1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/major.h>
55 #include <linux/module.h>
56 #include <linux/reboot.h>
57 #include <linux/file.h>
58 #include <linux/compat.h>
59 #include <linux/delay.h>
60 #include <linux/raid/md_p.h>
61 #include <linux/raid/md_u.h>
62 #include <linux/raid/detect.h>
63 #include <linux/slab.h>
64 #include <linux/percpu-refcount.h>
65 #include <linux/part_stat.h>
66
67 #include <trace/events/block.h>
68 #include "md.h"
69 #include "md-bitmap.h"
70 #include "md-cluster.h"
71
72 /* pers_list is a list of registered personalities protected
73 * by pers_lock.
74 * pers_lock does extra service to protect accesses to
75 * mddev->thread when the mutex cannot be held.
76 */
77 static LIST_HEAD(pers_list);
78 static DEFINE_SPINLOCK(pers_lock);
79
80 static struct kobj_type md_ktype;
81
82 struct md_cluster_operations *md_cluster_ops;
83 EXPORT_SYMBOL(md_cluster_ops);
84 static struct module *md_cluster_mod;
85
86 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
87 static struct workqueue_struct *md_wq;
88 static struct workqueue_struct *md_misc_wq;
89 static struct workqueue_struct *md_rdev_misc_wq;
90
91 static int remove_and_add_spares(struct mddev *mddev,
92 struct md_rdev *this);
93 static void mddev_detach(struct mddev *mddev);
94
95 enum md_ro_state {
96 MD_RDWR,
97 MD_RDONLY,
98 MD_AUTO_READ,
99 MD_MAX_STATE
100 };
101
md_is_rdwr(struct mddev * mddev)102 static bool md_is_rdwr(struct mddev *mddev)
103 {
104 return (mddev->ro == MD_RDWR);
105 }
106
107 /*
108 * Default number of read corrections we'll attempt on an rdev
109 * before ejecting it from the array. We divide the read error
110 * count by 2 for every hour elapsed between read errors.
111 */
112 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
113 /* Default safemode delay: 200 msec */
114 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
115 /*
116 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
117 * is 1000 KB/sec, so the extra system load does not show up that much.
118 * Increase it if you want to have more _guaranteed_ speed. Note that
119 * the RAID driver will use the maximum available bandwidth if the IO
120 * subsystem is idle. There is also an 'absolute maximum' reconstruction
121 * speed limit - in case reconstruction slows down your system despite
122 * idle IO detection.
123 *
124 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
125 * or /sys/block/mdX/md/sync_speed_{min,max}
126 */
127
128 static int sysctl_speed_limit_min = 1000;
129 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)130 static inline int speed_min(struct mddev *mddev)
131 {
132 return mddev->sync_speed_min ?
133 mddev->sync_speed_min : sysctl_speed_limit_min;
134 }
135
speed_max(struct mddev * mddev)136 static inline int speed_max(struct mddev *mddev)
137 {
138 return mddev->sync_speed_max ?
139 mddev->sync_speed_max : sysctl_speed_limit_max;
140 }
141
rdev_uninit_serial(struct md_rdev * rdev)142 static void rdev_uninit_serial(struct md_rdev *rdev)
143 {
144 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
145 return;
146
147 kvfree(rdev->serial);
148 rdev->serial = NULL;
149 }
150
rdevs_uninit_serial(struct mddev * mddev)151 static void rdevs_uninit_serial(struct mddev *mddev)
152 {
153 struct md_rdev *rdev;
154
155 rdev_for_each(rdev, mddev)
156 rdev_uninit_serial(rdev);
157 }
158
rdev_init_serial(struct md_rdev * rdev)159 static int rdev_init_serial(struct md_rdev *rdev)
160 {
161 /* serial_nums equals with BARRIER_BUCKETS_NR */
162 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
163 struct serial_in_rdev *serial = NULL;
164
165 if (test_bit(CollisionCheck, &rdev->flags))
166 return 0;
167
168 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
169 GFP_KERNEL);
170 if (!serial)
171 return -ENOMEM;
172
173 for (i = 0; i < serial_nums; i++) {
174 struct serial_in_rdev *serial_tmp = &serial[i];
175
176 spin_lock_init(&serial_tmp->serial_lock);
177 serial_tmp->serial_rb = RB_ROOT_CACHED;
178 init_waitqueue_head(&serial_tmp->serial_io_wait);
179 }
180
181 rdev->serial = serial;
182 set_bit(CollisionCheck, &rdev->flags);
183
184 return 0;
185 }
186
rdevs_init_serial(struct mddev * mddev)187 static int rdevs_init_serial(struct mddev *mddev)
188 {
189 struct md_rdev *rdev;
190 int ret = 0;
191
192 rdev_for_each(rdev, mddev) {
193 ret = rdev_init_serial(rdev);
194 if (ret)
195 break;
196 }
197
198 /* Free all resources if pool is not existed */
199 if (ret && !mddev->serial_info_pool)
200 rdevs_uninit_serial(mddev);
201
202 return ret;
203 }
204
205 /*
206 * rdev needs to enable serial stuffs if it meets the conditions:
207 * 1. it is multi-queue device flaged with writemostly.
208 * 2. the write-behind mode is enabled.
209 */
rdev_need_serial(struct md_rdev * rdev)210 static int rdev_need_serial(struct md_rdev *rdev)
211 {
212 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
213 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
214 test_bit(WriteMostly, &rdev->flags));
215 }
216
217 /*
218 * Init resource for rdev(s), then create serial_info_pool if:
219 * 1. rdev is the first device which return true from rdev_enable_serial.
220 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
221 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)222 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
223 bool is_suspend)
224 {
225 int ret = 0;
226
227 if (rdev && !rdev_need_serial(rdev) &&
228 !test_bit(CollisionCheck, &rdev->flags))
229 return;
230
231 if (!is_suspend)
232 mddev_suspend(mddev);
233
234 if (!rdev)
235 ret = rdevs_init_serial(mddev);
236 else
237 ret = rdev_init_serial(rdev);
238 if (ret)
239 goto abort;
240
241 if (mddev->serial_info_pool == NULL) {
242 /*
243 * already in memalloc noio context by
244 * mddev_suspend()
245 */
246 mddev->serial_info_pool =
247 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
248 sizeof(struct serial_info));
249 if (!mddev->serial_info_pool) {
250 rdevs_uninit_serial(mddev);
251 pr_err("can't alloc memory pool for serialization\n");
252 }
253 }
254
255 abort:
256 if (!is_suspend)
257 mddev_resume(mddev);
258 }
259
260 /*
261 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
262 * 1. rdev is the last device flaged with CollisionCheck.
263 * 2. when bitmap is destroyed while policy is not enabled.
264 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
265 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)266 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
267 bool is_suspend)
268 {
269 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
270 return;
271
272 if (mddev->serial_info_pool) {
273 struct md_rdev *temp;
274 int num = 0; /* used to track if other rdevs need the pool */
275
276 if (!is_suspend)
277 mddev_suspend(mddev);
278 rdev_for_each(temp, mddev) {
279 if (!rdev) {
280 if (!mddev->serialize_policy ||
281 !rdev_need_serial(temp))
282 rdev_uninit_serial(temp);
283 else
284 num++;
285 } else if (temp != rdev &&
286 test_bit(CollisionCheck, &temp->flags))
287 num++;
288 }
289
290 if (rdev)
291 rdev_uninit_serial(rdev);
292
293 if (num)
294 pr_info("The mempool could be used by other devices\n");
295 else {
296 mempool_destroy(mddev->serial_info_pool);
297 mddev->serial_info_pool = NULL;
298 }
299 if (!is_suspend)
300 mddev_resume(mddev);
301 }
302 }
303
304 static struct ctl_table_header *raid_table_header;
305
306 static struct ctl_table raid_table[] = {
307 {
308 .procname = "speed_limit_min",
309 .data = &sysctl_speed_limit_min,
310 .maxlen = sizeof(int),
311 .mode = S_IRUGO|S_IWUSR,
312 .proc_handler = proc_dointvec,
313 },
314 {
315 .procname = "speed_limit_max",
316 .data = &sysctl_speed_limit_max,
317 .maxlen = sizeof(int),
318 .mode = S_IRUGO|S_IWUSR,
319 .proc_handler = proc_dointvec,
320 },
321 { }
322 };
323
324 static struct ctl_table raid_dir_table[] = {
325 {
326 .procname = "raid",
327 .maxlen = 0,
328 .mode = S_IRUGO|S_IXUGO,
329 .child = raid_table,
330 },
331 { }
332 };
333
334 static struct ctl_table raid_root_table[] = {
335 {
336 .procname = "dev",
337 .maxlen = 0,
338 .mode = 0555,
339 .child = raid_dir_table,
340 },
341 { }
342 };
343
344 static int start_readonly;
345
346 /*
347 * The original mechanism for creating an md device is to create
348 * a device node in /dev and to open it. This causes races with device-close.
349 * The preferred method is to write to the "new_array" module parameter.
350 * This can avoid races.
351 * Setting create_on_open to false disables the original mechanism
352 * so all the races disappear.
353 */
354 static bool create_on_open = true;
355
356 /*
357 * We have a system wide 'event count' that is incremented
358 * on any 'interesting' event, and readers of /proc/mdstat
359 * can use 'poll' or 'select' to find out when the event
360 * count increases.
361 *
362 * Events are:
363 * start array, stop array, error, add device, remove device,
364 * start build, activate spare
365 */
366 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
367 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)368 void md_new_event(struct mddev *mddev)
369 {
370 atomic_inc(&md_event_count);
371 wake_up(&md_event_waiters);
372 }
373 EXPORT_SYMBOL_GPL(md_new_event);
374
375 /*
376 * Enables to iterate over all existing md arrays
377 * all_mddevs_lock protects this list.
378 */
379 static LIST_HEAD(all_mddevs);
380 static DEFINE_SPINLOCK(all_mddevs_lock);
381
382 /*
383 * iterates through all used mddevs in the system.
384 * We take care to grab the all_mddevs_lock whenever navigating
385 * the list, and to always hold a refcount when unlocked.
386 * Any code which breaks out of this loop while own
387 * a reference to the current mddev and must mddev_put it.
388 */
389 #define for_each_mddev(_mddev,_tmp) \
390 \
391 for (({ spin_lock(&all_mddevs_lock); \
392 _tmp = all_mddevs.next; \
393 _mddev = NULL;}); \
394 ({ if (_tmp != &all_mddevs) \
395 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
396 spin_unlock(&all_mddevs_lock); \
397 if (_mddev) mddev_put(_mddev); \
398 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
399 _tmp != &all_mddevs;}); \
400 ({ spin_lock(&all_mddevs_lock); \
401 _tmp = _tmp->next;}) \
402 )
403
404 /* Rather than calling directly into the personality make_request function,
405 * IO requests come here first so that we can check if the device is
406 * being suspended pending a reconfiguration.
407 * We hold a refcount over the call to ->make_request. By the time that
408 * call has finished, the bio has been linked into some internal structure
409 * and so is visible to ->quiesce(), so we don't need the refcount any more.
410 */
is_suspended(struct mddev * mddev,struct bio * bio)411 static bool is_suspended(struct mddev *mddev, struct bio *bio)
412 {
413 if (mddev->suspended)
414 return true;
415 if (bio_data_dir(bio) != WRITE)
416 return false;
417 if (mddev->suspend_lo >= mddev->suspend_hi)
418 return false;
419 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
420 return false;
421 if (bio_end_sector(bio) < mddev->suspend_lo)
422 return false;
423 return true;
424 }
425
md_handle_request(struct mddev * mddev,struct bio * bio)426 void md_handle_request(struct mddev *mddev, struct bio *bio)
427 {
428 check_suspended:
429 rcu_read_lock();
430 if (is_suspended(mddev, bio)) {
431 DEFINE_WAIT(__wait);
432 for (;;) {
433 prepare_to_wait(&mddev->sb_wait, &__wait,
434 TASK_UNINTERRUPTIBLE);
435 if (!is_suspended(mddev, bio))
436 break;
437 rcu_read_unlock();
438 schedule();
439 rcu_read_lock();
440 }
441 finish_wait(&mddev->sb_wait, &__wait);
442 }
443 atomic_inc(&mddev->active_io);
444 rcu_read_unlock();
445
446 if (!mddev->pers->make_request(mddev, bio)) {
447 atomic_dec(&mddev->active_io);
448 wake_up(&mddev->sb_wait);
449 goto check_suspended;
450 }
451
452 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
453 wake_up(&mddev->sb_wait);
454 }
455 EXPORT_SYMBOL(md_handle_request);
456
md_submit_bio(struct bio * bio)457 static blk_qc_t md_submit_bio(struct bio *bio)
458 {
459 const int rw = bio_data_dir(bio);
460 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
461
462 if (mddev == NULL || mddev->pers == NULL) {
463 bio_io_error(bio);
464 return BLK_QC_T_NONE;
465 }
466
467 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
468 bio_io_error(bio);
469 return BLK_QC_T_NONE;
470 }
471
472 blk_queue_split(&bio);
473 if (!bio)
474 return BLK_QC_T_NONE;
475
476 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
477 if (bio_sectors(bio) != 0)
478 bio->bi_status = BLK_STS_IOERR;
479 bio_endio(bio);
480 return BLK_QC_T_NONE;
481 }
482
483 /* bio could be mergeable after passing to underlayer */
484 bio->bi_opf &= ~REQ_NOMERGE;
485
486 md_handle_request(mddev, bio);
487
488 return BLK_QC_T_NONE;
489 }
490
491 /* mddev_suspend makes sure no new requests are submitted
492 * to the device, and that any requests that have been submitted
493 * are completely handled.
494 * Once mddev_detach() is called and completes, the module will be
495 * completely unused.
496 */
mddev_suspend(struct mddev * mddev)497 void mddev_suspend(struct mddev *mddev)
498 {
499 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
500 lockdep_assert_held(&mddev->reconfig_mutex);
501 if (mddev->suspended++)
502 return;
503 synchronize_rcu();
504 wake_up(&mddev->sb_wait);
505 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
506 smp_mb__after_atomic();
507 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
508 mddev->pers->quiesce(mddev, 1);
509 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
510 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
511
512 del_timer_sync(&mddev->safemode_timer);
513 /* restrict memory reclaim I/O during raid array is suspend */
514 mddev->noio_flag = memalloc_noio_save();
515 }
516 EXPORT_SYMBOL_GPL(mddev_suspend);
517
mddev_resume(struct mddev * mddev)518 void mddev_resume(struct mddev *mddev)
519 {
520 /* entred the memalloc scope from mddev_suspend() */
521 memalloc_noio_restore(mddev->noio_flag);
522 lockdep_assert_held(&mddev->reconfig_mutex);
523 if (--mddev->suspended)
524 return;
525 wake_up(&mddev->sb_wait);
526 mddev->pers->quiesce(mddev, 0);
527
528 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
529 md_wakeup_thread(mddev->thread);
530 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
531 }
532 EXPORT_SYMBOL_GPL(mddev_resume);
533
534 /*
535 * Generic flush handling for md
536 */
537
md_end_flush(struct bio * bio)538 static void md_end_flush(struct bio *bio)
539 {
540 struct md_rdev *rdev = bio->bi_private;
541 struct mddev *mddev = rdev->mddev;
542
543 bio_put(bio);
544
545 rdev_dec_pending(rdev, mddev);
546
547 if (atomic_dec_and_test(&mddev->flush_pending)) {
548 /* The pre-request flush has finished */
549 queue_work(md_wq, &mddev->flush_work);
550 }
551 }
552
553 static void md_submit_flush_data(struct work_struct *ws);
554
submit_flushes(struct work_struct * ws)555 static void submit_flushes(struct work_struct *ws)
556 {
557 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
558 struct md_rdev *rdev;
559
560 mddev->start_flush = ktime_get_boottime();
561 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
562 atomic_set(&mddev->flush_pending, 1);
563 rcu_read_lock();
564 rdev_for_each_rcu(rdev, mddev)
565 if (rdev->raid_disk >= 0 &&
566 !test_bit(Faulty, &rdev->flags)) {
567 /* Take two references, one is dropped
568 * when request finishes, one after
569 * we reclaim rcu_read_lock
570 */
571 struct bio *bi;
572 atomic_inc(&rdev->nr_pending);
573 atomic_inc(&rdev->nr_pending);
574 rcu_read_unlock();
575 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
576 bi->bi_end_io = md_end_flush;
577 bi->bi_private = rdev;
578 bio_set_dev(bi, rdev->bdev);
579 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
580 atomic_inc(&mddev->flush_pending);
581 submit_bio(bi);
582 rcu_read_lock();
583 rdev_dec_pending(rdev, mddev);
584 }
585 rcu_read_unlock();
586 if (atomic_dec_and_test(&mddev->flush_pending))
587 queue_work(md_wq, &mddev->flush_work);
588 }
589
md_submit_flush_data(struct work_struct * ws)590 static void md_submit_flush_data(struct work_struct *ws)
591 {
592 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
593 struct bio *bio = mddev->flush_bio;
594
595 /*
596 * must reset flush_bio before calling into md_handle_request to avoid a
597 * deadlock, because other bios passed md_handle_request suspend check
598 * could wait for this and below md_handle_request could wait for those
599 * bios because of suspend check
600 */
601 spin_lock_irq(&mddev->lock);
602 mddev->prev_flush_start = mddev->start_flush;
603 mddev->flush_bio = NULL;
604 spin_unlock_irq(&mddev->lock);
605 wake_up(&mddev->sb_wait);
606
607 if (bio->bi_iter.bi_size == 0) {
608 /* an empty barrier - all done */
609 bio_endio(bio);
610 } else {
611 bio->bi_opf &= ~REQ_PREFLUSH;
612 md_handle_request(mddev, bio);
613 }
614 }
615
616 /*
617 * Manages consolidation of flushes and submitting any flushes needed for
618 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
619 * being finished in another context. Returns false if the flushing is
620 * complete but still needs the I/O portion of the bio to be processed.
621 */
md_flush_request(struct mddev * mddev,struct bio * bio)622 bool md_flush_request(struct mddev *mddev, struct bio *bio)
623 {
624 ktime_t req_start = ktime_get_boottime();
625 spin_lock_irq(&mddev->lock);
626 /* flush requests wait until ongoing flush completes,
627 * hence coalescing all the pending requests.
628 */
629 wait_event_lock_irq(mddev->sb_wait,
630 !mddev->flush_bio ||
631 ktime_before(req_start, mddev->prev_flush_start),
632 mddev->lock);
633 /* new request after previous flush is completed */
634 if (ktime_after(req_start, mddev->prev_flush_start)) {
635 WARN_ON(mddev->flush_bio);
636 mddev->flush_bio = bio;
637 bio = NULL;
638 }
639 spin_unlock_irq(&mddev->lock);
640
641 if (!bio) {
642 INIT_WORK(&mddev->flush_work, submit_flushes);
643 queue_work(md_wq, &mddev->flush_work);
644 } else {
645 /* flush was performed for some other bio while we waited. */
646 if (bio->bi_iter.bi_size == 0)
647 /* an empty barrier - all done */
648 bio_endio(bio);
649 else {
650 bio->bi_opf &= ~REQ_PREFLUSH;
651 return false;
652 }
653 }
654 return true;
655 }
656 EXPORT_SYMBOL(md_flush_request);
657
mddev_get(struct mddev * mddev)658 static inline struct mddev *mddev_get(struct mddev *mddev)
659 {
660 atomic_inc(&mddev->active);
661 return mddev;
662 }
663
664 static void mddev_delayed_delete(struct work_struct *ws);
665
mddev_put(struct mddev * mddev)666 static void mddev_put(struct mddev *mddev)
667 {
668 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
669 return;
670 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
671 mddev->ctime == 0 && !mddev->hold_active) {
672 /* Array is not configured at all, and not held active,
673 * so destroy it */
674 list_del_init(&mddev->all_mddevs);
675
676 /*
677 * Call queue_work inside the spinlock so that
678 * flush_workqueue() after mddev_find will succeed in waiting
679 * for the work to be done.
680 */
681 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
682 queue_work(md_misc_wq, &mddev->del_work);
683 }
684 spin_unlock(&all_mddevs_lock);
685 }
686
687 static void md_safemode_timeout(struct timer_list *t);
688
mddev_init(struct mddev * mddev)689 void mddev_init(struct mddev *mddev)
690 {
691 kobject_init(&mddev->kobj, &md_ktype);
692 mutex_init(&mddev->open_mutex);
693 mutex_init(&mddev->reconfig_mutex);
694 mutex_init(&mddev->bitmap_info.mutex);
695 INIT_LIST_HEAD(&mddev->disks);
696 INIT_LIST_HEAD(&mddev->all_mddevs);
697 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
698 atomic_set(&mddev->active, 1);
699 atomic_set(&mddev->openers, 0);
700 atomic_set(&mddev->active_io, 0);
701 spin_lock_init(&mddev->lock);
702 atomic_set(&mddev->flush_pending, 0);
703 init_waitqueue_head(&mddev->sb_wait);
704 init_waitqueue_head(&mddev->recovery_wait);
705 mddev->reshape_position = MaxSector;
706 mddev->reshape_backwards = 0;
707 mddev->last_sync_action = "none";
708 mddev->resync_min = 0;
709 mddev->resync_max = MaxSector;
710 mddev->level = LEVEL_NONE;
711 }
712 EXPORT_SYMBOL_GPL(mddev_init);
713
mddev_find_locked(dev_t unit)714 static struct mddev *mddev_find_locked(dev_t unit)
715 {
716 struct mddev *mddev;
717
718 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
719 if (mddev->unit == unit)
720 return mddev;
721
722 return NULL;
723 }
724
725 /* find an unused unit number */
mddev_alloc_unit(void)726 static dev_t mddev_alloc_unit(void)
727 {
728 static int next_minor = 512;
729 int start = next_minor;
730 bool is_free = 0;
731 dev_t dev = 0;
732
733 while (!is_free) {
734 dev = MKDEV(MD_MAJOR, next_minor);
735 next_minor++;
736 if (next_minor > MINORMASK)
737 next_minor = 0;
738 if (next_minor == start)
739 return 0; /* Oh dear, all in use. */
740 is_free = !mddev_find_locked(dev);
741 }
742
743 return dev;
744 }
745
mddev_find(dev_t unit)746 static struct mddev *mddev_find(dev_t unit)
747 {
748 struct mddev *mddev;
749
750 if (MAJOR(unit) != MD_MAJOR)
751 unit &= ~((1 << MdpMinorShift) - 1);
752
753 spin_lock(&all_mddevs_lock);
754 mddev = mddev_find_locked(unit);
755 if (mddev)
756 mddev_get(mddev);
757 spin_unlock(&all_mddevs_lock);
758
759 return mddev;
760 }
761
mddev_alloc(dev_t unit)762 static struct mddev *mddev_alloc(dev_t unit)
763 {
764 struct mddev *new;
765 int error;
766
767 if (unit && MAJOR(unit) != MD_MAJOR)
768 unit &= ~((1 << MdpMinorShift) - 1);
769
770 new = kzalloc(sizeof(*new), GFP_KERNEL);
771 if (!new)
772 return ERR_PTR(-ENOMEM);
773 mddev_init(new);
774
775 spin_lock(&all_mddevs_lock);
776 if (unit) {
777 error = -EEXIST;
778 if (mddev_find_locked(unit))
779 goto out_free_new;
780 new->unit = unit;
781 if (MAJOR(unit) == MD_MAJOR)
782 new->md_minor = MINOR(unit);
783 else
784 new->md_minor = MINOR(unit) >> MdpMinorShift;
785 new->hold_active = UNTIL_IOCTL;
786 } else {
787 error = -ENODEV;
788 new->unit = mddev_alloc_unit();
789 if (!new->unit)
790 goto out_free_new;
791 new->md_minor = MINOR(new->unit);
792 new->hold_active = UNTIL_STOP;
793 }
794
795 list_add(&new->all_mddevs, &all_mddevs);
796 spin_unlock(&all_mddevs_lock);
797 return new;
798 out_free_new:
799 spin_unlock(&all_mddevs_lock);
800 kfree(new);
801 return ERR_PTR(error);
802 }
803
804 static const struct attribute_group md_redundancy_group;
805
mddev_unlock(struct mddev * mddev)806 void mddev_unlock(struct mddev *mddev)
807 {
808 if (mddev->to_remove) {
809 /* These cannot be removed under reconfig_mutex as
810 * an access to the files will try to take reconfig_mutex
811 * while holding the file unremovable, which leads to
812 * a deadlock.
813 * So hold set sysfs_active while the remove in happeing,
814 * and anything else which might set ->to_remove or my
815 * otherwise change the sysfs namespace will fail with
816 * -EBUSY if sysfs_active is still set.
817 * We set sysfs_active under reconfig_mutex and elsewhere
818 * test it under the same mutex to ensure its correct value
819 * is seen.
820 */
821 const struct attribute_group *to_remove = mddev->to_remove;
822 mddev->to_remove = NULL;
823 mddev->sysfs_active = 1;
824 mutex_unlock(&mddev->reconfig_mutex);
825
826 if (mddev->kobj.sd) {
827 if (to_remove != &md_redundancy_group)
828 sysfs_remove_group(&mddev->kobj, to_remove);
829 if (mddev->pers == NULL ||
830 mddev->pers->sync_request == NULL) {
831 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
832 if (mddev->sysfs_action)
833 sysfs_put(mddev->sysfs_action);
834 if (mddev->sysfs_completed)
835 sysfs_put(mddev->sysfs_completed);
836 if (mddev->sysfs_degraded)
837 sysfs_put(mddev->sysfs_degraded);
838 mddev->sysfs_action = NULL;
839 mddev->sysfs_completed = NULL;
840 mddev->sysfs_degraded = NULL;
841 }
842 }
843 mddev->sysfs_active = 0;
844 } else
845 mutex_unlock(&mddev->reconfig_mutex);
846
847 /* As we've dropped the mutex we need a spinlock to
848 * make sure the thread doesn't disappear
849 */
850 spin_lock(&pers_lock);
851 md_wakeup_thread(mddev->thread);
852 wake_up(&mddev->sb_wait);
853 spin_unlock(&pers_lock);
854 }
855 EXPORT_SYMBOL_GPL(mddev_unlock);
856
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)857 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
858 {
859 struct md_rdev *rdev;
860
861 rdev_for_each_rcu(rdev, mddev)
862 if (rdev->desc_nr == nr)
863 return rdev;
864
865 return NULL;
866 }
867 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
868
find_rdev(struct mddev * mddev,dev_t dev)869 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
870 {
871 struct md_rdev *rdev;
872
873 rdev_for_each(rdev, mddev)
874 if (rdev->bdev->bd_dev == dev)
875 return rdev;
876
877 return NULL;
878 }
879
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)880 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
881 {
882 struct md_rdev *rdev;
883
884 rdev_for_each_rcu(rdev, mddev)
885 if (rdev->bdev->bd_dev == dev)
886 return rdev;
887
888 return NULL;
889 }
890 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
891
find_pers(int level,char * clevel)892 static struct md_personality *find_pers(int level, char *clevel)
893 {
894 struct md_personality *pers;
895 list_for_each_entry(pers, &pers_list, list) {
896 if (level != LEVEL_NONE && pers->level == level)
897 return pers;
898 if (strcmp(pers->name, clevel)==0)
899 return pers;
900 }
901 return NULL;
902 }
903
904 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)905 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
906 {
907 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
908 return MD_NEW_SIZE_SECTORS(num_sectors);
909 }
910
alloc_disk_sb(struct md_rdev * rdev)911 static int alloc_disk_sb(struct md_rdev *rdev)
912 {
913 rdev->sb_page = alloc_page(GFP_KERNEL);
914 if (!rdev->sb_page)
915 return -ENOMEM;
916 return 0;
917 }
918
md_rdev_clear(struct md_rdev * rdev)919 void md_rdev_clear(struct md_rdev *rdev)
920 {
921 if (rdev->sb_page) {
922 put_page(rdev->sb_page);
923 rdev->sb_loaded = 0;
924 rdev->sb_page = NULL;
925 rdev->sb_start = 0;
926 rdev->sectors = 0;
927 }
928 if (rdev->bb_page) {
929 put_page(rdev->bb_page);
930 rdev->bb_page = NULL;
931 }
932 badblocks_exit(&rdev->badblocks);
933 }
934 EXPORT_SYMBOL_GPL(md_rdev_clear);
935
super_written(struct bio * bio)936 static void super_written(struct bio *bio)
937 {
938 struct md_rdev *rdev = bio->bi_private;
939 struct mddev *mddev = rdev->mddev;
940
941 if (bio->bi_status) {
942 pr_err("md: %s gets error=%d\n", __func__,
943 blk_status_to_errno(bio->bi_status));
944 md_error(mddev, rdev);
945 if (!test_bit(Faulty, &rdev->flags)
946 && (bio->bi_opf & MD_FAILFAST)) {
947 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
948 set_bit(LastDev, &rdev->flags);
949 }
950 } else
951 clear_bit(LastDev, &rdev->flags);
952
953 bio_put(bio);
954
955 rdev_dec_pending(rdev, mddev);
956
957 if (atomic_dec_and_test(&mddev->pending_writes))
958 wake_up(&mddev->sb_wait);
959 }
960
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)961 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
962 sector_t sector, int size, struct page *page)
963 {
964 /* write first size bytes of page to sector of rdev
965 * Increment mddev->pending_writes before returning
966 * and decrement it on completion, waking up sb_wait
967 * if zero is reached.
968 * If an error occurred, call md_error
969 */
970 struct bio *bio;
971 int ff = 0;
972
973 if (!page)
974 return;
975
976 if (test_bit(Faulty, &rdev->flags))
977 return;
978
979 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
980
981 atomic_inc(&rdev->nr_pending);
982
983 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
984 bio->bi_iter.bi_sector = sector;
985 bio_add_page(bio, page, size, 0);
986 bio->bi_private = rdev;
987 bio->bi_end_io = super_written;
988
989 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
990 test_bit(FailFast, &rdev->flags) &&
991 !test_bit(LastDev, &rdev->flags))
992 ff = MD_FAILFAST;
993 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
994
995 atomic_inc(&mddev->pending_writes);
996 submit_bio(bio);
997 }
998
md_super_wait(struct mddev * mddev)999 int md_super_wait(struct mddev *mddev)
1000 {
1001 /* wait for all superblock writes that were scheduled to complete */
1002 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1003 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1004 return -EAGAIN;
1005 return 0;
1006 }
1007
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)1008 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1009 struct page *page, int op, int op_flags, bool metadata_op)
1010 {
1011 struct bio bio;
1012 struct bio_vec bvec;
1013
1014 bio_init(&bio, &bvec, 1);
1015
1016 if (metadata_op && rdev->meta_bdev)
1017 bio_set_dev(&bio, rdev->meta_bdev);
1018 else
1019 bio_set_dev(&bio, rdev->bdev);
1020 bio.bi_opf = op | op_flags;
1021 if (metadata_op)
1022 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1023 else if (rdev->mddev->reshape_position != MaxSector &&
1024 (rdev->mddev->reshape_backwards ==
1025 (sector >= rdev->mddev->reshape_position)))
1026 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1027 else
1028 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1029 bio_add_page(&bio, page, size, 0);
1030
1031 submit_bio_wait(&bio);
1032
1033 return !bio.bi_status;
1034 }
1035 EXPORT_SYMBOL_GPL(sync_page_io);
1036
read_disk_sb(struct md_rdev * rdev,int size)1037 static int read_disk_sb(struct md_rdev *rdev, int size)
1038 {
1039 char b[BDEVNAME_SIZE];
1040
1041 if (rdev->sb_loaded)
1042 return 0;
1043
1044 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1045 goto fail;
1046 rdev->sb_loaded = 1;
1047 return 0;
1048
1049 fail:
1050 pr_err("md: disabled device %s, could not read superblock.\n",
1051 bdevname(rdev->bdev,b));
1052 return -EINVAL;
1053 }
1054
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1055 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1056 {
1057 return sb1->set_uuid0 == sb2->set_uuid0 &&
1058 sb1->set_uuid1 == sb2->set_uuid1 &&
1059 sb1->set_uuid2 == sb2->set_uuid2 &&
1060 sb1->set_uuid3 == sb2->set_uuid3;
1061 }
1062
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1063 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1064 {
1065 int ret;
1066 mdp_super_t *tmp1, *tmp2;
1067
1068 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1069 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1070
1071 if (!tmp1 || !tmp2) {
1072 ret = 0;
1073 goto abort;
1074 }
1075
1076 *tmp1 = *sb1;
1077 *tmp2 = *sb2;
1078
1079 /*
1080 * nr_disks is not constant
1081 */
1082 tmp1->nr_disks = 0;
1083 tmp2->nr_disks = 0;
1084
1085 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1086 abort:
1087 kfree(tmp1);
1088 kfree(tmp2);
1089 return ret;
1090 }
1091
md_csum_fold(u32 csum)1092 static u32 md_csum_fold(u32 csum)
1093 {
1094 csum = (csum & 0xffff) + (csum >> 16);
1095 return (csum & 0xffff) + (csum >> 16);
1096 }
1097
calc_sb_csum(mdp_super_t * sb)1098 static unsigned int calc_sb_csum(mdp_super_t *sb)
1099 {
1100 u64 newcsum = 0;
1101 u32 *sb32 = (u32*)sb;
1102 int i;
1103 unsigned int disk_csum, csum;
1104
1105 disk_csum = sb->sb_csum;
1106 sb->sb_csum = 0;
1107
1108 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1109 newcsum += sb32[i];
1110 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1111
1112 #ifdef CONFIG_ALPHA
1113 /* This used to use csum_partial, which was wrong for several
1114 * reasons including that different results are returned on
1115 * different architectures. It isn't critical that we get exactly
1116 * the same return value as before (we always csum_fold before
1117 * testing, and that removes any differences). However as we
1118 * know that csum_partial always returned a 16bit value on
1119 * alphas, do a fold to maximise conformity to previous behaviour.
1120 */
1121 sb->sb_csum = md_csum_fold(disk_csum);
1122 #else
1123 sb->sb_csum = disk_csum;
1124 #endif
1125 return csum;
1126 }
1127
1128 /*
1129 * Handle superblock details.
1130 * We want to be able to handle multiple superblock formats
1131 * so we have a common interface to them all, and an array of
1132 * different handlers.
1133 * We rely on user-space to write the initial superblock, and support
1134 * reading and updating of superblocks.
1135 * Interface methods are:
1136 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1137 * loads and validates a superblock on dev.
1138 * if refdev != NULL, compare superblocks on both devices
1139 * Return:
1140 * 0 - dev has a superblock that is compatible with refdev
1141 * 1 - dev has a superblock that is compatible and newer than refdev
1142 * so dev should be used as the refdev in future
1143 * -EINVAL superblock incompatible or invalid
1144 * -othererror e.g. -EIO
1145 *
1146 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1147 * Verify that dev is acceptable into mddev.
1148 * The first time, mddev->raid_disks will be 0, and data from
1149 * dev should be merged in. Subsequent calls check that dev
1150 * is new enough. Return 0 or -EINVAL
1151 *
1152 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1153 * Update the superblock for rdev with data in mddev
1154 * This does not write to disc.
1155 *
1156 */
1157
1158 struct super_type {
1159 char *name;
1160 struct module *owner;
1161 int (*load_super)(struct md_rdev *rdev,
1162 struct md_rdev *refdev,
1163 int minor_version);
1164 int (*validate_super)(struct mddev *mddev,
1165 struct md_rdev *freshest,
1166 struct md_rdev *rdev);
1167 void (*sync_super)(struct mddev *mddev,
1168 struct md_rdev *rdev);
1169 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1170 sector_t num_sectors);
1171 int (*allow_new_offset)(struct md_rdev *rdev,
1172 unsigned long long new_offset);
1173 };
1174
1175 /*
1176 * Check that the given mddev has no bitmap.
1177 *
1178 * This function is called from the run method of all personalities that do not
1179 * support bitmaps. It prints an error message and returns non-zero if mddev
1180 * has a bitmap. Otherwise, it returns 0.
1181 *
1182 */
md_check_no_bitmap(struct mddev * mddev)1183 int md_check_no_bitmap(struct mddev *mddev)
1184 {
1185 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1186 return 0;
1187 pr_warn("%s: bitmaps are not supported for %s\n",
1188 mdname(mddev), mddev->pers->name);
1189 return 1;
1190 }
1191 EXPORT_SYMBOL(md_check_no_bitmap);
1192
1193 /*
1194 * load_super for 0.90.0
1195 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1196 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1197 {
1198 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1199 mdp_super_t *sb;
1200 int ret;
1201 bool spare_disk = true;
1202
1203 /*
1204 * Calculate the position of the superblock (512byte sectors),
1205 * it's at the end of the disk.
1206 *
1207 * It also happens to be a multiple of 4Kb.
1208 */
1209 rdev->sb_start = calc_dev_sboffset(rdev);
1210
1211 ret = read_disk_sb(rdev, MD_SB_BYTES);
1212 if (ret)
1213 return ret;
1214
1215 ret = -EINVAL;
1216
1217 bdevname(rdev->bdev, b);
1218 sb = page_address(rdev->sb_page);
1219
1220 if (sb->md_magic != MD_SB_MAGIC) {
1221 pr_warn("md: invalid raid superblock magic on %s\n", b);
1222 goto abort;
1223 }
1224
1225 if (sb->major_version != 0 ||
1226 sb->minor_version < 90 ||
1227 sb->minor_version > 91) {
1228 pr_warn("Bad version number %d.%d on %s\n",
1229 sb->major_version, sb->minor_version, b);
1230 goto abort;
1231 }
1232
1233 if (sb->raid_disks <= 0)
1234 goto abort;
1235
1236 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1237 pr_warn("md: invalid superblock checksum on %s\n", b);
1238 goto abort;
1239 }
1240
1241 rdev->preferred_minor = sb->md_minor;
1242 rdev->data_offset = 0;
1243 rdev->new_data_offset = 0;
1244 rdev->sb_size = MD_SB_BYTES;
1245 rdev->badblocks.shift = -1;
1246
1247 if (sb->level == LEVEL_MULTIPATH)
1248 rdev->desc_nr = -1;
1249 else
1250 rdev->desc_nr = sb->this_disk.number;
1251
1252 /* not spare disk, or LEVEL_MULTIPATH */
1253 if (sb->level == LEVEL_MULTIPATH ||
1254 (rdev->desc_nr >= 0 &&
1255 rdev->desc_nr < MD_SB_DISKS &&
1256 sb->disks[rdev->desc_nr].state &
1257 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1258 spare_disk = false;
1259
1260 if (!refdev) {
1261 if (!spare_disk)
1262 ret = 1;
1263 else
1264 ret = 0;
1265 } else {
1266 __u64 ev1, ev2;
1267 mdp_super_t *refsb = page_address(refdev->sb_page);
1268 if (!md_uuid_equal(refsb, sb)) {
1269 pr_warn("md: %s has different UUID to %s\n",
1270 b, bdevname(refdev->bdev,b2));
1271 goto abort;
1272 }
1273 if (!md_sb_equal(refsb, sb)) {
1274 pr_warn("md: %s has same UUID but different superblock to %s\n",
1275 b, bdevname(refdev->bdev, b2));
1276 goto abort;
1277 }
1278 ev1 = md_event(sb);
1279 ev2 = md_event(refsb);
1280
1281 if (!spare_disk && ev1 > ev2)
1282 ret = 1;
1283 else
1284 ret = 0;
1285 }
1286 rdev->sectors = rdev->sb_start;
1287 /* Limit to 4TB as metadata cannot record more than that.
