• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by struct memblock_region that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the struct memblock_type
54  * which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with struct memblock. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112 	.memory.regions		= memblock_memory_init_regions,
113 	.memory.cnt		= 1,	/* empty dummy entry */
114 	.memory.max		= INIT_MEMBLOCK_REGIONS,
115 	.memory.name		= "memory",
116 
117 	.reserved.regions	= memblock_reserved_init_regions,
118 	.reserved.cnt		= 1,	/* empty dummy entry */
119 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120 	.reserved.name		= "reserved",
121 
122 	.bottom_up		= false,
123 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 	.regions		= memblock_physmem_init_regions,
129 	.cnt			= 1,	/* empty dummy entry */
130 	.max			= INIT_PHYSMEM_REGIONS,
131 	.name			= "physmem",
132 };
133 #endif
134 
135 /*
136  * keep a pointer to &memblock.memory in the text section to use it in
137  * __next_mem_range() and its helpers.
138  *  For architectures that do not keep memblock data after init, this
139  * pointer will be reset to NULL at memblock_discard()
140  */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142 
143 #define for_each_memblock_type(i, memblock_type, rgn)			\
144 	for (i = 0, rgn = &memblock_type->regions[0];			\
145 	     i < memblock_type->cnt;					\
146 	     i++, rgn = &memblock_type->regions[i])
147 
148 #define memblock_dbg(fmt, ...)						\
149 	do {								\
150 		if (memblock_debug)					\
151 			pr_info(fmt, ##__VA_ARGS__);			\
152 	} while (0)
153 
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159 
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164 
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 	return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170 
171 /*
172  * Address comparison utilities
173  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 				       phys_addr_t base2, phys_addr_t size2)
176 {
177 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 					phys_addr_t base, phys_addr_t size)
182 {
183 	unsigned long i;
184 
185 	memblock_cap_size(base, &size);
186 
187 	for (i = 0; i < type->cnt; i++)
188 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 					   type->regions[i].size))
190 			break;
191 	return i < type->cnt;
192 }
193 
194 /**
195  * __memblock_find_range_bottom_up - find free area utility in bottom-up
196  * @start: start of candidate range
197  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198  *       %MEMBLOCK_ALLOC_ACCESSIBLE
199  * @size: size of free area to find
200  * @align: alignment of free area to find
201  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202  * @flags: pick from blocks based on memory attributes
203  *
204  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205  *
206  * Return:
207  * Found address on success, 0 on failure.
208  */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 				phys_addr_t size, phys_addr_t align, int nid,
212 				enum memblock_flags flags)
213 {
214 	phys_addr_t this_start, this_end, cand;
215 	u64 i;
216 
217 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 		this_start = clamp(this_start, start, end);
219 		this_end = clamp(this_end, start, end);
220 
221 		cand = round_up(this_start, align);
222 		if (cand < this_end && this_end - cand >= size)
223 			return cand;
224 	}
225 
226 	return 0;
227 }
228 
229 /**
230  * __memblock_find_range_top_down - find free area utility, in top-down
231  * @start: start of candidate range
232  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233  *       %MEMBLOCK_ALLOC_ACCESSIBLE
234  * @size: size of free area to find
235  * @align: alignment of free area to find
236  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237  * @flags: pick from blocks based on memory attributes
238  *
239  * Utility called from memblock_find_in_range_node(), find free area top-down.
240  *
241  * Return:
242  * Found address on success, 0 on failure.
243  */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 			       phys_addr_t size, phys_addr_t align, int nid,
247 			       enum memblock_flags flags)
248 {
249 	phys_addr_t this_start, this_end, cand;
250 	u64 i;
251 
252 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 					NULL) {
254 		this_start = clamp(this_start, start, end);
255 		this_end = clamp(this_end, start, end);
256 
257 		if (this_end < size)
258 			continue;
259 
260 		cand = round_down(this_end - size, align);
261 		if (cand >= this_start)
262 			return cand;
263 	}
264 
265 	return 0;
266 }
267 
268 /**
269  * memblock_find_in_range_node - find free area in given range and node
270  * @size: size of free area to find
271  * @align: alignment of free area to find
272  * @start: start of candidate range
273  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274  *       %MEMBLOCK_ALLOC_ACCESSIBLE
275  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276  * @flags: pick from blocks based on memory attributes
277  *
278  * Find @size free area aligned to @align in the specified range and node.
279  *
280  * Return:
281  * Found address on success, 0 on failure.
282  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 					phys_addr_t align, phys_addr_t start,
285 					phys_addr_t end, int nid,
286 					enum memblock_flags flags)
287 {
288 	/* pump up @end */
289 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
291 		end = memblock.current_limit;
292 
293 	/* avoid allocating the first page */
294 	start = max_t(phys_addr_t, start, PAGE_SIZE);
295 	end = max(start, end);
296 
297 	if (memblock_bottom_up())
298 		return __memblock_find_range_bottom_up(start, end, size, align,
299 						       nid, flags);
300 	else
301 		return __memblock_find_range_top_down(start, end, size, align,
302 						      nid, flags);
303 }
304 
305 /**
306  * memblock_find_in_range - find free area in given range
307  * @start: start of candidate range
308  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309  *       %MEMBLOCK_ALLOC_ACCESSIBLE
310  * @size: size of free area to find
311  * @align: alignment of free area to find
312  *
313  * Find @size free area aligned to @align in the specified range.
314  *
315  * Return:
316  * Found address on success, 0 on failure.
317  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 					phys_addr_t end, phys_addr_t size,
320 					phys_addr_t align)
321 {
322 	phys_addr_t ret;
323 	enum memblock_flags flags = choose_memblock_flags();
324 
325 again:
326 	ret = memblock_find_in_range_node(size, align, start, end,
327 					    NUMA_NO_NODE, flags);
328 
329 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 			&size);
332 		flags &= ~MEMBLOCK_MIRROR;
333 		goto again;
334 	}
335 
336 	return ret;
337 }
338 
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 	type->total_size -= type->regions[r].size;
342 	memmove(&type->regions[r], &type->regions[r + 1],
343 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 	type->cnt--;
345 
346 	/* Special case for empty arrays */
347 	if (type->cnt == 0) {
348 		WARN_ON(type->total_size != 0);
349 		type->cnt = 1;
350 		type->regions[0].base = 0;
351 		type->regions[0].size = 0;
352 		type->regions[0].flags = 0;
353 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 	}
355 }
356 
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359  * memblock_discard - discard memory and reserved arrays if they were allocated
360  */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 	phys_addr_t addr, size;
364 
365 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 		addr = __pa(memblock.reserved.regions);
367 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 				  memblock.reserved.max);
369 		if (memblock_reserved_in_slab)
370 			kfree(memblock.reserved.regions);
371 		else
372 			__memblock_free_late(addr, size);
373 	}
374 
375 	if (memblock.memory.regions != memblock_memory_init_regions) {
376 		addr = __pa(memblock.memory.regions);
377 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 				  memblock.memory.max);
379 		if (memblock_memory_in_slab)
380 			kfree(memblock.memory.regions);
381 		else
382 			__memblock_free_late(addr, size);
383 	}
384 
385 	memblock_memory = NULL;
386 }
387 #endif
388 
389 /**
390  * memblock_double_array - double the size of the memblock regions array
391  * @type: memblock type of the regions array being doubled
392  * @new_area_start: starting address of memory range to avoid overlap with
393  * @new_area_size: size of memory range to avoid overlap with
394  *
395  * Double the size of the @type regions array. If memblock is being used to
396  * allocate memory for a new reserved regions array and there is a previously
397  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398  * waiting to be reserved, ensure the memory used by the new array does
399  * not overlap.
400  *
401  * Return:
402  * 0 on success, -1 on failure.
