task.
2594 */
create_io_thread(int (* fn)(void *),void * arg,int node)2595 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2596 {
2597 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2598 CLONE_IO;
2599 struct kernel_clone_args args = {
2600 .flags = ((lower_32_bits(flags) | CLONE_VM |
2601 CLONE_UNTRACED) & ~CSIGNAL),
2602 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2603 .stack = (unsigned long)fn,
2604 .stack_size = (unsigned long)arg,
2605 .io_thread = 1,
2606 };
2607
2608 return copy_process(NULL, 0, node, &args);
2609 }
2610
2611 /*
2612 * Ok, this is the main fork-routine.
2613 *
2614 * It copies the process, and if successful kick-starts
2615 * it and waits for it to finish using the VM if required.
2616 *
2617 * args->exit_signal is expected to be checked for sanity by the caller.
2618 */
kernel_clone(struct kernel_clone_args * args)2619 pid_t kernel_clone(struct kernel_clone_args *args)
2620 {
2621 u64 clone_flags = args->flags;
2622 struct completion vfork;
2623 struct pid *pid;
2624 struct task_struct *p;
2625 int trace = 0;
2626 pid_t nr;
2627
2628 /*
2629 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2630 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2631 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2632 * field in struct clone_args and it still doesn't make sense to have
2633 * them both point at the same memory location. Performing this check
2634 * here has the advantage that we don't need to have a separate helper
2635 * to check for legacy clone().
2636 */
2637 if ((args->flags & CLONE_PIDFD) &&
2638 (args->flags & CLONE_PARENT_SETTID) &&
2639 (args->pidfd == args->parent_tid))
2640 return -EINVAL;
2641
2642 /*
2643 * Determine whether and which event to report to ptracer. When
2644 * called from kernel_thread or CLONE_UNTRACED is explicitly
2645 * requested, no event is reported; otherwise, report if the event
2646 * for the type of forking is enabled.
2647 */
2648 if (!(clone_flags & CLONE_UNTRACED)) {
2649 if (clone_flags & CLONE_VFORK)
2650 trace = PTRACE_EVENT_VFORK;
2651 else if (args->exit_signal != SIGCHLD)
2652 trace = PTRACE_EVENT_CLONE;
2653 else
2654 trace = PTRACE_EVENT_FORK;
2655
2656 if (likely(!ptrace_event_enabled(current, trace)))
2657 trace = 0;
2658 }
2659
2660 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2661 add_latent_entropy();
2662
2663 if (IS_ERR(p))
2664 return PTR_ERR(p);
2665
2666 cpufreq_task_times_alloc(p);
2667
2668 /*
2669 * Do this prior waking up the new thread - the thread pointer
2670 * might get invalid after that point, if the thread exits quickly.
2671 */
2672 trace_sched_process_fork(current, p);
2673
2674 pid = get_task_pid(p, PIDTYPE_PID);
2675 nr = pid_vnr(pid);
2676
2677 if (clone_flags & CLONE_PARENT_SETTID)
2678 put_user(nr, args->parent_tid);
2679
2680 if (clone_flags & CLONE_VFORK) {
2681 p->vfork_done = &vfork;
2682 init_completion(&vfork);
2683 get_task_struct(p);
2684 }
2685
2686 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2687 /* lock the task to synchronize with memcg migration */
2688 task_lock(p);
2689 lru_gen_add_mm(p->mm);
2690 task_unlock(p);
2691 }
2692
2693 wake_up_new_task(p);
2694
2695 /* forking complete and child started to run, tell ptracer */
2696 if (unlikely(trace))
2697 ptrace_event_pid(trace, pid);
2698
2699 if (clone_flags & CLONE_VFORK) {
2700 if (!wait_for_vfork_done(p, &vfork))
2701 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2702 }
2703
2704 put_pid(pid);
2705 return nr;
2706 }
2707
2708 /*
2709 * Create a kernel thread.