1288 * (not needed for Linear and RAID0 as metadata doesn't
1289 * record this size)
1290 */
1291 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1292 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1293
1294 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1295 /* "this cannot possibly happen" ... */
1296 ret = -EINVAL;
1297
1298 abort:
1299 return ret;
1300 }
1301
1302 /*
1303 * validate_super for 0.90.0
1304 * note: we are not using "freshest" for 0.9 superblock
1305 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1306 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1307 {
1308 mdp_disk_t *desc;
1309 mdp_super_t *sb = page_address(rdev->sb_page);
1310 __u64 ev1 = md_event(sb);
1311
1312 rdev->raid_disk = -1;
1313 clear_bit(Faulty, &rdev->flags);
1314 clear_bit(In_sync, &rdev->flags);
1315 clear_bit(Bitmap_sync, &rdev->flags);
1316 clear_bit(WriteMostly, &rdev->flags);
1317
1318 if (mddev->raid_disks == 0) {
1319 mddev->major_version = 0;
1320 mddev->minor_version = sb->minor_version;
1321 mddev->patch_version = sb->patch_version;
1322 mddev->external = 0;
1323 mddev->chunk_sectors = sb->chunk_size >> 9;
1324 mddev->ctime = sb->ctime;
1325 mddev->utime = sb->utime;
1326 mddev->level = sb->level;
1327 mddev->clevel[0] = 0;
1328 mddev->layout = sb->layout;
1329 mddev->raid_disks = sb->raid_disks;
1330 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1331 mddev->events = ev1;
1332 mddev->bitmap_info.offset = 0;
1333 mddev->bitmap_info.space = 0;
1334 /* bitmap can use 60 K after the 4K superblocks */
1335 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1336 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1337 mddev->reshape_backwards = 0;
1338
1339 if (mddev->minor_version >= 91) {
1340 mddev->reshape_position = sb->reshape_position;
1341 mddev->delta_disks = sb->delta_disks;
1342 mddev->new_level = sb->new_level;
1343 mddev->new_layout = sb->new_layout;
1344 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1345 if (mddev->delta_disks < 0)
1346 mddev->reshape_backwards = 1;
1347 } else {
1348 mddev->reshape_position = MaxSector;
1349 mddev->delta_disks = 0;
1350 mddev->new_level = mddev->level;
1351 mddev->new_layout = mddev->layout;
1352 mddev->new_chunk_sectors = mddev->chunk_sectors;
1353 }
1354 if (mddev->level == 0)
1355 mddev->layout = -1;
1356
1357 if (sb->state & (1<<MD_SB_CLEAN))
1358 mddev->recovery_cp = MaxSector;
1359 else {
1360 if (sb->events_hi == sb->cp_events_hi &&
1361 sb->events_lo == sb->cp_events_lo) {
1362 mddev->recovery_cp = sb->recovery_cp;
1363 } else
1364 mddev->recovery_cp = 0;
1365 }
1366
1367 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1368 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1369 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1370 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1371
1372 mddev->max_disks = MD_SB_DISKS;
1373
1374 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1375 mddev->bitmap_info.file == NULL) {
1376 mddev->bitmap_info.offset =
1377 mddev->bitmap_info.default_offset;
1378 mddev->bitmap_info.space =
1379 mddev->bitmap_info.default_space;
1380 }
1381
1382 } else if (mddev->pers == NULL) {
1383 /* Insist on good event counter while assembling, except
1384 * for spares (which don't need an event count) */
1385 ++ev1;
1386 if (sb->disks[rdev->desc_nr].state & (
1387 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1388 if (ev1 < mddev->events)
1389 return -EINVAL;
1390 } else if (mddev->bitmap) {
1391 /* if adding to array with a bitmap, then we can accept an
1392 * older device ... but not too old.
1393 */
1394 if (ev1 < mddev->bitmap->events_cleared)
1395 return 0;
1396 if (ev1 < mddev->events)
1397 set_bit(Bitmap_sync, &rdev->flags);
1398 } else {
1399 if (ev1 < mddev->events)
1400 /* just a hot-add of a new device, leave raid_disk at -1 */
1401 return 0;
1402 }
1403
1404 if (mddev->level != LEVEL_MULTIPATH) {
1405 desc = sb->disks + rdev->desc_nr;
1406
1407 if (desc->state & (1<<MD_DISK_FAULTY))
1408 set_bit(Faulty, &rdev->flags);
1409 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1410 desc->raid_disk < mddev->raid_disks */) {
1411 set_bit(In_sync, &rdev->flags);
1412 rdev->raid_disk = desc->raid_disk;
1413 rdev->saved_raid_disk = desc->raid_disk;
1414 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1415 /* active but not in sync implies recovery up to
1416 * reshape position. We don't know exactly where
1417 * that is, so set to zero for now */
1418 if (mddev->minor_version >= 91) {
1419 rdev->recovery_offset = 0;
1420 rdev->raid_disk = desc->raid_disk;
1421 }
1422 }
1423 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1424 set_bit(WriteMostly, &rdev->flags);
1425 if (desc->state & (1<<MD_DISK_FAILFAST))
1426 set_bit(FailFast, &rdev->flags);
1427 } else /* MULTIPATH are always insync */
1428 set_bit(In_sync, &rdev->flags);
1429 return 0;
1430 }
1431
1432 /*
1433 * sync_super for 0.90.0
1434 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1435 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1436 {
1437 mdp_super_t *sb;
1438 struct md_rdev *rdev2;
1439 int next_spare = mddev->raid_disks;
1440
1441 /* make rdev->sb match mddev data..
1442 *
1443 * 1/ zero out disks
1444 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1445 * 3/ any empty disks < next_spare become removed
1446 *
1447 * disks[0] gets initialised to REMOVED because
1448 * we cannot be sure from other fields if it has
1449 * been initialised or not.
1450 */
1451 int i;
1452 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1453
1454 rdev->sb_size = MD_SB_BYTES;
1455
1456 sb = page_address(rdev->sb_page);
1457
1458 memset(sb, 0, sizeof(*sb));
1459
1460 sb->md_magic = MD_SB_MAGIC;
1461 sb->major_version = mddev->major_version;
1462 sb->patch_version = mddev->patch_version;
1463 sb->gvalid_words = 0; /* ignored */
1464 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1465 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1466 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1467 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1468
1469 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1470 sb->level = mddev->level;
1471 sb->size = mddev->dev_sectors / 2;
1472 sb->raid_disks = mddev->raid_disks;
1473 sb->md_minor = mddev->md_minor;
1474 sb->not_persistent = 0;
1475 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1476 sb->state = 0;
1477 sb->events_hi = (mddev->events>>32);
1478 sb->events_lo = (u32)mddev->events;
1479
1480 if (mddev->reshape_position == MaxSector)
1481 sb->minor_version = 90;
1482 else {
1483 sb->minor_version = 91;
1484 sb->reshape_position = mddev->reshape_position;
1485 sb->new_level = mddev->new_level;
1486 sb->delta_disks = mddev->delta_disks;
1487 sb->new_layout = mddev->new_layout;
1488 sb->new_chunk = mddev->new_chunk_sectors << 9;
1489 }
1490 mddev->minor_version = sb->minor_version;
1491 if (mddev->in_sync)
1492 {
1493 sb->recovery_cp = mddev->recovery_cp;
1494 sb->cp_events_hi = (mddev->events>>32);
1495 sb->cp_events_lo = (u32)mddev->events;
1496 if (mddev->recovery_cp == MaxSector)
1497 sb->state = (1<< MD_SB_CLEAN);
1498 } else
1499 sb->recovery_cp = 0;
1500
1501 sb->layout = mddev->layout;
1502 sb->chunk_size = mddev->chunk_sectors << 9;
1503
1504 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1505 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1506
1507 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1508 rdev_for_each(rdev2, mddev) {
1509 mdp_disk_t *d;
1510 int desc_nr;
1511 int is_active = test_bit(In_sync, &rdev2->flags);
1512
1513 if (rdev2->raid_disk >= 0 &&
1514 sb->minor_version >= 91)
1515 /* we have nowhere to store the recovery_offset,
1516 * but if it is not below the reshape_position,
1517 * we can piggy-back on that.
1518 */
1519 is_active = 1;
1520 if (rdev2->raid_disk < 0 ||
1521 test_bit(Faulty, &rdev2->flags))
1522 is_active = 0;
1523 if (is_active)
1524 desc_nr = rdev2->raid_disk;
1525 else
1526 desc_nr = next_spare++;
1527 rdev2->desc_nr = desc_nr;
1528 d = &sb->disks[rdev2->desc_nr];
1529 nr_disks++;
1530 d->number = rdev2->desc_nr;
1531 d->major = MAJOR(rdev2->bdev->bd_dev);
1532 d->minor = MINOR(rdev2->bdev->bd_dev);
1533 if (is_active)
1534 d->raid_disk = rdev2->raid_disk;
1535 else
1536 d->raid_disk = rdev2->desc_nr; /* compatibility */
1537 if (test_bit(Faulty, &rdev2->flags))
1538 d->state = (1<<MD_DISK_FAULTY);
1539 else if (is_active) {
1540 d->state = (1<<MD_DISK_ACTIVE);
1541 if (test_bit(In_sync, &rdev2->flags))
1542 d->state |= (1<<MD_DISK_SYNC);
1543 active++;
1544 working++;
1545 } else {
1546 d->state = 0;
1547 spare++;
1548 working++;
1549 }
1550 if (test_bit(WriteMostly, &rdev2->flags))
1551 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1552 if (test_bit(FailFast, &rdev2->flags))
1553 d->state |= (1<<MD_DISK_FAILFAST);
1554 }
1555 /* now set the "removed" and "faulty" bits on any missing devices */
1556 for (i=0 ; i < mddev->raid_disks ; i++) {
1557 mdp_disk_t *d = &sb->disks[i];
1558 if (d->state == 0 && d->number == 0) {
1559 d->number = i;
1560 d->raid_disk = i;
1561 d->state = (1<<MD_DISK_REMOVED);
1562 d->state |= (1<<MD_DISK_FAULTY);
1563 failed++;
1564 }
1565 }
1566 sb->nr_disks = nr_disks;
1567 sb->active_disks = active;
1568 sb->working_disks = working;
1569 sb->failed_disks = failed;
1570 sb->spare_disks = spare;
1571
1572 sb->this_disk = sb->disks[rdev->desc_nr];
1573 sb->sb_csum = calc_sb_csum(sb);
1574 }
1575
1576 /*
1577 * rdev_size_change for 0.90.0
1578 */
1579 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1580 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1581 {
1582 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1583 return 0; /* component must fit device */
1584 if (rdev->mddev->bitmap_info.offset)
1585 return 0; /* can't move bitmap */
1586 rdev->sb_start = calc_dev_sboffset(rdev);
1587 if (!num_sectors || num_sectors > rdev->sb_start)
1588 num_sectors = rdev->sb_start;
1589 /* Limit to 4TB as metadata cannot record more than that.
1590 * 4TB == 2^32 KB, or 2*2^32 sectors.
1591 */
1592 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1593 num_sectors = (sector_t)(2ULL << 32) - 2;
1594 do {
1595 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1596 rdev->sb_page);
1597 } while (md_super_wait(rdev->mddev) < 0);
1598 return num_sectors;
1599 }
1600
1601 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1602 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1603 {
1604 /* non-zero offset changes not possible with v0.90 */
1605 return new_offset == 0;
1606 }
1607
1608 /*
1609 * version 1 superblock
1610 */
1611
calc_sb_1_csum(struct mdp_superblock_1 * sb)1612 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1613 {
1614 __le32 disk_csum;
1615 u32 csum;
1616 unsigned long long newcsum;
1617 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1618 __le32 *isuper = (__le32*)sb;
1619
1620 disk_csum = sb->sb_csum;
1621 sb->sb_csum = 0;
1622 newcsum = 0;
1623 for (; size >= 4; size -= 4)
1624 newcsum += le32_to_cpu(*isuper++);
1625
1626 if (size == 2)
1627 newcsum += le16_to_cpu(*(__le16*) isuper);
1628
1629 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1630 sb->sb_csum = disk_csum;
1631 return cpu_to_le32(csum);
1632 }
1633
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1634 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1635 {
1636 struct mdp_superblock_1 *sb;
1637 int ret;
1638 sector_t sb_start;
1639 sector_t sectors;
1640 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1641 int bmask;
1642 bool spare_disk = true;
1643
1644 /*
1645 * Calculate the position of the superblock in 512byte sectors.
1646 * It is always aligned to a 4K boundary and
1647 * depeding on minor_version, it can be:
1648 * 0: At least 8K, but less than 12K, from end of device
1649 * 1: At start of device
1650 * 2: 4K from start of device.
1651 */
1652 switch(minor_version) {
1653 case 0:
1654 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1655 sb_start -= 8*2;
1656 sb_start &= ~(sector_t)(4*2-1);
1657 break;
1658 case 1:
1659 sb_start = 0;
1660 break;
1661 case 2:
1662 sb_start = 8;
1663 break;
1664 default:
1665 return -EINVAL;
1666 }
1667 rdev->sb_start = sb_start;
1668
1669 /* superblock is rarely larger than 1K, but it can be larger,
1670 * and it is safe to read 4k, so we do that
1671 */
1672 ret = read_disk_sb(rdev, 4096);
1673 if (ret) return ret;
1674
1675 sb = page_address(rdev->sb_page);
1676
1677 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1678 sb->major_version != cpu_to_le32(1) ||
1679 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1680 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1681 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1682 return -EINVAL;
1683
1684 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1685 pr_warn("md: invalid superblock checksum on %s\n",
1686 bdevname(rdev->bdev,b));
1687 return -EINVAL;
1688 }
1689 if (le64_to_cpu(sb->data_size) < 10) {
1690 pr_warn("md: data_size too small on %s\n",
1691 bdevname(rdev->bdev,b));
1692 return -EINVAL;
1693 }
1694 if (sb->pad0 ||
1695 sb->pad3[0] ||
1696 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1697 /* Some padding is non-zero, might be a new feature */
1698 return -EINVAL;
1699
1700 rdev->preferred_minor = 0xffff;
1701 rdev->data_offset = le64_to_cpu(sb->data_offset);
1702 rdev->new_data_offset = rdev->data_offset;
1703 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1704 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1705 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1706 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1707
1708 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1709 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1710 if (rdev->sb_size & bmask)
1711 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1712
1713 if (minor_version
1714 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1715 return -EINVAL;
1716 if (minor_version
1717 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1718 return -EINVAL;
1719
1720 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1721 rdev->desc_nr = -1;
1722 else
1723 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1724
1725 if (!rdev->bb_page) {
1726 rdev->bb_page = alloc_page(GFP_KERNEL);
1727 if (!rdev->bb_page)
1728 return -ENOMEM;
1729 }
1730 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1731 rdev->badblocks.count == 0) {
1732 /* need to load the bad block list.
1733 * Currently we limit it to one page.
1734 */
1735 s32 offset;
1736 sector_t bb_sector;
1737 __le64 *bbp;
1738 int i;
1739 int sectors = le16_to_cpu(sb->bblog_size);
1740 if (sectors > (PAGE_SIZE / 512))
1741 return -EINVAL;
1742 offset = le32_to_cpu(sb->bblog_offset);
1743 if (offset == 0)
1744 return -EINVAL;
1745 bb_sector = (long long)offset;
1746 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1747 rdev->bb_page, REQ_OP_READ, 0, true))
1748 return -EIO;
1749 bbp = (__le64 *)page_address(rdev->bb_page);
1750 rdev->badblocks.shift = sb->bblog_shift;
1751 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1752 u64 bb = le64_to_cpu(*bbp);
1753 int count = bb & (0x3ff);
1754 u64 sector = bb >> 10;
1755 sector <<= sb->bblog_shift;
1756 count <<= sb->bblog_shift;
1757 if (bb + 1 == 0)
1758 break;
1759 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1760 return -EINVAL;
1761 }
1762 } else if (sb->bblog_offset != 0)
1763 rdev->badblocks.shift = 0;
1764
1765 if ((le32_to_cpu(sb->feature_map) &
1766 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1767 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1768 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1769 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1770 }
1771
1772 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1773 sb->level != 0)
1774 return -EINVAL;
1775
1776 /* not spare disk, or LEVEL_MULTIPATH */
1777 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1778 (rdev->desc_nr >= 0 &&
1779 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1780 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1781 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1782 spare_disk = false;
1783
1784 if (!refdev) {
1785 if (!spare_disk)
1786 ret = 1;
1787 else
1788 ret = 0;
1789 } else {
1790 __u64 ev1, ev2;
1791 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1792
1793 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1794 sb->level != refsb->level ||
1795 sb->layout != refsb->layout ||
1796 sb->chunksize != refsb->chunksize) {
1797 pr_warn("md: %s has strangely different superblock to %s\n",
1798 bdevname(rdev->bdev,b),
1799 bdevname(refdev->bdev,b2));
1800 return -EINVAL;
1801 }
1802 ev1 = le64_to_cpu(sb->events);
1803 ev2 = le64_to_cpu(refsb->events);
1804
1805 if (!spare_disk && ev1 > ev2)
1806 ret = 1;
1807 else
1808 ret = 0;
1809 }
1810 if (minor_version) {
1811 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1812 sectors -= rdev->data_offset;
1813 } else
1814 sectors = rdev->sb_start;
1815 if (sectors < le64_to_cpu(sb->data_size))
1816 return -EINVAL;
1817 rdev->sectors = le64_to_cpu(sb->data_size);
1818 return ret;
1819 }
1820
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1821 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1822 {
1823 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1824 __u64 ev1 = le64_to_cpu(sb->events);
1825
1826 rdev->raid_disk = -1;
1827 clear_bit(Faulty, &rdev->flags);
1828 clear_bit(In_sync, &rdev->flags);
1829 clear_bit(Bitmap_sync, &rdev->flags);
1830 clear_bit(WriteMostly, &rdev->flags);
1831
1832 if (mddev->raid_disks == 0) {
1833 mddev->major_version = 1;
1834 mddev->patch_version = 0;
1835 mddev->external = 0;
1836 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1837 mddev->ctime = le64_to_cpu(sb->ctime);
1838 mddev->utime = le64_to_cpu(sb->utime);
1839 mddev->level = le32_to_cpu(sb->level);
1840 mddev->clevel[0] = 0;
1841 mddev->layout = le32_to_cpu(sb->layout);
1842 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1843 mddev->dev_sectors = le64_to_cpu(sb->size);
1844 mddev->events = ev1;
1845 mddev->bitmap_info.offset = 0;
1846 mddev->bitmap_info.space = 0;
1847 /* Default location for bitmap is 1K after superblock
1848 * using 3K - total of 4K
1849 */
1850 mddev->bitmap_info.default_offset = 1024 >> 9;
1851 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1852 mddev->reshape_backwards = 0;
1853
1854 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1855 memcpy(mddev->uuid, sb->set_uuid, 16);
1856
1857 mddev->max_disks = (4096-256)/2;
1858
1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1860 mddev->bitmap_info.file == NULL) {
1861 mddev->bitmap_info.offset =
1862 (__s32)le32_to_cpu(sb->bitmap_offset);
1863 /* Metadata doesn't record how much space is available.
1864 * For 1.0, we assume we can use up to the superblock
1865 * if before, else to 4K beyond superblock.
1866 * For others, assume no change is possible.
1867 */
1868 if (mddev->minor_version > 0)
1869 mddev->bitmap_info.space = 0;
1870 else if (mddev->bitmap_info.offset > 0)
1871 mddev->bitmap_info.space =
1872 8 - mddev->bitmap_info.offset;
1873 else
1874 mddev->bitmap_info.space =
1875 -mddev->bitmap_info.offset;
1876 }
1877
1878 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1879 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1880 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1881 mddev->new_level = le32_to_cpu(sb->new_level);
1882 mddev->new_layout = le32_to_cpu(sb->new_layout);
1883 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1884 if (mddev->delta_disks < 0 ||
1885 (mddev->delta_disks == 0 &&
1886 (le32_to_cpu(sb->feature_map)
1887 & MD_FEATURE_RESHAPE_BACKWARDS)))
1888 mddev->reshape_backwards = 1;
1889 } else {
1890 mddev->reshape_position = MaxSector;
1891 mddev->delta_disks = 0;
1892 mddev->new_level = mddev->level;
1893 mddev->new_layout = mddev->layout;
1894 mddev->new_chunk_sectors = mddev->chunk_sectors;
1895 }
1896
1897 if (mddev->level == 0 &&
1898 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1899 mddev->layout = -1;
1900
1901 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1902 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1903
1904 if (le32_to_cpu(sb->feature_map) &
1905 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1906 if (le32_to_cpu(sb->feature_map) &
1907 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1908 return -EINVAL;
1909 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1910 (le32_to_cpu(sb->feature_map) &
1911 MD_FEATURE_MULTIPLE_PPLS))
1912 return -EINVAL;
1913 set_bit(MD_HAS_PPL, &mddev->flags);
1914 }
1915 } else if (mddev->pers == NULL) {
1916 /* Insist of good event counter while assembling, except for
1917 * spares (which don't need an event count).
1918 * Similar to mdadm, we allow event counter difference of 1
1919 * from the freshest device.
1920 */
1921 if (rdev->desc_nr >= 0 &&
1922 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1923 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1924 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1925 if (ev1 + 1 < mddev->events)
1926 return -EINVAL;
1927 } else if (mddev->bitmap) {
1928 /* If adding to array with a bitmap, then we can accept an
1929 * older device, but not too old.
1930 */
1931 if (ev1 < mddev->bitmap->events_cleared)
1932 return 0;
1933 if (ev1 < mddev->events)
1934 set_bit(Bitmap_sync, &rdev->flags);
1935 } else {
1936 if (ev1 < mddev->events)
1937 /* just a hot-add of a new device, leave raid_disk at -1 */
1938 return 0;
1939 }
1940 if (mddev->level != LEVEL_MULTIPATH) {
1941 int role;
1942 if (rdev->desc_nr < 0 ||
1943 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1944 role = MD_DISK_ROLE_SPARE;
1945 rdev->desc_nr = -1;
1946 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
1947 /*
1948 * If we are assembling, and our event counter is smaller than the
1949 * highest event counter, we cannot trust our superblock about the role.
1950 * It could happen that our rdev was marked as Faulty, and all other
1951 * superblocks were updated with +1 event counter.
1952 * Then, before the next superblock update, which typically happens when
1953 * remove_and_add_spares() removes the device from the array, there was
1954 * a crash or reboot.
1955 * If we allow current rdev without consulting the freshest superblock,
1956 * we could cause data corruption.
1957 * Note that in this case our event counter is smaller by 1 than the
1958 * highest, otherwise, this rdev would not be allowed into array;
1959 * both kernel and mdadm allow event counter difference of 1.
1960 */
1961 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
1962 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
1963
1964 if (rdev->desc_nr >= freshest_max_dev) {
1965 /* this is unexpected, better not proceed */
1966 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
1967 mdname(mddev), rdev->bdev, rdev->desc_nr,
1968 freshest->bdev, freshest_max_dev);
1969 return -EUCLEAN;
1970 }
1971
1972 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
1973 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
1974 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
1975 } else {
1976 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1977 }
1978 switch(role) {
1979 case MD_DISK_ROLE_SPARE: /* spare */
1980 break;
1981 case MD_DISK_ROLE_FAULTY: /* faulty */
1982 set_bit(Faulty, &rdev->flags);
1983 break;
1984 case MD_DISK_ROLE_JOURNAL: /* journal device */
1985 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1986 /* journal device without journal feature */
1987 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1988 return -EINVAL;
1989 }
1990 set_bit(Journal, &rdev->flags);
1991 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1992 rdev->raid_disk = 0;
1993 break;
1994 default:
1995 rdev->saved_raid_disk = role;
1996 if ((le32_to_cpu(sb->feature_map) &
1997 MD_FEATURE_RECOVERY_OFFSET)) {
1998 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1999 if (!(le32_to_cpu(sb->feature_map) &
2000 MD_FEATURE_RECOVERY_BITMAP))
2001 rdev->saved_raid_disk = -1;
2002 } else {
2003 /*
2004 * If the array is FROZEN, then the device can't
2005 * be in_sync with rest of array.
2006 */
2007 if (!test_bit(MD_RECOVERY_FROZEN,
2008 &mddev->recovery))
2009 set_bit(In_sync, &rdev->flags);
2010 }
2011 rdev->raid_disk = role;
2012 break;
2013 }
2014 if (sb->devflags & WriteMostly1)
2015 set_bit(WriteMostly, &rdev->flags);
2016 if (sb->devflags & FailFast1)
2017 set_bit(FailFast, &rdev->flags);
2018 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2019 set_bit(Replacement, &rdev->flags);
2020 } else /* MULTIPATH are always insync */
2021 set_bit(In_sync, &rdev->flags);
2022
2023 return 0;
2024 }
2025
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2026 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2027 {
2028 struct mdp_superblock_1 *sb;
2029 struct md_rdev *rdev2;
2030 int max_dev, i;
2031 /* make rdev->sb match mddev and rdev data. */
2032
2033 sb = page_address(rdev->sb_page);
2034
2035 sb->feature_map = 0;
2036 sb->pad0 = 0;
2037 sb->recovery_offset = cpu_to_le64(0);
2038 memset(sb->pad3, 0, sizeof(sb->pad3));
2039
2040 sb->utime = cpu_to_le64((__u64)mddev->utime);
2041 sb->events = cpu_to_le64(mddev->events);
2042 if (mddev->in_sync)
2043 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2044 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2045 sb->resync_offset = cpu_to_le64(MaxSector);
2046 else
2047 sb->resync_offset = cpu_to_le64(0);
2048
2049 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2050
2051 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2052 sb->size = cpu_to_le64(mddev->dev_sectors);
2053 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2054 sb->level = cpu_to_le32(mddev->level);
2055 sb->layout = cpu_to_le32(mddev->layout);
2056 if (test_bit(FailFast, &rdev->flags))
2057 sb->devflags |= FailFast1;
2058 else
2059 sb->devflags &= ~FailFast1;
2060
2061 if (test_bit(WriteMostly, &rdev->flags))
2062 sb->devflags |= WriteMostly1;
2063 else
2064 sb->devflags &= ~WriteMostly1;
2065 sb->data_offset = cpu_to_le64(rdev->data_offset);
2066 sb->data_size = cpu_to_le64(rdev->sectors);
2067
2068 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2069 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2070 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2071 }
2072
2073 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2074 !test_bit(In_sync, &rdev->flags)) {
2075 sb->feature_map |=
2076 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2077 sb->recovery_offset =
2078 cpu_to_le64(rdev->recovery_offset);
2079 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2080 sb->feature_map |=
2081 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2082 }
2083 /* Note: recovery_offset and journal_tail share space */
2084 if (test_bit(Journal, &rdev->flags))
2085 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2086 if (test_bit(Replacement, &rdev->flags))
2087 sb->feature_map |=
2088 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2089
2090 if (mddev->reshape_position != MaxSector) {
2091 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2092 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2093 sb->new_layout = cpu_to_le32(mddev->new_layout);
2094 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2095 sb->new_level = cpu_to_le32(mddev->new_level);
2096 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2097 if (mddev->delta_disks == 0 &&
2098 mddev->reshape_backwards)
2099 sb->feature_map
2100 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2101 if (rdev->new_data_offset != rdev->data_offset) {
2102 sb->feature_map
2103 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2104 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2105 - rdev->data_offset));
2106 }
2107 }
2108
2109 if (mddev_is_clustered(mddev))
2110 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2111
2112 if (rdev->badblocks.count == 0)
2113 /* Nothing to do for bad blocks*/ ;
2114 else if (sb->bblog_offset == 0)
2115 /* Cannot record bad blocks on this device */
2116 md_error(mddev, rdev);
2117 else {
2118 struct badblocks *bb = &rdev->badblocks;
2119 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2120 u64 *p = bb->page;
2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2122 if (bb->changed) {
2123 unsigned seq;
2124
2125 retry:
2126 seq = read_seqbegin(&bb->lock);
2127
2128 memset(bbp, 0xff, PAGE_SIZE);
2129
2130 for (i = 0 ; i < bb->count ; i++) {
2131 u64 internal_bb = p[i];
2132 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2133 | BB_LEN(internal_bb));
2134 bbp[i] = cpu_to_le64(store_bb);
2135 }
2136 bb->changed = 0;
2137 if (read_seqretry(&bb->lock, seq))
2138 goto retry;
2139
2140 bb->sector = (rdev->sb_start +
2141 (int)le32_to_cpu(sb->bblog_offset));
2142 bb->size = le16_to_cpu(sb->bblog_size);
2143 }
2144 }
2145
2146 max_dev = 0;
2147 rdev_for_each(rdev2, mddev)
2148 if (rdev2->desc_nr+1 > max_dev)
2149 max_dev = rdev2->desc_nr+1;
2150
2151 if (max_dev > le32_to_cpu(sb->max_dev)) {
2152 int bmask;
2153 sb->max_dev = cpu_to_le32(max_dev);
2154 rdev->sb_size = max_dev * 2 + 256;
2155 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2156 if (rdev->sb_size & bmask)
2157 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2158 } else
2159 max_dev = le32_to_cpu(sb->max_dev);
2160
2161 for (i=0; i<max_dev;i++)
2162 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2163
2164 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2165 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2166
2167 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2168 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2169 sb->feature_map |=
2170 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2171 else
2172 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2173 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2174 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2175 }
2176
2177 rdev_for_each(rdev2, mddev) {
2178 i = rdev2->desc_nr;
2179 if (test_bit(Faulty, &rdev2->flags))
2180 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2181 else if (test_bit(In_sync, &rdev2->flags))
2182 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2183 else if (test_bit(Journal, &rdev2->flags))
2184 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2185 else if (rdev2->raid_disk >= 0)
2186 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2187 else
2188 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2189 }
2190
2191 sb->sb_csum = calc_sb_1_csum(sb);
2192 }
2193
super_1_choose_bm_space(sector_t dev_size)2194 static sector_t super_1_choose_bm_space(sector_t dev_size)
2195 {
2196 sector_t bm_space;
2197
2198 /* if the device is bigger than 8Gig, save 64k for bitmap
2199 * usage, if bigger than 200Gig, save 128k
2200 */
2201 if (dev_size < 64*2)
2202 bm_space = 0;
2203 else if (dev_size - 64*2 >= 200*1024*1024*2)
2204 bm_space = 128*2;
2205 else if (dev_size - 4*2 > 8*1024*1024*2)
2206 bm_space = 64*2;
2207 else
2208 bm_space = 4*2;
2209 return bm_space;
2210 }
2211
2212 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2213 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2214 {
2215 struct mdp_superblock_1 *sb;
2216 sector_t max_sectors;
2217 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2218 return 0; /* component must fit device */
2219 if (rdev->data_offset != rdev->new_data_offset)
2220 return 0; /* too confusing */
2221 if (rdev->sb_start < rdev->data_offset) {
2222 /* minor versions 1 and 2; superblock before data */
2223 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2224 max_sectors -= rdev->data_offset;
2225 if (!num_sectors || num_sectors > max_sectors)
2226 num_sectors = max_sectors;
2227 } else if (rdev->mddev->bitmap_info.offset) {
2228 /* minor version 0 with bitmap we can't move */
2229 return 0;
2230 } else {
2231 /* minor version 0; superblock after data */
2232 sector_t sb_start, bm_space;
2233 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2234
2235 /* 8K is for superblock */
2236 sb_start = dev_size - 8*2;
2237 sb_start &= ~(sector_t)(4*2 - 1);
2238
2239 bm_space = super_1_choose_bm_space(dev_size);
2240
2241 /* Space that can be used to store date needs to decrease
2242 * superblock bitmap space and bad block space(4K)
2243 */
2244 max_sectors = sb_start - bm_space - 4*2;
2245
2246 if (!num_sectors || num_sectors > max_sectors)
2247 num_sectors = max_sectors;
2248 rdev->sb_start = sb_start;
2249 }
2250 sb = page_address(rdev->sb_page);
2251 sb->data_size = cpu_to_le64(num_sectors);
2252 sb->super_offset = cpu_to_le64(rdev->sb_start);
2253 sb->sb_csum = calc_sb_1_csum(sb);
2254 do {
2255 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2256 rdev->sb_page);
2257 } while (md_super_wait(rdev->mddev) < 0);
2258 return num_sectors;
2259
2260 }
2261
2262 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2263 super_1_allow_new_offset(struct md_rdev *rdev,
2264 unsigned long long new_offset)
2265 {
2266 /* All necessary checks on new >= old have been done */
2267 struct bitmap *bitmap;
2268 if (new_offset >= rdev->data_offset)
2269 return 1;
2270
2271 /* with 1.0 metadata, there is no metadata to tread on
2272 * so we can always move back */
2273 if (rdev->mddev->minor_version == 0)
2274 return 1;
2275
2276 /* otherwise we must be sure not to step on
2277 * any metadata, so stay:
2278 * 36K beyond start of superblock
2279 * beyond end of badblocks
2280 * beyond write-intent bitmap
2281 */
2282 if (rdev->sb_start + (32+4)*2 > new_offset)
2283 return 0;
2284 bitmap = rdev->mddev->bitmap;
2285 if (bitmap && !rdev->mddev->bitmap_info.file &&
2286 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2287 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2288 return 0;
2289 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2290 return 0;
2291
2292 return 1;
2293 }
2294
2295 static struct super_type super_types[] = {
2296 [0] = {
2297 .name = "0.90.0",
2298 .owner = THIS_MODULE,
2299 .load_super = super_90_load,
2300 .validate_super = super_90_validate,
2301 .sync_super = super_90_sync,
2302 .rdev_size_change = super_90_rdev_size_change,
2303 .allow_new_offset = super_90_allow_new_offset,
2304 },
2305 [1] = {
2306 .name = "md-1",
2307 .owner = THIS_MODULE,
2308 .load_super = super_1_load,
2309 .validate_super = super_1_validate,
2310 .sync_super = super_1_sync,
2311 .rdev_size_change = super_1_rdev_size_change,
2312 .allow_new_offset = super_1_allow_new_offset,
2313 },
2314 };
2315
sync_super(struct mddev * mddev,struct md_rdev * rdev)2316 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2317 {
2318 if (mddev->sync_super) {
2319 mddev->sync_super(mddev, rdev);
2320 return;
2321 }
2322
2323 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2324
2325 super_types[mddev->major_version].sync_super(mddev, rdev);
2326 }
2327
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2328 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2329 {
2330 struct md_rdev *rdev, *rdev2;
2331
2332 rcu_read_lock();
2333 rdev_for_each_rcu(rdev, mddev1) {
2334 if (test_bit(Faulty, &rdev->flags) ||
2335 test_bit(Journal, &rdev->flags) ||
2336 rdev->raid_disk == -1)
2337 continue;
2338 rdev_for_each_rcu(rdev2, mddev2) {
2339 if (test_bit(Faulty, &rdev2->flags) ||
2340 test_bit(Journal, &rdev2->flags) ||
2341 rdev2->raid_disk == -1)
2342 continue;
2343 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2344 rcu_read_unlock();
2345 return 1;
2346 }
2347 }
2348 }
2349 rcu_read_unlock();
2350 return 0;
2351 }
2352
2353 static LIST_HEAD(pending_raid_disks);
2354
2355 /*
2356 * Try to register data integrity profile for an mddev
2357 *
2358 * This is called when an array is started and after a disk has been kicked
2359 * from the array. It only succeeds if all working and active component devices
2360 * are integrity capable with matching profiles.
2361 */
md_integrity_register(struct mddev * mddev)2362 int md_integrity_register(struct mddev *mddev)
2363 {
2364 struct md_rdev *rdev, *reference = NULL;
2365
2366 if (list_empty(&mddev->disks))
2367 return 0; /* nothing to do */
2368 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2369 return 0; /* shouldn't register, or already is */
2370 rdev_for_each(rdev, mddev) {
2371 /* skip spares and non-functional disks */
2372 if (test_bit(Faulty, &rdev->flags))
2373 continue;
2374 if (rdev->raid_disk < 0)
2375 continue;
2376 if (!reference) {
2377 /* Use the first rdev as the reference */
2378 reference = rdev;
2379 continue;
2380 }
2381 /* does this rdev's profile match the reference profile? */
2382 if (blk_integrity_compare(reference->bdev->bd_disk,
2383 rdev->bdev->bd_disk) < 0)
2384 return -EINVAL;
2385 }
2386 if (!reference || !bdev_get_integrity(reference->bdev))
2387 return 0;
2388 /*
2389 * All component devices are integrity capable and have matching
2390 * profiles, register the common profile for the md device.
2391 */
2392 blk_integrity_register(mddev->gendisk,
2393 bdev_get_integrity(reference->bdev));
2394
2395 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2396 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2397 (mddev->level != 1 && mddev->level != 10 &&
2398 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2399 /*
2400 * No need to handle the failure of bioset_integrity_create,
2401 * because the function is called by md_run() -> pers->run(),
2402 * md_run calls bioset_exit -> bioset_integrity_free in case
2403 * of failure case.
2404 */
2405 pr_err("md: failed to create integrity pool for %s\n",
2406 mdname(mddev));
2407 return -EINVAL;
2408 }
2409 return 0;
2410 }
2411 EXPORT_SYMBOL(md_integrity_register);
2412
2413 /*
2414 * Attempt to add an rdev, but only if it is consistent with the current
2415 * integrity profile
2416 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2417 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2418 {
2419 struct blk_integrity *bi_mddev;
2420 char name[BDEVNAME_SIZE];
2421
2422 if (!mddev->gendisk)
2423 return 0;
2424
2425 bi_mddev = blk_get_integrity(mddev->gendisk);
2426
2427 if (!bi_mddev) /* nothing to do */
2428 return 0;
2429
2430 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2431 pr_err("%s: incompatible integrity profile for %s\n",
2432 mdname(mddev), bdevname(rdev->bdev, name));
2433 return -ENXIO;
2434 }
2435
2436 return 0;
2437 }
2438 EXPORT_SYMBOL(md_integrity_add_rdev);
2439
rdev_read_only(struct md_rdev * rdev)2440 static bool rdev_read_only(struct md_rdev *rdev)
2441 {
2442 return bdev_read_only(rdev->bdev) ||
2443 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2444 }
2445
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2446 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2447 {
2448 char b[BDEVNAME_SIZE];
2449 int err;
2450
2451 /* prevent duplicates */
2452 if (find_rdev(mddev, rdev->bdev->bd_dev))
2453 return -EEXIST;
2454
2455 if (rdev_read_only(rdev) && mddev->pers)
2456 return -EROFS;
2457
2458 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2459 if (!test_bit(Journal, &rdev->flags) &&
2460 rdev->sectors &&
2461 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2462 if (mddev->pers) {
2463 /* Cannot change size, so fail
2464 * If mddev->level <= 0, then we don't care
2465 * about aligning sizes (e.g. linear)
2466 */
2467 if (mddev->level > 0)
2468 return -ENOSPC;
2469 } else
2470 mddev->dev_sectors = rdev->sectors;
2471 }
2472
2473 /* Verify rdev->desc_nr is unique.
