• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14 
15 /*
16  * The set of flags that only affect watermark checking and reclaim
17  * behaviour. This is used by the MM to obey the caller constraints
18  * about IO, FS and watermark checking while ignoring placement
19  * hints such as HIGHMEM usage.
20  */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 			__GFP_ATOMIC)
25 
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28 
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31 
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34 
35 void page_writeback_init(void);
36 
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38 void activate_page(struct page *page);
39 
40 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
41 		unsigned long floor, unsigned long ceiling);
42 
can_madv_lru_vma(struct vm_area_struct * vma)43 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
44 {
45 	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
46 }
47 
48 void unmap_page_range(struct mmu_gather *tlb,
49 			     struct vm_area_struct *vma,
50 			     unsigned long addr, unsigned long end,
51 			     struct zap_details *details);
52 
53 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
54 		unsigned long lookahead_size);
55 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)56 static inline void force_page_cache_readahead(struct address_space *mapping,
57 		struct file *file, pgoff_t index, unsigned long nr_to_read)
58 {
59 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
60 	force_page_cache_ra(&ractl, nr_to_read);
61 }
62 
63 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
64 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
65 
66 /**
67  * page_evictable - test whether a page is evictable
68  * @page: the page to test
69  *
70  * Test whether page is evictable--i.e., should be placed on active/inactive
71  * lists vs unevictable list.
72  *
73  * Reasons page might not be evictable:
74  * (1) page's mapping marked unevictable
75  * (2) page is part of an mlocked VMA
76  *
77  */
page_evictable(struct page * page)78 static inline bool page_evictable(struct page *page)
79 {
80 	bool ret;
81 
82 	/* Prevent address_space of inode and swap cache from being freed */
83 	rcu_read_lock();
84 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
85 	rcu_read_unlock();
86 	return ret;
87 }
88 
89 /*
90  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
91  * a count of one.
92  */
set_page_refcounted(struct page * page)93 static inline void set_page_refcounted(struct page *page)
94 {
95 	VM_BUG_ON_PAGE(PageTail(page), page);
96 	VM_BUG_ON_PAGE(page_ref_count(page), page);
97 	set_page_count(page, 1);
98 }
99 
100 extern unsigned long highest_memmap_pfn;
101 
102 /*
103  * Maximum number of reclaim retries without progress before the OOM
104  * killer is consider the only way forward.
105  */
106 #define MAX_RECLAIM_RETRIES 16
107 
108 /*
109  * in mm/vmscan.c:
110  */
111 extern int isolate_lru_page(struct page *page);
112 extern void putback_lru_page(struct page *page);
113 
114 /*
115  * in mm/rmap.c:
116  */
117 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
118 
119 /*
120  * in mm/memcontrol.c:
121  */
122 extern bool cgroup_memory_nokmem;
123 
124 /*
125  * in mm/page_alloc.c
126  */
127 
128 /*
129  * Structure for holding the mostly immutable allocation parameters passed
130  * between functions involved in allocations, including the alloc_pages*
131  * family of functions.
132  *
133  * nodemask, migratetype and highest_zoneidx are initialized only once in
134  * __alloc_pages() and then never change.
135  *
136  * zonelist, preferred_zone and highest_zoneidx are set first in
137  * __alloc_pages() for the fast path, and might be later changed
138  * in __alloc_pages_slowpath(). All other functions pass the whole structure
139  * by a const pointer.
140  */
141 struct alloc_context {
142 	struct zonelist *zonelist;
143 	nodemask_t *nodemask;
144 	struct zoneref *preferred_zoneref;
145 	int migratetype;
146 
147 	/*
148 	 * highest_zoneidx represents highest usable zone index of
149 	 * the allocation request. Due to the nature of the zone,
150 	 * memory on lower zone than the highest_zoneidx will be
151 	 * protected by lowmem_reserve[highest_zoneidx].
152 	 *
153 	 * highest_zoneidx is also used by reclaim/compaction to limit
154 	 * the target zone since higher zone than this index cannot be
155 	 * usable for this allocation request.
156 	 */
157 	enum zone_type highest_zoneidx;
158 	bool spread_dirty_pages;
159 };
160 
161 /*
162  * Locate the struct page for both the matching buddy in our
163  * pair (buddy1) and the combined O(n+1) page they form (page).