2710 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2711 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2712 {
2713 struct kernel_clone_args args = {
2714 .flags = ((lower_32_bits(flags) | CLONE_VM |
2715 CLONE_UNTRACED) & ~CSIGNAL),
2716 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2717 .stack = (unsigned long)fn,
2718 .stack_size = (unsigned long)arg,
2719 };
2720
2721 return kernel_clone(&args);
2722 }
2723
2724 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2725 SYSCALL_DEFINE0(fork)
2726 {
2727 #ifdef CONFIG_MMU
2728 struct kernel_clone_args args = {
2729 .exit_signal = SIGCHLD,
2730 };
2731
2732 return kernel_clone(&args);
2733 #else
2734 /* can not support in nommu mode */
2735 return -EINVAL;
2736 #endif
2737 }
2738 #endif
2739
2740 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2741 SYSCALL_DEFINE0(vfork)
2742 {
2743 struct kernel_clone_args args = {
2744 .flags = CLONE_VFORK | CLONE_VM,
2745 .exit_signal = SIGCHLD,
2746 };
2747
2748 return kernel_clone(&args);
2749 }
2750 #endif
2751
2752 #ifdef __ARCH_WANT_SYS_CLONE
2753 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2754 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2755 int __user *, parent_tidptr,
2756 unsigned long, tls,
2757 int __user *, child_tidptr)
2758 #elif defined(CONFIG_CLONE_BACKWARDS2)
2759 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2760 int __user *, parent_tidptr,
2761 int __user *, child_tidptr,
2762 unsigned long, tls)
2763 #elif defined(CONFIG_CLONE_BACKWARDS3)
2764 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2765 int, stack_size,
2766 int __user *, parent_tidptr,
2767 int __user *, child_tidptr,
2768 unsigned long, tls)
2769 #else
2770 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2771 int __user *, parent_tidptr,
2772 int __user *, child_tidptr,
2773 unsigned long, tls)
2774 #endif
2775 {
2776 struct kernel_clone_args args = {
2777 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2778 .pidfd = parent_tidptr,
2779 .child_tid = child_tidptr,
2780 .parent_tid = parent_tidptr,
2781 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2782 .stack = newsp,
2783 .tls = tls,
2784 };
2785
2786 return kernel_clone(&args);
2787 }
2788 #endif
2789
2790 #ifdef __ARCH_WANT_SYS_CLONE3
2791
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2792 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2793 struct clone_args __user *uargs,
2794 size_t usize)
2795 {
2796 int err;
2797 struct clone_args args;
2798 pid_t *kset_tid = kargs->set_tid;
2799
2800 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2801 CLONE_ARGS_SIZE_VER0);
2802 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2803 CLONE_ARGS_SIZE_VER1);
2804 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2805 CLONE_ARGS_SIZE_VER2);
2806 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2807
2808 if (unlikely(usize > PAGE_SIZE))
2809 return -E2BIG;
2810 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2811 return -EINVAL;
2812
2813 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2814 if (err)
2815 return err;
2816
2817 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2818 return -EINVAL;
2819
2820 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2821 return -EINVAL;
2822
2823 if (unlikely(args.set_tid && args.set_tid_size == 0))
2824 return -EINVAL;
2825
2826 /*
2827 * Verify that higher 32bits of exit_signal are unset and that
2828 * it is a valid signal
2829 */
2830 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2831 !valid_signal(args.exit_signal)))
2832 return -EINVAL;
2833
2834 if ((args.flags & CLONE_INTO_CGROUP) &&
2835 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2836 return -EINVAL;
2837
2838 *kargs = (struct kernel_clone_args){
2839 .flags = args.flags,
2840 .pidfd = u64_to_user_ptr(args.pidfd),
2841 .child_tid = u64_to_user_ptr(args.child_tid),
2842 .parent_tid = u64_to_user_ptr(args.parent_tid),
2843 .exit_signal = args.exit_signal,
2844 .stack = args.stack,
2845 .stack_size = args.stack_size,
2846 .tls = args.tls,
2847 .set_tid_size = args.set_tid_size,
2848 .cgroup = args.cgroup,
2849 };
2850
2851 if (args.set_tid &&
2852 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2853 (kargs->set_tid_size * sizeof(pid_t))))
2854 return -EFAULT;
2855
2856 kargs->set_tid = kset_tid;
2857
2858 return 0;
2859 }
2860
2861 /**
2862 * clone3_stack_valid - check and prepare stack
2863 * @kargs: kernel clone args
2864 *
2865 * Verify that the stack arguments userspace gave us are sane.