403  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)404 static int __init_memblock memblock_double_array(struct memblock_type *type,
405 						phys_addr_t new_area_start,
406 						phys_addr_t new_area_size)
407 {
408 	struct memblock_region *new_array, *old_array;
409 	phys_addr_t old_alloc_size, new_alloc_size;
410 	phys_addr_t old_size, new_size, addr, new_end;
411 	int use_slab = slab_is_available();
412 	int *in_slab;
413 
414 	/* We don't allow resizing until we know about the reserved regions
415 	 * of memory that aren't suitable for allocation
416 	 */
417 	if (!memblock_can_resize)
418 		return -1;
419 
420 	/* Calculate new doubled size */
421 	old_size = type->max * sizeof(struct memblock_region);
422 	new_size = old_size << 1;
423 	/*
424 	 * We need to allocated new one align to PAGE_SIZE,
425 	 *   so we can free them completely later.
426 	 */
427 	old_alloc_size = PAGE_ALIGN(old_size);
428 	new_alloc_size = PAGE_ALIGN(new_size);
429 
430 	/* Retrieve the slab flag */
431 	if (type == &memblock.memory)
432 		in_slab = &memblock_memory_in_slab;
433 	else
434 		in_slab = &memblock_reserved_in_slab;
435 
436 	/* Try to find some space for it */
437 	if (use_slab) {
438 		new_array = kmalloc(new_size, GFP_KERNEL);
439 		addr = new_array ? __pa(new_array) : 0;
440 	} else {
441 		/* only exclude range when trying to double reserved.regions */
442 		if (type != &memblock.reserved)
443 			new_area_start = new_area_size = 0;
444 
445 		addr = memblock_find_in_range(new_area_start + new_area_size,
446 						memblock.current_limit,
447 						new_alloc_size, PAGE_SIZE);
448 		if (!addr && new_area_size)
449 			addr = memblock_find_in_range(0,
450 				min(new_area_start, memblock.current_limit),
451 				new_alloc_size, PAGE_SIZE);
452 
453 		new_array = addr ? __va(addr) : NULL;
454 	}
455 	if (!addr) {
456 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457 		       type->name, type->max, type->max * 2);
458 		return -1;
459 	}
460 
461 	new_end = addr + new_size - 1;
462 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 			type->name, type->max * 2, &addr, &new_end);
464 
465 	/*
466 	 * Found space, we now need to move the array over before we add the
467 	 * reserved region since it may be our reserved array itself that is
468 	 * full.
469 	 */
470 	memcpy(new_array, type->regions, old_size);
471 	memset(new_array + type->max, 0, old_size);
472 	old_array = type->regions;
473 	type->regions = new_array;
474 	type->max <<= 1;
475 
476 	/* Free old array. We needn't free it if the array is the static one */
477 	if (*in_slab)
478 		kfree(old_array);
479 	else if (old_array != memblock_memory_init_regions &&
480 		 old_array != memblock_reserved_init_regions)
481 		memblock_free_ptr(old_array, old_alloc_size);
482 
483 	/*
484 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
485 	 * needn't do it
486 	 */
487 	if (!use_slab)
488 		BUG_ON(memblock_reserve(addr, new_alloc_size));
489 
490 	/* Update slab flag */
491 	*in_slab = use_slab;
492 
493 	return 0;
494 }
495 
496 /**
497  * memblock_merge_regions - merge neighboring compatible regions
498  * @type: memblock type to scan
499  *
500  * Scan @type and merge neighboring compatible regions.
501  */
memblock_merge_regions(struct memblock_type * type)502 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503 {
504 	int i = 0;
505 
506 	/* cnt never goes below 1 */
507 	while (i < type->cnt - 1) {
508 		struct memblock_region *this = &type->regions[i];
509 		struct memblock_region *next = &type->regions[i + 1];
510 
511 		if (this->base + this->size != next->base ||
512 		    memblock_get_region_node(this) !=
513 		    memblock_get_region_node(next) ||
514 		    this->flags != next->flags) {
515 			BUG_ON(this->base + this->size > next->base);
516 			i++;
517 			continue;
518 		}
519 
520 		this->size += next->size;
521 		/* move forward from next + 1, index of which is i + 2 */
522 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523 		type->cnt--;
524 	}
525 }
526 
527 /**
528  * memblock_insert_region - insert new memblock region
529  * @type:	memblock type to insert into
530  * @idx:	index for the insertion point
531  * @base:	base address of the new region
532  * @size:	size of the new region
533  * @nid:	node id of the new region
534  * @flags:	flags of the new region
535  *
536  * Insert new memblock region [@base, @base + @size) into @type at @idx.
537  * @type must already have extra room to accommodate the new region.
538  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)539 static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 						   int idx, phys_addr_t base,
541 						   phys_addr_t size,
542 						   int nid,
543 						   enum memblock_flags flags)
544 {
545 	struct memblock_region *rgn = &type->regions[idx];
546 
547 	BUG_ON(type->cnt >= type->max);
548 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549 	rgn->base = base;
550 	rgn->size = size;
551 	rgn->flags = flags;
552 	memblock_set_region_node(rgn, nid);
553 	type->cnt++;
554 	type->total_size += size;
555 }
556 
557 /**
558  * memblock_add_range - add new memblock region
559  * @type: memblock type to add new region into
560  * @base: base address of the new region
561  * @size: size of the new region
562  * @nid: nid of the new region
563  * @flags: flags of the new region
564  *
565  * Add new memblock region [@base, @base + @size) into @type.  The new region
566  * is allowed to overlap with existing ones - overlaps don't affect already
567  * existing regions.  @type is guaranteed to be minimal (all neighbouring
568  * compatible regions are merged) after the addition.
569  *
570  * Return:
571  * 0 on success, -errno on failure.
572  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)573 static int __init_memblock memblock_add_range(struct memblock_type *type,
574 				phys_addr_t base, phys_addr_t size,
575 				int nid, enum memblock_flags flags)
576 {
577 	bool insert = false;
578 	phys_addr_t obase = base;
579 	phys_addr_t end = base + memblock_cap_size(base, &size);
580 	int idx, nr_new;
581 	struct memblock_region *rgn;
582 
583 	if (!size)
584 		return 0;
585 
586 	/* special case for empty array */
587 	if (type->regions[0].size == 0) {
588 		WARN_ON(type->cnt != 1 || type->total_size);
589 		type->regions[0].base = base;
590 		type->regions[0].size = size;
591 		type->regions[0].flags = flags;
592 		memblock_set_region_node(&type->regions[0], nid);
593 		type->total_size = size;
594 		return 0;
595 	}
596 repeat:
597 	/*
598 	 * The following is executed twice.  Once with %false @insert and
599 	 * then with %true.  The first counts the number of regions needed
600 	 * to accommodate the new area.  The second actually inserts them.
601 	 */
602 	base = obase;
603 	nr_new = 0;
604 
605 	for_each_memblock_type(idx, type, rgn) {
606 		phys_addr_t rbase = rgn->base;
607 		phys_addr_t rend = rbase + rgn->size;
608 
609 		if (rbase >= end)
610 			break;
611 		if (rend <= base)
612 			continue;
613 		/*
614 		 * @rgn overlaps.  If it separates the lower part of new
615 		 * area, insert that portion.
616 		 */
617 		if (rbase > base) {
618 #ifdef CONFIG_NUMA
619 			WARN_ON(nid != memblock_get_region_node(rgn));
620 #endif
621 			WARN_ON(flags != rgn->flags);
622 			nr_new++;
623 			if (insert)
624 				memblock_insert_region(type, idx++, base,
625 						       rbase - base, nid,
626 						       flags);
627 		}
628 		/* area below @rend is dealt with, forget about it */
629 		base = min(rend, end);
630 	}
631 
632 	/* insert the remaining portion */
633 	if (base < end) {
634 		nr_new++;
635 		if (insert)
636 			memblock_insert_region(type, idx, base, end - base,
637 					       nid, flags);
638 	}
639 
640 	if (!nr_new)
641 		return 0;
642 
643 	/*
644 	 * If this was the first round, resize array and repeat for actual
645 	 * insertions; otherwise, merge and return.
