1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 *
5 * membarrier system call
6 */
7 #include "sched.h"
8
9 /*
10 * For documentation purposes, here are some membarrier ordering
11 * scenarios to keep in mind:
12 *
13 * A) Userspace thread execution after IPI vs membarrier's memory
14 * barrier before sending the IPI
15 *
16 * Userspace variables:
17 *
18 * int x = 0, y = 0;
19 *
20 * The memory barrier at the start of membarrier() on CPU0 is necessary in
21 * order to enforce the guarantee that any writes occurring on CPU0 before
22 * the membarrier() is executed will be visible to any code executing on
23 * CPU1 after the IPI-induced memory barrier:
24 *
25 * CPU0 CPU1
26 *
27 * x = 1
28 * membarrier():
29 * a: smp_mb()
30 * b: send IPI IPI-induced mb
31 * c: smp_mb()
32 * r2 = y
33 * y = 1
34 * barrier()
35 * r1 = x
36 *
37 * BUG_ON(r1 == 0 && r2 == 0)
38 *
39 * The write to y and load from x by CPU1 are unordered by the hardware,
40 * so it's possible to have "r1 = x" reordered before "y = 1" at any
41 * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
42 * can be reordered after (a) (although not after (c)), so we get r1 == 0
43 * and r2 == 0. This violates the guarantee that membarrier() is
44 * supposed by provide.
45 *
46 * The timing of the memory barrier at (a) has to ensure that it executes
47 * before the IPI-induced memory barrier on CPU1.
48 *
49 * B) Userspace thread execution before IPI vs membarrier's memory
50 * barrier after completing the IPI
51 *
52 * Userspace variables:
53 *
54 * int x = 0, y = 0;
55 *
56 * The memory barrier at the end of membarrier() on CPU0 is necessary in
57 * order to enforce the guarantee that any writes occurring on CPU1 before
58 * the membarrier() is executed will be visible to any code executing on
59 * CPU0 after the membarrier():
60 *
61 * CPU0 CPU1
62 *
63 * x = 1
64 * barrier()
65 * y = 1
66 * r2 = y
67 * membarrier():
68 * a: smp_mb()
69 * b: send IPI IPI-induced mb
70 * c: smp_mb()
71 * r1 = x
72 * BUG_ON(r1 == 0 && r2 == 1)
73 *
74 * The writes to x and y are unordered by the hardware, so it's possible to
75 * have "r2 = 1" even though the write to x doesn't execute until (b). If
76 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
77 * before (b) (although not before (a)), so we get "r1 = 0". This violates
78 * the guarantee that membarrier() is supposed to provide.
79 *
80 * The timing of the memory barrier at (c) has to ensure that it executes
81 * after the IPI-induced memory barrier on CPU1.
82 *
83 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
84 *
85 * CPU0 CPU1
86 *
87 * membarrier():
88 * a: smp_mb()
89 * d: switch to kthread (includes mb)
90 * b: read rq->curr->mm == NULL
91 * e: switch to user (includes mb)
92 * c: smp_mb()
93 *
94 * Using the scenario from (A), we can show that (a) needs to be paired
95 * with (e). Using the scenario from (B), we can show that (c) needs to
96 * be paired with (d).
97 *
98 * D) exit_mm vs membarrier
99 *
100 * Two thread groups are created, A and B. Thread group B is created by
101 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
102 * Let's assume we have a single thread within each thread group (Thread A
103 * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
104 *
105 * CPU0 CPU1
106 *
107 * membarrier():
108 * a: smp_mb()
109 * exit_mm():
110 * d: smp_mb()
111 * e: current->mm = NULL
112 * b: read rq->curr->mm == NULL
113 * c: smp_mb()
114 *
115 * Using scenario (B), we can show that (c) needs to be paired with (d).