2866 * In addition, set the stack direction for userspace since it's easy for us to
2867 * determine.
2868 */
clone3_stack_valid(struct kernel_clone_args * kargs)2869 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2870 {
2871 if (kargs->stack == 0) {
2872 if (kargs->stack_size > 0)
2873 return false;
2874 } else {
2875 if (kargs->stack_size == 0)
2876 return false;
2877
2878 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2879 return false;
2880
2881 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2882 kargs->stack += kargs->stack_size;
2883 #endif
2884 }
2885
2886 return true;
2887 }
2888
clone3_args_valid(struct kernel_clone_args * kargs)2889 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2890 {
2891 /* Verify that no unknown flags are passed along. */
2892 if (kargs->flags &
2893 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2894 return false;
2895
2896 /*
2897 * - make the CLONE_DETACHED bit reusable for clone3
2898 * - make the CSIGNAL bits reusable for clone3
2899 */
2900 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2901 return false;
2902
2903 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2904 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2905 return false;
2906
2907 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2908 kargs->exit_signal)
2909 return false;
2910
2911 if (!clone3_stack_valid(kargs))
2912 return false;
2913
2914 return true;
2915 }
2916
2917 /**
2918 * clone3 - create a new process with specific properties
2919 * @uargs: argument structure
2920 * @size: size of @uargs
2921 *
2922 * clone3() is the extensible successor to clone()/clone2().
2923 * It takes a struct as argument that is versioned by its size.
2924 *
2925 * Return: On success, a positive PID for the child process.
2926 * On error, a negative errno number.
2927 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2928 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2929 {
2930 int err;
2931
2932 struct kernel_clone_args kargs;
2933 pid_t set_tid[MAX_PID_NS_LEVEL];
2934
2935 kargs.set_tid = set_tid;
2936
2937 err = copy_clone_args_from_user(&kargs, uargs, size);
2938 if (err)
2939 return err;
2940
2941 if (!clone3_args_valid(&kargs))
2942 return -EINVAL;
2943
2944 return kernel_clone(&kargs);
2945 }
2946 #endif
2947
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2948 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2949 {
2950 struct task_struct *leader, *parent, *child;
2951 int res;
2952
2953 read_lock(&tasklist_lock);
2954 leader = top = top->group_leader;
2955 down:
2956 for_each_thread(leader, parent) {
2957 list_for_each_entry(child, &parent->children, sibling) {
2958 res = visitor(child, data);
2959 if (res) {
2960 if (res < 0)
2961 goto out;
2962 leader = child;
2963 goto down;
2964 }
2965 up:
2966 ;
2967 }
2968 }
2969
2970 if (leader != top) {
2971 child = leader;
2972 parent = child->real_parent;
2973 leader = parent->group_leader;
2974 goto up;
2975 }
2976 out:
2977 read_unlock(&tasklist_lock);
2978 }
2979
2980 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2981 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2982 #endif
2983
sighand_ctor(void * data)2984 static void sighand_ctor(void *data)
2985 {
2986 struct sighand_struct *sighand = data;
2987
2988 spin_lock_init(&sighand->siglock);
2989 init_waitqueue_head(&sighand->signalfd_wqh);
2990 }
2991
mm_cache_init(void)2992 void __init mm_cache_init(void)
2993 {
2994 unsigned int mm_size;
2995
2996 /*
2997 * The mm_cpumask is located at the end of mm_struct, and is
2998 * dynamically sized based on the maximum CPU number this system
2999 * can have, taking hotplug into account (nr_cpu_ids).