646 	 */
647 	if (!insert) {
648 		while (type->cnt + nr_new > type->max)
649 			if (memblock_double_array(type, obase, size) < 0)
650 				return -ENOMEM;
651 		insert = true;
652 		goto repeat;
653 	} else {
654 		memblock_merge_regions(type);
655 		return 0;
656 	}
657 }
658 
659 /**
660  * memblock_add_node - add new memblock region within a NUMA node
661  * @base: base address of the new region
662  * @size: size of the new region
663  * @nid: nid of the new region
664  * @flags: flags of the new region
665  *
666  * Add new memblock region [@base, @base + @size) to the "memory"
667  * type. See memblock_add_range() description for mode details
668  *
669  * Return:
670  * 0 on success, -errno on failure.
671  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)672 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
673 				      int nid, enum memblock_flags flags)
674 {
675 	phys_addr_t end = base + size - 1;
676 
677 	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
678 		     &base, &end, nid, flags, (void *)_RET_IP_);
679 
680 	return memblock_add_range(&memblock.memory, base, size, nid, flags);
681 }
682 
683 /**
684  * memblock_add - add new memblock region
685  * @base: base address of the new region
686  * @size: size of the new region
687  *
688  * Add new memblock region [@base, @base + @size) to the "memory"
689  * type. See memblock_add_range() description for mode details
690  *
691  * Return:
692  * 0 on success, -errno on failure.
693  */
memblock_add(phys_addr_t base,phys_addr_t size)694 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
695 {
696 	phys_addr_t end = base + size - 1;
697 
698 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
699 		     &base, &end, (void *)_RET_IP_);
700 
701 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
702 }
703 
704 /**
705  * memblock_isolate_range - isolate given range into disjoint memblocks
706  * @type: memblock type to isolate range for
707  * @base: base of range to isolate
708  * @size: size of range to isolate
709  * @start_rgn: out parameter for the start of isolated region
710  * @end_rgn: out parameter for the end of isolated region
711  *
712  * Walk @type and ensure that regions don't cross the boundaries defined by
713  * [@base, @base + @size).  Crossing regions are split at the boundaries,
714  * which may create at most two more regions.  The index of the first
715  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
716  *
717  * Return:
718  * 0 on success, -errno on failure.
719  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)720 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
721 					phys_addr_t base, phys_addr_t size,
722 					int *start_rgn, int *end_rgn)
723 {
724 	phys_addr_t end = base + memblock_cap_size(base, &size);
725 	int idx;
726 	struct memblock_region *rgn;
727 
728 	*start_rgn = *end_rgn = 0;
729 
730 	if (!size)
731 		return 0;
732 
733 	/* we'll create at most two more regions */
734 	while (type->cnt + 2 > type->max)
735 		if (memblock_double_array(type, base, size) < 0)
736 			return -ENOMEM;
737 
738 	for_each_memblock_type(idx, type, rgn) {
739 		phys_addr_t rbase = rgn->base;
740 		phys_addr_t rend = rbase + rgn->size;
741 
742 		if (rbase >= end)
743 			break;
744 		if (rend <= base)
745 			continue;
746 
747 		if (rbase < base) {
748 			/*
749 			 * @rgn intersects from below.  Split and continue
750 			 * to process the next region - the new top half.
751 			 */
752 			rgn->base = base;
753 			rgn->size -= base - rbase;
754 			type->total_size -= base - rbase;
755 			memblock_insert_region(type, idx, rbase, base - rbase,
756 					       memblock_get_region_node(rgn),
757 					       rgn->flags);
758 		} else if (rend > end) {
759 			/*
760 			 * @rgn intersects from above.  Split and redo the
761 			 * current region - the new bottom half.
762 			 */
763 			rgn->base = end;
764 			rgn->size -= end - rbase;
765 			type->total_size -= end - rbase;
766 			memblock_insert_region(type, idx--, rbase, end - rbase,
767 					       memblock_get_region_node(rgn),
768 					       rgn->flags);
769 		} else {
770 			/* @rgn is fully contained, record it */
771 			if (!*end_rgn)
772 				*start_rgn = idx;
773 			*end_rgn = idx + 1;
774 		}
775 	}
776 
777 	return 0;
778 }
779 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)780 static int __init_memblock memblock_remove_range(struct memblock_type *type,
781 					  phys_addr_t base, phys_addr_t size)
782 {
783 	int start_rgn, end_rgn;
784 	int i, ret;
785 
786 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
787 	if (ret)
788 		return ret;
789 
790 	for (i = end_rgn - 1; i >= start_rgn; i--)
791 		memblock_remove_region(type, i);
792 	return 0;
793 }
794 
memblock_remove(phys_addr_t base,phys_addr_t size)795 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
796 {
797 	phys_addr_t end = base + size - 1;
798 
799 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
800 		     &base, &end, (void *)_RET_IP_);
801 
802 	return memblock_remove_range(&memblock.memory, base, size);
803 }
804 
805 /**
806  * memblock_free_ptr - free boot memory allocation
807  * @ptr: starting address of the  boot memory allocation
808  * @size: size of the boot memory block in bytes
809  *
810  * Free boot memory block previously allocated by memblock_alloc_xx() API.
811  * The freeing memory will not be released to the buddy allocator.
812  */
memblock_free_ptr(void * ptr,size_t size)813 void __init_memblock memblock_free_ptr(void *ptr, size_t size)
814 {
815 	if (ptr)
816 		memblock_free(__pa(ptr), size);
817 }
818 
819 /**
820  * memblock_free - free boot memory block
821  * @base: phys starting address of the  boot memory block
822  * @size: size of the boot memory block in bytes
823  *
824  * Free boot memory block previously allocated by memblock_alloc_xx() API.
825  * The freeing memory will not be released to the buddy allocator.
826  */
memblock_free(phys_addr_t base,phys_addr_t size)827 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
828 {
829 	phys_addr_t end = base + size - 1;
830 
831 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
832 		     &base, &end, (void *)_RET_IP_);
833 
834 	kmemleak_free_part_phys(base, size);
835 	return memblock_remove_range(&memblock.reserved, base, size);
836 }
837 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
838 EXPORT_SYMBOL_GPL(memblock_free);
839 #endif
840 
memblock_reserve(phys_addr_t base,phys_addr_t size)841 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
842 {
843 	phys_addr_t end = base + size - 1;
844 
845 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
846 		     &base, &end, (void *)_RET_IP_);
847 
848 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
849 }
850 
851 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)852 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
853 {
854 	phys_addr_t end = base + size - 1;
855 
856 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
857 		     &base, &end, (void *)_RET_IP_);
858 
859 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
860 }
861 #endif
862 
863 /**
864  * memblock_setclr_flag - set or clear flag for a memory region
865  * @base: base address of the region
866  * @size: size of the region
867  * @set: set or clear the flag
868  * @flag: the flag to update
869  *
870  * This function isolates region [@base, @base + @size), and sets/clears flag
871  *
872  * Return: 0 on success, -errno on failure.
873  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)874 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
875 				phys_addr_t size, int set, int flag)
876 {
877 	struct memblock_type *type = &memblock.memory;
878 	int i, ret, start_rgn, end_rgn;
879 
880 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
881 	if (ret)
882 		return ret;
883 
884 	for (i = start_rgn; i < end_rgn; i++) {
885 		struct memblock_region *r = &type->regions[i];
886 
887 		if (set)
888 			r->flags |= flag;
889 		else
890 			r->flags &= ~flag;
891 	}
892 
893 	memblock_merge_regions(type);
894 	return 0;
895 }
896 
897 /**
898  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
899  * @base: the base phys addr of the region
900  * @size: the size of the region
901  *
902  * Return: 0 on success, -errno on failure.
903  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)904 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
905 {
906 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
907 }
908 
909 /**
910  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
911  * @base: the base phys addr of the region
912  * @size: the size of the region
913  *
914  * Return: 0 on success, -errno on failure.