116 *
117 * E) kthread_{use,unuse}_mm vs membarrier
118 *
119 * CPU0 CPU1
120 *
121 * membarrier():
122 * a: smp_mb()
123 * kthread_unuse_mm()
124 * d: smp_mb()
125 * e: current->mm = NULL
126 * b: read rq->curr->mm == NULL
127 * kthread_use_mm()
128 * f: current->mm = mm
129 * g: smp_mb()
130 * c: smp_mb()
131 *
132 * Using the scenario from (A), we can show that (a) needs to be paired
133 * with (g). Using the scenario from (B), we can show that (c) needs to
134 * be paired with (d).
135 */
136
137 /*
138 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
139 * except MEMBARRIER_CMD_QUERY.
140 */
141 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
142 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
143 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
144 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
145 #else
146 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
147 #endif
148
149 #ifdef CONFIG_RSEQ
150 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
151 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
152 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
153 #else
154 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
155 #endif
156
157 #define MEMBARRIER_CMD_BITMASK \
158 (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
159 | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
160 | MEMBARRIER_CMD_PRIVATE_EXPEDITED \
161 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
162 | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
163 | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
164
165 static DEFINE_MUTEX(membarrier_ipi_mutex);
166
ipi_mb(void * info)167 static void ipi_mb(void *info)
168 {
169 smp_mb(); /* IPIs should be serializing but paranoid. */
170 }
171
ipi_sync_core(void * info)172 static void ipi_sync_core(void *info)
173 {
174 /*
175 * The smp_mb() in membarrier after all the IPIs is supposed to
176 * ensure that memory on remote CPUs that occur before the IPI
177 * become visible to membarrier()'s caller -- see scenario B in
178 * the big comment at the top of this file.
179 *
180 * A sync_core() would provide this guarantee, but
181 * sync_core_before_usermode() might end up being deferred until
182 * after membarrier()'s smp_mb().
183 */
184 smp_mb(); /* IPIs should be serializing but paranoid. */
185
186 sync_core_before_usermode();
187 }
188
ipi_rseq(void * info)189 static void ipi_rseq(void *info)
190 {
191 /*
192 * Ensure that all stores done by the calling thread are visible
193 * to the current task before the current task resumes. We could
194 * probably optimize this away on most architectures, but by the
195 * time we've already sent an IPI, the cost of the extra smp_mb()
196 * is negligible.
197 */
198 smp_mb();
199 rseq_preempt(current);
200 }
201
ipi_sync_rq_state(void * info)202 static void ipi_sync_rq_state(void *info)
203 {
204 struct mm_struct *mm = (struct mm_struct *) info;
205
206 if (current->mm != mm)
207 return;
208 this_cpu_write(runqueues.membarrier_state,
209 atomic_read(&mm->membarrier_state));
210 /*
211 * Issue a memory barrier after setting
212 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
213 * guarantee that no memory access following registration is reordered
214 * before registration.
215 */
216 smp_mb();
217 }
218
membarrier_exec_mmap(struct mm_struct * mm)219 void membarrier_exec_mmap(struct mm_struct *mm)
220 {
221 /*
222 * Issue a memory barrier before clearing membarrier_state to
223 * guarantee that no memory access prior to exec is reordered after
224 * clearing this state.
225 */
226 smp_mb();
227 atomic_set(&mm->membarrier_state, 0);
228 /*
229 * Keep the runqueue membarrier_state in sync with this mm
230 * membarrier_state.
231 */
232 this_cpu_write(runqueues.membarrier_state, 0);
233 }
234
membarrier_update_current_mm(struct mm_struct * next_mm)235 void membarrier_update_current_mm(struct mm_struct *next_mm)
236 {
237 struct rq *rq = this_rq();
238 int membarrier_state = 0;
239
240 if (next_mm)
241 membarrier_state = atomic_read(&next_mm->membarrier_state);
242 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
243 return;
244 WRITE_ONCE(rq->membarrier_state, membarrier_state);
245 }
246
membarrier_global_expedited(void)247 static int membarrier_global_expedited(void)
248 {
249 int cpu;
250 cpumask_var_t tmpmask;
251
252 if (num_online_cpus() == 1)
253 return 0;
254
255 /*
256 * Matches memory barriers around rq->curr modification in
257 * scheduler.