3000 */
3001 mm_size = sizeof(struct mm_struct) + cpumask_size();
3002
3003 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3004 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3005 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3006 offsetof(struct mm_struct, saved_auxv),
3007 sizeof_field(struct mm_struct, saved_auxv),
3008 NULL);
3009 }
3010
proc_caches_init(void)3011 void __init proc_caches_init(void)
3012 {
3013 sighand_cachep = kmem_cache_create("sighand_cache",
3014 sizeof(struct sighand_struct), 0,
3015 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3016 SLAB_ACCOUNT, sighand_ctor);
3017 signal_cachep = kmem_cache_create("signal_cache",
3018 sizeof(struct signal_struct), 0,
3019 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3020 NULL);
3021 files_cachep = kmem_cache_create("files_cache",
3022 sizeof(struct files_struct), 0,
3023 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3024 NULL);
3025 fs_cachep = kmem_cache_create("fs_cache",
3026 sizeof(struct fs_struct), 0,
3027 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3028 NULL);
3029
3030 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3031 mmap_init();
3032 nsproxy_cache_init();
3033 }
3034
3035 /*
3036 * Check constraints on flags passed to the unshare system call.
3037 */
check_unshare_flags(unsigned long unshare_flags)3038 static int check_unshare_flags(unsigned long unshare_flags)
3039 {
3040 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3041 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3042 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3043 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3044 CLONE_NEWTIME))
3045 return -EINVAL;
3046 /*
3047 * Not implemented, but pretend it works if there is nothing
3048 * to unshare. Note that unsharing the address space or the
3049 * signal handlers also need to unshare the signal queues (aka
3050 * CLONE_THREAD).
3051 */
3052 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3053 if (!thread_group_empty(current))
3054 return -EINVAL;
3055 }
3056 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3057 if (refcount_read(¤t->sighand->count) > 1)
3058 return -EINVAL;
3059 }
3060 if (unshare_flags & CLONE_VM) {
3061 if (!current_is_single_threaded())
3062 return -EINVAL;
3063 }
3064
3065 return 0;
3066 }
3067
3068 /*
3069 * Unshare the filesystem structure if it is being shared
3070 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3071 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3072 {
3073 struct fs_struct *fs = current->fs;
3074
3075 if (!(unshare_flags & CLONE_FS) || !fs)
3076 return 0;
3077
3078 /* don't need lock here; in the worst case we'll do useless copy */
3079 if (fs->users == 1)
3080 return 0;
3081
3082 *new_fsp = copy_fs_struct(fs);
3083 if (!*new_fsp)
3084 return -ENOMEM;
3085
3086 return 0;
3087 }
3088
3089 /*
3090 * Unshare file descriptor table if it is being shared
3091 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)3092 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3093 struct files_struct **new_fdp)
3094 {
3095 struct files_struct *fd = current->files;
3096 int error = 0;
3097
3098 if ((unshare_flags & CLONE_FILES) &&
3099 (fd && atomic_read(&fd->count) > 1)) {
3100 *new_fdp = dup_fd(fd, max_fds, &error);
3101 if (!*new_fdp)
3102 return error;
3103 }
3104
3105 return 0;
3106 }
3107
3108 /*
3109 * unshare allows a process to 'unshare' part of the process
3110 * context which was originally shared using clone. copy_*
3111 * functions used by kernel_clone() cannot be used here directly
3112 * because they modify an inactive task_struct that is being
3113 * constructed. Here we are modifying the current, active,
3114 * task_struct.
3115 */
ksys_unshare(unsigned long unshare_flags)3116 int ksys_unshare(unsigned long unshare_flags)
3117 {
3118 struct fs_struct *fs, *new_fs = NULL;
3119 struct files_struct *fd, *new_fd = NULL;
3120 struct cred *new_cred = NULL;
3121 struct nsproxy *new_nsproxy = NULL;
3122 int do_sysvsem = 0;
3123 int err;
3124
3125 /*
3126 * If unsharing a user namespace must also unshare the thread group
3127 * and unshare the filesystem root and working directories.
3128 */
3129 if (unshare_flags & CLONE_NEWUSER)
3130 unshare_flags |= CLONE_THREAD | CLONE_FS;
3131 /*
3132 * If unsharing vm, must also unshare signal handlers.
3133 */
3134 if (unshare_flags & CLONE_VM)
3135 unshare_flags |= CLONE_SIGHAND;
3136 /*
3137 * If unsharing a signal handlers, must also unshare the signal queues.
3138 */
3139 if (unshare_flags & CLONE_SIGHAND)
3140 unshare_flags |= CLONE_THREAD;
3141 /*
3142 * If unsharing namespace, must also unshare filesystem information.