915  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)916 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
917 {
918 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
919 }
920 
921 /**
922  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
923  * @base: the base phys addr of the region
924  * @size: the size of the region
925  *
926  * Return: 0 on success, -errno on failure.
927  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)928 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
929 {
930 	system_has_some_mirror = true;
931 
932 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
933 }
934 
935 /**
936  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
937  * @base: the base phys addr of the region
938  * @size: the size of the region
939  *
940  * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
941  * direct mapping of the physical memory. These regions will still be
942  * covered by the memory map. The struct page representing NOMAP memory
943  * frames in the memory map will be PageReserved()
944  *
945  * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
946  * memblock, the caller must inform kmemleak to ignore that memory
947  *
948  * Return: 0 on success, -errno on failure.
949  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)950 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
951 {
952 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
953 }
954 
955 /**
956  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
957  * @base: the base phys addr of the region
958  * @size: the size of the region
959  *
960  * Return: 0 on success, -errno on failure.
961  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)962 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
963 {
964 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
965 }
966 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)967 static bool should_skip_region(struct memblock_type *type,
968 			       struct memblock_region *m,
969 			       int nid, int flags)
970 {
971 	int m_nid = memblock_get_region_node(m);
972 
973 	/* we never skip regions when iterating memblock.reserved or physmem */
974 	if (type != memblock_memory)
975 		return false;
976 
977 	/* only memory regions are associated with nodes, check it */
978 	if (nid != NUMA_NO_NODE && nid != m_nid)
979 		return true;
980 
981 	/* skip hotpluggable memory regions if needed */
982 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
983 	    !(flags & MEMBLOCK_HOTPLUG))
984 		return true;
985 
986 	/* if we want mirror memory skip non-mirror memory regions */
987 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
988 		return true;
989 
990 	/* skip nomap memory unless we were asked for it explicitly */
991 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
992 		return true;
993 
994 	return false;
995 }
996 
997 /**
998  * __next_mem_range - next function for for_each_free_mem_range() etc.
999  * @idx: pointer to u64 loop variable
1000  * @nid: node selector, %NUMA_NO_NODE for all nodes
1001  * @flags: pick from blocks based on memory attributes
1002  * @type_a: pointer to memblock_type from where the range is taken
1003  * @type_b: pointer to memblock_type which excludes memory from being taken
1004  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1005  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1006  * @out_nid: ptr to int for nid of the range, can be %NULL
1007  *
1008  * Find the first area from *@idx which matches @nid, fill the out
1009  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1010  * *@idx contains index into type_a and the upper 32bit indexes the
1011  * areas before each region in type_b.	For example, if type_b regions
1012  * look like the following,
1013  *
1014  *	0:[0-16), 1:[32-48), 2:[128-130)
1015  *
1016  * The upper 32bit indexes the following regions.
1017  *
1018  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1019  *
1020  * As both region arrays are sorted, the function advances the two indices
1021  * in lockstep and returns each intersection.
1022  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1023 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1024 		      struct memblock_type *type_a,
1025 		      struct memblock_type *type_b, phys_addr_t *out_start,
1026 		      phys_addr_t *out_end, int *out_nid)
1027 {
1028 	int idx_a = *idx & 0xffffffff;
1029 	int idx_b = *idx >> 32;
1030 
1031 	if (WARN_ONCE(nid == MAX_NUMNODES,
1032 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1033 		nid = NUMA_NO_NODE;
1034 
1035 	for (; idx_a < type_a->cnt; idx_a++) {
1036 		struct memblock_region *m = &type_a->regions[idx_a];
1037 
1038 		phys_addr_t m_start = m->base;
1039 		phys_addr_t m_end = m->base + m->size;
1040 		int	    m_nid = memblock_get_region_node(m);
1041 
1042 		if (should_skip_region(type_a, m, nid, flags))
1043 			continue;
1044 
1045 		if (!type_b) {
1046 			if (out_start)
1047 				*out_start = m_start;
1048 			if (out_end)
1049 				*out_end = m_end;
1050 			if (out_nid)
1051 				*out_nid = m_nid;
1052 			idx_a++;
1053 			*idx = (u32)idx_a | (u64)idx_b << 32;
1054 			return;
1055 		}
1056 
1057 		/* scan areas before each reservation */
1058 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1059 			struct memblock_region *r;
1060 			phys_addr_t r_start;
1061 			phys_addr_t r_end;
1062 
1063 			r = &type_b->regions[idx_b];
1064 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1065 			r_end = idx_b < type_b->cnt ?
1066 				r->base : PHYS_ADDR_MAX;
1067 
1068 			/*
1069 			 * if idx_b advanced past idx_a,
1070 			 * break out to advance idx_a
1071 			 */
1072 			if (r_start >= m_end)
1073 				break;
1074 			/* if the two regions intersect, we're done */
1075 			if (m_start < r_end) {
1076 				if (out_start)
1077 					*out_start =
1078 						max(m_start, r_start);
1079 				if (out_end)
1080 					*out_end = min(m_end, r_end);
1081 				if (out_nid)
1082 					*out_nid = m_nid;
1083 				/*
1084 				 * The region which ends first is
1085 				 * advanced for the next iteration.
1086 				 */
1087 				if (m_end <= r_end)
1088 					idx_a++;
1089 				else
1090 					idx_b++;
1091 				*idx = (u32)idx_a | (u64)idx_b << 32;
1092 				return;
1093 			}
1094 		}
1095 	}
1096 
1097 	/* signal end of iteration */
1098 	*idx = ULLONG_MAX;
1099 }
1100 
1101 /**
1102  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1103  *
1104  * @idx: pointer to u64 loop variable
1105  * @nid: node selector, %NUMA_NO_NODE for all nodes
1106  * @flags: pick from blocks based on memory attributes
1107  * @type_a: pointer to memblock_type from where the range is taken
1108  * @type_b: pointer to memblock_type which excludes memory from being taken
1109  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1110  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1111  * @out_nid: ptr to int for nid of the range, can be %NULL
1112  *
1113  * Finds the next range from type_a which is not marked as unsuitable
1114  * in type_b.
1115  *
1116  * Reverse of __next_mem_range().
1117  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1118 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1119 					  enum memblock_flags flags,
1120 					  struct memblock_type *type_a,
1121 					  struct memblock_type *type_b,
1122 					  phys_addr_t *out_start,
1123 					  phys_addr_t *out_end, int *out_nid)
1124 {
1125 	int idx_a = *idx & 0xffffffff;
1126 	int idx_b = *idx >> 32;
1127 
1128 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1129 		nid = NUMA_NO_NODE;
1130 
1131 	if (*idx == (u64)ULLONG_MAX) {
1132 		idx_a = type_a->cnt - 1;
1133 		if (type_b != NULL)
1134 			idx_b = type_b->cnt;
1135 		else
1136 			idx_b = 0;
1137 	}
1138 
1139 	for (; idx_a >= 0; idx_a--) {
1140 		struct memblock_region *m = &type_a->regions[idx_a];
1141 
1142 		phys_addr_t m_start = m->base;
1143 		phys_addr_t m_end = m->base + m->size;
1144 		int m_nid = memblock_get_region_node(m);
1145 
1146 		if (should_skip_region(type_a, m, nid, flags))
1147 			continue;
1148 
1149 		if (!type_b) {
1150 			if (out_start)
1151 				*out_start = m_start;
1152 			if (out_end)
1153 				*out_end = m_end;
1154 			if (out_nid)
1155 				*out_nid = m_nid;
1156 			idx_a--;
1157 			*idx = (u32)idx_a | (u64)idx_b << 32;
1158 			return;
1159 		}
1160 
1161 		/* scan areas before each reservation */
1162 		for (; idx_b >= 0; idx_b--) {
1163 			struct memblock_region *r;
1164 			phys_addr_t r_start;
1165 			phys_addr_t r_end;
1166 
1167 			r = &type_b->regions[idx_b];
1168 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1169 			r_end = idx_b < type_b->cnt ?