2474 * If it is -1, assign a free number, else
2475 * check number is not in use
2476 */
2477 rcu_read_lock();
2478 if (rdev->desc_nr < 0) {
2479 int choice = 0;
2480 if (mddev->pers)
2481 choice = mddev->raid_disks;
2482 while (md_find_rdev_nr_rcu(mddev, choice))
2483 choice++;
2484 rdev->desc_nr = choice;
2485 } else {
2486 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2487 rcu_read_unlock();
2488 return -EBUSY;
2489 }
2490 }
2491 rcu_read_unlock();
2492 if (!test_bit(Journal, &rdev->flags) &&
2493 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2494 pr_warn("md: %s: array is limited to %d devices\n",
2495 mdname(mddev), mddev->max_disks);
2496 return -EBUSY;
2497 }
2498 bdevname(rdev->bdev,b);
2499 strreplace(b, '/', '!');
2500
2501 rdev->mddev = mddev;
2502 pr_debug("md: bind<%s>\n", b);
2503
2504 if (mddev->raid_disks)
2505 mddev_create_serial_pool(mddev, rdev, false);
2506
2507 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2508 goto fail;
2509
2510 /* failure here is OK */
2511 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2512 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2513 rdev->sysfs_unack_badblocks =
2514 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2515 rdev->sysfs_badblocks =
2516 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2517
2518 list_add_rcu(&rdev->same_set, &mddev->disks);
2519 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2520
2521 /* May as well allow recovery to be retried once */
2522 mddev->recovery_disabled++;
2523
2524 return 0;
2525
2526 fail:
2527 pr_warn("md: failed to register dev-%s for %s\n",
2528 b, mdname(mddev));
2529 return err;
2530 }
2531
rdev_delayed_delete(struct work_struct * ws)2532 static void rdev_delayed_delete(struct work_struct *ws)
2533 {
2534 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2535 kobject_del(&rdev->kobj);
2536 kobject_put(&rdev->kobj);
2537 }
2538
unbind_rdev_from_array(struct md_rdev * rdev)2539 static void unbind_rdev_from_array(struct md_rdev *rdev)
2540 {
2541 char b[BDEVNAME_SIZE];
2542
2543 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2544 list_del_rcu(&rdev->same_set);
2545 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2546 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2547 rdev->mddev = NULL;
2548 sysfs_remove_link(&rdev->kobj, "block");
2549 sysfs_put(rdev->sysfs_state);
2550 sysfs_put(rdev->sysfs_unack_badblocks);
2551 sysfs_put(rdev->sysfs_badblocks);
2552 rdev->sysfs_state = NULL;
2553 rdev->sysfs_unack_badblocks = NULL;
2554 rdev->sysfs_badblocks = NULL;
2555 rdev->badblocks.count = 0;
2556 /* We need to delay this, otherwise we can deadlock when
2557 * writing to 'remove' to "dev/state". We also need
2558 * to delay it due to rcu usage.
2559 */
2560 synchronize_rcu();
2561 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2562 kobject_get(&rdev->kobj);
2563 queue_work(md_rdev_misc_wq, &rdev->del_work);
2564 }
2565
2566 /*
2567 * prevent the device from being mounted, repartitioned or
2568 * otherwise reused by a RAID array (or any other kernel
2569 * subsystem), by bd_claiming the device.
2570 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2571 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2572 {
2573 int err = 0;
2574 struct block_device *bdev;
2575
2576 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2577 shared ? (struct md_rdev *)lock_rdev : rdev);
2578 if (IS_ERR(bdev)) {
2579 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2580 MAJOR(dev), MINOR(dev));
2581 return PTR_ERR(bdev);
2582 }
2583 rdev->bdev = bdev;
2584 return err;
2585 }
2586
unlock_rdev(struct md_rdev * rdev)2587 static void unlock_rdev(struct md_rdev *rdev)
2588 {
2589 struct block_device *bdev = rdev->bdev;
2590 rdev->bdev = NULL;
2591 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2592 }
2593
2594 void md_autodetect_dev(dev_t dev);
2595
export_rdev(struct md_rdev * rdev)2596 static void export_rdev(struct md_rdev *rdev)
2597 {
2598 char b[BDEVNAME_SIZE];
2599
2600 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2601 md_rdev_clear(rdev);
2602 #ifndef MODULE
2603 if (test_bit(AutoDetected, &rdev->flags))
2604 md_autodetect_dev(rdev->bdev->bd_dev);
2605 #endif
2606 unlock_rdev(rdev);
2607 kobject_put(&rdev->kobj);
2608 }
2609
md_kick_rdev_from_array(struct md_rdev * rdev)2610 void md_kick_rdev_from_array(struct md_rdev *rdev)
2611 {
2612 unbind_rdev_from_array(rdev);
2613 export_rdev(rdev);
2614 }
2615 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2616
export_array(struct mddev * mddev)2617 static void export_array(struct mddev *mddev)
2618 {
2619 struct md_rdev *rdev;
2620
2621 while (!list_empty(&mddev->disks)) {
2622 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2623 same_set);
2624 md_kick_rdev_from_array(rdev);
2625 }
2626 mddev->raid_disks = 0;
2627 mddev->major_version = 0;
2628 }
2629
set_in_sync(struct mddev * mddev)2630 static bool set_in_sync(struct mddev *mddev)
2631 {
2632 lockdep_assert_held(&mddev->lock);
2633 if (!mddev->in_sync) {
2634 mddev->sync_checkers++;
2635 spin_unlock(&mddev->lock);
2636 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2637 spin_lock(&mddev->lock);
2638 if (!mddev->in_sync &&
2639 percpu_ref_is_zero(&mddev->writes_pending)) {
2640 mddev->in_sync = 1;
2641 /*
2642 * Ensure ->in_sync is visible before we clear
2643 * ->sync_checkers.
2644 */
2645 smp_mb();
2646 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2647 sysfs_notify_dirent_safe(mddev->sysfs_state);
2648 }
2649 if (--mddev->sync_checkers == 0)
2650 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2651 }
2652 if (mddev->safemode == 1)
2653 mddev->safemode = 0;
2654 return mddev->in_sync;
2655 }
2656
sync_sbs(struct mddev * mddev,int nospares)2657 static void sync_sbs(struct mddev *mddev, int nospares)
2658 {
2659 /* Update each superblock (in-memory image), but
2660 * if we are allowed to, skip spares which already
2661 * have the right event counter, or have one earlier
2662 * (which would mean they aren't being marked as dirty
2663 * with the rest of the array)
2664 */
2665 struct md_rdev *rdev;
2666 rdev_for_each(rdev, mddev) {
2667 if (rdev->sb_events == mddev->events ||
2668 (nospares &&
2669 rdev->raid_disk < 0 &&
2670 rdev->sb_events+1 == mddev->events)) {
2671 /* Don't update this superblock */
2672 rdev->sb_loaded = 2;
2673 } else {
2674 sync_super(mddev, rdev);
2675 rdev->sb_loaded = 1;
2676 }
2677 }
2678 }
2679
does_sb_need_changing(struct mddev * mddev)2680 static bool does_sb_need_changing(struct mddev *mddev)
2681 {
2682 struct md_rdev *rdev = NULL, *iter;
2683 struct mdp_superblock_1 *sb;
2684 int role;
2685
2686 /* Find a good rdev */
2687 rdev_for_each(iter, mddev)
2688 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2689 rdev = iter;
2690 break;
2691 }
2692
2693 /* No good device found. */
2694 if (!rdev)
2695 return false;
2696
2697 sb = page_address(rdev->sb_page);
2698 /* Check if a device has become faulty or a spare become active */
2699 rdev_for_each(rdev, mddev) {
2700 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2701 /* Device activated? */
2702 if (role == 0xffff && rdev->raid_disk >=0 &&
2703 !test_bit(Faulty, &rdev->flags))
2704 return true;
2705 /* Device turned faulty? */
2706 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2707 return true;
2708 }
2709
2710 /* Check if any mddev parameters have changed */
2711 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2712 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2713 (mddev->layout != le32_to_cpu(sb->layout)) ||
2714 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2715 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2716 return true;
2717
2718 return false;
2719 }
2720
md_update_sb(struct mddev * mddev,int force_change)2721 void md_update_sb(struct mddev *mddev, int force_change)
2722 {
2723 struct md_rdev *rdev;
2724 int sync_req;
2725 int nospares = 0;
2726 int any_badblocks_changed = 0;
2727 int ret = -1;
2728
2729 if (!md_is_rdwr(mddev)) {
2730 if (force_change)
2731 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2732 return;
2733 }
2734
2735 repeat:
2736 if (mddev_is_clustered(mddev)) {
2737 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2738 force_change = 1;
2739 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2740 nospares = 1;
2741 ret = md_cluster_ops->metadata_update_start(mddev);
2742 /* Has someone else has updated the sb */
2743 if (!does_sb_need_changing(mddev)) {
2744 if (ret == 0)
2745 md_cluster_ops->metadata_update_cancel(mddev);
2746 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2747 BIT(MD_SB_CHANGE_DEVS) |
2748 BIT(MD_SB_CHANGE_CLEAN));
2749 return;
2750 }
2751 }
2752
2753 /*
2754 * First make sure individual recovery_offsets are correct
2755 * curr_resync_completed can only be used during recovery.
2756 * During reshape/resync it might use array-addresses rather
2757 * that device addresses.
2758 */
2759 rdev_for_each(rdev, mddev) {
2760 if (rdev->raid_disk >= 0 &&
2761 mddev->delta_disks >= 0 &&
2762 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2763 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2764 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2765 !test_bit(Journal, &rdev->flags) &&
2766 !test_bit(In_sync, &rdev->flags) &&
2767 mddev->curr_resync_completed > rdev->recovery_offset)
2768 rdev->recovery_offset = mddev->curr_resync_completed;
2769
2770 }
2771 if (!mddev->persistent) {
2772 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2773 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2774 if (!mddev->external) {
2775 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2776 rdev_for_each(rdev, mddev) {
2777 if (rdev->badblocks.changed) {
2778 rdev->badblocks.changed = 0;
2779 ack_all_badblocks(&rdev->badblocks);
2780 md_error(mddev, rdev);
2781 }
2782 clear_bit(Blocked, &rdev->flags);
2783 clear_bit(BlockedBadBlocks, &rdev->flags);
2784 wake_up(&rdev->blocked_wait);
2785 }
2786 }
2787 wake_up(&mddev->sb_wait);
2788 return;
2789 }
2790
2791 spin_lock(&mddev->lock);
2792
2793 mddev->utime = ktime_get_real_seconds();
2794
2795 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2796 force_change = 1;
2797 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2798 /* just a clean<-> dirty transition, possibly leave spares alone,
2799 * though if events isn't the right even/odd, we will have to do
2800 * spares after all
2801 */
2802 nospares = 1;
2803 if (force_change)
2804 nospares = 0;
2805 if (mddev->degraded)
2806 /* If the array is degraded, then skipping spares is both
2807 * dangerous and fairly pointless.
2808 * Dangerous because a device that was removed from the array
2809 * might have a event_count that still looks up-to-date,
2810 * so it can be re-added without a resync.
2811 * Pointless because if there are any spares to skip,
2812 * then a recovery will happen and soon that array won't
2813 * be degraded any more and the spare can go back to sleep then.
2814 */
2815 nospares = 0;
2816
2817 sync_req = mddev->in_sync;
2818
2819 /* If this is just a dirty<->clean transition, and the array is clean
2820 * and 'events' is odd, we can roll back to the previous clean state */
2821 if (nospares
2822 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2823 && mddev->can_decrease_events
2824 && mddev->events != 1) {
2825 mddev->events--;
2826 mddev->can_decrease_events = 0;
2827 } else {
2828 /* otherwise we have to go forward and ... */
2829 mddev->events ++;
2830 mddev->can_decrease_events = nospares;
2831 }
2832
2833 /*
2834 * This 64-bit counter should never wrap.
2835 * Either we are in around ~1 trillion A.C., assuming
2836 * 1 reboot per second, or we have a bug...
2837 */
2838 WARN_ON(mddev->events == 0);
2839
2840 rdev_for_each(rdev, mddev) {
2841 if (rdev->badblocks.changed)
2842 any_badblocks_changed++;
2843 if (test_bit(Faulty, &rdev->flags))
2844 set_bit(FaultRecorded, &rdev->flags);
2845 }
2846
2847 sync_sbs(mddev, nospares);
2848 spin_unlock(&mddev->lock);
2849
2850 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2851 mdname(mddev), mddev->in_sync);
2852
2853 if (mddev->queue)
2854 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2855 rewrite:
2856 md_bitmap_update_sb(mddev->bitmap);
2857 rdev_for_each(rdev, mddev) {
2858 char b[BDEVNAME_SIZE];
2859
2860 if (rdev->sb_loaded != 1)
2861 continue; /* no noise on spare devices */
2862
2863 if (!test_bit(Faulty, &rdev->flags)) {
2864 md_super_write(mddev,rdev,
2865 rdev->sb_start, rdev->sb_size,
2866 rdev->sb_page);
2867 pr_debug("md: (write) %s's sb offset: %llu\n",
2868 bdevname(rdev->bdev, b),
2869 (unsigned long long)rdev->sb_start);
2870 rdev->sb_events = mddev->events;
2871 if (rdev->badblocks.size) {
2872 md_super_write(mddev, rdev,
2873 rdev->badblocks.sector,
2874 rdev->badblocks.size << 9,
2875 rdev->bb_page);
2876 rdev->badblocks.size = 0;
2877 }
2878
2879 } else
2880 pr_debug("md: %s (skipping faulty)\n",
2881 bdevname(rdev->bdev, b));
2882
2883 if (mddev->level == LEVEL_MULTIPATH)
2884 /* only need to write one superblock... */
2885 break;
2886 }
2887 if (md_super_wait(mddev) < 0)
2888 goto rewrite;
2889 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2890
2891 if (mddev_is_clustered(mddev) && ret == 0)
2892 md_cluster_ops->metadata_update_finish(mddev);
2893
2894 if (mddev->in_sync != sync_req ||
2895 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2896 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2897 /* have to write it out again */
2898 goto repeat;
2899 wake_up(&mddev->sb_wait);
2900 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2901 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2902
2903 rdev_for_each(rdev, mddev) {
2904 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2905 clear_bit(Blocked, &rdev->flags);
2906
2907 if (any_badblocks_changed)
2908 ack_all_badblocks(&rdev->badblocks);
2909 clear_bit(BlockedBadBlocks, &rdev->flags);
2910 wake_up(&rdev->blocked_wait);
2911 }
2912 }
2913 EXPORT_SYMBOL(md_update_sb);
2914
add_bound_rdev(struct md_rdev * rdev)2915 static int add_bound_rdev(struct md_rdev *rdev)
2916 {
2917 struct mddev *mddev = rdev->mddev;
2918 int err = 0;
2919 bool add_journal = test_bit(Journal, &rdev->flags);
2920
2921 if (!mddev->pers->hot_remove_disk || add_journal) {
2922 /* If there is hot_add_disk but no hot_remove_disk
2923 * then added disks for geometry changes,
2924 * and should be added immediately.
2925 */
2926 super_types[mddev->major_version].
2927 validate_super(mddev, NULL/*freshest*/, rdev);
2928 if (add_journal)
2929 mddev_suspend(mddev);
2930 err = mddev->pers->hot_add_disk(mddev, rdev);
2931 if (add_journal)
2932 mddev_resume(mddev);
2933 if (err) {
2934 md_kick_rdev_from_array(rdev);
2935 return err;
2936 }
2937 }
2938 sysfs_notify_dirent_safe(rdev->sysfs_state);
2939
2940 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2941 if (mddev->degraded)
2942 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2943 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2944 md_new_event(mddev);
2945 md_wakeup_thread(mddev->thread);
2946 return 0;
2947 }
2948
2949 /* words written to sysfs files may, or may not, be \n terminated.
2950 * We want to accept with case. For this we use cmd_match.
2951 */
cmd_match(const char * cmd,const char * str)2952 static int cmd_match(const char *cmd, const char *str)
2953 {
2954 /* See if cmd, written into a sysfs file, matches
2955 * str. They must either be the same, or cmd can
2956 * have a trailing newline
2957 */
2958 while (*cmd && *str && *cmd == *str) {
2959 cmd++;
2960 str++;
2961 }
2962 if (*cmd == '\n')
2963 cmd++;
2964 if (*str || *cmd)
2965 return 0;
2966 return 1;
2967 }
2968
2969 struct rdev_sysfs_entry {
2970 struct attribute attr;
2971 ssize_t (*show)(struct md_rdev *, char *);
2972 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2973 };
2974
2975 static ssize_t
state_show(struct md_rdev * rdev,char * page)2976 state_show(struct md_rdev *rdev, char *page)
2977 {
2978 char *sep = ",";
2979 size_t len = 0;
2980 unsigned long flags = READ_ONCE(rdev->flags);
2981
2982 if (test_bit(Faulty, &flags) ||
2983 (!test_bit(ExternalBbl, &flags) &&
2984 rdev->badblocks.unacked_exist))
2985 len += sprintf(page+len, "faulty%s", sep);
2986 if (test_bit(In_sync, &flags))
2987 len += sprintf(page+len, "in_sync%s", sep);
2988 if (test_bit(Journal, &flags))
2989 len += sprintf(page+len, "journal%s", sep);
2990 if (test_bit(WriteMostly, &flags))
2991 len += sprintf(page+len, "write_mostly%s", sep);
2992 if (test_bit(Blocked, &flags) ||
2993 (rdev->badblocks.unacked_exist
2994 && !test_bit(Faulty, &flags)))
2995 len += sprintf(page+len, "blocked%s", sep);
2996 if (!test_bit(Faulty, &flags) &&
2997 !test_bit(Journal, &flags) &&
2998 !test_bit(In_sync, &flags))
2999 len += sprintf(page+len, "spare%s", sep);
3000 if (test_bit(WriteErrorSeen, &flags))
3001 len += sprintf(page+len, "write_error%s", sep);
3002 if (test_bit(WantReplacement, &flags))
3003 len += sprintf(page+len, "want_replacement%s", sep);
3004 if (test_bit(Replacement, &flags))
3005 len += sprintf(page+len, "replacement%s", sep);
3006 if (test_bit(ExternalBbl, &flags))
3007 len += sprintf(page+len, "external_bbl%s", sep);
3008 if (test_bit(FailFast, &flags))
3009 len += sprintf(page+len, "failfast%s", sep);
3010
3011 if (len)
3012 len -= strlen(sep);
3013
3014 return len+sprintf(page+len, "\n");
3015 }
3016
3017 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)3018 state_store(struct md_rdev *rdev, const char *buf, size_t len)
3019 {
3020 /* can write
3021 * faulty - simulates an error
3022 * remove - disconnects the device
3023 * writemostly - sets write_mostly
3024 * -writemostly - clears write_mostly
3025 * blocked - sets the Blocked flags
3026 * -blocked - clears the Blocked and possibly simulates an error
3027 * insync - sets Insync providing device isn't active
3028 * -insync - clear Insync for a device with a slot assigned,
3029 * so that it gets rebuilt based on bitmap
3030 * write_error - sets WriteErrorSeen
3031 * -write_error - clears WriteErrorSeen
3032 * {,-}failfast - set/clear FailFast
3033 */
3034
3035 struct mddev *mddev = rdev->mddev;
3036 int err = -EINVAL;
3037 bool need_update_sb = false;
3038
3039 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3040 md_error(rdev->mddev, rdev);
3041
3042 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
3043 err = -EBUSY;
3044 else
3045 err = 0;
3046 } else if (cmd_match(buf, "remove")) {
3047 if (rdev->mddev->pers) {
3048 clear_bit(Blocked, &rdev->flags);
3049 remove_and_add_spares(rdev->mddev, rdev);
3050 }
3051 if (rdev->raid_disk >= 0)
3052 err = -EBUSY;
3053 else {
3054 err = 0;
3055 if (mddev_is_clustered(mddev))
3056 err = md_cluster_ops->remove_disk(mddev, rdev);
3057
3058 if (err == 0) {
3059 md_kick_rdev_from_array(rdev);
3060 if (mddev->pers) {
3061 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3062 md_wakeup_thread(mddev->thread);
3063 }
3064 md_new_event(mddev);
3065 }
3066 }
3067 } else if (cmd_match(buf, "writemostly")) {
3068 set_bit(WriteMostly, &rdev->flags);
3069 mddev_create_serial_pool(rdev->mddev, rdev, false);
3070 need_update_sb = true;
3071 err = 0;
3072 } else if (cmd_match(buf, "-writemostly")) {
3073 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3074 clear_bit(WriteMostly, &rdev->flags);
3075 need_update_sb = true;
3076 err = 0;
3077 } else if (cmd_match(buf, "blocked")) {
3078 set_bit(Blocked, &rdev->flags);
3079 err = 0;
3080 } else if (cmd_match(buf, "-blocked")) {
3081 if (!test_bit(Faulty, &rdev->flags) &&
3082 !test_bit(ExternalBbl, &rdev->flags) &&
3083 rdev->badblocks.unacked_exist) {
3084 /* metadata handler doesn't understand badblocks,
3085 * so we need to fail the device
3086 */
3087 md_error(rdev->mddev, rdev);
3088 }
3089 clear_bit(Blocked, &rdev->flags);
3090 clear_bit(BlockedBadBlocks, &rdev->flags);
3091 wake_up(&rdev->blocked_wait);
3092 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3093 md_wakeup_thread(rdev->mddev->thread);
3094
3095 err = 0;
3096 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3097 set_bit(In_sync, &rdev->flags);
3098 err = 0;
3099 } else if (cmd_match(buf, "failfast")) {
3100 set_bit(FailFast, &rdev->flags);
3101 need_update_sb = true;
3102 err = 0;
3103 } else if (cmd_match(buf, "-failfast")) {
3104 clear_bit(FailFast, &rdev->flags);
3105 need_update_sb = true;
3106 err = 0;
3107 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3108 !test_bit(Journal, &rdev->flags)) {
3109 if (rdev->mddev->pers == NULL) {
3110 clear_bit(In_sync, &rdev->flags);
3111 rdev->saved_raid_disk = rdev->raid_disk;
3112 rdev->raid_disk = -1;
3113 err = 0;
3114 }
3115 } else if (cmd_match(buf, "write_error")) {
3116 set_bit(WriteErrorSeen, &rdev->flags);
3117 err = 0;
3118 } else if (cmd_match(buf, "-write_error")) {
3119 clear_bit(WriteErrorSeen, &rdev->flags);
3120 err = 0;
3121 } else if (cmd_match(buf, "want_replacement")) {
3122 /* Any non-spare device that is not a replacement can
3123 * become want_replacement at any time, but we then need to
3124 * check if recovery is needed.
3125 */
3126 if (rdev->raid_disk >= 0 &&
3127 !test_bit(Journal, &rdev->flags) &&
3128 !test_bit(Replacement, &rdev->flags))
3129 set_bit(WantReplacement, &rdev->flags);
3130 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3131 md_wakeup_thread(rdev->mddev->thread);
3132 err = 0;
3133 } else if (cmd_match(buf, "-want_replacement")) {
3134 /* Clearing 'want_replacement' is always allowed.
3135 * Once replacements starts it is too late though.
3136 */
3137 err = 0;
3138 clear_bit(WantReplacement, &rdev->flags);
3139 } else if (cmd_match(buf, "replacement")) {
3140 /* Can only set a device as a replacement when array has not
3141 * yet been started. Once running, replacement is automatic
3142 * from spares, or by assigning 'slot'.
3143 */
3144 if (rdev->mddev->pers)
3145 err = -EBUSY;
3146 else {
3147 set_bit(Replacement, &rdev->flags);
3148 err = 0;
3149 }
3150 } else if (cmd_match(buf, "-replacement")) {
3151 /* Similarly, can only clear Replacement before start */
3152 if (rdev->mddev->pers)
3153 err = -EBUSY;
3154 else {
3155 clear_bit(Replacement, &rdev->flags);
3156 err = 0;
3157 }
3158 } else if (cmd_match(buf, "re-add")) {
3159 if (!rdev->mddev->pers)
3160 err = -EINVAL;
3161 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3162 rdev->saved_raid_disk >= 0) {
3163 /* clear_bit is performed _after_ all the devices
3164 * have their local Faulty bit cleared. If any writes
3165 * happen in the meantime in the local node, they
3166 * will land in the local bitmap, which will be synced
3167 * by this node eventually
3168 */
3169 if (!mddev_is_clustered(rdev->mddev) ||
3170 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3171 clear_bit(Faulty, &rdev->flags);
3172 err = add_bound_rdev(rdev);
3173 }
3174 } else
3175 err = -EBUSY;
3176 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3177 set_bit(ExternalBbl, &rdev->flags);
3178 rdev->badblocks.shift = 0;
3179 err = 0;
3180 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3181 clear_bit(ExternalBbl, &rdev->flags);
3182 err = 0;
3183 }
3184 if (need_update_sb)
3185 md_update_sb(mddev, 1);
3186 if (!err)
3187 sysfs_notify_dirent_safe(rdev->sysfs_state);
3188 return err ? err : len;
3189 }
3190 static struct rdev_sysfs_entry rdev_state =
3191 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3192
3193 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3194 errors_show(struct md_rdev *rdev, char *page)
3195 {
3196 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3197 }
3198
3199 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3200 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3201 {
3202 unsigned int n;
3203 int rv;
3204
3205 rv = kstrtouint(buf, 10, &n);
3206 if (rv < 0)
3207 return rv;
3208 atomic_set(&rdev->corrected_errors, n);
3209 return len;
3210 }
3211 static struct rdev_sysfs_entry rdev_errors =
3212 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3213
3214 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3215 slot_show(struct md_rdev *rdev, char *page)
3216 {
3217 if (test_bit(Journal, &rdev->flags))
3218 return sprintf(page, "journal\n");
3219 else if (rdev->raid_disk < 0)
3220 return sprintf(page, "none\n");
3221 else
3222 return sprintf(page, "%d\n", rdev->raid_disk);
3223 }
3224
3225 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3226 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3227 {
3228 int slot;
3229 int err;
3230
3231 if (test_bit(Journal, &rdev->flags))
3232 return -EBUSY;
3233 if (strncmp(buf, "none", 4)==0)
3234 slot = -1;
3235 else {
3236 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3237 if (err < 0)
3238 return err;
3239 if (slot < 0)
3240 /* overflow */
3241 return -ENOSPC;
3242 }
3243 if (rdev->mddev->pers && slot == -1) {
3244 /* Setting 'slot' on an active array requires also
3245 * updating the 'rd%d' link, and communicating
3246 * with the personality with ->hot_*_disk.
3247 * For now we only support removing
3248 * failed/spare devices. This normally happens automatically,
3249 * but not when the metadata is externally managed.
3250 */
3251 if (rdev->raid_disk == -1)
3252 return -EEXIST;
3253 /* personality does all needed checks */
3254 if (rdev->mddev->pers->hot_remove_disk == NULL)
3255 return -EINVAL;
3256 clear_bit(Blocked, &rdev->flags);
3257 remove_and_add_spares(rdev->mddev, rdev);
3258 if (rdev->raid_disk >= 0)
3259 return -EBUSY;
3260 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3261 md_wakeup_thread(rdev->mddev->thread);
3262 } else if (rdev->mddev->pers) {
3263 /* Activating a spare .. or possibly reactivating
3264 * if we ever get bitmaps working here.
3265 */
3266 int err;
3267
3268 if (rdev->raid_disk != -1)
3269 return -EBUSY;
3270
3271 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3272 return -EBUSY;
3273
3274 if (rdev->mddev->pers->hot_add_disk == NULL)
3275 return -EINVAL;
3276
3277 if (slot >= rdev->mddev->raid_disks &&
3278 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3279 return -ENOSPC;
3280
3281 rdev->raid_disk = slot;
3282 if (test_bit(In_sync, &rdev->flags))
3283 rdev->saved_raid_disk = slot;
3284 else
3285 rdev->saved_raid_disk = -1;
3286 clear_bit(In_sync, &rdev->flags);
3287 clear_bit(Bitmap_sync, &rdev->flags);
3288 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3289 if (err) {
3290 rdev->raid_disk = -1;
3291 return err;
3292 } else
3293 sysfs_notify_dirent_safe(rdev->sysfs_state);
3294 /* failure here is OK */;
3295 sysfs_link_rdev(rdev->mddev, rdev);
3296 /* don't wakeup anyone, leave that to userspace. */
3297 } else {
3298 if (slot >= rdev->mddev->raid_disks &&
3299 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3300 return -ENOSPC;
3301 rdev->raid_disk = slot;
3302 /* assume it is working */
3303 clear_bit(Faulty, &rdev->flags);
3304 clear_bit(WriteMostly, &rdev->flags);
3305 set_bit(In_sync, &rdev->flags);
3306 sysfs_notify_dirent_safe(rdev->sysfs_state);
3307 }
3308 return len;
3309 }
3310
3311 static struct rdev_sysfs_entry rdev_slot =
3312 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3313
3314 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3315 offset_show(struct md_rdev *rdev, char *page)
3316 {
3317 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3318 }
3319
3320 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3321 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3322 {
3323 unsigned long long offset;
3324 if (kstrtoull(buf, 10, &offset) < 0)
3325 return -EINVAL;
3326 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3327 return -EBUSY;
3328 if (rdev->sectors && rdev->mddev->external)
3329 /* Must set offset before size, so overlap checks
3330 * can be sane */
3331 return -EBUSY;
3332 rdev->data_offset = offset;
3333 rdev->new_data_offset = offset;
3334 return len;
3335 }
3336
3337 static struct rdev_sysfs_entry rdev_offset =
3338 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3339
new_offset_show(struct md_rdev * rdev,char * page)3340 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3341 {
3342 return sprintf(page, "%llu\n",
3343 (unsigned long long)rdev->new_data_offset);
3344 }
3345
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3346 static ssize_t new_offset_store(struct md_rdev *rdev,
3347 const char *buf, size_t len)
3348 {
3349 unsigned long long new_offset;
3350 struct mddev *mddev = rdev->mddev;
3351
3352 if (kstrtoull(buf, 10, &new_offset) < 0)
3353 return -EINVAL;
3354
3355 if (mddev->sync_thread ||
3356 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3357 return -EBUSY;
3358 if (new_offset == rdev->data_offset)
3359 /* reset is always permitted */
3360 ;
3361 else if (new_offset > rdev->data_offset) {
3362 /* must not push array size beyond rdev_sectors */
3363 if (new_offset - rdev->data_offset
3364 + mddev->dev_sectors > rdev->sectors)
3365 return -E2BIG;
3366 }
3367 /* Metadata worries about other space details. */
3368
3369 /* decreasing the offset is inconsistent with a backwards
3370 * reshape.
3371 */
3372 if (new_offset < rdev->data_offset &&
3373 mddev->reshape_backwards)
3374 return -EINVAL;
3375 /* Increasing offset is inconsistent with forwards
3376 * reshape. reshape_direction should be set to
3377 * 'backwards' first.
3378 */
3379 if (new_offset > rdev->data_offset &&
3380 !mddev->reshape_backwards)
3381 return -EINVAL;
3382
3383 if (mddev->pers && mddev->persistent &&
3384 !super_types[mddev->major_version]
3385 .allow_new_offset(rdev, new_offset))
3386 return -E2BIG;
3387 rdev->new_data_offset = new_offset;
3388 if (new_offset > rdev->data_offset)
3389 mddev->reshape_backwards = 1;
3390 else if (new_offset < rdev->data_offset)
3391 mddev->reshape_backwards = 0;
3392
3393 return len;
3394 }
3395 static struct rdev_sysfs_entry rdev_new_offset =
3396 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3397
3398 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3399 rdev_size_show(struct md_rdev *rdev, char *page)
3400 {
3401 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3402 }
3403
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3404 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3405 {
3406 /* check if two start/length pairs overlap */
3407 if (s1+l1 <= s2)
3408 return 0;
3409 if (s2+l2 <= s1)
3410 return 0;
3411 return 1;
3412 }
3413
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3414 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3415 {
3416 unsigned long long blocks;
3417 sector_t new;
3418
3419 if (kstrtoull(buf, 10, &blocks) < 0)
3420 return -EINVAL;
3421
3422 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3423 return -EINVAL; /* sector conversion overflow */
3424
3425 new = blocks * 2;
3426 if (new != blocks * 2)
3427 return -EINVAL; /* unsigned long long to sector_t overflow */
3428
3429 *sectors = new;
3430 return 0;
3431 }
3432
3433 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3434 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3435 {
3436 struct mddev *my_mddev = rdev->mddev;
3437 sector_t oldsectors = rdev->sectors;
3438 sector_t sectors;
3439
3440 if (test_bit(Journal, &rdev->flags))
3441 return -EBUSY;
3442 if (strict_blocks_to_sectors(buf, §ors) < 0)
3443 return -EINVAL;
3444 if (rdev->data_offset != rdev->new_data_offset)
3445 return -EINVAL; /* too confusing */
3446 if (my_mddev->pers && rdev->raid_disk >= 0) {
3447 if (my_mddev->persistent) {
3448 sectors = super_types[my_mddev->major_version].
3449 rdev_size_change(rdev, sectors);
3450 if (!sectors)
3451 return -EBUSY;
3452 } else if (!sectors)
3453 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3454 rdev->data_offset;
3455 if (!my_mddev->pers->resize)
3456 /* Cannot change size for RAID0 or Linear etc */
3457 return -EINVAL;
3458 }
3459 if (sectors < my_mddev->dev_sectors)
3460 return -EINVAL; /* component must fit device */
3461
3462 rdev->sectors = sectors;
3463 if (sectors > oldsectors && my_mddev->external) {
3464 /* Need to check that all other rdevs with the same
3465 * ->bdev do not overlap. 'rcu' is sufficient to walk
3466 * the rdev lists safely.
3467 * This check does not provide a hard guarantee, it
3468 * just helps avoid dangerous mistakes.
3469 */
3470 struct mddev *mddev;
3471 int overlap = 0;
3472 struct list_head *tmp;
3473
3474 rcu_read_lock();
3475 for_each_mddev(mddev, tmp) {
3476 struct md_rdev *rdev2;
3477
3478 rdev_for_each(rdev2, mddev)
3479 if (rdev->bdev == rdev2->bdev &&
3480 rdev != rdev2 &&
3481 overlaps(rdev->data_offset, rdev->sectors,
3482 rdev2->data_offset,
3483 rdev2->sectors)) {
3484 overlap = 1;
3485 break;
3486 }
3487 if (overlap) {
3488 mddev_put(mddev);
3489 break;
3490 }
3491 }
3492 rcu_read_unlock();
3493 if (overlap) {
3494 /* Someone else could have slipped in a size
3495 * change here, but doing so is just silly.
3496 * We put oldsectors back because we *know* it is
3497 * safe, and trust userspace not to race with
3498 * itself
3499 */
3500 rdev->sectors = oldsectors;
3501 return -EBUSY;
3502 }
3503 }
3504 return len;
3505 }
3506
3507 static struct rdev_sysfs_entry rdev_size =
3508 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3509
recovery_start_show(struct md_rdev * rdev,char * page)3510 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3511 {
3512 unsigned long long recovery_start = rdev->recovery_offset;
3513
3514 if (test_bit(In_sync, &rdev->flags) ||
3515 recovery_start == MaxSector)
3516 return sprintf(page, "none\n");
3517
3518 return sprintf(page, "%llu\n", recovery_start);
3519 }
3520
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3521 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3522 {
3523 unsigned long long recovery_start;
3524
3525 if (cmd_match(buf, "none"))
3526 recovery_start = MaxSector;
3527 else if (kstrtoull(buf, 10, &recovery_start))
3528 return -EINVAL;
3529
3530 if (rdev->mddev->pers &&
3531 rdev->raid_disk >= 0)
3532 return -EBUSY;
3533
3534 rdev->recovery_offset = recovery_start;
3535 if (recovery_start == MaxSector)
3536 set_bit(In_sync, &rdev->flags);
3537 else
3538 clear_bit(In_sync, &rdev->flags);
3539 return len;
3540 }
3541
3542 static struct rdev_sysfs_entry rdev_recovery_start =
3543 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3544
3545 /* sysfs access to bad-blocks list.
3546 * We present two files.
3547 * 'bad-blocks' lists sector numbers and lengths of ranges that
3548 * are recorded as bad. The list is truncated to fit within
3549 * the one-page limit of sysfs.
3550 * Writing "sector length" to this file adds an acknowledged
3551 * bad block list.
3552 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3553 * been acknowledged. Writing to this file adds bad blocks
3554 * without acknowledging them. This is largely for testing.
3555 */
bb_show(struct md_rdev * rdev,char * page)3556 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3557 {
3558 return badblocks_show(&rdev->badblocks, page, 0);
3559 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3560 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3561 {
3562 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3563 /* Maybe that ack was all we needed */
3564 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3565 wake_up(&rdev->blocked_wait);
3566 return rv;
3567 }
3568 static struct rdev_sysfs_entry rdev_bad_blocks =
3569 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3570
ubb_show(struct md_rdev * rdev,char * page)3571 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3572 {
3573 return badblocks_show(&rdev->badblocks, page, 1);
3574 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3575 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3576 {
3577 return badblocks_store(&rdev->badblocks, page, len, 1);
3578 }
3579 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3580 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3581
3582 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3583 ppl_sector_show(struct md_rdev *rdev, char *page)
3584 {
3585 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3586 }
3587
3588 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3589 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3590 {
3591 unsigned long long sector;
3592
3593 if (kstrtoull(buf, 10, §or) < 0)
3594 return -EINVAL;
3595 if (sector != (sector_t)sector)
3596 return -EINVAL;
3597
3598 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3599 rdev->raid_disk >= 0)
3600 return -EBUSY;
3601
3602 if (rdev->mddev->persistent) {
3603 if (rdev->mddev->major_version == 0)
3604 return -EINVAL;
3605 if ((sector > rdev->sb_start &&
3606 sector - rdev->sb_start > S16_MAX) ||
3607 (sector < rdev->sb_start &&
3608 rdev->sb_start - sector > -S16_MIN))
3609 return -EINVAL;
3610 rdev->ppl.offset = sector - rdev->sb_start;
3611 } else if (!rdev->mddev->external) {
3612 return -EBUSY;
3613 }
3614 rdev->ppl.sector = sector;
3615 return len;
3616 }
3617
3618 static struct rdev_sysfs_entry rdev_ppl_sector =
3619 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3620
3621 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3622 ppl_size_show(struct md_rdev *rdev, char *page)
3623 {
3624 return sprintf(page, "%u\n", rdev->ppl.size);
3625 }
3626
3627 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3628 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3629 {
3630 unsigned int size;
3631
3632 if (kstrtouint(buf, 10, &size) < 0)
3633 return -EINVAL;
3634
3635 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3636 rdev->raid_disk >= 0)
3637 return -EBUSY;
3638
3639 if (rdev->mddev->persistent) {
3640 if (rdev->mddev->major_version == 0)
3641 return -EINVAL;
3642 if (size > U16_MAX)
3643 return -EINVAL;
3644 } else if (!rdev->mddev->external) {
3645 return -EBUSY;
3646 }
3647 rdev->ppl.size = size;
3648 return len;
3649 }
3650
3651 static struct rdev_sysfs_entry rdev_ppl_size =
3652 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3653
3654 static struct attribute *rdev_default_attrs[] = {
3655 &rdev_state.attr,
3656 &rdev_errors.attr,
3657 &rdev_slot.attr,
3658 &rdev_offset.attr,
3659 &rdev_new_offset.attr,
3660 &rdev_size.attr,
3661 &rdev_recovery_start.attr,
3662 &rdev_bad_blocks.attr,
3663 &rdev_unack_bad_blocks.attr,
3664 &rdev_ppl_sector.attr,
3665 &rdev_ppl_size.attr,
3666 NULL,
3667 };
3668 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3669 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3670 {
3671 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3672 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3673
3674 if (!entry->show)
3675 return -EIO;
3676 if (!rdev->mddev)
3677 return -ENODEV;
3678 return entry->show(rdev, page);
3679 }
3680
3681 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3682 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3683 const char *page, size_t length)
3684 {
3685 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3686 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3687 ssize_t rv;
3688 struct mddev *mddev = rdev->mddev;
3689
3690 if (!entry->store)
3691 return -EIO;
3692 if (!capable(CAP_SYS_ADMIN))
3693 return -EACCES;
3694 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3695 if (!rv) {
3696 if (rdev->mddev == NULL)
3697 rv = -ENODEV;
3698 else
3699 rv = entry->store(rdev, page, length);
3700 mddev_unlock(mddev);
3701 }
3702 return rv;
3703 }
3704
rdev_free(struct kobject * ko)3705 static void rdev_free(struct kobject *ko)
3706 {
3707 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3708 kfree(rdev);
3709 }
3710 static const struct sysfs_ops rdev_sysfs_ops = {
3711 .show = rdev_attr_show,
3712 .store = rdev_attr_store,
3713 };
3714 static struct kobj_type rdev_ktype = {
3715 .release = rdev_free,
3716 .sysfs_ops = &rdev_sysfs_ops,
3717 .default_attrs = rdev_default_attrs,
3718 };
3719
md_rdev_init(struct md_rdev * rdev)3720 int md_rdev_init(struct md_rdev *rdev)
3721 {
3722 rdev->desc_nr = -1;
3723 rdev->saved_raid_disk = -1;
3724 rdev->raid_disk = -1;
3725 rdev->flags = 0;
3726 rdev->data_offset = 0;
3727 rdev->new_data_offset = 0;
3728 rdev->sb_events = 0;
3729 rdev->last_read_error = 0;
3730 rdev->sb_loaded = 0;
3731 rdev->bb_page = NULL;
3732 atomic_set(&rdev->nr_pending, 0);
3733 atomic_set(&rdev->read_errors, 0);
3734 atomic_set(&rdev->corrected_errors, 0);
3735
3736 INIT_LIST_HEAD(&rdev->same_set);
3737 init_waitqueue_head(&rdev->blocked_wait);
3738
3739 /* Add space to store bad block list.