258 */
259 smp_mb(); /* system call entry is not a mb. */
260
261 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
262 return -ENOMEM;
263
264 mutex_lock(&membarrier_ipi_mutex);
265 cpus_read_lock();
266 rcu_read_lock();
267 for_each_online_cpu(cpu) {
268 struct task_struct *p;
269
270 /*
271 * Skipping the current CPU is OK even through we can be
272 * migrated at any point. The current CPU, at the point
273 * where we read raw_smp_processor_id(), is ensured to
274 * be in program order with respect to the caller
275 * thread. Therefore, we can skip this CPU from the
276 * iteration.
277 */
278 if (cpu == raw_smp_processor_id())
279 continue;
280
281 if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
282 MEMBARRIER_STATE_GLOBAL_EXPEDITED))
283 continue;
284
285 /*
286 * Skip the CPU if it runs a kernel thread which is not using
287 * a task mm.
288 */
289 p = rcu_dereference(cpu_rq(cpu)->curr);
290 if (!p->mm)
291 continue;
292
293 __cpumask_set_cpu(cpu, tmpmask);
294 }
295 rcu_read_unlock();
296
297 preempt_disable();
298 smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
299 preempt_enable();
300
301 free_cpumask_var(tmpmask);
302 cpus_read_unlock();
303
304 /*
305 * Memory barrier on the caller thread _after_ we finished
306 * waiting for the last IPI. Matches memory barriers around
307 * rq->curr modification in scheduler.
308 */
309 smp_mb(); /* exit from system call is not a mb */
310 mutex_unlock(&membarrier_ipi_mutex);
311
312 return 0;
313 }
314
membarrier_private_expedited(int flags,int cpu_id)315 static int membarrier_private_expedited(int flags, int cpu_id)
316 {
317 cpumask_var_t tmpmask;
318 struct mm_struct *mm = current->mm;
319 smp_call_func_t ipi_func = ipi_mb;
320
321 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
322 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
323 return -EINVAL;
324 if (!(atomic_read(&mm->membarrier_state) &
325 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
326 return -EPERM;
327 ipi_func = ipi_sync_core;
328 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
329 if (!IS_ENABLED(CONFIG_RSEQ))
330 return -EINVAL;
331 if (!(atomic_read(&mm->membarrier_state) &
332 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
333 return -EPERM;
334 ipi_func = ipi_rseq;
335 } else {
336 WARN_ON_ONCE(flags);
337 if (!(atomic_read(&mm->membarrier_state) &
338 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
339 return -EPERM;
340 }
341
342 if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
343 (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
344 return 0;
345
346 /*
347 * Matches memory barriers around rq->curr modification in
348 * scheduler.
349 */
350 smp_mb(); /* system call entry is not a mb. */
351
352 if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
353 return -ENOMEM;
354
355 mutex_lock(&membarrier_ipi_mutex);
356 cpus_read_lock();
357
358 if (cpu_id >= 0) {
359 struct task_struct *p;
360
361 if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
362 goto out;
363 rcu_read_lock();
364 p = rcu_dereference(cpu_rq(cpu_id)->curr);
365 if (!p || p->mm != mm) {
366 rcu_read_unlock();
367 goto out;
368 }
369 rcu_read_unlock();
370 } else {
371 int cpu;
372
373 rcu_read_lock();
374 for_each_online_cpu(cpu) {
375 struct task_struct *p;
376
377 p = rcu_dereference(cpu_rq(cpu)->curr);
378 if (p && p->mm == mm)
379 __cpumask_set_cpu(cpu, tmpmask);
380 }
381 rcu_read_unlock();
382 }
383
384 if (cpu_id >= 0) {
385 /*
386 * smp_call_function_single() will call ipi_func() if cpu_id
387 * is the calling CPU.