1170 				r->base : PHYS_ADDR_MAX;
1171 			/*
1172 			 * if idx_b advanced past idx_a,
1173 			 * break out to advance idx_a
1174 			 */
1175 
1176 			if (r_end <= m_start)
1177 				break;
1178 			/* if the two regions intersect, we're done */
1179 			if (m_end > r_start) {
1180 				if (out_start)
1181 					*out_start = max(m_start, r_start);
1182 				if (out_end)
1183 					*out_end = min(m_end, r_end);
1184 				if (out_nid)
1185 					*out_nid = m_nid;
1186 				if (m_start >= r_start)
1187 					idx_a--;
1188 				else
1189 					idx_b--;
1190 				*idx = (u32)idx_a | (u64)idx_b << 32;
1191 				return;
1192 			}
1193 		}
1194 	}
1195 	/* signal end of iteration */
1196 	*idx = ULLONG_MAX;
1197 }
1198 
1199 /*
1200  * Common iterator interface used to define for_each_mem_pfn_range().
1201  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1202 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1203 				unsigned long *out_start_pfn,
1204 				unsigned long *out_end_pfn, int *out_nid)
1205 {
1206 	struct memblock_type *type = &memblock.memory;
1207 	struct memblock_region *r;
1208 	int r_nid;
1209 
1210 	while (++*idx < type->cnt) {
1211 		r = &type->regions[*idx];
1212 		r_nid = memblock_get_region_node(r);
1213 
1214 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1215 			continue;
1216 		if (nid == MAX_NUMNODES || nid == r_nid)
1217 			break;
1218 	}
1219 	if (*idx >= type->cnt) {
1220 		*idx = -1;
1221 		return;
1222 	}
1223 
1224 	if (out_start_pfn)
1225 		*out_start_pfn = PFN_UP(r->base);
1226 	if (out_end_pfn)
1227 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1228 	if (out_nid)
1229 		*out_nid = r_nid;
1230 }
1231 
1232 /**
1233  * memblock_set_node - set node ID on memblock regions
1234  * @base: base of area to set node ID for
1235  * @size: size of area to set node ID for
1236  * @type: memblock type to set node ID for
1237  * @nid: node ID to set
1238  *
1239  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1240  * Regions which cross the area boundaries are split as necessary.
1241  *
1242  * Return:
1243  * 0 on success, -errno on failure.
1244  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1245 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1246 				      struct memblock_type *type, int nid)
1247 {
1248 #ifdef CONFIG_NUMA
1249 	int start_rgn, end_rgn;
1250 	int i, ret;
1251 
1252 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1253 	if (ret)
1254 		return ret;
1255 
1256 	for (i = start_rgn; i < end_rgn; i++)
1257 		memblock_set_region_node(&type->regions[i], nid);
1258 
1259 	memblock_merge_regions(type);
1260 #endif
1261 	return 0;
1262 }
1263 
1264 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1265 /**
1266  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1267  *
1268  * @idx: pointer to u64 loop variable
1269  * @zone: zone in which all of the memory blocks reside
1270  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1271  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1272  *
1273  * This function is meant to be a zone/pfn specific wrapper for the
1274  * for_each_mem_range type iterators. Specifically they are used in the
1275  * deferred memory init routines and as such we were duplicating much of
1276  * this logic throughout the code. So instead of having it in multiple
1277  * locations it seemed like it would make more sense to centralize this to
1278  * one new iterator that does everything they need.
1279  */
1280 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1281 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1282 			     unsigned long *out_spfn, unsigned long *out_epfn)
1283 {
1284 	int zone_nid = zone_to_nid(zone);
1285 	phys_addr_t spa, epa;
1286 	int nid;
1287 
1288 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1289 			 &memblock.memory, &memblock.reserved,
1290 			 &spa, &epa, &nid);
1291 
1292 	while (*idx != U64_MAX) {
1293 		unsigned long epfn = PFN_DOWN(epa);
1294 		unsigned long spfn = PFN_UP(spa);
1295 
1296 		/*
1297 		 * Verify the end is at least past the start of the zone and
1298 		 * that we have at least one PFN to initialize.
1299 		 */
1300 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1301 			/* if we went too far just stop searching */
1302 			if (zone_end_pfn(zone) <= spfn) {
1303 				*idx = U64_MAX;
1304 				break;
1305 			}
1306 
1307 			if (out_spfn)
1308 				*out_spfn = max(zone->zone_start_pfn, spfn);
1309 			if (out_epfn)
1310 				*out_epfn = min(zone_end_pfn(zone), epfn);
1311 
1312 			return;
1313 		}
1314 
1315 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1316 				 &memblock.memory, &memblock.reserved,
1317 				 &spa, &epa, &nid);
1318 	}
1319 
1320 	/* signal end of iteration */
1321 	if (out_spfn)
1322 		*out_spfn = ULONG_MAX;
1323 	if (out_epfn)
1324 		*out_epfn = 0;
1325 }
1326 
1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1328 
1329 /**
1330  * memblock_alloc_range_nid - allocate boot memory block
1331  * @size: size of memory block to be allocated in bytes
1332  * @align: alignment of the region and block's size
1333  * @start: the lower bound of the memory region to allocate (phys address)
1334  * @end: the upper bound of the memory region to allocate (phys address)
1335  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1336  * @exact_nid: control the allocation fall back to other nodes
1337  *
1338  * The allocation is performed from memory region limited by
1339  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1340  *
1341  * If the specified node can not hold the requested memory and @exact_nid
1342  * is false, the allocation falls back to any node in the system.
1343  *
1344  * For systems with memory mirroring, the allocation is attempted first
1345  * from the regions with mirroring enabled and then retried from any
1346  * memory region.
1347  *
1348  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1349  * allocated boot memory block, so that it is never reported as leaks.
1350  *
1351  * Return:
1352  * Physical address of allocated memory block on success, %0 on failure.
1353  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1354 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1355 					phys_addr_t align, phys_addr_t start,
1356 					phys_addr_t end, int nid,
1357 					bool exact_nid)
1358 {
1359 	enum memblock_flags flags = choose_memblock_flags();
1360 	phys_addr_t found;
1361 
1362 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1363 		nid = NUMA_NO_NODE;
1364 
1365 	if (!align) {
1366 		/* Can't use WARNs this early in boot on powerpc */
1367 		dump_stack();
1368 		align = SMP_CACHE_BYTES;
1369 	}
1370 
1371 again:
1372 	found = memblock_find_in_range_node(size, align, start, end, nid,
1373 					    flags);
1374 	if (found && !memblock_reserve(found, size))
1375 		goto done;
1376 
1377 	if (nid != NUMA_NO_NODE && !exact_nid) {
1378 		found = memblock_find_in_range_node(size, align, start,
1379 						    end, NUMA_NO_NODE,
1380 						    flags);
1381 		if (found && !memblock_reserve(found, size))
1382 			goto done;
1383 	}
1384 
1385 	if (flags & MEMBLOCK_MIRROR) {
1386 		flags &= ~MEMBLOCK_MIRROR;
1387 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1388 			&size);
1389 		goto again;
1390 	}
1391 
1392 	return 0;
1393 
1394 done:
1395 	/*
1396 	 * Skip kmemleak for those places like kasan_init() and
1397 	 * early_pgtable_alloc() due to high volume.
1398 	 */
1399 	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1400 		/*
1401 		 * The min_count is set to 0 so that memblock allocated
1402 		 * blocks are never reported as leaks. This is because many
1403 		 * of these blocks are only referred via the physical
1404 		 * address which is not looked up by kmemleak.
1405 		 */
1406 		kmemleak_alloc_phys(found, size, 0, 0);
1407 
1408 	return found;
1409 }
1410 
1411 /**
1412  * memblock_phys_alloc_range - allocate a memory block inside specified range
1413  * @size: size of memory block to be allocated in bytes
1414  * @align: alignment of the region and block's size
1415  * @start: the lower bound of the memory region to allocate (physical address)
1416  * @end: the upper bound of the memory region to allocate (physical address)
1417  *
1418  * Allocate @size bytes in the between @start and @end.