3740 * This reserves the space even on arrays where it cannot
3741 * be used - I wonder if that matters
3742 */
3743 return badblocks_init(&rdev->badblocks, 0);
3744 }
3745 EXPORT_SYMBOL_GPL(md_rdev_init);
3746 /*
3747 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3748 *
3749 * mark the device faulty if:
3750 *
3751 * - the device is nonexistent (zero size)
3752 * - the device has no valid superblock
3753 *
3754 * a faulty rdev _never_ has rdev->sb set.
3755 */
md_import_device(dev_t newdev,int super_format,int super_minor)3756 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3757 {
3758 char b[BDEVNAME_SIZE];
3759 int err;
3760 struct md_rdev *rdev;
3761 sector_t size;
3762
3763 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3764 if (!rdev)
3765 return ERR_PTR(-ENOMEM);
3766
3767 err = md_rdev_init(rdev);
3768 if (err)
3769 goto abort_free;
3770 err = alloc_disk_sb(rdev);
3771 if (err)
3772 goto abort_free;
3773
3774 err = lock_rdev(rdev, newdev, super_format == -2);
3775 if (err)
3776 goto abort_free;
3777
3778 kobject_init(&rdev->kobj, &rdev_ktype);
3779
3780 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3781 if (!size) {
3782 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3783 bdevname(rdev->bdev,b));
3784 err = -EINVAL;
3785 goto abort_free;
3786 }
3787
3788 if (super_format >= 0) {
3789 err = super_types[super_format].
3790 load_super(rdev, NULL, super_minor);
3791 if (err == -EINVAL) {
3792 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3793 bdevname(rdev->bdev,b),
3794 super_format, super_minor);
3795 goto abort_free;
3796 }
3797 if (err < 0) {
3798 pr_warn("md: could not read %s's sb, not importing!\n",
3799 bdevname(rdev->bdev,b));
3800 goto abort_free;
3801 }
3802 }
3803
3804 return rdev;
3805
3806 abort_free:
3807 if (rdev->bdev)
3808 unlock_rdev(rdev);
3809 md_rdev_clear(rdev);
3810 kfree(rdev);
3811 return ERR_PTR(err);
3812 }
3813
3814 /*
3815 * Check a full RAID array for plausibility
3816 */
3817
analyze_sbs(struct mddev * mddev)3818 static int analyze_sbs(struct mddev *mddev)
3819 {
3820 int i;
3821 struct md_rdev *rdev, *freshest, *tmp;
3822 char b[BDEVNAME_SIZE];
3823
3824 freshest = NULL;
3825 rdev_for_each_safe(rdev, tmp, mddev)
3826 switch (super_types[mddev->major_version].
3827 load_super(rdev, freshest, mddev->minor_version)) {
3828 case 1:
3829 freshest = rdev;
3830 break;
3831 case 0:
3832 break;
3833 default:
3834 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3835 bdevname(rdev->bdev,b));
3836 md_kick_rdev_from_array(rdev);
3837 }
3838
3839 /* Cannot find a valid fresh disk */
3840 if (!freshest) {
3841 pr_warn("md: cannot find a valid disk\n");
3842 return -EINVAL;
3843 }
3844
3845 super_types[mddev->major_version].
3846 validate_super(mddev, NULL/*freshest*/, freshest);
3847
3848 i = 0;
3849 rdev_for_each_safe(rdev, tmp, mddev) {
3850 if (mddev->max_disks &&
3851 (rdev->desc_nr >= mddev->max_disks ||
3852 i > mddev->max_disks)) {
3853 pr_warn("md: %s: %s: only %d devices permitted\n",
3854 mdname(mddev), bdevname(rdev->bdev, b),
3855 mddev->max_disks);
3856 md_kick_rdev_from_array(rdev);
3857 continue;
3858 }
3859 if (rdev != freshest) {
3860 if (super_types[mddev->major_version].
3861 validate_super(mddev, freshest, rdev)) {
3862 pr_warn("md: kicking non-fresh %s from array!\n",
3863 bdevname(rdev->bdev,b));
3864 md_kick_rdev_from_array(rdev);
3865 continue;
3866 }
3867 }
3868 if (mddev->level == LEVEL_MULTIPATH) {
3869 rdev->desc_nr = i++;
3870 rdev->raid_disk = rdev->desc_nr;
3871 set_bit(In_sync, &rdev->flags);
3872 } else if (rdev->raid_disk >=
3873 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3874 !test_bit(Journal, &rdev->flags)) {
3875 rdev->raid_disk = -1;
3876 clear_bit(In_sync, &rdev->flags);
3877 }
3878 }
3879
3880 return 0;
3881 }
3882
3883 /* Read a fixed-point number.
3884 * Numbers in sysfs attributes should be in "standard" units where
3885 * possible, so time should be in seconds.
3886 * However we internally use a a much smaller unit such as
3887 * milliseconds or jiffies.
3888 * This function takes a decimal number with a possible fractional
3889 * component, and produces an integer which is the result of
3890 * multiplying that number by 10^'scale'.
3891 * all without any floating-point arithmetic.
3892 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3893 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3894 {
3895 unsigned long result = 0;
3896 long decimals = -1;
3897 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3898 if (*cp == '.')
3899 decimals = 0;
3900 else if (decimals < scale) {
3901 unsigned int value;
3902 value = *cp - '0';
3903 result = result * 10 + value;
3904 if (decimals >= 0)
3905 decimals++;
3906 }
3907 cp++;
3908 }
3909 if (*cp == '\n')
3910 cp++;
3911 if (*cp)
3912 return -EINVAL;
3913 if (decimals < 0)
3914 decimals = 0;
3915 *res = result * int_pow(10, scale - decimals);
3916 return 0;
3917 }
3918
3919 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3920 safe_delay_show(struct mddev *mddev, char *page)
3921 {
3922 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3923
3924 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3925 }
3926 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3927 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3928 {
3929 unsigned long msec;
3930
3931 if (mddev_is_clustered(mddev)) {
3932 pr_warn("md: Safemode is disabled for clustered mode\n");
3933 return -EINVAL;
3934 }
3935
3936 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3937 return -EINVAL;
3938 if (msec == 0)
3939 mddev->safemode_delay = 0;
3940 else {
3941 unsigned long old_delay = mddev->safemode_delay;
3942 unsigned long new_delay = (msec*HZ)/1000;
3943
3944 if (new_delay == 0)
3945 new_delay = 1;
3946 mddev->safemode_delay = new_delay;
3947 if (new_delay < old_delay || old_delay == 0)
3948 mod_timer(&mddev->safemode_timer, jiffies+1);
3949 }
3950 return len;
3951 }
3952 static struct md_sysfs_entry md_safe_delay =
3953 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3954
3955 static ssize_t
level_show(struct mddev * mddev,char * page)3956 level_show(struct mddev *mddev, char *page)
3957 {
3958 struct md_personality *p;
3959 int ret;
3960 spin_lock(&mddev->lock);
3961 p = mddev->pers;
3962 if (p)
3963 ret = sprintf(page, "%s\n", p->name);
3964 else if (mddev->clevel[0])
3965 ret = sprintf(page, "%s\n", mddev->clevel);
3966 else if (mddev->level != LEVEL_NONE)
3967 ret = sprintf(page, "%d\n", mddev->level);
3968 else
3969 ret = 0;
3970 spin_unlock(&mddev->lock);
3971 return ret;
3972 }
3973
3974 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3975 level_store(struct mddev *mddev, const char *buf, size_t len)
3976 {
3977 char clevel[16];
3978 ssize_t rv;
3979 size_t slen = len;
3980 struct md_personality *pers, *oldpers;
3981 long level;
3982 void *priv, *oldpriv;
3983 struct md_rdev *rdev;
3984
3985 if (slen == 0 || slen >= sizeof(clevel))
3986 return -EINVAL;
3987
3988 rv = mddev_lock(mddev);
3989 if (rv)
3990 return rv;
3991
3992 if (mddev->pers == NULL) {
3993 strncpy(mddev->clevel, buf, slen);
3994 if (mddev->clevel[slen-1] == '\n')
3995 slen--;
3996 mddev->clevel[slen] = 0;
3997 mddev->level = LEVEL_NONE;
3998 rv = len;
3999 goto out_unlock;
4000 }
4001 rv = -EROFS;
4002 if (!md_is_rdwr(mddev))
4003 goto out_unlock;
4004
4005 /* request to change the personality. Need to ensure:
4006 * - array is not engaged in resync/recovery/reshape
4007 * - old personality can be suspended
4008 * - new personality will access other array.
4009 */
4010
4011 rv = -EBUSY;
4012 if (mddev->sync_thread ||
4013 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4014 mddev->reshape_position != MaxSector ||
4015 mddev->sysfs_active)
4016 goto out_unlock;
4017
4018 rv = -EINVAL;
4019 if (!mddev->pers->quiesce) {
4020 pr_warn("md: %s: %s does not support online personality change\n",
4021 mdname(mddev), mddev->pers->name);
4022 goto out_unlock;
4023 }
4024
4025 /* Now find the new personality */
4026 strncpy(clevel, buf, slen);
4027 if (clevel[slen-1] == '\n')
4028 slen--;
4029 clevel[slen] = 0;
4030 if (kstrtol(clevel, 10, &level))
4031 level = LEVEL_NONE;
4032
4033 if (request_module("md-%s", clevel) != 0)
4034 request_module("md-level-%s", clevel);
4035 spin_lock(&pers_lock);
4036 pers = find_pers(level, clevel);
4037 if (!pers || !try_module_get(pers->owner)) {
4038 spin_unlock(&pers_lock);
4039 pr_warn("md: personality %s not loaded\n", clevel);
4040 rv = -EINVAL;
4041 goto out_unlock;
4042 }
4043 spin_unlock(&pers_lock);
4044
4045 if (pers == mddev->pers) {
4046 /* Nothing to do! */
4047 module_put(pers->owner);
4048 rv = len;
4049 goto out_unlock;
4050 }
4051 if (!pers->takeover) {
4052 module_put(pers->owner);
4053 pr_warn("md: %s: %s does not support personality takeover\n",
4054 mdname(mddev), clevel);
4055 rv = -EINVAL;
4056 goto out_unlock;
4057 }
4058
4059 rdev_for_each(rdev, mddev)
4060 rdev->new_raid_disk = rdev->raid_disk;
4061
4062 /* ->takeover must set new_* and/or delta_disks
4063 * if it succeeds, and may set them when it fails.
4064 */
4065 priv = pers->takeover(mddev);
4066 if (IS_ERR(priv)) {
4067 mddev->new_level = mddev->level;
4068 mddev->new_layout = mddev->layout;
4069 mddev->new_chunk_sectors = mddev->chunk_sectors;
4070 mddev->raid_disks -= mddev->delta_disks;
4071 mddev->delta_disks = 0;
4072 mddev->reshape_backwards = 0;
4073 module_put(pers->owner);
4074 pr_warn("md: %s: %s would not accept array\n",
4075 mdname(mddev), clevel);
4076 rv = PTR_ERR(priv);
4077 goto out_unlock;
4078 }
4079
4080 /* Looks like we have a winner */
4081 mddev_suspend(mddev);
4082 mddev_detach(mddev);
4083
4084 spin_lock(&mddev->lock);
4085 oldpers = mddev->pers;
4086 oldpriv = mddev->private;
4087 mddev->pers = pers;
4088 mddev->private = priv;
4089 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4090 mddev->level = mddev->new_level;
4091 mddev->layout = mddev->new_layout;
4092 mddev->chunk_sectors = mddev->new_chunk_sectors;
4093 mddev->delta_disks = 0;
4094 mddev->reshape_backwards = 0;
4095 mddev->degraded = 0;
4096 spin_unlock(&mddev->lock);
4097
4098 if (oldpers->sync_request == NULL &&
4099 mddev->external) {
4100 /* We are converting from a no-redundancy array
4101 * to a redundancy array and metadata is managed
4102 * externally so we need to be sure that writes
4103 * won't block due to a need to transition
4104 * clean->dirty
4105 * until external management is started.
4106 */
4107 mddev->in_sync = 0;
4108 mddev->safemode_delay = 0;
4109 mddev->safemode = 0;
4110 }
4111
4112 oldpers->free(mddev, oldpriv);
4113
4114 if (oldpers->sync_request == NULL &&
4115 pers->sync_request != NULL) {
4116 /* need to add the md_redundancy_group */
4117 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4118 pr_warn("md: cannot register extra attributes for %s\n",
4119 mdname(mddev));
4120 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4121 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4122 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4123 }
4124 if (oldpers->sync_request != NULL &&
4125 pers->sync_request == NULL) {
4126 /* need to remove the md_redundancy_group */
4127 if (mddev->to_remove == NULL)
4128 mddev->to_remove = &md_redundancy_group;
4129 }
4130
4131 module_put(oldpers->owner);
4132
4133 rdev_for_each(rdev, mddev) {
4134 if (rdev->raid_disk < 0)
4135 continue;
4136 if (rdev->new_raid_disk >= mddev->raid_disks)
4137 rdev->new_raid_disk = -1;
4138 if (rdev->new_raid_disk == rdev->raid_disk)
4139 continue;
4140 sysfs_unlink_rdev(mddev, rdev);
4141 }
4142 rdev_for_each(rdev, mddev) {
4143 if (rdev->raid_disk < 0)
4144 continue;
4145 if (rdev->new_raid_disk == rdev->raid_disk)
4146 continue;
4147 rdev->raid_disk = rdev->new_raid_disk;
4148 if (rdev->raid_disk < 0)
4149 clear_bit(In_sync, &rdev->flags);
4150 else {
4151 if (sysfs_link_rdev(mddev, rdev))
4152 pr_warn("md: cannot register rd%d for %s after level change\n",
4153 rdev->raid_disk, mdname(mddev));
4154 }
4155 }
4156
4157 if (pers->sync_request == NULL) {
4158 /* this is now an array without redundancy, so
4159 * it must always be in_sync
4160 */
4161 mddev->in_sync = 1;
4162 del_timer_sync(&mddev->safemode_timer);
4163 }
4164 blk_set_stacking_limits(&mddev->queue->limits);
4165 pers->run(mddev);
4166 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4167 mddev_resume(mddev);
4168 if (!mddev->thread)
4169 md_update_sb(mddev, 1);
4170 sysfs_notify_dirent_safe(mddev->sysfs_level);
4171 md_new_event(mddev);
4172 rv = len;
4173 out_unlock:
4174 mddev_unlock(mddev);
4175 return rv;
4176 }
4177
4178 static struct md_sysfs_entry md_level =
4179 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4180
4181 static ssize_t
layout_show(struct mddev * mddev,char * page)4182 layout_show(struct mddev *mddev, char *page)
4183 {
4184 /* just a number, not meaningful for all levels */
4185 if (mddev->reshape_position != MaxSector &&
4186 mddev->layout != mddev->new_layout)
4187 return sprintf(page, "%d (%d)\n",
4188 mddev->new_layout, mddev->layout);
4189 return sprintf(page, "%d\n", mddev->layout);
4190 }
4191
4192 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4193 layout_store(struct mddev *mddev, const char *buf, size_t len)
4194 {
4195 unsigned int n;
4196 int err;
4197
4198 err = kstrtouint(buf, 10, &n);
4199 if (err < 0)
4200 return err;
4201 err = mddev_lock(mddev);
4202 if (err)
4203 return err;
4204
4205 if (mddev->pers) {
4206 if (mddev->pers->check_reshape == NULL)
4207 err = -EBUSY;
4208 else if (!md_is_rdwr(mddev))
4209 err = -EROFS;
4210 else {
4211 mddev->new_layout = n;
4212 err = mddev->pers->check_reshape(mddev);
4213 if (err)
4214 mddev->new_layout = mddev->layout;
4215 }
4216 } else {
4217 mddev->new_layout = n;
4218 if (mddev->reshape_position == MaxSector)
4219 mddev->layout = n;
4220 }
4221 mddev_unlock(mddev);
4222 return err ?: len;
4223 }
4224 static struct md_sysfs_entry md_layout =
4225 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4226
4227 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4228 raid_disks_show(struct mddev *mddev, char *page)
4229 {
4230 if (mddev->raid_disks == 0)
4231 return 0;
4232 if (mddev->reshape_position != MaxSector &&
4233 mddev->delta_disks != 0)
4234 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4235 mddev->raid_disks - mddev->delta_disks);
4236 return sprintf(page, "%d\n", mddev->raid_disks);
4237 }
4238
4239 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4240
4241 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4242 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4243 {
4244 unsigned int n;
4245 int err;
4246
4247 err = kstrtouint(buf, 10, &n);
4248 if (err < 0)
4249 return err;
4250
4251 err = mddev_lock(mddev);
4252 if (err)
4253 return err;
4254 if (mddev->pers)
4255 err = update_raid_disks(mddev, n);
4256 else if (mddev->reshape_position != MaxSector) {
4257 struct md_rdev *rdev;
4258 int olddisks = mddev->raid_disks - mddev->delta_disks;
4259
4260 err = -EINVAL;
4261 rdev_for_each(rdev, mddev) {
4262 if (olddisks < n &&
4263 rdev->data_offset < rdev->new_data_offset)
4264 goto out_unlock;
4265 if (olddisks > n &&
4266 rdev->data_offset > rdev->new_data_offset)
4267 goto out_unlock;
4268 }
4269 err = 0;
4270 mddev->delta_disks = n - olddisks;
4271 mddev->raid_disks = n;
4272 mddev->reshape_backwards = (mddev->delta_disks < 0);
4273 } else
4274 mddev->raid_disks = n;
4275 out_unlock:
4276 mddev_unlock(mddev);
4277 return err ? err : len;
4278 }
4279 static struct md_sysfs_entry md_raid_disks =
4280 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4281
4282 static ssize_t
uuid_show(struct mddev * mddev,char * page)4283 uuid_show(struct mddev *mddev, char *page)
4284 {
4285 return sprintf(page, "%pU\n", mddev->uuid);
4286 }
4287 static struct md_sysfs_entry md_uuid =
4288 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4289
4290 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4291 chunk_size_show(struct mddev *mddev, char *page)
4292 {
4293 if (mddev->reshape_position != MaxSector &&
4294 mddev->chunk_sectors != mddev->new_chunk_sectors)
4295 return sprintf(page, "%d (%d)\n",
4296 mddev->new_chunk_sectors << 9,
4297 mddev->chunk_sectors << 9);
4298 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4299 }
4300
4301 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4302 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4303 {
4304 unsigned long n;
4305 int err;
4306
4307 err = kstrtoul(buf, 10, &n);
4308 if (err < 0)
4309 return err;
4310
4311 err = mddev_lock(mddev);
4312 if (err)
4313 return err;
4314 if (mddev->pers) {
4315 if (mddev->pers->check_reshape == NULL)
4316 err = -EBUSY;
4317 else if (!md_is_rdwr(mddev))
4318 err = -EROFS;
4319 else {
4320 mddev->new_chunk_sectors = n >> 9;
4321 err = mddev->pers->check_reshape(mddev);
4322 if (err)
4323 mddev->new_chunk_sectors = mddev->chunk_sectors;
4324 }
4325 } else {
4326 mddev->new_chunk_sectors = n >> 9;
4327 if (mddev->reshape_position == MaxSector)
4328 mddev->chunk_sectors = n >> 9;
4329 }
4330 mddev_unlock(mddev);
4331 return err ?: len;
4332 }
4333 static struct md_sysfs_entry md_chunk_size =
4334 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4335
4336 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4337 resync_start_show(struct mddev *mddev, char *page)
4338 {
4339 if (mddev->recovery_cp == MaxSector)
4340 return sprintf(page, "none\n");
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4342 }
4343
4344 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4345 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4346 {
4347 unsigned long long n;
4348 int err;
4349
4350 if (cmd_match(buf, "none"))
4351 n = MaxSector;
4352 else {
4353 err = kstrtoull(buf, 10, &n);
4354 if (err < 0)
4355 return err;
4356 if (n != (sector_t)n)
4357 return -EINVAL;
4358 }
4359
4360 err = mddev_lock(mddev);
4361 if (err)
4362 return err;
4363 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4364 err = -EBUSY;
4365
4366 if (!err) {
4367 mddev->recovery_cp = n;
4368 if (mddev->pers)
4369 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4370 }
4371 mddev_unlock(mddev);
4372 return err ?: len;
4373 }
4374 static struct md_sysfs_entry md_resync_start =
4375 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4376 resync_start_show, resync_start_store);
4377
4378 /*
4379 * The array state can be:
4380 *
4381 * clear
4382 * No devices, no size, no level
4383 * Equivalent to STOP_ARRAY ioctl
4384 * inactive
4385 * May have some settings, but array is not active
4386 * all IO results in error
4387 * When written, doesn't tear down array, but just stops it
4388 * suspended (not supported yet)
4389 * All IO requests will block. The array can be reconfigured.
4390 * Writing this, if accepted, will block until array is quiescent
4391 * readonly
4392 * no resync can happen. no superblocks get written.
4393 * write requests fail
4394 * read-auto
4395 * like readonly, but behaves like 'clean' on a write request.
4396 *
4397 * clean - no pending writes, but otherwise active.
4398 * When written to inactive array, starts without resync
4399 * If a write request arrives then
4400 * if metadata is known, mark 'dirty' and switch to 'active'.
4401 * if not known, block and switch to write-pending
4402 * If written to an active array that has pending writes, then fails.
4403 * active
4404 * fully active: IO and resync can be happening.
4405 * When written to inactive array, starts with resync
4406 *
4407 * write-pending
4408 * clean, but writes are blocked waiting for 'active' to be written.
4409 *
4410 * active-idle
4411 * like active, but no writes have been seen for a while (100msec).
4412 *
4413 * broken
4414 * Array is failed. It's useful because mounted-arrays aren't stopped
4415 * when array is failed, so this state will at least alert the user that
4416 * something is wrong.
4417 */
4418 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4419 write_pending, active_idle, broken, bad_word};
4420 static char *array_states[] = {
4421 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4422 "write-pending", "active-idle", "broken", NULL };
4423
match_word(const char * word,char ** list)4424 static int match_word(const char *word, char **list)
4425 {
4426 int n;
4427 for (n=0; list[n]; n++)
4428 if (cmd_match(word, list[n]))
4429 break;
4430 return n;
4431 }
4432
4433 static ssize_t
array_state_show(struct mddev * mddev,char * page)4434 array_state_show(struct mddev *mddev, char *page)
4435 {
4436 enum array_state st = inactive;
4437
4438 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4439 switch(mddev->ro) {
4440 case MD_RDONLY:
4441 st = readonly;
4442 break;
4443 case MD_AUTO_READ:
4444 st = read_auto;
4445 break;
4446 case MD_RDWR:
4447 spin_lock(&mddev->lock);
4448 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4449 st = write_pending;
4450 else if (mddev->in_sync)
4451 st = clean;
4452 else if (mddev->safemode)
4453 st = active_idle;
4454 else
4455 st = active;
4456 spin_unlock(&mddev->lock);
4457 }
4458
4459 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4460 st = broken;
4461 } else {
4462 if (list_empty(&mddev->disks) &&
4463 mddev->raid_disks == 0 &&
4464 mddev->dev_sectors == 0)
4465 st = clear;
4466 else
4467 st = inactive;
4468 }
4469 return sprintf(page, "%s\n", array_states[st]);
4470 }
4471
4472 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4473 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4474 static int restart_array(struct mddev *mddev);
4475
4476 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4477 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4478 {
4479 int err = 0;
4480 enum array_state st = match_word(buf, array_states);
4481
4482 if (mddev->pers && (st == active || st == clean) &&
4483 mddev->ro != MD_RDONLY) {
4484 /* don't take reconfig_mutex when toggling between
4485 * clean and active
4486 */
4487 spin_lock(&mddev->lock);
4488 if (st == active) {
4489 restart_array(mddev);
4490 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4491 md_wakeup_thread(mddev->thread);
4492 wake_up(&mddev->sb_wait);
4493 } else /* st == clean */ {
4494 restart_array(mddev);
4495 if (!set_in_sync(mddev))
4496 err = -EBUSY;
4497 }
4498 if (!err)
4499 sysfs_notify_dirent_safe(mddev->sysfs_state);
4500 spin_unlock(&mddev->lock);
4501 return err ?: len;
4502 }
4503 err = mddev_lock(mddev);
4504 if (err)
4505 return err;
4506 err = -EINVAL;
4507 switch(st) {
4508 case bad_word:
4509 break;
4510 case clear:
4511 /* stopping an active array */
4512 err = do_md_stop(mddev, 0, NULL);
4513 break;
4514 case inactive:
4515 /* stopping an active array */
4516 if (mddev->pers)
4517 err = do_md_stop(mddev, 2, NULL);
4518 else
4519 err = 0; /* already inactive */
4520 break;
4521 case suspended:
4522 break; /* not supported yet */
4523 case readonly:
4524 if (mddev->pers)
4525 err = md_set_readonly(mddev, NULL);
4526 else {
4527 mddev->ro = MD_RDONLY;
4528 set_disk_ro(mddev->gendisk, 1);
4529 err = do_md_run(mddev);
4530 }
4531 break;
4532 case read_auto:
4533 if (mddev->pers) {
4534 if (md_is_rdwr(mddev))
4535 err = md_set_readonly(mddev, NULL);
4536 else if (mddev->ro == MD_RDONLY)
4537 err = restart_array(mddev);
4538 if (err == 0) {
4539 mddev->ro = MD_AUTO_READ;
4540 set_disk_ro(mddev->gendisk, 0);
4541 }
4542 } else {
4543 mddev->ro = MD_AUTO_READ;
4544 err = do_md_run(mddev);
4545 }
4546 break;
4547 case clean:
4548 if (mddev->pers) {
4549 err = restart_array(mddev);
4550 if (err)
4551 break;
4552 spin_lock(&mddev->lock);
4553 if (!set_in_sync(mddev))
4554 err = -EBUSY;
4555 spin_unlock(&mddev->lock);
4556 } else
4557 err = -EINVAL;
4558 break;
4559 case active:
4560 if (mddev->pers) {
4561 err = restart_array(mddev);
4562 if (err)
4563 break;
4564 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4565 wake_up(&mddev->sb_wait);
4566 err = 0;
4567 } else {
4568 mddev->ro = MD_RDWR;
4569 set_disk_ro(mddev->gendisk, 0);
4570 err = do_md_run(mddev);
4571 }
4572 break;
4573 case write_pending:
4574 case active_idle:
4575 case broken:
4576 /* these cannot be set */
4577 break;
4578 }
4579
4580 if (!err) {
4581 if (mddev->hold_active == UNTIL_IOCTL)
4582 mddev->hold_active = 0;
4583 sysfs_notify_dirent_safe(mddev->sysfs_state);
4584 }
4585 mddev_unlock(mddev);
4586 return err ?: len;
4587 }
4588 static struct md_sysfs_entry md_array_state =
4589 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4590
4591 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4592 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4593 return sprintf(page, "%d\n",
4594 atomic_read(&mddev->max_corr_read_errors));
4595 }
4596
4597 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4598 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4599 {
4600 unsigned int n;
4601 int rv;
4602
4603 rv = kstrtouint(buf, 10, &n);
4604 if (rv < 0)
4605 return rv;
4606 if (n > INT_MAX)
4607 return -EINVAL;
4608 atomic_set(&mddev->max_corr_read_errors, n);
4609 return len;
4610 }
4611
4612 static struct md_sysfs_entry max_corr_read_errors =
4613 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4614 max_corrected_read_errors_store);
4615
4616 static ssize_t
null_show(struct mddev * mddev,char * page)4617 null_show(struct mddev *mddev, char *page)
4618 {
4619 return -EINVAL;
4620 }
4621
4622 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4623 static void flush_rdev_wq(struct mddev *mddev)
4624 {
4625 struct md_rdev *rdev;
4626
4627 rcu_read_lock();
4628 rdev_for_each_rcu(rdev, mddev)
4629 if (work_pending(&rdev->del_work)) {
4630 flush_workqueue(md_rdev_misc_wq);
4631 break;
4632 }
4633 rcu_read_unlock();
4634 }
4635
4636 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4637 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639 /* buf must be %d:%d\n? giving major and minor numbers */
4640 /* The new device is added to the array.
4641 * If the array has a persistent superblock, we read the
4642 * superblock to initialise info and check validity.
4643 * Otherwise, only checking done is that in bind_rdev_to_array,
4644 * which mainly checks size.
4645 */
4646 char *e;
4647 int major = simple_strtoul(buf, &e, 10);
4648 int minor;
4649 dev_t dev;
4650 struct md_rdev *rdev;
4651 int err;
4652
4653 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4654 return -EINVAL;
4655 minor = simple_strtoul(e+1, &e, 10);
4656 if (*e && *e != '\n')
4657 return -EINVAL;
4658 dev = MKDEV(major, minor);
4659 if (major != MAJOR(dev) ||
4660 minor != MINOR(dev))
4661 return -EOVERFLOW;
4662
4663 flush_rdev_wq(mddev);
4664 err = mddev_lock(mddev);
4665 if (err)
4666 return err;
4667 if (mddev->persistent) {
4668 rdev = md_import_device(dev, mddev->major_version,
4669 mddev->minor_version);
4670 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4671 struct md_rdev *rdev0
4672 = list_entry(mddev->disks.next,
4673 struct md_rdev, same_set);
4674 err = super_types[mddev->major_version]
4675 .load_super(rdev, rdev0, mddev->minor_version);
4676 if (err < 0)
4677 goto out;
4678 }
4679 } else if (mddev->external)
4680 rdev = md_import_device(dev, -2, -1);
4681 else
4682 rdev = md_import_device(dev, -1, -1);
4683
4684 if (IS_ERR(rdev)) {
4685 mddev_unlock(mddev);
4686 return PTR_ERR(rdev);
4687 }
4688 err = bind_rdev_to_array(rdev, mddev);
4689 out:
4690 if (err)
4691 export_rdev(rdev);
4692 mddev_unlock(mddev);
4693 if (!err)
4694 md_new_event(mddev);
4695 return err ? err : len;
4696 }
4697
4698 static struct md_sysfs_entry md_new_device =
4699 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4700
4701 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4702 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4703 {
4704 char *end;
4705 unsigned long chunk, end_chunk;
4706 int err;
4707
4708 err = mddev_lock(mddev);
4709 if (err)
4710 return err;
4711 if (!mddev->bitmap)
4712 goto out;
4713 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4714 while (*buf) {
4715 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4716 if (buf == end) break;
4717 if (*end == '-') { /* range */
4718 buf = end + 1;
4719 end_chunk = simple_strtoul(buf, &end, 0);
4720 if (buf == end) break;
4721 }
4722 if (*end && !isspace(*end)) break;
4723 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4724 buf = skip_spaces(end);
4725 }
4726 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4727 out:
4728 mddev_unlock(mddev);
4729 return len;
4730 }
4731
4732 static struct md_sysfs_entry md_bitmap =
4733 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4734
4735 static ssize_t
size_show(struct mddev * mddev,char * page)4736 size_show(struct mddev *mddev, char *page)
4737 {
4738 return sprintf(page, "%llu\n",
4739 (unsigned long long)mddev->dev_sectors / 2);
4740 }
4741
4742 static int update_size(struct mddev *mddev, sector_t num_sectors);
4743
4744 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4745 size_store(struct mddev *mddev, const char *buf, size_t len)
4746 {
4747 /* If array is inactive, we can reduce the component size, but
4748 * not increase it (except from 0).
4749 * If array is active, we can try an on-line resize
4750 */
4751 sector_t sectors;
4752 int err = strict_blocks_to_sectors(buf, §ors);
4753
4754 if (err < 0)
4755 return err;
4756 err = mddev_lock(mddev);
4757 if (err)
4758 return err;
4759 if (mddev->pers) {
4760 err = update_size(mddev, sectors);
4761 if (err == 0)
4762 md_update_sb(mddev, 1);
4763 } else {
4764 if (mddev->dev_sectors == 0 ||
4765 mddev->dev_sectors > sectors)
4766 mddev->dev_sectors = sectors;
4767 else
4768 err = -ENOSPC;
4769 }
4770 mddev_unlock(mddev);
4771 return err ? err : len;
4772 }
4773
4774 static struct md_sysfs_entry md_size =
4775 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4776
4777 /* Metadata version.
4778 * This is one of
4779 * 'none' for arrays with no metadata (good luck...)
4780 * 'external' for arrays with externally managed metadata,
4781 * or N.M for internally known formats
4782 */
4783 static ssize_t
metadata_show(struct mddev * mddev,char * page)4784 metadata_show(struct mddev *mddev, char *page)
4785 {
4786 if (mddev->persistent)
4787 return sprintf(page, "%d.%d\n",
4788 mddev->major_version, mddev->minor_version);
4789 else if (mddev->external)
4790 return sprintf(page, "external:%s\n", mddev->metadata_type);
4791 else
4792 return sprintf(page, "none\n");
4793 }
4794
4795 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4796 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4797 {
4798 int major, minor;
4799 char *e;
4800 int err;
4801 /* Changing the details of 'external' metadata is
4802 * always permitted. Otherwise there must be
4803 * no devices attached to the array.
4804 */
4805
4806 err = mddev_lock(mddev);
4807 if (err)
4808 return err;
4809 err = -EBUSY;
4810 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4811 ;
4812 else if (!list_empty(&mddev->disks))
4813 goto out_unlock;
4814
4815 err = 0;
4816 if (cmd_match(buf, "none")) {
4817 mddev->persistent = 0;
4818 mddev->external = 0;
4819 mddev->major_version = 0;
4820 mddev->minor_version = 90;
4821 goto out_unlock;
4822 }
4823 if (strncmp(buf, "external:", 9) == 0) {
4824 size_t namelen = len-9;
4825 if (namelen >= sizeof(mddev->metadata_type))
4826 namelen = sizeof(mddev->metadata_type)-1;
4827 strncpy(mddev->metadata_type, buf+9, namelen);
4828 mddev->metadata_type[namelen] = 0;
4829 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4830 mddev->metadata_type[--namelen] = 0;
4831 mddev->persistent = 0;
4832 mddev->external = 1;
4833 mddev->major_version = 0;
4834 mddev->minor_version = 90;
4835 goto out_unlock;
4836 }
4837 major = simple_strtoul(buf, &e, 10);
4838 err = -EINVAL;
4839 if (e==buf || *e != '.')
4840 goto out_unlock;
4841 buf = e+1;
4842 minor = simple_strtoul(buf, &e, 10);
4843 if (e==buf || (*e && *e != '\n') )
4844 goto out_unlock;
4845 err = -ENOENT;
4846 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4847 goto out_unlock;
4848 mddev->major_version = major;
4849 mddev->minor_version = minor;
4850 mddev->persistent = 1;
4851 mddev->external = 0;
4852 err = 0;
4853 out_unlock:
4854 mddev_unlock(mddev);
4855 return err ?: len;
4856 }
4857
4858 static struct md_sysfs_entry md_metadata =
4859 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4860
4861 static ssize_t
action_show(struct mddev * mddev,char * page)4862 action_show(struct mddev *mddev, char *page)
4863 {
4864 char *type = "idle";
4865 unsigned long recovery = mddev->recovery;
4866 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4867 type = "frozen";
4868 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4869 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4870 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4871 type = "reshape";
4872 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4873 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4874 type = "resync";
4875 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4876 type = "check";
4877 else
4878 type = "repair";
4879 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4880 type = "recover";
4881 else if (mddev->reshape_position != MaxSector)
4882 type = "reshape";
4883 }
4884 return sprintf(page, "%s\n", type);
4885 }
4886
4887 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4888 action_store(struct mddev *mddev, const char *page, size_t len)
4889 {
4890 if (!mddev->pers || !mddev->pers->sync_request)
4891 return -EINVAL;
4892
4893
4894 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4895 if (cmd_match(page, "frozen"))
4896 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4897 else
4898 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4899 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4900 mddev_lock(mddev) == 0) {
4901 if (work_pending(&mddev->del_work))
4902 flush_workqueue(md_misc_wq);
4903 if (mddev->sync_thread) {
4904 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4905 md_reap_sync_thread(mddev);
4906 }
4907 mddev_unlock(mddev);
4908 }
4909 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4910 return -EBUSY;
4911 else if (cmd_match(page, "resync"))
4912 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4913 else if (cmd_match(page, "recover")) {
4914 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4915 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4916 } else if (cmd_match(page, "reshape")) {
4917 int err;
4918 if (mddev->pers->start_reshape == NULL)
4919 return -EINVAL;
4920 err = mddev_lock(mddev);
4921 if (!err) {
4922 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4923 err = -EBUSY;
4924 } else if (mddev->reshape_position == MaxSector ||
4925 mddev->pers->check_reshape == NULL ||
4926 mddev->pers->check_reshape(mddev)) {
4927 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4928 err = mddev->pers->start_reshape(mddev);
4929 } else {
4930 /*
4931 * If reshape is still in progress, and
4932 * md_check_recovery() can continue to reshape,
4933 * don't restart reshape because data can be
4934 * corrupted for raid456.