3143 */
3144 if (unshare_flags & CLONE_NEWNS)
3145 unshare_flags |= CLONE_FS;
3146
3147 err = check_unshare_flags(unshare_flags);
3148 if (err)
3149 goto bad_unshare_out;
3150 /*
3151 * CLONE_NEWIPC must also detach from the undolist: after switching
3152 * to a new ipc namespace, the semaphore arrays from the old
3153 * namespace are unreachable.
3154 */
3155 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3156 do_sysvsem = 1;
3157 err = unshare_fs(unshare_flags, &new_fs);
3158 if (err)
3159 goto bad_unshare_out;
3160 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3161 if (err)
3162 goto bad_unshare_cleanup_fs;
3163 err = unshare_userns(unshare_flags, &new_cred);
3164 if (err)
3165 goto bad_unshare_cleanup_fd;
3166 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3167 new_cred, new_fs);
3168 if (err)
3169 goto bad_unshare_cleanup_cred;
3170
3171 if (new_cred) {
3172 err = set_cred_ucounts(new_cred);
3173 if (err)
3174 goto bad_unshare_cleanup_cred;
3175 }
3176
3177 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3178 if (do_sysvsem) {
3179 /*
3180 * CLONE_SYSVSEM is equivalent to sys_exit().
3181 */
3182 exit_sem(current);
3183 }
3184 if (unshare_flags & CLONE_NEWIPC) {
3185 /* Orphan segments in old ns (see sem above). */
3186 exit_shm(current);
3187 shm_init_task(current);
3188 }
3189
3190 if (new_nsproxy)
3191 switch_task_namespaces(current, new_nsproxy);
3192
3193 task_lock(current);
3194
3195 if (new_fs) {
3196 fs = current->fs;
3197 spin_lock(&fs->lock);
3198 current->fs = new_fs;
3199 if (--fs->users)
3200 new_fs = NULL;
3201 else
3202 new_fs = fs;
3203 spin_unlock(&fs->lock);
3204 }
3205
3206 if (new_fd) {
3207 fd = current->files;
3208 current->files = new_fd;
3209 new_fd = fd;
3210 }
3211
3212 task_unlock(current);
3213
3214 if (new_cred) {
3215 /* Install the new user namespace */
3216 commit_creds(new_cred);
3217 new_cred = NULL;
3218 }
3219 }
3220
3221 perf_event_namespaces(current);
3222
3223 bad_unshare_cleanup_cred:
3224 if (new_cred)
3225 put_cred(new_cred);
3226 bad_unshare_cleanup_fd:
3227 if (new_fd)
3228 put_files_struct(new_fd);
3229
3230 bad_unshare_cleanup_fs:
3231 if (new_fs)
3232 free_fs_struct(new_fs);
3233
3234 bad_unshare_out:
3235 return err;
3236 }
3237
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3238 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3239 {
3240 return ksys_unshare(unshare_flags);
3241 }
3242
3243 /*
3244 * Helper to unshare the files of the current task.
3245 * We don't want to expose copy_files internals to
3246 * the exec layer of the kernel.
3247 */
3248
unshare_files(void)3249 int unshare_files(void)
3250 {
3251 struct task_struct *task = current;
3252 struct files_struct *old, *copy = NULL;
3253 int error;
3254
3255 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3256 if (error || !copy)
3257 return error;
3258
3259 old = task->files;
3260 task_lock(task);
3261 task->files = copy;
3262 task_unlock(task);
3263 put_files_struct(old);
3264 return 0;
3265 }
3266
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3267 int sysctl_max_threads(struct ctl_table *table, int write,
3268 void *buffer, size_t *lenp, loff_t *ppos)
3269 {
3270 struct ctl_table t;
3271 int ret;
3272 int threads = max_threads;
3273 int min = 1;
3274 int max = MAX_THREADS;
3275
3276 t = *table;
3277 t.data = &threads;
3278 t.extra1 = &min;
3279 t.extra2 = &max;
3280
3281 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3282 if (ret || !write)
3283 return ret;
3284
3285 max_threads = threads;
3286
3287 return 0;
3288 }
3289