388 */
389 smp_call_function_single(cpu_id, ipi_func, NULL, 1);
390 } else {
391 /*
392 * For regular membarrier, we can save a few cycles by
393 * skipping the current cpu -- we're about to do smp_mb()
394 * below, and if we migrate to a different cpu, this cpu
395 * and the new cpu will execute a full barrier in the
396 * scheduler.
397 *
398 * For SYNC_CORE, we do need a barrier on the current cpu --
399 * otherwise, if we are migrated and replaced by a different
400 * task in the same mm just before, during, or after
401 * membarrier, we will end up with some thread in the mm
402 * running without a core sync.
403 *
404 * For RSEQ, don't rseq_preempt() the caller. User code
405 * is not supposed to issue syscalls at all from inside an
406 * rseq critical section.
407 */
408 if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
409 preempt_disable();
410 smp_call_function_many(tmpmask, ipi_func, NULL, true);
411 preempt_enable();
412 } else {
413 on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
414 }
415 }
416
417 out:
418 if (cpu_id < 0)
419 free_cpumask_var(tmpmask);
420 cpus_read_unlock();
421
422 /*
423 * Memory barrier on the caller thread _after_ we finished
424 * waiting for the last IPI. Matches memory barriers around
425 * rq->curr modification in scheduler.
426 */
427 smp_mb(); /* exit from system call is not a mb */
428 mutex_unlock(&membarrier_ipi_mutex);
429
430 return 0;
431 }
432
sync_runqueues_membarrier_state(struct mm_struct * mm)433 static int sync_runqueues_membarrier_state(struct mm_struct *mm)
434 {
435 int membarrier_state = atomic_read(&mm->membarrier_state);
436 cpumask_var_t tmpmask;
437 int cpu;
438
439 if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
440 this_cpu_write(runqueues.membarrier_state, membarrier_state);
441
442 /*
443 * For single mm user, we can simply issue a memory barrier
444 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
445 * mm and in the current runqueue to guarantee that no memory
446 * access following registration is reordered before
447 * registration.
448 */
449 smp_mb();
450 return 0;
451 }
452
453 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
454 return -ENOMEM;
455
456 /*
457 * For mm with multiple users, we need to ensure all future
458 * scheduler executions will observe @mm's new membarrier
459 * state.
460 */
461 synchronize_rcu();
462
463 /*
464 * For each cpu runqueue, if the task's mm match @mm, ensure that all
465 * @mm's membarrier state set bits are also set in the runqueue's
466 * membarrier state. This ensures that a runqueue scheduling
467 * between threads which are users of @mm has its membarrier state
468 * updated.
469 */
470 mutex_lock(&membarrier_ipi_mutex);
471 cpus_read_lock();
472 rcu_read_lock();
473 for_each_online_cpu(cpu) {
474 struct rq *rq = cpu_rq(cpu);
475 struct task_struct *p;
476
477 p = rcu_dereference(rq->curr);
478 if (p && p->mm == mm)
479 __cpumask_set_cpu(cpu, tmpmask);
480 }
481 rcu_read_unlock();
482
483 on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
484
485 free_cpumask_var(tmpmask);
486 cpus_read_unlock();
487 mutex_unlock(&membarrier_ipi_mutex);
488
489 return 0;
490 }
491
membarrier_register_global_expedited(void)492 static int membarrier_register_global_expedited(void)
493 {
494 struct task_struct *p = current;
495 struct mm_struct *mm = p->mm;
496 int ret;
497
498 if (atomic_read(&mm->membarrier_state) &
499 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
500 return 0;
501 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
502 ret = sync_runqueues_membarrier_state(mm);
503 if (ret)
504 return ret;
505 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
506 &mm->membarrier_state);
507
508 return 0;
509 }
510
membarrier_register_private_expedited(int flags)511 static int membarrier_register_private_expedited(int flags)
512 {
513 struct task_struct *p = current;
514 struct mm_struct *mm = p->mm;
515 int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
516 set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
517 ret;
518
519 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
520 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
521 return -EINVAL;
522 ready_state =
523 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
524 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
525 if (!IS_ENABLED(CONFIG_RSEQ))
526 return -EINVAL;
527 ready_state =
528 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
529 } else {
530 WARN_ON_ONCE(flags);
531 }
532
533 /*
534 * We need to consider threads belonging to different thread
535 * groups, which use the same mm. (CLONE_VM but not
536 * CLONE_THREAD).