4935 */
4936 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4937 }
4938 mddev_unlock(mddev);
4939 }
4940 if (err)
4941 return err;
4942 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4943 } else {
4944 if (cmd_match(page, "check"))
4945 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4946 else if (!cmd_match(page, "repair"))
4947 return -EINVAL;
4948 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4949 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4950 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4951 }
4952 if (mddev->ro == MD_AUTO_READ) {
4953 /* A write to sync_action is enough to justify
4954 * canceling read-auto mode
4955 */
4956 mddev->ro = MD_RDWR;
4957 md_wakeup_thread(mddev->sync_thread);
4958 }
4959 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4960 md_wakeup_thread(mddev->thread);
4961 sysfs_notify_dirent_safe(mddev->sysfs_action);
4962 return len;
4963 }
4964
4965 static struct md_sysfs_entry md_scan_mode =
4966 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4967
4968 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4969 last_sync_action_show(struct mddev *mddev, char *page)
4970 {
4971 return sprintf(page, "%s\n", mddev->last_sync_action);
4972 }
4973
4974 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4975
4976 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4977 mismatch_cnt_show(struct mddev *mddev, char *page)
4978 {
4979 return sprintf(page, "%llu\n",
4980 (unsigned long long)
4981 atomic64_read(&mddev->resync_mismatches));
4982 }
4983
4984 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4985
4986 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4987 sync_min_show(struct mddev *mddev, char *page)
4988 {
4989 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4990 mddev->sync_speed_min ? "local": "system");
4991 }
4992
4993 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4994 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4995 {
4996 unsigned int min;
4997 int rv;
4998
4999 if (strncmp(buf, "system", 6)==0) {
5000 min = 0;
5001 } else {
5002 rv = kstrtouint(buf, 10, &min);
5003 if (rv < 0)
5004 return rv;
5005 if (min == 0)
5006 return -EINVAL;
5007 }
5008 mddev->sync_speed_min = min;
5009 return len;
5010 }
5011
5012 static struct md_sysfs_entry md_sync_min =
5013 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
5014
5015 static ssize_t
sync_max_show(struct mddev * mddev,char * page)5016 sync_max_show(struct mddev *mddev, char *page)
5017 {
5018 return sprintf(page, "%d (%s)\n", speed_max(mddev),
5019 mddev->sync_speed_max ? "local": "system");
5020 }
5021
5022 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)5023 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
5024 {
5025 unsigned int max;
5026 int rv;
5027
5028 if (strncmp(buf, "system", 6)==0) {
5029 max = 0;
5030 } else {
5031 rv = kstrtouint(buf, 10, &max);
5032 if (rv < 0)
5033 return rv;
5034 if (max == 0)
5035 return -EINVAL;
5036 }
5037 mddev->sync_speed_max = max;
5038 return len;
5039 }
5040
5041 static struct md_sysfs_entry md_sync_max =
5042 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5043
5044 static ssize_t
degraded_show(struct mddev * mddev,char * page)5045 degraded_show(struct mddev *mddev, char *page)
5046 {
5047 return sprintf(page, "%d\n", mddev->degraded);
5048 }
5049 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5050
5051 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5052 sync_force_parallel_show(struct mddev *mddev, char *page)
5053 {
5054 return sprintf(page, "%d\n", mddev->parallel_resync);
5055 }
5056
5057 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5058 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5059 {
5060 long n;
5061
5062 if (kstrtol(buf, 10, &n))
5063 return -EINVAL;
5064
5065 if (n != 0 && n != 1)
5066 return -EINVAL;
5067
5068 mddev->parallel_resync = n;
5069
5070 if (mddev->sync_thread)
5071 wake_up(&resync_wait);
5072
5073 return len;
5074 }
5075
5076 /* force parallel resync, even with shared block devices */
5077 static struct md_sysfs_entry md_sync_force_parallel =
5078 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5079 sync_force_parallel_show, sync_force_parallel_store);
5080
5081 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5082 sync_speed_show(struct mddev *mddev, char *page)
5083 {
5084 unsigned long resync, dt, db;
5085 if (mddev->curr_resync == 0)
5086 return sprintf(page, "none\n");
5087 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5088 dt = (jiffies - mddev->resync_mark) / HZ;
5089 if (!dt) dt++;
5090 db = resync - mddev->resync_mark_cnt;
5091 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5092 }
5093
5094 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5095
5096 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5097 sync_completed_show(struct mddev *mddev, char *page)
5098 {
5099 unsigned long long max_sectors, resync;
5100
5101 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5102 return sprintf(page, "none\n");
5103
5104 if (mddev->curr_resync == 1 ||
5105 mddev->curr_resync == 2)
5106 return sprintf(page, "delayed\n");
5107
5108 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5109 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5110 max_sectors = mddev->resync_max_sectors;
5111 else
5112 max_sectors = mddev->dev_sectors;
5113
5114 resync = mddev->curr_resync_completed;
5115 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5116 }
5117
5118 static struct md_sysfs_entry md_sync_completed =
5119 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5120
5121 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5122 min_sync_show(struct mddev *mddev, char *page)
5123 {
5124 return sprintf(page, "%llu\n",
5125 (unsigned long long)mddev->resync_min);
5126 }
5127 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5128 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5129 {
5130 unsigned long long min;
5131 int err;
5132
5133 if (kstrtoull(buf, 10, &min))
5134 return -EINVAL;
5135
5136 spin_lock(&mddev->lock);
5137 err = -EINVAL;
5138 if (min > mddev->resync_max)
5139 goto out_unlock;
5140
5141 err = -EBUSY;
5142 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5143 goto out_unlock;
5144
5145 /* Round down to multiple of 4K for safety */
5146 mddev->resync_min = round_down(min, 8);
5147 err = 0;
5148
5149 out_unlock:
5150 spin_unlock(&mddev->lock);
5151 return err ?: len;
5152 }
5153
5154 static struct md_sysfs_entry md_min_sync =
5155 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5156
5157 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5158 max_sync_show(struct mddev *mddev, char *page)
5159 {
5160 if (mddev->resync_max == MaxSector)
5161 return sprintf(page, "max\n");
5162 else
5163 return sprintf(page, "%llu\n",
5164 (unsigned long long)mddev->resync_max);
5165 }
5166 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5167 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5168 {
5169 int err;
5170 spin_lock(&mddev->lock);
5171 if (strncmp(buf, "max", 3) == 0)
5172 mddev->resync_max = MaxSector;
5173 else {
5174 unsigned long long max;
5175 int chunk;
5176
5177 err = -EINVAL;
5178 if (kstrtoull(buf, 10, &max))
5179 goto out_unlock;
5180 if (max < mddev->resync_min)
5181 goto out_unlock;
5182
5183 err = -EBUSY;
5184 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5185 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5186 goto out_unlock;
5187
5188 /* Must be a multiple of chunk_size */
5189 chunk = mddev->chunk_sectors;
5190 if (chunk) {
5191 sector_t temp = max;
5192
5193 err = -EINVAL;
5194 if (sector_div(temp, chunk))
5195 goto out_unlock;
5196 }
5197 mddev->resync_max = max;
5198 }
5199 wake_up(&mddev->recovery_wait);
5200 err = 0;
5201 out_unlock:
5202 spin_unlock(&mddev->lock);
5203 return err ?: len;
5204 }
5205
5206 static struct md_sysfs_entry md_max_sync =
5207 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5208
5209 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5210 suspend_lo_show(struct mddev *mddev, char *page)
5211 {
5212 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5213 }
5214
5215 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5216 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5217 {
5218 unsigned long long new;
5219 int err;
5220
5221 err = kstrtoull(buf, 10, &new);
5222 if (err < 0)
5223 return err;
5224 if (new != (sector_t)new)
5225 return -EINVAL;
5226
5227 err = mddev_lock(mddev);
5228 if (err)
5229 return err;
5230 err = -EINVAL;
5231 if (mddev->pers == NULL ||
5232 mddev->pers->quiesce == NULL)
5233 goto unlock;
5234 mddev_suspend(mddev);
5235 mddev->suspend_lo = new;
5236 mddev_resume(mddev);
5237
5238 err = 0;
5239 unlock:
5240 mddev_unlock(mddev);
5241 return err ?: len;
5242 }
5243 static struct md_sysfs_entry md_suspend_lo =
5244 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5245
5246 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5247 suspend_hi_show(struct mddev *mddev, char *page)
5248 {
5249 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5250 }
5251
5252 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5253 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5254 {
5255 unsigned long long new;
5256 int err;
5257
5258 err = kstrtoull(buf, 10, &new);
5259 if (err < 0)
5260 return err;
5261 if (new != (sector_t)new)
5262 return -EINVAL;
5263
5264 err = mddev_lock(mddev);
5265 if (err)
5266 return err;
5267 err = -EINVAL;
5268 if (mddev->pers == NULL)
5269 goto unlock;
5270
5271 mddev_suspend(mddev);
5272 mddev->suspend_hi = new;
5273 mddev_resume(mddev);
5274
5275 err = 0;
5276 unlock:
5277 mddev_unlock(mddev);
5278 return err ?: len;
5279 }
5280 static struct md_sysfs_entry md_suspend_hi =
5281 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5282
5283 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5284 reshape_position_show(struct mddev *mddev, char *page)
5285 {
5286 if (mddev->reshape_position != MaxSector)
5287 return sprintf(page, "%llu\n",
5288 (unsigned long long)mddev->reshape_position);
5289 strcpy(page, "none\n");
5290 return 5;
5291 }
5292
5293 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5294 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5295 {
5296 struct md_rdev *rdev;
5297 unsigned long long new;
5298 int err;
5299
5300 err = kstrtoull(buf, 10, &new);
5301 if (err < 0)
5302 return err;
5303 if (new != (sector_t)new)
5304 return -EINVAL;
5305 err = mddev_lock(mddev);
5306 if (err)
5307 return err;
5308 err = -EBUSY;
5309 if (mddev->pers)
5310 goto unlock;
5311 mddev->reshape_position = new;
5312 mddev->delta_disks = 0;
5313 mddev->reshape_backwards = 0;
5314 mddev->new_level = mddev->level;
5315 mddev->new_layout = mddev->layout;
5316 mddev->new_chunk_sectors = mddev->chunk_sectors;
5317 rdev_for_each(rdev, mddev)
5318 rdev->new_data_offset = rdev->data_offset;
5319 err = 0;
5320 unlock:
5321 mddev_unlock(mddev);
5322 return err ?: len;
5323 }
5324
5325 static struct md_sysfs_entry md_reshape_position =
5326 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5327 reshape_position_store);
5328
5329 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5330 reshape_direction_show(struct mddev *mddev, char *page)
5331 {
5332 return sprintf(page, "%s\n",
5333 mddev->reshape_backwards ? "backwards" : "forwards");
5334 }
5335
5336 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5337 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5338 {
5339 int backwards = 0;
5340 int err;
5341
5342 if (cmd_match(buf, "forwards"))
5343 backwards = 0;
5344 else if (cmd_match(buf, "backwards"))
5345 backwards = 1;
5346 else
5347 return -EINVAL;
5348 if (mddev->reshape_backwards == backwards)
5349 return len;
5350
5351 err = mddev_lock(mddev);
5352 if (err)
5353 return err;
5354 /* check if we are allowed to change */
5355 if (mddev->delta_disks)
5356 err = -EBUSY;
5357 else if (mddev->persistent &&
5358 mddev->major_version == 0)
5359 err = -EINVAL;
5360 else
5361 mddev->reshape_backwards = backwards;
5362 mddev_unlock(mddev);
5363 return err ?: len;
5364 }
5365
5366 static struct md_sysfs_entry md_reshape_direction =
5367 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5368 reshape_direction_store);
5369
5370 static ssize_t
array_size_show(struct mddev * mddev,char * page)5371 array_size_show(struct mddev *mddev, char *page)
5372 {
5373 if (mddev->external_size)
5374 return sprintf(page, "%llu\n",
5375 (unsigned long long)mddev->array_sectors/2);
5376 else
5377 return sprintf(page, "default\n");
5378 }
5379
5380 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5381 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5382 {
5383 sector_t sectors;
5384 int err;
5385
5386 err = mddev_lock(mddev);
5387 if (err)
5388 return err;
5389
5390 /* cluster raid doesn't support change array_sectors */
5391 if (mddev_is_clustered(mddev)) {
5392 mddev_unlock(mddev);
5393 return -EINVAL;
5394 }
5395
5396 if (strncmp(buf, "default", 7) == 0) {
5397 if (mddev->pers)
5398 sectors = mddev->pers->size(mddev, 0, 0);
5399 else
5400 sectors = mddev->array_sectors;
5401
5402 mddev->external_size = 0;
5403 } else {
5404 if (strict_blocks_to_sectors(buf, §ors) < 0)
5405 err = -EINVAL;
5406 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5407 err = -E2BIG;
5408 else
5409 mddev->external_size = 1;
5410 }
5411
5412 if (!err) {
5413 mddev->array_sectors = sectors;
5414 if (mddev->pers)
5415 set_capacity_and_notify(mddev->gendisk,
5416 mddev->array_sectors);
5417 }
5418 mddev_unlock(mddev);
5419 return err ?: len;
5420 }
5421
5422 static struct md_sysfs_entry md_array_size =
5423 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5424 array_size_store);
5425
5426 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5427 consistency_policy_show(struct mddev *mddev, char *page)
5428 {
5429 int ret;
5430
5431 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5432 ret = sprintf(page, "journal\n");
5433 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5434 ret = sprintf(page, "ppl\n");
5435 } else if (mddev->bitmap) {
5436 ret = sprintf(page, "bitmap\n");
5437 } else if (mddev->pers) {
5438 if (mddev->pers->sync_request)
5439 ret = sprintf(page, "resync\n");
5440 else
5441 ret = sprintf(page, "none\n");
5442 } else {
5443 ret = sprintf(page, "unknown\n");
5444 }
5445
5446 return ret;
5447 }
5448
5449 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5450 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5451 {
5452 int err = 0;
5453
5454 if (mddev->pers) {
5455 if (mddev->pers->change_consistency_policy)
5456 err = mddev->pers->change_consistency_policy(mddev, buf);
5457 else
5458 err = -EBUSY;
5459 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5460 set_bit(MD_HAS_PPL, &mddev->flags);
5461 } else {
5462 err = -EINVAL;
5463 }
5464
5465 return err ? err : len;
5466 }
5467
5468 static struct md_sysfs_entry md_consistency_policy =
5469 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5470 consistency_policy_store);
5471
fail_last_dev_show(struct mddev * mddev,char * page)5472 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5473 {
5474 return sprintf(page, "%d\n", mddev->fail_last_dev);
5475 }
5476
5477 /*
5478 * Setting fail_last_dev to true to allow last device to be forcibly removed
5479 * from RAID1/RAID10.
5480 */
5481 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5482 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5483 {
5484 int ret;
5485 bool value;
5486
5487 ret = kstrtobool(buf, &value);
5488 if (ret)
5489 return ret;
5490
5491 if (value != mddev->fail_last_dev)
5492 mddev->fail_last_dev = value;
5493
5494 return len;
5495 }
5496 static struct md_sysfs_entry md_fail_last_dev =
5497 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5498 fail_last_dev_store);
5499
serialize_policy_show(struct mddev * mddev,char * page)5500 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5501 {
5502 if (mddev->pers == NULL || (mddev->pers->level != 1))
5503 return sprintf(page, "n/a\n");
5504 else
5505 return sprintf(page, "%d\n", mddev->serialize_policy);
5506 }
5507
5508 /*
5509 * Setting serialize_policy to true to enforce write IO is not reordered
5510 * for raid1.
5511 */
5512 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5513 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5514 {
5515 int err;
5516 bool value;
5517
5518 err = kstrtobool(buf, &value);
5519 if (err)
5520 return err;
5521
5522 if (value == mddev->serialize_policy)
5523 return len;
5524
5525 err = mddev_lock(mddev);
5526 if (err)
5527 return err;
5528 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5529 pr_err("md: serialize_policy is only effective for raid1\n");
5530 err = -EINVAL;
5531 goto unlock;
5532 }
5533
5534 mddev_suspend(mddev);
5535 if (value)
5536 mddev_create_serial_pool(mddev, NULL, true);
5537 else
5538 mddev_destroy_serial_pool(mddev, NULL, true);
5539 mddev->serialize_policy = value;
5540 mddev_resume(mddev);
5541 unlock:
5542 mddev_unlock(mddev);
5543 return err ?: len;
5544 }
5545
5546 static struct md_sysfs_entry md_serialize_policy =
5547 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5548 serialize_policy_store);
5549
5550
5551 static struct attribute *md_default_attrs[] = {
5552 &md_level.attr,
5553 &md_layout.attr,
5554 &md_raid_disks.attr,
5555 &md_uuid.attr,
5556 &md_chunk_size.attr,
5557 &md_size.attr,
5558 &md_resync_start.attr,
5559 &md_metadata.attr,
5560 &md_new_device.attr,
5561 &md_safe_delay.attr,
5562 &md_array_state.attr,
5563 &md_reshape_position.attr,
5564 &md_reshape_direction.attr,
5565 &md_array_size.attr,
5566 &max_corr_read_errors.attr,
5567 &md_consistency_policy.attr,
5568 &md_fail_last_dev.attr,
5569 &md_serialize_policy.attr,
5570 NULL,
5571 };
5572
5573 static struct attribute *md_redundancy_attrs[] = {
5574 &md_scan_mode.attr,
5575 &md_last_scan_mode.attr,
5576 &md_mismatches.attr,
5577 &md_sync_min.attr,
5578 &md_sync_max.attr,
5579 &md_sync_speed.attr,
5580 &md_sync_force_parallel.attr,
5581 &md_sync_completed.attr,
5582 &md_min_sync.attr,
5583 &md_max_sync.attr,
5584 &md_suspend_lo.attr,
5585 &md_suspend_hi.attr,
5586 &md_bitmap.attr,
5587 &md_degraded.attr,
5588 NULL,
5589 };
5590 static const struct attribute_group md_redundancy_group = {
5591 .name = NULL,
5592 .attrs = md_redundancy_attrs,
5593 };
5594
5595 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5596 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5597 {
5598 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5599 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5600 ssize_t rv;
5601
5602 if (!entry->show)
5603 return -EIO;
5604 spin_lock(&all_mddevs_lock);
5605 if (list_empty(&mddev->all_mddevs)) {
5606 spin_unlock(&all_mddevs_lock);
5607 return -EBUSY;
5608 }
5609 mddev_get(mddev);
5610 spin_unlock(&all_mddevs_lock);
5611
5612 rv = entry->show(mddev, page);
5613 mddev_put(mddev);
5614 return rv;
5615 }
5616
5617 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5618 md_attr_store(struct kobject *kobj, struct attribute *attr,
5619 const char *page, size_t length)
5620 {
5621 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5622 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5623 ssize_t rv;
5624
5625 if (!entry->store)
5626 return -EIO;
5627 if (!capable(CAP_SYS_ADMIN))
5628 return -EACCES;
5629 spin_lock(&all_mddevs_lock);
5630 if (list_empty(&mddev->all_mddevs)) {
5631 spin_unlock(&all_mddevs_lock);
5632 return -EBUSY;
5633 }
5634 mddev_get(mddev);
5635 spin_unlock(&all_mddevs_lock);
5636 rv = entry->store(mddev, page, length);
5637 mddev_put(mddev);
5638 return rv;
5639 }
5640
md_free(struct kobject * ko)5641 static void md_free(struct kobject *ko)
5642 {
5643 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5644
5645 if (mddev->sysfs_state)
5646 sysfs_put(mddev->sysfs_state);
5647 if (mddev->sysfs_level)
5648 sysfs_put(mddev->sysfs_level);
5649
5650 if (mddev->gendisk) {
5651 del_gendisk(mddev->gendisk);
5652 blk_cleanup_disk(mddev->gendisk);
5653 }
5654 percpu_ref_exit(&mddev->writes_pending);
5655
5656 bioset_exit(&mddev->bio_set);
5657 bioset_exit(&mddev->sync_set);
5658 kfree(mddev);
5659 }
5660
5661 static const struct sysfs_ops md_sysfs_ops = {
5662 .show = md_attr_show,
5663 .store = md_attr_store,
5664 };
5665 static struct kobj_type md_ktype = {
5666 .release = md_free,
5667 .sysfs_ops = &md_sysfs_ops,
5668 .default_attrs = md_default_attrs,
5669 };
5670
5671 int mdp_major = 0;
5672
mddev_delayed_delete(struct work_struct * ws)5673 static void mddev_delayed_delete(struct work_struct *ws)
5674 {
5675 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5676
5677 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5678 kobject_del(&mddev->kobj);
5679 kobject_put(&mddev->kobj);
5680 }
5681
no_op(struct percpu_ref * r)5682 static void no_op(struct percpu_ref *r) {}
5683
mddev_init_writes_pending(struct mddev * mddev)5684 int mddev_init_writes_pending(struct mddev *mddev)
5685 {
5686 if (mddev->writes_pending.percpu_count_ptr)
5687 return 0;
5688 if (percpu_ref_init(&mddev->writes_pending, no_op,
5689 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5690 return -ENOMEM;
5691 /* We want to start with the refcount at zero */
5692 percpu_ref_put(&mddev->writes_pending);
5693 return 0;
5694 }
5695 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5696
md_alloc(dev_t dev,char * name)5697 static int md_alloc(dev_t dev, char *name)
5698 {
5699 /*
5700 * If dev is zero, name is the name of a device to allocate with
5701 * an arbitrary minor number. It will be "md_???"
5702 * If dev is non-zero it must be a device number with a MAJOR of
5703 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5704 * the device is being created by opening a node in /dev.
5705 * If "name" is not NULL, the device is being created by
5706 * writing to /sys/module/md_mod/parameters/new_array.
5707 */
5708 static DEFINE_MUTEX(disks_mutex);
5709 struct mddev *mddev;
5710 struct gendisk *disk;
5711 int partitioned;
5712 int shift;
5713 int unit;
5714 int error ;
5715
5716 /*
5717 * Wait for any previous instance of this device to be completely
5718 * removed (mddev_delayed_delete).
5719 */
5720 flush_workqueue(md_misc_wq);
5721 flush_workqueue(md_rdev_misc_wq);
5722
5723 mutex_lock(&disks_mutex);
5724 mddev = mddev_alloc(dev);
5725 if (IS_ERR(mddev)) {
5726 mutex_unlock(&disks_mutex);
5727 return PTR_ERR(mddev);
5728 }
5729
5730 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5731 shift = partitioned ? MdpMinorShift : 0;
5732 unit = MINOR(mddev->unit) >> shift;
5733
5734 if (name && !dev) {
5735 /* Need to ensure that 'name' is not a duplicate.
5736 */
5737 struct mddev *mddev2;
5738 spin_lock(&all_mddevs_lock);
5739
5740 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5741 if (mddev2->gendisk &&
5742 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5743 spin_unlock(&all_mddevs_lock);
5744 error = -EEXIST;
5745 goto abort;
5746 }
5747 spin_unlock(&all_mddevs_lock);
5748 }
5749 if (name && dev)
5750 /*
5751 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5752 */
5753 mddev->hold_active = UNTIL_STOP;
5754
5755 error = -ENOMEM;
5756 disk = blk_alloc_disk(NUMA_NO_NODE);
5757 if (!disk)
5758 goto abort;
5759
5760 disk->major = MAJOR(mddev->unit);
5761 disk->first_minor = unit << shift;
5762 disk->minors = 1 << shift;
5763 if (name)
5764 strcpy(disk->disk_name, name);
5765 else if (partitioned)
5766 sprintf(disk->disk_name, "md_d%d", unit);
5767 else
5768 sprintf(disk->disk_name, "md%d", unit);
5769 disk->fops = &md_fops;
5770 disk->private_data = mddev;
5771
5772 mddev->queue = disk->queue;
5773 blk_set_stacking_limits(&mddev->queue->limits);
5774 blk_queue_write_cache(mddev->queue, true, true);
5775 /* Allow extended partitions. This makes the
5776 * 'mdp' device redundant, but we can't really
5777 * remove it now.
5778 */
5779 disk->flags |= GENHD_FL_EXT_DEVT;
5780 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5781 mddev->gendisk = disk;
5782 add_disk(disk);
5783
5784 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5785 if (error) {
5786 /* This isn't possible, but as kobject_init_and_add is marked
5787 * __must_check, we must do something with the result
5788 */
5789 pr_debug("md: cannot register %s/md - name in use\n",
5790 disk->disk_name);
5791 error = 0;
5792 }
5793 if (mddev->kobj.sd &&
5794 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5795 pr_debug("pointless warning\n");
5796 abort:
5797 mutex_unlock(&disks_mutex);
5798 if (!error && mddev->kobj.sd) {
5799 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5800 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5801 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5802 }
5803 mddev_put(mddev);
5804 return error;
5805 }
5806
md_probe(dev_t dev)5807 static void md_probe(dev_t dev)
5808 {
5809 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5810 return;
5811 if (create_on_open)
5812 md_alloc(dev, NULL);
5813 }
5814
add_named_array(const char * val,const struct kernel_param * kp)5815 static int add_named_array(const char *val, const struct kernel_param *kp)
5816 {
5817 /*
5818 * val must be "md_*" or "mdNNN".
5819 * For "md_*" we allocate an array with a large free minor number, and
5820 * set the name to val. val must not already be an active name.
5821 * For "mdNNN" we allocate an array with the minor number NNN
5822 * which must not already be in use.
5823 */
5824 int len = strlen(val);
5825 char buf[DISK_NAME_LEN];
5826 unsigned long devnum;
5827
5828 while (len && val[len-1] == '\n')
5829 len--;
5830 if (len >= DISK_NAME_LEN)
5831 return -E2BIG;
5832 strlcpy(buf, val, len+1);
5833 if (strncmp(buf, "md_", 3) == 0)
5834 return md_alloc(0, buf);
5835 if (strncmp(buf, "md", 2) == 0 &&
5836 isdigit(buf[2]) &&
5837 kstrtoul(buf+2, 10, &devnum) == 0 &&
5838 devnum <= MINORMASK)
5839 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5840
5841 return -EINVAL;
5842 }
5843
md_safemode_timeout(struct timer_list * t)5844 static void md_safemode_timeout(struct timer_list *t)
5845 {
5846 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5847
5848 mddev->safemode = 1;
5849 if (mddev->external)
5850 sysfs_notify_dirent_safe(mddev->sysfs_state);
5851
5852 md_wakeup_thread(mddev->thread);
5853 }
5854
5855 static int start_dirty_degraded;
5856
md_run(struct mddev * mddev)5857 int md_run(struct mddev *mddev)
5858 {
5859 int err;
5860 struct md_rdev *rdev;
5861 struct md_personality *pers;
5862
5863 if (list_empty(&mddev->disks))
5864 /* cannot run an array with no devices.. */
5865 return -EINVAL;
5866
5867 if (mddev->pers)
5868 return -EBUSY;
5869 /* Cannot run until previous stop completes properly */
5870 if (mddev->sysfs_active)
5871 return -EBUSY;
5872
5873 /*
5874 * Analyze all RAID superblock(s)
5875 */
5876 if (!mddev->raid_disks) {
5877 if (!mddev->persistent)
5878 return -EINVAL;
5879 err = analyze_sbs(mddev);
5880 if (err)
5881 return -EINVAL;
5882 }
5883
5884 if (mddev->level != LEVEL_NONE)
5885 request_module("md-level-%d", mddev->level);
5886 else if (mddev->clevel[0])
5887 request_module("md-%s", mddev->clevel);
5888
5889 /*
5890 * Drop all container device buffers, from now on
5891 * the only valid external interface is through the md
5892 * device.
5893 */
5894 mddev->has_superblocks = false;
5895 rdev_for_each(rdev, mddev) {
5896 if (test_bit(Faulty, &rdev->flags))
5897 continue;
5898 sync_blockdev(rdev->bdev);
5899 invalidate_bdev(rdev->bdev);
5900 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5901 mddev->ro = MD_RDONLY;
5902 if (mddev->gendisk)
5903 set_disk_ro(mddev->gendisk, 1);
5904 }
5905
5906 if (rdev->sb_page)
5907 mddev->has_superblocks = true;
5908
5909 /* perform some consistency tests on the device.
5910 * We don't want the data to overlap the metadata,
5911 * Internal Bitmap issues have been handled elsewhere.
5912 */
5913 if (rdev->meta_bdev) {
5914 /* Nothing to check */;
5915 } else if (rdev->data_offset < rdev->sb_start) {
5916 if (mddev->dev_sectors &&
5917 rdev->data_offset + mddev->dev_sectors
5918 > rdev->sb_start) {
5919 pr_warn("md: %s: data overlaps metadata\n",
5920 mdname(mddev));
5921 return -EINVAL;
5922 }
5923 } else {
5924 if (rdev->sb_start + rdev->sb_size/512
5925 > rdev->data_offset) {
5926 pr_warn("md: %s: metadata overlaps data\n",
5927 mdname(mddev));
5928 return -EINVAL;
5929 }
5930 }
5931 sysfs_notify_dirent_safe(rdev->sysfs_state);
5932 }
5933
5934 if (!bioset_initialized(&mddev->bio_set)) {
5935 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5936 if (err)
5937 return err;
5938 }
5939 if (!bioset_initialized(&mddev->sync_set)) {
5940 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5941 if (err)
5942 goto exit_bio_set;
5943 }
5944
5945 spin_lock(&pers_lock);
5946 pers = find_pers(mddev->level, mddev->clevel);
5947 if (!pers || !try_module_get(pers->owner)) {
5948 spin_unlock(&pers_lock);
5949 if (mddev->level != LEVEL_NONE)
5950 pr_warn("md: personality for level %d is not loaded!\n",
5951 mddev->level);
5952 else
5953 pr_warn("md: personality for level %s is not loaded!\n",
5954 mddev->clevel);
5955 err = -EINVAL;
5956 goto abort;
5957 }
5958 spin_unlock(&pers_lock);
5959 if (mddev->level != pers->level) {
5960 mddev->level = pers->level;
5961 mddev->new_level = pers->level;
5962 }
5963 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5964
5965 if (mddev->reshape_position != MaxSector &&
5966 pers->start_reshape == NULL) {
5967 /* This personality cannot handle reshaping... */
5968 module_put(pers->owner);
5969 err = -EINVAL;
5970 goto abort;
5971 }
5972
5973 if (pers->sync_request) {
5974 /* Warn if this is a potentially silly
5975 * configuration.
5976 */
5977 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5978 struct md_rdev *rdev2;
5979 int warned = 0;
5980
5981 rdev_for_each(rdev, mddev)
5982 rdev_for_each(rdev2, mddev) {
5983 if (rdev < rdev2 &&
5984 rdev->bdev->bd_disk ==
5985 rdev2->bdev->bd_disk) {
5986 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5987 mdname(mddev),
5988 bdevname(rdev->bdev,b),
5989 bdevname(rdev2->bdev,b2));
5990 warned = 1;
5991 }
5992 }
5993
5994 if (warned)
5995 pr_warn("True protection against single-disk failure might be compromised.\n");
5996 }
5997
5998 mddev->recovery = 0;
5999 /* may be over-ridden by personality */
6000 mddev->resync_max_sectors = mddev->dev_sectors;
6001
6002 mddev->ok_start_degraded = start_dirty_degraded;
6003
6004 if (start_readonly && md_is_rdwr(mddev))
6005 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
6006
6007 err = pers->run(mddev);
6008 if (err)
6009 pr_warn("md: pers->run() failed ...\n");
6010 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6011 WARN_ONCE(!mddev->external_size,
6012 "%s: default size too small, but 'external_size' not in effect?\n",
6013 __func__);
6014 pr_warn("md: invalid array_size %llu > default size %llu\n",
6015 (unsigned long long)mddev->array_sectors / 2,
6016 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6017 err = -EINVAL;
6018 }
6019 if (err == 0 && pers->sync_request &&
6020 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6021 struct bitmap *bitmap;
6022
6023 bitmap = md_bitmap_create(mddev, -1);
6024 if (IS_ERR(bitmap)) {
6025 err = PTR_ERR(bitmap);
6026 pr_warn("%s: failed to create bitmap (%d)\n",
6027 mdname(mddev), err);
6028 } else
6029 mddev->bitmap = bitmap;
6030
6031 }
6032 if (err)
6033 goto bitmap_abort;
6034
6035 if (mddev->bitmap_info.max_write_behind > 0) {
6036 bool create_pool = false;
6037
6038 rdev_for_each(rdev, mddev) {
6039 if (test_bit(WriteMostly, &rdev->flags) &&
6040 rdev_init_serial(rdev))
6041 create_pool = true;
6042 }
6043 if (create_pool && mddev->serial_info_pool == NULL) {
6044 mddev->serial_info_pool =
6045 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6046 sizeof(struct serial_info));
6047 if (!mddev->serial_info_pool) {
6048 err = -ENOMEM;
6049 goto bitmap_abort;
6050 }
6051 }
6052 }
6053
6054 if (mddev->queue) {
6055 bool nonrot = true;
6056
6057 rdev_for_each(rdev, mddev) {
6058 if (rdev->raid_disk >= 0 &&
6059 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6060 nonrot = false;
6061 break;
6062 }
6063 }
6064 if (mddev->degraded)
6065 nonrot = false;
6066 if (nonrot)
6067 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6068 else
6069 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6070 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6071 }
6072 if (pers->sync_request) {
6073 if (mddev->kobj.sd &&
6074 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6075 pr_warn("md: cannot register extra attributes for %s\n",
6076 mdname(mddev));
6077 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6078 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6079 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6080 } else if (mddev->ro == MD_AUTO_READ)
6081 mddev->ro = MD_RDWR;
6082
6083 atomic_set(&mddev->max_corr_read_errors,
6084 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6085 mddev->safemode = 0;
6086 if (mddev_is_clustered(mddev))
6087 mddev->safemode_delay = 0;
6088 else
6089 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6090 mddev->in_sync = 1;
6091 smp_wmb();
6092 spin_lock(&mddev->lock);
6093 mddev->pers = pers;
6094 spin_unlock(&mddev->lock);
6095 rdev_for_each(rdev, mddev)
6096 if (rdev->raid_disk >= 0)
6097 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6098
6099 if (mddev->degraded && md_is_rdwr(mddev))
6100 /* This ensures that recovering status is reported immediately
6101 * via sysfs - until a lack of spares is confirmed.
6102 */
6103 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6104 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6105
6106 if (mddev->sb_flags)
6107 md_update_sb(mddev, 0);
6108
6109 md_new_event(mddev);
6110 return 0;
6111
6112 bitmap_abort:
6113 mddev_detach(mddev);
6114 if (mddev->private)
6115 pers->free(mddev, mddev->private);
6116 mddev->private = NULL;
6117 module_put(pers->owner);
6118 md_bitmap_destroy(mddev);
6119 abort:
6120 bioset_exit(&mddev->sync_set);
6121 exit_bio_set:
6122 bioset_exit(&mddev->bio_set);
6123 return err;
6124 }
6125 EXPORT_SYMBOL_GPL(md_run);
6126
do_md_run(struct mddev * mddev)6127 int do_md_run(struct mddev *mddev)
6128 {
6129 int err;
6130
6131 set_bit(MD_NOT_READY, &mddev->flags);
6132 err = md_run(mddev);
6133 if (err)
6134 goto out;
6135 err = md_bitmap_load(mddev);
6136 if (err) {
6137 md_bitmap_destroy(mddev);
6138 goto out;
6139 }
6140
6141 if (mddev_is_clustered(mddev))
6142 md_allow_write(mddev);
6143
6144 /* run start up tasks that require md_thread */
6145 md_start(mddev);
6146
6147 md_wakeup_thread(mddev->thread);
6148 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6149
6150 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6151 clear_bit(MD_NOT_READY, &mddev->flags);
6152 mddev->changed = 1;
6153 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6154 sysfs_notify_dirent_safe(mddev->sysfs_state);
6155 sysfs_notify_dirent_safe(mddev->sysfs_action);
6156 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6157 out:
6158 clear_bit(MD_NOT_READY, &mddev->flags);
6159 return err;
6160 }
6161
md_start(struct mddev * mddev)6162 int md_start(struct mddev *mddev)
6163 {
6164 int ret = 0;
6165
6166 if (mddev->pers->start) {
6167 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6168 md_wakeup_thread(mddev->thread);
6169 ret = mddev->pers->start(mddev);
6170 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6171 md_wakeup_thread(mddev->sync_thread);
6172 }
6173 return ret;
6174 }
6175 EXPORT_SYMBOL_GPL(md_start);
6176
restart_array(struct mddev * mddev)6177 static int restart_array(struct mddev *mddev)
6178 {
6179 struct gendisk *disk = mddev->gendisk;
6180 struct md_rdev *rdev;
6181 bool has_journal = false;
6182 bool has_readonly = false;
6183
6184 /* Complain if it has no devices */
6185 if (list_empty(&mddev->disks))
6186 return -ENXIO;
6187 if (!mddev->pers)
6188 return -EINVAL;
6189 if (md_is_rdwr(mddev))
6190 return -EBUSY;
6191
6192 rcu_read_lock();
6193 rdev_for_each_rcu(rdev, mddev) {
6194 if (test_bit(Journal, &rdev->flags) &&
6195 !test_bit(Faulty, &rdev->flags))
6196 has_journal = true;
6197 if (rdev_read_only(rdev))
6198 has_readonly = true;
6199 }
6200 rcu_read_unlock();
6201 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6202 /* Don't restart rw with journal missing/faulty */
6203 return -EINVAL;
6204 if (has_readonly)
6205 return -EROFS;
6206
6207 mddev->safemode = 0;
6208 mddev->ro = MD_RDWR;
6209 set_disk_ro(disk, 0);
6210 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6211 /* Kick recovery or resync if necessary */
6212 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6213 md_wakeup_thread(mddev->thread);
6214 md_wakeup_thread(mddev->sync_thread);
6215 sysfs_notify_dirent_safe(mddev->sysfs_state);
6216 return 0;
6217 }
6218
md_clean(struct mddev * mddev)6219 static void md_clean(struct mddev *mddev)
6220 {
6221 mddev->array_sectors = 0;
6222 mddev->external_size = 0;
6223 mddev->dev_sectors = 0;
6224 mddev->raid_disks = 0;
6225 mddev->recovery_cp = 0;
6226 mddev->resync_min = 0;
6227 mddev->resync_max = MaxSector;
6228 mddev->reshape_position = MaxSector;
6229 mddev->external = 0;
6230 mddev->persistent = 0;
6231 mddev->level = LEVEL_NONE;
6232 mddev->clevel[0] = 0;
6233 mddev->flags = 0;
6234 mddev->sb_flags = 0;
6235 mddev->ro = MD_RDWR;
6236 mddev->metadata_type[0] = 0;
6237 mddev->chunk_sectors = 0;
6238 mddev->ctime = mddev->utime = 0;
6239 mddev->layout = 0;
6240 mddev->max_disks = 0;
6241 mddev->events = 0;
6242 mddev->can_decrease_events = 0;
6243 mddev->delta_disks = 0;
6244 mddev->reshape_backwards = 0;
6245 mddev->new_level = LEVEL_NONE;
6246 mddev->new_layout = 0;
6247 mddev->new_chunk_sectors = 0;
6248 mddev->curr_resync = 0;
6249 atomic64_set(&mddev->resync_mismatches, 0);
6250 mddev->suspend_lo = mddev->suspend_hi = 0;
6251 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6252 mddev->recovery = 0;
6253 mddev->in_sync = 0;
6254 mddev->changed = 0;
6255 mddev->degraded = 0;
6256 mddev->safemode = 0;
6257 mddev->private = NULL;
6258 mddev->cluster_info = NULL;
6259 mddev->bitmap_info.offset = 0;
6260 mddev->bitmap_info.default_offset = 0;
6261 mddev->bitmap_info.default_space = 0;
6262 mddev->bitmap_info.chunksize = 0;
6263 mddev->bitmap_info.daemon_sleep = 0;
6264 mddev->bitmap_info.max_write_behind = 0;
6265 mddev->bitmap_info.nodes = 0;
6266 }
6267
__md_stop_writes(struct mddev * mddev)6268 static void __md_stop_writes(struct mddev *mddev)
6269 {
6270 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6271 if (work_pending(&mddev->del_work))
6272 flush_workqueue(md_misc_wq);
6273 if (mddev->sync_thread) {
6274 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6275 md_reap_sync_thread(mddev);
6276 }
6277
6278 del_timer_sync(&mddev->safemode_timer);
6279
6280 if (mddev->pers && mddev->pers->quiesce) {
6281 mddev->pers->quiesce(mddev, 1);
6282 mddev->pers->quiesce(mddev, 0);
6283 }
6284 md_bitmap_flush(mddev);
6285
6286 if (md_is_rdwr(mddev) &&
6287 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6288 mddev->sb_flags)) {
6289 /* mark array as shutdown cleanly */
6290 if (!mddev_is_clustered(mddev))
6291 mddev->in_sync = 1;
6292 md_update_sb(mddev, 1);
6293 }
6294 /* disable policy to guarantee rdevs free resources for serialization */
6295 mddev->serialize_policy = 0;
6296 mddev_destroy_serial_pool(mddev, NULL, true);
6297 }
6298
md_stop_writes(struct mddev * mddev)6299 void md_stop_writes(struct mddev *mddev)
6300 {
6301 mddev_lock_nointr(mddev);
6302 __md_stop_writes(mddev);
6303 mddev_unlock(mddev);
6304 }
6305 EXPORT_SYMBOL_GPL(md_stop_writes);
6306
mddev_detach(struct mddev * mddev)6307 static void mddev_detach(struct mddev *mddev)
6308 {
6309 md_bitmap_wait_behind_writes(mddev);
6310 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6311 mddev->pers->quiesce(mddev, 1);
6312 mddev->pers->quiesce(mddev, 0);
6313 }
6314 md_unregister_thread(&mddev->thread);
6315 if (mddev->queue)
6316 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6317 }
6318
__md_stop(struct mddev * mddev)6319 static void __md_stop(struct mddev *mddev)
6320 {
6321 struct md_personality *pers = mddev->pers;
6322 md_bitmap_destroy(mddev);
6323 mddev_detach(mddev);
6324 /* Ensure ->event_work is done */
6325 if (mddev->event_work.func)
6326 flush_workqueue(md_misc_wq);
6327 spin_lock(&mddev->lock);
6328 mddev->pers = NULL;
6329 spin_unlock(&mddev->lock);
6330 pers->free(mddev, mddev->private);
6331 mddev->private = NULL;
6332 if (pers->sync_request && mddev->to_remove == NULL)
6333 mddev->to_remove = &md_redundancy_group;
6334 module_put(pers->owner);
6335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6336 }
6337
md_stop(struct mddev * mddev)6338 void md_stop(struct mddev *mddev)
6339 {
6340 lockdep_assert_held(&mddev->reconfig_mutex);
6341
6342 /* stop the array and free an attached data structures.