164  *
165  * 1) Any buddy B1 will have an order O twin B2 which satisfies
166  * the following equation:
167  *     B2 = B1 ^ (1 << O)
168  * For example, if the starting buddy (buddy2) is #8 its order
169  * 1 buddy is #10:
170  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
171  *
172  * 2) Any buddy B will have an order O+1 parent P which
173  * satisfies the following equation:
174  *     P = B & ~(1 << O)
175  *
176  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
177  */
178 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)179 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
180 {
181 	return page_pfn ^ (1 << order);
182 }
183 
184 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
185 				unsigned long end_pfn, struct zone *zone);
186 
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)187 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
188 				unsigned long end_pfn, struct zone *zone)
189 {
190 	if (zone->contiguous)
191 		return pfn_to_page(start_pfn);
192 
193 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
194 }
195 
196 extern int __isolate_free_page(struct page *page, unsigned int order);
197 extern void __putback_isolated_page(struct page *page, unsigned int order,
198 				    int mt);
199 extern void memblock_free_pages(struct page *page, unsigned long pfn,
200 					unsigned int order);
201 extern void __free_pages_core(struct page *page, unsigned int order);
202 extern void prep_compound_page(struct page *page, unsigned int order);
203 extern void post_alloc_hook(struct page *page, unsigned int order,
204 					gfp_t gfp_flags);
205 extern int user_min_free_kbytes;
206 
207 extern void free_unref_page(struct page *page, unsigned int order);
208 extern void free_unref_page_list(struct list_head *list);
209 
210 extern void zone_pcp_update(struct zone *zone, int cpu_online);
211 extern void zone_pcp_reset(struct zone *zone);
212 extern void zone_pcp_disable(struct zone *zone);
213 extern void zone_pcp_enable(struct zone *zone);
214 
215 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
216 			  phys_addr_t min_addr,
217 			  int nid, bool exact_nid);
218 
219 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
220 
221 /*
222  * in mm/compaction.c
223  */
224 /*
225  * compact_control is used to track pages being migrated and the free pages
226  * they are being migrated to during memory compaction. The free_pfn starts
227  * at the end of a zone and migrate_pfn begins at the start. Movable pages
228  * are moved to the end of a zone during a compaction run and the run
229  * completes when free_pfn <= migrate_pfn
230  */
231 struct compact_control {
232 	struct list_head freepages;	/* List of free pages to migrate to */
233 	struct list_head migratepages;	/* List of pages being migrated */
234 	unsigned int nr_freepages;	/* Number of isolated free pages */
235 	unsigned int nr_migratepages;	/* Number of pages to migrate */
236 	unsigned long free_pfn;		/* isolate_freepages search base */
237 	/*
238 	 * Acts as an in/out parameter to page isolation for migration.
239 	 * isolate_migratepages uses it as a search base.
240 	 * isolate_migratepages_block will update the value to the next pfn
241 	 * after the last isolated one.
242 	 */
243 	unsigned long migrate_pfn;
244 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
245 	struct zone *zone;
246 	unsigned long total_migrate_scanned;
247 	unsigned long total_free_scanned;
248 	unsigned short fast_search_fail;/* failures to use free list searches */
249 	short search_order;		/* order to start a fast search at */
250 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
251 	int order;			/* order a direct compactor needs */
252 	int migratetype;		/* migratetype of direct compactor */
253 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
254 	const int highest_zoneidx;	/* zone index of a direct compactor */
255 	enum migrate_mode mode;		/* Async or sync migration mode */
256 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
257 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
258 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
259 	bool direct_compaction;		/* False from kcompactd or /proc/... */
260 	bool proactive_compaction;	/* kcompactd proactive compaction */
261 	bool whole_zone;		/* Whole zone should/has been scanned */
262 	bool contended;			/* Signal lock or sched contention */
263 	bool rescan;			/* Rescanning the same pageblock */
264 	bool alloc_contig;		/* alloc_contig_range allocation */
265 };
266 
267 struct compact_control_ext {
268 	struct compact_control *cc;
269 	unsigned int nr_migrate_file_pages;	/* Number of file pages to migrate */
270 };
271 
272 /*
273  * Used in direct compaction when a page should be taken from the freelists
274  * immediately when one is created during the free path.