1419  *
1420  * Return: physical address of the allocated memory block on success,
1421  * %0 on failure.
1422  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1423 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1424 					     phys_addr_t align,
1425 					     phys_addr_t start,
1426 					     phys_addr_t end)
1427 {
1428 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1429 		     __func__, (u64)size, (u64)align, &start, &end,
1430 		     (void *)_RET_IP_);
1431 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1432 					false);
1433 }
1434 
1435 /**
1436  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1437  * @size: size of memory block to be allocated in bytes
1438  * @align: alignment of the region and block's size
1439  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1440  *
1441  * Allocates memory block from the specified NUMA node. If the node
1442  * has no available memory, attempts to allocated from any node in the
1443  * system.
1444  *
1445  * Return: physical address of the allocated memory block on success,
1446  * %0 on failure.
1447  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1448 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1449 {
1450 	return memblock_alloc_range_nid(size, align, 0,
1451 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1452 }
1453 
1454 /**
1455  * memblock_alloc_internal - allocate boot memory block
1456  * @size: size of memory block to be allocated in bytes
1457  * @align: alignment of the region and block's size
1458  * @min_addr: the lower bound of the memory region to allocate (phys address)
1459  * @max_addr: the upper bound of the memory region to allocate (phys address)
1460  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1461  * @exact_nid: control the allocation fall back to other nodes
1462  *
1463  * Allocates memory block using memblock_alloc_range_nid() and
1464  * converts the returned physical address to virtual.
1465  *
1466  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1467  * will fall back to memory below @min_addr. Other constraints, such
1468  * as node and mirrored memory will be handled again in
1469  * memblock_alloc_range_nid().
1470  *
1471  * Return:
1472  * Virtual address of allocated memory block on success, NULL on failure.
1473  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1474 static void * __init memblock_alloc_internal(
1475 				phys_addr_t size, phys_addr_t align,
1476 				phys_addr_t min_addr, phys_addr_t max_addr,
1477 				int nid, bool exact_nid)
1478 {
1479 	phys_addr_t alloc;
1480 
1481 	/*
1482 	 * Detect any accidental use of these APIs after slab is ready, as at
1483 	 * this moment memblock may be deinitialized already and its
1484 	 * internal data may be destroyed (after execution of memblock_free_all)
1485 	 */
1486 	if (WARN_ON_ONCE(slab_is_available()))
1487 		return kzalloc_node(size, GFP_NOWAIT, nid);
1488 
1489 	if (max_addr > memblock.current_limit)
1490 		max_addr = memblock.current_limit;
1491 
1492 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1493 					exact_nid);
1494 
1495 	/* retry allocation without lower limit */
1496 	if (!alloc && min_addr)
1497 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1498 						exact_nid);
1499 
1500 	if (!alloc)
1501 		return NULL;
1502 
1503 	return phys_to_virt(alloc);
1504 }
1505 
1506 /**
1507  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1508  * without zeroing memory
1509  * @size: size of memory block to be allocated in bytes
1510  * @align: alignment of the region and block's size
1511  * @min_addr: the lower bound of the memory region from where the allocation
1512  *	  is preferred (phys address)
1513  * @max_addr: the upper bound of the memory region from where the allocation
1514  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515  *	      allocate only from memory limited by memblock.current_limit value
1516  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517  *
1518  * Public function, provides additional debug information (including caller
1519  * info), if enabled. Does not zero allocated memory.
1520  *
1521  * Return:
1522  * Virtual address of allocated memory block on success, NULL on failure.
1523  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1524 void * __init memblock_alloc_exact_nid_raw(
1525 			phys_addr_t size, phys_addr_t align,
1526 			phys_addr_t min_addr, phys_addr_t max_addr,
1527 			int nid)
1528 {
1529 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1530 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1531 		     &max_addr, (void *)_RET_IP_);
1532 
1533 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1534 				       true);
1535 }
1536 
1537 /**
1538  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1539  * memory and without panicking
1540  * @size: size of memory block to be allocated in bytes
1541  * @align: alignment of the region and block's size
1542  * @min_addr: the lower bound of the memory region from where the allocation
1543  *	  is preferred (phys address)
1544  * @max_addr: the upper bound of the memory region from where the allocation
1545  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546  *	      allocate only from memory limited by memblock.current_limit value
1547  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548  *
1549  * Public function, provides additional debug information (including caller
1550  * info), if enabled. Does not zero allocated memory, does not panic if request
1551  * cannot be satisfied.
1552  *
1553  * Return:
1554  * Virtual address of allocated memory block on success, NULL on failure.
1555  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1556 void * __init memblock_alloc_try_nid_raw(
1557 			phys_addr_t size, phys_addr_t align,
1558 			phys_addr_t min_addr, phys_addr_t max_addr,
1559 			int nid)
1560 {
1561 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1562 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1563 		     &max_addr, (void *)_RET_IP_);
1564 
1565 	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1566 				       false);
1567 }
1568 
1569 /**
1570  * memblock_alloc_try_nid - allocate boot memory block
1571  * @size: size of memory block to be allocated in bytes
1572  * @align: alignment of the region and block's size
1573  * @min_addr: the lower bound of the memory region from where the allocation
1574  *	  is preferred (phys address)
1575  * @max_addr: the upper bound of the memory region from where the allocation
1576  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1577  *	      allocate only from memory limited by memblock.current_limit value
1578  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1579  *
1580  * Public function, provides additional debug information (including caller
1581  * info), if enabled. This function zeroes the allocated memory.
1582  *
1583  * Return:
1584  * Virtual address of allocated memory block on success, NULL on failure.
1585  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1586 void * __init memblock_alloc_try_nid(
1587 			phys_addr_t size, phys_addr_t align,
1588 			phys_addr_t min_addr, phys_addr_t max_addr,
1589 			int nid)
1590 {
1591 	void *ptr;
1592 
1593 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1594 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1595 		     &max_addr, (void *)_RET_IP_);
1596 	ptr = memblock_alloc_internal(size, align,
1597 					   min_addr, max_addr, nid, false);
1598 	if (ptr)
1599 		memset(ptr, 0, size);
1600 
1601 	return ptr;
1602 }
1603 
1604 /**
1605  * __memblock_free_late - free pages directly to buddy allocator
1606  * @base: phys starting address of the  boot memory block
1607  * @size: size of the boot memory block in bytes
1608  *
1609  * This is only useful when the memblock allocator has already been torn
1610  * down, but we are still initializing the system.  Pages are released directly
1611  * to the buddy allocator.