6343 * This is called from dm-raid
6344 */
6345 __md_stop_writes(mddev);
6346 __md_stop(mddev);
6347 bioset_exit(&mddev->bio_set);
6348 bioset_exit(&mddev->sync_set);
6349 }
6350
6351 EXPORT_SYMBOL_GPL(md_stop);
6352
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6353 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6354 {
6355 int err = 0;
6356 int did_freeze = 0;
6357
6358 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6359 return -EBUSY;
6360
6361 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6362 did_freeze = 1;
6363 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6364 md_wakeup_thread(mddev->thread);
6365 }
6366 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6367 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6368 if (mddev->sync_thread)
6369 /* Thread might be blocked waiting for metadata update
6370 * which will now never happen */
6371 wake_up_process(mddev->sync_thread->tsk);
6372
6373 mddev_unlock(mddev);
6374 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6375 &mddev->recovery));
6376 wait_event(mddev->sb_wait,
6377 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6378 mddev_lock_nointr(mddev);
6379
6380 mutex_lock(&mddev->open_mutex);
6381 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6382 mddev->sync_thread ||
6383 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6384 pr_warn("md: %s still in use.\n",mdname(mddev));
6385 err = -EBUSY;
6386 goto out;
6387 }
6388
6389 if (mddev->pers) {
6390 __md_stop_writes(mddev);
6391
6392 if (mddev->ro == MD_RDONLY) {
6393 err = -ENXIO;
6394 goto out;
6395 }
6396
6397 mddev->ro = MD_RDONLY;
6398 set_disk_ro(mddev->gendisk, 1);
6399 }
6400
6401 out:
6402 if ((mddev->pers && !err) || did_freeze) {
6403 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6405 md_wakeup_thread(mddev->thread);
6406 sysfs_notify_dirent_safe(mddev->sysfs_state);
6407 }
6408
6409 mutex_unlock(&mddev->open_mutex);
6410 return err;
6411 }
6412
6413 /* mode:
6414 * 0 - completely stop and dis-assemble array
6415 * 2 - stop but do not disassemble array
6416 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6417 static int do_md_stop(struct mddev *mddev, int mode,
6418 struct block_device *bdev)
6419 {
6420 struct gendisk *disk = mddev->gendisk;
6421 struct md_rdev *rdev;
6422 int did_freeze = 0;
6423
6424 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6425 did_freeze = 1;
6426 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6427 md_wakeup_thread(mddev->thread);
6428 }
6429 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6430 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6431 if (mddev->sync_thread)
6432 /* Thread might be blocked waiting for metadata update
6433 * which will now never happen */
6434 wake_up_process(mddev->sync_thread->tsk);
6435
6436 mddev_unlock(mddev);
6437 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6438 !test_bit(MD_RECOVERY_RUNNING,
6439 &mddev->recovery)));
6440 mddev_lock_nointr(mddev);
6441
6442 mutex_lock(&mddev->open_mutex);
6443 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6444 mddev->sysfs_active ||
6445 mddev->sync_thread ||
6446 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6447 pr_warn("md: %s still in use.\n",mdname(mddev));
6448 mutex_unlock(&mddev->open_mutex);
6449 if (did_freeze) {
6450 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6451 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6452 md_wakeup_thread(mddev->thread);
6453 }
6454 return -EBUSY;
6455 }
6456 if (mddev->pers) {
6457 if (!md_is_rdwr(mddev))
6458 set_disk_ro(disk, 0);
6459
6460 __md_stop_writes(mddev);
6461 __md_stop(mddev);
6462
6463 /* tell userspace to handle 'inactive' */
6464 sysfs_notify_dirent_safe(mddev->sysfs_state);
6465
6466 rdev_for_each(rdev, mddev)
6467 if (rdev->raid_disk >= 0)
6468 sysfs_unlink_rdev(mddev, rdev);
6469
6470 set_capacity_and_notify(disk, 0);
6471 mutex_unlock(&mddev->open_mutex);
6472 mddev->changed = 1;
6473
6474 if (!md_is_rdwr(mddev))
6475 mddev->ro = MD_RDWR;
6476 } else
6477 mutex_unlock(&mddev->open_mutex);
6478 /*
6479 * Free resources if final stop
6480 */
6481 if (mode == 0) {
6482 pr_info("md: %s stopped.\n", mdname(mddev));
6483
6484 if (mddev->bitmap_info.file) {
6485 struct file *f = mddev->bitmap_info.file;
6486 spin_lock(&mddev->lock);
6487 mddev->bitmap_info.file = NULL;
6488 spin_unlock(&mddev->lock);
6489 fput(f);
6490 }
6491 mddev->bitmap_info.offset = 0;
6492
6493 export_array(mddev);
6494
6495 md_clean(mddev);
6496 if (mddev->hold_active == UNTIL_STOP)
6497 mddev->hold_active = 0;
6498 }
6499 md_new_event(mddev);
6500 sysfs_notify_dirent_safe(mddev->sysfs_state);
6501 return 0;
6502 }
6503
6504 #ifndef MODULE
autorun_array(struct mddev * mddev)6505 static void autorun_array(struct mddev *mddev)
6506 {
6507 struct md_rdev *rdev;
6508 int err;
6509
6510 if (list_empty(&mddev->disks))
6511 return;
6512
6513 pr_info("md: running: ");
6514
6515 rdev_for_each(rdev, mddev) {
6516 char b[BDEVNAME_SIZE];
6517 pr_cont("<%s>", bdevname(rdev->bdev,b));
6518 }
6519 pr_cont("\n");
6520
6521 err = do_md_run(mddev);
6522 if (err) {
6523 pr_warn("md: do_md_run() returned %d\n", err);
6524 do_md_stop(mddev, 0, NULL);
6525 }
6526 }
6527
6528 /*
6529 * lets try to run arrays based on all disks that have arrived
6530 * until now. (those are in pending_raid_disks)
6531 *
6532 * the method: pick the first pending disk, collect all disks with
6533 * the same UUID, remove all from the pending list and put them into
6534 * the 'same_array' list. Then order this list based on superblock
6535 * update time (freshest comes first), kick out 'old' disks and
6536 * compare superblocks. If everything's fine then run it.
6537 *
6538 * If "unit" is allocated, then bump its reference count
6539 */
autorun_devices(int part)6540 static void autorun_devices(int part)
6541 {
6542 struct md_rdev *rdev0, *rdev, *tmp;
6543 struct mddev *mddev;
6544 char b[BDEVNAME_SIZE];
6545
6546 pr_info("md: autorun ...\n");
6547 while (!list_empty(&pending_raid_disks)) {
6548 int unit;
6549 dev_t dev;
6550 LIST_HEAD(candidates);
6551 rdev0 = list_entry(pending_raid_disks.next,
6552 struct md_rdev, same_set);
6553
6554 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6555 INIT_LIST_HEAD(&candidates);
6556 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6557 if (super_90_load(rdev, rdev0, 0) >= 0) {
6558 pr_debug("md: adding %s ...\n",
6559 bdevname(rdev->bdev,b));
6560 list_move(&rdev->same_set, &candidates);
6561 }
6562 /*
6563 * now we have a set of devices, with all of them having
6564 * mostly sane superblocks. It's time to allocate the
6565 * mddev.
6566 */
6567 if (part) {
6568 dev = MKDEV(mdp_major,
6569 rdev0->preferred_minor << MdpMinorShift);
6570 unit = MINOR(dev) >> MdpMinorShift;
6571 } else {
6572 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6573 unit = MINOR(dev);
6574 }
6575 if (rdev0->preferred_minor != unit) {
6576 pr_warn("md: unit number in %s is bad: %d\n",
6577 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6578 break;
6579 }
6580
6581 md_probe(dev);
6582 mddev = mddev_find(dev);
6583 if (!mddev)
6584 break;
6585
6586 if (mddev_lock(mddev))
6587 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6588 else if (mddev->raid_disks || mddev->major_version
6589 || !list_empty(&mddev->disks)) {
6590 pr_warn("md: %s already running, cannot run %s\n",
6591 mdname(mddev), bdevname(rdev0->bdev,b));
6592 mddev_unlock(mddev);
6593 } else {
6594 pr_debug("md: created %s\n", mdname(mddev));
6595 mddev->persistent = 1;
6596 rdev_for_each_list(rdev, tmp, &candidates) {
6597 list_del_init(&rdev->same_set);
6598 if (bind_rdev_to_array(rdev, mddev))
6599 export_rdev(rdev);
6600 }
6601 autorun_array(mddev);
6602 mddev_unlock(mddev);
6603 }
6604 /* on success, candidates will be empty, on error
6605 * it won't...
6606 */
6607 rdev_for_each_list(rdev, tmp, &candidates) {
6608 list_del_init(&rdev->same_set);
6609 export_rdev(rdev);
6610 }
6611 mddev_put(mddev);
6612 }
6613 pr_info("md: ... autorun DONE.\n");
6614 }
6615 #endif /* !MODULE */
6616
get_version(void __user * arg)6617 static int get_version(void __user *arg)
6618 {
6619 mdu_version_t ver;
6620
6621 ver.major = MD_MAJOR_VERSION;
6622 ver.minor = MD_MINOR_VERSION;
6623 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6624
6625 if (copy_to_user(arg, &ver, sizeof(ver)))
6626 return -EFAULT;
6627
6628 return 0;
6629 }
6630
get_array_info(struct mddev * mddev,void __user * arg)6631 static int get_array_info(struct mddev *mddev, void __user *arg)
6632 {
6633 mdu_array_info_t info;
6634 int nr,working,insync,failed,spare;
6635 struct md_rdev *rdev;
6636
6637 nr = working = insync = failed = spare = 0;
6638 rcu_read_lock();
6639 rdev_for_each_rcu(rdev, mddev) {
6640 nr++;
6641 if (test_bit(Faulty, &rdev->flags))
6642 failed++;
6643 else {
6644 working++;
6645 if (test_bit(In_sync, &rdev->flags))
6646 insync++;
6647 else if (test_bit(Journal, &rdev->flags))
6648 /* TODO: add journal count to md_u.h */
6649 ;
6650 else
6651 spare++;
6652 }
6653 }
6654 rcu_read_unlock();
6655
6656 info.major_version = mddev->major_version;
6657 info.minor_version = mddev->minor_version;
6658 info.patch_version = MD_PATCHLEVEL_VERSION;
6659 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6660 info.level = mddev->level;
6661 info.size = mddev->dev_sectors / 2;
6662 if (info.size != mddev->dev_sectors / 2) /* overflow */
6663 info.size = -1;
6664 info.nr_disks = nr;
6665 info.raid_disks = mddev->raid_disks;
6666 info.md_minor = mddev->md_minor;
6667 info.not_persistent= !mddev->persistent;
6668
6669 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6670 info.state = 0;
6671 if (mddev->in_sync)
6672 info.state = (1<<MD_SB_CLEAN);
6673 if (mddev->bitmap && mddev->bitmap_info.offset)
6674 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6675 if (mddev_is_clustered(mddev))
6676 info.state |= (1<<MD_SB_CLUSTERED);
6677 info.active_disks = insync;
6678 info.working_disks = working;
6679 info.failed_disks = failed;
6680 info.spare_disks = spare;
6681
6682 info.layout = mddev->layout;
6683 info.chunk_size = mddev->chunk_sectors << 9;
6684
6685 if (copy_to_user(arg, &info, sizeof(info)))
6686 return -EFAULT;
6687
6688 return 0;
6689 }
6690
get_bitmap_file(struct mddev * mddev,void __user * arg)6691 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6692 {
6693 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6694 char *ptr;
6695 int err;
6696
6697 file = kzalloc(sizeof(*file), GFP_NOIO);
6698 if (!file)
6699 return -ENOMEM;
6700
6701 err = 0;
6702 spin_lock(&mddev->lock);
6703 /* bitmap enabled */
6704 if (mddev->bitmap_info.file) {
6705 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6706 sizeof(file->pathname));
6707 if (IS_ERR(ptr))
6708 err = PTR_ERR(ptr);
6709 else
6710 memmove(file->pathname, ptr,
6711 sizeof(file->pathname)-(ptr-file->pathname));
6712 }
6713 spin_unlock(&mddev->lock);
6714
6715 if (err == 0 &&
6716 copy_to_user(arg, file, sizeof(*file)))
6717 err = -EFAULT;
6718
6719 kfree(file);
6720 return err;
6721 }
6722
get_disk_info(struct mddev * mddev,void __user * arg)6723 static int get_disk_info(struct mddev *mddev, void __user * arg)
6724 {
6725 mdu_disk_info_t info;
6726 struct md_rdev *rdev;
6727
6728 if (copy_from_user(&info, arg, sizeof(info)))
6729 return -EFAULT;
6730
6731 rcu_read_lock();
6732 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6733 if (rdev) {
6734 info.major = MAJOR(rdev->bdev->bd_dev);
6735 info.minor = MINOR(rdev->bdev->bd_dev);
6736 info.raid_disk = rdev->raid_disk;
6737 info.state = 0;
6738 if (test_bit(Faulty, &rdev->flags))
6739 info.state |= (1<<MD_DISK_FAULTY);
6740 else if (test_bit(In_sync, &rdev->flags)) {
6741 info.state |= (1<<MD_DISK_ACTIVE);
6742 info.state |= (1<<MD_DISK_SYNC);
6743 }
6744 if (test_bit(Journal, &rdev->flags))
6745 info.state |= (1<<MD_DISK_JOURNAL);
6746 if (test_bit(WriteMostly, &rdev->flags))
6747 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6748 if (test_bit(FailFast, &rdev->flags))
6749 info.state |= (1<<MD_DISK_FAILFAST);
6750 } else {
6751 info.major = info.minor = 0;
6752 info.raid_disk = -1;
6753 info.state = (1<<MD_DISK_REMOVED);
6754 }
6755 rcu_read_unlock();
6756
6757 if (copy_to_user(arg, &info, sizeof(info)))
6758 return -EFAULT;
6759
6760 return 0;
6761 }
6762
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6763 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6764 {
6765 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6766 struct md_rdev *rdev;
6767 dev_t dev = MKDEV(info->major,info->minor);
6768
6769 if (mddev_is_clustered(mddev) &&
6770 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6771 pr_warn("%s: Cannot add to clustered mddev.\n",
6772 mdname(mddev));
6773 return -EINVAL;
6774 }
6775
6776 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6777 return -EOVERFLOW;
6778
6779 if (!mddev->raid_disks) {
6780 int err;
6781 /* expecting a device which has a superblock */
6782 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6783 if (IS_ERR(rdev)) {
6784 pr_warn("md: md_import_device returned %ld\n",
6785 PTR_ERR(rdev));
6786 return PTR_ERR(rdev);
6787 }
6788 if (!list_empty(&mddev->disks)) {
6789 struct md_rdev *rdev0
6790 = list_entry(mddev->disks.next,
6791 struct md_rdev, same_set);
6792 err = super_types[mddev->major_version]
6793 .load_super(rdev, rdev0, mddev->minor_version);
6794 if (err < 0) {
6795 pr_warn("md: %s has different UUID to %s\n",
6796 bdevname(rdev->bdev,b),
6797 bdevname(rdev0->bdev,b2));
6798 export_rdev(rdev);
6799 return -EINVAL;
6800 }
6801 }
6802 err = bind_rdev_to_array(rdev, mddev);
6803 if (err)
6804 export_rdev(rdev);
6805 return err;
6806 }
6807
6808 /*
6809 * md_add_new_disk can be used once the array is assembled
6810 * to add "hot spares". They must already have a superblock
6811 * written
6812 */
6813 if (mddev->pers) {
6814 int err;
6815 if (!mddev->pers->hot_add_disk) {
6816 pr_warn("%s: personality does not support diskops!\n",
6817 mdname(mddev));
6818 return -EINVAL;
6819 }
6820 if (mddev->persistent)
6821 rdev = md_import_device(dev, mddev->major_version,
6822 mddev->minor_version);
6823 else
6824 rdev = md_import_device(dev, -1, -1);
6825 if (IS_ERR(rdev)) {
6826 pr_warn("md: md_import_device returned %ld\n",
6827 PTR_ERR(rdev));
6828 return PTR_ERR(rdev);
6829 }
6830 /* set saved_raid_disk if appropriate */
6831 if (!mddev->persistent) {
6832 if (info->state & (1<<MD_DISK_SYNC) &&
6833 info->raid_disk < mddev->raid_disks) {
6834 rdev->raid_disk = info->raid_disk;
6835 set_bit(In_sync, &rdev->flags);
6836 clear_bit(Bitmap_sync, &rdev->flags);
6837 } else
6838 rdev->raid_disk = -1;
6839 rdev->saved_raid_disk = rdev->raid_disk;
6840 } else
6841 super_types[mddev->major_version].
6842 validate_super(mddev, NULL/*freshest*/, rdev);
6843 if ((info->state & (1<<MD_DISK_SYNC)) &&
6844 rdev->raid_disk != info->raid_disk) {
6845 /* This was a hot-add request, but events doesn't
6846 * match, so reject it.
6847 */
6848 export_rdev(rdev);
6849 return -EINVAL;
6850 }
6851
6852 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6853 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6854 set_bit(WriteMostly, &rdev->flags);
6855 else
6856 clear_bit(WriteMostly, &rdev->flags);
6857 if (info->state & (1<<MD_DISK_FAILFAST))
6858 set_bit(FailFast, &rdev->flags);
6859 else
6860 clear_bit(FailFast, &rdev->flags);
6861
6862 if (info->state & (1<<MD_DISK_JOURNAL)) {
6863 struct md_rdev *rdev2;
6864 bool has_journal = false;
6865
6866 /* make sure no existing journal disk */
6867 rdev_for_each(rdev2, mddev) {
6868 if (test_bit(Journal, &rdev2->flags)) {
6869 has_journal = true;
6870 break;
6871 }
6872 }
6873 if (has_journal || mddev->bitmap) {
6874 export_rdev(rdev);
6875 return -EBUSY;
6876 }
6877 set_bit(Journal, &rdev->flags);
6878 }
6879 /*
6880 * check whether the device shows up in other nodes
6881 */
6882 if (mddev_is_clustered(mddev)) {
6883 if (info->state & (1 << MD_DISK_CANDIDATE))
6884 set_bit(Candidate, &rdev->flags);
6885 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6886 /* --add initiated by this node */
6887 err = md_cluster_ops->add_new_disk(mddev, rdev);
6888 if (err) {
6889 export_rdev(rdev);
6890 return err;
6891 }
6892 }
6893 }
6894
6895 rdev->raid_disk = -1;
6896 err = bind_rdev_to_array(rdev, mddev);
6897
6898 if (err)
6899 export_rdev(rdev);
6900
6901 if (mddev_is_clustered(mddev)) {
6902 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6903 if (!err) {
6904 err = md_cluster_ops->new_disk_ack(mddev,
6905 err == 0);
6906 if (err)
6907 md_kick_rdev_from_array(rdev);
6908 }
6909 } else {
6910 if (err)
6911 md_cluster_ops->add_new_disk_cancel(mddev);
6912 else
6913 err = add_bound_rdev(rdev);
6914 }
6915
6916 } else if (!err)
6917 err = add_bound_rdev(rdev);
6918
6919 return err;
6920 }
6921
6922 /* otherwise, md_add_new_disk is only allowed
6923 * for major_version==0 superblocks
6924 */
6925 if (mddev->major_version != 0) {
6926 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6927 return -EINVAL;
6928 }
6929
6930 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6931 int err;
6932 rdev = md_import_device(dev, -1, 0);
6933 if (IS_ERR(rdev)) {
6934 pr_warn("md: error, md_import_device() returned %ld\n",
6935 PTR_ERR(rdev));
6936 return PTR_ERR(rdev);
6937 }
6938 rdev->desc_nr = info->number;
6939 if (info->raid_disk < mddev->raid_disks)
6940 rdev->raid_disk = info->raid_disk;
6941 else
6942 rdev->raid_disk = -1;
6943
6944 if (rdev->raid_disk < mddev->raid_disks)
6945 if (info->state & (1<<MD_DISK_SYNC))
6946 set_bit(In_sync, &rdev->flags);
6947
6948 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6949 set_bit(WriteMostly, &rdev->flags);
6950 if (info->state & (1<<MD_DISK_FAILFAST))
6951 set_bit(FailFast, &rdev->flags);
6952
6953 if (!mddev->persistent) {
6954 pr_debug("md: nonpersistent superblock ...\n");
6955 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6956 } else
6957 rdev->sb_start = calc_dev_sboffset(rdev);
6958 rdev->sectors = rdev->sb_start;
6959
6960 err = bind_rdev_to_array(rdev, mddev);
6961 if (err) {
6962 export_rdev(rdev);
6963 return err;
6964 }
6965 }
6966
6967 return 0;
6968 }
6969
hot_remove_disk(struct mddev * mddev,dev_t dev)6970 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6971 {
6972 char b[BDEVNAME_SIZE];
6973 struct md_rdev *rdev;
6974
6975 if (!mddev->pers)
6976 return -ENODEV;
6977
6978 rdev = find_rdev(mddev, dev);
6979 if (!rdev)
6980 return -ENXIO;
6981
6982 if (rdev->raid_disk < 0)
6983 goto kick_rdev;
6984
6985 clear_bit(Blocked, &rdev->flags);
6986 remove_and_add_spares(mddev, rdev);
6987
6988 if (rdev->raid_disk >= 0)
6989 goto busy;
6990
6991 kick_rdev:
6992 if (mddev_is_clustered(mddev)) {
6993 if (md_cluster_ops->remove_disk(mddev, rdev))
6994 goto busy;
6995 }
6996
6997 md_kick_rdev_from_array(rdev);
6998 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6999 if (mddev->thread)
7000 md_wakeup_thread(mddev->thread);
7001 else
7002 md_update_sb(mddev, 1);
7003 md_new_event(mddev);
7004
7005 return 0;
7006 busy:
7007 pr_debug("md: cannot remove active disk %s from %s ...\n",
7008 bdevname(rdev->bdev,b), mdname(mddev));
7009 return -EBUSY;
7010 }
7011
hot_add_disk(struct mddev * mddev,dev_t dev)7012 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7013 {
7014 char b[BDEVNAME_SIZE];
7015 int err;
7016 struct md_rdev *rdev;
7017
7018 if (!mddev->pers)
7019 return -ENODEV;
7020
7021 if (mddev->major_version != 0) {
7022 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7023 mdname(mddev));
7024 return -EINVAL;
7025 }
7026 if (!mddev->pers->hot_add_disk) {
7027 pr_warn("%s: personality does not support diskops!\n",
7028 mdname(mddev));
7029 return -EINVAL;
7030 }
7031
7032 rdev = md_import_device(dev, -1, 0);
7033 if (IS_ERR(rdev)) {
7034 pr_warn("md: error, md_import_device() returned %ld\n",
7035 PTR_ERR(rdev));
7036 return -EINVAL;
7037 }
7038
7039 if (mddev->persistent)
7040 rdev->sb_start = calc_dev_sboffset(rdev);
7041 else
7042 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7043
7044 rdev->sectors = rdev->sb_start;
7045
7046 if (test_bit(Faulty, &rdev->flags)) {
7047 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7048 bdevname(rdev->bdev,b), mdname(mddev));
7049 err = -EINVAL;
7050 goto abort_export;
7051 }
7052
7053 clear_bit(In_sync, &rdev->flags);
7054 rdev->desc_nr = -1;
7055 rdev->saved_raid_disk = -1;
7056 err = bind_rdev_to_array(rdev, mddev);
7057 if (err)
7058 goto abort_export;
7059
7060 /*
7061 * The rest should better be atomic, we can have disk failures
7062 * noticed in interrupt contexts ...
7063 */
7064
7065 rdev->raid_disk = -1;
7066
7067 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7068 if (!mddev->thread)
7069 md_update_sb(mddev, 1);
7070 /*
7071 * Kick recovery, maybe this spare has to be added to the
7072 * array immediately.
7073 */
7074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7075 md_wakeup_thread(mddev->thread);
7076 md_new_event(mddev);
7077 return 0;
7078
7079 abort_export:
7080 export_rdev(rdev);
7081 return err;
7082 }
7083
set_bitmap_file(struct mddev * mddev,int fd)7084 static int set_bitmap_file(struct mddev *mddev, int fd)
7085 {
7086 int err = 0;
7087
7088 if (mddev->pers) {
7089 if (!mddev->pers->quiesce || !mddev->thread)
7090 return -EBUSY;
7091 if (mddev->recovery || mddev->sync_thread)
7092 return -EBUSY;
7093 /* we should be able to change the bitmap.. */
7094 }
7095
7096 if (fd >= 0) {
7097 struct inode *inode;
7098 struct file *f;
7099
7100 if (mddev->bitmap || mddev->bitmap_info.file)
7101 return -EEXIST; /* cannot add when bitmap is present */
7102 f = fget(fd);
7103
7104 if (f == NULL) {
7105 pr_warn("%s: error: failed to get bitmap file\n",
7106 mdname(mddev));
7107 return -EBADF;
7108 }
7109
7110 inode = f->f_mapping->host;
7111 if (!S_ISREG(inode->i_mode)) {
7112 pr_warn("%s: error: bitmap file must be a regular file\n",
7113 mdname(mddev));
7114 err = -EBADF;
7115 } else if (!(f->f_mode & FMODE_WRITE)) {
7116 pr_warn("%s: error: bitmap file must open for write\n",
7117 mdname(mddev));
7118 err = -EBADF;
7119 } else if (atomic_read(&inode->i_writecount) != 1) {
7120 pr_warn("%s: error: bitmap file is already in use\n",
7121 mdname(mddev));
7122 err = -EBUSY;
7123 }
7124 if (err) {
7125 fput(f);
7126 return err;
7127 }
7128 mddev->bitmap_info.file = f;
7129 mddev->bitmap_info.offset = 0; /* file overrides offset */
7130 } else if (mddev->bitmap == NULL)
7131 return -ENOENT; /* cannot remove what isn't there */
7132 err = 0;
7133 if (mddev->pers) {
7134 if (fd >= 0) {
7135 struct bitmap *bitmap;
7136
7137 bitmap = md_bitmap_create(mddev, -1);
7138 mddev_suspend(mddev);
7139 if (!IS_ERR(bitmap)) {
7140 mddev->bitmap = bitmap;
7141 err = md_bitmap_load(mddev);
7142 } else
7143 err = PTR_ERR(bitmap);
7144 if (err) {
7145 md_bitmap_destroy(mddev);
7146 fd = -1;
7147 }
7148 mddev_resume(mddev);
7149 } else if (fd < 0) {
7150 mddev_suspend(mddev);
7151 md_bitmap_destroy(mddev);
7152 mddev_resume(mddev);
7153 }
7154 }
7155 if (fd < 0) {
7156 struct file *f = mddev->bitmap_info.file;
7157 if (f) {
7158 spin_lock(&mddev->lock);
7159 mddev->bitmap_info.file = NULL;
7160 spin_unlock(&mddev->lock);
7161 fput(f);
7162 }
7163 }
7164
7165 return err;
7166 }
7167
7168 /*
7169 * md_set_array_info is used two different ways
7170 * The original usage is when creating a new array.
7171 * In this usage, raid_disks is > 0 and it together with
7172 * level, size, not_persistent,layout,chunksize determine the
7173 * shape of the array.
7174 * This will always create an array with a type-0.90.0 superblock.
7175 * The newer usage is when assembling an array.
7176 * In this case raid_disks will be 0, and the major_version field is
7177 * use to determine which style super-blocks are to be found on the devices.
7178 * The minor and patch _version numbers are also kept incase the
7179 * super_block handler wishes to interpret them.
7180 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7181 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7182 {
7183 if (info->raid_disks == 0) {
7184 /* just setting version number for superblock loading */
7185 if (info->major_version < 0 ||
7186 info->major_version >= ARRAY_SIZE(super_types) ||
7187 super_types[info->major_version].name == NULL) {
7188 /* maybe try to auto-load a module? */
7189 pr_warn("md: superblock version %d not known\n",
7190 info->major_version);
7191 return -EINVAL;
7192 }
7193 mddev->major_version = info->major_version;
7194 mddev->minor_version = info->minor_version;
7195 mddev->patch_version = info->patch_version;
7196 mddev->persistent = !info->not_persistent;
7197 /* ensure mddev_put doesn't delete this now that there
7198 * is some minimal configuration.
7199 */
7200 mddev->ctime = ktime_get_real_seconds();
7201 return 0;
7202 }
7203 mddev->major_version = MD_MAJOR_VERSION;
7204 mddev->minor_version = MD_MINOR_VERSION;
7205 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7206 mddev->ctime = ktime_get_real_seconds();
7207
7208 mddev->level = info->level;
7209 mddev->clevel[0] = 0;
7210 mddev->dev_sectors = 2 * (sector_t)info->size;
7211 mddev->raid_disks = info->raid_disks;
7212 /* don't set md_minor, it is determined by which /dev/md* was
7213 * openned
7214 */
7215 if (info->state & (1<<MD_SB_CLEAN))
7216 mddev->recovery_cp = MaxSector;
7217 else
7218 mddev->recovery_cp = 0;
7219 mddev->persistent = ! info->not_persistent;
7220 mddev->external = 0;
7221
7222 mddev->layout = info->layout;
7223 if (mddev->level == 0)
7224 /* Cannot trust RAID0 layout info here */
7225 mddev->layout = -1;
7226 mddev->chunk_sectors = info->chunk_size >> 9;
7227
7228 if (mddev->persistent) {
7229 mddev->max_disks = MD_SB_DISKS;
7230 mddev->flags = 0;
7231 mddev->sb_flags = 0;
7232 }
7233 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7234
7235 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7236 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7237 mddev->bitmap_info.offset = 0;
7238
7239 mddev->reshape_position = MaxSector;
7240
7241 /*
7242 * Generate a 128 bit UUID
7243 */
7244 get_random_bytes(mddev->uuid, 16);
7245
7246 mddev->new_level = mddev->level;
7247 mddev->new_chunk_sectors = mddev->chunk_sectors;
7248 mddev->new_layout = mddev->layout;
7249 mddev->delta_disks = 0;
7250 mddev->reshape_backwards = 0;
7251
7252 return 0;
7253 }
7254
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7255 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7256 {
7257 lockdep_assert_held(&mddev->reconfig_mutex);
7258
7259 if (mddev->external_size)
7260 return;
7261
7262 mddev->array_sectors = array_sectors;
7263 }
7264 EXPORT_SYMBOL(md_set_array_sectors);
7265
update_size(struct mddev * mddev,sector_t num_sectors)7266 static int update_size(struct mddev *mddev, sector_t num_sectors)
7267 {
7268 struct md_rdev *rdev;
7269 int rv;
7270 int fit = (num_sectors == 0);
7271 sector_t old_dev_sectors = mddev->dev_sectors;
7272
7273 if (mddev->pers->resize == NULL)
7274 return -EINVAL;
7275 /* The "num_sectors" is the number of sectors of each device that
7276 * is used. This can only make sense for arrays with redundancy.
7277 * linear and raid0 always use whatever space is available. We can only
7278 * consider changing this number if no resync or reconstruction is
7279 * happening, and if the new size is acceptable. It must fit before the
7280 * sb_start or, if that is <data_offset, it must fit before the size
7281 * of each device. If num_sectors is zero, we find the largest size
7282 * that fits.
7283 */
7284 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7285 mddev->sync_thread)
7286 return -EBUSY;
7287 if (!md_is_rdwr(mddev))
7288 return -EROFS;
7289
7290 rdev_for_each(rdev, mddev) {
7291 sector_t avail = rdev->sectors;
7292
7293 if (fit && (num_sectors == 0 || num_sectors > avail))
7294 num_sectors = avail;
7295 if (avail < num_sectors)
7296 return -ENOSPC;
7297 }
7298 rv = mddev->pers->resize(mddev, num_sectors);
7299 if (!rv) {
7300 if (mddev_is_clustered(mddev))
7301 md_cluster_ops->update_size(mddev, old_dev_sectors);
7302 else if (mddev->queue) {
7303 set_capacity_and_notify(mddev->gendisk,
7304 mddev->array_sectors);
7305 }
7306 }
7307 return rv;
7308 }
7309
update_raid_disks(struct mddev * mddev,int raid_disks)7310 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7311 {
7312 int rv;
7313 struct md_rdev *rdev;
7314 /* change the number of raid disks */
7315 if (mddev->pers->check_reshape == NULL)
7316 return -EINVAL;
7317 if (!md_is_rdwr(mddev))
7318 return -EROFS;
7319 if (raid_disks <= 0 ||
7320 (mddev->max_disks && raid_disks >= mddev->max_disks))
7321 return -EINVAL;
7322 if (mddev->sync_thread ||
7323 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7324 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7325 mddev->reshape_position != MaxSector)
7326 return -EBUSY;
7327
7328 rdev_for_each(rdev, mddev) {
7329 if (mddev->raid_disks < raid_disks &&
7330 rdev->data_offset < rdev->new_data_offset)
7331 return -EINVAL;
7332 if (mddev->raid_disks > raid_disks &&
7333 rdev->data_offset > rdev->new_data_offset)
7334 return -EINVAL;
7335 }
7336
7337 mddev->delta_disks = raid_disks - mddev->raid_disks;
7338 if (mddev->delta_disks < 0)
7339 mddev->reshape_backwards = 1;
7340 else if (mddev->delta_disks > 0)
7341 mddev->reshape_backwards = 0;
7342
7343 rv = mddev->pers->check_reshape(mddev);
7344 if (rv < 0) {
7345 mddev->delta_disks = 0;
7346 mddev->reshape_backwards = 0;
7347 }
7348 return rv;
7349 }
7350
7351 /*
7352 * update_array_info is used to change the configuration of an
7353 * on-line array.
7354 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7355 * fields in the info are checked against the array.
7356 * Any differences that cannot be handled will cause an error.
7357 * Normally, only one change can be managed at a time.
7358 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7359 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7360 {
7361 int rv = 0;
7362 int cnt = 0;
7363 int state = 0;
7364
7365 /* calculate expected state,ignoring low bits */
7366 if (mddev->bitmap && mddev->bitmap_info.offset)
7367 state |= (1 << MD_SB_BITMAP_PRESENT);
7368
7369 if (mddev->major_version != info->major_version ||
7370 mddev->minor_version != info->minor_version ||
7371 /* mddev->patch_version != info->patch_version || */
7372 mddev->ctime != info->ctime ||
7373 mddev->level != info->level ||
7374 /* mddev->layout != info->layout || */
7375 mddev->persistent != !info->not_persistent ||
7376 mddev->chunk_sectors != info->chunk_size >> 9 ||
7377 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7378 ((state^info->state) & 0xfffffe00)
7379 )
7380 return -EINVAL;
7381 /* Check there is only one change */
7382 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7383 cnt++;
7384 if (mddev->raid_disks != info->raid_disks)
7385 cnt++;
7386 if (mddev->layout != info->layout)
7387 cnt++;
7388 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7389 cnt++;
7390 if (cnt == 0)
7391 return 0;
7392 if (cnt > 1)
7393 return -EINVAL;
7394
7395 if (mddev->layout != info->layout) {
7396 /* Change layout
7397 * we don't need to do anything at the md level, the
7398 * personality will take care of it all.