275  */
276 struct capture_control {
277 	struct compact_control *cc;
278 	struct page *page;
279 };
280 
281 unsigned long
282 isolate_freepages_range(struct compact_control *cc,
283 			unsigned long start_pfn, unsigned long end_pfn);
284 int
285 isolate_migratepages_range(struct compact_control *cc,
286 			   unsigned long low_pfn, unsigned long end_pfn);
287 #endif
288 int find_suitable_fallback(struct free_area *area, unsigned int order,
289 			int migratetype, bool only_stealable, bool *can_steal);
290 
291 /*
292  * This function returns the order of a free page in the buddy system. In
293  * general, page_zone(page)->lock must be held by the caller to prevent the
294  * page from being allocated in parallel and returning garbage as the order.
295  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
296  * page cannot be allocated or merged in parallel. Alternatively, it must
297  * handle invalid values gracefully, and use buddy_order_unsafe() below.
298  */
buddy_order(struct page * page)299 static inline unsigned int buddy_order(struct page *page)
300 {
301 	/* PageBuddy() must be checked by the caller */
302 	return page_private(page);
303 }
304 
305 /*
306  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
307  * PageBuddy() should be checked first by the caller to minimize race window,
308  * and invalid values must be handled gracefully.
309  *
310  * READ_ONCE is used so that if the caller assigns the result into a local
311  * variable and e.g. tests it for valid range before using, the compiler cannot
312  * decide to remove the variable and inline the page_private(page) multiple
313  * times, potentially observing different values in the tests and the actual
314  * use of the result.
315  */
316 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
317 
318 /*
319  * These three helpers classifies VMAs for virtual memory accounting.
320  */
321 
322 /*
323  * Executable code area - executable, not writable, not stack
324  */
is_exec_mapping(vm_flags_t flags)325 static inline bool is_exec_mapping(vm_flags_t flags)
326 {
327 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
328 }
329 
330 /*
331  * Stack area - automatically grows in one direction
332  *
333  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
334  * do_mmap() forbids all other combinations.
335  */
is_stack_mapping(vm_flags_t flags)336 static inline bool is_stack_mapping(vm_flags_t flags)
337 {
338 	return (flags & VM_STACK) == VM_STACK;
339 }
340 
341 /*
342  * Data area - private, writable, not stack
343  */
is_data_mapping(vm_flags_t flags)344 static inline bool is_data_mapping(vm_flags_t flags)
345 {
346 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
347 }
348 
349 /* mm/util.c */
350 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
351 		struct vm_area_struct *prev);
352 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
353 
354 #ifdef CONFIG_MMU
355 extern long populate_vma_page_range(struct vm_area_struct *vma,
356 		unsigned long start, unsigned long end, int *locked);
357 extern long faultin_vma_page_range(struct vm_area_struct *vma,
358 				   unsigned long start, unsigned long end,
359 				   bool write, int *locked);
360 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
361 			unsigned long start, unsigned long end);
munlock_vma_pages_all(struct vm_area_struct * vma)362 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
363 {
364 	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
365 }
366 
367 /*
368  * must be called with vma's mmap_lock held for read or write, and page locked.
369  */
370 extern void mlock_vma_page(struct page *page);
371 extern unsigned int munlock_vma_page(struct page *page);
372 
373 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
374 			      unsigned long len);
375 
376 /*
377  * Clear the page's PageMlocked().  This can be useful in a situation where
378  * we want to unconditionally remove a page from the pagecache -- e.g.,
379  * on truncation or freeing.
380  *
381  * It is legal to call this function for any page, mlocked or not.
382  * If called for a page that is still mapped by mlocked vmas, all we do
383  * is revert to lazy LRU behaviour -- semantics are not broken.
384  */
385 extern void clear_page_mlock(struct page *page);
386 
387 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
388 
389 /*
390  * At what user virtual address is page expected in vma?
391  * Returns -EFAULT if all of the page is outside the range of vma.
392  * If page is a compound head, the entire compound page is considered.
393  */
394 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)395 vma_address(struct page *page, struct vm_area_struct *vma)
396 {
397 	pgoff_t pgoff;
398 	unsigned long address;
399 
400 	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
401 	pgoff = page_to_pgoff(page);
402 	if (pgoff >= vma->vm_pgoff) {
403 		address = vma->vm_start +
404 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
405 		/* Check for address beyond vma (or wrapped through 0?) */
406 		if (address < vma->vm_start || address >= vma->vm_end)
407 			address = -EFAULT;
408 	} else if (PageHead(page) &&
409 		   pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
410 		/* Test above avoids possibility of wrap to 0 on 32-bit */
411 		address = vma->vm_start;
412 	} else {
413 		address = -EFAULT;
414 	}
415 	return address;
416 }
417 
418 /*
419  * Then at what user virtual address will none of the page be found in vma?