1612  */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1613 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1614 {
1615 	phys_addr_t cursor, end;
1616 
1617 	end = base + size - 1;
1618 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1619 		     __func__, &base, &end, (void *)_RET_IP_);
1620 	kmemleak_free_part_phys(base, size);
1621 	cursor = PFN_UP(base);
1622 	end = PFN_DOWN(base + size);
1623 
1624 	for (; cursor < end; cursor++) {
1625 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1626 		totalram_pages_inc();
1627 	}
1628 }
1629 
1630 /*
1631  * Remaining API functions
1632  */
1633 
memblock_phys_mem_size(void)1634 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1635 {
1636 	return memblock.memory.total_size;
1637 }
1638 
memblock_reserved_size(void)1639 phys_addr_t __init_memblock memblock_reserved_size(void)
1640 {
1641 	return memblock.reserved.total_size;
1642 }
1643 
1644 /* lowest address */
memblock_start_of_DRAM(void)1645 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1646 {
1647 	return memblock.memory.regions[0].base;
1648 }
1649 
memblock_end_of_DRAM(void)1650 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1651 {
1652 	int idx = memblock.memory.cnt - 1;
1653 
1654 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1655 }
1656 EXPORT_SYMBOL_GPL(memblock_end_of_DRAM);
1657 
__find_max_addr(phys_addr_t limit)1658 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1659 {
1660 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1661 	struct memblock_region *r;
1662 
1663 	/*
1664 	 * translate the memory @limit size into the max address within one of
1665 	 * the memory memblock regions, if the @limit exceeds the total size
1666 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1667 	 */
1668 	for_each_mem_region(r) {
1669 		if (limit <= r->size) {
1670 			max_addr = r->base + limit;
1671 			break;
1672 		}
1673 		limit -= r->size;
1674 	}
1675 
1676 	return max_addr;
1677 }
1678 
memblock_enforce_memory_limit(phys_addr_t limit)1679 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1680 {
1681 	phys_addr_t max_addr;
1682 
1683 	if (!limit)
1684 		return;
1685 
1686 	max_addr = __find_max_addr(limit);
1687 
1688 	/* @limit exceeds the total size of the memory, do nothing */
1689 	if (max_addr == PHYS_ADDR_MAX)
1690 		return;
1691 
1692 	/* truncate both memory and reserved regions */
1693 	memblock_remove_range(&memblock.memory, max_addr,
1694 			      PHYS_ADDR_MAX);
1695 	memblock_remove_range(&memblock.reserved, max_addr,
1696 			      PHYS_ADDR_MAX);
1697 }
1698 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1699 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1700 {
1701 	int start_rgn, end_rgn;
1702 	int i, ret;
1703 
1704 	if (!size)
1705 		return;
1706 
1707 	if (!memblock_memory->total_size) {
1708 		pr_warn("%s: No memory registered yet\n", __func__);
1709 		return;
1710 	}
1711 
1712 	ret = memblock_isolate_range(&memblock.memory, base, size,
1713 						&start_rgn, &end_rgn);
1714 	if (ret)
1715 		return;
1716 
1717 	/* remove all the MAP regions */
1718 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1719 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1720 			memblock_remove_region(&memblock.memory, i);
1721 
1722 	for (i = start_rgn - 1; i >= 0; i--)
1723 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1724 			memblock_remove_region(&memblock.memory, i);
1725 
1726 	/* truncate the reserved regions */
1727 	memblock_remove_range(&memblock.reserved, 0, base);
1728 	memblock_remove_range(&memblock.reserved,
1729 			base + size, PHYS_ADDR_MAX);
1730 }
1731 
memblock_mem_limit_remove_map(phys_addr_t limit)1732 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1733 {
1734 	phys_addr_t max_addr;
1735 
1736 	if (!limit)
1737 		return;
1738 
1739 	max_addr = __find_max_addr(limit);
1740 
1741 	/* @limit exceeds the total size of the memory, do nothing */
1742 	if (max_addr == PHYS_ADDR_MAX)
1743 		return;
1744 
1745 	memblock_cap_memory_range(0, max_addr);
1746 }
1747 
memblock_search(struct memblock_type * type,phys_addr_t addr)1748 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1749 {
1750 	unsigned int left = 0, right = type->cnt;
1751 
1752 	do {
1753 		unsigned int mid = (right + left) / 2;
1754 
1755 		if (addr < type->regions[mid].base)
1756 			right = mid;
1757 		else if (addr >= (type->regions[mid].base +
1758 				  type->regions[mid].size))
1759 			left = mid + 1;
1760 		else
1761 			return mid;
1762 	} while (left < right);
1763 	return -1;
1764 }
1765 
memblock_is_reserved(phys_addr_t addr)1766 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1767 {
1768 	return memblock_search(&memblock.reserved, addr) != -1;
1769 }
1770 
memblock_is_memory(phys_addr_t addr)1771 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1772 {
1773 	return memblock_search(&memblock.memory, addr) != -1;
1774 }
1775 
memblock_is_map_memory(phys_addr_t addr)1776 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1777 {
1778 	int i = memblock_search(&memblock.memory, addr);
1779 
1780 	if (i == -1)
1781 		return false;
1782 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1783 }
1784 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1785 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1786 			 unsigned long *start_pfn, unsigned long *end_pfn)
1787 {
1788 	struct memblock_type *type = &memblock.memory;
1789 	int mid = memblock_search(type, PFN_PHYS(pfn));
1790 
1791 	if (mid == -1)
1792 		return -1;
1793 
1794 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1795 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1796 
1797 	return memblock_get_region_node(&type->regions[mid]);
1798 }
1799 
1800 /**
1801  * memblock_is_region_memory - check if a region is a subset of memory
1802  * @base: base of region to check
1803  * @size: size of region to check
1804  *
1805  * Check if the region [@base, @base + @size) is a subset of a memory block.
1806  *
1807  * Return:
1808  * 0 if false, non-zero if true
1809  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1810 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1811 {
1812 	int idx = memblock_search(&memblock.memory, base);
1813 	phys_addr_t end = base + memblock_cap_size(base, &size);
1814 
1815 	if (idx == -1)
1816 		return false;
1817 	return (memblock.memory.regions[idx].base +
1818 		 memblock.memory.regions[idx].size) >= end;
1819 }
1820 
1821 /**
1822  * memblock_is_region_reserved - check if a region intersects reserved memory
1823  * @base: base of region to check
1824  * @size: size of region to check
1825  *
1826  * Check if the region [@base, @base + @size) intersects a reserved
1827  * memory block.
1828  *
1829  * Return:
1830  * True if they intersect, false if not.
1831  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1832 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1833 {
1834 	return memblock_overlaps_region(&memblock.reserved, base, size);
1835 }
1836 
memblock_trim_memory(phys_addr_t align)1837 void __init_memblock memblock_trim_memory(phys_addr_t align)
1838 {
1839 	phys_addr_t start, end, orig_start, orig_end;
1840 	struct memblock_region *r;
1841 
1842 	for_each_mem_region(r) {
1843 		orig_start = r->base;
1844 		orig_end = r->base + r->size;
1845 		start = round_up(orig_start, align);
1846 		end = round_down(orig_end, align);
1847 
1848 		if (start == orig_start && end == orig_end)
1849 			continue;
1850 
1851 		if (start < end) {
1852 			r->base = start;
1853 			r->size = end - start;
1854 		} else {
1855 			memblock_remove_region(&memblock.memory,
1856 					       r - memblock.memory.regions);
1857 			r--;
1858 		}
1859 	}
1860 }
1861 
memblock_set_current_limit(phys_addr_t limit)1862 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1863 {
1864 	memblock.current_limit = limit;
1865 }
1866 
memblock_get_current_limit(void)1867 phys_addr_t __init_memblock memblock_get_current_limit(void)
1868 {
1869 	return memblock.current_limit;
1870 }
1871 
memblock_dump(struct memblock_type * type)1872 static void __init_memblock memblock_dump(struct memblock_type *type)
1873 {
1874 	phys_addr_t base, end, size;
1875 	enum memblock_flags flags;
1876 	int idx;
1877 	struct memblock_region *rgn;
1878 
1879 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1880 
1881 	for_each_memblock_type(idx, type, rgn) {
1882 		char nid_buf[32] = "";
1883 
1884 		base = rgn->base;
1885 		size = rgn->size;
1886 		end = base + size - 1;
1887 		flags = rgn->flags;
1888 #ifdef CONFIG_NUMA
1889 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1890 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1891 				 memblock_get_region_node(rgn));
1892 #endif
1893 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1894 			type->name, idx, &base, &end, &size, nid_buf, flags);
1895 	}
1896 }
1897 
__memblock_dump_all(void)1898 static void __init_memblock __memblock_dump_all(void)
1899 {
1900 	pr_info("MEMBLOCK configuration:\n");
1901 	pr_info(" memory size = %pa reserved size = %pa\n",
1902 		&memblock.memory.total_size,
1903 		&memblock.reserved.total_size);
1904 
1905 	memblock_dump(&memblock.memory);
1906 	memblock_dump(&memblock.reserved);
1907 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1908 	memblock_dump(&physmem);
1909 #endif
1910 }
1911 
memblock_dump_all(void)1912 void __init_memblock memblock_dump_all(void)
1913 {
1914 	if (memblock_debug)
1915 		__memblock_dump_all();
1916 }
1917 
memblock_allow_resize(void)1918 void __init memblock_allow_resize(void)
1919 {
1920 	memblock_can_resize = 1;
1921 }
1922 
early_memblock(char * p)1923 static int __init early_memblock(char *p)
1924 {
1925 	if (p && strstr(p, "debug"))
1926 		memblock_debug = 1;
1927 	return 0;
1928 }
1929 early_param("memblock", early_memblock);
1930 
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1931 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1932 {
1933 	struct page *start_pg, *end_pg;
1934 	phys_addr_t pg, pgend;
1935 
1936 	/*
1937 	 * Convert start_pfn/end_pfn to a struct page pointer.