537 */
538 if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
539 return 0;
540 if (flags & MEMBARRIER_FLAG_SYNC_CORE)
541 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
542 if (flags & MEMBARRIER_FLAG_RSEQ)
543 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
544 atomic_or(set_state, &mm->membarrier_state);
545 ret = sync_runqueues_membarrier_state(mm);
546 if (ret)
547 return ret;
548 atomic_or(ready_state, &mm->membarrier_state);
549
550 return 0;
551 }
552
553 /**
554 * sys_membarrier - issue memory barriers on a set of threads
555 * @cmd: Takes command values defined in enum membarrier_cmd.
556 * @flags: Currently needs to be 0 for all commands other than
557 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
558 * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
559 * contains the CPU on which to interrupt (= restart)
560 * the RSEQ critical section.
561 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
562 * RSEQ CS should be interrupted (@cmd must be
563 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
564 *
565 * If this system call is not implemented, -ENOSYS is returned. If the
566 * command specified does not exist, not available on the running
567 * kernel, or if the command argument is invalid, this system call
568 * returns -EINVAL. For a given command, with flags argument set to 0,
569 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
570 * always return the same value until reboot. In addition, it can return
571 * -ENOMEM if there is not enough memory available to perform the system
572 * call.
573 *
574 * All memory accesses performed in program order from each targeted thread
575 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
576 * the semantic "barrier()" to represent a compiler barrier forcing memory
577 * accesses to be performed in program order across the barrier, and
578 * smp_mb() to represent explicit memory barriers forcing full memory
579 * ordering across the barrier, we have the following ordering table for
580 * each pair of barrier(), sys_membarrier() and smp_mb():
581 *
582 * The pair ordering is detailed as (O: ordered, X: not ordered):
583 *
584 * barrier() smp_mb() sys_membarrier()
585 * barrier() X X O
586 * smp_mb() X O O
587 * sys_membarrier() O O O
588 */
SYSCALL_DEFINE3(membarrier,int,cmd,unsigned int,flags,int,cpu_id)589 SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
590 {
591 switch (cmd) {
592 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
593 if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
594 return -EINVAL;
595 break;
596 default:
597 if (unlikely(flags))
598 return -EINVAL;
599 }
600
601 if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
602 cpu_id = -1;
603
604 switch (cmd) {
605 case MEMBARRIER_CMD_QUERY:
606 {
607 int cmd_mask = MEMBARRIER_CMD_BITMASK;
608
609 if (tick_nohz_full_enabled())
610 cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
611 return cmd_mask;
612 }
613 case MEMBARRIER_CMD_GLOBAL:
614 /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
615 if (tick_nohz_full_enabled())
616 return -EINVAL;
617 if (num_online_cpus() > 1)
618 synchronize_rcu();
619 return 0;
620 case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
621 return membarrier_global_expedited();
622 case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
623 return membarrier_register_global_expedited();
624 case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
625 return membarrier_private_expedited(0, cpu_id);
626 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
627 return membarrier_register_private_expedited(0);
628 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
629 return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
630 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
631 return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
632 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
633 return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
634 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
635 return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
636 default:
637 return -EINVAL;
638 }
639 }
640