420  * Assumes that vma_address() already returned a good starting address.
421  * If page is a compound head, the entire compound page is considered.
422  */
423 static inline unsigned long
vma_address_end(struct page * page,struct vm_area_struct * vma)424 vma_address_end(struct page *page, struct vm_area_struct *vma)
425 {
426 	pgoff_t pgoff;
427 	unsigned long address;
428 
429 	VM_BUG_ON_PAGE(PageKsm(page), page);	/* KSM page->index unusable */
430 	pgoff = page_to_pgoff(page) + compound_nr(page);
431 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
432 	/* Check for address beyond vma (or wrapped through 0?) */
433 	if (address < vma->vm_start || address > vma->vm_end)
434 		address = vma->vm_end;
435 	return address;
436 }
437 
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)438 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
439 						    struct file *fpin)
440 {
441 	int flags = vmf->flags;
442 
443 	if (fpin)
444 		return fpin;
445 
446 	/*
447 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
448 	 * anything, so we only pin the file and drop the mmap_lock if only
449 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
450 	 */
451 	if (fault_flag_allow_retry_first(flags) &&
452 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
453 		fpin = get_file(vmf->vma->vm_file);
454 		mmap_read_unlock(vmf->vma->vm_mm);
455 	}
456 	return fpin;
457 }
458 
459 #else /* !CONFIG_MMU */
clear_page_mlock(struct page * page)460 static inline void clear_page_mlock(struct page *page) { }
mlock_vma_page(struct page * page)461 static inline void mlock_vma_page(struct page *page) { }
vunmap_range_noflush(unsigned long start,unsigned long end)462 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
463 {
464 }
465 #endif /* !CONFIG_MMU */
466 
467 /*
468  * Return the mem_map entry representing the 'offset' subpage within
469  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
470  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
471  */
mem_map_offset(struct page * base,int offset)472 static inline struct page *mem_map_offset(struct page *base, int offset)
473 {
474 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
475 		return nth_page(base, offset);
476 	return base + offset;
477 }
478 
479 /*
480  * Iterator over all subpages within the maximally aligned gigantic
481  * page 'base'.  Handle any discontiguity in the mem_map.
482  */
mem_map_next(struct page * iter,struct page * base,int offset)483 static inline struct page *mem_map_next(struct page *iter,
484 						struct page *base, int offset)
485 {
486 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
487 		unsigned long pfn = page_to_pfn(base) + offset;
488 		if (!pfn_valid(pfn))
489 			return NULL;
490 		return pfn_to_page(pfn);
491 	}
492 	return iter + 1;
493 }
494 
495 /* Memory initialisation debug and verification */
496 enum mminit_level {
497 	MMINIT_WARNING,
498 	MMINIT_VERIFY,
499 	MMINIT_TRACE
500 };
501 
502 #ifdef CONFIG_DEBUG_MEMORY_INIT
503 
504 extern int mminit_loglevel;
505 
506 #define mminit_dprintk(level, prefix, fmt, arg...) \
507 do { \
508 	if (level < mminit_loglevel) { \
509 		if (level <= MMINIT_WARNING) \
510 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
511 		else \
512 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
513 	} \
514 } while (0)
515 
516 extern void mminit_verify_pageflags_layout(void);
517 extern void mminit_verify_zonelist(void);
518 #else
519 
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)520 static inline void mminit_dprintk(enum mminit_level level,
521 				const char *prefix, const char *fmt, ...)