1938 	 */
1939 	start_pg = pfn_to_page(start_pfn - 1) + 1;
1940 	end_pg = pfn_to_page(end_pfn - 1) + 1;
1941 
1942 	/*
1943 	 * Convert to physical addresses, and round start upwards and end
1944 	 * downwards.
1945 	 */
1946 	pg = PAGE_ALIGN(__pa(start_pg));
1947 	pgend = __pa(end_pg) & PAGE_MASK;
1948 
1949 	/*
1950 	 * If there are free pages between these, free the section of the
1951 	 * memmap array.
1952 	 */
1953 	if (pg < pgend)
1954 		memblock_free(pg, pgend - pg);
1955 }
1956 
1957 /*
1958  * The mem_map array can get very big.  Free the unused area of the memory map.
1959  */
free_unused_memmap(void)1960 static void __init free_unused_memmap(void)
1961 {
1962 	unsigned long start, end, prev_end = 0;
1963 	int i;
1964 
1965 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1966 	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1967 		return;
1968 
1969 	/*
1970 	 * This relies on each bank being in address order.
1971 	 * The banks are sorted previously in bootmem_init().
1972 	 */
1973 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1974 #ifdef CONFIG_SPARSEMEM
1975 		/*
1976 		 * Take care not to free memmap entries that don't exist
1977 		 * due to SPARSEMEM sections which aren't present.
1978 		 */
1979 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1980 #endif
1981 		/*
1982 		 * Align down here since many operations in VM subsystem
1983 		 * presume that there are no holes in the memory map inside
1984 		 * a pageblock
1985 		 */
1986 		start = round_down(start, pageblock_nr_pages);
1987 
1988 		/*
1989 		 * If we had a previous bank, and there is a space
1990 		 * between the current bank and the previous, free it.
1991 		 */
1992 		if (prev_end && prev_end < start)
1993 			free_memmap(prev_end, start);
1994 
1995 		/*
1996 		 * Align up here since many operations in VM subsystem
1997 		 * presume that there are no holes in the memory map inside
1998 		 * a pageblock
1999 		 */
2000 		prev_end = ALIGN(end, pageblock_nr_pages);
2001 	}
2002 
2003 #ifdef CONFIG_SPARSEMEM
2004 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2005 		prev_end = ALIGN(end, pageblock_nr_pages);
2006 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2007 	}
2008 #endif
2009 }
2010 
__free_pages_memory(unsigned long start,unsigned long end)2011 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2012 {
2013 	int order;
2014 
2015 	while (start < end) {
2016 		order = min(MAX_ORDER - 1UL, __ffs(start));
2017 
2018 		while (start + (1UL << order) > end)
2019 			order--;
2020 
2021 		memblock_free_pages(pfn_to_page(start), start, order);
2022 
2023 		start += (1UL << order);
2024 	}
2025 }
2026 
__free_memory_core(phys_addr_t start,phys_addr_t end)2027 static unsigned long __init __free_memory_core(phys_addr_t start,
2028 				 phys_addr_t end)
2029 {
2030 	unsigned long start_pfn = PFN_UP(start);
2031 	unsigned long end_pfn = min_t(unsigned long,
2032 				      PFN_DOWN(end), max_low_pfn);
2033 
2034 	if (start_pfn >= end_pfn)
2035 		return 0;
2036 
2037 	__free_pages_memory(start_pfn, end_pfn);
2038 
2039 	return end_pfn - start_pfn;
2040 }
2041 
memmap_init_reserved_pages(void)2042 static void __init memmap_init_reserved_pages(void)
2043 {
2044 	struct memblock_region *region;
2045 	phys_addr_t start, end;
2046 	u64 i;
2047 
2048 	/* initialize struct pages for the reserved regions */
2049 	for_each_reserved_mem_range(i, &start, &end)
2050 		reserve_bootmem_region(start, end);
2051 
2052 	/* and also treat struct pages for the NOMAP regions as PageReserved */
2053 	for_each_mem_region(region) {
2054 		if (memblock_is_nomap(region)) {
2055 			start = region->base;
2056 			end = start + region->size;
2057 			reserve_bootmem_region(start, end);
2058 		}
2059 	}
2060 }
2061 
free_low_memory_core_early(void)2062 static unsigned long __init free_low_memory_core_early(void)
2063 {
2064 	unsigned long count = 0;
2065 	phys_addr_t start, end;
2066 	u64 i;
2067 
2068 	memblock_clear_hotplug(0, -1);
2069 
2070 	memmap_init_reserved_pages();
2071 
2072 	/*
2073 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2074 	 *  because in some case like Node0 doesn't have RAM installed
2075 	 *  low ram will be on Node1
2076 	 */
2077 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2078 				NULL)
2079 		count += __free_memory_core(start, end);
2080 
2081 	return count;
2082 }
2083 
2084 static int reset_managed_pages_done __initdata;
2085 
reset_node_managed_pages(pg_data_t * pgdat)2086 void reset_node_managed_pages(pg_data_t *pgdat)
2087 {
2088 	struct zone *z;
2089 
2090 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2091 		atomic_long_set(&z->managed_pages, 0);
2092 }
2093 
reset_all_zones_managed_pages(void)2094 void __init reset_all_zones_managed_pages(void)
2095 {
2096 	struct pglist_data *pgdat;
2097 
2098 	if (reset_managed_pages_done)
2099 		return;
2100 
2101 	for_each_online_pgdat(pgdat)
2102 		reset_node_managed_pages(pgdat);
2103 
2104 	reset_managed_pages_done = 1;
2105 }
2106 
2107 /**
2108  * memblock_free_all - release free pages to the buddy allocator
2109  */
memblock_free_all(void)2110 void __init memblock_free_all(void)
2111 {
2112 	unsigned long pages;
2113 
2114 	free_unused_memmap();
2115 	reset_all_zones_managed_pages();
2116 
2117 	pages = free_low_memory_core_early();
2118 	totalram_pages_add(pages);
2119 }
2120 
2121 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2122 
memblock_debug_show(struct seq_file * m,void * private)2123 static int memblock_debug_show(struct seq_file *m, void *private)
2124 {
2125 	struct memblock_type *type = m->private;
2126 	struct memblock_region *reg;
2127 	int i;
2128 	phys_addr_t end;
2129 
2130 	for (i = 0; i < type->cnt; i++) {
2131 		reg = &type->regions[i];
2132 		end = reg->base + reg->size - 1;
2133 
2134 		seq_printf(m, "%4d: ", i);
2135 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2136 	}
2137 	return 0;
2138 }
2139 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2140 
memblock_init_debugfs(void)2141 static int __init memblock_init_debugfs(void)
2142 {
2143 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2144 
2145 	debugfs_create_file("memory", 0444, root,
2146 			    &memblock.memory, &memblock_debug_fops);
2147 	debugfs_create_file("reserved", 0444, root,
2148 			    &memblock.reserved, &memblock_debug_fops);
2149 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2150 	debugfs_create_file("physmem", 0444, root, &physmem,
2151 			    &memblock_debug_fops);
2152 #endif
2153 
2154 	return 0;
2155 }
2156 __initcall(memblock_init_debugfs);
2157 
2158 #endif /* CONFIG_DEBUG_FS */
2159