7399 */
7400 if (mddev->pers->check_reshape == NULL)
7401 return -EINVAL;
7402 else {
7403 mddev->new_layout = info->layout;
7404 rv = mddev->pers->check_reshape(mddev);
7405 if (rv)
7406 mddev->new_layout = mddev->layout;
7407 return rv;
7408 }
7409 }
7410 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7411 rv = update_size(mddev, (sector_t)info->size * 2);
7412
7413 if (mddev->raid_disks != info->raid_disks)
7414 rv = update_raid_disks(mddev, info->raid_disks);
7415
7416 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7417 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7418 rv = -EINVAL;
7419 goto err;
7420 }
7421 if (mddev->recovery || mddev->sync_thread) {
7422 rv = -EBUSY;
7423 goto err;
7424 }
7425 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7426 struct bitmap *bitmap;
7427 /* add the bitmap */
7428 if (mddev->bitmap) {
7429 rv = -EEXIST;
7430 goto err;
7431 }
7432 if (mddev->bitmap_info.default_offset == 0) {
7433 rv = -EINVAL;
7434 goto err;
7435 }
7436 mddev->bitmap_info.offset =
7437 mddev->bitmap_info.default_offset;
7438 mddev->bitmap_info.space =
7439 mddev->bitmap_info.default_space;
7440 bitmap = md_bitmap_create(mddev, -1);
7441 mddev_suspend(mddev);
7442 if (!IS_ERR(bitmap)) {
7443 mddev->bitmap = bitmap;
7444 rv = md_bitmap_load(mddev);
7445 } else
7446 rv = PTR_ERR(bitmap);
7447 if (rv)
7448 md_bitmap_destroy(mddev);
7449 mddev_resume(mddev);
7450 } else {
7451 /* remove the bitmap */
7452 if (!mddev->bitmap) {
7453 rv = -ENOENT;
7454 goto err;
7455 }
7456 if (mddev->bitmap->storage.file) {
7457 rv = -EINVAL;
7458 goto err;
7459 }
7460 if (mddev->bitmap_info.nodes) {
7461 /* hold PW on all the bitmap lock */
7462 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7463 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7464 rv = -EPERM;
7465 md_cluster_ops->unlock_all_bitmaps(mddev);
7466 goto err;
7467 }
7468
7469 mddev->bitmap_info.nodes = 0;
7470 md_cluster_ops->leave(mddev);
7471 module_put(md_cluster_mod);
7472 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7473 }
7474 mddev_suspend(mddev);
7475 md_bitmap_destroy(mddev);
7476 mddev_resume(mddev);
7477 mddev->bitmap_info.offset = 0;
7478 }
7479 }
7480 md_update_sb(mddev, 1);
7481 return rv;
7482 err:
7483 return rv;
7484 }
7485
set_disk_faulty(struct mddev * mddev,dev_t dev)7486 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7487 {
7488 struct md_rdev *rdev;
7489 int err = 0;
7490
7491 if (mddev->pers == NULL)
7492 return -ENODEV;
7493
7494 rcu_read_lock();
7495 rdev = md_find_rdev_rcu(mddev, dev);
7496 if (!rdev)
7497 err = -ENODEV;
7498 else {
7499 md_error(mddev, rdev);
7500 if (test_bit(MD_BROKEN, &mddev->flags))
7501 err = -EBUSY;
7502 }
7503 rcu_read_unlock();
7504 return err;
7505 }
7506
7507 /*
7508 * We have a problem here : there is no easy way to give a CHS
7509 * virtual geometry. We currently pretend that we have a 2 heads
7510 * 4 sectors (with a BIG number of cylinders...). This drives
7511 * dosfs just mad... ;-)
7512 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7513 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7514 {
7515 struct mddev *mddev = bdev->bd_disk->private_data;
7516
7517 geo->heads = 2;
7518 geo->sectors = 4;
7519 geo->cylinders = mddev->array_sectors / 8;
7520 return 0;
7521 }
7522
md_ioctl_valid(unsigned int cmd)7523 static inline bool md_ioctl_valid(unsigned int cmd)
7524 {
7525 switch (cmd) {
7526 case ADD_NEW_DISK:
7527 case GET_ARRAY_INFO:
7528 case GET_BITMAP_FILE:
7529 case GET_DISK_INFO:
7530 case HOT_ADD_DISK:
7531 case HOT_REMOVE_DISK:
7532 case RAID_VERSION:
7533 case RESTART_ARRAY_RW:
7534 case RUN_ARRAY:
7535 case SET_ARRAY_INFO:
7536 case SET_BITMAP_FILE:
7537 case SET_DISK_FAULTY:
7538 case STOP_ARRAY:
7539 case STOP_ARRAY_RO:
7540 case CLUSTERED_DISK_NACK:
7541 return true;
7542 default:
7543 return false;
7544 }
7545 }
7546
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7547 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7548 unsigned int cmd, unsigned long arg)
7549 {
7550 int err = 0;
7551 void __user *argp = (void __user *)arg;
7552 struct mddev *mddev = NULL;
7553 bool did_set_md_closing = false;
7554
7555 if (!md_ioctl_valid(cmd))
7556 return -ENOTTY;
7557
7558 switch (cmd) {
7559 case RAID_VERSION:
7560 case GET_ARRAY_INFO:
7561 case GET_DISK_INFO:
7562 break;
7563 default:
7564 if (!capable(CAP_SYS_ADMIN))
7565 return -EACCES;
7566 }
7567
7568 /*
7569 * Commands dealing with the RAID driver but not any
7570 * particular array:
7571 */
7572 switch (cmd) {
7573 case RAID_VERSION:
7574 err = get_version(argp);
7575 goto out;
7576 default:;
7577 }
7578
7579 /*
7580 * Commands creating/starting a new array:
7581 */
7582
7583 mddev = bdev->bd_disk->private_data;
7584
7585 if (!mddev) {
7586 BUG();
7587 goto out;
7588 }
7589
7590 /* Some actions do not requires the mutex */
7591 switch (cmd) {
7592 case GET_ARRAY_INFO:
7593 if (!mddev->raid_disks && !mddev->external)
7594 err = -ENODEV;
7595 else
7596 err = get_array_info(mddev, argp);
7597 goto out;
7598
7599 case GET_DISK_INFO:
7600 if (!mddev->raid_disks && !mddev->external)
7601 err = -ENODEV;
7602 else
7603 err = get_disk_info(mddev, argp);
7604 goto out;
7605
7606 case SET_DISK_FAULTY:
7607 err = set_disk_faulty(mddev, new_decode_dev(arg));
7608 goto out;
7609
7610 case GET_BITMAP_FILE:
7611 err = get_bitmap_file(mddev, argp);
7612 goto out;
7613
7614 }
7615
7616 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7617 flush_rdev_wq(mddev);
7618
7619 if (cmd == HOT_REMOVE_DISK)
7620 /* need to ensure recovery thread has run */
7621 wait_event_interruptible_timeout(mddev->sb_wait,
7622 !test_bit(MD_RECOVERY_NEEDED,
7623 &mddev->recovery),
7624 msecs_to_jiffies(5000));
7625 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7626 /* Need to flush page cache, and ensure no-one else opens
7627 * and writes
7628 */
7629 mutex_lock(&mddev->open_mutex);
7630 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7631 mutex_unlock(&mddev->open_mutex);
7632 err = -EBUSY;
7633 goto out;
7634 }
7635 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7636 mutex_unlock(&mddev->open_mutex);
7637 err = -EBUSY;
7638 goto out;
7639 }
7640 did_set_md_closing = true;
7641 mutex_unlock(&mddev->open_mutex);
7642 sync_blockdev(bdev);
7643 }
7644 err = mddev_lock(mddev);
7645 if (err) {
7646 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7647 err, cmd);
7648 goto out;
7649 }
7650
7651 if (cmd == SET_ARRAY_INFO) {
7652 mdu_array_info_t info;
7653 if (!arg)
7654 memset(&info, 0, sizeof(info));
7655 else if (copy_from_user(&info, argp, sizeof(info))) {
7656 err = -EFAULT;
7657 goto unlock;
7658 }
7659 if (mddev->pers) {
7660 err = update_array_info(mddev, &info);
7661 if (err) {
7662 pr_warn("md: couldn't update array info. %d\n", err);
7663 goto unlock;
7664 }
7665 goto unlock;
7666 }
7667 if (!list_empty(&mddev->disks)) {
7668 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7669 err = -EBUSY;
7670 goto unlock;
7671 }
7672 if (mddev->raid_disks) {
7673 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7674 err = -EBUSY;
7675 goto unlock;
7676 }
7677 err = md_set_array_info(mddev, &info);
7678 if (err) {
7679 pr_warn("md: couldn't set array info. %d\n", err);
7680 goto unlock;
7681 }
7682 goto unlock;
7683 }
7684
7685 /*
7686 * Commands querying/configuring an existing array:
7687 */
7688 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7689 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7690 if ((!mddev->raid_disks && !mddev->external)
7691 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7692 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7693 && cmd != GET_BITMAP_FILE) {
7694 err = -ENODEV;
7695 goto unlock;
7696 }
7697
7698 /*
7699 * Commands even a read-only array can execute:
7700 */
7701 switch (cmd) {
7702 case RESTART_ARRAY_RW:
7703 err = restart_array(mddev);
7704 goto unlock;
7705
7706 case STOP_ARRAY:
7707 err = do_md_stop(mddev, 0, bdev);
7708 goto unlock;
7709
7710 case STOP_ARRAY_RO:
7711 err = md_set_readonly(mddev, bdev);
7712 goto unlock;
7713
7714 case HOT_REMOVE_DISK:
7715 err = hot_remove_disk(mddev, new_decode_dev(arg));
7716 goto unlock;
7717
7718 case ADD_NEW_DISK:
7719 /* We can support ADD_NEW_DISK on read-only arrays
7720 * only if we are re-adding a preexisting device.
7721 * So require mddev->pers and MD_DISK_SYNC.
7722 */
7723 if (mddev->pers) {
7724 mdu_disk_info_t info;
7725 if (copy_from_user(&info, argp, sizeof(info)))
7726 err = -EFAULT;
7727 else if (!(info.state & (1<<MD_DISK_SYNC)))
7728 /* Need to clear read-only for this */
7729 break;
7730 else
7731 err = md_add_new_disk(mddev, &info);
7732 goto unlock;
7733 }
7734 break;
7735 }
7736
7737 /*
7738 * The remaining ioctls are changing the state of the
7739 * superblock, so we do not allow them on read-only arrays.
7740 */
7741 if (!md_is_rdwr(mddev) && mddev->pers) {
7742 if (mddev->ro != MD_AUTO_READ) {
7743 err = -EROFS;
7744 goto unlock;
7745 }
7746 mddev->ro = MD_RDWR;
7747 sysfs_notify_dirent_safe(mddev->sysfs_state);
7748 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7749 /* mddev_unlock will wake thread */
7750 /* If a device failed while we were read-only, we
7751 * need to make sure the metadata is updated now.
7752 */
7753 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7754 mddev_unlock(mddev);
7755 wait_event(mddev->sb_wait,
7756 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7757 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7758 mddev_lock_nointr(mddev);
7759 }
7760 }
7761
7762 switch (cmd) {
7763 case ADD_NEW_DISK:
7764 {
7765 mdu_disk_info_t info;
7766 if (copy_from_user(&info, argp, sizeof(info)))
7767 err = -EFAULT;
7768 else
7769 err = md_add_new_disk(mddev, &info);
7770 goto unlock;
7771 }
7772
7773 case CLUSTERED_DISK_NACK:
7774 if (mddev_is_clustered(mddev))
7775 md_cluster_ops->new_disk_ack(mddev, false);
7776 else
7777 err = -EINVAL;
7778 goto unlock;
7779
7780 case HOT_ADD_DISK:
7781 err = hot_add_disk(mddev, new_decode_dev(arg));
7782 goto unlock;
7783
7784 case RUN_ARRAY:
7785 err = do_md_run(mddev);
7786 goto unlock;
7787
7788 case SET_BITMAP_FILE:
7789 err = set_bitmap_file(mddev, (int)arg);
7790 goto unlock;
7791
7792 default:
7793 err = -EINVAL;
7794 goto unlock;
7795 }
7796
7797 unlock:
7798 if (mddev->hold_active == UNTIL_IOCTL &&
7799 err != -EINVAL)
7800 mddev->hold_active = 0;
7801 mddev_unlock(mddev);
7802 out:
7803 if(did_set_md_closing)
7804 clear_bit(MD_CLOSING, &mddev->flags);
7805 return err;
7806 }
7807 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7808 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7809 unsigned int cmd, unsigned long arg)
7810 {
7811 switch (cmd) {
7812 case HOT_REMOVE_DISK:
7813 case HOT_ADD_DISK:
7814 case SET_DISK_FAULTY:
7815 case SET_BITMAP_FILE:
7816 /* These take in integer arg, do not convert */
7817 break;
7818 default:
7819 arg = (unsigned long)compat_ptr(arg);
7820 break;
7821 }
7822
7823 return md_ioctl(bdev, mode, cmd, arg);
7824 }
7825 #endif /* CONFIG_COMPAT */
7826
md_set_read_only(struct block_device * bdev,bool ro)7827 static int md_set_read_only(struct block_device *bdev, bool ro)
7828 {
7829 struct mddev *mddev = bdev->bd_disk->private_data;
7830 int err;
7831
7832 err = mddev_lock(mddev);
7833 if (err)
7834 return err;
7835
7836 if (!mddev->raid_disks && !mddev->external) {
7837 err = -ENODEV;
7838 goto out_unlock;
7839 }
7840
7841 /*
7842 * Transitioning to read-auto need only happen for arrays that call
7843 * md_write_start and which are not ready for writes yet.
7844 */
7845 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7846 err = restart_array(mddev);
7847 if (err)
7848 goto out_unlock;
7849 mddev->ro = MD_AUTO_READ;
7850 }
7851
7852 out_unlock:
7853 mddev_unlock(mddev);
7854 return err;
7855 }
7856
md_open(struct block_device * bdev,fmode_t mode)7857 static int md_open(struct block_device *bdev, fmode_t mode)
7858 {
7859 /*
7860 * Succeed if we can lock the mddev, which confirms that
7861 * it isn't being stopped right now.
7862 */
7863 struct mddev *mddev = mddev_find(bdev->bd_dev);
7864 int err;
7865
7866 if (!mddev)
7867 return -ENODEV;
7868
7869 if (mddev->gendisk != bdev->bd_disk) {
7870 /* we are racing with mddev_put which is discarding this
7871 * bd_disk.
7872 */
7873 mddev_put(mddev);
7874 /* Wait until bdev->bd_disk is definitely gone */
7875 if (work_pending(&mddev->del_work))
7876 flush_workqueue(md_misc_wq);
7877 return -EBUSY;
7878 }
7879 BUG_ON(mddev != bdev->bd_disk->private_data);
7880
7881 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7882 goto out;
7883
7884 if (test_bit(MD_CLOSING, &mddev->flags)) {
7885 mutex_unlock(&mddev->open_mutex);
7886 err = -ENODEV;
7887 goto out;
7888 }
7889
7890 err = 0;
7891 atomic_inc(&mddev->openers);
7892 mutex_unlock(&mddev->open_mutex);
7893
7894 bdev_check_media_change(bdev);
7895 out:
7896 if (err)
7897 mddev_put(mddev);
7898 return err;
7899 }
7900
md_release(struct gendisk * disk,fmode_t mode)7901 static void md_release(struct gendisk *disk, fmode_t mode)
7902 {
7903 struct mddev *mddev = disk->private_data;
7904
7905 BUG_ON(!mddev);
7906 atomic_dec(&mddev->openers);
7907 mddev_put(mddev);
7908 }
7909
md_check_events(struct gendisk * disk,unsigned int clearing)7910 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7911 {
7912 struct mddev *mddev = disk->private_data;
7913 unsigned int ret = 0;
7914
7915 if (mddev->changed)
7916 ret = DISK_EVENT_MEDIA_CHANGE;
7917 mddev->changed = 0;
7918 return ret;
7919 }
7920
7921 const struct block_device_operations md_fops =
7922 {
7923 .owner = THIS_MODULE,
7924 .submit_bio = md_submit_bio,
7925 .open = md_open,
7926 .release = md_release,
7927 .ioctl = md_ioctl,
7928 #ifdef CONFIG_COMPAT
7929 .compat_ioctl = md_compat_ioctl,
7930 #endif
7931 .getgeo = md_getgeo,
7932 .check_events = md_check_events,
7933 .set_read_only = md_set_read_only,
7934 };
7935
md_thread(void * arg)7936 static int md_thread(void *arg)
7937 {
7938 struct md_thread *thread = arg;
7939
7940 /*
7941 * md_thread is a 'system-thread', it's priority should be very
7942 * high. We avoid resource deadlocks individually in each
7943 * raid personality. (RAID5 does preallocation) We also use RR and
7944 * the very same RT priority as kswapd, thus we will never get
7945 * into a priority inversion deadlock.
7946 *
7947 * we definitely have to have equal or higher priority than
7948 * bdflush, otherwise bdflush will deadlock if there are too
7949 * many dirty RAID5 blocks.
7950 */
7951
7952 allow_signal(SIGKILL);
7953 while (!kthread_should_stop()) {
7954
7955 /* We need to wait INTERRUPTIBLE so that
7956 * we don't add to the load-average.
7957 * That means we need to be sure no signals are
7958 * pending
7959 */
7960 if (signal_pending(current))
7961 flush_signals(current);
7962
7963 wait_event_interruptible_timeout
7964 (thread->wqueue,
7965 test_bit(THREAD_WAKEUP, &thread->flags)
7966 || kthread_should_stop() || kthread_should_park(),
7967 thread->timeout);
7968
7969 clear_bit(THREAD_WAKEUP, &thread->flags);
7970 if (kthread_should_park())
7971 kthread_parkme();
7972 if (!kthread_should_stop())
7973 thread->run(thread);
7974 }
7975
7976 return 0;
7977 }
7978
md_wakeup_thread(struct md_thread * thread)7979 void md_wakeup_thread(struct md_thread *thread)
7980 {
7981 if (thread) {
7982 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7983 set_bit(THREAD_WAKEUP, &thread->flags);
7984 wake_up(&thread->wqueue);
7985 }
7986 }
7987 EXPORT_SYMBOL(md_wakeup_thread);
7988
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7989 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7990 struct mddev *mddev, const char *name)
7991 {
7992 struct md_thread *thread;
7993
7994 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7995 if (!thread)
7996 return NULL;
7997
7998 init_waitqueue_head(&thread->wqueue);
7999
8000 thread->run = run;
8001 thread->mddev = mddev;
8002 thread->timeout = MAX_SCHEDULE_TIMEOUT;
8003 thread->tsk = kthread_run(md_thread, thread,
8004 "%s_%s",
8005 mdname(thread->mddev),
8006 name);
8007 if (IS_ERR(thread->tsk)) {
8008 kfree(thread);
8009 return NULL;
8010 }
8011 return thread;
8012 }
8013 EXPORT_SYMBOL(md_register_thread);
8014
md_unregister_thread(struct md_thread ** threadp)8015 void md_unregister_thread(struct md_thread **threadp)
8016 {
8017 struct md_thread *thread;
8018
8019 /*
8020 * Locking ensures that mddev_unlock does not wake_up a
8021 * non-existent thread
8022 */
8023 spin_lock(&pers_lock);
8024 thread = *threadp;
8025 if (!thread) {
8026 spin_unlock(&pers_lock);
8027 return;
8028 }
8029 *threadp = NULL;
8030 spin_unlock(&pers_lock);
8031
8032 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8033 kthread_stop(thread->tsk);
8034 kfree(thread);
8035 }
8036 EXPORT_SYMBOL(md_unregister_thread);
8037
md_error(struct mddev * mddev,struct md_rdev * rdev)8038 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8039 {
8040 if (!rdev || test_bit(Faulty, &rdev->flags))
8041 return;
8042
8043 if (!mddev->pers || !mddev->pers->error_handler)
8044 return;
8045 mddev->pers->error_handler(mddev, rdev);
8046
8047 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8048 return;
8049
8050 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8051 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8052 sysfs_notify_dirent_safe(rdev->sysfs_state);
8053 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8054 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8055 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8056 md_wakeup_thread(mddev->thread);
8057 }
8058 if (mddev->event_work.func)
8059 queue_work(md_misc_wq, &mddev->event_work);
8060 md_new_event(mddev);
8061 }
8062 EXPORT_SYMBOL(md_error);
8063
8064 /* seq_file implementation /proc/mdstat */
8065
status_unused(struct seq_file * seq)8066 static void status_unused(struct seq_file *seq)
8067 {
8068 int i = 0;
8069 struct md_rdev *rdev;
8070
8071 seq_printf(seq, "unused devices: ");
8072
8073 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8074 char b[BDEVNAME_SIZE];
8075 i++;
8076 seq_printf(seq, "%s ",
8077 bdevname(rdev->bdev,b));
8078 }
8079 if (!i)
8080 seq_printf(seq, "<none>");
8081
8082 seq_printf(seq, "\n");
8083 }
8084
status_resync(struct seq_file * seq,struct mddev * mddev)8085 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8086 {
8087 sector_t max_sectors, resync, res;
8088 unsigned long dt, db = 0;
8089 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8090 int scale, recovery_active;
8091 unsigned int per_milli;
8092
8093 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8094 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8095 max_sectors = mddev->resync_max_sectors;
8096 else
8097 max_sectors = mddev->dev_sectors;
8098
8099 resync = mddev->curr_resync;
8100 if (resync <= 3) {
8101 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8102 /* Still cleaning up */
8103 resync = max_sectors;
8104 } else if (resync > max_sectors)
8105 resync = max_sectors;
8106 else
8107 resync -= atomic_read(&mddev->recovery_active);
8108
8109 if (resync == 0) {
8110 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8111 struct md_rdev *rdev;
8112
8113 rdev_for_each(rdev, mddev)
8114 if (rdev->raid_disk >= 0 &&
8115 !test_bit(Faulty, &rdev->flags) &&
8116 rdev->recovery_offset != MaxSector &&
8117 rdev->recovery_offset) {
8118 seq_printf(seq, "\trecover=REMOTE");
8119 return 1;
8120 }
8121 if (mddev->reshape_position != MaxSector)
8122 seq_printf(seq, "\treshape=REMOTE");
8123 else
8124 seq_printf(seq, "\tresync=REMOTE");
8125 return 1;
8126 }
8127 if (mddev->recovery_cp < MaxSector) {
8128 seq_printf(seq, "\tresync=PENDING");
8129 return 1;
8130 }
8131 return 0;
8132 }
8133 if (resync < 3) {
8134 seq_printf(seq, "\tresync=DELAYED");
8135 return 1;
8136 }
8137
8138 WARN_ON(max_sectors == 0);
8139 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8140 * in a sector_t, and (max_sectors>>scale) will fit in a
8141 * u32, as those are the requirements for sector_div.
8142 * Thus 'scale' must be at least 10
8143 */
8144 scale = 10;
8145 if (sizeof(sector_t) > sizeof(unsigned long)) {
8146 while ( max_sectors/2 > (1ULL<<(scale+32)))
8147 scale++;
8148 }
8149 res = (resync>>scale)*1000;
8150 sector_div(res, (u32)((max_sectors>>scale)+1));
8151
8152 per_milli = res;
8153 {
8154 int i, x = per_milli/50, y = 20-x;
8155 seq_printf(seq, "[");
8156 for (i = 0; i < x; i++)
8157 seq_printf(seq, "=");
8158 seq_printf(seq, ">");
8159 for (i = 0; i < y; i++)
8160 seq_printf(seq, ".");
8161 seq_printf(seq, "] ");
8162 }
8163 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8164 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8165 "reshape" :
8166 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8167 "check" :
8168 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8169 "resync" : "recovery"))),
8170 per_milli/10, per_milli % 10,
8171 (unsigned long long) resync/2,
8172 (unsigned long long) max_sectors/2);
8173
8174 /*
8175 * dt: time from mark until now
8176 * db: blocks written from mark until now
8177 * rt: remaining time
8178 *
8179 * rt is a sector_t, which is always 64bit now. We are keeping
8180 * the original algorithm, but it is not really necessary.
8181 *
8182 * Original algorithm:
8183 * So we divide before multiply in case it is 32bit and close
8184 * to the limit.
8185 * We scale the divisor (db) by 32 to avoid losing precision
8186 * near the end of resync when the number of remaining sectors
8187 * is close to 'db'.
8188 * We then divide rt by 32 after multiplying by db to compensate.
8189 * The '+1' avoids division by zero if db is very small.
8190 */
8191 dt = ((jiffies - mddev->resync_mark) / HZ);
8192 if (!dt) dt++;
8193
8194 curr_mark_cnt = mddev->curr_mark_cnt;
8195 recovery_active = atomic_read(&mddev->recovery_active);
8196 resync_mark_cnt = mddev->resync_mark_cnt;
8197
8198 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8199 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8200
8201 rt = max_sectors - resync; /* number of remaining sectors */
8202 rt = div64_u64(rt, db/32+1);
8203 rt *= dt;
8204 rt >>= 5;
8205
8206 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8207 ((unsigned long)rt % 60)/6);
8208
8209 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8210 return 1;
8211 }
8212
md_seq_start(struct seq_file * seq,loff_t * pos)8213 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8214 {
8215 struct list_head *tmp;
8216 loff_t l = *pos;
8217 struct mddev *mddev;
8218
8219 if (l == 0x10000) {
8220 ++*pos;
8221 return (void *)2;
8222 }
8223 if (l > 0x10000)
8224 return NULL;
8225 if (!l--)
8226 /* header */
8227 return (void*)1;
8228
8229 spin_lock(&all_mddevs_lock);
8230 list_for_each(tmp,&all_mddevs)
8231 if (!l--) {
8232 mddev = list_entry(tmp, struct mddev, all_mddevs);
8233 mddev_get(mddev);
8234 spin_unlock(&all_mddevs_lock);
8235 return mddev;
8236 }
8237 spin_unlock(&all_mddevs_lock);
8238 if (!l--)
8239 return (void*)2;/* tail */
8240 return NULL;
8241 }
8242
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8243 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8244 {
8245 struct list_head *tmp;
8246 struct mddev *next_mddev, *mddev = v;
8247
8248 ++*pos;
8249 if (v == (void*)2)
8250 return NULL;
8251
8252 spin_lock(&all_mddevs_lock);
8253 if (v == (void*)1)
8254 tmp = all_mddevs.next;
8255 else
8256 tmp = mddev->all_mddevs.next;
8257 if (tmp != &all_mddevs)
8258 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8259 else {
8260 next_mddev = (void*)2;
8261 *pos = 0x10000;
8262 }
8263 spin_unlock(&all_mddevs_lock);
8264
8265 if (v != (void*)1)
8266 mddev_put(mddev);
8267 return next_mddev;
8268
8269 }
8270
md_seq_stop(struct seq_file * seq,void * v)8271 static void md_seq_stop(struct seq_file *seq, void *v)
8272 {
8273 struct mddev *mddev = v;
8274
8275 if (mddev && v != (void*)1 && v != (void*)2)
8276 mddev_put(mddev);
8277 }
8278
md_seq_show(struct seq_file * seq,void * v)8279 static int md_seq_show(struct seq_file *seq, void *v)
8280 {
8281 struct mddev *mddev = v;
8282 sector_t sectors;
8283 struct md_rdev *rdev;
8284
8285 if (v == (void*)1) {
8286 struct md_personality *pers;
8287 seq_printf(seq, "Personalities : ");
8288 spin_lock(&pers_lock);
8289 list_for_each_entry(pers, &pers_list, list)
8290 seq_printf(seq, "[%s] ", pers->name);
8291
8292 spin_unlock(&pers_lock);
8293 seq_printf(seq, "\n");
8294 seq->poll_event = atomic_read(&md_event_count);
8295 return 0;
8296 }
8297 if (v == (void*)2) {
8298 status_unused(seq);
8299 return 0;
8300 }
8301
8302 spin_lock(&mddev->lock);
8303 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8304 seq_printf(seq, "%s : %sactive", mdname(mddev),
8305 mddev->pers ? "" : "in");
8306 if (mddev->pers) {
8307 if (mddev->ro == MD_RDONLY)
8308 seq_printf(seq, " (read-only)");
8309 if (mddev->ro == MD_AUTO_READ)
8310 seq_printf(seq, " (auto-read-only)");
8311 seq_printf(seq, " %s", mddev->pers->name);
8312 }
8313
8314 sectors = 0;
8315 rcu_read_lock();
8316 rdev_for_each_rcu(rdev, mddev) {
8317 char b[BDEVNAME_SIZE];
8318 seq_printf(seq, " %s[%d]",
8319 bdevname(rdev->bdev,b), rdev->desc_nr);
8320 if (test_bit(WriteMostly, &rdev->flags))
8321 seq_printf(seq, "(W)");
8322 if (test_bit(Journal, &rdev->flags))
8323 seq_printf(seq, "(J)");
8324 if (test_bit(Faulty, &rdev->flags)) {
8325 seq_printf(seq, "(F)");
8326 continue;
8327 }
8328 if (rdev->raid_disk < 0)
8329 seq_printf(seq, "(S)"); /* spare */
8330 if (test_bit(Replacement, &rdev->flags))
8331 seq_printf(seq, "(R)");
8332 sectors += rdev->sectors;
8333 }
8334 rcu_read_unlock();
8335
8336 if (!list_empty(&mddev->disks)) {
8337 if (mddev->pers)
8338 seq_printf(seq, "\n %llu blocks",
8339 (unsigned long long)
8340 mddev->array_sectors / 2);
8341 else
8342 seq_printf(seq, "\n %llu blocks",
8343 (unsigned long long)sectors / 2);
8344 }
8345 if (mddev->persistent) {
8346 if (mddev->major_version != 0 ||
8347 mddev->minor_version != 90) {
8348 seq_printf(seq," super %d.%d",
8349 mddev->major_version,
8350 mddev->minor_version);
8351 }
8352 } else if (mddev->external)
8353 seq_printf(seq, " super external:%s",
8354 mddev->metadata_type);
8355 else
8356 seq_printf(seq, " super non-persistent");
8357
8358 if (mddev->pers) {
8359 mddev->pers->status(seq, mddev);
8360 seq_printf(seq, "\n ");
8361 if (mddev->pers->sync_request) {
8362 if (status_resync(seq, mddev))
8363 seq_printf(seq, "\n ");
8364 }
8365 } else
8366 seq_printf(seq, "\n ");
8367
8368 md_bitmap_status(seq, mddev->bitmap);
8369
8370 seq_printf(seq, "\n");
8371 }
8372 spin_unlock(&mddev->lock);
8373
8374 return 0;
8375 }
8376
8377 static const struct seq_operations md_seq_ops = {
8378 .start = md_seq_start,
8379 .next = md_seq_next,
8380 .stop = md_seq_stop,
8381 .show = md_seq_show,
8382 };
8383
md_seq_open(struct inode * inode,struct file * file)8384 static int md_seq_open(struct inode *inode, struct file *file)
8385 {
8386 struct seq_file *seq;
8387 int error;
8388
8389 error = seq_open(file, &md_seq_ops);
8390 if (error)
8391 return error;
8392
8393 seq = file->private_data;
8394 seq->poll_event = atomic_read(&md_event_count);
8395 return error;
8396 }
8397
8398 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8399 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8400 {
8401 struct seq_file *seq = filp->private_data;
8402 __poll_t mask;
8403
8404 if (md_unloading)
8405 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8406 poll_wait(filp, &md_event_waiters, wait);
8407
8408 /* always allow read */
8409 mask = EPOLLIN | EPOLLRDNORM;
8410
8411 if (seq->poll_event != atomic_read(&md_event_count))
8412 mask |= EPOLLERR | EPOLLPRI;
8413 return mask;
8414 }
8415
8416 static const struct proc_ops mdstat_proc_ops = {
8417 .proc_open = md_seq_open,
8418 .proc_read = seq_read,
8419 .proc_lseek = seq_lseek,
8420 .proc_release = seq_release,
8421 .proc_poll = mdstat_poll,
8422 };
8423
register_md_personality(struct md_personality * p)8424 int register_md_personality(struct md_personality *p)
8425 {
8426 pr_debug("md: %s personality registered for level %d\n",
8427 p->name, p->level);
8428 spin_lock(&pers_lock);
8429 list_add_tail(&p->list, &pers_list);
8430 spin_unlock(&pers_lock);
8431 return 0;
8432 }
8433 EXPORT_SYMBOL(register_md_personality);
8434
unregister_md_personality(struct md_personality * p)8435 int unregister_md_personality(struct md_personality *p)
8436 {
8437 pr_debug("md: %s personality unregistered\n", p->name);
8438 spin_lock(&pers_lock);
8439 list_del_init(&p->list);
8440 spin_unlock(&pers_lock);
8441 return 0;
8442 }
8443 EXPORT_SYMBOL(unregister_md_personality);
8444
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8445 int register_md_cluster_operations(struct md_cluster_operations *ops,
8446 struct module *module)
8447 {
8448 int ret = 0;
8449 spin_lock(&pers_lock);
8450 if (md_cluster_ops != NULL)
8451 ret = -EALREADY;
8452 else {
8453 md_cluster_ops = ops;
8454 md_cluster_mod = module;
8455 }
8456 spin_unlock(&pers_lock);
8457 return ret;
8458 }
8459 EXPORT_SYMBOL(register_md_cluster_operations);
8460
unregister_md_cluster_operations(void)8461 int unregister_md_cluster_operations(void)
8462 {
8463 spin_lock(&pers_lock);
8464 md_cluster_ops = NULL;
8465 spin_unlock(&pers_lock);
8466 return 0;
8467 }
8468 EXPORT_SYMBOL(unregister_md_cluster_operations);
8469
md_setup_cluster(struct mddev * mddev,int nodes)8470 int md_setup_cluster(struct mddev *mddev, int nodes)
8471 {
8472 int ret;
8473 if (!md_cluster_ops)
8474 request_module("md-cluster");
8475 spin_lock(&pers_lock);
8476 /* ensure module won't be unloaded */
8477 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8478 pr_warn("can't find md-cluster module or get it's reference.\n");
8479 spin_unlock(&pers_lock);
8480 return -ENOENT;
8481 }
8482 spin_unlock(&pers_lock);
8483
8484 ret = md_cluster_ops->join(mddev, nodes);
8485 if (!ret)
8486 mddev->safemode_delay = 0;
8487 return ret;
8488 }
8489
md_cluster_stop(struct mddev * mddev)8490 void md_cluster_stop(struct mddev *mddev)
8491 {
8492 if (!md_cluster_ops)
8493 return;
8494 md_cluster_ops->leave(mddev);
8495 module_put(md_cluster_mod);
8496 }
8497
is_mddev_idle(struct mddev * mddev,int init)8498 static int is_mddev_idle(struct mddev *mddev, int init)
8499 {
8500 struct md_rdev *rdev;
8501 int idle;
8502 int curr_events;
8503
8504 idle = 1;
8505 rcu_read_lock();
8506 rdev_for_each_rcu(rdev, mddev) {
8507 struct gendisk *disk = rdev->bdev->bd_disk;
8508 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8509 atomic_read(&disk->sync_io);
8510 /* sync IO will cause sync_io to increase before the disk_stats
8511 * as sync_io is counted when a request starts, and
8512 * disk_stats is counted when it completes.
8513 * So resync activity will cause curr_events to be smaller than
8514 * when there was no such activity.
8515 * non-sync IO will cause disk_stat to increase without
8516 * increasing sync_io so curr_events will (eventually)
8517 * be larger than it was before. Once it becomes
8518 * substantially larger, the test below will cause
8519 * the array to appear non-idle, and resync will slow
8520 * down.
8521 * If there is a lot of outstanding resync activity when
8522 * we set last_event to curr_events, then all that activity
8523 * completing might cause the array to appear non-idle
8524 * and resync will be slowed down even though there might
8525 * not have been non-resync activity. This will only
8526 * happen once though. 'last_events' will soon reflect
8527 * the state where there is little or no outstanding
8528 * resync requests, and further resync activity will
8529 * always make curr_events less than last_events.
8530 *
8531 */
8532 if (init || curr_events - rdev->last_events > 64) {
8533 rdev->last_events = curr_events;
8534 idle = 0;
8535 }
8536 }
8537 rcu_read_unlock();
8538 return idle;
8539 }
8540
md_done_sync(struct mddev * mddev,int blocks,int ok)8541 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8542 {
8543 /* another "blocks" (512byte) blocks have been synced */
8544 atomic_sub(blocks, &mddev->recovery_active);
8545 wake_up(&mddev->recovery_wait);
8546 if (!ok) {
8547 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8548 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8549 md_wakeup_thread(mddev->thread);
8550 // stop recovery, signal do_sync ....
8551 }
8552 }
8553 EXPORT_SYMBOL(md_done_sync);
8554
8555 /* md_write_start(mddev, bi)
8556 * If we need to update some array metadata (e.g. 'active' flag
8557 * in superblock) before writing, schedule a superblock update
8558 * and wait for it to complete.
8559 * A return value of 'false' means that the write wasn't recorded
8560 * and cannot proceed as the array is being suspend.
8561 */
md_write_start(struct mddev * mddev,struct bio * bi)8562 bool md_write_start(struct mddev *mddev, struct bio *bi)
8563 {
8564 int did_change = 0;
8565
8566 if (bio_data_dir(bi) != WRITE)
8567 return true;
8568
8569 BUG_ON(mddev->ro == MD_RDONLY);
8570 if (mddev->ro == MD_AUTO_READ) {
8571 /* need to switch to read/write */
8572 mddev->ro = MD_RDWR;
8573 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8574 md_wakeup_thread(mddev->thread);
8575 md_wakeup_thread(mddev->sync_thread);
8576 did_change = 1;
8577 }
8578 rcu_read_lock();
8579 percpu_ref_get(&mddev->writes_pending);
8580 smp_mb(); /* Match smp_mb in set_in_sync() */
8581 if (mddev->safemode == 1)
8582 mddev->safemode = 0;
8583 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8584 if (mddev->in_sync || mddev->sync_checkers) {
8585 spin_lock(&mddev->lock);
8586 if (mddev->in_sync) {
8587 mddev->in_sync = 0;
8588 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8589 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8590 md_wakeup_thread(mddev->thread);
8591 did_change = 1;
8592 }
8593 spin_unlock(&mddev->lock);
8594 }
8595 rcu_read_unlock();
8596 if (did_change)
8597 sysfs_notify_dirent_safe(mddev->sysfs_state);
8598 if (!mddev->has_superblocks)
8599 return true;
8600 wait_event(mddev->sb_wait,
8601 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8602 mddev->suspended);
8603 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8604 percpu_ref_put(&mddev->writes_pending);
8605 return false;
8606 }
8607 return true;
8608 }
8609 EXPORT_SYMBOL(md_write_start);
8610
8611 /* md_write_inc can only be called when md_write_start() has
8612 * already been called at least once of the current request.
8613 * It increments the counter and is useful when a single request
8614 * is split into several parts. Each part causes an increment and
8615 * so needs a matching md_write_end().
8616 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8617 * a spinlocked region.
8618 */
md_write_inc(struct mddev * mddev,struct bio * bi)8619 void md_write_inc(struct mddev *mddev, struct bio *bi)
8620 {
8621 if (bio_data_dir(bi) != WRITE)
8622 return;
8623 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8624 percpu_ref_get(&mddev->writes_pending);
8625 }
8626 EXPORT_SYMBOL(md_write_inc);
8627
md_write_end(struct mddev * mddev)8628 void md_write_end(struct mddev *mddev)
8629 {
8630 percpu_ref_put(&mddev->writes_pending);
8631
8632 if (mddev->safemode == 2)
8633 md_wakeup_thread(mddev->thread);
8634 else if (mddev->safemode_delay)
8635 /* The roundup() ensures this only performs locking once
8636 * every ->safemode_delay jiffies
8637 */
8638 mod_timer(&mddev->safemode_timer,
8639 roundup(jiffies, mddev->safemode_delay) +
8640 mddev->safemode_delay);
8641 }
8642
8643 EXPORT_SYMBOL(md_write_end);
8644
8645 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8646 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8647 struct bio *bio, sector_t start, sector_t size)
8648 {
8649 struct bio *discard_bio = NULL;
8650
8651 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8652 &discard_bio) || !discard_bio)
8653 return;
8654
8655 bio_chain(discard_bio, bio);
8656 bio_clone_blkg_association(discard_bio, bio);
8657 if (mddev->gendisk)
8658 trace_block_bio_remap(discard_bio,
8659 disk_devt(mddev->gendisk),
8660 bio->bi_iter.bi_sector);
8661 submit_bio_noacct(discard_bio);
8662 }
8663 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8664
acct_bioset_init(struct mddev * mddev)8665 int acct_bioset_init(struct mddev *mddev)
8666 {
8667 int err = 0;
8668
8669 if (!bioset_initialized(&mddev->io_acct_set))
8670 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
8671 offsetof(struct md_io_acct, bio_clone), 0);
8672 return err;
8673 }
8674 EXPORT_SYMBOL_GPL(acct_bioset_init);
8675
acct_bioset_exit(struct mddev * mddev)8676 void acct_bioset_exit(struct mddev *mddev)
8677 {
8678 bioset_exit(&mddev->io_acct_set);
8679 }
8680 EXPORT_SYMBOL_GPL(acct_bioset_exit);
8681
md_end_io_acct(struct bio * bio)8682 static void md_end_io_acct(struct bio *bio)
8683 {
8684 struct md_io_acct *md_io_acct = bio->bi_private;
8685 struct bio *orig_bio = md_io_acct->orig_bio;
8686
8687 if (bio->bi_status && !orig_bio->bi_status)
8688 orig_bio->bi_status = bio->bi_status;
8689
8690 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8691 bio_put(bio);
8692 bio_endio(orig_bio);
8693 }
8694
8695 /*
8696 * Used by personalities that don't already clone the bio and thus can't
8697 * easily add the timestamp to their extended bio structure.
8698 */
md_account_bio(struct mddev * mddev,struct bio ** bio)8699 void md_account_bio(struct mddev *mddev, struct bio **bio)
8700 {
8701 struct md_io_acct *md_io_acct;
8702 struct bio *clone;
8703
8704 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8705 return;
8706
8707 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8708 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8709 md_io_acct->orig_bio = *bio;
8710 md_io_acct->start_time = bio_start_io_acct(*bio);
8711
8712 clone->bi_end_io = md_end_io_acct;
8713 clone->bi_private = md_io_acct;
8714 *bio = clone;
8715 }
8716 EXPORT_SYMBOL_GPL(md_account_bio);
8717
8718 /* md_allow_write(mddev)
8719 * Calling this ensures that the array is marked 'active' so that writes
8720 * may proceed without blocking. It is important to call this before
8721 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8722 * Must be called with mddev_lock held.