522 {
523 }
524 
mminit_verify_pageflags_layout(void)525 static inline void mminit_verify_pageflags_layout(void)
526 {
527 }
528 
mminit_verify_zonelist(void)529 static inline void mminit_verify_zonelist(void)
530 {
531 }
532 #endif /* CONFIG_DEBUG_MEMORY_INIT */
533 
534 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
535 #if defined(CONFIG_SPARSEMEM)
536 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
537 				unsigned long *end_pfn);
538 #else
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)539 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
540 				unsigned long *end_pfn)
541 {
542 }
543 #endif /* CONFIG_SPARSEMEM */
544 
545 #define NODE_RECLAIM_NOSCAN	-2
546 #define NODE_RECLAIM_FULL	-1
547 #define NODE_RECLAIM_SOME	0
548 #define NODE_RECLAIM_SUCCESS	1
549 
550 #ifdef CONFIG_NUMA
551 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
552 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
553 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)554 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
555 				unsigned int order)
556 {
557 	return NODE_RECLAIM_NOSCAN;
558 }
find_next_best_node(int node,nodemask_t * used_node_mask)559 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
560 {
561 	return NUMA_NO_NODE;
562 }
563 #endif
564 
565 extern int hwpoison_filter(struct page *p);
566 
567 extern u32 hwpoison_filter_dev_major;
568 extern u32 hwpoison_filter_dev_minor;
569 extern u64 hwpoison_filter_flags_mask;
570 extern u64 hwpoison_filter_flags_value;
571 extern u64 hwpoison_filter_memcg;
572 extern u32 hwpoison_filter_enable;
573 
574 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
575         unsigned long, unsigned long,
576         unsigned long, unsigned long);
577 
578 extern void set_pageblock_order(void);
579 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
580 					    struct list_head *page_list);
581 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
582 #define ALLOC_WMARK_MIN		WMARK_MIN
583 #define ALLOC_WMARK_LOW		WMARK_LOW
584 #define ALLOC_WMARK_HIGH	WMARK_HIGH
585 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
586 
587 /* Mask to get the watermark bits */
588 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
589 
590 /*
591  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
592  * cannot assume a reduced access to memory reserves is sufficient for
593  * !MMU
594  */
595 #ifdef CONFIG_MMU
596 #define ALLOC_OOM		0x08
597 #else
598 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
599 #endif
600 
601 #define ALLOC_HARDER		 0x10 /* try to alloc harder */
602 #define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
603 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
604 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
605 #ifdef CONFIG_ZONE_DMA32
606 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
607 #else
608 #define ALLOC_NOFRAGMENT	  0x0
609 #endif
610 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
611 
612 enum ttu_flags;
613 struct tlbflush_unmap_batch;
614 
615 
616 /*
617  * only for MM internal work items which do not depend on
618  * any allocations or locks which might depend on allocations
619  */
620 extern struct workqueue_struct *mm_percpu_wq;
621 
622 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
623 void try_to_unmap_flush(void);
624 void try_to_unmap_flush_dirty(void);
625 void flush_tlb_batched_pending(struct mm_struct *mm);
626 #else
try_to_unmap_flush(void)627 static inline void try_to_unmap_flush(void)
628 {
629 }
try_to_unmap_flush_dirty(void)630 static inline void try_to_unmap_flush_dirty(void)
631 {
632 }
flush_tlb_batched_pending(struct mm_struct * mm)633 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
634 {
635 }
636 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
637 
638 extern const struct trace_print_flags pageflag_names[];
639 extern const struct trace_print_flags vmaflag_names[];
640 extern const struct trace_print_flags gfpflag_names[];
641 
is_migrate_highatomic(enum migratetype migratetype)642 static inline bool is_migrate_highatomic(enum migratetype migratetype)
643 {
644 	return migratetype == MIGRATE_HIGHATOMIC;
645 }
646 
is_migrate_highatomic_page(struct page * page)647 static inline bool is_migrate_highatomic_page(struct page *page)
648 {
649 	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
650 }
651 
652 void setup_zone_pageset(struct zone *zone);
653 
654 struct migration_target_control {
655 	int nid;		/* preferred node id */
656 	nodemask_t *nmask;
657 	gfp_t gfp_mask;
658 };
659 
660 /*
661  * mm/vmalloc.c
662  */
663 #ifdef CONFIG_MMU
664 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
665                 pgprot_t prot, struct page **pages, unsigned int page_shift);
666 #else
667 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)668 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
669                 pgprot_t prot, struct page **pages, unsigned int page_shift)
670 {
671 	return -EINVAL;
672 }
673 #endif
674 
675 void vunmap_range_noflush(unsigned long start, unsigned long end);
676 
677 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
678 		      unsigned long addr, int page_nid, int *flags);
679 
680 #endif	/* __MM_INTERNAL_H */
681