8723 */
md_allow_write(struct mddev * mddev)8724 void md_allow_write(struct mddev *mddev)
8725 {
8726 if (!mddev->pers)
8727 return;
8728 if (!md_is_rdwr(mddev))
8729 return;
8730 if (!mddev->pers->sync_request)
8731 return;
8732
8733 spin_lock(&mddev->lock);
8734 if (mddev->in_sync) {
8735 mddev->in_sync = 0;
8736 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8737 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8738 if (mddev->safemode_delay &&
8739 mddev->safemode == 0)
8740 mddev->safemode = 1;
8741 spin_unlock(&mddev->lock);
8742 md_update_sb(mddev, 0);
8743 sysfs_notify_dirent_safe(mddev->sysfs_state);
8744 /* wait for the dirty state to be recorded in the metadata */
8745 wait_event(mddev->sb_wait,
8746 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8747 } else
8748 spin_unlock(&mddev->lock);
8749 }
8750 EXPORT_SYMBOL_GPL(md_allow_write);
8751
8752 #define SYNC_MARKS 10
8753 #define SYNC_MARK_STEP (3*HZ)
8754 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8755 void md_do_sync(struct md_thread *thread)
8756 {
8757 struct mddev *mddev = thread->mddev;
8758 struct mddev *mddev2;
8759 unsigned int currspeed = 0, window;
8760 sector_t max_sectors,j, io_sectors, recovery_done;
8761 unsigned long mark[SYNC_MARKS];
8762 unsigned long update_time;
8763 sector_t mark_cnt[SYNC_MARKS];
8764 int last_mark,m;
8765 struct list_head *tmp;
8766 sector_t last_check;
8767 int skipped = 0;
8768 struct md_rdev *rdev;
8769 char *desc, *action = NULL;
8770 struct blk_plug plug;
8771 int ret;
8772
8773 /* just incase thread restarts... */
8774 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8775 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8776 return;
8777 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8778 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8779 return;
8780 }
8781
8782 if (mddev_is_clustered(mddev)) {
8783 ret = md_cluster_ops->resync_start(mddev);
8784 if (ret)
8785 goto skip;
8786
8787 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8788 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8789 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8790 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8791 && ((unsigned long long)mddev->curr_resync_completed
8792 < (unsigned long long)mddev->resync_max_sectors))
8793 goto skip;
8794 }
8795
8796 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8797 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8798 desc = "data-check";
8799 action = "check";
8800 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8801 desc = "requested-resync";
8802 action = "repair";
8803 } else
8804 desc = "resync";
8805 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8806 desc = "reshape";
8807 else
8808 desc = "recovery";
8809
8810 mddev->last_sync_action = action ?: desc;
8811
8812 /* we overload curr_resync somewhat here.
8813 * 0 == not engaged in resync at all
8814 * 2 == checking that there is no conflict with another sync
8815 * 1 == like 2, but have yielded to allow conflicting resync to
8816 * commence
8817 * other == active in resync - this many blocks
8818 *
8819 * Before starting a resync we must have set curr_resync to
8820 * 2, and then checked that every "conflicting" array has curr_resync
8821 * less than ours. When we find one that is the same or higher
8822 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8823 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8824 * This will mean we have to start checking from the beginning again.
8825 *
8826 */
8827
8828 do {
8829 int mddev2_minor = -1;
8830 mddev->curr_resync = 2;
8831
8832 try_again:
8833 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8834 goto skip;
8835 for_each_mddev(mddev2, tmp) {
8836 if (mddev2 == mddev)
8837 continue;
8838 if (!mddev->parallel_resync
8839 && mddev2->curr_resync
8840 && match_mddev_units(mddev, mddev2)) {
8841 DEFINE_WAIT(wq);
8842 if (mddev < mddev2 && mddev->curr_resync == 2) {
8843 /* arbitrarily yield */
8844 mddev->curr_resync = 1;
8845 wake_up(&resync_wait);
8846 }
8847 if (mddev > mddev2 && mddev->curr_resync == 1)
8848 /* no need to wait here, we can wait the next
8849 * time 'round when curr_resync == 2
8850 */
8851 continue;
8852 /* We need to wait 'interruptible' so as not to
8853 * contribute to the load average, and not to
8854 * be caught by 'softlockup'
8855 */
8856 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8857 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8858 mddev2->curr_resync >= mddev->curr_resync) {
8859 if (mddev2_minor != mddev2->md_minor) {
8860 mddev2_minor = mddev2->md_minor;
8861 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8862 desc, mdname(mddev),
8863 mdname(mddev2));
8864 }
8865 mddev_put(mddev2);
8866 if (signal_pending(current))
8867 flush_signals(current);
8868 schedule();
8869 finish_wait(&resync_wait, &wq);
8870 goto try_again;
8871 }
8872 finish_wait(&resync_wait, &wq);
8873 }
8874 }
8875 } while (mddev->curr_resync < 2);
8876
8877 j = 0;
8878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8879 /* resync follows the size requested by the personality,
8880 * which defaults to physical size, but can be virtual size
8881 */
8882 max_sectors = mddev->resync_max_sectors;
8883 atomic64_set(&mddev->resync_mismatches, 0);
8884 /* we don't use the checkpoint if there's a bitmap */
8885 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8886 j = mddev->resync_min;
8887 else if (!mddev->bitmap)
8888 j = mddev->recovery_cp;
8889
8890 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8891 max_sectors = mddev->resync_max_sectors;
8892 /*
8893 * If the original node aborts reshaping then we continue the
8894 * reshaping, so set j again to avoid restart reshape from the
8895 * first beginning
8896 */
8897 if (mddev_is_clustered(mddev) &&
8898 mddev->reshape_position != MaxSector)
8899 j = mddev->reshape_position;
8900 } else {
8901 /* recovery follows the physical size of devices */
8902 max_sectors = mddev->dev_sectors;
8903 j = MaxSector;
8904 rcu_read_lock();
8905 rdev_for_each_rcu(rdev, mddev)
8906 if (rdev->raid_disk >= 0 &&
8907 !test_bit(Journal, &rdev->flags) &&
8908 !test_bit(Faulty, &rdev->flags) &&
8909 !test_bit(In_sync, &rdev->flags) &&
8910 rdev->recovery_offset < j)
8911 j = rdev->recovery_offset;
8912 rcu_read_unlock();
8913
8914 /* If there is a bitmap, we need to make sure all
8915 * writes that started before we added a spare
8916 * complete before we start doing a recovery.
8917 * Otherwise the write might complete and (via
8918 * bitmap_endwrite) set a bit in the bitmap after the
8919 * recovery has checked that bit and skipped that
8920 * region.
8921 */
8922 if (mddev->bitmap) {
8923 mddev->pers->quiesce(mddev, 1);
8924 mddev->pers->quiesce(mddev, 0);
8925 }
8926 }
8927
8928 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8929 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8930 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8931 speed_max(mddev), desc);
8932
8933 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8934
8935 io_sectors = 0;
8936 for (m = 0; m < SYNC_MARKS; m++) {
8937 mark[m] = jiffies;
8938 mark_cnt[m] = io_sectors;
8939 }
8940 last_mark = 0;
8941 mddev->resync_mark = mark[last_mark];
8942 mddev->resync_mark_cnt = mark_cnt[last_mark];
8943
8944 /*
8945 * Tune reconstruction:
8946 */
8947 window = 32 * (PAGE_SIZE / 512);
8948 pr_debug("md: using %dk window, over a total of %lluk.\n",
8949 window/2, (unsigned long long)max_sectors/2);
8950
8951 atomic_set(&mddev->recovery_active, 0);
8952 last_check = 0;
8953
8954 if (j>2) {
8955 pr_debug("md: resuming %s of %s from checkpoint.\n",
8956 desc, mdname(mddev));
8957 mddev->curr_resync = j;
8958 } else
8959 mddev->curr_resync = 3; /* no longer delayed */
8960 mddev->curr_resync_completed = j;
8961 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8962 md_new_event(mddev);
8963 update_time = jiffies;
8964
8965 blk_start_plug(&plug);
8966 while (j < max_sectors) {
8967 sector_t sectors;
8968
8969 skipped = 0;
8970
8971 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8972 ((mddev->curr_resync > mddev->curr_resync_completed &&
8973 (mddev->curr_resync - mddev->curr_resync_completed)
8974 > (max_sectors >> 4)) ||
8975 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8976 (j - mddev->curr_resync_completed)*2
8977 >= mddev->resync_max - mddev->curr_resync_completed ||
8978 mddev->curr_resync_completed > mddev->resync_max
8979 )) {
8980 /* time to update curr_resync_completed */
8981 wait_event(mddev->recovery_wait,
8982 atomic_read(&mddev->recovery_active) == 0);
8983 mddev->curr_resync_completed = j;
8984 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8985 j > mddev->recovery_cp)
8986 mddev->recovery_cp = j;
8987 update_time = jiffies;
8988 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8989 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8990 }
8991
8992 while (j >= mddev->resync_max &&
8993 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8994 /* As this condition is controlled by user-space,
8995 * we can block indefinitely, so use '_interruptible'
8996 * to avoid triggering warnings.
8997 */
8998 flush_signals(current); /* just in case */
8999 wait_event_interruptible(mddev->recovery_wait,
9000 mddev->resync_max > j
9001 || test_bit(MD_RECOVERY_INTR,
9002 &mddev->recovery));
9003 }
9004
9005 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9006 break;
9007
9008 sectors = mddev->pers->sync_request(mddev, j, &skipped);
9009 if (sectors == 0) {
9010 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9011 break;
9012 }
9013
9014 if (!skipped) { /* actual IO requested */
9015 io_sectors += sectors;
9016 atomic_add(sectors, &mddev->recovery_active);
9017 }
9018
9019 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9020 break;
9021
9022 j += sectors;
9023 if (j > max_sectors)
9024 /* when skipping, extra large numbers can be returned. */
9025 j = max_sectors;
9026 if (j > 2)
9027 mddev->curr_resync = j;
9028 mddev->curr_mark_cnt = io_sectors;
9029 if (last_check == 0)
9030 /* this is the earliest that rebuild will be
9031 * visible in /proc/mdstat
9032 */
9033 md_new_event(mddev);
9034
9035 if (last_check + window > io_sectors || j == max_sectors)
9036 continue;
9037
9038 last_check = io_sectors;
9039 repeat:
9040 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9041 /* step marks */
9042 int next = (last_mark+1) % SYNC_MARKS;
9043
9044 mddev->resync_mark = mark[next];
9045 mddev->resync_mark_cnt = mark_cnt[next];
9046 mark[next] = jiffies;
9047 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9048 last_mark = next;
9049 }
9050
9051 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9052 break;
9053
9054 /*
9055 * this loop exits only if either when we are slower than
9056 * the 'hard' speed limit, or the system was IO-idle for
9057 * a jiffy.
9058 * the system might be non-idle CPU-wise, but we only care
9059 * about not overloading the IO subsystem. (things like an
9060 * e2fsck being done on the RAID array should execute fast)
9061 */
9062 cond_resched();
9063
9064 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9065 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9066 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9067
9068 if (currspeed > speed_min(mddev)) {
9069 if (currspeed > speed_max(mddev)) {
9070 msleep(500);
9071 goto repeat;
9072 }
9073 if (!is_mddev_idle(mddev, 0)) {
9074 /*
9075 * Give other IO more of a chance.
9076 * The faster the devices, the less we wait.
9077 */
9078 wait_event(mddev->recovery_wait,
9079 !atomic_read(&mddev->recovery_active));
9080 }
9081 }
9082 }
9083 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9084 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9085 ? "interrupted" : "done");
9086 /*
9087 * this also signals 'finished resyncing' to md_stop
9088 */
9089 blk_finish_plug(&plug);
9090 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9091
9092 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9093 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9094 mddev->curr_resync > 3) {
9095 mddev->curr_resync_completed = mddev->curr_resync;
9096 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9097 }
9098 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9099
9100 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9101 mddev->curr_resync > 3) {
9102 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9103 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9104 if (mddev->curr_resync >= mddev->recovery_cp) {
9105 pr_debug("md: checkpointing %s of %s.\n",
9106 desc, mdname(mddev));
9107 if (test_bit(MD_RECOVERY_ERROR,
9108 &mddev->recovery))
9109 mddev->recovery_cp =
9110 mddev->curr_resync_completed;
9111 else
9112 mddev->recovery_cp =
9113 mddev->curr_resync;
9114 }
9115 } else
9116 mddev->recovery_cp = MaxSector;
9117 } else {
9118 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9119 mddev->curr_resync = MaxSector;
9120 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9121 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9122 rcu_read_lock();
9123 rdev_for_each_rcu(rdev, mddev)
9124 if (rdev->raid_disk >= 0 &&
9125 mddev->delta_disks >= 0 &&
9126 !test_bit(Journal, &rdev->flags) &&
9127 !test_bit(Faulty, &rdev->flags) &&
9128 !test_bit(In_sync, &rdev->flags) &&
9129 rdev->recovery_offset < mddev->curr_resync)
9130 rdev->recovery_offset = mddev->curr_resync;
9131 rcu_read_unlock();
9132 }
9133 }
9134 }
9135 skip:
9136 /* set CHANGE_PENDING here since maybe another update is needed,
9137 * so other nodes are informed. It should be harmless for normal
9138 * raid */
9139 set_mask_bits(&mddev->sb_flags, 0,
9140 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9141
9142 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9143 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9144 mddev->delta_disks > 0 &&
9145 mddev->pers->finish_reshape &&
9146 mddev->pers->size &&
9147 mddev->queue) {
9148 mddev_lock_nointr(mddev);
9149 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9150 mddev_unlock(mddev);
9151 if (!mddev_is_clustered(mddev))
9152 set_capacity_and_notify(mddev->gendisk,
9153 mddev->array_sectors);
9154 }
9155
9156 spin_lock(&mddev->lock);
9157 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9158 /* We completed so min/max setting can be forgotten if used. */
9159 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9160 mddev->resync_min = 0;
9161 mddev->resync_max = MaxSector;
9162 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9163 mddev->resync_min = mddev->curr_resync_completed;
9164 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9165 mddev->curr_resync = 0;
9166 spin_unlock(&mddev->lock);
9167
9168 wake_up(&resync_wait);
9169 md_wakeup_thread(mddev->thread);
9170 return;
9171 }
9172 EXPORT_SYMBOL_GPL(md_do_sync);
9173
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9174 static int remove_and_add_spares(struct mddev *mddev,
9175 struct md_rdev *this)
9176 {
9177 struct md_rdev *rdev;
9178 int spares = 0;
9179 int removed = 0;
9180 bool remove_some = false;
9181
9182 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9183 /* Mustn't remove devices when resync thread is running */
9184 return 0;
9185
9186 rdev_for_each(rdev, mddev) {
9187 if ((this == NULL || rdev == this) &&
9188 rdev->raid_disk >= 0 &&
9189 !test_bit(Blocked, &rdev->flags) &&
9190 test_bit(Faulty, &rdev->flags) &&
9191 atomic_read(&rdev->nr_pending)==0) {
9192 /* Faulty non-Blocked devices with nr_pending == 0
9193 * never get nr_pending incremented,
9194 * never get Faulty cleared, and never get Blocked set.
9195 * So we can synchronize_rcu now rather than once per device
9196 */
9197 remove_some = true;
9198 set_bit(RemoveSynchronized, &rdev->flags);
9199 }
9200 }
9201
9202 if (remove_some)
9203 synchronize_rcu();
9204 rdev_for_each(rdev, mddev) {
9205 if ((this == NULL || rdev == this) &&
9206 rdev->raid_disk >= 0 &&
9207 !test_bit(Blocked, &rdev->flags) &&
9208 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9209 (!test_bit(In_sync, &rdev->flags) &&
9210 !test_bit(Journal, &rdev->flags))) &&
9211 atomic_read(&rdev->nr_pending)==0)) {
9212 if (mddev->pers->hot_remove_disk(
9213 mddev, rdev) == 0) {
9214 sysfs_unlink_rdev(mddev, rdev);
9215 rdev->saved_raid_disk = rdev->raid_disk;
9216 rdev->raid_disk = -1;
9217 removed++;
9218 }
9219 }
9220 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9221 clear_bit(RemoveSynchronized, &rdev->flags);
9222 }
9223
9224 if (removed && mddev->kobj.sd)
9225 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9226
9227 if (this && removed)
9228 goto no_add;
9229
9230 rdev_for_each(rdev, mddev) {
9231 if (this && this != rdev)
9232 continue;
9233 if (test_bit(Candidate, &rdev->flags))
9234 continue;
9235 if (rdev->raid_disk >= 0 &&
9236 !test_bit(In_sync, &rdev->flags) &&
9237 !test_bit(Journal, &rdev->flags) &&
9238 !test_bit(Faulty, &rdev->flags))
9239 spares++;
9240 if (rdev->raid_disk >= 0)
9241 continue;
9242 if (test_bit(Faulty, &rdev->flags))
9243 continue;
9244 if (!test_bit(Journal, &rdev->flags)) {
9245 if (!md_is_rdwr(mddev) &&
9246 !(rdev->saved_raid_disk >= 0 &&
9247 !test_bit(Bitmap_sync, &rdev->flags)))
9248 continue;
9249
9250 rdev->recovery_offset = 0;
9251 }
9252 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9253 /* failure here is OK */
9254 sysfs_link_rdev(mddev, rdev);
9255 if (!test_bit(Journal, &rdev->flags))
9256 spares++;
9257 md_new_event(mddev);
9258 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9259 }
9260 }
9261 no_add:
9262 if (removed)
9263 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9264 return spares;
9265 }
9266
md_start_sync(struct work_struct * ws)9267 static void md_start_sync(struct work_struct *ws)
9268 {
9269 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9270
9271 mddev->sync_thread = md_register_thread(md_do_sync,
9272 mddev,
9273 "resync");
9274 if (!mddev->sync_thread) {
9275 pr_warn("%s: could not start resync thread...\n",
9276 mdname(mddev));
9277 /* leave the spares where they are, it shouldn't hurt */
9278 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9279 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9280 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9281 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9282 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9283 wake_up(&resync_wait);
9284 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9285 &mddev->recovery))
9286 if (mddev->sysfs_action)
9287 sysfs_notify_dirent_safe(mddev->sysfs_action);
9288 } else
9289 md_wakeup_thread(mddev->sync_thread);
9290 sysfs_notify_dirent_safe(mddev->sysfs_action);
9291 md_new_event(mddev);
9292 }
9293
9294 /*
9295 * This routine is regularly called by all per-raid-array threads to
9296 * deal with generic issues like resync and super-block update.
9297 * Raid personalities that don't have a thread (linear/raid0) do not
9298 * need this as they never do any recovery or update the superblock.
9299 *
9300 * It does not do any resync itself, but rather "forks" off other threads
9301 * to do that as needed.
9302 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9303 * "->recovery" and create a thread at ->sync_thread.
9304 * When the thread finishes it sets MD_RECOVERY_DONE
9305 * and wakeups up this thread which will reap the thread and finish up.
9306 * This thread also removes any faulty devices (with nr_pending == 0).
9307 *
9308 * The overall approach is:
9309 * 1/ if the superblock needs updating, update it.
9310 * 2/ If a recovery thread is running, don't do anything else.
9311 * 3/ If recovery has finished, clean up, possibly marking spares active.
9312 * 4/ If there are any faulty devices, remove them.
9313 * 5/ If array is degraded, try to add spares devices
9314 * 6/ If array has spares or is not in-sync, start a resync thread.
9315 */
md_check_recovery(struct mddev * mddev)9316 void md_check_recovery(struct mddev *mddev)
9317 {
9318 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9319 /* Write superblock - thread that called mddev_suspend()
9320 * holds reconfig_mutex for us.
9321 */
9322 set_bit(MD_UPDATING_SB, &mddev->flags);
9323 smp_mb__after_atomic();
9324 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9325 md_update_sb(mddev, 0);
9326 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9327 wake_up(&mddev->sb_wait);
9328 }
9329
9330 if (mddev->suspended)
9331 return;
9332
9333 if (mddev->bitmap)
9334 md_bitmap_daemon_work(mddev);
9335
9336 if (signal_pending(current)) {
9337 if (mddev->pers->sync_request && !mddev->external) {
9338 pr_debug("md: %s in immediate safe mode\n",
9339 mdname(mddev));
9340 mddev->safemode = 2;
9341 }
9342 flush_signals(current);
9343 }
9344
9345 if (!md_is_rdwr(mddev) &&
9346 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9347 return;
9348 if ( ! (
9349 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9350 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9351 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9352 (mddev->external == 0 && mddev->safemode == 1) ||
9353 (mddev->safemode == 2
9354 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9355 ))
9356 return;
9357
9358 if (mddev_trylock(mddev)) {
9359 int spares = 0;
9360 bool try_set_sync = mddev->safemode != 0;
9361
9362 if (!mddev->external && mddev->safemode == 1)
9363 mddev->safemode = 0;
9364
9365 if (!md_is_rdwr(mddev)) {
9366 struct md_rdev *rdev;
9367 if (!mddev->external && mddev->in_sync)
9368 /* 'Blocked' flag not needed as failed devices
9369 * will be recorded if array switched to read/write.
9370 * Leaving it set will prevent the device
9371 * from being removed.
9372 */
9373 rdev_for_each(rdev, mddev)
9374 clear_bit(Blocked, &rdev->flags);
9375 /* On a read-only array we can:
9376 * - remove failed devices
9377 * - add already-in_sync devices if the array itself
9378 * is in-sync.
9379 * As we only add devices that are already in-sync,
9380 * we can activate the spares immediately.
9381 */
9382 remove_and_add_spares(mddev, NULL);
9383 /* There is no thread, but we need to call
9384 * ->spare_active and clear saved_raid_disk
9385 */
9386 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9387 md_reap_sync_thread(mddev);
9388 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9389 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9390 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9391 goto unlock;
9392 }
9393
9394 if (mddev_is_clustered(mddev)) {
9395 struct md_rdev *rdev, *tmp;
9396 /* kick the device if another node issued a
9397 * remove disk.
9398 */
9399 rdev_for_each_safe(rdev, tmp, mddev) {
9400 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9401 rdev->raid_disk < 0)
9402 md_kick_rdev_from_array(rdev);
9403 }
9404 }
9405
9406 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9407 spin_lock(&mddev->lock);
9408 set_in_sync(mddev);
9409 spin_unlock(&mddev->lock);
9410 }
9411
9412 if (mddev->sb_flags)
9413 md_update_sb(mddev, 0);
9414
9415 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9416 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9417 /* resync/recovery still happening */
9418 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9419 goto unlock;
9420 }
9421 if (mddev->sync_thread) {
9422 md_reap_sync_thread(mddev);
9423 goto unlock;
9424 }
9425 /* Set RUNNING before clearing NEEDED to avoid
9426 * any transients in the value of "sync_action".
9427 */
9428 mddev->curr_resync_completed = 0;
9429 spin_lock(&mddev->lock);
9430 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9431 spin_unlock(&mddev->lock);
9432 /* Clear some bits that don't mean anything, but
9433 * might be left set
9434 */
9435 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9436 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9437
9438 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9439 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9440 goto not_running;
9441 /* no recovery is running.
9442 * remove any failed drives, then
9443 * add spares if possible.
9444 * Spares are also removed and re-added, to allow
9445 * the personality to fail the re-add.
9446 */
9447
9448 if (mddev->reshape_position != MaxSector) {
9449 if (mddev->pers->check_reshape == NULL ||
9450 mddev->pers->check_reshape(mddev) != 0)
9451 /* Cannot proceed */
9452 goto not_running;
9453 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9454 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9455 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9456 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9457 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9458 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9459 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9460 } else if (mddev->recovery_cp < MaxSector) {
9461 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9462 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9463 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9464 /* nothing to be done ... */
9465 goto not_running;
9466
9467 if (mddev->pers->sync_request) {
9468 if (spares) {
9469 /* We are adding a device or devices to an array
9470 * which has the bitmap stored on all devices.
9471 * So make sure all bitmap pages get written
9472 */
9473 md_bitmap_write_all(mddev->bitmap);
9474 }
9475 INIT_WORK(&mddev->del_work, md_start_sync);
9476 queue_work(md_misc_wq, &mddev->del_work);
9477 goto unlock;
9478 }
9479 not_running:
9480 if (!mddev->sync_thread) {
9481 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9482 wake_up(&resync_wait);
9483 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9484 &mddev->recovery))
9485 if (mddev->sysfs_action)
9486 sysfs_notify_dirent_safe(mddev->sysfs_action);
9487 }
9488 unlock:
9489 wake_up(&mddev->sb_wait);
9490 mddev_unlock(mddev);
9491 }
9492 }
9493 EXPORT_SYMBOL(md_check_recovery);
9494
md_reap_sync_thread(struct mddev * mddev)9495 void md_reap_sync_thread(struct mddev *mddev)
9496 {
9497 struct md_rdev *rdev;
9498 sector_t old_dev_sectors = mddev->dev_sectors;
9499 bool is_reshaped = false;
9500
9501 /* resync has finished, collect result */
9502 md_unregister_thread(&mddev->sync_thread);
9503 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9504 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9505 mddev->degraded != mddev->raid_disks) {
9506 /* success...*/
9507 /* activate any spares */
9508 if (mddev->pers->spare_active(mddev)) {
9509 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9510 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9511 }
9512 }
9513 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9514 mddev->pers->finish_reshape) {
9515 mddev->pers->finish_reshape(mddev);
9516 if (mddev_is_clustered(mddev))
9517 is_reshaped = true;
9518 }
9519
9520 /* If array is no-longer degraded, then any saved_raid_disk
9521 * information must be scrapped.
9522 */
9523 if (!mddev->degraded)
9524 rdev_for_each(rdev, mddev)
9525 rdev->saved_raid_disk = -1;
9526
9527 md_update_sb(mddev, 1);
9528 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9529 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9530 * clustered raid */
9531 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9532 md_cluster_ops->resync_finish(mddev);
9533 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9534 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9535 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9536 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9537 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9538 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9539 /*
9540 * We call md_cluster_ops->update_size here because sync_size could
9541 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9542 * so it is time to update size across cluster.
9543 */
9544 if (mddev_is_clustered(mddev) && is_reshaped
9545 && !test_bit(MD_CLOSING, &mddev->flags))
9546 md_cluster_ops->update_size(mddev, old_dev_sectors);
9547 wake_up(&resync_wait);
9548 /* flag recovery needed just to double check */
9549 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9550 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9551 sysfs_notify_dirent_safe(mddev->sysfs_action);
9552 md_new_event(mddev);
9553 if (mddev->event_work.func)
9554 queue_work(md_misc_wq, &mddev->event_work);
9555 }
9556 EXPORT_SYMBOL(md_reap_sync_thread);
9557
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9558 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9559 {
9560 sysfs_notify_dirent_safe(rdev->sysfs_state);
9561 wait_event_timeout(rdev->blocked_wait,
9562 !test_bit(Blocked, &rdev->flags) &&
9563 !test_bit(BlockedBadBlocks, &rdev->flags),
9564 msecs_to_jiffies(5000));
9565 rdev_dec_pending(rdev, mddev);
9566 }
9567 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9568
md_finish_reshape(struct mddev * mddev)9569 void md_finish_reshape(struct mddev *mddev)
9570 {
9571 /* called be personality module when reshape completes. */
9572 struct md_rdev *rdev;
9573
9574 rdev_for_each(rdev, mddev) {
9575 if (rdev->data_offset > rdev->new_data_offset)
9576 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9577 else
9578 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9579 rdev->data_offset = rdev->new_data_offset;
9580 }
9581 }
9582 EXPORT_SYMBOL(md_finish_reshape);
9583
9584 /* Bad block management */
9585
9586 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9587 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9588 int is_new)
9589 {
9590 struct mddev *mddev = rdev->mddev;
9591 int rv;
9592 if (is_new)
9593 s += rdev->new_data_offset;
9594 else
9595 s += rdev->data_offset;
9596 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9597 if (rv == 0) {
9598 /* Make sure they get written out promptly */
9599 if (test_bit(ExternalBbl, &rdev->flags))
9600 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9601 sysfs_notify_dirent_safe(rdev->sysfs_state);
9602 set_mask_bits(&mddev->sb_flags, 0,
9603 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9604 md_wakeup_thread(rdev->mddev->thread);
9605 return 1;
9606 } else
9607 return 0;
9608 }
9609 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9610
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9611 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9612 int is_new)
9613 {
9614 int rv;
9615 if (is_new)
9616 s += rdev->new_data_offset;
9617 else
9618 s += rdev->data_offset;
9619 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9620 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9621 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9622 return rv;
9623 }
9624 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9625
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9626 static int md_notify_reboot(struct notifier_block *this,
9627 unsigned long code, void *x)
9628 {
9629 struct list_head *tmp;
9630 struct mddev *mddev;
9631 int need_delay = 0;
9632
9633 for_each_mddev(mddev, tmp) {
9634 if (mddev_trylock(mddev)) {
9635 if (mddev->pers)
9636 __md_stop_writes(mddev);
9637 if (mddev->persistent)
9638 mddev->safemode = 2;
9639 mddev_unlock(mddev);
9640 }
9641 need_delay = 1;
9642 }
9643 /*
9644 * certain more exotic SCSI devices are known to be
9645 * volatile wrt too early system reboots. While the
9646 * right place to handle this issue is the given
9647 * driver, we do want to have a safe RAID driver ...
9648 */
9649 if (need_delay)
9650 mdelay(1000*1);
9651
9652 return NOTIFY_DONE;
9653 }
9654
9655 static struct notifier_block md_notifier = {
9656 .notifier_call = md_notify_reboot,
9657 .next = NULL,
9658 .priority = INT_MAX, /* before any real devices */
9659 };
9660
md_geninit(void)9661 static void md_geninit(void)
9662 {
9663 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9664
9665 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9666 }
9667
md_init(void)9668 static int __init md_init(void)
9669 {
9670 int ret = -ENOMEM;
9671
9672 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9673 if (!md_wq)
9674 goto err_wq;
9675
9676 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9677 if (!md_misc_wq)
9678 goto err_misc_wq;
9679
9680 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9681 if (!md_rdev_misc_wq)
9682 goto err_rdev_misc_wq;
9683
9684 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9685 if (ret < 0)
9686 goto err_md;
9687
9688 ret = __register_blkdev(0, "mdp", md_probe);
9689 if (ret < 0)
9690 goto err_mdp;
9691 mdp_major = ret;
9692
9693 register_reboot_notifier(&md_notifier);
9694 raid_table_header = register_sysctl_table(raid_root_table);
9695
9696 md_geninit();
9697 return 0;
9698
9699 err_mdp:
9700 unregister_blkdev(MD_MAJOR, "md");
9701 err_md:
9702 destroy_workqueue(md_rdev_misc_wq);
9703 err_rdev_misc_wq:
9704 destroy_workqueue(md_misc_wq);
9705 err_misc_wq:
9706 destroy_workqueue(md_wq);
9707 err_wq:
9708 return ret;
9709 }
9710
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9711 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9712 {
9713 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9714 struct md_rdev *rdev2, *tmp;
9715 int role, ret;
9716 char b[BDEVNAME_SIZE];
9717
9718 /*
9719 * If size is changed in another node then we need to
9720 * do resize as well.
9721 */
9722 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9723 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9724 if (ret)
9725 pr_info("md-cluster: resize failed\n");
9726 else
9727 md_bitmap_update_sb(mddev->bitmap);
9728 }
9729
9730 /* Check for change of roles in the active devices */
9731 rdev_for_each_safe(rdev2, tmp, mddev) {
9732 if (test_bit(Faulty, &rdev2->flags))
9733 continue;
9734
9735 /* Check if the roles changed */
9736 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9737
9738 if (test_bit(Candidate, &rdev2->flags)) {
9739 if (role == 0xfffe) {
9740 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9741 md_kick_rdev_from_array(rdev2);
9742 continue;
9743 }
9744 else
9745 clear_bit(Candidate, &rdev2->flags);
9746 }
9747
9748 if (role != rdev2->raid_disk) {
9749 /*
9750 * got activated except reshape is happening.
9751 */
9752 if (rdev2->raid_disk == -1 && role != 0xffff &&
9753 !(le32_to_cpu(sb->feature_map) &
9754 MD_FEATURE_RESHAPE_ACTIVE)) {
9755 rdev2->saved_raid_disk = role;
9756 ret = remove_and_add_spares(mddev, rdev2);
9757 pr_info("Activated spare: %s\n",
9758 bdevname(rdev2->bdev,b));
9759 /* wakeup mddev->thread here, so array could
9760 * perform resync with the new activated disk */
9761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9762 md_wakeup_thread(mddev->thread);
9763 }
9764 /* device faulty
9765 * We just want to do the minimum to mark the disk
9766 * as faulty. The recovery is performed by the
9767 * one who initiated the error.
9768 */
9769 if ((role == 0xfffe) || (role == 0xfffd)) {
9770 md_error(mddev, rdev2);
9771 clear_bit(Blocked, &rdev2->flags);
9772 }
9773 }
9774 }
9775
9776 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9777 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9778 if (ret)
9779 pr_warn("md: updating array disks failed. %d\n", ret);
9780 }
9781
9782 /*
9783 * Since mddev->delta_disks has already updated in update_raid_disks,
9784 * so it is time to check reshape.
9785 */
9786 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9787 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9788 /*
9789 * reshape is happening in the remote node, we need to
9790 * update reshape_position and call start_reshape.
9791 */
9792 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9793 if (mddev->pers->update_reshape_pos)
9794 mddev->pers->update_reshape_pos(mddev);
9795 if (mddev->pers->start_reshape)
9796 mddev->pers->start_reshape(mddev);
9797 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9798 mddev->reshape_position != MaxSector &&
9799 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9800 /* reshape is just done in another node. */
9801 mddev->reshape_position = MaxSector;
9802 if (mddev->pers->update_reshape_pos)
9803 mddev->pers->update_reshape_pos(mddev);
9804 }
9805
9806 /* Finally set the event to be up to date */
9807 mddev->events = le64_to_cpu(sb->events);
9808 }
9809
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9810 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9811 {
9812 int err;
9813 struct page *swapout = rdev->sb_page;
9814 struct mdp_superblock_1 *sb;
9815
9816 /* Store the sb page of the rdev in the swapout temporary
9817 * variable in case we err in the future
9818 */
9819 rdev->sb_page = NULL;
9820 err = alloc_disk_sb(rdev);
9821 if (err == 0) {
9822 ClearPageUptodate(rdev->sb_page);
9823 rdev->sb_loaded = 0;
9824 err = super_types[mddev->major_version].
9825 load_super(rdev, NULL, mddev->minor_version);
9826 }
9827 if (err < 0) {
9828 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9829 __func__, __LINE__, rdev->desc_nr, err);
9830 if (rdev->sb_page)
9831 put_page(rdev->sb_page);
9832 rdev->sb_page = swapout;
9833 rdev->sb_loaded = 1;
9834 return err;
9835 }
9836
9837 sb = page_address(rdev->sb_page);
9838 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9839 * is not set
9840 */
9841
9842 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9843 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9844
9845 /* The other node finished recovery, call spare_active to set
9846 * device In_sync and mddev->degraded
9847 */
9848 if (rdev->recovery_offset == MaxSector &&
9849 !test_bit(In_sync, &rdev->flags) &&
9850 mddev->pers->spare_active(mddev))
9851 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9852
9853 put_page(swapout);
9854 return 0;
9855 }
9856
md_reload_sb(struct mddev * mddev,int nr)9857 void md_reload_sb(struct mddev *mddev, int nr)
9858 {
9859 struct md_rdev *rdev = NULL, *iter;
9860 int err;
9861
9862 /* Find the rdev */
9863 rdev_for_each_rcu(iter, mddev) {
9864 if (iter->desc_nr == nr) {
9865 rdev = iter;
9866 break;
9867 }
9868 }
9869
9870 if (!rdev) {
9871 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9872 return;
9873 }
9874
9875 err = read_rdev(mddev, rdev);
9876 if (err < 0)
9877 return;
9878
9879 check_sb_changes(mddev, rdev);
9880
9881 /* Read all rdev's to update recovery_offset */
9882 rdev_for_each_rcu(rdev, mddev) {
9883 if (!test_bit(Faulty, &rdev->flags))
9884 read_rdev(mddev, rdev);
9885 }
9886 }
9887 EXPORT_SYMBOL(md_reload_sb);
9888
9889 #ifndef MODULE
9890
9891 /*
9892 * Searches all registered partitions for autorun RAID arrays
9893 * at boot time.
9894 */
9895
9896 static DEFINE_MUTEX(detected_devices_mutex);
9897 static LIST_HEAD(all_detected_devices);
9898 struct detected_devices_node {
9899 struct list_head list;
9900 dev_t dev;
9901 };
9902
md_autodetect_dev(dev_t dev)9903 void md_autodetect_dev(dev_t dev)
9904 {
9905 struct detected_devices_node *node_detected_dev;
9906
9907 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9908 if (node_detected_dev) {
9909 node_detected_dev->dev = dev;
9910 mutex_lock(&detected_devices_mutex);
9911 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9912 mutex_unlock(&detected_devices_mutex);
9913 }
9914 }
9915
md_autostart_arrays(int part)9916 void md_autostart_arrays(int part)
9917 {
9918 struct md_rdev *rdev;
9919 struct detected_devices_node *node_detected_dev;
9920 dev_t dev;
9921 int i_scanned, i_passed;
9922
9923 i_scanned = 0;
9924 i_passed = 0;
9925
9926 pr_info("md: Autodetecting RAID arrays.\n");
9927
9928 mutex_lock(&detected_devices_mutex);
9929 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9930 i_scanned++;
9931 node_detected_dev = list_entry(all_detected_devices.next,
9932 struct detected_devices_node, list);
9933 list_del(&node_detected_dev->list);
9934 dev = node_detected_dev->dev;
9935 kfree(node_detected_dev);
9936 mutex_unlock(&detected_devices_mutex);
9937 rdev = md_import_device(dev,0, 90);
9938 mutex_lock(&detected_devices_mutex);
9939 if (IS_ERR(rdev))
9940 continue;
9941
9942 if (test_bit(Faulty, &rdev->flags))
9943 continue;
9944
9945 set_bit(AutoDetected, &rdev->flags);
9946 list_add(&rdev->same_set, &pending_raid_disks);
9947 i_passed++;
9948 }
9949 mutex_unlock(&detected_devices_mutex);
9950
9951 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9952
9953 autorun_devices(part);
9954 }
9955
9956 #endif /* !MODULE */
9957
md_exit(void)9958 static __exit void md_exit(void)
9959 {
9960 struct mddev *mddev;
9961 struct list_head *tmp;
9962 int delay = 1;
9963
9964 unregister_blkdev(MD_MAJOR,"md");
9965 unregister_blkdev(mdp_major, "mdp");
9966 unregister_reboot_notifier(&md_notifier);
9967 unregister_sysctl_table(raid_table_header);
9968
9969 /* We cannot unload the modules while some process is
9970 * waiting for us in select() or poll() - wake them up
9971 */
9972 md_unloading = 1;
9973 while (waitqueue_active(&md_event_waiters)) {
9974 /* not safe to leave yet */
9975 wake_up(&md_event_waiters);
9976 msleep(delay);
9977 delay += delay;
9978 }
9979 remove_proc_entry("mdstat", NULL);
9980
9981 for_each_mddev(mddev, tmp) {
9982 export_array(mddev);
9983 mddev->ctime = 0;
9984 mddev->hold_active = 0;
9985 /*
9986 * for_each_mddev() will call mddev_put() at the end of each
9987 * iteration. As the mddev is now fully clear, this will
9988 * schedule the mddev for destruction by a workqueue, and the
9989 * destroy_workqueue() below will wait for that to complete.
9990 */
9991 }
9992 destroy_workqueue(md_rdev_misc_wq);
9993 destroy_workqueue(md_misc_wq);
9994 destroy_workqueue(md_wq);
9995 }
9996
9997 subsys_initcall(md_init);
module_exit(md_exit)9998 module_exit(md_exit)
9999
10000 static int get_ro(char *buffer, const struct kernel_param *kp)
10001 {
10002 return sprintf(buffer, "%d\n", start_readonly);
10003 }
set_ro(const char * val,const struct kernel_param * kp)10004 static int set_ro(const char *val, const struct kernel_param *kp)
10005 {
10006 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10007 }
10008
10009 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10010 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10011 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10012 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10013
10014 MODULE_LICENSE("GPL");
10015 MODULE_DESCRIPTION("MD RAID framework");
10016 MODULE_ALIAS("md");
10017 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10018